

This page intentionally left blank

This series of books is affectionately dedicated

to the Type 650 computer once installed at

Case Institute of Technology,

in remembrance of many pleasant evenings.

DONALD E. KNUTH Stanford University

6
77 ADDISONŰWESLEY

Volume 1 / Fundamental Algorithms

THE ART OF

COMPUTER PROGRAMMING

THIRD EDITION

Upper Saddle River, NJ · Boston · Indianapolis · San Francisco
New York · Toronto · Montréal · London · Munich · Paris · Madrid
Capetown · Sydney · Tokyo · Singapore · Mexico City

TEX is a trademark of the American Mathematical Society
hijklmnj is a trademark of AddisonŰWesley
The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.
The publisher offers excellent discounts on this book when ordered in quantity for bulk
purposes or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

U.S. Corporate and Government Sales (800) 382Ű3419
corpsales@pearsontechgroup.com

For sales outside the U.S., please contact:
International Sales international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Knuth, Donald Ervin, 1938-
The art of computer programming / Donald Ervin Knuth.
xx,652 p. 24 cm.
Includes bibliographical references and index.
Contents: v. 1. Fundamental algorithms. -- v. 2. Seminumerical

algorithms. -- v. 3. Sorting and searching. -- v. 4a. Combinatorial
algorithms, part 1.
Contents: v. 1. Fundamental algorithms. -- 3rd ed.
ISBN 978-0-201-89683-1 (v. 1, 3rd ed.)
ISBN 978-0-201-89684-8 (v. 2, 3rd ed.)
ISBN 978-0-201-89685-5 (v. 3, 2nd ed.)
ISBN 978-0-201-03804-0 (v. 4a)
1. Electronic digital computers--Programming. 2. Computer

algorithms. I. Title.
QA76.6.K64 1997
005.1--DC21 97-2147

Internet page http://www-cs-faculty.stanford.edu/~knuth/taocp.html contains
current information about this book and related books.

Electronic version by Mathematical Sciences Publishers (MSP), http://msp.org

Copyright c⃝ 1997 by AddisonŰWesley
All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or transmission in any form
or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116 Fax: (617) 671-3447

ISBN-13 978-0-201-89683-1
ISBN-10 0-201-89683-4
First digital release, December 2013

mailto:corpsales@pearsontechgroup.com
http://informit.com/aw
http://www-cs-faculty.stanford.edu/~knuth/taocp.html
http://msp.org

PREFACE

Here is your book, the one your thousands of letters have asked us

to publish. It has taken us years to do, checking and rechecking countless

recipes to bring you only the best, only the interesting, only the perfect.

Now we can say, without a shadow of a doubt, that every single one of them,

if you follow the directions to the letter, will work for you exactly as well

as it did for us, even if you have never cooked before.

— McCallŠs Cookbook (1963)

The process of preparing programs for a digital computer is especially attrac-
tive, not only because it can be economically and scientiĄcally rewarding, but
also because it can be an aesthetic experience much like composing poetry or
music. This book is the Ąrst volume of a multi-volume set of books that has been
designed to train the reader in various skills that go into a programmerŠs craft.

The following chapters are not meant to serve as an introduction to computer
programming; the reader is supposed to have had some previous experience. The
prerequisites are actually very simple, but a beginner requires time and practice
in order to understand the concept of a digital computer. The reader should
possess:

a) Some idea of how a stored-program digital computer works; not necessarily
the electronics, rather the manner in which instructions can be kept in the
machineŠs memory and successively executed.

b) An ability to put the solutions to problems into such explicit terms that a
computer can ŞunderstandŤ them. (These machines have no common sense;
they do exactly as they are told, no more and no less. This fact is the
hardest concept to grasp when one Ąrst tries to use a computer.)

c) Some knowledge of the most elementary computer techniques, such as loop-
ing (performing a set of instructions repeatedly), the use of subroutines, and
the use of indexed variables.

d) A little knowledge of common computer jargon Ů Şmemory,Ť Şregisters,Ť
Şbits,Ť ŞĆoating point,Ť ŞoverĆow,Ť Şsoftware.Ť Most words not deĄned in
the text are given brief deĄnitions in the index at the close of each volume.

These four prerequisites can perhaps be summed up into the single requirement
that the reader should have already written and tested at least, say, four pro-
grams for at least one computer.

I have tried to write this set of books in such a way that it will Ąll several
needs. In the Ąrst place, these books are reference works that summarize the

v

vi PREFACE

knowledge that has been acquired in several important Ąelds. In the second place,
they can be used as textbooks for self-study or for college courses in the computer
and information sciences. To meet both of these objectives, I have incorporated
a large number of exercises into the text and have furnished answers for most
of them. I have also made an effort to Ąll the pages with facts rather than with
vague, general commentary.

This set of books is intended for people who will be more than just casually
interested in computers, yet it is by no means only for the computer specialist.
Indeed, one of my main goals has been to make these programming techniques
more accessible to the many people working in other Ąelds who can make fruitful
use of computers, yet who cannot afford the time to locate all of the necessary
information that is buried in technical journals.

We might call the subject of these books Şnonnumerical analysis.Ť Comput-
ers have traditionally been associated with the solution of numerical problems
such as the calculation of the roots of an equation, numerical interpolation
and integration, etc., but such topics are not treated here except in passing.
Numerical computer programming is an extremely interesting and rapidly ex-
panding Ąeld, and many books have been written about it. Since the early
1960s, however, computers have been used even more often for problems in which
numbers occur only by coincidence; the computerŠs decision-making capabilities
are being used, rather than its ability to do arithmetic. We have some use
for addition and subtraction in nonnumerical problems, but we rarely feel any
need for multiplication and division. Of course, even a person who is primarily
concerned with numerical computer programming will beneĄt from a study of
the nonnumerical techniques, for they are present in the background of numerical
programs as well.

The results of research in nonnumerical analysis are scattered throughout
numerous technical journals. My approach has been to try to distill this vast
literature by studying the techniques that are most basic, in the sense that they
can be applied to many types of programming situations. I have attempted to
coordinate the ideas into more or less of a Ştheory,Ť as well as to show how the
theory applies to a wide variety of practical problems.

Of course, Şnonnumerical analysisŤ is a terribly negative name for this Ąeld
of study; it is much better to have a positive, descriptive term that characterizes
the subject. ŞInformation processingŤ is too broad a designation for the material
I am considering, and Şprogramming techniquesŤ is too narrow. Therefore I wish
to propose analysis of algorithms as an appropriate name for the subject matter
covered in these books. This name is meant to imply Şthe theory of the properties
of particular computer algorithms.Ť

The complete set of books, entitled The Art of Computer Programming, has
the following general outline:

Volume 1. Fundamental Algorithms

Chapter 1. Basic Concepts
Chapter 2. Information Structures

PREFACE vii

Volume 2. Seminumerical Algorithms

Chapter 3. Random Numbers
Chapter 4. Arithmetic

Volume 3. Sorting and Searching

Chapter 5. Sorting
Chapter 6. Searching

Volume 4. Combinatorial Algorithms

Chapter 7. Combinatorial Searching
Chapter 8. Recursion

Volume 5. Syntactical Algorithms

Chapter 9. Lexical Scanning
Chapter 10. Parsing

Volume 4 deals with such a large topic, it actually represents several separate
books (Volumes 4A, 4B, and so on). Two additional volumes on more specialized
topics are also planned: Volume 6, The Theory of Languages (Chapter 11);
Volume 7, Compilers (Chapter 12).

I started out in 1962 to write a single book with this sequence of chapters,
but I soon found that it was more important to treat the subjects in depth rather
than to skim over them lightly. The resulting length of the text has meant that
each chapter by itself contains more than enough material for a one-semester
college course; so it has become sensible to publish the series in separate volumes.
I know that it is strange to have only one or two chapters in an entire book, but
I have decided to retain the original chapter numbering in order to facilitate
cross references. A shorter version of Volumes 1 through 5 is planned, intended
speciĄcally to serve as a more general reference and/or text for undergraduate
computer courses; its contents will be a subset of the material in these books,
with the more specialized information omitted. The same chapter numbering
will be used in the abridged edition as in the complete work.

The present volume may be considered as the ŞintersectionŤ of the entire set,
in the sense that it contains basic material that is used in all the other books.
Volumes 2 through 5, on the other hand, may be read independently of each
other. Volume 1 is not only a reference book to be used in connection with the
remaining volumes; it may also be used in college courses or for self-study as a
text on the subject of data structures (emphasizing the material of Chapter 2),
or as a text on the subject of discrete mathematics (emphasizing the material of
Sections 1.1, 1.2, 1.3.3, and 2.3.4), or as a text on the subject of machine-language
programming (emphasizing the material of Sections 1.3 and 1.4).

The point of view I have adopted while writing these chapters differs from
that taken in most contemporary books about computer programming in that
I am not trying to teach the reader how to use somebody elseŠs software. I am
concerned rather with teaching people how to write better software themselves.

viii PREFACE

My original goal was to bring readers to the frontiers of knowledge in every
subject that was treated. But it is extremely difficult to keep up with a Ąeld
that is economically proĄtable, and the rapid rise of computer science has made
such a dream impossible. The subject has become a vast tapestry with tens of
thousands of subtle results contributed by tens of thousands of talented people
all over the world. Therefore my new goal has been to concentrate on ŞclassicŤ
techniques that are likely to remain important for many more decades, and to
describe them as well as I can. In particular, I have tried to trace the history
of each subject, and to provide a solid foundation for future progress. I have
attempted to choose terminology that is concise and consistent with current
usage. I have tried to include all of the known ideas about sequential computer
programming that are both beautiful and easy to state.

A few words are in order about the mathematical content of this set of books.
The material has been organized so that persons with no more than a knowledge
of high-school algebra may read it, skimming brieĆy over the more mathematical
portions; yet a reader who is mathematically inclined will learn about many
interesting mathematical techniques related to discrete mathematics. This dual
level of presentation has been achieved in part by assigning ratings to each of the
exercises so that the primarily mathematical ones are marked speciĄcally as such,
and also by arranging most sections so that the main mathematical results are
stated before their proofs. The proofs are either left as exercises (with answers
to be found in a separate section) or they are given at the end of a section.

A reader who is interested primarily in programming rather than in the
associated mathematics may stop reading most sections as soon as the math-
ematics becomes recognizably difficult. On the other hand, a mathematically
oriented reader will Ąnd a wealth of interesting material collected here. Much of
the published mathematics about computer programming has been faulty, and
one of the purposes of this book is to instruct readers in proper mathematical
approaches to this subject. Since I profess to be a mathematician, it is my duty
to maintain mathematical integrity as well as I can.

A knowledge of elementary calculus will suffice for most of the mathematics
in these books, since most of the other theory that is needed is developed herein.
However, I do need to use deeper theorems of complex variable theory, probability
theory, number theory, etc., at times, and in such cases I refer to appropriate
textbooks where those subjects are developed.

The hardest decision that I had to make while preparing these books con-
cerned the manner in which to present the various techniques. The advantages of
Ćow charts and of an informal step-by-step description of an algorithm are well
known; for a discussion of this, see the article ŞComputer-Drawn FlowchartsŤ
in the ACM Communications, Vol. 6 (September 1963), pages 555Ű563. Yet a
formal, precise language is also necessary to specify any computer algorithm,
and I needed to decide whether to use an algebraic language, such as ALGOL
or FORTRAN, or to use a machine-oriented language for this purpose. Per-
haps many of todayŠs computer experts will disagree with my decision to use a

PREFACE ix

machine-oriented language, but I have become convinced that it was deĄnitely
the correct choice, for the following reasons:

a) A programmer is greatly inĆuenced by the language in which programs are
written; there is an overwhelming tendency to prefer constructions that are
simplest in that language, rather than those that are best for the machine.
By understanding a machine-oriented language, the programmer will tend
to use a much more efficient method; it is much closer to reality.

b) The programs we require are, with a few exceptions, all rather short, so with
a suitable computer there will be no trouble understanding the programs.

c) High-level languages are inadequate for discussing important low-level de-
tails such as coroutine linkage, random number generation, multi-precision
arithmetic, and many problems involving the efficient usage of memory.

d) A person who is more than casually interested in computers should be well
schooled in machine language, since it is a fundamental part of a computer.

e) Some machine language would be necessary anyway as output of the software
programs described in many of the examples.

f) New algebraic languages go in and out of fashion every Ąve years or so, while
I am trying to emphasize concepts that are timeless.

From the other point of view, I admit that it is somewhat easier to write programs
in higher-level programming languages, and it is considerably easier to debug
the programs. Indeed, I have rarely used low-level machine language for my
own programs since 1970, now that computers are so large and so fast. Many
of the problems of interest to us in this book, however, are those for which
the programmerŠs art is most important. For example, some combinatorial
calculations need to be repeated a trillion times, and we save about 11.6 days
of computation for every microsecond we can squeeze out of their inner loop.
Similarly, it is worthwhile to put an additional effort into the writing of software
that will be used many times each day in many computer installations, since the
software needs to be written only once.

Given the decision to use a machine-oriented language, which language
should be used? I could have chosen the language of a particular machine X,
but then those people who do not possess machine X would think this book is
only for X-people. Furthermore, machine X probably has a lot of idiosyncrasies
that are completely irrelevant to the material in this book yet which must be
explained; and in two years the manufacturer of machine X will put out machine
X + 1 or machine 10X, and machine X will no longer be of interest to anyone.

To avoid this dilemma, I have attempted to design an ŞidealŤ computer
with very simple rules of operation (requiring, say, only an hour to learn), which
also resembles actual machines very closely. There is no reason why a student
should be afraid of learning the characteristics of more than one computer; once
one machine language has been mastered, others are easily assimilated. Indeed,
serious programmers may expect to meet many different machine languages in
the course of their careers. So the only remaining disadvantage of a mythical

x PREFACE

machine is the difficulty of executing any programs written for it. Fortunately,
that is not really a problem, because many volunteers have come forward to
write simulators for the hypothetical machine. Such simulators are ideal for
instructional purposes, since they are even easier to use than a real computer
would be.

I have attempted to cite the best early papers in each subject, together with
a sampling of more recent work. When referring to the literature, I use standard
abbreviations for the names of periodicals, except that the most commonly cited
journals are abbreviated as follows:

CACM = Communications of the Association for Computing Machinery

JACM = Journal of the Association for Computing Machinery

Comp. J. = The Computer Journal (British Computer Society)

Math. Comp. = Mathematics of Computation

AMM = American Mathematical Monthly

SICOMP = SIAM Journal on Computing

FOCS = IEEE Symposium on Foundations of Computer Science

SODA = ACMŰSIAM Symposium on Discrete Algorithms

STOC = ACM Symposium on Theory of Computing

Crelle = Journal für die reine und angewandte Mathematik

As an example, ŞCACM 6 (1963), 555Ű563Ť stands for the reference given in a
preceding paragraph of this preface. I also use ŞCMathŤ to stand for the book
Concrete Mathematics, which is cited in the introduction to Section 1.2.

Much of the technical content of these books appears in the exercises. When
the idea behind a nontrivial exercise is not my own, I have attempted to give
credit to the person who originated that idea. Corresponding references to the
literature are usually given in the accompanying text of that section, or in the
answer to that exercise, but in many cases the exercises are based on unpublished
material for which no further reference can be given.

I have, of course, received assistance from a great many people during the
years I have been preparing these books, and for this I am extremely thankful.
Acknowledgments are due, Ąrst, to my wife, Jill, for her inĄnite patience, for
preparing several of the illustrations, and for untold further assistance of all
kinds; secondly, to Robert W. Floyd, who contributed a great deal of his time
towards the enhancement of this material during the 1960s. Thousands of other
people have also provided signiĄcant help Ů it would take another book just
to list their names! Many of them have kindly allowed me to make use of
hitherto unpublished work. My research at Caltech and Stanford was gener-
ously supported for many years by the National Science Foundation and the
Office of Naval Research. AddisonŰWesley has provided excellent assistance and
cooperation ever since I began this project in 1962. The best way I know how
to thank everyone is to demonstrate by this publication that their input has led
to books that resemble what I think they wanted me to write.

PREFACE xi

Preface to the Third Edition

After having spent ten years developing the TEX and METAFONT systems for
computer typesetting, I am now able to fulĄll the dream that I had when I
began that work, by applying those systems to The Art of Computer Program-
ming. At last the entire text of this book has been captured inside my personal
computer, in an electronic form that will make it readily adaptable to future
changes in printing and display technology. The new setup has allowed me to
make literally thousands of improvements that IŠve been wanting to incorporate
for a long time.

In this new edition I have gone over every word of the text, trying to retain
the youthful exuberance of my original sentences while perhaps adding some
more mature judgment. Dozens of new exercises have been added; dozens of old
exercises have been given new and improved answers.

The Art of Computer Programming is, however, still a work in progress.
Therefore some parts of this book are headed by an Şunder constructionŤ

icon, to apologize for the fact that the material is not up-to-date. My Ąles are
bursting with important material that I plan to include in the Ąnal, glorious,
fourth edition of Volume 1, perhaps 15 years from now; but I must Ąnish
Volumes 4 and 5 Ąrst, and I do not want to delay their publication any more
than absolutely necessary.

My efforts to extend and enhance these volumes have been enormously en-
hanced since 1980 by the wise guidance of AddisonŰWesleyŠs editor Peter Gordon.
He has become not only my Şpublishing partnerŤ but also a close friend, while
continually nudging me to move in fruitful directions. Indeed, my interactions
with dozens of AddisonŰWesley people during more than three decades have
been much better than any author deserves. The tireless support of managing
editor John Fuller, whose meticulous attention to detail has maintained the
highest standards of production quality in spite of frequent updates, has been
particularly praiseworthy.

Most of the hard work of preparing the new edition was accomplished by
Phyllis Winkler and Silvio Levy, who expertly keyboarded and edited the text
of the second edition, and by Jeffrey Oldham, who converted nearly all of the
original illustrations to METAPOST format. I have corrected every error that
alert readers detected in the second edition (as well as some mistakes that, alas,
nobody noticed); and I have tried to avoid introducing new errors in the new
material. However, I suppose some defects still remain, and I want to Ąx them
as soon as possible. Therefore I will cheerfully award $2.56 to the Ąrst Ąnder of
each technical, typographical, or historical error. The webpage cited on page iv
contains a current listing of all corrections that have been reported to me.

Stanford, California D. E. K.
April 1997

Things have changed in the past two decades.

— BILL GATES (1995)

1. Start in

2. Read
pp. xv–xvii

3. N← 1

4. Begin
Chapter N

5. Inter-
esting? 6. N ≤ 2?

7. Begin
new section

8. “∗”?

9. 2 + 2=5?

10. Check
formulas

11. Skim
math

12. Work
exercises

13. Check
answers

14. Tired?

15. Sleep

16. Increase N

17. N ≤ 12?

18. Relax

Yes

No

Yes

No

End of chapter

No

No

Yes

First time

Yes

No

Yes

Yes

No

Flow chart for reading this set of books.

Procedure for Reading

This Set of Books

1. Begin reading this procedure, unless you have already begun to read it.
Continue to follow the steps faithfully. (The general form of this procedure
and its accompanying Ćow chart will be used throughout this book.)

2. Read the Notes on the Exercises, on pages xvŰxvii.

3. Set N equal to 1.

4. Begin reading Chapter N. Do not read the quotations that appear at the
beginning of the chapter.

5. Is the subject of the chapter interesting to you? If so, go to step 7; if not,
go to step 6.

6. Is N ≤ 2? If not, go to step 16; if so, scan through the chapter anyway.
(Chapters 1 and 2 contain important introductory material and also a review
of basic programming techniques. You should at least skim over the sections
on notation and about MIX.)

7. Begin reading the next section of the chapter; if you have already reached
the end of the chapter, however, go to step 16.

8. Is section number marked with Ş∗Ť? If so, you may omit this section on
Ąrst reading (it covers a rather specialized topic that is interesting but not
essential); go back to step 7.

9. Are you mathematically inclined? If math is all Greek to you, go to step 11;
otherwise proceed to step 10.

10. Check the mathematical derivations made in this section (and report errors
to the author). Go to step 12.

11. If the current section is full of mathematical computations, you had better
omit reading the derivations. However, you should become familiar with the
basic results of the section; they are usually stated near the beginning, or
in slanted type right at the very end of the hard parts.

12. Work the recommended exercises in this section in accordance with the hints
given in the Notes on the Exercises (which you read in step 2).

13. After you have worked on the exercises to your satisfaction, check your
answers with the answer printed in the corresponding answer section at the

xiii

xiv PROCEDURE FOR READING THIS SET OF BOOKS

rear of the book (if any answer appears for that problem). Also read the
answers to the exercises you did not have time to work. Note: In most cases
it is reasonable to read the answer to exercise n before working on exercise
n+ 1, so steps 12Ű13 are usually done simultaneously.

14. Are you tired? If not, go back to step 7.

15. Go to sleep. Then, wake up, and go back to step 7.

16. Increase N by one. If N = 3, 5, 7, 9, 11, or 12, begin the next volume of
this set of books.

17. If N is less than or equal to 12, go back to step 4.

18. Congratulations. Now try to get your friends to purchase a copy of Volume 1
and to start reading it. Also, go back to step 3.

Woe be to him that reads but one book.

— GEORGE HERBERT, Jacula Prudentum, 1144 (1640)

Le défaut unique de tous les ouvrages

cŠest dŠêtre trop longs.

— VAUVENARGUES, RéĆexions, 628 (1746)

Books are a triviality. Life alone is great.

— THOMAS CARLYLE, Journal (1839)

NOTES ON THE EXERCISES

The exercises in this set of books have been designed for self-study as well as
for classroom study. It is difficult, if not impossible, for anyone to learn a subject
purely by reading about it, without applying the information to speciĄc problems
and thereby being encouraged to think about what has been read. Furthermore,
we all learn best the things that we have discovered for ourselves. Therefore the
exercises form a major part of this work; a deĄnite attempt has been made to
keep them as informative as possible and to select problems that are enjoyable
as well as instructive.

In many books, easy exercises are found mixed randomly among extremely
difficult ones. A motley mixture is, however, often unfortunate because readers
like to know in advance how long a problem ought to take Ů otherwise they
may just skip over all the problems. A classic example of such a situation is
the book Dynamic Programming by Richard Bellman; this is an important,
pioneering work in which a group of problems is collected together at the end
of some chapters under the heading ŞExercises and Research Problems,Ť with
extremely trivial questions appearing in the midst of deep, unsolved problems.
It is rumored that someone once asked Dr. Bellman how to tell the exercises
apart from the research problems, and he replied, ŞIf you can solve it, it is an
exercise; otherwise itŠs a research problem.Ť

Good arguments can be made for including both research problems and
very easy exercises in a book of this kind; therefore, to save the reader from
the possible dilemma of determining which are which, rating numbers have been
provided to indicate the level of difficulty. These numbers have the following
general signiĄcance:

Rating Interpretation

00 An extremely easy exercise that can be answered immediately if the
material of the text has been understood; such an exercise can almost
always be worked Şin your head.Ť

10 A simple problem that makes you think over the material just read, but
is by no means difficult. You should be able to do this in one minute at
most; pencil and paper may be useful in obtaining the solution.

20 An average problem that tests basic understanding of the text mate-
rial, but you may need about Ąfteen or twenty minutes to answer it
completely.

xv

xvi NOTES ON THE EXERCISES

30 A problem of moderate difficulty and/or complexity; this one may
involve more than two hoursŠ work to solve satisfactorily, or even more
if the TV is on.

40 Quite a difficult or lengthy problem that would be suitable for a term
project in classroom situations. A student should be able to solve the
problem in a reasonable amount of time, but the solution is not trivial.

50 A research problem that has not yet been solved satisfactorily, as far
as the author knew at the time of writing, although many people have
tried. If you have found an answer to such a problem, you ought to
write it up for publication; furthermore, the author of this book would
appreciate hearing about the solution as soon as possible (provided that
it is correct).

By interpolation in this ŞlogarithmicŤ scale, the signiĄcance of other rating
numbers becomes clear. For example, a rating of 17 would indicate an exercise
that is a bit simpler than average. Problems with a rating of 50 that are
subsequently solved by some reader may appear with a 40 rating in later editions
of the book, and in the errata posted on the Internet (see page iv).

The remainder of the rating number divided by 5 indicates the amount of
detailed work required. Thus, an exercise rated 24 may take longer to solve
than an exercise that is rated 25, but the latter will require more creativity. All
exercises with ratings of 46 or more are open problems for future research, rated
according to the number of different attacks that theyŠve resisted so far.

The author has tried earnestly to assign accurate rating numbers, but it is
difficult for the person who makes up a problem to know just how formidable it
will be for someone else to Ąnd a solution; and everyone has more aptitude for
certain types of problems than for others. It is hoped that the rating numbers
represent a good guess at the level of difficulty, but they should be taken as
general guidelines, not as absolute indicators.

This book has been written for readers with varying degrees of mathematical
training and sophistication; as a result, some of the exercises are intended only for
the use of more mathematically inclined readers. The rating is preceded by an M
if the exercise involves mathematical concepts or motivation to a greater extent
than necessary for someone who is primarily interested only in programming
the algorithms themselves. An exercise is marked with the letters ŞHMŤ if its
solution necessarily involves a knowledge of calculus or other higher mathematics
not developed in this book. An ŞHMŤ designation does not necessarily imply
difficulty.

Some exercises are preceded by an arrowhead, ŞxŤ; this designates prob-
lems that are especially instructive and especially recommended. Of course, no
reader/student is expected to work all of the exercises, so those that seem to
be the most valuable have been singled out. (This distinction is not meant to
detract from the other exercises!) Each reader should at least make an attempt
to solve all of the problems whose rating is 10 or less; and the arrows may help
to indicate which of the problems with a higher rating should be given priority.

NOTES ON THE EXERCISES xvii

Solutions to most of the exercises appear in the answer section. Please use
them wisely; do not turn to the answer until you have made a genuine effort to
solve the problem by yourself, or unless you absolutely do not have time to work
this particular problem. After getting your own solution or giving the problem a
decent try, you may Ąnd the answer instructive and helpful. The solution given
will often be quite short, and it will sketch the details under the assumption
that you have earnestly tried to solve it by your own means Ąrst. Sometimes the
solution gives less information than was asked; often it gives more. It is quite
possible that you may have a better answer than the one published here, or you
may have found an error in the published solution; in such a case, the author
will be pleased to know the details. Later printings of this book will give the
improved solutions together with the solverŠs name where appropriate.

When working an exercise you may generally use the answers to previous
exercises, unless speciĄcally forbidden from doing so. The rating numbers have
been assigned with this in mind; thus it is possible for exercise n + 1 to have a
lower rating than exercise n, even though it includes the result of exercise n as
a special case.

Summary of codes:

x Recommended
M Mathematically oriented
HM Requiring Şhigher mathŤ

00 Immediate
10 Simple (one minute)
20 Medium (quarter hour)
30 Moderately hard
40 Term project
50 Research problem

EXERCISES

x 1. [00] What does the rating ŞM20 Ť mean?

2. [10] Of what value can the exercises in a textbook be to the reader?

3. [14] Prove that 133 = 2197. Generalize your answer. [This is an example of a
horrible kind of problem that the author has tried to avoid.]

4. [HM45] Prove that when n is an integer, n > 2, the equation xn + yn = zn has
no solution in positive integers x, y, z.

We can face our problem.

We can arrange such facts as we have

with order and method.

— HERCULE POIROT, in Murder on the Orient Express (1934)

CONTENTS

Chapter 1 Ů Basic Concepts . 1

1.1. Algorithms . 1
1.2. Mathematical Preliminaries . 10

1.2.1. Mathematical Induction 11
1.2.2. Numbers, Powers, and Logarithms 21
1.2.3. Sums and Products . 27
1.2.4. Integer Functions and Elementary Number Theory 39
1.2.5. Permutations and Factorials 45
1.2.6. Binomial Coefficients . 52
1.2.7. Harmonic Numbers . 75
1.2.8. Fibonacci Numbers . 79
1.2.9. Generating Functions . 87
1.2.10.Analysis of an Algorithm 96

*1.2.11.Asymptotic Representations 107
*1.2.11.1. The O-notation 107
*1.2.11.2. EulerŠs summation formula 111
*1.2.11.3. Some asymptotic calculations 116

1.3. MIX . 124
1.3.1. Description of MIX . 124
1.3.2. The MIX Assembly Language 144
1.3.3. Applications to Permutations 164

1.4. Some Fundamental Programming Techniques 186
1.4.1. Subroutines . 186
1.4.2. Coroutines . 193
1.4.3. Interpretive Routines . 200

1.4.3.1. A MIX simulator 202
*1.4.3.2. Trace routines 212

1.4.4. Input and Output . 215
1.4.5. History and Bibliography 229

Chapter 2 Ů Information Structures 232

2.1. Introduction . 232
2.2. Linear Lists . 238

2.2.1. Stacks, Queues, and Deques 238
2.2.2. Sequential Allocation . 244
2.2.3. Linked Allocation . 254

xviii

CONTENTS xix

2.2.4. Circular Lists . 273
2.2.5. Doubly Linked Lists . 280
2.2.6. Arrays and Orthogonal Lists 298

2.3. Trees . 308
2.3.1. Traversing Binary Trees 318
2.3.2. Binary Tree Representation of Trees 334
2.3.3. Other Representations of Trees 348
2.3.4. Basic Mathematical Properties of Trees 362

2.3.4.1. Free trees . 363
2.3.4.2. Oriented trees 372

*2.3.4.3. The ŞinĄnity lemmaŤ 382
*2.3.4.4. Enumeration of trees 386
2.3.4.5. Path length . 399

*2.3.4.6. History and bibliography 406
2.3.5. Lists and Garbage Collection 408

2.4. Multilinked Structures . 424
2.5. Dynamic Storage Allocation . 435
2.6. History and Bibliography . 457

Answers to Exercises . 466

Appendix A Ů Tables of Numerical Quantities 619

1. Fundamental Constants (decimal) 619
2. Fundamental Constants (octal) 620
3. Harmonic Numbers, Bernoulli Numbers, Fibonacci Numbers . . . 621

Appendix B Ů Index to Notations 623

Appendix C Ů Index to Algorithms and Theorems 628

Index and Glossary . 630

CHAPTER ONE

BASIC CONCEPTS

Many persons who are not conversant with mathematical studies

imagine that because the business of [BabbageŠs Analytical Engine] is to

give its results in numerical notation, the nature of its processes must

consequently be arithmetical and numerical, rather than algebraical and

analytical. This is an error. The engine can arrange and combine its

numerical quantities exactly as if they were letters or any other general

symbols; and in fact it might bring out its results in algebraical notation,

were provisions made accordingly.

— AUGUSTA ADA, Countess of Lovelace (1843)

Practice yourself, for heavenŠs sake, in little things;

and thence proceed to greater.

— EPICTETUS (Discourses IV.i)

1.1. ALGORITHMS

The notion of an algorithm is basic to all of computer programming, so we
should begin with a careful analysis of this concept.

The word ŞalgorithmŤ itself is quite interesting; at Ąrst glance it may look
as though someone intended to write ŞlogarithmŤ but jumbled up the Ąrst four
letters. The word did not appear in WebsterŠs New World Dictionary as late as
1957; we Ąnd only the older form ŞalgorismŤ with its ancient meaning, the process
of doing arithmetic using Arabic numerals. During the Middle Ages, abacists
computed on the abacus and algorists computed by algorism. By the time of the
Renaissance, the origin of this word was in doubt, and early linguists attempted
to guess at its derivation by making combinations like algiros [painful]+arithmos
[number]; others said no, the word comes from ŞKing Algor of Castile.Ť Finally,
historians of mathematics found the true origin of the word algorism: It comes
from the name of a famous Persian textbook author, Abū ŚAbd Allāh Muh.ammad
ibn Mūsā al-Khwārizmı̄ (c. 825) Ů literally, ŞFather of Abdullah, Mohammed,
son of Moses, native of Khwārizm.Ť The Aral Sea in Central Asia was once
known as Lake Khwārizm, and the Khwārizm region is located in the Amu River
basin just south of that sea. Al-Khwārizmı̄ wrote the celebrated Arabic text
Kitāb al-jabr waŠl-muqābala (ŞRules of restoring and equatingŤ); another word,
Şalgebra,Ť stems from the title of that book, which was a systematic study of the
solution of linear and quadratic equations. [For notes on al-Khwārizmı̄Šs life and
work, see H. Zemanek, Lecture Notes in Computer Science 122 (1981), 1Ű81.]

1

2 BASIC CONCEPTS 1.1

Gradually the form and meaning of algorism became corrupted; as ex-
plained by the Oxford English Dictionary, the word Şpassed through many
pseudo-etymological perversions, including a recent algorithm, in which it is
learnedly confusedŤ with the Greek root of the word arithmetic. This change
from ŞalgorismŤ to ŞalgorithmŤ is not hard to understand in view of the fact
that people had forgotten the original derivation of the word. An early German
mathematical dictionary, Vollständiges mathematisches Lexicon (Leipzig: 1747),
gave the following deĄnition for the word Algorithmus: ŞUnder this designation
are combined the notions of the four types of arithmetic calculations, namely
addition, multiplication, subtraction, and division.Ť The Latin phrase algorith-
mus inĄnitesimalis was at that time used to denote Şways of calculation with
inĄnitely small quantities, as invented by Leibniz.Ť

By 1950, the word algorithm was most frequently associated with EuclidŠs
algorithm, a process for Ąnding the greatest common divisor of two numbers
that appears in EuclidŠs Elements (Book 7, Propositions 1 and 2). It will be
instructive to exhibit EuclidŠs algorithm here:

Algorithm E (EuclidŠs algorithm). Given two positive integers m and n, Ąnd
their greatest common divisor, that is, the largest positive integer that evenly
divides both m and n.

E1. [Find remainder.] Divide m by n and let r be the remainder. (We will have
0 ≤ r < n.)

E2. [Is it zero?] If r = 0, the algorithm terminates; n is the answer.

E3. [Reduce.] Set m← n, n← r, and go back to step E1.

Of course, Euclid did not present his algorithm in just this manner. The
format above illustrates the style in which all of the algorithms throughout this
book will be presented.

Each algorithm we consider has been given an identifying letter (E in the
preceding example), and the steps of the algorithm are identiĄed by this letter
followed by a number (E1, E2, E3). The chapters are divided into numbered
sections; within a section the algorithms are designated by letter only, but when
algorithms are referred to in other sections, the appropriate section number is
attached. For example, we are now in Section 1.1; within this section EuclidŠs
algorithm is called Algorithm E, while in later sections it is referred to as
Algorithm 1.1E.

Each step of an algorithm, such as step E1 above, begins with a phrase in
brackets that sums up as brieĆy as possible the principal content of that step.
This phrase also usually appears in an accompanying Ćow chart, such as Fig. 1,
so that the reader will be able to picture the algorithm more readily.

After the summarizing phrase comes a description in words and symbols
of some action to be performed or some decision to be made. Parenthesized
comments, like the second sentence in step E1, may also appear. Comments are
included as explanatory information about that step, often indicating certain
invariant characteristics of the variables or the current goals. They do not specify

1.1 ALGORITHMS 3

E1. Find remainder E2. Is it zero? E3. Reduce
No

Yes

Fig. 1. Flow chart for Algorithm E.

actions that belong to the algorithm, but are meant only for the readerŠs beneĄt
as possible aids to comprehension.

The arrow Ş← Ť in step E3 is the all-important replacement operation, some-
times called assignment or substitution: Şm ← nŤ means that the value of
variablem is to be replaced by the current value of variable n. When Algorithm E
begins, the values of m and n are the originally given numbers; but when it
ends, those variables will have, in general, different values. An arrow is used
to distinguish the replacement operation from the equality relation: We will
not say, ŞSet m = n,Ť but we will perhaps ask, ŞDoes m = n?Ť The Ş = Ť
sign denotes a condition that can be tested, the Ş← Ť sign denotes an action
that can be performed. The operation of increasing n by one is denoted by
Şn ← n + 1Ť (read Şn is replaced by n + 1Ť or Şn gets n + 1Ť). In general,
Şvariable← formulaŤ means that the formula is to be computed using the present
values of any variables appearing within it; then the result should replace the
previous value of the variable at the left of the arrow. Persons untrained in
computer work sometimes have a tendency to say Şn becomes n + 1Ť and to
write Şn→ n+ 1Ť for the operation of increasing n by one; this symbolism can
only lead to confusion because of its conĆict with standard conventions, and it
should be avoided.

Notice that the order of actions in step E3 is important: ŞSet m ← n,
n← rŤ is quite different from ŞSet n← r, m← n,Ť since the latter would imply
that the previous value of n is lost before it can be used to set m. Thus the
latter sequence is equivalent to ŞSet n ← r, m ← r.Ť When several variables
are all to be set equal to the same quantity, we can use multiple arrows; for
example, Şn ← r, m ← rŤ may be written Şn ← m ← r.Ť To interchange the
values of two variables, we can write ŞExchange m↔ nŤ; this action could also
be speciĄed by using a new variable t and writing ŞSet t← m, m← n, n← t.Ť

An algorithm starts at the lowest-numbered step, usually step 1, and it
performs subsequent steps in sequential order unless otherwise speciĄed. In step
E3, the imperative Şgo back to step E1Ť speciĄes the computational order in an
obvious fashion. In step E2, the action is prefaced by the condition ŞIf r = 0Ť;
so if r ̸= 0, the rest of that sentence does not apply and no action is speciĄed.
We might have added the redundant sentence, ŞIf r ̸= 0, go on to step E3.Ť

The heavy vertical line Ş Ť appearing at the end of step E3 is used to
indicate the end of an algorithm and the resumption of text.

We have now discussed virtually all the notational conventions used in the
algorithms of this book, except for a notation used to denote ŞsubscriptedŤ or

4 BASIC CONCEPTS 1.1

ŞindexedŤ items that are elements of an ordered array. Suppose we have n
quantities, v1, v2, . . . , vn; instead of writing vj for the jth element, the notation
v[j] is often used. Similarly, a[i, j] is sometimes used in preference to a doubly
subscripted notation like aij . Sometimes multiple-letter names are used for
variables, usually set in capital letters; thus TEMP might be the name of a variable
used for temporarily holding a computed value, PRIME[K] might denote the Kth
prime number, and so on.

So much for the form of algorithms; now let us perform one. It should be
mentioned immediately that the reader should not expect to read an algorithm
as if it were part of a novel; such an attempt would make it pretty difficult to
understand what is going on. An algorithm must be seen to be believed, and the
best way to learn what an algorithm is all about is to try it. The reader should
always take pencil and paper and work through an example of each algorithm
immediately upon encountering it in the text. Usually the outline of a worked
example will be given, or else the reader can easily conjure one up. This is a
simple and painless way to gain an understanding of a given algorithm, and all
other approaches are generally unsuccessful.

Let us therefore work out an example of Algorithm E. Suppose that we are
given m = 119 and n = 544; we are ready to begin, at step E1. (The reader
should now follow the algorithm as we give a play-by-play account.) Dividing
m by n in this case is quite simple, almost too simple, since the quotient is zero
and the remainder is 119. Thus, r ← 119. We proceed to step E2, and since
r ̸= 0 no action occurs. In step E3 we set m← 544, n← 119. It is clear that if
m < n originally, the quotient in step E1 will always be zero and the algorithm
will always proceed to interchange m and n in this rather cumbersome fashion.
We could insert a new step at the beginning:

E0. [Ensure m ≥ n.] If m < n, exchange m↔ n.

This would make no essential change in the algorithm, except to increase its
length slightly, and to decrease its running time in about one half of all cases.

Back at step E1, we Ąnd that 544/119 = 4 + 68/119, so r ← 68. Again E2 is
inapplicable, and at E3 we set m ← 119, n ← 68. The next round sets r ← 51,
and ultimately m ← 68, n ← 51. Next r ← 17, and m ← 51, n ← 17. Finally,
when 51 is divided by 17, we set r ← 0, so at step E2 the algorithm terminates.
The greatest common divisor of 119 and 544 is 17.

So this is an algorithm. The modern meaning for algorithm is quite similar to
that of recipe, process, method, technique, procedure, routine, rigmarole, except
that the word ŞalgorithmŤ connotes something just a little different. Besides
merely being a Ąnite set of rules that gives a sequence of operations for solving
a speciĄc type of problem, an algorithm has Ąve important features:

1) Finiteness. An algorithm must always terminate after a Ąnite number of
steps. Algorithm E satisĄes this condition, because after step E1 the value of r
is less than n; so if r ̸= 0, the value of n decreases the next time step E1 is
encountered. A decreasing sequence of positive integers must eventually termi-
nate, so step E1 is executed only a Ąnite number of times for any given original

1.1 ALGORITHMS 5

value of n. Note, however, that the number of steps can become arbitrarily large;
certain huge choices of m and n will cause step E1 to be executed more than a
million times.

(A procedure that has all of the characteristics of an algorithm except that it
possibly lacks Ąniteness may be called a computational method. Euclid originally
presented not only an algorithm for the greatest common divisor of numbers, but
also a very similar geometrical construction for the Şgreatest common measureŤ
of the lengths of two line segments; this is a computational method that does
not terminate if the given lengths are incommensurable. Another example of a
nonterminating computational method is a reactive process, which continually
interacts with its environment.)

2) DeĄniteness. Each step of an algorithm must be precisely deĄned; the ac-
tions to be carried out must be rigorously and unambiguously speciĄed for each
case. The algorithms of this book will hopefully meet this criterion, but they
are speciĄed in the English language, so there is a possibility that the reader
might not understand exactly what the author intended. To get around this
difficulty, formally deĄned programming languages or computer languages are
designed for specifying algorithms, in which every statement has a very deĄnite
meaning. Many of the algorithms of this book will be given both in English
and in a computer language. An expression of a computational method in a
computer language is called a program.

In Algorithm E, the criterion of deĄniteness as applied to step E1 means that
the reader is supposed to understand exactly what it means to divide m by n
and what the remainder is. In actual fact, there is no universal agreement about
what this means if m and n are not positive integers; what is the remainder of
−8 divided by −π? What is the remainder of 59/13 divided by zero? Therefore
the criterion of deĄniteness means we must make sure that the values of m and n
are always positive integers whenever step E1 is to be executed. This is initially
true, by hypothesis; and after step E1, r is a nonnegative integer that must be
nonzero if we get to step E3. So m and n are indeed positive integers as required.

3) Input. An algorithm has zero or more inputs: quantities that are given to it
initially before the algorithm begins, or dynamically as the algorithm runs. These
inputs are taken from speciĄed sets of objects. In Algorithm E, for example, there
are two inputs, namely m and n, both taken from the set of positive integers.

4) Output. An algorithm has one or more outputs: quantities that have a
speciĄed relation to the inputs. Algorithm E has one output, namely n in step E2,
the greatest common divisor of the two inputs.

(We can easily prove that this number is indeed the greatest common divisor,
as follows. After step E1, we have

m = qn+ r,

for some integer q. If r = 0, then m is a multiple of n, and clearly in such a case
n is the greatest common divisor of m and n. If r ̸= 0, note that any number
that divides both m and n must divide m−qn = r, and any number that divides

6 BASIC CONCEPTS 1.1

both n and r must divide qn+ r = m; so the set of common divisors of m and n
is the same as the set of common divisors of n and r. In particular, the greatest
common divisor of m and n is the same as the greatest common divisor of n
and r. Therefore step E3 does not change the answer to the original problem.)

5) Effectiveness. An algorithm is also generally expected to be effective, in the
sense that its operations must all be sufficiently basic that they can in principle
be done exactly and in a Ąnite length of time by someone using pencil and
paper. Algorithm E uses only the operations of dividing one positive integer
by another, testing if an integer is zero, and setting the value of one variable
equal to the value of another. These operations are effective, because integers
can be represented on paper in a Ąnite manner, and because there is at least
one method (the Şdivision algorithmŤ) for dividing one by another. But the
same operations would not be effective if the values involved were arbitrary real
numbers speciĄed by an inĄnite decimal expansion, nor if the values were the
lengths of physical line segments (which cannot be speciĄed exactly). Another
example of a noneffective step is, ŞIf 4 is the largest integer n for which there is
a solution to the equation wn + xn + yn = zn in positive integers w, x, y, and z,
then go to step E4.Ť Such a statement would not be an effective operation until
someone successfully constructs an algorithm to determine whether 4 is or is not
the largest integer with the stated property.

Let us try to compare the concept of an algorithm with that of a cookbook
recipe. A recipe presumably has the qualities of Ąniteness (although it is said
that a watched pot never boils), input (eggs, Ćour, etc.), and output (TV dinner,
etc.), but it notoriously lacks deĄniteness. There are frequent cases in which a
cookŠs instructions are indeĄnite: ŞAdd a dash of salt.Ť A ŞdashŤ is deĄned
to be Şless than 1/8 teaspoon,Ť and salt is perhaps well enough deĄned; but
where should the salt be added Ů on top? on the side? Instructions like Ştoss
lightly until mixture is crumblyŤ or Şwarm cognac in small saucepanŤ are quite
adequate as explanations to a trained chef, but an algorithm must be speciĄed
to such a degree that even a computer can follow the directions. Nevertheless,
a computer programmer can learn much by studying a good recipe book. (The
author has in fact barely resisted the temptation to name the present volume
ŞThe ProgrammerŠs Cookbook.Ť Perhaps someday he will attempt a book called
ŞAlgorithms for the Kitchen.Ť)

We should remark that the Ąniteness restriction is not really strong enough
for practical use. A useful algorithm should require not only a Ąnite number
of steps, but a very Ąnite number, a reasonable number. For example, there is
an algorithm that determines whether or not the game of chess can always be
won by White if no mistakes are made (see exercise 2.2.3Ű28). That algorithm
can solve a problem of intense interest to thousands of people, yet it is a safe
bet that we will never in our lifetimes know the answer; the algorithm requires
fantastically large amounts of time for its execution, even though it is Ąnite. See
also Chapter 8 for a discussion of some Ąnite numbers that are so large as to
actually be beyond comprehension.

1.1 ALGORITHMS 7

In practice we not only want algorithms, we want algorithms that are good
in some loosely deĄned aesthetic sense. One criterion of goodness is the length
of time taken to perform the algorithm; this can be expressed in terms of the
number of times each step is executed. Other criteria are the adaptability of the
algorithm to different kinds of computers, its simplicity and elegance, etc.

We often are faced with several algorithms for the same problem, and we
must decide which is best. This leads us to the extremely interesting and
all-important Ąeld of algorithmic analysis: Given an algorithm, we want to
determine its performance characteristics.

For example, letŠs consider EuclidŠs algorithm from this point of view. Sup-
pose we ask the question, ŞAssuming that the value of n is known but m is
allowed to range over all positive integers, what is the average number of times,
Tn, that step E1 of Algorithm E will be performed?Ť In the Ąrst place, we need
to check that this question does have a meaningful answer, since we are trying
to take an average over inĄnitely many choices for m. But it is evident that
after the Ąrst execution of step E1 only the remainder of m after division by n is
relevant. So all we must do to Ąnd Tn is to try the algorithm for m = 1, m = 2,
. . . , m = n, count the total number of times step E1 has been executed, and
divide by n.

Now the important question is to determine the nature of Tn; is it approxi-
mately equal to 1

3n, or
√
n, for instance? As a matter of fact, the answer to this

question is an extremely difficult and fascinating mathematical problem, not yet
completely resolved, which is examined in more detail in Section 4.5.3. For large
values of n it is possible to prove that Tn is approximately

12(ln 2)/π2

lnn,

that is, proportional to the natural logarithm of n, with a constant of propor-
tionality that might not have been guessed offhand! For further details about
EuclidŠs algorithm, and other ways to calculate the greatest common divisor, see
Section 4.5.2.

Analysis of algorithms is the name the author likes to use to describe in-
vestigations such as this. The general idea is to take a particular algorithm and
to determine its quantitative behavior; occasionally we also study whether or
not an algorithm is optimal in some sense. The theory of algorithms is another
subject entirely, dealing primarily with the existence or nonexistence of effective
algorithms to compute particular quantities.

So far our discussion of algorithms has been rather imprecise, and a mathe-
matically oriented reader is justiĄed in thinking that the preceding commentary
makes a very shaky foundation on which to erect any theory about algorithms.
We therefore close this section with a brief indication of one method by which the
concept of algorithm can be Ąrmly grounded in terms of mathematical set theory.
Let us formally deĄne a computational method to be a quadruple (Q, I,Ω, f),
in which Q is a set containing subsets I and Ω, and f is a function from Q
into itself. Furthermore f should leave Ω pointwise Ąxed; that is, f(q) should
equal q for all elements q of Ω. The four quantities Q, I, Ω, f are intended
to represent respectively the states of the computation, the input, the output,
and the computational rule. Each input x in the set I deĄnes a computational

8 BASIC CONCEPTS 1.1

sequence, x0, x1, x2, . . . , as follows:

x0 = x and xk+1 = f(xk) for k ≥ 0. (1)

The computational sequence is said to terminate in k steps if k is the smallest
integer for which xk is in Ω, and in this case it is said to produce the output
xk from x. (Notice that if xk is in Ω, so is xk+1, because xk+1 = xk in such
a case.) Some computational sequences may never terminate; an algorithm is a
computational method that terminates in Ąnitely many steps for all x in I.

Algorithm E may, for example, be formalized in these terms as follows: LetQ
be the set of all singletons (n), all ordered pairs (m,n), and all ordered quadruples
(m,n, r, 1), (m,n, r, 2), and (m,n, p, 3), where m, n, and p are positive integers
and r is a nonnegative integer. Let I be the subset of all pairs (m,n) and let Ω
be the subset of all singletons (n). Let f be deĄned as follows:

f

(m,n)

= (m,n, 0, 1); f

(n)

= (n);

f

(m,n, r, 1)

= (m, n, remainder of m divided by n, 2);

f

(m,n, r, 2)

= (n) if r = 0, (m,n, r, 3) otherwise;

f

(m,n, p, 3)

= (n, p, p, 1).

(2)

The correspondence between this notation and Algorithm E is evident.
This formulation of the concept of an algorithm does not include the re-

striction of effectiveness mentioned earlier. For example, Q might denote inĄnite
sequences that are not computable by pencil and paper methods, or f might
involve operations that mere mortals cannot always perform. If we wish to
restrict the notion of algorithm so that only elementary operations are involved,
we can place restrictions on Q, I, Ω, and f , for example as follows: Let A be
a Ąnite set of letters, and let A∗ be the set of all strings on A (the set of all
ordered sequences x1x2 . . . xn, where n ≥ 0 and xj is in A for 1 ≤ j ≤ n). The
idea is to encode the states of the computation so that they are represented by
strings of A∗. Now let N be a nonnegative integer and let Q be the set of all
(σ, j), where σ is in A∗ and j is an integer, 0 ≤ j ≤ N; let I be the subset of Q
with j = 0 and let Ω be the subset with j = N. If θ and σ are strings in A∗, we
say that θ occurs in σ if σ has the form αθω for strings α and ω. To complete
our deĄnition, let f be a function of the following type, deĄned by the strings
θj , ϕj and the integers aj , bj for 0 ≤ j < N :

f

(σ, j)

=(σ, aj) if θj does not occur in σ;

f

(σ, j)

=(αϕjω, bj) if α is the shortest possible string for which σ=αθjω;

f

(σ,N)

=(σ,N). (3)

Every step of such a computational method is clearly effective, and expe-
rience shows that pattern-matching rules of this kind are also powerful enough
to do anything we can do by hand. There are many other essentially equivalent
ways to formulate the concept of an effective computational method (for example,
using Turing machines). The formulation above is virtually the same as that

1.1 ALGORITHMS 9

given by A. A. Markov in his book The Theory of Algorithms [Trudy Mat. Inst.
Akad. Nauk 42 (1954), 1Ű376], later revised and enlarged by N. M. Nagorny
(Moscow: Nauka, 1984; English edition, Dordrecht: Kluwer, 1988).

EXERCISES

1. [10] The text showed how to interchange the values of variables m and n, using
the replacement notation, by setting t ← m, m ← n, n ← t. Show how the values of
four variables (a, b, c, d) can be rearranged to (b, c, d, a) by a sequence of replacements.
In other words, the new value of a is to be the original value of b, etc. Try to use the
minimum number of replacements.

2. [15] Prove that m is always greater than n at the beginning of step E1, except
possibly the Ąrst time this step occurs.

3. [20] Change Algorithm E (for the sake of efficiency) so that all trivial replacement
operations such as Şm ← nŤ are avoided. Write this new algorithm in the style of
Algorithm E, and call it Algorithm F.

4. [16] What is the greatest common divisor of 2166 and 6099?

x 5. [12] Show that the ŞProcedure for Reading This Set of BooksŤ that appears after
the preface actually fails to be a genuine algorithm on at least three of our Ąve counts!
Also mention some differences in format between it and Algorithm E.

6. [20] What is T5, the average number of times step E1 is performed when n = 5?

x 7. [M21] Suppose thatm is known and n is allowed to range over all positive integers;
let Um be the average number of times that step E1 is executed in Algorithm E. Show
that Um is well deĄned. Is Um in any way related to Tm?

8. [M25] Give an ŞeffectiveŤ formal algorithm for computing the greatest common
divisor of positive integers m and n, by specifying θj , ϕj , aj , bj as in Eqs. (3). Let the
input be represented by the string ambn, that is, m aŠs followed by n bŠs. Try to make
your solution as simple as possible. [Hint: Use Algorithm E, but instead of division in
step E1, set r ← |m− n|, n← min(m,n).]

x 9. [M30] Suppose that C1 = (Q1, I1, Ω1, f1) and C2 = (Q2, I2, Ω2, f2) are computa-
tional methods. For example, C1 might stand for Algorithm E as in Eqs. (2), except
that m and n are restricted in magnitude, and C2 might stand for a computer program
implementation of Algorithm E. (Thus Q2 might be the set of all states of the machine,
i.e., all possible conĄgurations of its memory and registers; f2 might be the deĄnition
of single machine actions; and I2 might be the set of initial states, each including the
program that determines the greatest common divisor as well as the particular values
of m and n.)

Formulate a set-theoretic deĄnition for the concept ŞC2 is a representation of C1Ť
or ŞC2 simulates C1.Ť This is to mean intuitively that any computation sequence of C1

is mimicked by C2, except that C2 might take more steps in which to do the computation
and it might retain more information in its states. (We thereby obtain a rigorous
interpretation of the statement, ŞProgram X is an implementation of Algorithm Y .Ť)

10 BASIC CONCEPTS 1.2

1.2. MATHEMATICAL PRELIMINARIES

In this section we shall investigate the mathematical notations that occur
throughout The Art of Computer Programming, and weŠll derive several basic
formulas that will be used repeatedly. Even a reader not concerned with the
more complex mathematical derivations should at least become familiar with
the meanings of the various formulas, so as to be able to use the results of the
derivations.

Mathematical notation is used for two main purposes in this book: to
describe portions of an algorithm, and to analyze the performance character-
istics of an algorithm. The notation used in descriptions of algorithms is quite
simple, as explained in the previous section. When analyzing the performance
of algorithms, we need to use other more specialized notations.

Most of the algorithms we will discuss are accompanied by mathematical
calculations that determine the speed at which the algorithm may be expected
to run. These calculations draw on nearly every branch of mathematics, and a
separate book would be necessary to develop all of the mathematical concepts
that are used in one place or another. However, the majority of the calculations
can be carried out with a knowledge of college algebra, and the reader with a
knowledge of elementary calculus will be able to understand nearly all of the
mathematics that appears. Sometimes we will need to use deeper results of
complex variable theory, group theory, number theory, probability theory, etc.;
in such cases the topic will be explained in an elementary manner, if possible, or
a reference to other sources of information will be given.

The mathematical techniques involved in the analysis of algorithms usually
have a distinctive Ćavor. For example, we will quite often Ąnd ourselves working
with Ąnite summations of rational numbers, or with the solutions to recurrence
relations. Such topics are traditionally given only a light treatment in mathe-
matics courses, and so the following subsections are designed not only to give a
thorough drilling in the use of the notations to be deĄned but also to illustrate
in depth the types of calculations and techniques that will be most useful to us.

Important note: Although the following subsections provide a rather extensive
training in the mathematical skills needed in connection with the study of com-
puter algorithms, most readers will not see at Ąrst any very strong connections
between this material and computer programming (except in Section 1.2.1). The
reader may choose to read the following subsections carefully, with implicit faith
in the authorŠs assertion that the topics treated here are indeed very relevant; but
it is probably preferable, for motivation, to skim over this section lightly at Ąrst,
and (after seeing numerous applications of the techniques in future chapters)
return to it later for more intensive study. If too much time is spent studying
this material when Ąrst reading the book, a person might never get on to the
computer programming topics! However, each reader should at least become
familiar with the general contents of these subsections, and should try to solve a
few of the exercises, even on Ąrst reading. Section 1.2.10 should receive particular
attention, since it is the point of departure for most of the theoretical material

1.2.1 MATHEMATICAL INDUCTION 11

developed later. Section 1.3, which follows 1.2, abruptly leaves the realm of
Şpure mathematicsŤ and enters into Şpure computer programming.Ť

An expansion and more leisurely presentation of much of the following
material can be found in the book Concrete Mathematics by Graham, Knuth,
and Patashnik, second edition (Reading, Mass.: AddisonŰWesley, 1994). That
book will be called simply CMath when we need to refer to it later.

1.2.1. Mathematical Induction

Let P (n) be some statement about the integer n; for example, P (n) might be
Şn times (n+ 3) is an even number,Ť or Şif n ≥ 10, then 2n > n3.Ť Suppose we
want to prove that P (n) is true for all positive integers n. An important way to
do this is:

a) Give a proof that P (1) is true.

b) Give a proof that Şif all of P (1), P (2), . . . , P (n) are true, then P (n + 1) is
also trueŤ; this proof should be valid for any positive integer n.

As an example, consider the following series of equations, which many people
have discovered independently since ancient times:

1 = 12,

1 + 3 = 22,

1 + 3 + 5 = 32,

1 + 3 + 5 + 7 = 42,

1 + 3 + 5 + 7 + 9 = 52. (1)

We can formulate the general property as follows:

1 + 3 + · · ·+ (2n− 1) = n2. (2)

Let us, for the moment, call this equation P (n); we wish to prove that P (n) is
true for all positive n. Following the procedure outlined above, we have:

a) ŞP (1) is true, since 1 = 12.Ť

b) ŞIf all of P (1), . . . , P (n) are true, then, in particular, P (n) is true, so Eq. (2)
holds; adding 2n+ 1 to both sides we obtain

1 + 3 + · · ·+ (2n− 1) + (2n+ 1) = n2 + 2n+ 1 = (n+ 1)2,

which proves that P (n+ 1) is also true.Ť

We can regard this method as an algorithmic proof procedure. In fact, the
following algorithm produces a proof of P (n) for any positive integer n, assuming
that steps (a) and (b) above have been worked out:

Algorithm I (Construct a proof). Given a positive integer n, this algorithm
will output a proof that P (n) is true.

I1. [Prove P (1).] Set k ← 1, and, according to (a), output a proof of P (1).

12 BASIC CONCEPTS 1.2.1

I2. [k = n?] If k = n, terminate the algorithm; the required proof has been
output.

I3. [Prove P (k + 1).] According to (b), output a proof that ŞIf all of P (1), . . . ,
P (k) are true, then P (k+ 1) is true.Ť Also output ŞWe have already proved
P (1), . . . , P (k); hence P (k + 1) is true.Ť

I4. [Increase k.] Increase k by 1 and go to step I2.

I1. Prove P (1) I2. k=n? I3. Prove P (k + 1) I4. Increase k

Yes

No

Fig. 2. Algorithm I: Mathematical induction.

Since this algorithm clearly presents a proof of P (n), for any given n, the
proof technique consisting of steps (a) and (b) is logically valid. It is called proof
by mathematical induction.

The concept of mathematical induction should be distinguished from what
is usually called inductive reasoning in science. A scientist takes speciĄc observa-
tions and creates, by Şinduction,Ť a general theory or hypothesis that accounts
for these facts; for example, we might observe the Ąve relations in (1), above,
and formulate (2). In this sense, induction is no more than our best guess about
the situation; mathematicians would call it an empirical result or a conjecture.

Another example will be helpful. Let p(n) denote the number of partitions
of n, that is, the number of different ways to write n as a sum of positive integers,
disregarding order. Since 5 can be partitioned in exactly seven ways,

1 + 1 + 1 + 1 + 1 = 2 + 1 + 1 + 1 = 2 + 2 + 1 = 3 + 1 + 1 = 3 + 2 = 4 + 1 = 5,

we have p(5) = 7. In fact, it is easy to establish the Ąrst few values,

p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5, p(5) = 7.

At this point we might tentatively formulate, by induction, the hypothesis that
the sequence p(2), p(3), . . . runs through the prime numbers. To test this
hypothesis, we proceed to calculate p(6) and behold! p(6) = 11, conĄrming
our conjecture.

[Unfortunately, p(7) turns out to be 15, spoiling everything, and we must
try again. The numbers p(n) are known to be quite complicated, although
S. Ramanujan succeeded in guessing and proving many remarkable things about
them. For further information, see G. H. Hardy, Ramanujan (London: Cam-
bridge University Press, 1940), Chapters 6 and 8. See also Section 7.2.1.4.]

Mathematical induction is quite different from induction in the sense just
explained. It is not just guesswork, but a conclusive proof of a statement; indeed,
it is a proof of inĄnitely many statements, one for each n. It has been called
ŞinductionŤ only because one must Ąrst decide somehow what is to be proved,

1.2.1 MATHEMATICAL INDUCTION 13

before one can apply the technique of mathematical induction. Henceforth in
this book we shall use the word induction only when we wish to imply proof by
mathematical induction.

There is a geometrical way to prove Eq. (2).
Figure 3 shows, for n = 6, n2 cells broken into
groups of 1 + 3 + · · ·+ (2n− 1) cells. However, in
the Ąnal analysis, this picture can be regarded as a
ŞproofŤ only if we show that the construction can
be carried out for all n, and such a demonstration
is essentially the same as a proof by induction.

Our proof of Eq. (2) used only a special case
of (b); we merely showed that the truth of P (n)
implies the truth of P (n+1). This is an important
simple case that arises frequently, but our next
example illustrates the power of the method a little
more. We deĄne the Fibonacci sequence F0, F1,

1

3

5

7

9

11

Fig. 3. The sum of odd
numbers is a square.

F2, . . . by the rule that F0 = 0, F1 = 1, and every further term is the sum
of the preceding two. Thus the sequence begins 0, 1, 1, 2, 3, 5, 8, 13, . . . ; we
will investigate it in detail in Section 1.2.8. We will now prove that if ϕ is the
number (1 +

√
5)/2 we have

Fn ≤ ϕn−1 (3)

for all positive integers n. Call this formula P (n).
If n = 1, then F1 = 1 = ϕ0 = ϕ1−1, so step (a) has been done. For step (b)

we notice Ąrst that P (2) is also true, since F2 = 1 < 1.6 < ϕ1 = ϕ2−1. Now, if all
of P (1), P (2), . . . , P (n) are true and n > 1, we know in particular that P (n−1)
and P (n) are true; so Fn−1 ≤ ϕn−2 and Fn ≤ ϕn−1. Adding these inequalities,
we get

Fn+1 = Fn−1 + Fn ≤ ϕn−2 + ϕn−1 = ϕn−2(1 + ϕ). (4)

The important property of the number ϕ, indeed the reason we chose this number
for this problem in the Ąrst place, is that

1 + ϕ = ϕ2. (5)

Plugging (5) into (4) gives Fn+1 ≤ ϕn, which is P (n + 1). So step (b) has
been done, and (3) has been proved by mathematical induction. Notice that we
approached step (b) in two different ways here: We proved P (n+1) directly when
n = 1, and we used an inductive method when n > 1. This was necessary, since
when n = 1 our reference to P (n− 1) = P (0) would not have been legitimate.

Mathematical induction can also be used to prove things about algorithms.
Consider the following generalization of EuclidŠs algorithm.

Algorithm E (Extended EuclidŠs algorithm). Given two positive integers m
and n, we compute their greatest common divisor d, and we also compute two
not-necessarily-positive integers a and b such that am+ bn = d.

E1. [Initialize.] Set a′ ← b← 1, a← b′ ← 0, c← m, d← n.

14 BASIC CONCEPTS 1.2.1

E2. [Divide.] Let q and r be the quotient and remainder, respectively, of c
divided by d. (We have c = qd+ r and 0 ≤ r < d.)

E3. [Remainder zero?] If r = 0, the algorithm terminates; we have in this case
am+ bn = d as desired.

E4. [Recycle.] Set c ← d, d ← r, t ← a′, a′ ← a, a ← t − qa, t ← b′, b′ ← b,
b← t− qb, and go back to E2.

If we suppress the variables a, b, a′, and b′ from this algorithm and use m
and n for the auxiliary variables c and d, we have our old algorithm, 1.1E. The
new version does a little more, by determining the coefficients a and b. Suppose
that m = 1769 and n = 551; we have successively (after step E2):

a′ a b′ b c d q r

1 0 0 1 1769 551 3 116

0 1 1 −3 551 116 4 87

1 −4 −3 13 116 87 1 29

−4 5 13 −16 87 29 3 0

The answer is correct: 5 × 1769 − 16 × 551 = 8845 − 8816 = 29, the greatest
common divisor of 1769 and 551.

The problem is to prove that this algorithm works properly, for all m and n.
We can try to apply the method of mathematical induction by letting P (n) be
the statement ŞAlgorithm E works for n and all integers m.Ť However, that
approach doesnŠt work out so easily, and we need to prove some extra facts.
After a little study, we Ąnd that something must be proved about a, b, a′, and b′,
and the appropriate fact is that the equalities

a′m+ b′n = c, am+ bn = d (6)

always hold whenever step E2 is executed. We may prove these equalities directly
by observing that they are certainly true the Ąrst time we get to E2, and that
step E4 does not change their validity. (See exercise 6.)

Now we are ready to show that Algorithm E is valid, by induction on n: If
m is a multiple of n, the algorithm obviously works properly, since we are done
immediately at E3 the Ąrst time. This case always occurs when n = 1. The
only case remaining is when n > 1 and m is not a multiple of n. In such a
case, the algorithm proceeds to set c ← n, d ← r after the Ąrst execution, and
since r < n, we may assume by induction that the Ąnal value of d is the gcd
of n and r. By the argument given in Section 1.1, the pairs {m,n} and {n, r}
have the same common divisors, and, in particular, they have the same greatest
common divisor. Hence d is the gcd of m and n, and am+ bn = d by (6).

The italicized phrase in the proof above illustrates the conventional lan-
guage that is so often used in an inductive proof: When doing part (b) of the
construction, rather than saying ŞWe will now assume P (1), P (2), . . . , P (n), and
with this assumption we will prove P (n+ 1),Ť we often say simply ŞWe will now
prove P (n); we may assume by induction that P (k) is true whenever 1 ≤ k < n.Ť

1.2.1 MATHEMATICAL INDUCTION 15

E1. a← 0
b← 1

a′← 1
b′← 0

c←m

d←n

E2. q← quotient(c÷ d)
r← remainder(c÷ d)

E3. r=0?

E4.
c← d, d← r;
t← a′, a′← a, a← t− qa;
t← b′, b′← b, b← t− qb.

A1: m> 0, n> 0.

A2: c=m> 0, d=n> 0,
a= b′ =0, a′ = b=1.

A3: am+ bn= d, a′m+ b′n= c= qd+ r,
0≤ r <d, gcd(c, d)= gcd(m,n).

A4: am+ bn= d=gcd(m,n).

A5: am+ bn= d, a′m+ b′n= c= qd+ r,
0<r<d, gcd(c, d)= gcd(m,n).

A6: am+ bn= d, a′m+ b′n= c, d> 0,
gcd(c, d)= gcd(m,n).

Start

Stop
No

Yes

Fig. 4. Flow chart for Algorithm E, labeled with assertions that prove the validity of
the algorithm.

If we examine this argument very closely and change our viewpoint slightly,
we can envision a general method applicable to proving the validity of any
algorithm. The idea is to take a Ćow chart for some algorithm and to label
each of the arrows with an assertion about the current state of affairs at the
time the computation traverses that arrow. See Fig. 4, where the assertions
have been labeled A1, A2, . . . , A6. (All of these assertions have the additional
stipulation that the variables are integers; this stipulation has been omitted to
save space.) A1 gives the initial assumptions upon entry to the algorithm, and
A4 states what we hope to prove about the output values a, b, and d.

The general method consists of proving, for each box in the Ćow chart, that

if an assertion attached to any arrow leading into the box is true
before the operation in that box is performed, then all of the
assertions on relevant arrows leading away from the box are true
after the operation.

(7)

Thus, for example, we must prove that either A2 or A6 before E2 implies A3
after E2. (In this case A2 is a stronger statement than A6 ; that is, A2 implies
A6. So we need only prove that A6 before E2 implies A3 after. Notice that the
condition d > 0 is necessary in A6 just to prove that operation E2 even makes
sense.) It is also necessary to show that A3 and r = 0 implies A4 ; that A3 and
r ̸= 0 implies A5 ; etc. Each of the required proofs is very straightforward.

Once statement (7) has been proved for each box, it follows that all assertions
are true during any execution of the algorithm. For we can now use induction

16 BASIC CONCEPTS 1.2.1

on the number of steps of the computation, in the sense of the number of arrows
traversed in the Ćow chart. While traversing the Ąrst arrow, the one leading from
ŞStartŤ, the assertion A1 is true since we always assume that our input values
meet the speciĄcations; so the assertion on the Ąrst arrow traversed is correct.
If the assertion that labels the nth arrow is true, then by (7) the assertion that
labels the (n+ 1)st arrow is also true.

Using this general method, the problem of proving that a given algorithm
is valid evidently consists mostly of inventing the right assertions to put in the
Ćow chart. Once this inductive leap has been made, it is pretty much routine to
carry out the proofs that each assertion leading into a box logically implies each
assertion leading out. In fact, it is pretty much routine to invent the assertions
themselves, once a few of the difficult ones have been discovered; thus it is very
simple in our example to write out essentially what A2, A3, and A5 must be,
if only A1, A4, and A6 are given. In our example, assertion A6 is the creative
part of the proof; all the rest could, in principle, be supplied mechanically. Hence
no attempt has been made to give detailed formal proofs of the algorithms that
follow in this book, at the level of detail found in Fig. 4. It suffices to state
the key inductive assertions. Those assertions either appear in the discussion
following an algorithm or they are given as parenthetical remarks in the text of
the algorithm itself.

This approach to proving the correctness of algorithms has another aspect
that is even more important: It mirrors the way we understand an algorithm.
Recall that in Section 1.1 the reader was cautioned not to expect to read an
algorithm like part of a novel; one or two trials of the algorithm on some sample
data were recommended. This was done expressly because an example run-
through of the algorithm helps a person formulate the various assertions mentally.
It is the contention of the author that we really understand why an algorithm is
valid only when we reach the point that our minds have implicitly Ąlled in all the
assertions, as was done in Fig. 4. This point of view has important psychological
consequences for the proper communication of algorithms from one person to
another: It implies that the key assertions, those that cannot easily be derived
by an automaton, should always be stated explicitly when an algorithm is being
explained to someone else. When Algorithm E is being put forward, assertion
A6 should be mentioned too.

An alert reader will have noticed a gaping hole in our last proof of Algo-
rithm E, however. We never showed that the algorithm terminates; all we have
proved is that if it terminates, it gives the right answer!

(Notice, for example, that Algorithm E still makes sense if we allow its
variables m, n, c, d, and r to assume values of the form u + v

√
2, where u

and v are integers. The variables q, a, b, a′, b′ are to remain integer-valued.
If we start the method with m = 12 − 6

√
2 and n = 20 − 10

√
2, say, it will

compute a Şgreatest common divisorŤ d = 4− 2
√

2 with a = +2, b = −1. Even
under this extension of the assumptions, the proofs of assertions A1 through A6
remain valid; therefore all assertions are true throughout any execution of the
procedure. But if we start out with m = 1 and n =

√
2, the computation never

1.2.1 MATHEMATICAL INDUCTION 17

terminates (see exercise 12). Hence a proof of assertions A1 through A6 does
not logically prove that the algorithm is Ąnite.)

Proofs of termination are usually handled separately. But exercise 13 shows
that it is possible to extend the method above in many important cases so that
a proof of termination is included as a by-product.

We have now twice proved the validity of Algorithm E. To be strictly logical,
we should also try to prove that the Ąrst algorithm in this section, Algorithm I,
is valid; in fact, we have used Algorithm I to establish the correctness of any
proof by induction. If we attempt to prove that Algorithm I works properly,
however, we are confronted with a dilemma Ů we canŠt really prove it without
using induction again! The argument would be circular.

In the last analysis, every property of the integers must be proved using
induction somewhere along the line, because if we get down to basic concepts, the
integers are essentially deĄned by induction. Therefore we may take as axiomatic
the idea that any positive integer n either equals 1 or can be reached by starting
with 1 and repetitively adding 1; this suffices to prove that Algorithm I is valid.
For a rigorous study of fundamental concepts about the integers, see the article

ŞOn Mathematical InductionŤ by Leon Henkin, AMM 67 (1960), 323Ű338.

The idea behind mathematical induction is thus intimately related to the
concept of number. The Ąrst European to apply mathematical induction to
rigorous proofs was the Italian scientist Francesco Maurolico, in 1575. Pierre
de Fermat made further improvements, in the early 17th century; he called
it the Şmethod of inĄnite descent.Ť The notion also appears clearly in the
later writings of Blaise Pascal (1653). The phrase Şmathematical inductionŤ
apparently was coined by A. De Morgan in the early nineteenth century. [See
The Penny Cyclopædia 12 (1838), 465Ű466; AMM 24 (1917), 199Ű207; 25

(1918), 197Ű201; Arch. Hist. Exact Sci. 9 (1972), 1Ű21.] Further discussion of
mathematical induction can be found in G. PólyaŠs book Induction and Analogy
in Mathematics (Princeton, N.J.: Princeton University Press, 1954), Chapter 7.

The formulation of algorithm-proving in terms of assertions and induction,
as given above, is essentially due to R. W. Floyd. He pointed out that a semantic
deĄnition of each operation in a programming language can be formulated as a
logical rule that tells exactly what assertions can be proved after the operation,
based on what assertions are true beforehand [see ŞAssigning Meanings to Pro-
grams,Ť Proc. Symp. Appl. Math., Amer. Math. Soc., 19 (1967), 19Ű32]. Similar
ideas were voiced independently by Peter Naur, BIT 6 (1966), 310Ű316, who
called the assertions Şgeneral snapshots.Ť An important reĄnement, the notion
of Şinvariants,Ť was introduced by C. A. R. Hoare; see, for example, CACM 14

(1971), 39Ű45. Later authors found it advantageous to reverse FloydŠs direction,
going from an assertion that should hold after an operation to the Şweakest
preconditionŤ that must hold before the operation is done; such an approach
makes it possible to discover new algorithms that are guaranteed to be correct,
if we start from the speciĄcations of the desired output and work backwards.
[See E. W. Dijkstra, CACM 18 (1975), 453Ű457; A Discipline of Programming
(PrenticeŰHall, 1976).]

18 BASIC CONCEPTS 1.2.1

The concept of inductive assertions actually appeared in embryonic form in
1946, at the same time as Ćow charts were introduced by H. H. Goldstine and
J. von Neumann. Their original Ćow charts included Şassertion boxesŤ that are
in close analogy with the assertions in Fig. 4. [See John von Neumann, Collected
Works 5 (New York: Macmillan, 1963), 91Ű99. See also A. M. TuringŠs early
comments about veriĄcation in Report of a Conference on High Speed Automatic
Calculating Machines (Cambridge Univ., 1949), 67Ű68 and Ągures; reprinted
with commentary by F. L. Morris and C. B. Jones in Annals of the History of
Computing 6 (1984), 139Ű143.]

The understanding of the theory of a routine

may be greatly aided by providing, at the time of construction

one or two statements concerning the state of the machine

at well chosen points. . . .

In the extreme form of the theoretical method

a watertight mathematical proof is provided for the assertions.

In the extreme form of the experimental method

the routine is tried out on the machine with a variety of initial

conditions and is pronounced Ąt if the assertions hold in each case.

Both methods have their weaknesses.

— A. M. TURING, Ferranti Mark I Programming Manual (1950)

EXERCISES

1. [05] Explain how to modify the idea of proof by mathematical induction, in case
we want to prove some statement P (n) for all nonnegative integers Ů that is, for n = 0,
1, 2, . . . instead of for n = 1, 2, 3,

x 2. [15] There must be something wrong with the following proof. What is it?
ŞTheorem. Let a be any positive number. For all positive integers n we have
an−1 = 1. Proof. If n = 1, an−1 = a1−1 = a0 = 1. And by induction, assuming
that the theorem is true for 1, 2, . . . , n, we have

a(n+1)−1 = an =
an−1 × an−1

a(n−1)−1
=

1× 1
1

= 1;

so the theorem is true for n+ 1 as well.Ť

3. [18] The following proof by induction seems correct, but for some reason the
equation for n = 6 gives 1

2
+ 1

6
+ 1

12
+ 1

20
+ 1

30
= 5

6
on the left-hand side, and 3

2
− 1

6
= 4

3

on the right-hand side. Can you Ąnd a mistake? ŞTheorem.

1
1× 2

+
1

2× 3
+ · · ·+ 1

(n− 1)× n =
3
2
− 1
n
.

Proof. We use induction on n. For n = 1, clearly 3/2− 1/n = 1/(1× 2); and, assuming
that the theorem is true for n,

1
1× 2

+ · · ·+ 1
(n− 1)× n +

1
n× (n+ 1)

=
3
2
− 1
n

+
1

n(n+ 1)
=

3
2
− 1
n

+
 1
n
− 1
n+ 1

=

3
2
− 1
n+ 1

.Ť

4. [20] Prove that, in addition to Eq. (3), Fibonacci numbers satisfy Fn ≥ ϕn−2

for all positive integers n.

1.2.1 MATHEMATICAL INDUCTION 19

5. [21] A prime number is an integer > 1 that has no positive integer divisors other
than 1 and itself. Using this deĄnition and mathematical induction, prove that every
integer > 1 may be written as a product of one or more prime numbers. (A prime
number is considered to be the ŞproductŤ of a single prime, namely itself.)

6. [20] Prove that if Eqs. (6) hold just before step E4, they hold afterwards also.

7. [23] Formulate and prove by induction a rule for the sums 12, 22−12, 32−22 +12,
42 − 32 + 22 − 12, 52 − 42 + 32 − 22 + 12, etc.

x 8. [25] (a) Prove the following theorem of Nicomachus (A.D. c. 100) by induction:
13 = 1, 23 = 3 + 5, 33 = 7 + 9 + 11, 43 = 13 + 15 + 17 + 19, etc. (b) Use this result to
prove the remarkable formula 13 + 23 + · · ·+ n3 = (1 + 2 + · · ·+ n)2.

[Note: An attractive geometric interpretation of this formula, suggested by Warren
Lushbaugh, is shown in Fig. 5; see Math. Gazette 49 (1965), 200. The idea is related
to NicomachusŠs theorem and Fig. 3. Other Şlook-seeŤ proofs can be found in books
by Martin Gardner, Knotted Doughnuts (New York: Freeman, 1986), Chapter 16;
J. H. Conway and R. K. Guy, The Book of Numbers (New York: Copernicus, 1996),
Chapter 2.]

Side = 5+5+5+5+5+5 = 5 ·(5+1)

Side = 5+4+3+2+1+1+2+3+4+5
= 2 ·(1+2+ · · · +5)

Area = 4 ·12 +4 ·2 ·22 +4 ·3 ·32 +4 ·4 ·42 +4 ·5 ·52

= 4 ·(13 +23 + · · · +53)

Fig. 5. Geometric version of exercise 8(b).

9. [20] Prove by induction that if 0 < a < 1, then (1− a)n ≥ 1− na.

10. [M22] Prove by induction that if n ≥ 10, then 2n > n3.

11. [M30] Find and prove a simple formula for the sum

13

14 + 4
− 33

34 + 4
+

53

54 + 4
− · · ·+ (−1)n(2n+ 1)3

(2n+ 1)4 + 4
.

12. [M25] Show how Algorithm E can be generalized as stated in the text so that
it will accept input values of the form u + v

√
2, where u and v are integers, and the

computations can still be done in an elementary way (that is, without using the inĄnite
decimal expansion of

√
2). Prove that the computation will not terminate, however, if

m = 1 and n =
√

2.

x 13. [M23] Extend Algorithm E by adding a new variable T and adding the operation
ŞT ← T+1Ť at the beginning of each step. (Thus, T is like a clock, counting the number
of steps executed.) Assume that T is initially zero, so that assertion A1 in Fig. 4
becomes Şm > 0, n > 0, T = 0.Ť The additional condition ŞT = 1Ť should similarly be
appended to A2. Show how to append additional conditions to the assertions in such a
way that any one of A1, A2, . . . , A6 implies T ≤ 3n, and such that the inductive proof
can still be carried out. (Hence the computation must terminate in at most 3n steps.)

20 BASIC CONCEPTS 1.2.1

14. [50] (R. W. Floyd.) Prepare a computer program that accepts, as input, programs
in some programming language together with optional assertions, and that attempts to
Ąll in the remaining assertions necessary to make a proof that the computer program
is valid. (For example, strive to get a program that is able to prove the validity of
Algorithm E, given only assertions A1, A4, and A6. See the papers by R. W. Floyd
and J. C. King in the IFIP Congress proceedings, 1971, for further discussion.)

x 15. [HM28] (Generalized induction.) The text shows how to prove statements P (n)
that depend on a single integer n, but it does not describe how to prove statements
P (m,n) depending on two integers. In these circumstances a proof is often given by
some sort of Şdouble induction,Ť which frequently seems confusing. Actually, there
is an important principle more general than simple induction that applies not only to
this case but also to situations in which statements are to be proved about uncountable
sets Ů for example, P (x) for all real x. This general principle is called well-ordering.

Let Ş≺Ť be a relation on a set S, satisfying the following properties:

i) Given x, y, and z in S, if x ≺ y and y ≺ z, then x ≺ z.
ii) Given x and y in S, exactly one of the following three possibilities is true: x ≺ y,

x = y, or y ≺ x.
iii) If A is any nonempty subset of S, there is an element x in A with x ⪯ y (that is,

x ≺ y or x = y) for all y in A.

This relation is said to be a well-ordering of S. For example, it is clear that the positive
integers are well-ordered by the ordinary Şless thanŤ relation, <.

a) Show that the set of all integers is not well-ordered by <.
b) DeĄne a well-ordering relation on the set of all integers.
c) Is the set of all nonnegative real numbers well-ordered by <?
d) (Lexicographic order.) Let S be well-ordered by ≺, and for n > 0 let Tn be the

set of all n-tuples (x1, x2, . . . , xn) of elements xj in S. DeĄne (x1, x2, . . . , xn) ≺
(y1, y2, . . . , yn) if there is some k, 1 ≤ k ≤ n, such that xj = yj for 1 ≤ j < k, but
xk ≺ yk in S. Is ≺ a well-ordering of Tn?

e) Continuing part (d), let T =

n≥1 Tn; deĄne (x1, x2, . . . , xm) ≺ (y1, y2, . . . , yn) if

xj = yj for 1 ≤ j < k and xk ≺ yk, for some k ≤ min(m,n), or if m < n and
xj = yj for 1 ≤ j ≤ m. Is ≺ a well-ordering of T?

f) Show that ≺ is a well-ordering of S if and only if it satisĄes (i) and (ii) above and
there is no inĄnite sequence x1, x2, x3, . . . with xj+1 ≺ xj for all j ≥ 1.

g) Let S be well-ordered by ≺, and let P (x) be a statement about the element x of S.
Show that if P (x) can be proved under the assumption that P (y) is true for all
y ≺ x, then P (x) is true for all x in S.

[Notes: Part (g) is the generalization of simple induction that was promised; in the case
S = positive integers, it is just the simple case of mathematical induction treated in the
text. In that case we are asked to prove that P (1) is true if P (y) is true for all positive
integers y < 1; this is the same as saying we should prove P (1), since P (y) certainly is
(vacuously) true for all such y. Consequently, one Ąnds that in many situations P (1)
need not be proved using a special argument.

Part (d), in connection with part (g), gives us a powerful method of n-tuple
induction for proving statements P (m1, . . . ,mn) about n positive integers m1, . . . , mn.

Part (f) has further application to computer algorithms: If we can map each state x
of a computation into an element f(x) belonging to a well-ordered set S, in such a way
that every step of the computation takes a state x into a state y with f(y) ≺ f(x), then

1.2.2 NUMBERS, POWERS, AND LOGARITHMS 21

the algorithm must terminate. This principle generalizes the argument about strictly
decreasing values of n, by which we proved the termination of Algorithm 1.1E.]

1.2.2. Numbers, Powers, and Logarithms

Let us now begin our study of numerical mathematics by taking a good look at
the numbers we are dealing with. The integers are the whole numbers

. . . , −3, −2, −1, 0, 1, 2, 3, . . .

(negative, zero, or positive). A rational number is the ratio (quotient) of two
integers, p/q, where q is positive. A real number is a quantity x that has a
decimal expansion

x = n+ 0.d1d2d3 . . . , (1)

where n is an integer, each di is a digit between 0 and 9, and the sequence of
digits doesnŠt end with inĄnitely many 9s. The representation (1) means that

n+
d1

10
+

d2

100
+ · · ·+ dk

10k
≤ x < n+

d1

10
+

d2

100
+ · · ·+ dk

10k
+

1
10k

, (2)

for all positive integers k. Examples of real numbers that are not rational are

π = 3.14159265358979 . . . , the ratio of circumference to diameter in a circle;

ϕ = 1.61803398874989 . . . , the golden ratio (1 +
√

5)/2 (see Section 1.2.8).

A table of important constants, to forty decimal places of accuracy, appears in
Appendix A. We need not discuss the familiar properties of addition, subtrac-
tion, multiplication, division, and comparison of real numbers.

Difficult problems about integers are often solved by working with real
numbers, and difficult problems about real numbers are often solved by working
with a still more general class of values called complex numbers. A complex
number is a quantity z of the form z = x + iy, where x and y are real and i is
a special quantity that satisĄes the equation i2 = −1. We call x and y the real
part and imaginary part of z, and we deĄne the absolute value of z to be

|z| =

x2 + y2. (3)

The complex conjugate of z is z = x− iy, and we have zz = x2 + y2 = |z|2. The
theory of complex numbers is in many ways simpler and more beautiful than
the theory of real numbers, but it is usually considered to be an advanced topic.
Therefore we shall concentrate on real numbers in this book, except when real
numbers turn out to be unnecessarily complicated.

If u and v are real numbers with u ≤ v, the closed interval [u . . v] is the set
of real numbers x such that u ≤ x ≤ v. The open interval (u . . v) is, similarly,
the set of x such that u < x < v. And half-open intervals [u . . v) or (u . . v] are
deĄned in an analogous way. We also allow u to be −∞ or v to be ∞ at an
open endpoint, meaning that there is no lower or upper bound; thus (−∞ . .∞)
stands for the set of all real numbers, and [0 . .∞) denotes the nonnegative reals.

22 BASIC CONCEPTS 1.2.2

Throughout this section, let the letter b stand for a positive real number. If
n is an integer, then bn is deĄned by the familiar rules

b0 = 1, bn = bn−1b if n > 0, bn = bn+1/b if n < 0. (4)

It is easy to prove by induction that the laws of exponents are valid:

bx+y = bxby, (bx)y = bxy, (5)

whenever x and y are integers.
If u is a positive real number and if m is a positive integer, there is always

a unique positive real number v such that vm = u; it is called the mth root of u,
and denoted v = m

√
u.

We now deĄne br for rational numbers r = p/q as follows:

bp/q =
q√
bp. (6)

This deĄnition, due to Oresme (c. 1360), is a good one, since bap/aq = bp/q, and
since the laws of exponents are still correct even when x and y are arbitrary
rational numbers (see exercise 9).

Finally, we deĄne bx for all real values of x. Suppose Ąrst that b > 1; if x is
given by Eq. (1), we want

bn+d1/10+···+dk/10k ≤ bx < bn+d1/10+···+dk/10k+1/10k

. (7)

This deĄnes bx as a unique positive real number, since the difference between the
right and left extremes in Eq. (7) is bn+d1/10+···+dk/10k

(b1/10k−1); by exercise 13
below, this difference is less than bn+1(b−1)/10k, and if we take k large enough,
we can therefore get any desired accuracy for bx.

For example, we Ąnd that

100.30102999 = 1.9999999739 . . . , 100.30103000 = 2.0000000199 . . . ; (8)

therefore if b = 10 and x = 0.30102999 . . . , we know the value of bx with an
accuracy of better than one part in 10 million (although we still donŠt even know
whether the decimal expansion of bx is 1.999 . . . or 2.000 . . .).

When b < 1, we deĄne bx = (1/b)−x; and when b = 1, bx = 1. With
these deĄnitions, it can be proved that the laws of exponents (5) hold for any
real values of x and y. These ideas for deĄning bx were Ąrst formulated by John
Wallis (1655) and Isaac Newton (1669).

Now we come to an important question. Suppose that a positive real number
y is given; can we Ąnd a real number x such that y = bx? The answer is ŞyesŤ
(provided that b ̸= 1), for we simply use Eq. (7) in reverse to determine n and
d1, d2, . . . when bx = y is given. The resulting number x is called the logarithm
of y to the base b, and we write this as x = logb y. By this deĄnition we have

x = blogb x = logb(b
x). (9)

As an example, Eqs. (8) show that

log10 2 = 0.30102999 (10)

1.2.2 NUMBERS, POWERS, AND LOGARITHMS 23

From the laws of exponents it follows that

logb(xy) = logb x+ logb y, if x > 0, y > 0 (11)

and
logb(c

y) = y logb c, if c > 0. (12)

Equation (10) illustrates the so-called common logarithms, which we get
when the base is 10. One might expect that in computer work binary logarithms
(to the base 2) would be more useful, since most computers do binary arithmetic.
Actually, we will see that binary logarithms are indeed very useful, but not only
for that reason; the reason is primarily that a computer algorithm often makes
two-way branches. Binary logarithms arise so frequently, it is wise to have a
shorter notation for them. Therefore we shall write

lg x = log2 x, (13)

following a suggestion of Edward M. Reingold.
The question now arises as to whether or not there is any relationship

between lg x and log10 x; fortunately there is,

log10 x = log10(2lg x) = (lg x)(log10 2),

by Eqs. (9) and (12). Hence lg x = log10 x/log10 2, and in general we Ąnd that

logc x =
logb x

logb c
. (14)

Equations (11), (12), and (14) are the fundamental rules for manipulating log-
arithms.

It turns out that neither base 10 nor base 2 is really the most conve-
nient base to work with in most cases. There is a real number, denoted by
e = 2.718281828459045 . . . , for which the logarithms have simpler properties.
Logarithms to the base e are conventionally called natural logarithms, and we
write

ln x = loge x. (15)

This rather arbitrary deĄnition (in fact, we havenŠt really deĄned e) probably
doesnŠt strike the reader as being a very ŞnaturalŤ logarithm; yet weŠll Ąnd that
ln x seems more and more natural, the more we work
with it. John Napier actually discovered natural
logarithms (with slight modiĄcations, and without
connecting them with powers) before the year 1590,
many years before any other kind of logarithm was
known. The following two examples, proved in ev-
ery calculus text, shed some light on why NapierŠs
logarithms deserve to be called ŞnaturalŤ: (a) In
Fig. 6 the area of the shaded portion is lnx. (b) If a
bank pays compound interest at rate r, compounded
semiannually, the annual return on each dollar is

(1, 0)

(1, 1)

(x, 1/x)

(x, 0)

Fig. 6. Natural logarithm.

24 BASIC CONCEPTS 1.2.2

(1 + r/2)2 dollars; if it is compounded quarterly, you get (1 + r/4)4 dollars;
and if it is compounded daily you probably get (1 + r/365)365 dollars. Now if
the interest were compounded continuously, you would get exactly er dollars for
every dollar (ignoring roundoff error). In this age of computers, many bankers
have now actually reached the limiting formula.

The interesting history of the concepts of logarithm and exponential has
been told in a series of articles by F. Cajori, AMM 20 (1913), 5Ű14, 35Ű47,
75Ű84, 107Ű117, 148Ű151, 173Ű182, 205Ű210.

We conclude this section by considering how to compute logarithms. One
method is suggested immediately by Eq. (7): If we let bx = y and raise all parts
of that equation to the 10k-th power, we Ąnd that

bm ≤ y10k

< bm+1, (16)

for some integer m. All we have to do to get the logarithm of y is to raise y to
this huge power and Ąnd which powers (m, m + 1) of b the result lies between;
then m/10k is the answer to k decimal places.

A slight modiĄcation of this apparently impractical method leads to a simple
and reasonable procedure. We will show how to calculate log10 x and to express
the answer in the binary system, as

log10 x = n+ b1/2 + b2/4 + b3/8 + · · · . (17)

First we shift the decimal point of x to the left or to the right so that we have
1 ≤ x/10n < 10; this determines the integer part, n. To obtain b1, b2, . . . , we
now set x0 = x/10n and, for k ≥ 1,

bk = 0, xk = x2
k−1, if x2

k−1 < 10;

bk = 1, xk = x2
k−1/10, if x2

k−1 ≥ 10.
(18)

The validity of this procedure follows from the fact that

1 ≤ xk = x2k
102k(n+b1/2+···+bk/2k) < 10, (19)

for k = 0, 1, 2, . . . , as is easily proved by induction.
In practice, of course, we must work with only Ąnite accuracy, so we cannot

set xk = x2
k−1 exactly. Instead, we set xk = x2

k−1 rounded or truncated to a
certain number of decimal places. For example, here is the evaluation of log10 2
rounded to four signiĄcant Ągures:

x0 = 2.000;
x1 = 4.000, b1 = 0; x6 = 1.845, b6 = 1;
x2 = 1.600, b2 = 1; x7 = 3.404, b7 = 0;
x3 = 2.560, b3 = 0; x8 = 1.159, b8 = 1;
x4 = 6.554, b4 = 0; x9 = 1.343, b9 = 0;
x5 = 4.295, b5 = 1; x10 = 1.804, b10 = 0; etc.

Computational error has caused errors to propagate; the true rounded value of
x10 is 1.798. This will eventually cause b19 to be computed incorrectly, and

1.2.2 NUMBERS, POWERS, AND LOGARITHMS 25

we get the binary value (0.0100110100010000011 . . .)2, which corresponds to the
decimal equivalent 0.301031 . . . rather than the true value given in Eq. (10).

With any method such as this it is necessary to examine the amount of
computational error due to the limitations imposed. Exercise 27 derives an
upper bound for the error; working to four Ągures as above, we Ąnd that the
error in the value of the logarithm is guaranteed to be less than 0.00044. Our
answer above was more accurate than this primarily because x0, x1, x2, and x3

were obtained exactly.
This method is simple and quite interesting, but it is probably not the

best way to calculate logarithms on a computer. Another method is given in
exercise 25.

EXERCISES

1. [00] What is the smallest positive rational number?

2. [00] Is 1 + 0.239999999 . . . a decimal expansion?

3. [02] What is (−3)−3?

x 4. [05] What is (0.125)−2/3?

5. [05] We deĄned real numbers in terms of a decimal expansion. Discuss how we
could have deĄned them in terms of a binary expansion instead, and give a deĄnition
to replace Eq. (2).

6. [10] Let x = m + 0.d1d2 . . . and y = n + 0.e1e2 . . . be real numbers. Give a rule
for determining whether x = y, x < y, or x > y, based on the decimal representation.

7. [M23] Given that x and y are integers, prove the laws of exponents, starting from
the deĄnition given by Eq. (4).

8. [25] Let m be a positive integer. Prove that every positive real number u has a
unique positive mth root, by giving a method to construct successively the values n,
d1, d2, . . . in the decimal expansion of the root.

9. [M23] Given that x and y are rational, prove the laws of exponents under the
assumption that the laws hold when x and y are integers.

10. [18] Prove that log10 2 is not a rational number.

x 11. [10] If b = 10 and x ≈ log10 2, to how many decimal places of accuracy will we
need to know the value of x in order to determine the Ąrst three decimal places of
the decimal expansion of bx? [Note: You may use the result of exercise 10 in your
discussion.]

12. [02] Explain why Eq. (10) follows from Eqs. (8).

x 13. [M23] (a) Given that x is a positive real number and n is a positive integer, prove
the inequality n√1 + x−1 ≤ x/n. (b) Use this fact to justify the remarks following (7).

14. [15] Prove Eq. (12).

15. [10] Prove or disprove:

logb x/y = logb x− logb y, if x, y > 0.

16. [00] How can log10 x be expressed in terms of ln x and ln 10?

x 17. [05] What is lg 32? logπ π? ln e? logb 1? logb(−1)?

18. [10] Prove or disprove: log8 x = 1
2

lg x.

26 BASIC CONCEPTS 1.2.2

x 19. [20] If n is an integer whose decimal representation is 14 digits long, will the value
of n Ąt in a computer word with a capacity of 47 bits and a sign bit?

20. [10] Is there any simple relation between log10 2 and log2 10?

21. [15] (Logs of logs.) Express logb logb x in terms of ln lnx, ln ln b, and ln b.

x 22. [20] (R. W. Hamming.) Prove that

lg x ≈ lnx+ log10 x,

with less than 1% error! (Thus a table of natural logarithms and of common logarithms
can be used to get approximate values of binary logarithms as well.)

23. [M25] Give a geometric proof that lnxy = ln x+ ln y, based on Fig. 6.

24. [15] Explain how the method used for calculating logarithms to the base 10 at
the end of this section can be modiĄed to produce logarithms to base 2.

25. [22] Suppose that we have a binary computer and a number x, 1 ≤ x < 2.
Show that the following algorithm, which uses only shifting, addition, and subtraction
operations proportional to the number of places of accuracy desired, may be used to
calculate an approximation to y = logb x:

L1. [Initialize.] Set y ← 0, z ← x shifted right 1, k ← 1.

L2. [Test for end.] If x = 1, stop.

L3. [Compare.] If x− z < 1, set z ← z shifted right 1, k ← k + 1, and repeat this
step.

L4. [Reduce values.] Set x← x−z, z ← x shifted right k, y ← y+logb(2
k/(2k−1)),

and go to L2.

[Notes: This method is very similar to the method used for division in computer
hardware. The idea goes back in essence to Henry Briggs, who used it (in decimal
rather than binary form) to compute logarithm tables, published in 1624. We need
an auxiliary table of the constants logb 2, logb(4/3), logb(8/7), etc., to as many values
as the precision of the computer. The algorithm involves intentional computational
errors, as numbers are shifted to the right, so that eventually x will be reduced to 1
and the algorithm will terminate. The purpose of this exercise is to explain why it will
terminate and why it computes an approximation to logb x.]

26. [M27] Find a rigorous upper bound on the error made by the algorithm in the
previous exercise, based on the precision used in the arithmetic operations.

x 27. [M25] Consider the method for calculating log10 x discussed in the text. Let x′k
denote the computed approximation to xk, determined as follows: x(1− δ) ≤ 10nx′0 ≤
x(1 + ϵ); and in the determination of x′k by Eqs. (18), the quantity yk is used in place
of (x′k−1)2, where (x′k−1)2(1 − δ) ≤ yk ≤ (x′k−1)2(1 + ϵ) and 1 ≤ yk < 100. Here δ
and ϵ are small constants that reĆect the upper and lower errors due to rounding or
truncation. If log′ x denotes the result of the calculations, show that after k steps we
have

log10 x+ 2 log10(1− δ)− 1/2k < log′ x ≤ log10 x+ 2 log10(1 + ϵ).

28. [M30] (R. Feynman.) Develop a method for computing bx when 0 ≤ x < 1, using
only shifting, addition, and subtraction (similar to the algorithm in exercise 25), and
analyze its accuracy.

29. [HM20] Let x be a real number greater than 1. (a) For what real number b > 1 is
b logb x a minimum? (b) For what integer b > 1 is it a minimum? (c) For what integer
b > 1 is (b+ 1) logb x a minimum?

1.2.3 SUMS AND PRODUCTS 27

30. [12] Simplify the expression (lnx)ln x/ ln ln x, assuming that x > 1 and x ̸= e.

1.2.3. Sums and Products

Let a1, a2, . . . be any sequence of numbers. We are often interested in sums such
as a1 + a2 + · · ·+ an, and this sum is more compactly written using either of the
following equivalent notations:

n

j=1

aj or

1≤j≤n

aj . (1)

If n is zero, the value of a1 + a2 + · · ·+ an =
n

j=1aj =

1≤j≤naj is deĄned to
be zero. Our convention of using Şthree dotsŤ in sums such as a1 + a2 + · · ·+ an
therefore has some slightly peculiar, but sensible, behavior in borderline cases
(see exercise 1).

In general, if R(j) is any relation involving j, the symbol

R(j)

aj (2)

means the sum of all aj where j is an integer satisfying the condition R(j). If
no such integers exist, notation (2) denotes zero. The letter j in (1) and (2)
is a dummy index or index variable, introduced just for the purposes of the
notation. Symbols used as index variables are usually the letters i, j, k, m, n, r,
s, t (occasionally with subscripts or accent marks). Large summation signs like
those in (1) and (2) can also be rendered more compactly as

n
j=1 aj or

R(j) aj .

The use of a

and index variables to indicate summation with deĄnite limits
was introduced by J. Fourier in 1820.

Strictly speaking, the notation

1≤j≤n aj is ambiguous, since it does not
clarify whether the summation is taken with respect to j or to n. In this
particular case it would be rather silly to interpret it as a sum on values of n ≥ j;
but meaningful examples can be constructed in which the index variable is not
clearly speciĄed, as in

j≤k

j+k

2j−k

. In such cases the context must make clear

which variable is a dummy variable and which variable has a signiĄcance that
extends beyond its appearance in the sum. A sum such as

j≤k

j+k

2j−k

would

presumably be used only if either j or k (not both) has exterior signiĄcance.
In most cases we will use notation (2) only when the sum is Ąnite Ů that is,

when only a Ąnite number of values j satisfy R(j) and have aj ̸= 0. If an inĄnite
sum is required, for example

∞

j=1

aj =

j≥1

aj = a1 + a2 + a3 + · · ·

with inĄnitely many nonzero terms, the techniques of calculus must be employed;
the precise meaning of (2) is then

R(j)

aj =

lim
n→∞

R(j)
0≤j<n

aj

+

lim
n→∞

R(j)
−n≤j<0

aj

, (3)

28 BASIC CONCEPTS 1.2.3

provided that both limits exist. If either limit fails to exist, the inĄnite sum is
divergent; it does not exist. Otherwise it is convergent.

When two or more conditions are placed under the

sign, as in (3), we
mean that all conditions must hold.

Four simple algebraic operations on sums are very important, and familiarity
with them makes the solution of many problems possible. We shall now discuss
these four operations.

a) The distributive law, for products of sums:

R(i)

ai

S(j)

bj

=

R(i)

S(j)

aibj

. (4)

To understand this law, consider for example the special case
 2

i=1

ai

 3

j=1

bj

= (a1 + a2)(b1 + b2 + b3)

= (a1b1 + a1b2 + a1b3) + (a2b1 + a2b2 + a2b3)

=
2

i=1

 3

j=1

aibj

.

It is customary to drop the parentheses on the right-hand side of (4); a double
summation such as

R(i)

S(j) aij

is written simply

R(i)

S(j) aij .

b) Change of variable:

R(i)

ai =

R(j)

aj =

R(p(j))

ap(j). (5)

This equation represents two kinds of transformations. In the Ąrst case we are
simply changing the name of the index variable from i to j. The second case
is more interesting: Here p(j) is a function of j that represents a permutation
of the relevant values; more precisely, for each integer i satisfying the relation
R(i), there must be exactly one integer j satisfying the relation p(j) = i. This
condition is always satisĄed in the important cases p(j) = c+ j and p(j) = c− j,
where c is an integer not depending on j, and these are the cases used most
frequently in applications. For example,

1≤j≤n

aj =

1≤j−1≤n

aj−1 =

2≤j≤n+1

aj−1. (6)

The reader should study this example carefully.
The replacement of j by p(j) cannot be done for all inĄnite sums. The

operation is always valid if p(j) = c ± j, as above, but in other cases some
care must be used.

For example, see T. M. Apostol, Mathematical Analysis

(Reading, Mass.: AddisonŰWesley, 1957), Chapter 12. A sufficient condition to

1.2.3 SUMS AND PRODUCTS 29

guarantee the validity of (5) for any permutation of the integers, p(j), is that
R(j) |aj | exists.

c) Interchanging order of summation:

R(i)

S(j)

aij =

S(j)

R(i)

aij . (7)

Let us consider a very simple special case of this equation:

R(i)

2

j=1

aij =

R(i)

(ai1 + ai2),

2

j=1

R(i)

aij =

R(i)

ai1 +

R(i)

ai2.

By Eq. (7), these two are equal; this says no more than

R(i)

(bi + ci) =

R(i)

bi +

R(i)

ci, (8)

where we let bi = ai1 and ci = ai2.

The operation of interchanging the order of summation is extremely useful,
since it often happens that we know a simple form for

R(i) aij , but not for

S(j) aij . We frequently need to interchange the summation order also in a
more general situation, where the relation S(j) depends on i as well as j. In such
a case we can denote the relation by ŞS(i, j).Ť The interchange of summation
can always be carried out, in theory at least, as follows:

R(i)

S(i,j)

aij =

S′(j)

R′(i,j)

aij , (9)

where S′(j) is the relation Şthere is an integer i such that both R(i) and S(i, j)
are trueŤ; and R′(i, j) is the relation Şboth R(i) and S(i, j) are true.Ť For
example, if the summation is

n
i=1

i
j=1 aij , then S′(j) is the relation Şthere is

an integer i such that 1 ≤ i ≤ n and 1 ≤ j ≤ i,Ť that is, 1 ≤ j ≤ n; and R′(i, j)
is the relation Ş1 ≤ i ≤ n and 1 ≤ j ≤ i,Ť that is, j ≤ i ≤ n. Thus,

n

i=1

i

j=1

aij =
n

j=1

n

i=j

aij . (10)

[Note: As in case (b), the operation of interchanging order of summation is not
always valid for inĄnite series. If the series is absolutely convergent Ů that is, if

R(i)

S(j) |aij | exists Ů it can be shown that Eqs. (7) and (9) are valid. Also

if either one of R(i) or S(j) speciĄes a Ąnite sum in Eq. (7), and if each inĄnite
sum that appears is convergent, then the interchange is justiĄed. In particular,
Eq. (8) is always true for convergent inĄnite sums.]

30 BASIC CONCEPTS 1.2.3

d) Manipulating the domain. If R(j) and S(j) are arbitrary relations, we
have

R(j)

aj +

S(j)

aj =

R(j) or S(j)

aj +

R(j) and S(j)

aj . (11)

For example,

1≤j≤m

aj +

m≤j≤n

aj =

1≤j≤n

aj

+ am, (12)

assuming that 1 ≤ m ≤ n. In this case ŞR(j) and S(j)Ť is simply Şj = m,Ť so we
have reduced the second sum to simply Şam.Ť In most applications of Eq. (11),
either R(j) and S(j) are simultaneously satisĄed for only one or two values of j,
or else it is impossible to have both R(j) and S(j) true for the same j. In the
latter case, the second sum on the right-hand side of Eq. (11) simply disappears.

Now that we have seen the four basic rules for manipulating sums, letŠs
study some further illustrations of how to apply these techniques.

Example 1.

0≤j≤n

aj =

0≤j≤n
j even

aj +

0≤j≤n
j odd

aj by rule (d)

=

0≤2j≤n
2j even

a2j +

0≤2j+1≤n
2j+1 odd

a2j+1 by rule (b)

=

0≤j≤n/2

a2j +

0≤j<n/2

a2j+1.

The last step merely consists of simplifying the relations below the

Šs.

Example 2. Let

S1 =
n

i=0

i

j=0

aiaj =
n

j=0

n

i=j

aiaj by rule (c) [see Eq. (10)]

=
n

i=0

n

j=i

aiaj by rule (b),

interchanging the names i and j and recognizing that ajai = aiaj . If we denote
the latter sum by S2, we have

2S1 = S1 + S2=
n

i=0

 i

j=0

aiaj +
n

j=i

aiaj

by Eq. (8)

=
n

i=0

 n

j=0

aiaj

+ aiai

by rule (d)
[see Eq. (12)]

1.2.3 SUMS AND PRODUCTS 31

=
n

i=0

n

j=0

aiaj +
n

i=0

aiai by Eq. (8)

=

 n

i=0

ai

 n

j=0

aj

+

 n

i=0

a2
i

by rule (a)

=

 n

i=0

ai

2

+

 n

i=0

a2
i

by rule (b).

Thus we have derived the important identity

n

i=0

i

j=0

aiaj =
1
2

 n

i=0

ai

2

+

 n

i=0

a2
i

. (13)

Example 3 (The sum of a geometric progression). Assume that x ̸= 1 and that
n ≥ 0. Then

a+ ax+ · · ·+ axn =

0≤j≤n

axj by deĄnition (2)

= a+

1≤j≤n

axj by rule (d)

= a+ x

1≤j≤n

axj−1 by a very special case of (a)

= a+ x

0≤j≤n−1

axj by rule (b) [see Eq. (6)]

= a+ x

0≤j≤n

axj − axn+1 by rule (d).

Comparing the Ąrst relation with the last, we have

(1− x)

0≤j≤n

axj = a− axn+1;

hence we obtain the basic formula

0≤j≤n

axj = a
1− xn+1

1− x

. (14)

Example 4 (The sum of an arithmetic progression). Assume that n ≥ 0. Then

a+ (a+b) + · · ·+ (a+ nb)

=

0≤j≤n

(a+ bj) by deĄnition (2)

32 BASIC CONCEPTS 1.2.3

=

0≤n−j≤n

a+ b(n− j)

by rule (b)

=

0≤j≤n

(a+ bn− bj) by simpliĄcation

=

0≤j≤n

(2a+ bn)−

0≤j≤n

(a+ bj) by Eq. (8)

= (n+ 1)(2a+ bn)−

0≤j≤n

(a+ bj),

since the Ąrst sum simply adds together (n+ 1) terms that do not depend on j.
Now by equating the Ąrst and last expressions and dividing by 2, we obtain

0≤j≤n

(a+ bj) = a(n+ 1) + 1
2bn(n+ 1). (15)

This is n+ 1 times 1
2

a+ (a+ bn)

, which can be understood as the number of

terms times the average of the Ąrst and last terms.
Notice that we have derived the important equations (13), (14), and (15)

purely by using simple manipulations of sums. Most textbooks would simply
state those formulas, and prove them by induction. Induction is, of course, a
perfectly valid procedure; but it does not give any insight into how on earth
a person would ever have dreamed the formula up in the Ąrst place, except by
some lucky guess. In the analysis of algorithms we are confronted with hundreds
of sums that do not conform to any apparent pattern; by manipulating those
sums, as above, we can often get the answer without the need for ingenious
guesses.

Many manipulations of sums and other formulas become considerably sim-
pler if we adopt the following bracket notation:

[statement] =

1, if the statement is true;
0, if the statement is false.

(16)

Then we can write, for example,

R(j)

aj =

j

aj

R(j)

, (17)

where the sum on the right is over all integers j, because the terms of that
inĄnite sum are zero when R(j) is false. (We assume that aj is deĄned for all j.)

With bracket notation we can derive rule (b) from rules (a) and (c) in an
interesting way:

R(p(j))

ap(j) =

j

ap(j)

R(p(j))

=

j

i

ai

R(i)

i = p(j)

1.2.3 SUMS AND PRODUCTS 33

=

i

ai

R(i)

j

i = p(j)

. (18)

The remaining sum on j is equal to 1 when R(i) is true, if we assume that p is
a permutation of the relevant values as required in (5); hence we are left with

i ai[R(i)], which is

R(i) ai. This proves (5). If p is not such a permutation,
(18) tells us the true value of

R(p(j)) ap(j).

The most famous special case of bracket notation is the so-called Kronecker
delta symbol,

δij = [i= j] =

1, if i = j,
0, if i ̸= j,

(19)

introduced by Leopold Kronecker in 1868. More general notations such as (16)
were introduced by K. E. Iverson in 1962; therefore (16) is often called IversonŠs
convention. [See D. E. Knuth, AMM 99 (1992), 403Ű422.]

There is a notation for products, analogous to our notation for sums: The
symbols

R(j)

aj (20)

stand for the product of all aj for which the integer j satisĄes R(j). If no such
integer j exists, the product is deĄned to have the value 1 (not 0).

Operations (b), (c), and (d) are valid for the

-notation as well as for the
-notation, with suitable simple modiĄcations. The exercises at the end of this

section give a number of examples of product notation in use.
We conclude this section by mentioning another notation for multiple sum-

mation that is often convenient: A single

-sign may be used with one or
more relations in several index variables, meaning that the sum is taken over all
combinations of variables that meet the conditions. For example,

0≤i≤n

0≤j≤n

aij =

0≤i,j≤n

aij ;

0≤i≤n

0≤j≤i

aij =

0≤j≤i≤n

aij .

This notation gives no preference to one index of summation over any other, so
it allows us to derive (10) in a new way:

n

i=1

i

j=1

aij =

i,j

aij [1≤ i≤n][1≤ j≤ i] =

i,j

aij [1≤ j≤n][j≤ i≤n]

=
n

j=1

n

i=j

aij ,

using the fact that [1≤ i≤n][1≤ j≤ i] = [1≤ j≤ i≤n] = [1≤ j≤n][j≤ i≤n].
The more general equation (9) follows in a similar way from the identity

R(i)

S(i, j)

=

R(i) and S(i, j)

=

S′(j)

R′(i, j)

. (21)

34 BASIC CONCEPTS 1.2.3

A further example that demonstrates the usefulness of summation with
several indices is

j1+···+jn=n
j1≥···≥jn≥0

aj1...jn , (22)

where a is an n-tuply subscripted variable; for example, if n = 5 this notation
stands for

a11111 + a21110 + a22100 + a31100 + a32000 + a41000 + a50000.

(See the remarks on partitions of a number in Section 1.2.1.)

EXERCISES Ů First Set

x 1. [10] The text says that a1 + a2 + · · ·+ a0 = 0. What, then, is a2 + · · ·+ a0?

2. [01] What does the notation

1≤j≤n aj mean, if n = 3.14?

x 3. [13] Without using the

-notation, write out the equivalent of

0≤n≤5

1
2n+ 1

,

and also the equivalent of

0≤n2≤5

1
2n2 + 1

.

Explain why the two results are different, in spite of rule (b).

4. [10] Without using the

-notation, write out the equivalent of each side of
Eq. (10) as a sum of sums for the case n = 3.

x 5. [HM20] Prove that rule (a) is valid for arbitrary inĄnite series, provided that the
series converge.

6. [HM20] Prove that rule (d) is valid for an arbitrary inĄnite series, provided that
any three of the four sums exist.

7. [HM23] Given that c is an integer, show that

R(j) aj =

R(c−j) ac−j , even if

both series are inĄnite.

8. [HM25] Find an example of inĄnite series in which Eq. (7) is false.

x 9. [05] Is the derivation of Eq. (14) valid even if n = −1?

10. [05] Is the derivation of Eq. (14) valid even if n = −2?

11. [03] What should the right-hand side of Eq. (14) be if x = 1?

12. [10] What is 1 + 1
7

+ 1
49

+ 1
343

+ · · ·+ (1
7
)n?

13. [10] Using Eq. (15) and assuming that m ≤ n, evaluate
n
j=m j.

14. [11] Using the result of the previous exercise, evaluate
n
j=m

s
k=r jk.

x 15. [M22] Compute the sum 1×2+2×22+3×23+· · ·+n×2n for small values of n. Do
you see the pattern developing in these numbers? If not, discover it by manipulations
similar to those leading up to Eq. (14).

1.2.3 SUMS AND PRODUCTS 35

16. [M22] Prove that

n

j=0

jxj =
nxn+2 − (n+ 1)xn+1 + x

(x− 1)2
,

if x ̸= 1, without using mathematical induction.

x 17. [M00] Let S be a set of integers. What is

j∈S 1?

18. [M20] Show how to interchange the order of summation as in Eq. (9) given that
R(i) is the relation Şn is a multiple of iŤ and S(i, j) is the relation Ş1 ≤ j < i.Ť

19. [20] What is
n
j=m(aj − aj−1)?

x 20. [25] Dr. I. J. Matrix has observed a remarkable sequence of formulas:

9× 1 + 2 = 11, 9× 12 + 3 = 111, 9× 123 + 4 = 1111, 9× 1234 + 5 = 11111.

a) Write the good doctorŠs great discovery in terms of the

-notation.

b) Your answer to part (a) undoubtedly involves the number 10 as base of the decimal
system; generalize this formula so that you get a formula that will perhaps work
in any base b.

c) Prove your formula from part (b) by using formulas derived in the text or in
exercise 16 above.

x 21. [M25] Derive rule (d) from (8) and (17).

x 22. [20] State the appropriate analogs of Eqs. (5), (7), (8), and (11) for products

instead of sums.

23. [10] Explain why it is a good idea to deĄne

R(j) aj and

R(j) aj as zero and

one, respectively, when no integers satisfy R(j).

24. [20] Suppose that R(j) is true for only Ąnitely many j. By induction on the
number of integers satisfying R(j), prove that logb

R(j) aj =

R(j)(logb aj), assuming

that all aj > 0.

x 25. [15] Consider the following derivation; is anything amiss?
 n

i=1

ai

 n

j=1

1
aj

=

1≤i≤n

1≤j≤n

ai
aj

=

1≤i≤n

1≤i≤n

ai
ai

=
n

i=1

1 = n.

26. [25] Show that
n
i=0

i
j=0 aiaj may be expressed in terms of

n
i=0 ai by manip-

ulating the

-notation as stated in exercise 22.

27. [M20] Generalize the result of exercise 1.2.1Ű9 by proving that

n

j=1

(1− aj) ≥ 1−
n

j=1

aj ,

assuming that 0 < aj < 1.

28. [M22] Find a simple formula for
n
j=2 (1− 1/j2).

x 29. [M30] (a) Express
n
i=0

i
j=0

j
k=0 aiajak in terms of the multiple-sum notation

explained at the end of the section. (b) Express the same sum in terms of
n
i=0 ai,n

i=0 a
2
i , and

n
i=0 a

3
i [see Eq. (13)].

36 BASIC CONCEPTS 1.2.3

x 30. [M23] (J. Binet, 1812.) Without using induction, prove the identity
 n

j=1

ajxj

 n

j=1

bjyj

=

 n

j=1

ajyj

 n

j=1

bjxj

+

1≤j<k≤n
(ajbk−akbj)(xjyk−xkyj).

[An important special case arises when w1, . . . , wn, z1, . . . , zn are arbitrary complex
numbers and we set aj = wj , bj = zj , xj = wj , yj = zj :

 n

j=1

|wj |2
 n

j=1

|zj |2

=

n

j=1

wjzj

2

+

1≤j<k≤n
|wjzk − wkzj |2.

The terms |wjzk − wkzj |2 are nonnegative, so the famous CauchyŰSchwarz inequality

 n

j=1

|wj |2
 n

j=1

|zj |2

≥

n

j=1

wjzj

2

is a consequence of BinetŠs formula.]

31. [M20] Use BinetŠs formula to express the sum

1≤j<k≤n(uj − uk)(vj − vk) in
terms of

n
j=1 ujvj ,

n
j=1 uj , and

n
j=1 vj .

32. [M20] Prove that

n

j=1

m

i=1

aij =

1≤i1,...,in≤m
ai11 . . . ainn.

x 33. [M30] One evening Dr. Matrix discovered some formulas that might even be
classed as more remarkable than those of exercise 20:

1
(a− b)(a− c) +

1
(b− a)(b− c) +

1
(c− a)(c− b) = 0,

a

(a− b)(a− c) +
b

(b− a)(b− c) +
c

(c− a)(c− b) = 0,

a2

(a− b)(a− c) +
b2

(b− a)(b− c) +
c2

(c− a)(c− b) = 1,

a3

(a− b)(a− c) +
b3

(b− a)(b− c) +
c3

(c− a)(c− b) = a+ b+ c.

Prove that these formulas are a special case of a general law; let x1, x2, . . . , xn be
distinct numbers, and show that

n

j=1

xrj

1≤k≤n
k ̸=j

(xj − xk)

=

0, if 0 ≤ r < n− 1;
1, if r = n− 1;n
j=1 xj , if r = n.

34. [M25] Prove that

n

k=1

1≤r≤n, r ̸=m(x+ k − r)

1≤r≤n, r ̸=k(k − r)
= 1,

1.2.3 SUMS AND PRODUCTS 37

provided that 1 ≤ m ≤ n and x is arbitrary. For example, if n = 4 and m = 2, then

x(x− 2)(x− 3)
(−1)(−2)(−3)

+
(x+ 1)(x− 1)(x− 2)

(1)(−1)(−2)
+

(x+ 2)x(x− 1)
(2)(1)(−1)

+
(x+ 3)(x+ 1)x

(3)(2)(1)
= 1.

35. [HM20] The notation supR(j) aj is used to denote the least upper bound of the
elements aj , in a manner exactly analogous to the

- and

-notations. (When R(j)

is satisĄed for only Ąnitely many j, the notation maxR(j) aj is often used to denote the
same quantity.) Show how rules (a), (b), (c), and (d) can be adapted for manipulation
of this notation. In particular discuss the following analog of rule (a):

(supR(i) ai) + (supS(j) bj) = supR(i)(supS(j)(ai + bj)),

and give a suitable deĄnition for the notation when R(j) is satisĄed for no j.

EXERCISES Ů Second Set

Determinants and matrices. The following interesting problems are for the reader
who has experienced at least an introduction to determinants and elementary matrix
theory. A determinant may be evaluated by astutely combining the operations of: (a)
factoring a quantity out of a row or column; (b) adding a multiple of one row (or
column) to another row (or column); (c) expanding by cofactors. The simplest and
most often used version of operation (c) is to simply delete the entire Ąrst row and
column, provided that the element in the upper left corner is +1 and the remaining
elements in either the entire Ąrst row or the entire Ąrst column are zero; then evaluate
the resulting smaller determinant. In general, the cofactor of an element aij in an
n × n determinant is (−1)i+j times the (n − 1) × (n − 1) determinant obtained by
deleting the row and column in which aij appeared. The value of a determinant is
equal to

aij · cofactor(aij) summed with either i or j held constant and with the

other subscript varying from 1 to n.
If (bij) is the inverse of matrix (aij), then bij equals the cofactor of aji (not aij),

divided by the determinant of the whole matrix.
The following types of matrices are of special importance:

VandermondeŠs matrix,

aij = xij

x1 x2 . . . xn

x2
1 x2

2 . . . x2
n

...
...

xn1 xn2 . . . xnn

Combinatorial matrix,

aij = y + δijx

x+ y y . . . y

y x+ y . . . y

...
...

y y . . . x+ y

CauchyŠs matrix,

aij = 1/(xi + yj)

1/(x1 + y1) 1/(x1 + y2) . . . 1/(x1 + yn)

1/(x2 + y1) 1/(x2 + y2) . . . 1/(x2 + yn)

...
...

1/(xn + y1) 1/(xn + y2) . . . 1/(xn + yn)

38 BASIC CONCEPTS 1.2.3

36. [M23] Show that the determinant of the combinatorial matrix is xn−1(x+ ny).

x 37. [M24] Show that the determinant of VandermondeŠs matrix is

1≤j≤n
xj

1≤i<j≤n
(xj − xi).

x 38. [M25] Show that the determinant of CauchyŠs matrix is

1≤i<j≤n
(xj − xi)(yj − yi)

1≤i,j≤n
(xi + yj).

39. [M23] Show that the inverse of a combinatorial matrix is a combinatorial matrix
with the entries bij = (−y + δij (x+ ny))/x(x+ ny).

40. [M24] Show that the inverse of VandermondeŠs matrix is given by

bij =

1≤k1<···<kn−j≤n
k1,...,kn−j ̸=i

(−1)j−1xk1
. . . xkn−j

xi

1≤k≤n
k ̸=i

(xk − xi).

DonŠt be dismayed by the complicated sum in the numerator Ů it is just the coefficient
of xj−1 in the polynomial (x1 − x) . . . (xn − x)/(xi − x).

41. [M26] Show that the inverse of CauchyŠs matrix is given by

bij =

1≤k≤n
(xj + yk)(xk + yi)

(xj + yi)

1≤k≤n
k ̸=j

(xj − xk)

1≤k≤n
k ̸=i

(yi − yk)

.

42. [M18] What is the sum of all n2 elements in the inverse of the combinatorial
matrix?

43. [M24] What is the sum of all n2 elements in the inverse of VandermondeŠs matrix?
[Hint: Use exercise 33.]

x 44. [M26] What is the sum of all n2 elements in the inverse of CauchyŠs matrix?

x 45. [M25] A Hilbert matrix, sometimes called an n×n segment of the (inĄnite) Hilbert
matrix, is a matrix for which aij = 1/(i + j − 1). Show that this is a special case of
CauchyŠs matrix, Ąnd its inverse, show that each element of the inverse is an integer,
and show that the sum of all elements of the inverse is n2. [Note: Hilbert matrices
have often been used to test various matrix manipulation algorithms, because they
are numerically unstable, and they have known inverses. However, it is a mistake
to compare the known inverse, given in this exercise, to the computed inverse of a
Hilbert matrix, since the matrix to be inverted must be expressed in rounded numbers
beforehand; the inverse of an approximate Hilbert matrix will be somewhat different
from the inverse of an exact one, due to the instability present. Since the elements
of the inverse are integers, and since the inverse matrix is just as unstable as the
original, the inverse can be speciĄed exactly, and one could try to invert the inverse.
The integers that appear in the inverse are, however, quite large.] The solution to this
problem requires an elementary knowledge of factorials and binomial coefficients, which
are discussed in Sections 1.2.5 and 1.2.6.

x 46. [M30] Let A be an m × n matrix, and let B be an n × m matrix. Given that
1 ≤ j1, j2, . . . , jm ≤ n, let Aj1j2...jm denote the m ×m matrix consisting of columns

1.2.4 INTEGER FUNCTIONS AND ELEMENTARY NUMBER THEORY 39

j1, . . . , jm of A, and let Bj1j2...jm denote the m×m matrix consisting of rows j1, . . . , jm
of B. Prove the BinetŰCauchy identity

det (AB) =

1≤j1<j2<···<jm≤n
det (Aj1j2...jm) det (Bj1j2...jm).

(Note the special cases: (i) m = n, (ii) m = 1, (iii) B = AT, (iv) m > n, (v) m = 2.)

47. [M27] (C. Krattenthaler.) Prove that

det

(x+ q2)(x+ q3) (x+ p1)(x+ q3) (x+ p1)(x+ p2)
(y + q2)(y + q3) (y + p1)(y + q3) (y + p1)(y + p2)
(z + q2)(z + q3) (z + p1)(z + q3) (z + p1)(z + p2)

= (x− y)(x− z)(y − z)(p1 − q2)(p1 − q3)(p2 − q3),

and generalize this equation to an identity for an n×n determinant in 3n− 2 variables
x1, . . . , xn, p1, . . . , pn−1, q2, . . . , qn. Compare your formula to the result of exercise 38.

1.2.4. Integer Functions and Elementary Number Theory

If x is any real number, we write

⌊x⌋ = the greatest integer less than or equal to x (the Ćoor of x);

⌈x⌉ = the least integer greater than or equal to x (the ceiling of x).

The notation [x] was often used before 1970 for one or the other of these
functions, usually the former; but the notations above, introduced by K. E.
Iverson in the 1960s, are more useful, because ⌊x⌋ and ⌈x⌉ occur about equally
often in practice. The function ⌊x⌋ is sometimes called the entier function, from
the French word for Şinteger.Ť

The following formulas and examples are easily veriĄed:
√

2

= 1,
√

2

= 2,

+

1
2

= 0,

−1

2

= 0,

−1

2

= −1 (not zero!);

⌈x⌉ = ⌊x⌋ if and only if x is an integer,

⌈x⌉ = ⌊x⌋+ 1 if and only if x is not an integer;

⌊−x⌋ = −⌈x⌉; x− 1 < ⌊x⌋ ≤ x ≤ ⌈x⌉ < x+ 1.

Exercises at the end of this section list other important formulas involving the
Ćoor and ceiling operations.

If x and y are any real numbers, we deĄne the following binary operation:

xmod y = x− y⌊x/y⌋, if y ̸= 0; xmod 0 = x. (1)

From this deĄnition we can see that, when y ̸= 0,

0 ≤ x

y
−

x

y

=
xmod y

y
< 1 . (2)

Consequently

a) if y > 0, then 0 ≤ xmod y < y;

b) if y < 0, then 0 ≥ xmod y > y;

40 BASIC CONCEPTS 1.2.4

c) the quantity x− (xmod y) is an integral multiple of y.

We call xmod y the remainder when x is divided by y; similarly, we call ⌊x/y⌋
the quotient.

When x and y are integers, ŞmodŤ is therefore a familiar operation:

5 mod 3 = 2, 18 mod 3 = 0, −2 mod 3 = 1. (3)

We have xmod y = 0 if and only if x is a multiple of y, that is, if and only if x is
divisible by y. The notation y\x, read Şy divides x,Ť means that y is a positive
integer and xmod y = 0.

The ŞmodŤ operation is useful also when x and y take arbitrary real values.
For example, with trigonometric functions we can write

tan x = tan (xmod π).

The quantity xmod 1 is the fractional part of x; we have, by Eq. (1),

x = ⌊x⌋+ (xmod 1). (4)

Writers on number theory often use the abbreviation ŞmodŤ in a different
but closely related sense. We will use the following form to express the number-
theoretical concept of congruence: The statement

x ≡ y (modulo z) (5)

means that xmod z = y mod z; it is the same as saying that x− y is an integral
multiple of z. Expression (5) is read, Şx is congruent to y modulo z.Ť

LetŠs turn now to the basic elementary properties of congruences that will
be used in the number-theoretical arguments of this book. All variables in the
following formulas are assumed to be integers. Two integers x and y are said
to be relatively prime if they have no common factor, that is, if their greatest
common divisor is 1; in such a case we write x ⊥ y. The concept of relatively
prime integers is a familiar one, since it is customary to say that a fraction is in
Şlowest termsŤ when the numerator is relatively prime to the denominator.

Law A. If a ≡ b and x ≡ y, then a± x ≡ b± y and ax ≡ by (modulo m).

Law B. If ax ≡ by and a ≡ b, and if a ⊥ m, then x ≡ y (modulo m).

Law C. a ≡ b (modulo m) if and only if an ≡ bn (modulo mn), when n ̸= 0.

Law D. If r ⊥ s, then a ≡ b (modulo rs) if and only if a ≡ b (modulo r) and
a ≡ b (modulo s).

Law A states that we can do addition, subtraction, and multiplication
modulo m just as we do ordinary addition, subtraction, and multiplication.
Law B considers the operation of division and shows that, when the divisor
is relatively prime to the modulus, we can also divide out common factors. Laws
C and D consider what happens when the modulus is changed. These laws are
proved in the exercises below.

The following important theorem is a consequence of Laws A and B.

1.2.4 INTEGER FUNCTIONS AND ELEMENTARY NUMBER THEORY 41

Theorem F (FermatŠs theorem, 1640). If p is a prime number, then ap ≡ a
(modulo p) for all integers a.

Proof. If a is a multiple of p, obviously ap ≡ 0 ≡ a (modulo p). So we need
only consider the case amod p ̸= 0. Since p is a prime number, this means that
a ⊥ p. Consider the numbers

0 mod p, amod p, 2amod p, . . . , (p− 1)amod p. (6)

These p numbers are all distinct, for if axmod p = ay mod p, then by deĄni-
tion (5) ax ≡ ay (modulo p); hence by Law B, x ≡ y (modulo p).

Since (6) gives p distinct numbers, all nonnegative and less than p, we see
that the Ąrst number is zero and the rest are the integers 1, 2, . . . , p− 1 in some
order. Therefore by Law A,

(a)(2a) . . .

(p− 1)a

≡ 1 · 2 . . . (p− 1) (modulo p). (7)

Multiplying each side of this congruence by a, we obtain

ap

1 · 2 . . . (p− 1)

≡ a

1 · 2 . . . (p− 1)

(modulo p); (8)

and this proves the theorem, since each of the factors 1, 2, . . . , p−1 is relatively
prime to p and can be canceled by Law B.

EXERCISES

1. [00] What are ⌊1.1⌋, ⌊−1.1⌋, ⌈−1.1⌉, ⌊0.99999⌋, and ⌊lg 35⌋?
x 2. [01] What is ⌈⌊x⌋⌉?

3. [M10] Let n be an integer, and let x be a real number. Prove that
a) ⌊x⌋ < n if and only if x < n; b) n ≤ ⌊x⌋ if and only if n ≤ x;
c) ⌈x⌉ ≤ n if and only if x ≤ n; d) n < ⌈x⌉ if and only if n < x;
e) ⌊x⌋ = n if and only if x− 1 < n ≤ x, and if and only if n ≤ x < n+ 1;
f) ⌈x⌉ = n if and only if x ≤ n < x+ 1, and if and only if n− 1 < x ≤ n.

[These formulas are the most important tools for proving facts about ⌊x⌋ and ⌈x⌉.]
x 4. [M10] Using the previous exercise, prove that ⌊−x⌋ = −⌈x⌉.

5. [16] Given that x is a positive real number, state a simple formula that expresses
x rounded to the nearest integer. The desired rounding rule is to produce ⌊x⌋ when
xmod 1 < 1

2
, and to produce ⌈x⌉ when xmod 1 ≥ 1

2
. Your answer should be a single

formula that covers both cases. Discuss the rounding that would be obtained by your
formula when x is negative.

x 6. [20] Which of the following equations are true for all positive real numbers x?
(a) ⌊⌊x⌋ ⌋ = ⌊√x ⌋; (b) ⌈⌈x⌉ ⌉ = ⌈√x ⌉; (c) ⌈⌊x⌋ ⌉ = ⌈√x ⌉.

7. [M15] Show that ⌊x⌋ + ⌊y⌋ ≤ ⌊x + y⌋ and that equality holds if and only if
xmod 1 + y mod 1 < 1. Does a similar formula hold for ceilings?

8. [00] What are 100 mod 3, 100 mod 7, −100 mod 7, −100 mod 0?

9. [05] What are 5 mod −3, 18 mod −3, −2 mod −3?

x 10. [10] What are 1.1 mod 1, 0.11 mod .1, 0.11 mod −.1?

11. [00] What does Şx ≡ y (modulo 0)Ť mean by our conventions?

42 BASIC CONCEPTS 1.2.4

12. [00] What integers are relatively prime to 1?

13. [M00] By convention, we say that the greatest common divisor of 0 and n is |n|.
What integers are relatively prime to 0?

x 14. [12] If xmod 3 = 2 and xmod 5 = 3, what is xmod 15?

15. [10] Prove that z(xmod y) = (zx) mod (zy). [Law C is an immediate consequence
of this distributive law.]

16. [M10] Assume that y > 0. Show that if (x− z)/y is an integer and if 0 ≤ z < y,
then z = xmod y.

17. [M15] Prove Law A directly from the deĄnition of congruence, and also prove half
of Law D: If a ≡ b (modulo rs), then a ≡ b (modulo r) and a ≡ b (modulo s). (Here r
and s are arbitrary integers.)

18. [M15] Using Law B, prove the other half of Law D: If a ≡ b (modulo r) and a ≡ b
(modulo s), then a ≡ b (modulo rs), provided that r ⊥ s.

x 19. [M10] (Law of inverses.) If n ⊥ m, there is an integer n′ such that nn′ ≡ 1
(modulo m). Prove this, using the extension of EuclidŠs algorithm (Algorithm 1.2.1E).

20. [M15] Use the law of inverses and Law A to prove Law B.

21. [M22] (Fundamental theorem of arithmetic.) Use Law B and exercise 1.2.1Ű5 to
prove that every integer n > 1 has a unique representation as a product of primes
(except for the order of the factors). In other words, show that there is exactly one
way to write n = p1p2 . . . pk, where each pj is prime and p1 ≤ p2 ≤ · · · ≤ pk.

x 22. [M10] Give an example to show that Law B is not always true if a is not relatively
prime to m.

23. [M10] Give an example to show that Law D is not always true if r is not relatively
prime to s.

x 24. [M20] To what extent can Laws A, B, C, and D be generalized to apply to
arbitrary real numbers instead of integers?

25. [M02] Show that, according to Theorem F, ap−1 mod p = [a is not a multiple
of p], whenever p is a prime number.

26. [M15] Let p be an odd prime number, let a be any integer, and let b = a(p−1)/2.
Show that bmod p is either 0 or 1 or p− 1. [Hint: Consider (b+ 1)(b− 1).]

27. [M15] Given that n is a positive integer, let φ(n) be the number of values among
{0, 1, . . . , n − 1} that are relatively prime to n. Thus φ(1) = 1, φ(2) = 1, φ(3) = 2,
φ(4) = 2, etc. Show that φ(p) = p − 1 if p is a prime number; and evaluate φ(pe),
when e is a positive integer.

x 28. [M25] Show that the method used to prove Theorem F can be used to prove the
following extension, called EulerŠs theorem: aφ(m) ≡ 1 (modulo m), for any positive
integer m, when a ⊥ m. (In particular, the number n′ in exercise 19 may be taken to
be nφ(m)−1 modm.)

29. [M22] A function f(n) of positive integers n is called multiplicative if f(rs) =
f(r)f(s) whenever r ⊥ s. Show that each of the following functions is multiplicative:
(a) f(n) = nc, where c is any constant; (b) f(n) = [n is not divisible by k2 for any
integer k > 1]; (c) f(n) = ck, where k is the number of distinct primes that divide n;
(d) the product of any two multiplicative functions.

1.2.4 INTEGER FUNCTIONS AND ELEMENTARY NUMBER THEORY 43

30. [M30] Prove that the function φ(n) of exercise 27 is multiplicative. Using this
fact, evaluate φ(1000000), and give a method for evaluating φ(n) in a simple way once
n has been factored into primes.

31. [M22] Prove that if f(n) is multiplicative, so is g(n) =

d\n f(d).

32. [M18] Prove the double-summation identity

d\n

c\d
f(c, d) =

c\n

d\(n/c)

f(c, cd),

for any function f(x, y).

33. [M18] Given thatm and n are integers, evaluate (a)

1
2
(n+m)

+

1
2
(n−m+ 1)

;

(b)

1
2
(n+m)

+

1
2
(n−m+ 1)

. (The special case m = 0 is worth noting.)

x 34. [M21] What conditions on the real number b > 1 are necessary and sufficient to
guarantee that ⌊logb x⌋ = ⌊logb⌊x⌋⌋ for all real x ≥ 1?

x 35. [M20] Given that m and n are integers and n > 0, prove that

⌊(x+m)/n⌋ = ⌊(⌊x⌋+m)/n⌋
for all real x. (When m = 0, we have an important special case.) Does an analogous
result hold for the ceiling function?

36. [M23] Prove that
n
k=1⌊k/2⌋ = ⌊n2/4⌋; also evaluate

n
k=1⌈k/2⌉.

x 37. [M30] Let m and n be integers, n > 0. Show that

0≤k<n

mk + x

n

=

(m− 1)(n− 1)
2

+
d− 1

2
+ d⌊x/d⌋,

where d is the greatest common divisor of m and n, and x is any real number.

38. [M26] (E. Busche, 1909.) Prove that, for all real x and y with y > 0,

0≤k<y

x+

k

y

= ⌊xy + ⌊x+ 1⌋(⌈y⌉ − y)⌋.

In particular, when y is a positive integer n, we have the important formula

⌊x⌋+

x+

1
n

+ · · ·+

x+

n− 1
n

= ⌊nx⌋.

39. [HM35] A function f for which f(x) + f(x + 1
n

) + · · · + f(x + n−1
n

) = f(nx),
whenever n is a positive integer, is called a replicative function. The previous exercise
establishes the fact that ⌊x⌋ is replicative. Show that the following functions are
replicative:

a) f(x) = x− 1
2
;

b) f(x) = [x is an integer];
c) f(x) = [x is a positive integer];
d) f(x) = [there exists a rational number r and an integer m such that x= rπ+m];
e) three other functions like the one in (d), with r and/or m restricted to positive

values;
f) f(x) = log |2 sinπx|, if the value f(x) = −∞ is allowed;
g) the sum of any two replicative functions;
h) a constant multiple of a replicative function;
i) the function g(x) = f(x− ⌊x⌋), where f(x) is replicative.

44 BASIC CONCEPTS 1.2.4

40. [HM46] Study the class of replicative functions; determine all replicative functions
of a special type. For example, is the function in (a) of exercise 39 the only continuous
replicative function? It may be interesting to study also the more general class of
functions for which

f(x) + f

x+

1
n

+ · · ·+ f

x+

n− 1
n

= anf(nx) + bn.

Here an and bn are numbers that depend on n but not on x. Derivatives and (if bn = 0)
integrals of these functions are of the same type. If we require that bn = 0, we have,
for example, the Bernoulli polynomials, the trigonometric functions cotπx and csc2πx,
as well as HurwitzŠs generalized zeta function ζ(s, x) =

k≥0 1/(k + x)s for Ąxed s.

With bn ̸= 0 we have still other well-known functions, such as the psi function.

41. [M23] Let a1, a2, a3, . . . be the sequence 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, . . . ; Ąnd an
expression for an in terms of n, using the Ćoor and/or ceiling function.

42. [M24] (a) Prove that

n

k=1

ak = nan −
n−1

k=1

k(ak+1 − ak), if n > 0.

(b) The preceding formula is useful for evaluating certain sums involving the Ćoor
function. Prove that, if b is an integer ≥ 2,

n

k=1

⌊logb k⌋ = (n+ 1)⌊logb n⌋ − (b⌊logb n⌋+1 − b)/(b− 1).

43. [M23] Evaluate
n
k=1⌊
√
k ⌋.

44. [M24] Show that

k≥0

1≤j<b⌊(n + jbk)/bk+1⌋ = n, if b and n are integers,

n ≥ 0, and b ≥ 2. What is the value of this sum when n < 0?

x 45. [M28] The result of exercise 37 is somewhat surprising, since it implies that

0≤k<n

mk + x

n

=

0≤k<m

nk + x

m

when m and n are positive integers and x is arbitrary. This Şreciprocity relationshipŤ
is one of many similar formulas (see Section 3.3.3). Show that in general we have

0≤j<n
f

mj

n

=

0≤r<m

rn
m

(f(r − 1)− f(r)) + nf(m− 1)

for any function f and all integers m,n > 0. In particular, prove that

0≤j<n

⌊mj/n⌋+ 1
k

+

0≤j<m

jn

m

j

k − 1

= n

m

k

.

[Hint: Consider the change of variable r = ⌊mj/n⌋. Binomial coefficients

m
k

are

discussed in Section 1.2.6.]

46. [M29] (General reciprocity law.) Extend the formula of exercise 45 to obtain an
expression for

0≤j<αn f(⌊mj/n⌋), where α is any positive real number.

1.2.5 PERMUTATIONS AND FACTORIALS 45

x 47. [M31] When p is an odd prime number, the Legendre symbol
q
p

is deĄned to

be +1, 0, or −1, depending on whether q(p−1)/2 mod p is 1, 0, or p − 1. (Exercise 26
proves that these are the only possible values.)

a) Given that q is not a multiple of p, show that the numbers

(−1)⌊2kq/p⌋(2kq mod p), 0 < k < p/2,

are congruent in some order to the numbers 2, 4, . . . , p − 1 (modulo p). Henceq
p

= (−1)σ where σ =

0≤k<p/2⌊2kq/p⌋.

b) Use the result of (a) to calculate
2
p

.

c) Given that q is odd, show that

0≤k<p/2⌊2kq/p⌋ ≡

0≤k<p/2⌊kq/p⌋ (modulo 2),

unless q is a multiple of p. [Hint: Consider the quantity ⌊(p− 1− 2k)q/p⌋.]
d) Use the general reciprocity formula of exercise 46 to obtain the law of quadratic

reciprocity,
q
p

p
q

= (−1)(p−1)(q−1)/4, given that p and q are distinct odd primes.

48. [M26] Prove or disprove the following identities, for integers m and n:

(a)

m+ n− 1

n

=

m

n

; (b)

n+ 2− ⌊n/25⌋

3

=
8n+ 24

25

.

49. [M30] Suppose the integer-valued function f(x) satisĄes the two simple laws
(i) f(x + 1) = f(x) + 1; (ii) f(x) = f(f(nx)/n) for all positive integers n. Prove
that either f(x) = ⌊x⌋ for all rational x, or f(x) = ⌈x⌉ for all rational x.

1.2.5. Permutations and Factorials

A permutation of n objects is an arrangement of n distinct objects in a row.
There are six permutations of three objects {a, b, c}:

a b c, a c b, b a c, b c a, c a b, c b a. (1)

The properties of permutations are of great importance in the analysis of
algorithms, and we will deduce many interesting facts about them later in this
book.* Our Ąrst task is simply to count them: How many permutations of n
objects are possible? There are n ways to choose the leftmost object, and once
this choice has been made there are n− 1 ways to select a different object to place
next to it; this gives us n(n− 1) choices for the Ąrst two positions. Similarly, we
Ąnd that there are n− 2 choices for the third object distinct from the Ąrst two,
and a total of n(n− 1)(n− 2) possible ways to choose the Ąrst three objects. In
general, if pnk denotes the number of ways to choose k objects out of n and to
arrange them in a row, we see that

pnk = n(n− 1) . . . (n− k + 1). (2)

The total number of permutations is therefore pnn = n(n− 1) . . . (1).
The process of constructing all permutations of n objects in an inductive

manner, assuming that all permutations of n− 1 objects have been constructed,

* In fact, permutations are so important, Vaughan Pratt has suggested calling them
Şperms.Ť As soon as PrattŠs convention is established, textbooks of computer science will
be somewhat shorter (and perhaps less expensive).

46 BASIC CONCEPTS 1.2.5

is very important in our applications. Let us rewrite (1) using the numbers
{1, 2, 3} instead of the letters {a, b, c}; the permutations are then

1 2 3, 1 3 2, 2 1 3, 2 3 1, 3 1 2, 3 2 1. (3)

Consider how to get from this array to the permutations of {1, 2, 3, 4}. There
are two principal ways to go from n− 1 objects to n objects.

Method 1. For each permutation a1 a2 . . . an−1 of {1, 2, . . . , n−1}, form n
others by inserting the number n in all possible places, obtaining

na1 a2 . . . an−1, a1 na2 . . . an−1, . . . , a1 a2 . . . n an−1, a1 a2 . . . an−1 n.

For example, from the permutation 2 3 1 in (3), we get 4 2 3 1, 2 4 3 1, 2 3 4 1,
2 3 1 4. It is clear that all permutations of n objects are obtained in this manner
and that no permutation is obtained more than once.

Method 2. For each permutation a1 a2 . . . an−1 of {1, 2, . . . , n−1}, form n
others as follows: First construct the array

a1 a2 . . . an−1
1
2 , a1 a2 . . . an−1

3
2 , . . . , a1 a2 . . . an−1

n− 1

2

.

Then rename the elements of each permutation using the numbers {1, 2, . . . , n},
preserving order. For example, from the permutation 2 3 1 in (3) we get

2 3 1 1
2 , 2 3 1 3

2 , 2 3 1 5
2 , 2 3 1 7

2

and, renaming, we get

3 4 2 1, 3 4 1 2, 2 4 1 3, 2 3 1 4.

Another way to describe this process is to take the permutation a1a2 . . . an−1

and a number k, 1 ≤ k ≤ n; add one to each aj whose value is ≥ k, thus
obtaining a permutation b1b2 . . . bn−1 of the elements {1, . . . , k−1, k+ 1, . . . , n};
then b1b2 . . . bn−1k is a permutation of {1, . . . , n}.

Again it is clear that we obtain each permutation of n elements exactly once
by this construction. Putting k at the left instead of the right, or putting k in
any other Ąxed position, would obviously work just as well.

If pn is the number of permutations of n objects, both of these methods show
that pn = npn−1; this offers us two further proofs that pn = n(n− 1) . . . (1), as
we already established in Eq. (2).

The important quantity pn is called n factorial and it is written

n! = 1 · 2 · . . . · n =
n

k=1

k. (4)

Our convention for vacuous products (Section 1.2.3) gives us the value

0! = 1, (5)

and with this convention the basic identity

n! = (n− 1)! n (6)

is valid for all positive integers n.

1.2.5 PERMUTATIONS AND FACTORIALS 47

Factorials come up sufficiently often in computer work that the reader is
advised to memorize the values of the Ąrst few:

0! = 1, 1! = 1, 2! = 2, 3! = 6, 4! = 24, 5! = 120.

The factorials increase very rapidly; for example, 1000! is an integer with over
2500 decimal digits.

It is helpful to keep the value 10! = 3,628,800 in mind; one should remember
that 10! is about 31

2 million. In a sense, this number represents an approximate
dividing line between things that are practical to compute and things that are
not. If an algorithm requires the testing of more than 10! cases, it may consume
too much computer time to be practical. On the other hand, if we decide to
test 10! cases and each case requires, say, one millisecond of computer time,
then the entire run will take about an hour. These comments are very vague, of
course, but they can be useful to give an intuitive idea of what is computationally
feasible.

It is only natural to wonder what relation n! bears to other quantities in
mathematics. Is there any way to tell how large 1000! is, without laboriously
carrying out the multiplications implied in Eq. (4)? The answer was found by
James Stirling in his famous work Methodus Differentialis (1730), page 137; we
have

n! ≈
√

2πn

n

e

n
. (7)

The Ş≈Ť sign that appears here denotes Şapproximately equal,Ť and ŞeŤ is the
base of natural logarithms introduced in Section 1.2.2. We will prove StirlingŠs
approximation (7) in Section 1.2.11.2. Exercise 24 gives a simple proof of a less
precise result.

As an example of the use of this formula, we may compute

40320 = 8! ≈ 4
√
π
8
e

8

= 226
√
π e−8 ≈ 67108864 ·1.77245 ·0.00033546 ≈ 39902.

In this case the error is about 1%; we will see later that the relative error is
approximately 1/(12n).

In addition to the approximate value given by Eq. (7), we can also rather
easily obtain the exact value of n! factored into primes. In fact, the prime p is a
divisor of n! with the multiplicity

µ =

n

p

+

n

p2

+

n

p3

+ · · · =

k>0

n

pk

. (8)

For example, if n = 1000 and p = 3, we have

µ =
1000

3

+
1000

9

+
1000

27

+
1000

81

+
1000

243

+
1000

729

= 333 + 111 + 37 + 12 + 4 + 1 = 498,

so 1000! is divisible by 3498 but not by 3499. Although formula (8) is written as an
inĄnite sum, it is really Ąnite for any particular values of n and p, because all of

48 BASIC CONCEPTS 1.2.5

the terms are eventually zero. It follows from exercise 1.2.4Ű35 that ⌊n/pk+1⌋ =
⌊n/pk⌋/p

; this fact facilitates the calculation in Eq. (8), since we can just

divide the value of the previous term by p and discard the remainder.
Equation (8) follows from the fact that ⌊n/pk⌋ is the number of integers

among {1, 2, . . . , n} that are multiples of pk. If we study the integers in the
product (4), any integer that is divisible by pj but not by pj+1 is counted exactly
j times: once in ⌊n/p⌋, once in ⌊n/p2⌋, . . . , once in ⌊n/pj⌋. This accounts for
all occurrences of p as a factor of n!. [See A. M. Legendre, Essai sur la Théorie
des Nombres, second edition (Paris: 1808), page 8.]

Another natural question arises: Now that we have deĄned n! for non-
negative integers n, perhaps the factorial function is meaningful also for rational
values of n, and even for real values. What is

1
2

!, for example? Let us illustrate

this point by introducing the ŞtermialŤ function

n? = 1 + 2 + · · ·+ n =
n

k=1

k, (9)

which is analogous to the factorial function except that we are adding instead
of multiplying. We already know the sum of this arithmetic progression from
Eq. 1.2.3Ű(15):

n? = 1
2n(n+ 1). (10)

This suggests a good way to generalize the ŞtermialŤ function to arbitrary n,
by using (10) instead of (9). We have

1
2

? = 3

8 .
Stirling himself made several attempts to generalize n! to noninteger n. He

extended the approximation (7) into an inĄnite sum, but unfortunately the sum
did not converge for any value of n; his method gave extremely good approxi-
mations, but it couldnŠt be extended to give an exact value. [For a discussion
of this somewhat unusual situation, see K. Knopp, Theory and Application of
InĄnite Series, 2nd ed. (Glasgow: Blackie, 1951), 518Ű520, 527, 534.]

Stirling tried again, by noticing that

n! = 1 +

1− 1
1!

n+

1− 1

1!
+

1
2!

n(n− 1)

+

1− 1
1!

+
1
2!
− 1

3!

n(n− 1)(n− 2) + · · · . (11)

(We will prove this formula in the next section.) The apparently inĄnite sum
in Eq. (11) is in reality Ąnite for any nonnegative integer n; however, it does
not provide the desired generalization of n!, since the inĄnite sum does not exist
except when n is a nonnegative integer. (See exercise 16.)

Still undaunted, Stirling found a sequence a1, a2, . . . such that

lnn! = a1n+ a2n(n− 1) + · · · =

k≥0

ak+1

0≤j≤k

(n− j). (12)

He was unable to prove that this sum deĄned n! for all fractional values of n,
although he was able to deduce the value of

1
2

! =
√
π/2.

1.2.5 PERMUTATIONS AND FACTORIALS 49

At about the same time, Leonhard Euler considered the same problem, and
he was the Ąrst to Ąnd the appropriate generalization:

n! = lim
m→∞

mnm!
(n+ 1)(n+ 2) . . . (n+m)

. (13)

Euler communicated this idea in a letter to Christian Goldbach on October 13,
1729. His formula deĄnes n! for any value of n except negative integers (when
the denominator becomes zero); in such cases n! is taken to be inĄnite. Exercises
8 and 22 explain why Eq. (13) is a reasonable deĄnition.

Nearly two centuries later, in 1900, C. Hermite proved that StirlingŠs idea
(12) actually does deĄne n! successfully for nonintegers n, and that in fact EulerŠs
and StirlingŠs generalizations are identical.

Many notations were used for factorials in the early days. Euler actually
wrote [n], Gauss wrote Π n, and the symbols n and n were popular in England
and Italy. The notation n!, which is universally used today when n is an inte-
ger, was introduced by a comparatively little known mathematician, Christian
Kramp, in an algebra text [Élémens dŠArithmétique Universelle (Cologne: 1808),
page 219].

When n is not an integer, however, the notation n! is less common; instead
we customarily employ a notation due to A. M. Legendre:

n! = Γ (n+ 1) = nΓ (n). (14)

This function Γ (x) is called the gamma function, and by Eq. (13) we have the
deĄnition

Γ (x) =
x!
x

= lim
m→∞

mxm!
x(x+ 1)(x+ 2) . . . (x+m)

. (15)

A graph of Γ (x) is shown in Fig. 7.
Equations (13) and (15) deĄne factorials and the gamma function for com-

plex values as well as real values; but we generally use the letter z, instead of n
or x, when thinking of a variable that has both real and imaginary parts. The
factorial and gamma functions are related not only by the rule z! = Γ (z+1) but
also by

(−z)!Γ (z) =
π

sin πz
, (16)

which holds whenever z is not an integer. (See exercise 23.)
Although Γ (z) is inĄnite when z is zero or a negative integer, the function

1/Γ (z) is well deĄned for all complex z. (See exercise 1.2.7Ű24.) Advanced
applications of the gamma function often make use of an important contour
integral formula due to Hermann Hankel:

1
Γ (z)

=
1

2πi

et dt

tz
; (17)

the path of complex integration starts at −∞, then circles the origin in a
counterclockwise direction and returns to −∞. [Zeitschrift für Math. und Physik
9 (1864), 1Ű21.]

50 BASIC CONCEPTS 1.2.5

(1, 1) (2, 1)

(3, 2)

(4, 6)

X

0 1 2 3 4−4 −3 −2 −1

0

1

2

3

4

5

6

−6

−5

−4

−3

−2

−1

Fig. 7. The function Γ (x) = (x − 1)!. The local minimum at X has the coordinates
(1.46163 21449 68362 34126 26595, 0.88560 31944 10888 70027 88159).

Many formulas of discrete mathematics involve factorial-like products known
as factorial powers. The quantities xk and xk (read, Şx to the k fallingŤ and Şx
to the k risingŤ) are deĄned as follows, when k is a positive integer:

xk = x(x− 1) . . . (x− k + 1) =
k−1

j=0

(x− j); (18)

xk = x(x+ 1) . . . (x+ k − 1) =
k−1

j=0

(x+ j). (19)

Thus, for example, the number pnk of (2) is just nk. Notice that we have

xk = (x+ k − 1)k = (−1)k(−x)k. (20)

The general formulas

xk =
x!

(x− k)!
, xk =

Γ (x+ k)
Γ (x)

(21)

can be used to deĄne factorial powers for other values of k. [The notations xk and
xk are due respectively to A. Capelli, Giornale di Mat. di Battaglini 31 (1893),
291Ű313, and L. Toscano, Comment. Accademia della Scienze 3 (1939), 721Ű757.]

The interesting history of factorials from the time of Stirling to the present
day is traced in an article by P. J. Davis, ŞLeonhard EulerŠs integral: A historical
proĄle of the gamma function,Ť AMM 66 (1959), 849Ű869. See also J. Dutka,
Archive for History of Exact Sciences 31 (1984), 15Ű34.

1.2.5 PERMUTATIONS AND FACTORIALS 51

EXERCISES

1. [00] How many ways are there to shuffle a 52-card deck?

2. [10] In the notation of Eq. (2), show that pn(n−1) = pnn, and explain why this
happens.

3. [10] What permutations of {1, 2, 3, 4, 5} would be constructed from the permuta-
tion 3 1 2 4 using Methods 1 and 2, respectively?

x 4. [13] Given the fact that log10 1000! = 2567.60464 . . . , determine exactly how
many decimal digits are present in the number 1000!. What is the most signiĄcant

digit? What is the least signiĄcant digit?

5. [15] Estimate 8! using the following more exact version of StirlingŠs approxi-
mation:

n! ≈
√

2πn

n

e

n
1 +

1
12n

.

x 6. [17] Using Eq. (8), write 20! as a product of prime factors.

7. [M10] Show that the Şgeneralized termialŤ function in Eq. (10) satisĄes the
identity x? = x+ (x− 1)? for all real numbers x.

8. [HM15] Show that the limit in Eq. (13) does equal n! when n is a nonnegative
integer.

9. [M10] Determine the values of Γ (1
2
) and Γ (− 1

2
), given that (1

2
)! =

√
π/2.

x 10. [HM20] Does the identity Γ (x + 1) = xΓ (x) hold for all real numbers x? (See
exercise 7.)

11. [M15] Let the representation of n in the binary system be n = 2e1 +2e2 +· · ·+2er,
where e1 > e2 > · · · > er ≥ 0. Show that n! is divisible by 2n−r but not by 2n−r+1.

x 12. [M22] (A. Legendre, 1808.) Generalizing the result of the previous exercise, let
p be a prime number, and let the representation of n in the p-ary number system be
n = akp

k + ak−1p
k−1 + · · · + a1p + a0. Express the number µ of Eq. (8) in a simple

formula involving n, p, and aŠs.

13. [M23] (WilsonŠs theorem, actually due to Leibniz, 1682.) If p is prime, then
(p − 1)! mod p = p − 1. Prove this, by pairing off numbers among {1, 2, . . . , p − 1}
whose product modulo p is 1.

x 14. [M28] (L. Stickelberger, 1890.) In the notation of exercise 12, we can determine
n! mod p in terms of the p-ary representation, for any positive integer n, thus general-
izing WilsonŠs theorem. In fact, prove that n!/pµ ≡ (−1)µa0! a1! . . . ak! (modulo p).

15. [HM15] The permanent of a square matrix is deĄned by the same expansion as
the determinant except that each term of the permanent is given a plus sign while the
determinant alternates between plus and minus. Thus the permanent of

a b c
d e f
g h i

is aei + bfg + cdh + gec + hfa + idb. What is the permanent of

1× 1 1× 2 . . . 1× n
2× 1 2× 2 . . . 2× n

...
...

. . .
...

n× 1 n× 2 . . . n× n

?

52 BASIC CONCEPTS 1.2.5

16. [HM15] Show that the inĄnite sum in Eq. (11) does not converge unless n is a
nonnegative integer.

17. [HM20] Prove that the inĄnite product

n≥1

(n+ α1) . . . (n+ αk)
(n+ β1) . . . (n+ βk)

equals Γ (1 +β1) . . . Γ (1 +βk)/Γ (1 +α1) . . . Γ (1 +αk), if α1 + · · ·+αk = β1 + · · ·+βk
and if none of the βŠs is a negative integer.

18. [M20] Assume that π/2 = 2
1
· 2

3
· 4

3
· 4

5
· 6

5
· 6

7
· · · · . (This is ŞWallisŠs product,Ť

obtained by J. Wallis in 1655, and we will prove it in exercise 1.2.6Ű43.) Using the
previous exercise, prove that (1

2
)! =

√
π/2.

19. [HM22] Denote the quantity appearing after Şlimm→∞Ť in Eq. (15) by Γm(x).
Show that

Γm(x) =
 m

0

1− t

m

m
tx−1 dt = mx

 1

0

(1− t)mtx−1 dt, if x > 0.

20. [HM21] Using the fact that 0 ≤ e−t − (1 − t/m)m ≤ t2e−t/m, if 0 ≤ t ≤ m, and
the previous exercise, show that Γ (x) =

∞
0
e−ttx−1 dt, if x > 0.

21. [HM25] (L. F. A. Arbogast, 1800.) Let Dk
xu represent the kth derivative of a

function u with respect to x. The chain rule states that D1
xw = D1

uwD
1
xu. If we apply

this to second derivatives, we Ąnd D2
xw = D2

uw(D1
xu)2 + D1

uwD
2
xu. Show that the

general formula is

Dn
xw =

n

j=0

k1+k2+···+kn=j

k1+2k2+···+nkn=n

k1,k2,...,kn≥0

Dj
uw

n!
k1! (1!)k1 . . . kn! (n!)kn

(D1
xu)k1 . . . (Dn

xu)kn .

x 22. [HM20] Try to put yourself in EulerŠs place, looking for a way to generalize n!
to noninteger values of n. Since (n + 1

2
)!/n! times ((n + 1

2
) + 1

2
)!/(n + 1

2
)! equals

(n + 1)!/n! = n + 1, it seems natural that (n + 1
2
)!/n! should be approximately

√
n.

Similarly, (n+ 1
3
)!/n! should be ≈ 3

√
n. Invent a hypothesis about the ratio (n+x)!/n!

as n approaches inĄnity. Is your hypothesis correct when x is an integer? Does it tell
anything about the appropriate value of x! when x is not an integer?

23. [HM20] Prove (16), given that πz
∞
n=1(1− z2/n2) = sinπz.

x 24. [HM21] Prove the handy inequalities

nn

en−1
≤ n! ≤ nn+1

en−1
, integer n ≥ 1.

[Hint: 1 + x ≤ ex for all real x; hence (k + 1)/k ≤ e1/k ≤ k/(k − 1).]

25. [M20] Do factorial powers satisfy a law analogous to the ordinary law of expo-
nents, xm+n = xmxn?

1.2.6. Binomial Coefficients

The combinations of n objects taken k at a time are the possible choices of
k different elements from a collection of n objects, disregarding order. The

1.2.6 BINOMIAL COEFFICIENTS 53

combinations of the Ąve objects {a, b, c, d, e} taken three at a time are

abc, abd, abe, acd, ace, ade, bcd, bce, bde, cde. (1)

It is a simple matter to count the total number of k-combinations of n objects:
Equation (2) of the previous section told us that there are n(n−1) . . . (n−k+1)
ways to choose the Ąrst k objects for a permutation; and every k-combination
appears exactly k! times in these arrangements, since each combination appears
in all its permutations. Therefore the number of combinations, which we denote
by

n
k

, is

n

k

=
n(n− 1) . . . (n− k + 1)

k(k − 1) . . . (1)
. (2)

For example, 5
3

=

5 · 4 · 3
3 · 2 · 1 = 10,

which is the number of combinations we found in (1).
The quantity

n
k

, read Şn choose k,Ť is called a binomial coefficient; these

numbers have an extraordinary number of applications. They are probably the
most important quantities entering into the analysis of algorithms, so the reader
is urged to become familiar with them.

Equation (2) may be used to deĄne

n
k

even when n is not an integer. To

be precise, we deĄne the symbol

r
k

for all real numbers r and all integers k as

follows:

r

k

=
r(r − 1) . . . (r − k + 1)

k(k − 1) . . . (1)
=
rk

k!
=

k

j=1

r + 1− j
j

, integer k ≥ 0;

(3)
r

k

= 0, integer k < 0.

In particular cases we have

r

0

= 1,

r

1

= r,

r

2

=
r(r − 1)

2
. (4)

Table 1 gives values of the binomial coefficients for small integer values of r
and k; the values for 0 ≤ r ≤ 4 should be memorized.

Binomial coefficients have a long and interesting history. Table 1 is called
ŞPascalŠs triangleŤ because it appeared in Blaise PascalŠs Traité du Triangle
Arithmétique in 1653. This treatise was signiĄcant because it was one of the
Ąrst works on probability theory, but Pascal did not invent the binomial co-
efficients (which were well-known in Europe at that time). Table 1 also ap-
peared in the treatise Szu-yüan Yü-chien (ŞThe Precious Mirror of the Four
ElementsŤ) by the Chinese mathematician Chu Shih-Chieh in 1303, where they
were said to be an old invention. Yang Hui, in 1261, credited them to Chia
Hsien (c. 1100), whose work is now lost. The earliest known detailed discussion
of binomial coefficients is in a tenth-century commentary, due to Halāyudha, on
an ancient Hindu classic, PiṅgalaŠs Chandah. śāstra. [See G. Chakravarti, Bull.

54 BASIC CONCEPTS 1.2.6

Table 1

TABLE OF BINOMIAL COEFFICIENTS (PASCALŠS TRIANGLE)

r

r

0

r

1

r

2

r

3

r

4

r

5

r

6

r

7

r

8

r

9

0 1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0
2 1 2 1 0 0 0 0 0 0 0
3 1 3 3 1 0 0 0 0 0 0
4 1 4 6 4 1 0 0 0 0 0
5 1 5 10 10 5 1 0 0 0 0
6 1 6 15 20 15 6 1 0 0 0
7 1 7 21 35 35 21 7 1 0 0
8 1 8 28 56 70 56 28 8 1 0
9 1 9 36 84 126 126 84 36 9 1

Calcutta Math. Soc. 24 (1932), 79Ű88.] Another
Indian mathematician, Mahāv̄ıra, had previously
explained rule (3) for computing

r
k

in Chapter 6

of his Gan. ita Sāra Saṅgraha, written about 850;
and in 1150 Bhāskara repeated Mahāv̄ıraŠs rule
near the end of his famous book L̄ılāvat̄ı. For small
values of k, binomial coefficients were known much
earlier; they appeared in Greek and Roman writ-
ings with a geometric interpretation (see Fig. 8).
The notation

r
k

was introduced by Andreas von

Ettingshausen in §31 of his book Die combina-
torische Analysis (Vienna: 1826).

Fig. 8. Geometric interpre-
tation of

n+2

3

, n = 4.

The reader has probably noticed several in-
teresting patterns in Table 1. Binomial coeffi-
cients satisfy literally thousands of identities, and
for centuries their amazing properties have been
continually explored. In fact, there are so many
relations present that when someone Ąnds a new
identity, not many people get excited about it any
more, except the discoverer. In order to manipu-
late the formulas that arise in the analysis of algorithms, a facility for handling
binomial coefficients is a must, and so an attempt has been made in this section
to explain in a simple way how to maneuver with these numbers. Mark Twain
once tried to reduce all jokes to a dozen or so primitive kinds (farmerŠs daughter,
mother-in-law, etc.); we will try to condense the thousands of identities into a
small set of basic operations with which we can solve nearly every problem
involving binomial coefficients that we will meet.

In most applications, both of the numbers r and k that appear in

r
k

will

be integers, and some of the techniques we will describe are applicable only in
such cases. Therefore we will be careful to list, at the right of each numbered

1.2.6 BINOMIAL COEFFICIENTS 55

equation, any restrictions on the variables that appear. For example, Eq. (3)
mentions the requirement that k is an integer; there is no restriction on r. The
identities with fewest restrictions are the most useful.

Now let us study the basic techniques for operating on binomial coefficients:

A. Representation by factorials. From Eq. (3) we have immediately

n

k

=

n!
k! (n− k)!

, integer n ≥ integer k ≥ 0. (5)

This allows combinations of factorials to be represented as binomial coefficients
and conversely.

B. Symmetry condition. From Eqs. (3) and (5), we have

n

k

=

n

n− k

, integer n ≥ 0, integer k. (6)

This formula holds for all integers k. When k is negative or greater than n, the
binomial coefficient is zero (provided that n is a nonnegative integer).

C. Moving in and out of parentheses. From the deĄnition (3), we have

r

k

=
r

k

r − 1
k − 1

, integer k ̸= 0. (7)

This formula is very useful for combining a binomial coefficient with other parts
of an expression. By elementary transformation we have the rules

k

r

k

= r

r − 1
k − 1

,

1
r

r

k

=

1
k

r − 1
k − 1

,

the Ąrst of which is valid for all integers k, and the second when no division by
zero has been performed. We also have a similar relation:

r

k

=

r

r − k

r − 1
k

, integer k ̸= r. (8)

Let us illustrate these transformations, by proving Eq. (8) using Eqs. (6)
and (7) alternately:

r

k

=

r

r − k

=
r

r − k

r − 1
r − 1− k

=

r

r − k

r − 1
k

.

[Note: This derivation is valid only when r is a positive integer ̸= k, because of
the constraints involved in Eqs. (6) and (7); yet Eq. (8) claims to be valid for
arbitrary r ̸= k. This can be proved in a simple and important manner: We
have veriĄed that

r

r − 1
k

= (r − k)

r

k

for inĄnitely many values of r. Both sides of this equation are polynomials in r.
A nonzero polynomial of degree n can have at most n distinct zeros; so (by
subtraction) if two polynomials of degree ≤ n agree at n + 1 or more different
points, the polynomials are identically equal. This principle may be used to
extend the validity of many identities from integers to all real numbers.]

56 BASIC CONCEPTS 1.2.6

D. Addition formula. The basic relation

r

k

=

r − 1
k

+

r − 1
k − 1

, integer k, (9)

is clearly valid in Table 1 (every value is the sum of the two values above and
to the left) and we may easily verify it in general from Eq. (3). Alternatively,
Eqs. (7) and (8) tell us that

r

r − 1
k

+ r

r − 1
k − 1

= (r − k)

r

k

+ k

r

k

= r

r

k

.

Equation (9) is often useful in obtaining proofs by induction on r, when r is an
integer.

E. Summation formulas. Repeated application of (9) gives

r

k

=

r − 1
k

+

r − 1
k − 1

=

r − 1
k

+

r − 2
k − 1

+

r − 2
k − 2

= · · · ;

or

r

k

=

r − 1
k − 1

+

r − 1
k

=

r − 1
k − 1

+

r − 2
k − 1

+

r − 2
k

= · · · .

Thus we are led to two important summation formulas that can be expressed as
follows:

n

k=0

r + k

k

=

r

0

+

r + 1

1

+ · · ·+

r + n

n

=

r + n+ 1

n

,

integer n ≥ 0. (10)

n

k=0

k

m

=
 0
m

+
 1
m

+ · · ·+

n

m

=

n+ 1
m+ 1

,

integer m ≥ 0, integer n ≥ 0. (11)

Equation (11) can easily be proved by induction on n, but it is interesting
to see how it can also be derived from Eq. (10) with two applications of Eq. (6):

0≤k≤n

k

m

=

0≤m+k≤n

m+ k

m

=

−m≤k<0

m+ k

m

+

0≤k≤n−m

m+ k

k

= 0 +

m+ (n−m) + 1

n−m

=

n+ 1
m+ 1

,

assuming that n ≥ m. If n < m, Eq. (11) is obvious.
Equation (11) occurs very frequently in applications; in fact, we have already

derived special cases of it in previous sections. For example, when m = 1, we
have our old friend, the sum of an arithmetic progression:

0
1

+
1

1

+ · · ·+

n

1

= 0 + 1 + · · ·+ n =

n+ 1

2

=

(n+ 1)n
2

.

1.2.6 BINOMIAL COEFFICIENTS 57

Suppose that we want a simple formula for the sum 12 + 22 + · · ·+n2. This
can be obtained by observing that k2 = 2

k
2

+

k
1

; hence

n

k=0

k2 =
n

k=0

2

k

2

+

k

1

= 2

n+ 1

3

+

n+ 1

2

.

And this answer, obtained in terms of binomial coefficients, can be put back into
polynomial notation if desired:

12 + 22 + · · ·+ n2 = 2
(n+ 1)n(n− 1)

6
+

(n+ 1)n
2

= 1
3n(n+ 1

2)(n+ 1). (12)

The sum 13 +23 + · · ·+n3 can be obtained in a similar way; any polynomial
a0 + a1k + a2k

2 + · · · + amk
m can be expressed as b0

k
0

+ b1

k
1

+ · · · + bm

k
m

for suitably chosen coefficients b0, . . . , bm. We will return to this subject later.

F. The binomial theorem. Of course, the binomial theorem is one of our
principal tools:

(x+ y)r =

k

r

k

xkyr−k, integer r ≥ 0. (13)

For example, (x+ y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4.

At last we are able to

justify the name Şbinomial coefficientŤ for the numbers

r
k

.

It is important to notice that we have written

k in Eq. (13), rather thanr
k=0 as might have been expected. If no restriction is placed on k, we are

summing over all integers, −∞ < k < +∞; but the two notations are exactly
equivalent in this case, since the terms in Eq. (13) are zero when k < 0 or
k > r. The simpler form

k is to be preferred, since all manipulations with

sums are simpler when the conditions of summation are simpler. We save a
good deal of tedious effort if we do not need to keep track of the lower and/or
upper limits of summation, so the limits should be left unspeciĄed whenever
possible. Our notation has another advantage also: If r is not a nonnegative
integer, Eq. (13) becomes an inĄnite sum, and the binomial theorem of calculus
states that Eq. (13) is valid for all r, if |x/y| < 1.

It should be noted that formula (13) gives

00 = 1. (14)

We will use this convention consistently.
The special case y = 1 in Eq. (13) is so important, we state it specially:

k

r

k

xk = (1 + x)r, integer r ≥ 0 or |x| < 1. (15)

The discovery of the binomial theorem was announced by Isaac Newton in
letters to Oldenburg on June 13, 1676 and October 24, 1676. [See D. Struik,
Source Book in Mathematics (Harvard Univ. Press, 1969), 284Ű291.] But he
apparently had no real proof of the formula; at that time the necessity for rigorous
proof was not fully realized. The Ąrst attempted proof was given by L. Euler

58 BASIC CONCEPTS 1.2.6

in 1774, although his effort was incomplete. Finally, C. F. Gauss gave the Ąrst
actual proof in 1812. In fact, GaussŠs work represented the Ąrst time anything
about inĄnite sums was proved satisfactorily.

Early in the nineteenth century, N. H. Abel found a surprising generalization
of the binomial formula (13):

(x+ y)n =

k

n

k

x(x− kz)k−1(y + kz)n−k, integer n ≥ 0, x ̸= 0. (16)

This is an identity in three variables, x, y, and z (see exercises 50 through 52).
Abel published and proved this formula in Volume 1 of A. L. CrelleŠs soon-
to-be-famous Journal für die reine und angewandte Mathematik (1826), pages
159Ű160. It is interesting to note that Abel contributed many other papers to the
same Volume 1, including his famous memoirs on the unsolvability of algebraic
equations of degree 5 or more by radicals, and on the binomial theorem. See
H. W. Gould, AMM 69 (1962), 572, for a number of references to Eq. (16).

G. Negating the upper index. The basic identity

r

k

= (−1)k

k − r − 1

k

, integer k, (17)

follows immediately from the deĄnition (3) when each term of the numerator is
negated. This is often a useful transformation on the upper index.

One easy consequence of Eq. (17) is the summation formula

k≤n

r

k

(−1)k =

r

0

−

r

1

+ · · ·+ (−1)n

r

n

= (−1)n

r − 1
n

, integer n.

(18)

This identity could be proved by induction using Eq. (9), but we can use Eqs. (17)
and (10) directly:

k≤n

r

k

(−1)k =

k≤n

k − r − 1

k

=
−r + n

n

= (−1)n

r − 1
n

.

Another important application of Eq. (17) can be made when r is an integer:

n

m

= (−1)n−m

−(m+ 1)
n−m

, integer n ≥ 0, integer m. (19)

Set r = n and k = n−m in Eq. (17) and use (6).

We have moved n from the

upper position to the lower.

H. Simplifying products. When products of binomial coefficients appear, they
can usually be reexpressed in several different ways by expanding into factorials
and out again using Eq. (5). For example,

r

m

m

k

=

r

k

r − k
m− k

, integer m, integer k. (20)

1.2.6 BINOMIAL COEFFICIENTS 59

It suffices to prove Eq. (20) when r is an integer ≥ m

see the remarks after

Eq. (8)

, and when 0 ≤ k ≤ m. Then

r

m

m

k

=

r!m!
m! (r−m)! k! (m−k)!

=
r! (r−k)!

k! (r−k)! (m−k)! (r−m)!
=

r

k

r−k
m−k

.

Equation (20) is very useful when an index (namely m) appears in both the
upper and the lower position, and we wish to have it appear in one place rather
than two. Notice that Eq. (7) is the special case of Eq. (20) when k = 1.

I. Sums of products. To complete our set of binomial-coefficient manipu-
lations, we present the following very general identities, which are proved in
the exercises at the end of this section. These formulas show how to sum over a
product of two binomial coefficients, considering various places where the running
variable k might appear:

k

r

k

s

n− k

=

r + s

n

, integer n. (21)

k

r

m+ k

s

n+ k

=

r + s

r −m+ n

,

integer m, integer n, integer r ≥ 0. (22)

k

r

k

s+ k

n

(−1)r−k =

s

n− r

, integer n, integer r ≥ 0. (23)

r

k=0

r − k
m

s

k − t

(−1)k−t =

r − t− s
r − t−m

,

integer t ≥ 0, integer r ≥ 0, integer m ≥ 0. (24)

r

k=0

r − k
m

s+ k

n

=

r + s+ 1
m+ n+ 1

,

integer n ≥ integer s ≥ 0, integer m ≥ 0, integer r ≥ 0. (25)

k≥0

r − tk
k

s− t(n− k)

n− k

r

r − tk =

r + s− tn

n

, integer n. (26)

Of these identities, Eq. (21) is by far the most important, and it should be
memorized. One way to remember it is to interpret the right-hand side as the
number of ways to select n people from among r men and s women; each
term on the left is the number of ways to choose k of the men and n − k
of the women. Equation (21) is commonly called VandermondeŠs convolution,
since A. Vandermonde published it in Mém. Acad. Roy. Sciences (Paris, 1772),
part 1, 489Ű498. However, it had appeared already in Chu Shih-ChiehŠs 1303
treatise mentioned earlier [see J. Needham, Science and Civilisation in China 3

(Cambridge University Press, 1959), 138Ű139].

60 BASIC CONCEPTS 1.2.6

If r = tk in Eq. (26), we avoid the zero denominator by canceling with
a factor in the numerator; therefore Eq. (26) is a polynomial identity in the
variables r, s, t. Obviously Eq. (21) is a special case of Eq. (26) with t = 0.

We should point out a nonobvious use of Eqs. (23) and (25): It is often
helpful to replace the simple binomial coefficient on the right-hand side by the
more complicated expression on the left, interchange the order of summation,
and simplify. We may regard the left-hand sides as expansions of

s

n+ a

in terms of

s+ k

n

.

Formula (23) is used for negative a, formula (25) for positive a.
This completes our study of binomial-coefficientology. The reader is advised

to learn especially Eqs. (5), (6), (7), (9), (13), (17), (20), and (21) Ů frame them
with your favorite highlighter pen!

With all these methods at our disposal, we should be able to solve almost
any problem that comes along, in at least three different ways. The following
examples illustrate the techniques.

Example 1. When r is a positive integer, what is the value of

k

r

k

s

k

k?

Solution. Formula (7) is useful for disposing of the outside k:

k

r

k

s

k

k =

k

r

k

s− 1
k − 1

s = s

k

r

k

s− 1
k − 1

.

Now formula (22) applies, with m = 0 and n = −1. The answer is therefore

k

r

k

s

k

k =

r + s− 1
r − 1

s, integer r ≥ 0.

Example 2. What is the value of

k

n+ k

2k

2k
k

 (−1)k

k + 1
, if n is a nonnegative

integer?

Solution. This problem is tougher; the summation index k appears in six places!
First we apply Eq. (20), and we obtain

k

n+ k

k

n

k

 (−1)k

k + 1
.

We can now breathe more easily, since several of the menacing characteristics
of the original formula have disappeared. The next step should be obvious; we
apply Eq. (7) in a manner similar to the technique used in Example 1:

k

n+ k

k

n+ 1
k + 1

 (−1)k

n+ 1
. (27)

Good, another k has vanished. At this point there are two equally promising
lines of attack. We can replace the

n+k
k

by

n+k
n

, assuming that k ≥ 0, and

1.2.6 BINOMIAL COEFFICIENTS 61

evaluate the sum with Eq. (23):

k≥0

n+ k

n

n+ 1
k + 1

 (−1)k

n+ 1

= − 1
n+ 1

k≥1

n− 1 + k

n

n+ 1
k

(−1)k

= − 1
n+ 1

k≥0

n− 1 + k

n

n+ 1
k

(−1)k +

1
n+ 1

n− 1
n

= − 1
n+ 1

(−1)n+1

n− 1
−1

+

1
n+ 1

n− 1
n

=

1
n+ 1

n− 1
n

.

The binomial coefficient

n−1
n

equals zero except when n = 0, in which case it

equals one. So we can conveniently state the answer to our problem as [n= 0],
using IversonŠs convention

Eq. 1.2.3Ű(16)

, or as δn0, using the Kronecker delta

Eq. 1.2.3Ű(19)

.

Another way to proceed from Eq. (27) is to use Eq. (17), obtaining

k

−(n+ 1)
k

n+ 1
k + 1

 1
n+ 1

.

We can now apply Eq. (22), which yields the sum

n+ 1− (n+ 1)
n+ 1− 1 + 0

 1
n+ 1

=
 0
n

 1
n+ 1

.

Once again we have derived the answer:

k

n+ k

2k

2k
k

 (−1)k

k + 1
= δn0 , integer n ≥ 0. (28)

Example 3. What is the value of

k

n+ k

m+ 2k

2k
k

 (−1)k

k + 1
, for positive inte-

gers m and n?

Solution. If m were zero, we would have the same formula to work with that
we had in Example 2. However, the presence of m means that we cannot even
begin to use the method of the previous solution, since the Ąrst step there was
to use Eq. (20) Ů which no longer applies. In this situation it pays to complicate
things even more by replacing the unwanted

n+k
m+2k

by a sum of terms of the

form

x+k
2k

, since our problem will then become a sum of problems that we know

how to solve. Accordingly, we use Eq. (25) with

r = n+ k − 1, m = 2k, s = 0, n = m− 1,

and we have

k

0≤j≤n+k−1

n+ k − 1− j

2k

2k
k

j

m− 1

 (−1)k

k + 1
. (29)

62 BASIC CONCEPTS 1.2.6

We wish to perform the summation on k Ąrst; but interchanging the order of
summation demands that we sum on the values of k that are ≥ 0 and ≥ j−n+1.
Unfortunately, the latter condition raises problems, because we do not know the
desired sum if j ≥ n. Let us save the situation, however, by observing the terms
of (29) are zero when n ≤ j ≤ n+ k− 1. This condition implies that k ≥ 1; thus
0 ≤ n + k − 1 − j ≤ k − 1 < 2k, and the Ąrst binomial coefficient in (29) will
vanish. We may therefore replace the condition on the second sum by 0 ≤ j < n,
and the interchange of summation is routine. Summing on k by Eq. (28) now
gives

0≤j<n

j

m− 1

δ(n−1−j)0 ,

and all terms are zero except when j = n− 1. Hence our Ąnal answer is

n− 1
m− 1

.

The solution to this problem was fairly complicated, but not really myste-
rious; there was a good reason for each step. The derivation should be studied
closely because it illustrates some delicate maneuvering with the conditions in
our equations. There is actually a better way to attack this problem, however;
it is left to the reader to Ągure out a way to transform the given sum so that
Eq. (26) applies (see exercise 30).

Example 4. Prove that

k

Ak(r, t)An−k(s, t) = An(r + s, t), integer n ≥ 0, (30)

where An(x, t) is the nth degree polynomial in x that satisĄes

An(x, t) =

x− nt
n

x

x− nt , for x ̸= nt.

Solution. We may assume that r ̸= kt ̸= s for 0 ≤ k ≤ n, since both sides of
(30) are polynomials in r, s, t. Our problem is to evaluate

k

r − kt
k

s− (n− k)t

n− k

r

r − kt
s

s− (n− k)t
,

which, if anything, looks much worse than our previous horrible problems! Notice
the strong similarity to Eq. (26), however, and also note the case t = 0.

We are tempted to change

r − kt
k

r

r − kt to

r − kt− 1
k − 1

r

k
,

except that the latter tends to lose the analogy with Eq. (26) and it fails when
k = 0. A better way to proceed is to use the technique of partial fractions,

1.2.6 BINOMIAL COEFFICIENTS 63

whereby a fraction with a complicated denominator can often be replaced by a
sum of fractions with simpler denominators. Indeed, we have

1
r − kt

1
s− (n− k)t

=
1

r + s− nt

1

r − kt +
1

s− (n− k)t

.

Putting this into our sum we get

s

r + s− nt

k

r − kt
k

s− (n− k)t

n− k

r

r − kt

+
r

r + s− nt

k

r − kt
k

s− (n− k)t

n− k

s

s− (n− k)t
,

and Eq. (26) evaluates both of these formulas if we change k to n − k in the
second; the desired result follows immediately. Identities (26) and (30) are due
to H. A. Rothe, Formulæ de Serierum Reversione (Leipzig: 1793); special cases of
these formulas are still being ŞdiscoveredŤ frequently. For the interesting history
of these identities and some generalizations, see H. W. Gould and J. Kaucký,
Journal of Combinatorial Theory 1 (1966), 233Ű247.

Example 5. Determine the values of a0, a1, a2, . . . such that

n! = a0 + a1n+ a2n(n− 1) + a3n(n− 1)(n− 2) + · · · (31)

for all nonnegative integers n.
Solution. Equation 1.2.5Ű(11), which was presented without proof in the previous
section, gives the answer. Let us pretend that we donŠt know it yet. It is clear
that the problem does have a solution, since we can set n = 0 and determine a0,
then set n = 1 and determine a1, etc.

First we would like to write Eq. (31) in terms of binomial coefficients:

n! =

k

n

k

k! ak. (32)

The problem of solving implicit equations like this for ak is called the inversion
problem, and the technique we shall use applies to similar problems as well.

The idea is based on the special case s = 0 of Eq. (23):

k

r

k

k

n

(−1)r−k =

 0
n− r

= δnr, integer n, integer r ≥ 0. (33)

The importance of this formula is that when n ̸= r, the sum is zero; this enables
us to solve our problem since a lot of terms cancel out as they did in Example 3:

n

n!

m

n

(−1)m−n =

n

k

n

k

k! ak

m

n

(−1)m−n

=

k

k! ak

n

n

k

m

n

(−1)m−n

=

k

k! akδkm = m! am.

64 BASIC CONCEPTS 1.2.6

Notice how we were able to get an equation in which only one value am appears,
by adding together suitable multiples of Eq. (32) for n = 0, 1, We have now

am =

n≥0

(−1)m−n n!
m!

m

n

=

0≤n≤m

(−1)m−n

(m− n)!
=

0≤n≤m

(−1)n

n!
.

This completes the solution to Example 5. Let us now take a closer look at
the implications of Eq. (33): When r and m are nonnegative integers we have

k

r

k

(−1)r−k

c0

k

0

+ c1

k

1

+ · · ·+ cm

k

m

= cr,

since the other terms vanish after summation. By properly choosing the coeffi-
cients ci, we can represent any polynomial in k as a sum of binomial coefficients
with upper index k. We Ąnd therefore that

k

r

k

(−1)r−k(b0 + b1k + · · ·+ brk

r) = r! br, integer r ≥ 0, (34)

where b0 + · · · + brk
r represents any polynomial whatever of degree r or less.

This formula will be of no great surprise to students of numerical analysis,
since

k

r
k

(−1)r−kf(x+ k) is the Şrth differenceŤ of the function f(x).

Using Eq. (34), we can immediately obtain many other relations that appear
complicated at Ąrst and that are often given very lengthy proofs, such as

k

r

k

s− kt
r

(−1)k = tr, integer r ≥ 0. (35)

It is customary in textbooks such as this to give a lot of impressive examples
of neat tricks, etc., but never to mention simple-looking problems where the
techniques fail. The examples above may have given the impression that all
things are possible with binomial coefficients; it should be mentioned, however,
that in spite of Eqs. (10), (11), and (18), there seems to be no simple formula
for the analogous sum

n

k=0

m

k

=

m

0

+

m

1

+ · · ·+

m

n

, (36)

when n < m. (For n = m the answer is simple; what is it? See exercise 36.)
On the other hand this sum does have a closed form as a function of n when

m is an explicit negative integer; for example,
n

k=0

−2
k

= (−1)n

n+ 1

2

. (37)

There is also a simple formula
n

k=0

m

k

k − m

2

= −m

2

m− 1
n

(38)

for a sum that looks as though it should be harder, not easier.

1.2.6 BINOMIAL COEFFICIENTS 65

How can we decide when to stop working on a sum that resists simpliĄcation?
Fortunately, there is now a good way to answer that question in many important
cases: An algorithm due to R. W. Gosper and D. Zeilberger will discover closed
forms in binomial coefficients when they exist, and will prove the impossibility
when they do not exist. The GosperŰZeilberger algorithm is beyond the scope
of this book, but it is explained in CMath §5.8. See also the book A = B by
Petkovšek, Wilf, and Zeilberger (Wellesley, Mass.: A. K. Peters, 1996).

The principal tool for dealing with sums of binomial coefficients in a sys-
tematic, mechanical way is to exploit the properties of hypergeometric functions,
which are inĄnite series deĄned as follows in terms of rising factorial powers:

F

a1, . . . , am
b1, . . . , bn

 z

=

k≥0

ak1 . . . a
k
m

bk1 . . . b
k
n

zk

k!
. (39)

An introduction to these important functions can be found in Sections 5.5 and
5.6 of CMath. See also J. Dutka, Archive for History of Exact Sciences 31

(1984), 15Ű34, for historical references.
The concept of binomial coefficients has several signiĄcant generalizations,

which we should discuss brieĆy. First, we can consider arbitrary real values of the
lower index k in

r
k

; see exercises 40 through 45. We also have the generalization

r

k

q

=
(1− qr)(1− qr−1) . . . (1− qr−k+1)

(1− qk)(1− qk−1) . . . (1− q1)
, (40)

which becomes the ordinary binomial coefficient

r
k

1

=

r
k

when q approaches

the limiting value 1; this can be seen by dividing each term in numerator and
denominator by 1 − q. The basic properties of such Şq-nomial coefficientsŤ are
discussed in exercise 58.

However, for our purposes the most important generalization is the multi-
nomial coefficient

k1 + k2 + · · ·+ km
k1, k2, . . . , km

=

(k1 + k2 + · · ·+ km)!
k1! k2! . . . km!

, integer ki ≥ 0. (41)

The chief property of multinomial coefficients is the generalization of Eq. (13):

(x1 + x2 + · · ·+ xm)n =

k1+k2+···+km=n

n

k1, k2, . . . , km

xk1

1 xk2

2 . . . xkm
m . (42)

It is important to observe that any multinomial coefficient can be expressed in
terms of binomial coefficients:
k1+k2+· · ·+km
k1, k2, . . . , km

=

k1+k2

k1

k1+k2+k3

k1+k2

. . .

k1+k2+· · ·+km
k1+· · ·+km−1

, (43)

so we may apply the techniques that we already know for manipulating binomial
coefficients. Both sides of Eq. (20) are the trinomial coefficient

r

k, m− k, r −m

.

66 BASIC CONCEPTS 1.2.6

Table 2

STIRLING NUMBERS OF BOTH KINDS

n

n

0

n

1

n

2

n

3

n

4

n

5

n

6

n

7

n

8

0 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
2 0 1 1 0 0 0 0 0 0
3 0 2 3 1 0 0 0 0 0
4 0 6 11 6 1 0 0 0 0
5 0 24 50 35 10 1 0 0 0
6 0 120 274 225 85 15 1 0 0
7 0 720 1764 1624 735 175 21 1 0
8 0 5040 13068 13132 6769 1960 322 28 1

n

n

0

n

1

n

2

n

3

n

4

n

5

n

6

n

7

n

8

0 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
2 0 1 1 0 0 0 0 0 0
3 0 1 3 1 0 0 0 0 0
4 0 1 7 6 1 0 0 0 0
5 0 1 15 25 10 1 0 0 0
6 0 1 31 90 65 15 1 0 0
7 0 1 63 301 350 140 21 1 0
8 0 1 127 966 1701 1050 266 28 1

For approximations valid when n is large, see L. Moser and M. Wyman, J. London Math.
Soc. 33 (1958), 133Ű146; Duke Math. J. 25 (1958), 29Ű43; D. E. Barton, F. N. David, and
M. Merrington, Biometrika 47 (1960), 439Ű445; 50 (1963), 169Ű176; N. M. Temme, Studies in
Applied Math. 89 (1993), 233Ű243; H. S. Wilf, J. Combinatorial Theory A64 (1993), 344Ű349;
H.-K. Hwang, J. Combinatorial Theory A71 (1995), 343Ű351.

We conclude this section with a brief analysis of the transformation from
a polynomial expressed in powers of x to a polynomial expressed in binomial
coefficients. The coefficients involved in this transformation are called Stirling
numbers, and these numbers arise in the study of numerous algorithms.

Stirling numbers come in two Ćavors: We denote Stirling numbers of the Ąrst
kind by [nk], and those of the second kind by {nk }. These notations, due to Jovan
Karamata [Mathematica (Cluj) 9 (1935), 164Ű178], have compelling advantages
over the many other symbolisms that have been tried [see D. E. Knuth, AMM
99 (1992), 403Ű422]. We can remember the curly braces in

n
k

because curly

braces denote sets, and

n
k

is the number of ways to partition a set of n elements

into k disjoint subsets (exercise 64). The other Stirling numbers

n
k

also have

a combinatorial interpretation, which we will study in Section 1.3.3:

n
k

is the

number of permutations on n letters having k cycles.
Table 2 displays StirlingŠs triangles, which are in some ways analogous to

PascalŠs triangle.

1.2.6 BINOMIAL COEFFICIENTS 67

Stirling numbers of the Ąrst kind are used to convert from factorial powers
to ordinary powers:

xn = x(x− 1) . . . (x− n+ 1)

=

n

n

xn −

n

n− 1

xn−1 + · · ·+ (−1)n

n

0

=

k

(−1)n−k

n

k

xk. (44)

For example, from Table 2,

x

5

=
x5

5!
=

1
120

(x5 − 10x4 + 35x3 − 50x2 + 24x).

Stirling numbers of the second kind are used to convert from ordinary powers
to factorial powers:

xn =
n
n

xn + · · ·+

n
1

x1 +

n
0

x0 =

k

n
k

xk . (45)

This formula was, in fact, StirlingŠs original reason for studying the numbers
n
k

in his Methodus Differentialis (London: 1730). From Table 2 we have, for

example,

x5 = x5 + 10x4 + 25x3 + 15x2 + x1

= 120

x

5

+ 240

x

4

+ 150

x

3

+ 30

x

2

+

x

1

.

We shall now list the most important identities involving Stirling numbers.
In these equations, the variables m and n always denote nonnegative integers.

Addition formulas:

n+ 1
m

= n

n

m

+

n

m− 1

;

n+ 1
m

= m

n

m

+

n

m− 1

.

(46)

Inversion formulas

compare with Eq. (33)

:

k

n

k

k

m

(−1)n−k = δmn,

k

n

k

k

m

(−1)n−k = δmn. (47)

Special values:
 0
n

=
 0
n

=
 0
n

= δn0,

n

n

=

n

n

=

n

n

= 1; (48)

n

n− 1

=

n

n− 1

=

n

2

; (49)

68 BASIC CONCEPTS 1.2.6

n+ 1

0

=

n+ 1

0

= 0,

n+ 1

1

= n!,

n+ 1

1

= 1,

n+ 1

2

= 2n−1.

(50)

Expansion formulas:

k

n

k

k

m

=

n+ 1
m+ 1

,

k

n+ 1
k + 1

k

m

(−1)k−m =

n

m

; (51)

k

k

m

n

k

=

n+ 1
m+ 1

,

k

k + 1
m+ 1

n

k

(−1)n−k =

n

m

; (52)

k

m

k

(−1)m−kkn = m!

n

m

; (53)

k

m− n
m+ k

m+ n

n+ k

m+ k

k

=

n

n−m

,

k

m− n
m+ k

m+ n

n+ k

m+ k

k

=

n

n−m

;
(54)

k

n+ 1
k + 1

k

m

(−1)k−m =

n

m

; (55)

k≤n

k

m

n!
k!

=

n+ 1
m+ 1

,

k≤n

k

m

(m+ 1)n−k =

n+ 1
m+ 1

. (56)

Some other fundamental Stirling number identities appear in exercises 1.2.6Ű61
and 1.2.7Ű6, and in Eqs. (23), (26), (27), and (28) of Section 1.2.9.

Eq. (49) is just one instance of a general phenomenon: Both kinds of Stirling
numbers

n

n−m

and

n

n−m

are polynomials in n of degree 2m, whenever m is a

nonnegative integer. For example, the formulas for m = 2 and m = 3 are

n

n−2

=

n

4

+2

n+1

4

,

n

n−3

=

n

6

+8

n+1

6

+6

n+2

6

,

n

n−2

=

n+1

4

+2

n

4

;

n

n−3

=

n+2

6

+8

n+1

6

+6

n

6

.

(57)
Therefore it makes sense to deĄne the numbers

r

r−m

and

r

r−m

for arbitrary

real (or complex) values of r. With this generalization, the two kinds of Stirling
numbers are united by an interesting duality law

n

m

=
−m
−n

, (58)

1.2.6 BINOMIAL COEFFICIENTS 69

which was implicit in StirlingŠs original discussion. Moreover, Eq. (45) remains
true in general, in the sense that the inĄnite series

zr =

k

r

r − k

zr−k (59)

converges whenever the real part of z is positive. The companion formula,
Eq. (44), generalizes in a similar way to an asymptotic (but not convergent)
series:

zr =
m

k=0

r

r − k

(−1)kzr−k +O(zr−m−1). (60)

(See exercise 65.) Sections 6.1, 6.2, and 6.5 of CMath contain additional informa-
tion about Stirling numbers and how to manipulate them in formulas. See also
exercise 4.7Ű21 for a general family of triangles that includes Stirling numbers
as a very special case.

EXERCISES

1. [00] How many combinations of n things taken n− 1 at a time are possible?

2. [00] What is

0
0

?

3. [00] How many bridge hands (13 cards out of a 52-card deck) are possible?

4. [10] Give the answer to exercise 3 as a product of prime numbers.

x 5. [05] Use PascalŠs triangle to explain the fact that 114 = 14641.

x 6. [10] PascalŠs triangle (Table 1) can be extended in all directions by use of the
addition formula, Eq. (9). Find the three rows that go on top of Table 1 (i.e., for
r = −1, −2, and −3).

7. [12] If n is a Ąxed positive integer, what value of k makes

n
k

a maximum?

8. [00] What property of PascalŠs triangle is reĆected in the Şsymmetry condition,Ť
Eq. (6)?

9. [01] What is the value of

n
n

? (Consider all integers n.)

x 10. [M25] If p is prime, show that:

a)

n

p

≡

n

p

(modulo p).

b)

p

k

≡ 0 (modulo p), for 1 ≤ k ≤ p− 1.

c)

p− 1
k

≡ (−1)k (modulo p), for 0 ≤ k ≤ p− 1.

d)

p+ 1
k

≡ 0 (modulo p), for 2 ≤ k ≤ p− 1.

e) (É. Lucas, 1877.)

n

k

≡

⌊n/p⌋
⌊k/p⌋

nmod p
k mod p

(modulo p).

f) If the p-ary number system representations of n and k are

n = arp
r + · · ·+ a1p+ a0,

k = brpr + · · ·+ b1p+ b0,
then

n

k

≡

ar
br

. . .

a1

b1

a0

b0

(modulo p).

70 BASIC CONCEPTS 1.2.6

x 11. [M20] (E. Kummer, 1852.) Let p be prime. Show that if pn divides

a+ b

a

but pn+1 does not, then n is equal to the number of carries that occur when a is added
to b in the p-ary number system. [Hint: See exercise 1.2.5Ű12.]

12. [M22] Are there any positive integers n for which all the nonzero entries in the
nth row of PascalŠs triangle are odd? If so, Ąnd all such n.

13. [M13] Prove the summation formula, Eq. (10).

14. [M21] Evaluate
n
k=0 k

4.

15. [M15] Prove the binomial formula, Eq. (13).

16. [M15] Given that n and k are positive integers, prove the symmetrical identity

(−1)n
 −n
k − 1

= (−1)k

 −k
n− 1

.

x 17. [M18] Prove the ChuŰVandermonde formula (21) from Eq. (15), using the idea
that (1 + x)r+s = (1 + x)r(1 + x)s.

18. [M15] Prove Eq. (22) using Eqs. (21) and (6).

19. [M18] Prove Eq. (23) by induction.

20. [M20] Prove Eq. (24) by using Eqs. (21) and (19), then show that another use of
Eq. (19) yields Eq. (25).

x 21. [M05] Both sides of Eq. (25) are polynomials in s; why isnŠt that equation an
identity in s?

22. [M20] Prove Eq. (26) for the special case s = n− 1− r + nt.

23. [M13] Assuming that Eq. (26) holds for (r, s, t, n) and (r, s − t, t, n − 1), prove
it for (r, s+ 1, t, n).

24. [M15] Explain why the results of the previous two exercises combine to give a
proof of Eq. (26).

25. [HM30] Let the polynomial An(x, t) be deĄned as in Example 4 (see Eq. (30)).
Let z = xt+1−xt. Prove that

k Ak(r, t)zk = xr, provided that x is close enough to 1.

[Note: If t = 0, this result is essentially the binomial theorem, and this equation is an
important generalization of that theorem. The binomial theorem (15) may be assumed
in the proof.] Hint: Start with multiples of a special case of (34),

j

(−1)j

k

j

r − jt
k

r

r − jt = δk0.

26. [HM25] Using the assumptions of the previous exercise, prove that

k

r − tk
k

zk =

xr+1

(t+ 1)x− t .

27. [HM21] Solve Example 4 in the text by using the result of exercise 25; and prove
Eq. (26) from the preceding two exercises. [Hint: See exercise 17.]

1.2.6 BINOMIAL COEFFICIENTS 71

28. [M25] Prove that

k

r + tk

k

s− tk
n− k

=

k≥0

r + s− k
n− k

tk,

if n is a nonnegative integer.

29. [M20] Show that Eq. (34) is just a special case of the general identity proved in
exercise 1.2.3Ű33.

x 30. [M24] Show that there is a better way to solve Example 3 than the way used in
the text, by manipulating the sum so that Eq. (26) applies.

x 31. [M20] Evaluate

k

m− r + s

k

n+ r − s
n− k

r + k

m+ n

in terms of r, s, m, and n, given that m and n are integers. Begin by replacing

r + k

m+ n

by

j

r

m+ n− j

k

j

.

32. [M20] Show that

k[n
k

]xk = xn, where xn is the rising factorial power deĄned in
Eq. 1.2.5Ű(19).

33. [M20] (A. Vandermonde, 1772.) Show that the binomial formula is valid also
when it involves factorial powers instead of the ordinary powers. In other words, prove
that

(x+ y)n =

k

n

k

xkyn−k; (x+ y)n =

k

n

k

xkyn−k.

34. [M23] (TorelliŠs sum.) In the light of the previous exercise, show that AbelŠs
generalization, Eq. (16), of the binomial formula is true also for rising powers:

(x+ y)n =

k

n

k

x(x− kz + 1)k−1(y + kz)n−k.

35. [M23] Prove the addition formulas (46) for Stirling numbers directly from the
deĄnitions, Eqs. (44) and (45).

36. [M10] What is the sum

k

n
k

of the numbers in each row of PascalŠs triangle?

What is the sum of these numbers with alternating signs,

k

n
k

(−1)k?

37. [M10] From the answers to the preceding exercise, deduce the value of the sum
of every other entry in a row,

n
0

+

n
2

+

n
4

+ · · · .

38. [HM30] (C. Ramus, 1834.) Generalizing the result of the preceding exercise, show
that we have the following formula, given that 0 ≤ k < m:

n

k

+

n

m+ k

+

n

2m+ k

+ · · · = 1

m

0≤j<m

2 cos

jπ

m

n
cos

j(n− 2k)π
m

.

For example,

n

1

+

n

4

+

n

7

+ · · · = 1

3

2n + 2 cos

(n− 2)π
3

.

[Hint: Find the right combinations of these coefficients multiplied by mth roots of
unity.] This identity is particularly remarkable when m ≥ n.

72 BASIC CONCEPTS 1.2.6

39. [M10] What is the sum

k[n
k

] of the numbers in each row of StirlingŠs Ąrst
triangle? What is the sum of these numbers with alternating signs? (See exercise 36.)

40. [HM17] The beta function B(x, y) is deĄned for positive real numbers x, y by the
formula B(x, y) =

 1

0
tx−1(1− t)y−1 dt.

a) Show that B(x, 1) = B(1, x) = 1/x.
b) Show that B(x+ 1, y) + B(x, y + 1) = B(x, y).
c) Show that B(x, y) = ((x+ y)/y) B(x, y + 1).

41. [HM22] We proved a relation between the gamma function and the beta function
in exercise 1.2.5Ű19, by showing that Γm(x) = mxB(x,m+1), if m is a positive integer.

a) Prove that

B(x, y) =
Γm(y)mx

Γm(x+ y)
B(x, y +m+ 1).

b) Show that

B(x, y) =
Γ (x)Γ (y)
Γ (x+ y)

.

42. [HM10] Express the binomial coefficient

r
k

in terms of the beta function deĄned

above. (This gives us a way to extend the deĄnition to all real values of k.)

43. [HM20] Show that B(1/2, 1/2) = π. (From exercise 41 we may now conclude that
Γ (1/2) =

√
π.)

44. [HM20] Using the generalized binomial coefficient suggested in exercise 42, show
that

r

1/2

= 22r+1

2r
r

π.

45. [HM21] Using the generalized binomial coefficient suggested in exercise 42, Ąnd
limr→∞

r
k

/rk.

x 46. [M21] Using StirlingŠs approximation, Eq. 1.2.5Ű(7), Ąnd an approximate value
of

x+y
y

, assuming that both x and y are large. In particular, Ąnd the approximate

size of

2n
n

when n is large.

47. [M21] Given that k is an integer, show that

r

k

r − 1/2

k

=
2r
k

2r − k
k

4k =

 2r
2k

2k
k

4k.

Give a simpler formula for the special case r = −1/2.

x 48. [M25] Show that

k≥0

n

k

 (−1)k

k + x
=

n!
x(x+ 1) . . . (x+ n)

=
1

x

n+x
n

 ,

if the denominators are not zero. [Note that this formula gives us the reciprocal of a
binomial coefficient, as well as the partial fraction expansion of 1/x(x+ 1) . . . (x+ n).]

49. [M20] Show that the identity (1 + x)r = (1− x2)r(1− x)−r implies a relation on
binomial coefficients.

50. [M20] Prove AbelŠs formula, Eq. (16), in the special case x+ y = 0.

51. [M21] Prove AbelŠs formula, Eq. (16), by writing y = (x+ y)− x, expanding the
right-hand side in powers of (x+ y), and applying the result of the previous exercise.

1.2.6 BINOMIAL COEFFICIENTS 73

52. [HM11] Prove that AbelŠs binomial formula (16) is not always valid when n is not
a nonnegative integer, by evaluating the right-hand side when n = x = −1, y = z = 1.

53. [M25] (a) Prove the following identity by induction on m, where m and n are
integers:

m

k=0

r

k

s

n− k

(nr − (r + s)k) = (m+ 1)(n−m)

r

m+ 1

s

n−m

.

(b) Making use of important relations from exercise 47,

−1/2
n

=

(−1)n

22n

2n
n

,
1/2
n

=

(−1)n−1

22n(2n−1)

2n
n

=

(−1)n−1

22n−1(2n−1)

2n−1
n

−δn0,

show that the following formula can be obtained as a special case of the identity in
part (a):

m

k=0

2k − 1
k

2n− 2k
n− k

 −1
2k − 1

=
n−m

2n

2m
m

2n− 2m
n−m

+

1
2

2n
n

.

(This result is considerably more general than Eq. (26) in the case r = −1, s = 0,
t = −2.)

54. [M21] Consider PascalŠs triangle (as shown in Table 1) as a matrix. What is the
inverse of that matrix?

55. [M21] Considering each of StirlingŠs triangles (Table 2) as matrices, determine
their inverses.

56. [20] (The combinatorial number system.) For each integer n = 0, 1, 2, . . . , 20,
Ąnd three integers a, b, c for which n =

a
3

+

b
2

+

c
1

and a > b > c ≥ 0. Can you see

how this pattern can be continued for higher values of n?

x 57. [M22] Show that the coefficient am in StirlingŠs attempt at generalizing the fac-
torial function, Eq. 1.2.5Ű(12), is

(−1)m

m!

k≥1

(−1)k

m− 1
k − 1

ln k.

58. [M23] (H. A. Rothe, 1811.) In the notation of Eq. (40), prove the Şq-nomial
theoremŤ:

(1 + x)(1 + qx) . . . (1 + qn−1x) =

k

n

k

q
qk(k−1)/2xk.

Also Ąnd q-nomial generalizations of the fundamental identities (17) and (21).

59. [M25] A sequence of numbers Ank, n ≥ 0, k ≥ 0, satisĄes the relations An0 = 1,
A0k = δ0k, Ank = A(n−1)k +A(n−1)(k−1) +

n
k

for nk > 0. Find Ank.

x 60. [M23] We have seen that

n
k

is the number of combinations of n things, k at a

time, namely the number of ways to choose k different things out of a set of n. The
combinations with repetitions are similar to ordinary combinations, except that we
may choose each object any number of times. Thus, the list (1) would be extended to
include also aaa, aab, aac, aad, aae, abb, etc., if we were considering combinations with
repetition. How many k-combinations of n objects are there, if repetition is allowed?

74 BASIC CONCEPTS 1.2.6

61. [M25] Evaluate the sum

k

n+ 1
k + 1

k

m

(−1)k−m,

thereby obtaining a companion formula for Eq. (55).

x 62. [M23] The text gives formulas for sums involving a product of two binomial
coefficients. Of the sums involving a product of three binomial coefficients, the following
one and the identity of exercise 31 seem to be most useful:

k

(−1)k

l +m

l + k

m+ n

m+ k

n+ l

n+ k

=

(l +m+ n)!
l!m!n!

, integer l,m, n ≥ 0.

(The sum includes both positive and negative values of k.) Prove this identity.
[Hint: There is a very short proof, which begins by applying the result of exercise 31.]

63. [M30] If l, m, and n are integers and n ≥ 0, prove that

j,k

(−1)j+k

j + k

k + l

r

j

n

k

s+ n− j − k

m− j

= (−1)l

n+ r

n+ l

s− r

m− n− l

.

x 64. [M20] Show that { n
m
} is the number of ways to partition a set of n elements

into m nonempty disjoint subsets. For example, the set {1, 2, 3, 4} can be partitioned
into two subsets in { 4

2
} = 7 ways: {1, 2, 3}{4}; {1, 2, 4}{3}; {1, 3, 4}{2}; {2, 3, 4}{1};

{1, 2}{3, 4}; {1, 3}{2, 4}; {1, 4}{2, 3}. Hint: Use Eq. (46).

65. [HM35] (B. F. Logan.) Prove Eqs. (59) and (60).

66. [HM30] Suppose x, y, and z are real numbers satisfying

x

n

=

y

n

+

z

n− 1

,

where x ≥ n− 1, y ≥ n− 1, z > n− 2, and n is an integer ≥ 2. Prove that

x

n− 1

≤

y

n− 1

+

z

n− 2

if and only if y ≥ z;

x

n+ 1

≤

y

n+ 1

+

z

n

if and only if y ≤ z.

x 67. [M20] We often need to know that binomial coefficients arenŠt too large. Prove
the easy-to-remember upper bound

n

k

≤

ne

k

k
, when n ≥ k ≥ 0.

68. [M25] (A. de Moivre.) Prove that, if n is a nonnegative integer,

k

n

k

pk(1− p)n−k|k − np| = 2⌈np⌉

n

⌈np⌉

p⌈np⌉(1− p)n+1−⌈np⌉.

1.2.7 HARMONIC NUMBERS 75

1.2.7. Harmonic Numbers

The following sum will be of great importance in our later work:

Hn = 1 +
1
2

+
1
3

+ · · ·+ 1
n

=
n

k=1

1
k
, n ≥ 0. (1)

This sum does not occur very frequently in classical mathematics, and there is
no standard notation for it; but in the analysis of algorithms it pops up nearly
every time we turn around, and we will consistently call it Hn. Besides Hn,
the notations hn and Sn and ψ(n+ 1) + γ are found in mathematical literature.
The letter H stands for Şharmonic,Ť and we speak of Hn as a harmonic number
because (1) is customarily called the harmonic series. Chinese bamboo strips
written before 186 B.C. already explained how to compute H10 = 7381/2520, as
an exercise in arithmetic. [See C. Cullen, Historia Math. 34 (2007), 10Ű44.]

It may seem at Ąrst that Hn does not get too large when n has a large value,
since we are always adding smaller and smaller numbers. But actually it is not
hard to see that Hn will get as large as we please if we take n to be big enough,
because

H2m ≥ 1 +
m

2
. (2)

This lower bound follows from the observation that, for m ≥ 0, we have

H2m+1 = H2m +
1

2m + 1
+

1
2m + 2

+ · · ·+ 1
2m+1

≥ H2m +
1

2m+1
+

1
2m+1

+ · · ·+ 1
2m+1

= H2m + 1
2 .

So as m increases by 1, the left-hand side of (2) increases by at least 1
2 .

It is important to have more detailed information about the value of Hn

than is given in Eq. (2). The approximate size of Hn is a well-known quantity
(at least in mathematical circles) that may be expressed as follows:

Hn = lnn+ γ +
1

2n
− 1

12n2
+

1
120n4

− ϵ, 0 < ϵ <
1

252n6
. (3)

Here γ = 0.5772156649 . . . is EulerŠs constant, introduced by Leonhard Euler in
Commentarii Acad. Sci. Imp. Pet. 7 (1734), 150Ű161. Exact values of Hn for
small n, and a 40-place value for γ, are given in the tables in Appendix A. We
shall derive Eq. (3) in Section 1.2.11.2.

Thus Hn is reasonably close to the natural logarithm of n. Exercise 7(a)
demonstrates in a simple way that Hn has a somewhat logarithmic behavior.

In a sense, Hn just barely goes to inĄnity as n gets large, because the similar
sum

1 +
1
2r

+
1
3r

+ · · ·+ 1
nr

(4)

stays bounded for all n, when r is any real-valued exponent greater than unity.
(See exercise 3.) We denote the sum in Eq. (4) by H(r)

n .

76 BASIC CONCEPTS 1.2.7

When the exponent r in Eq. (4) is at least 2, the value of H(r)
n is fairly close

to its maximum value H(r)
∞ , except for very small n. The quantity H

(r)
∞ is very

well known in mathematics as RiemannŠs zeta function:

H(r)
∞ = ζ(r) =

k≥1

1
kr
. (5)

If r is an even integer, the value of ζ(r) is known to be equal to

H(r)
∞ =

1
2
|Br|

(2π)r

r!
, integer r/2 ≥ 1, (6)

where Br is a Bernoulli number (see Section 1.2.11.2 and Appendix A). In
particular,

H(2)
∞ =

π2

6
, H(4)

∞ =
π4

90
, H(6)

∞ =
π6

945
, H(8)

∞ =
π8

9450
. (7)

These results are due to Euler; for discussion and proof, see CMath, §6.5.
Now we will consider a few important sums that involve harmonic numbers.

First,
n

k=1

Hk = (n+ 1)Hn − n. (8)

This follows from a simple interchange of summation:
n

k=1

k

j=1

1
j

=
n

j=1

n

k=j

1
j

=
n

j=1

n+ 1− j
j

.

Formula (8) is a special case of the sum
n

k=1

k
m

Hk, which we will now

determine using an important technique called summation by parts (see exer-
cise 10). Summation by parts is a useful way to evaluate

akbk whenever the

quantities

ak and (bk+1− bk) have simple forms. We observe in this case that

k

m

=

k + 1
m+ 1

−

k

m+ 1

,

and therefore

k

m

Hk =

k + 1
m+ 1

Hk+1 −

1
k + 1

−

k

m+ 1

Hk;

hence
n

k=1

k

m

Hk =

 2
m+1

H2−

 1
m+1

H1

+ · · ·

+

n+1
m+1

Hn+1−

n

m+1

Hn

−

n

k=1

k+1
m+1

 1
k+1

=

n+1
m+1

Hn+1−

 1
m+1

H1−

1
m+1

n

k=0

k

m

+

1
m+1

 0
m

.

1.2.7 HARMONIC NUMBERS 77

Applying Eq. 1.2.6Ű(11) yields the desired formula:
n

k=1

k

m

Hk =

n+ 1
m+ 1

Hn+1 −

1
m+ 1

. (9)

(This derivation and its Ąnal result are analogous to the evaluation of
 n

1

xm ln x dx =
nm+1

m+ 1

lnn− 1

m+ 1

+

1
(m+ 1)2

using what calculus books call integration by parts.)
We conclude this section by considering a different kind of sum,

k

n
k

xkHk,

which we will temporarily denote by Sn for brevity. We Ąnd that

Sn+1 =

k

n

k

+

n

k − 1

xkHk = Sn + x

k≥1

n

k − 1

xk−1

Hk−1 +

1
k

= Sn + xSn +
1

n+ 1

k≥1

n+ 1
k

xk.

Hence Sn+1 = (x+ 1)Sn +

(x+ 1)n+1 − 1

/(n+ 1), and we have

Sn+1

(x+ 1)n+1
=

Sn

(x+ 1)n
+

1
n+ 1

− 1
(n+ 1)(x+ 1)n+1

.

This equation, together with the fact that S1 = x, shows us that

Sn

(x+ 1)n
= Hn −

n

k=1

1
k(x+ 1)k

. (10)

The new sum is part of the inĄnite series 1.2.9Ű(17) for ln

1/(1− 1/(x+ 1))

=

ln(1 + 1/x), and when x > 0, the series is convergent; the difference is

k>n

1
k(x+ 1)k

<
1

(n+ 1)(x+ 1)n+1

k≥0

1
(x+ 1)k

=
1

(n+ 1)(x+ 1)nx
.

This proves the following theorem:

Theorem A. If x > 0, then
n

k=1

n

k

xkHk = (x+ 1)n

Hn − ln

1 +

1
x

+ ϵ,

where 0 < ϵ < 1/

x(n+ 1)

.

EXERCISES

1. [01] What are H0, H1, and H2?

2. [13] Show that the simple argument used in the text to prove that H2m ≥ 1+m/2
can be slightly modiĄed to prove that H2m ≤ 1 +m.

78 BASIC CONCEPTS 1.2.7

3. [M21] Generalize the argument used in the previous exercise to show that, for
r > 1, the sum H

(r)
n remains bounded for all n. Find an upper bound.

x 4. [10] Decide which of the following statements are true for all positive integers n:
(a) Hn < lnn. (b) Hn > lnn. (c) Hn > lnn+ γ.

5. [15] Give the value of H10000 to 15 decimal places, using the tables in Appendix A.

6. [M15] Prove that the harmonic numbers are directly related to StirlingŠs numbers,
which were introduced in the previous section; in fact,

Hn =

n+ 1

2

n!.

7. [M21] Let T (m,n) = Hm + Hn − Hmn. (a) Show that when m or n increases,
T (m,n) never increases (assuming that m and n are positive). (b) Compute the
minimum and maximum values of T (m,n) for m,n > 0.

8. [HM18] Compare Eq. (8) with
n
k=1 ln k; estimate the difference as a function

of n.

x 9. [M18] Theorem A applies only when x > 0; what is the value of the sum consid-
ered when x = −1?

10. [M20] (Summation by parts.) We have used special cases of the general method
of summation by parts in exercise 1.2.4Ű42 and in the derivation of Eq. (9). Prove the
general formula

1≤k<n
(ak+1 − ak)bk = anbn − a1b1 −

1≤k<n
ak+1(bk+1 − bk).

x 11. [M21] Using summation by parts, evaluate

1<k≤n

1
k(k − 1)

Hk.

x 12. [M10] Evaluate H(1000)
∞ correct to at least 100 decimal places.

13. [M22] Prove the identity

n

k=1

xk

k
= Hn +

n

k=1

n

k

 (x− 1)k

k
.

(Note in particular the special case x = 0, which gives us an identity related to exercise
1.2.6Ű48.)

14. [M22] Show that
n
k=1 Hk/k = 1

2
(H2

n +H
(2)
n), and evaluate

n
k=1 Hk/(k + 1).

x 15. [M23] Express
n
k=1 H

2
k in terms of n and Hn.

16. [18] Express the sum 1 + 1
3

+ · · ·+ 1
2n−1

in terms of harmonic numbers.

17. [M24] (E. Waring, 1782.) Let p be an odd prime. Show that the numerator of
Hp−1 is divisible by p.

18. [M33] (J. Selfridge.) What is the highest power of 2 that divides the numerator
of 1 + 1

3
+ · · ·+ 1

2n−1
?

x 19. [M30] List all nonnegative integers n for which Hn is an integer. [Hint: If Hn

has odd numerator and even denominator, it cannot be an integer.]

1.2.8 FIBONACCI NUMBERS 79

20. [HM22] There is an analytic way to approach summation problems such as the one
leading to Theorem A in this section: If f(x) =

k≥0 akx

k, and this series converges
for x = x0, prove that

k≥0

akx
k
0Hk =

 1

0

f(x0)− f(x0y)
1− y dy.

21. [M24] Evaluate
n
k=1 Hk/(n+ 1− k).

22. [M28] Evaluate
n
k=0 HkHn−k.

x 23. [HM20] By considering the function Γ ′(x)/Γ (x), generalize Hn to noninteger
values of n. You may use the fact that Γ ′(1) = −γ, anticipating the next exercise.

24. [HM21] Show that

xeγx

k≥1

1 +

x

k

e−x/k

=

1
Γ (x)

.

(Consider the partial products of this inĄnite product.)

25. [M21] Let H(u,v)
n =

1≤j≤k≤n 1/(jukv). What are H(0,v)

n and H(u,0)
n ? Prove the

general identity H(u,v)
n +H

(v,u)
n = H

(u)
n H

(v)
n +H

(u+v)
n .

1.2.8. Fibonacci Numbers

The sequence
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . , (1)

in which each number is the sum of the preceding two, plays an important role
in at least a dozen seemingly unrelated algorithms that we will study later. The
numbers in the sequence are denoted by Fn, and we formally deĄne them as

F0 = 0; F1 = 1; Fn+2 = Fn+1 + Fn, n ≥ 0. (2)

This famous sequence was published in 1202 by Leonardo Pisano (Leonardo
of Pisa), who is sometimes called Leonardo Fibonacci (Filius Bonaccii, son of
Bonaccio). His Liber Abaci (Book of the Abacus) contains the following exercise:
ŞHow many pairs of rabbits can be produced from a single pair in a yearŠs time?Ť
To solve this problem, we are told to assume that each pair produces a new pair
of offspring every month, and that each new pair becomes fertile at the age of
one month. Furthermore, the rabbits never die. After one month there will be
2 pairs of rabbits; after two months, there will be 3; the following month the
original pair and the pair born during the Ąrst month will both usher in a new
pair and there will be 5 in all; and so on.

Fibonacci was by far the greatest European mathematician of the Middle
Ages. He studied the work of al-Khwārizmı̄ (after whom ŞalgorithmŤ is named,
see Section 1.1) and he added numerous original contributions to arithmetic and
geometry. The writings of Fibonacci were reprinted in 1857 [B. Boncompagni,
Scritti di Leonardo Pisano (Rome, 1857Ű1862), 2 vols.; Fn appears in Vol. 1, 283Ű
285]. His rabbit problem was, of course, not posed as a practical application to
biology and the population explosion; it was an exercise in addition. In fact,
it still makes a rather good computer exercise about addition (see exercise 3);

80 BASIC CONCEPTS 1.2.8

Fibonacci wrote: ŞIt is possible to do [the addition] in this order for an inĄnite
number of months.Ť

Before Fibonacci wrote his work, the sequence ⟨Fn⟩ had already been dis-
cussed by Indian scholars, who had long been interested in rhythmic patterns
that are formed from one-beat and two-beat notes or syllables. The number of
such rhythms having n beats altogether is Fn+1; therefore both Gopāla (before
1135) and Hemacandra (c. 1150) mentioned the numbers 1, 2, 3, 5, 8, 13, 21,
34, . . . explicitly. [See P. Singh, Historia Math. 12 (1985), 229Ű244; see also
exercise 4.5.3Ű32.]

The same sequence also appears in the work of Johannes Kepler, 1611, who
was musing about the numbers he saw around him [J. Kepler, The Six-Cornered
SnowĆake (Oxford: Clarendon Press, 1966), 21]. Kepler was presumably unaware
of FibonacciŠs brief mention of the sequence. Fibonacci numbers have often been
observed in nature, probably for reasons similar to the original assumptions of
the rabbit problem. [See Conway and Guy, The Book of Numbers (New York:
Copernicus, 1996), 113Ű126, for an especially lucid explanation.]

A Ąrst indication of the intimate connections between Fn and algorithms
came to light in 1837, when É. Léger used FibonacciŠs sequence to study the
efficiency of EuclidŠs algorithm. He observed that if the numbers m and n in
Algorithm 1.1E are not greater than Fk, step E2 will be executed at most k− 1
times. This was the Ąrst practical application of FibonacciŠs sequence. (See
Theorem 4.5.3F.) During the 1870s the mathematician É. Lucas obtained very
profound results about the Fibonacci numbers, and in particular he used them to
prove that the 39-digit number 2127−1 is prime. Lucas gave the name ŞFibonacci
numbersŤ to the sequence ⟨Fn⟩, and that name has been used ever since.

We already have examined the Fibonacci sequence brieĆy in Section 1.2.1
(Eq. (3) and exercise 4), where we found that ϕn−2 ≤ Fn ≤ ϕn−1 if n is a positive
integer and if

ϕ = 1
2 (1 +

√
5). (3)

We will see shortly that this quantity, ϕ, is intimately connected with the
Fibonacci numbers.

The number ϕ itself has a very interesting history. Euclid called it the
Şextreme and mean ratioŤ; the ratio of A to B is the ratio of A+B to A, if the
ratio of A to B is ϕ. Renaissance writers called it the Şdivine proportionŤ; and in
the last century it has commonly been called the Şgolden ratio.Ť Many artists and
writers have said that the ratio of ϕ to 1 is the most aesthetically pleasing propor-
tion, and their opinion is conĄrmed from the standpoint of computer program-
ming aesthetics as well. For the story of ϕ, see the excellent article ŞThe Golden
Section, Phyllotaxis, and WythoffŠs Game,Ť by H. S. M. Coxeter, Scripta Math.
19 (1953), 135Ű143; see also Chapter 8 of The 2nd ScientiĄc American Book of
Mathematical Puzzles and Diversions, by Martin Gardner (New York: Simon
and Schuster, 1961). Several popular myths about ϕ have been debunked by
George Markowsky in College Math. J. 23 (1992), 2Ű19. The fact that the ratio

1.2.8 FIBONACCI NUMBERS 81

Fn+1/Fn approaches ϕ was known to the early European reckoning master Simon
Jacob, who died in 1564 [see P. Schreiber, Historia Math. 22 (1995), 422Ű424].

The notations we are using in this section are a little undigniĄed. In much
of the sophisticated mathematical literature, Fn is called un instead, and ϕ is
called τ . Our notations are almost universally used in recreational mathematics
(and some crank literature!) and they are rapidly coming into wider use. The
designation ϕ comes from the name of the Greek artist Phidias who is said to have
used the golden ratio in his sculpture. [See T. A. Cook, The Curves of Life (1914),
420.] The notation Fn is in accordance with that used in the Fibonacci Quarterly,
where the reader may Ąnd numerous facts about the Fibonacci sequence. A good
reference to the classical literature about Fn is Chapter 17 of L. E. DicksonŠs
History of the Theory of Numbers 1 (Carnegie Inst. of Washington, 1919).

The Fibonacci numbers satisfy many interesting identities, some of which
appear in the exercises at the end of this section. One of the most commonly
discovered relations, mentioned by Kepler in a letter he wrote in 1608 but Ąrst
published by J. D. Cassini [Histoire Acad. Roy. Paris 1 (1680), 201], is

Fn+1Fn−1 − F 2
n = (−1)n, (4)

which is easily proved by induction. A more esoteric way to prove the same
formula starts with a simple inductive proof of the matrix identity

Fn+1

Fn

Fn

Fn−1

=
1

1
1
0

n
. (5)

We can then take the determinant of both sides of this equation.
Relation (4) shows that Fn and Fn+1 are relatively prime, since any common

divisor would have to be a divisor of (−1)n.
From the deĄnition (2) we Ąnd immediately that

Fn+3 = Fn+2 + Fn+1 = 2Fn+1 + Fn ; Fn+4 = 3Fn+1 + 2Fn;

and, in general, by induction that

Fn+m = FmFn+1 + Fm−1Fn (6)

for any positive integer m.
If we take m to be a multiple of n in Eq. (6), we Ąnd inductively that

Fnk is a multiple of Fn.

Thus every third number is even, every fourth number is a multiple of 3, every
Ąfth is a multiple of 5, and so on.

In fact, much more than this is true. If we write gcd(m,n) to stand for the
greatest common divisor of m and n, a rather surprising theorem emerges:

Theorem A (É. Lucas, 1876). A number divides both Fm and Fn if and only
if it is a divisor of Fd, where d = gcd(m,n); in particular,

gcd(Fm, Fn) = Fgcd(m,n). (7)

82 BASIC CONCEPTS 1.2.8

Proof. This result is proved by using EuclidŠs algorithm. We observe that
because of Eq. (6) any common divisor of Fm and Fn is also a divisor of Fn+m;
and, conversely, any common divisor of Fn+m and Fn is a divisor of FmFn+1.
Since Fn+1 is relatively prime to Fn, a common divisor of Fn+m and Fn also
divides Fm. Thus we have proved that, for any number d,

d divides Fm and Fn if and only if d divides Fm+n and Fn. (8)

We will now show that any sequence ⟨Fn⟩ for which statement (8) holds, and for
which F0 = 0, satisĄes Theorem A.

First it is clear that statement (8) may be extended by induction on k to
the rule

d divides Fm and Fn if and only if d divides Fm+kn and Fn,

where k is any nonnegative integer. This result may be stated more succinctly:

d divides Fm mod n and Fn if and only if d divides Fm and Fn. (9)

Now if r is the remainder after division of m by n, that is, if r = mmod n,
then the common divisors of {Fm, Fn} are the common divisors of {Fn, Fr}. It
follows that throughout the manipulations of Algorithm 1.1E the set of common
divisors of {Fm, Fn} remains unchanged as m and n change; Ąnally, when r = 0,
the common divisors are simply the divisors of F0 = 0 and Fgcd(m,n).

Most of the important results involving Fibonacci numbers can be deduced
from the representation of Fn in terms of ϕ, which we now proceed to derive.
The method we shall use in the following derivation is extremely important, and
the mathematically oriented reader should study it carefully; we will study the
same method in detail in the next section.

We start by setting up the inĄnite series

G(z) = F0 + F1z + F2z
2 + F3z

3 + F4z
4 + · · ·

= z + z2 + 2z3 + 3z4 + · · · . (10)

We have no a priori reason to expect that this inĄnite sum exists or that the
function G(z) is at all interesting Ů but let us be optimistic and see what we
can conclude about the function G(z) if it does exist. The advantage of such a
procedure is that G(z) is a single quantity that represents the entire Fibonacci
sequence at once; and if we Ąnd out that G(z) is a ŞknownŤ function, its
coefficients can be determined. We call G(z) the generating function for the
sequence ⟨Fn⟩.

We can now proceed to investigate G(z) as follows:

zG(z) = F0z + F1z
2 + F2z

3 + F3z
4 + · · · ,

z2G(z) = F0z
2 + F1z

3 + F2z
4 + · · · ;

by subtraction, therefore,

(1− z − z2)G(z) = F0 + (F1 − F0)z + (F2 − F1 − F0)z2

+ (F3 − F2 − F1)z3 + (F4 − F3 − F2)z4 + · · · .

1.2.8 FIBONACCI NUMBERS 83

All terms but the second vanish because of the deĄnition of Fn, so this expression
equals z. Therefore we see that, if G(z) exists,

G(z) = z/(1− z − z2). (11)

In fact, this function can be expanded in an inĄnite series in z (a Taylor series);
working backwards we Ąnd that the coefficients of the power series expansion of
Eq. (11) must be the Fibonacci numbers.

We can now manipulate G(z) and Ąnd out more about the Fibonacci se-
quence. The denominator 1 − z − z2 is a quadratic polynomial with the two
roots 1

2 (−1±
√

5); after a little calculation we Ąnd that G(z) can be expanded
by the method of partial fractions into the form

G(z) =
1√
5

1

1− ϕz −
1

1− ϕ z

, (12)

where
ϕ = 1− ϕ = 1

2 (1−
√

5). (13)

The quantity 1/(1 − ϕz) is the sum of the inĄnite geometric series 1 + ϕz +
ϕ2z2 + · · · , so we have

G(z) =
1√
5

(1 + ϕz + ϕ2z2 + · · · − 1− ϕ z − ϕ 2z2 − · · ·).

We now look at the coefficient of zn, which must be equal to Fn; hence

Fn =
1√
5

(ϕn − ϕ n). (14)

This is an important closed form expression for the Fibonacci numbers, Ąrst
discovered early in the eighteenth century.

See D. Bernoulli, Comment. Acad.

Sci. Petrop. 3 (1728), 85Ű100, §7; see also A. de Moivre, Philos. Trans. 32 (1722),
162Ű178, who showed how to solve general linear recurrences in essentially the
way we have derived (14).

We could have merely stated Eq. (14) and proved it by induction. However,
the point of the rather long derivation above was to show how it would be
possible to discover the equation in the Ąrst place, using the important method
of generating functions, which is a valuable technique for solving a wide variety
of problems.

Many things can be proved from Eq. (14). First we observe that ϕ is a
negative number (−0.61803 . . .) whose magnitude is less than unity, so ϕ n gets
very small as n gets large. In fact, the quantity ϕ n/

√
5 is always small enough

so that we have

Fn = ϕn/
√

5 rounded to the nearest integer. (15)

Other results can be obtained directly from G(z); for example,

G(z)2 =
1
5

1

(1− ϕz)2
+

1
(1− ϕ z)2

− 2
1− z − z2

, (16)

84 BASIC CONCEPTS 1.2.8

and the coefficient of zn in G(z)2 is
n

k=0 FkFn−k. We deduce therefore that
n

k=0

FkFn−k = 1
5

(n+ 1)(ϕn + ϕ n)− 2Fn+1

= 1
5

(n+ 1)(Fn + 2Fn−1)− 2Fn+1

= 1
5 (n− 1)Fn + 2

5nFn−1. (17)

(The second step in this derivation follows from the result of exercise 11.)

EXERCISES

1. [10] What is the answer to Leonardo FibonacciŠs original problem: How many
pairs of rabbits are present after a year?

x 2. [20] In view of Eq. (15), what is the approximate value of F1000? (Use logarithms
found in Appendix A.)

3. [25] Write a computer program that calculates and prints F1 through F1000 in
decimal notation. (The previous exercise determines the size of numbers that must be
handled.)

x 4. [14] Find all n for which Fn = n.

5. [20] Find all n for which Fn = n2.

6. [HM10] Prove Eq. (5).

x 7. [15] If n is not a prime number, Fn is not a prime number (with one exception).
Prove this and Ąnd the exception.

8. [15] In many cases it is convenient to deĄne Fn for negative n, by assuming that
Fn+2 = Fn+1 + Fn for all integers n. Explore this possibility: What is F−1? What is
F−2? Can F−n be expressed in a simple way in terms of Fn?

9. [M20] Using the conventions of exercise 8, determine whether Eqs. (4), (6), (14),
and (15) still hold when the subscripts are allowed to be any integers.

10. [15] Is ϕn/
√

5 greater than Fn or less than Fn?

11. [M20] Show that ϕn = Fnϕ+ Fn−1 and ϕ n = Fn ϕ + Fn−1, for all integers n.

x 12. [M26] The Şsecond orderŤ Fibonacci sequence is deĄned by the rule

F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn + Fn.

Express Fn in terms of Fn and Fn+1. [Hint: Use generating functions.]

x 13. [M22] Express the following sequences in terms of the Fibonacci numbers, when
r, s, and c are given constants:

a) a0 = r, a1 = s; an+2 = an+1 + an, for n ≥ 0.
b) b0 = 0, b1 = 1; bn+2 = bn+1 + bn + c, for n ≥ 0.

14. [M28] Let m be a Ąxed positive integer. Find an, given that

a0 = 0, a1 = 1; an+2 = an+1 + an +

n
m

, for n ≥ 0.

15. [M22] Let f(n) and g(n) be arbitrary functions, and for n ≥ 0 let

a0 = 0, a1 = 1, an+2 = an+1 + an + f(n);
b0 = 0, b1 = 1, bn+2 = bn+1 + bn + g(n);
c0 = 0, c1 = 1, cn+2 = cn+1 + cn + xf(n) + yg(n).

Express cn in terms of x, y, an, bn, and Fn.

1.2.8 FIBONACCI NUMBERS 85

x 16. [M20] Fibonacci numbers appear implicitly in PascalŠs triangle if it is viewed from
the right angle. Show that the following sum of binomial coefficients is a Fibonacci
number: n

k=0

n− k
k

.

17. [M24] Using the conventions of exercise 8, prove the following generalization of
Eq. (4): Fn+kFm−k − FnFm = (−1)nFm−n−kFk.

18. [20] Is F 2
n + F 2

n+1 always a Fibonacci number?

x 19. [M27] What is cos 36◦?

20. [M16] Express
n
k=0 Fk in terms of Fibonacci numbers.

21. [M25] What is
n
k=0 Fkx

k?

x 22. [M20] Show that

k

n
k

Fm+k is a Fibonacci number.

23. [M23] Generalizing the preceding exercise, show that

k

n
k

F kt F

n−k
t−1 Fm+k is

always a Fibonacci number.

24. [HM20] Evaluate the n× n determinant

1 −1 0 0 . . . 0 0 0
1 1 −1 0 . . . 0 0 0
0 1 1 −1 . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . 1 1 −1
0 0 0 0 . . . 0 1 1

.

25. [M21] Show that
2nFn = 2

k odd

n

k

5(k−1)/2.

x 26. [M20] Using the previous exercise, show that Fp ≡ 5(p−1)/2 (modulo p) if p is an
odd prime.

27. [M20] Using the previous exercise, show that if p is a prime different from 5, then
either Fp−1 or Fp+1 (not both) is a multiple of p.

28. [M21] What is Fn+1 − ϕFn?

x 29. [M23] (Fibonomial coefficients.) Édouard Lucas deĄned the quantities

n

k

F

=
FnFn−1 . . . Fn−k+1

FkFk−1 . . . F1
=

k

j=1

Fn−k+j

Fj

in a manner analogous to binomial coefficients. (a) Make a table of

n
k

F for 0 ≤ k ≤

n ≤ 6. (b) Show that

n
k

F is always an integer because we have

n

k

F

= Fk−1

n− 1
k

F

+ Fn−k+1

n− 1
k − 1

F
.

x 30. [M38] (D. Jarden, T. Motzkin.) The sequence of mth powers of Fibonacci num-
bers satisĄes a recurrence relation in which each term depends on the preceding m+ 1
terms. Show that

k

m

k

F

(−1)⌈(m−k)/2⌉Fm−1
n+k = 0, if m > 0.

For example, when m = 3 we get the identity F 2
n − 2F 2

n+1 − 2F 2
n+2 + F 2

n+3 = 0.

86 BASIC CONCEPTS 1.2.8

31. [M20] Show that F2nϕmod 1 = 1− ϕ−2n and F2n+1ϕmod 1 = ϕ−2n−1.

32. [M24] The remainder of one Fibonacci number divided by another is ± a Fibo-
nacci number: Show that, modulo Fn,

Fmn+r ≡

Fr, if mmod 4 = 0;
(−1)r+1Fn−r, if mmod 4 = 1;
(−1)nFr, if mmod 4 = 2;
(−1)r+1+nFn−r, if mmod 4 = 3.

33. [HM24] Given that z = π/2 + i lnϕ, show that sinnz/sin z = i1−nFn.

x 34. [M24] (The Fibonacci number system.) Let the notation k ≫ m mean that k ≥
m+ 2. Show that every positive integer n has a unique representation n = Fk1

+Fk2
+

· · ·+ Fkr , where k1 ≫ k2 ≫ · · · ≫ kr ≫ 0.

35. [M24] (A phi number system.) Consider real numbers written with the digits 0
and 1 using base ϕ; thus (100.1)ϕ = ϕ2 + ϕ−1. Show that there are inĄnitely many
ways to represent the number 1; for example, 1 = (.11)ϕ = (.011111 . . .)ϕ. But if
we require that no two adjacent 1s occur and that the representation does not end
with the inĄnite sequence 01010101. . . , then every nonnegative number has a unique
representation. What are the representations of integers?

x 36. [M32] (Fibonacci strings.) Let S1 = ŞaŤ, S2 = ŞbŤ, and Sn+2 = Sn+1Sn, n > 0;
in other words, Sn+2 is formed by placing Sn at the right of Sn+1. We have S3 = ŞbaŤ,
S4 = ŞbabŤ, S5 = ŞbabbaŤ, etc. Clearly Sn has Fn letters. Explore the properties of
Sn. (Where do double letters occur? Can you predict the value of the kth letter of Sn?
What is the density of the bŠs? And so on.)

x 37. [M35] (R. E. Gaskell, M. J. Whinihan.) Two players compete in the following
game: There is a pile containing n chips; the Ąrst player removes any number of chips
except that he cannot take the whole pile. From then on, the players alternate moves,
each person removing one or more chips but not more than twice as many chips as the

preceding player has taken. The player who removes the last chip wins. (For example,
suppose that n = 11; player A removes 3 chips; player B may remove up to 6 chips,
and he takes 1. There remain 7 chips; player A may take 1 or 2 chips, and he takes 2;
player B may remove up to 4, and he picks up 1. There remain 4 chips; player A now
takes 1; player B must take at least one chip and player A wins in the following turn.)

What is the best move for the Ąrst player to make if there are initially 1000 chips?

38. [35] Write a computer program that plays the game described in the previous
exercise and that plays optimally.

39. [M24] Find a closed form expression for an, given that a0 = 0, a1 = 1, and
an+2 = an+1 + 6an for n ≥ 0.

40. [M25] Solve the recurrence

f(1) = 0; f(n) = min
0<k<n

max(1 + f(k), 2 + f(n− k)), for n > 1.

x 41. [M25] (Yuri Matiyasevich, 1990.) Let f(x) = ⌊x + ϕ−1⌋. Prove that if n =
Fk1

+ · · ·+Fkr is the representation of n in the Fibonacci number system of exercise 34,
then Fk1+1 + · · ·+ Fkr+1 = f(ϕn). Find a similar formula for Fk1−1 + · · ·+ Fkr−1.

42. [M26] (D. A. Klarner.) Show that if m and n are nonnegative integers, there is a
unique sequence of indices k1 ≫ k2 ≫ · · · ≫ kr such that

m = Fk1
+ Fk2

+ · · ·+ Fkr , n = Fk1+1 + Fk2+1 + · · ·+ Fkr+1.

(See exercise 34. The kŠs may be negative, and r may be zero.)

1.2.9 GENERATING FUNCTIONS 87

1.2.9. Generating Functions

Whenever we want to obtain information about a sequence of numbers ⟨an⟩ =
a0, a1, a2, . . . , we can set up an inĄnite sum in terms of a ŞparameterŤ z,

G(z) = a0 + a1z + a2z
2 + · · · =

n≥0

anz
n. (1)

We can then try to obtain information about the function G. This function is a
single quantity that represents the whole sequence; if the sequence ⟨an⟩ has been
deĄned inductively (that is, if an has been deĄned in terms of a0, a1, . . . , an−1)
this is an important advantage. Furthermore, we can recover the individual
values of a0, a1, . . . from the function G(z), assuming that the inĄnite sum in
Eq. (1) exists for some nonzero value of z, by using techniques of differential
calculus.

We call G(z) the generating function for the sequence a0, a1, a2, The
use of generating functions opens up a whole new range of techniques, and
it broadly increases our capacity for problem solving. As mentioned in the
previous section, A. de Moivre introduced generating functions in order to solve
the general linear recurrence problem. De MoivreŠs theory was extended to
slightly more complicated recurrences by James Stirling, who showed how to
apply differentiation and integration as well as arithmetic operations [Methodus
Differentialis (London: 1730), Proposition 15]. A few years later, L. Euler began
to use generating functions in several new ways, for example in his papers on
partitions [Commentarii Acad. Sci. Pet. 13 (1741), 64Ű93; Novi Comment. Acad.
Sci. Pet. 3 (1750), 125Ű169]. Pierre S. Laplace developed the techniques further
in his classic work Théorie Analytique des Probabilités (Paris: 1812).

The question of convergence of the inĄnite sum (1) is of some importance.
Any textbook about the theory of inĄnite series will prove that:

a) If the series converges for a particular value of z = z0, then it converges for
all values of z with |z| < |z0|.

b) The series converges for some z ̸= 0 if and only if the sequence

n

|an|

is

bounded. (If this condition is not satisĄed, we may be able to get a conver-
gent series for the sequence ⟨an/n!⟩ or for some other related sequence.)

On the other hand, it often does not pay to worry about convergence of
the series when we work with generating functions, since we are only exploring
possible approaches to the solution of some problem. When we discover the
solution by any means, however sloppy, we may be able to justify the solu-
tion independently. For example, in the previous section we used a generating
function to deduce Eq. (14); yet once such an equation has been found, it is a
simple matter to prove it by induction, and we need not even mention that we
used generating functions to discover it. Furthermore one can show that most
(if not all) of the operations we do with generating functions can be rigorously
justiĄed without regard to the convergence of the series. See, for example, E. T.
Bell, Trans. Amer. Math. Soc. 25 (1923), 135Ű154; Ivan Niven, AMM 76 (1969),

88 BASIC CONCEPTS 1.2.9

871Ű889; Peter Henrici, Applied and Computational Complex Analysis 1 (Wiley,
1974), Chapter 1.

Let us now study the principal techniques used with generating functions.

A. Addition. If G(z) is the generating function for ⟨an⟩ = a0, a1, . . . and
H(z) is the generating function for ⟨bn⟩ = b0, b1, . . . , then αG(z) + βH(z) is the
generating function for ⟨αan + βbn⟩ = αa0 + βb0, αa1 + βb1, . . . :

α

n≥0

anz
n + β

n≥0

bnz
n =

n≥0

(αan + βbn)zn. (2)

B. Shifting. If G(z) is the generating function for ⟨an⟩ = a0, a1, . . . then
zmG(z) is the generating function for ⟨an−m⟩ = 0, . . . , 0, a0, a1, . . . :

zm

n≥0

anz
n =

n≥m

an−mz
n. (3)

The last summation may be extended over all n ≥ 0 if we regard an = 0 for any
negative value of n.

Similarly,

G(z)−a0−a1z−· · ·−am−1z

m−1

/zm is the generating function

for ⟨an+m⟩ = am, am+1, . . . :

z−m

n≥m

anz
n =

n≥0

an+mz
n. (4)

We combined operations A and B to solve the Fibonacci problem in the
previous section: G(z) was the generating function for ⟨Fn⟩, zG(z) for ⟨Fn−1⟩,
z2G(z) for ⟨Fn−2⟩, and (1 − z − z2)G(z) for ⟨Fn − Fn−1 − Fn−2⟩. Then, since
Fn − Fn−1 − Fn−2 is zero when n ≥ 2, we found that (1 − z − z2)G(z) is a
polynomial. Similarly, given any linearly recurrent sequence, that is, a sequence
where an = c1an−1 + · · ·+cman−m, the generating function will be a polynomial
divided by (1− c1z − · · · − cmzm).

Let us consider the simplest example of all: If G(z) is the generating func-
tion for the constant sequence 1, 1, 1, . . . , then zG(z) generates 0, 1, 1, . . . , so
(1− z)G(z) = 1. This gives us the simple but very important formula

1
1− z = 1 + z + z2 + · · · . (5)

C. Multiplication. If G(z) is the generating function for a0, a1, . . . and H(z)
is the generating function for b0, b1, . . . , then

G(z)H(z) = (a0 + a1z + a2z
2 + · · ·)(b0 + b1z + b2z

2 + · · ·)
= (a0b0) + (a0b1 + a1b0)z + (a0b2 + a1b1 + a2b0)z2 + · · · ;

thus G(z)H(z) is the generating function for the sequence c0, c1, . . . , where

cn =
n

k=0

akbn−k. (6)

1.2.9 GENERATING FUNCTIONS 89

Equation (3) is a very special case of this. Another important special case occurs
when each bn is equal to unity:

1
1− zG(z) = a0 + (a0 + a1)z + (a0 + a1 + a2)z2 + · · · . (7)

Here we have the generating function for the sums of the original sequence.
The rule for a product of three functions follows from (6); F (z)G(z)H(z)

generates d0, d1, d2, . . . , where

dn =

i,j,k≥0
i+j+k=n

aibjck. (8)

The general rule for products of any number of functions (whenever this is
meaningful) is

j≥0

k≥0

ajkz
k =

n≥0

zn

k0,k1,...≥0
k0+k1+···=n

a0k0
a1k1

. . . . (9)

When the recurrence relation for some sequence involves binomial coeffi-
cients, we often want to get a generating function for a sequence c0, c1, . . . deĄned
by

cn =

k

n

k

akbn−k. (10)

In this case it is usually better to use generating functions for the sequences
⟨an/n!⟩, ⟨bn/n!⟩, ⟨cn/n!⟩, since we have

a0

0!
+
a1

1!
z+

a2

2!
z2 + · · ·

b0

0!
+
b1

1!
z+

b2

2!
z2 + · · ·

=

c0

0!
+
c1

1!
z+

c2

2!
z2 + · · ·

,

(11)
where cn is given by Eq. (10).

D. Change of z. Clearly G(cz) is the generating function for the sequence
a0, ca1, c

2a2, As a particular case, the generating function for 1, c, c2, c3, . . .
is 1/(1− cz).

There is a familiar trick for extracting alternate terms of a series:
1
2

G(z) +G(−z)

= a0 + a2z

2 + a4z
4 + · · · ,

1
2

G(z)−G(−z)

= a1z + a3z

3 + a5z
5 + · · · .

(12)

Using complex roots of unity, we can extend this idea and extract every mth
term: Let ω = e2πi/m = cos(2π/m) + i sin(2π/m); we have

n≥0, n mod m=r

anz
n =

1
m

0≤k<m

ω−krG(ωkz), 0 ≤ r < m. (13)

(See exercise 14.) For example, if m = 3 and r = 1, we have ω = − 1
2 +

√
3

2 i,
a complex cube root of unity; it follows that

a1z + a4z
4 + a7z

7 + · · · = 1
3

G(z) + ω−1G(ωz) + ω−2G(ω2z)

.

90 BASIC CONCEPTS 1.2.9

E. Differentiation and integration. The techniques of calculus give us further
operations. If G(z) is given by Eq. (1), the derivative is

G′(z) = a1 + 2a2z + 3a3z
2 + · · · =

k≥0

(k + 1)ak+1z
k. (14)

The generating function for the sequence ⟨nan⟩ is zG′(z). Hence we can combine
the nth term of a sequence with polynomials in n by manipulating the generating
function.

Reversing the process, integration gives another useful operation:
 z

0

G(t) dt = a0z +
1
2
a1z

2 +
1
3
a2z

3 + · · · =

k≥1

1
k
ak−1z

k. (15)

As special cases, we have the derivative and integral of (5):

1
(1− z)2

= 1 + 2z + 3z2 + · · · =

k≥0

(k + 1)zk. (16)

ln
1

1− z = z+
1
2
z2 +

1
3
z3 + · · · =

k≥1

1
k
zk. (17)

We can combine the second formula with Eq. (7) to get the generating function
for the harmonic numbers:

1
1− z ln

1
1− z = z +

3
2
z2 +

11
6
z3 + · · · =

k≥0

Hkz
k. (18)

F. Known generating functions. Whenever it is possible to determine the
power series expansion of a function, we have implicitly found the generating
function for a particular sequence. These special functions can be quite useful
in conjunction with the operations described above. The most important power
series expansions are given in the following list.

i) Binomial theorem.

(1 + z)r = 1 + rz +
r(r − 1)

2
z2 + · · · =

k≥0

r

k

zk. (19)

When r is a negative integer, we get a special case already reĆected in Eqs. (5)
and (16):

1
(1− z)n+1

=

k≥0

−n− 1
k

(−z)k =

k≥0

n+ k

n

zk. (20)

There is also a generalization, which was proved in exercise 1.2.6Ű25:

xr = 1 + rz +
r(r − 2t− 1)

2
z2 + · · · =

k≥0

r − kt
k

r

r − ktz
k, (21)

if x is the continuous function of z that solves the equation xt+1 = xt + z, where
x = 1 when z = 0.

1.2.9 GENERATING FUNCTIONS 91

ii) Exponential series.

exp z = ez = 1 + z +
1
2!
z2 + · · · =

k≥0

1
k!
zk. (22)

In general, we have the following formula involving Stirling numbers:

(ez − 1)n = zn +
1

n+ 1

n+ 1
n

zn+1 + · · · = n!

k

k

n

zk

k!
. (23)

iii) Logarithm series (see (17) and (18)).

ln(1 + z) = z − 1
2
z2 +

1
3
z3 − · · · =

k≥1

(−1)k+1

k
zk, (24)

1
(1− z)m+1

ln
 1

1− z

=

k≥1

(Hm+k −Hm)

m+ k

k

zk. (25)

Stirling numbers, as in (23), give us a more general equation:

ln

1
1− z

n
= zn +

1
n+ 1

n+ 1
n

zn+1 + · · · = n!

k

k

n

zk

k!
. (26)

Further generalizations, including many sums of harmonic numbers, appear in
papers by D. A. Zave, Inf. Proc. Letters 5 (1976), 75Ű77; J. Spieß, Math. Comp.
55 (1990), 839Ű863.

iv) Miscellaneous.

z(z + 1) . . . (z + n− 1) =

k

n

k

zk, (27)

zn

(1− z)(1− 2z) . . . (1− nz) =

k

k

n

zk, (28)

z

ez − 1
= 1− 1

2
z +

1
12
z2 + · · · =

k≥0

Bkz
k

k!
. (29)

The coefficients Bk that appear in the last formula are the Bernoulli numbers;
they will be examined further in Section 1.2.11.2. A table of Bernoulli numbers
appears in Appendix A.

The next identity, analogous to (21), will be proved in exercise 2.3.4.4Ű29:

xr = 1 + rz +
r(r + 2t)

2
z2 + · · · =

k≥0

r(r + kt)k−1

k!
zk, (30)

if x is the continuous function of z that solves the equation x = ezx
t

, where x = 1
when z = 0. SigniĄcant generalizations of (21) and (30) are discussed in exercise
4.7Ű22.

92 BASIC CONCEPTS 1.2.9

G. Extracting a coefficient. It is often convenient to use the notation

[zn]G(z) (31)

for the coefficient of zn in G(z). For example, if G(z) is the generating function
in (1) we have [zn]G(z) = an and [zn]G(z)/(1 − z) =

n
k=0 ak. One of the

most fundamental results in the theory of complex variables is a formula of
A. L. Cauchy [Exercices de Math. 1 (1826), 95Ű113 = Œuvres (2) 6, 124Ű145,
Eq. (11)], by which we can extract any desired coefficient with the help of a
contour integral:

[zn]G(z) =
1

2πi

|z|=r

G(z) dz
zn+1

, (32)

if G(z) converges for z = z0 and 0 < r < |z0|. The basic idea is that

|z|=r

zm dz

is zero for all integers m except m = −1, when the integral is
 π

−π

(reiθ)−1d(reiθ) = i

 π

−π

dθ = 2πi.

Equation (32) is of importance primarily when we want to study the approximate
value of a coefficient.

We conclude this section by returning to a problem that was only partially
solved in Section 1.2.3. We saw in Eq. 1.2.3Ű(13) and exercise 1.2.3Ű29 that

1≤i≤j≤n

xixj =
1
2

 n

k=1

xk

2

+
1
2

 n

k=1

x2
k

;

1≤i≤j≤k≤n

xixjxk =
1
6

 n

k=1

xk

3

+
1
2

 n

k=1

xk

 n

k=1

x2
k

+

1
3

 n

k=1

x3
k

.

In general, suppose that we have n numbers x1, x2, . . . , xn and we want the
sum

hm =

1≤j1≤···≤jm≤n

xj1
. . . xjm . (33)

If possible, this sum should be expressed in terms of S1, S2, . . . , Sm, where

Sj =
n

k=1

xjk, (34)

the sum of jth powers. Using this more compact notation, the formulas above
become h2 = 1

2S
2
1 + 1

2S2; h3 = 1
6S

3
1 + 1

2S1S2 + 1
3S3.

We can attack this problem by setting up the generating function

G(z) = 1 + h1z + h2z
2 + · · · =

k≥0

hkz
k. (35)

1.2.9 GENERATING FUNCTIONS 93

By our rules for multiplying series, we Ąnd that

G(z) = (1 + x1z + x2
1z

2 + · · ·)(1 + x2z + x2
2z

2 + · · ·) . . . (1 + xnz + x2
nz

2 + · · ·)

=
1

(1− x1z)(1− x2z) . . . (1− xnz)
. (36)

So G(z) is the reciprocal of a polynomial. It often helps to take the logarithm
of a product, and we Ąnd from (17) that

lnG(z) = ln
1

1− x1z
+ · · ·+ ln

1
1− xnz

=

k≥1

xk1z
k

k

+ · · ·+

k≥1

xknz
k

k

=

k≥1

Skz
k

k
.

(37)

Now lnG(z) has been expressed in terms of the SŠs; so all we must do to obtain
the answer to our problem is to compute the power series expansion of G(z)
again, with the help of (22) and (9):

G(z) = eln G(z) = exp

k≥1

Skz
k

k

=

k≥1

eSkz
k/k

=

1 + S1z +
S2

1z
2

2!
+ · · ·

1 +

S2z
2

2
+

S2
2z

4

22 · 2!
+ · · ·

. . .

=

m≥0

k1,k2,...,km≥0
k1+2k2+···+mkm=m

Sk1

1

1k1k1!
Sk2

2

2k2k2!
. . .

Skm
m

mkmkm!

zm. (38)

The parenthesized quantity is hm. This rather imposing sum is really not
complicated when it is examined carefully. The number of terms for a particular
value of m is p(m), the number of partitions of m (Section 1.2.1). For example,
one partition of 12 is

12 = 5 + 2 + 2 + 2 + 1;

this corresponds to a solution of the equation k1 + 2k2 + · · ·+ 12k12 = 12, where
kj is the number of jŠs in the partition. In our example k1 = 1, k2 = 3, k5 = 1,
and the other kŠs are zero; so we get the term

S1

111!
S3

2

233!
S5

511!
=

1
240

S1S
3
2S5

as part of the expression for h12. By differentiating (37) it is not difficult to
derive the recurrence

hn =
1
n

(S1hn−1 + S2hn−2 + · · ·+ Snh0), n ≥ 1. (39)

An enjoyable introduction to the applications of generating functions has
been given by G. Pólya, ŞOn picture writing,Ť AMM 63 (1956), 689Ű697; his
approach is continued in CMath, Chapter 7. See also the book generatingfunc-
tionology by H. S. Wilf, second edition (Academic Press, 1994).

94 BASIC CONCEPTS 1.2.9

A generating function is a clothesline

on which we hang up a sequence of numbers for display.

— H. S. WILF (1989)

EXERCISES

1. [M12] What is the generating function for the sequence 2, 5, 13, 35, . . . = ⟨2n+3n⟩?
x 2. [M13] Prove Eq. (11).

3. [HM21] Differentiate the generating function (18) for ⟨Hn⟩, and compare this with
the generating function for ⟨n

k=0 Hk⟩. What relation can you deduce?

4. [M01] Explain why Eq. (19) is a special case of Eq. (21).

5. [M20] Prove Eq. (23) by induction on n.

x 6. [HM15] Find the generating function for

0<k<n

1
k(n− k)

;

differentiate it and express the coefficients in terms of harmonic numbers.

7. [M15] Verify all the steps leading to Eq. (38).

8. [M23] Find the generating function for p(n), the number of partitions of n.

9. [M11] In the notation of Eqs. (34) and (35), what is h4 in terms of S1, S2, S3,
and S4?

x 10. [M25] An elementary symmetric function is deĄned by the formula

em =

1≤j1<···<jm≤n
xj1

. . . xjm .

(This is the same as hm of Eq. (33), except that equal subscripts are not allowed.) Find
the generating function for em, and express em in terms of the Sj in Eq. (34). Write
out the formulas for e1, e2, e3, and e4.

x 11. [M25] Equation (39) can also be used to express the SŠs in terms of the hŠs: We
Ąnd S1 = h1, S2 = 2h2 − h2

1, S3 = 3h3 − 3h1h2 + h3
1, etc. What is the coefficient of

hk1

1 hk2

2 . . . hkmm in this representation of Sm, when k1 + 2k2 + · · ·+mkm = m?

x 12. [M20] Suppose we have a doubly subscripted sequence ⟨amn⟩ for m,n = 0, 1, . . . ;
show how this double sequence can be represented by a single generating function of
two variables, and determine the generating function for ⟨n

m

⟩.
13. [HM22] The Laplace transform of a function f(x) is the function

Lf(s) =
 ∞

0

e−stf(t) dt.

Given that a0, a1, a2, . . . is an inĄnite sequence having a convergent generating function,
let f(x) be the step function

k ak [0≤ k≤x]. Express the Laplace transform of f(x)

in terms of the generating function G for this sequence.

14. [HM21] Prove Eq. (13).

1.2.9 GENERATING FUNCTIONS 95

15. [M28] By considering H(w) =

n≥0 Gn(z)wn, Ąnd a closed form for the gener-

ating function

Gn(z) =
n

k=0

n− k
k

zk =

n

k=0

2k − n− 1
k

(−z)k.

16. [M22] Give a simple formula for the generating function Gnr(z) =

k ankrz

k,
where ankr is the number of ways to choose k out of n objects, subject to the condition
that each object may be chosen at most r times. (If r = 1, we have

n
k

ways, and if

r ≥ k, we have the number of combinations with repetitions as in exercise 1.2.6Ű60.)

17. [M25] What are the coefficients of 1/(1− z)w if this function is expanded into a
double power series in terms of both z and w?

x 18. [M25] Given positive integers n and r, Ąnd a simple formula for the value of the
following sums: (a)

1≤k1<k2<···<kr≤n k1k2 . . . kr; (b)

1≤k1≤k2≤···≤kr≤n k1k2 . . . kr.

(For example, when n = 3 and r = 2 the sums are, respectively, 1 · 2 + 1 · 3 + 2 · 3 and
1 · 1 + 1 · 2 + 1 · 3 + 2 · 2 + 2 · 3 + 3 · 3.)

19. [HM32] (C. F. Gauss, 1812.) The sums of the following inĄnite series are well
known:

1− 1
2

+
1
3
− 1

4
+ · · · = ln 2; 1− 1

3
+

1
5
− 1

7
+ · · · = π

4
;

1− 1
4

+
1
7
− 1

10
+ · · · = π

√
3

9
+

1
3

ln 2.

Using the deĄnition

Hx =

n≥1

 1
n
− 1
n+ x

found in the answer to exercise 1.2.7Ű24, these series may be written respectively as

1− 1
2
H1/2 ;

2
3
− 1

4
H1/4 +

1
4
H3/4 ;

3
4
− 1

6
H1/6 +

1
6
H2/3 .

Prove that, in general, Hp/q has the value

q

p
− π

2
cot

p

q
π − ln 2q + 2

0<k<q/2

cos
2pk
q
π · ln sin

k

q
π,

when p and q are integers with 0 < p < q. [Hint: By AbelŠs limit theorem the sum is

lim
x→1−

n≥1

 1
n
− 1
n+ p/q

xp+nq.

Use Eq. (13) to express this power series in such a way that the limit can be evaluated.]

20. [M21] For what coefficients cmk is

n≥0 n

mzn =
m
k=0 cmkz

k/(1− z)k+1?

21. [HM30] Set up the generating function for the sequence ⟨n!⟩ and study properties
of this function.

22. [M21] Find a generating function G(z) for which

[zn]G(z) =

k0+2k1+4k2+8k3+···=n

r

k0

r

k1

r

k2

r

k3

. . . .

96 BASIC CONCEPTS 1.2.9

23. [M33] (L. Carlitz.) (a) Prove that for all integers m ≥ 1 there are polynomials
fm(z1, . . . , zm) and gm(z1, . . . , zm) such that the formula

k1,...,km≥0

r

n− k1

k1

n− k2

. . .

km−1

n− km

zk1

1 . . . zkmm

= fm(z1, . . . , zm)n−rgm(z1, . . . , zm)r

is an identity for all integers n ≥ r ≥ 0.
(b) Generalizing exercise 15, Ąnd a closed form for the sum

Sn(z1, . . . , zm) =

k1,...,km≥0

k1

n− k2

k2

n− k3

. . .

km
n− k1

zk1

1 . . . zkmm

in terms of the functions fm and gm in part (a).
(c) Find a simple expression for Sn(z1, . . . , zm) when z1 = · · · = zm = z.

24. [M22] Prove that, if G(z) is any generating function, we have

k

m

k

[zn−k]G(z)k = [zn] (1 + zG(z))m.

Evaluate both sides of this identity when G(z) is (a) 1/(1− z); (b) (ez − 1)/z.

x 25. [M23] Evaluate the sum

k

n
k

2n−2k
n−k

(−2)k by simplifying the equivalent for-

mula

k[wk] (1− 2w)n [zn−k] (1 + z)2n−2k.

26. [M40] Explore a generalization of the notation (31) according to which we might
write, for example, [z2 − 2z5]G(z) = a2 − 2a5 when G(z) is given by (1).

1.2.10. Analysis of an Algorithm

Let us now apply some of the techniques of the preceding sections to the study
of a typical algorithm.

Algorithm M (Find the maximum). Given n elements X[1], X[2], . . . , X[n], we
will Ąnd m and j such that m = X[j] = max1≤i≤nX[i], where j is the largest
index that satisĄes this relation.

M1. [Initialize.] Set j ← n, k ← n − 1, m ← X[n]. (During this algorithm we
will have m = X[j] = maxk<i≤nX[i].)

M2. [All tested?] If k = 0, the algorithm terminates.

M3. [Compare.] If X[k] ≤ m, go to M5.

M4. [Change m.] Set j ← k, m ← X[k]. (This value of m is a new current
maximum.)

M5. [Decrease k.] Decrease k by one and return to M2.

This rather obvious algorithm may seem so trivial that we shouldnŠt bother
to analyze it in detail; but it actually makes a good demonstration of the way
in which more complicated algorithms may be studied. Analysis of algorithms
is quite important in computer programming, because there are usually several
algorithms available for a particular application and we would like to know which
is best.

1.2.10 ANALYSIS OF AN ALGORITHM 97

M1. Initialize M2. All tested? M3. Compare M4. Change m M5. Decrease k
No

Yes
m≥X[k]

1 1 n−1 A A

n−1−A

1

n−1

Fig. 9. Algorithm M. Labels on the arrows indicate the number of times each path
is taken. Note that ŞKirchhoffŠs Ąrst lawŤ must be satisĄed: The amount of Ćow into
each node must equal the amount of Ćow going out.

Algorithm M requires a Ąxed amount of storage, so we will analyze only the
time required to perform it. To do this, we will count the number of times each
step is executed (see Fig. 9):

Step number Number of times
M1 1
M2 n
M3 n− 1
M4 A
M5 n− 1

Knowing the number of times each step is executed gives us the information
necessary to determine the running time on a particular computer.

In the table above we know everything except the quantity A, which is the
number of times we must change the value of the current maximum. To complete
the analysis, we shall study this interesting quantity A.

The analysis usually consists of Ąnding the minimum value of A (for op-
timistic people), the maximum value of A (for pessimistic people), the average
value of A (for probabilistic people), and the standard deviation of A (a quanti-
tative indication of how close to the average we may expect the value to be).

The minimum value of A is zero; this happens if

X[n] = max
1≤k≤n

X[k].

The maximum value is n− 1; this happens in case

X[1] > X[2] > · · · > X[n].

Thus the average value lies between 0 and n − 1. Is it 1
2n? Is it

√
n ?

To answer this question we need to deĄne what we mean by the average; and
to deĄne the average properly, we must make some assumptions about the
characteristics of the input data X[1], X[2], . . . , X[n]. We will assume that the
X[k] are distinct values, and that each of the n! permutations of these values
is equally likely. (This is a reasonable assumption to make in most situations,
but the analysis can be carried out under other assumptions, as shown in the
exercises at the end of this section.)

98 BASIC CONCEPTS 1.2.10

The performance of Algorithm M does not depend on the precise values
of the X[k]; only the relative order is involved. For example, if n = 3 we are
assuming that each of the following six possibilities is equally probable:

Situation Value of A Situation Value of A

X[1] < X[2] < X[3] 0 X[2] < X[3] < X[1] 1

X[1] < X[3] < X[2] 1 X[3] < X[1] < X[2] 1

X[2] < X[1] < X[3] 0 X[3] < X[2] < X[1] 2

The average value of A when n = 3 comes to (0 + 1 + 0 + 1 + 1 + 2)/6 = 5/6.
It is clear that we may take X[1], X[2], . . . , X[n] to be the numbers 1, 2, . . . , n

in some order; under our assumption we regard each of the n! permutations as
equally likely. The probability that A has the value k will be

pnk = (number of permutations of n objects for which A = k)/n!. (1)

For example, from our table above, p30 = 1
3 , p31 = 1

2 , p32 = 1
6 .

The average (ŞmeanŤ or ŞexpectedŤ) value is deĄned, as usual, to be

An =

k

kpnk. (2)

The variance Vn is deĄned to be the average value of (A−An)2; we have therefore

Vn =

k

(k −An)2pnk =

k

k2pnk − 2An

k

kpnk +A2
n

k

pnk

=

k

k2pnk − 2AnAn +A2
n =

k

k2pnk −A2
n. (3)

Finally, the standard deviation σn is deĄned to be

Vn.

The signiĄcance of σn can perhaps best be understood by noting that, for
all r ≥ 1, the probability that A fails to lie within rσn of its average value is
less than 1/r2. For example, |A−An| > 2σn with probability < 1/4. (Proof:
Let p be the stated probability. Then if p > 0, the average value of (A − An)2

is more than p · (rσn)2 + (1− p) · 0; that is, Vn > pr2Vn.) This is usually called
ChebyshevŠs inequality, although it was actually discovered Ąrst by J. Bienaymé
[Comptes Rendus Acad. Sci. 37 (Paris, 1853), 320Ű321].

We can determine the behavior of A by determining the probabilities pnk.
It is not hard to do this inductively: By Eq. (1) we want to count the number of
permutations on n elements that have A = k. Let this number be Pnk = n! pnk.

Consider the permutations x1x2 . . . xn on {1, 2, . . . , n}, as in Section 1.2.5.
If x1 = n, the value of A is one higher than the value obtained on x2 . . . xn; if
x1 ̸= n, the value of A is exactly the same as its value on x2 . . . xn. Therefore
we Ąnd that Pnk = P(n−1)(k−1) + (n− 1)P(n−1)k, or equivalently

pnk =
1
n
p(n−1)(k−1) +

n− 1
n

p(n−1)k. (4)

1.2.10 ANALYSIS OF AN ALGORITHM 99

0 1 2 3 4 5 6 7 8 9 10 11

Fig. 10. Probability distribution for step M4, when n = 12. The mean is 58301/27720,
or approximately 2.10. The variance is approximately 1.54.

This equation will determine pnk if we provide the initial conditions

p1k = δ0k; pnk = 0 if k < 0. (5)

We can now get information about the quantities pnk by using generating
functions. Let

Gn(z) = pn0 + pn1z + · · · =

k

pnkz
k. (6)

We know that A ≤ n− 1, so pnk = 0 for large values of k; thus Gn(z) is actually
a polynomial, even though an inĄnite sum has been speciĄed for convenience.

From Eq. (5) we have G1(z) = 1; and from Eq. (4) we have

Gn(z) =
z

n
Gn−1(z) +

n− 1
n

Gn−1(z) =
z + n− 1

n
Gn−1(z). (7)

(The reader should study the relation between Eqs. (4) and (7) carefully.) We
can now see that

Gn(z) =
z + n− 1

n
Gn−1(z) =

z + n− 1
n

z + n− 2
n− 1

Gn−2(z) = · · ·

=
1
n!

(z + n− 1)(z + n− 2) . . . (z + 1)

=
1

z + n

z + n

n

. (8)

So Gn(z) is essentially a binomial coefficient!
This function appears in the previous section, Eq. 1.2.9Ű(27), where we have

Gn(z) =
1
n!

k

n

k

zk−1.

Therefore pnk can be expressed in terms of Stirling numbers:

pnk =

n

k + 1

n!. (9)

Figure 10 shows the approximate sizes of pnk when n = 12.

100 BASIC CONCEPTS 1.2.10

Now all we must do is plug this value of pnk into Eqs. (2) and (3) and we
have the desired average value. But this is easier said than done. It is, in fact,
unusual to be able to determine the probabilities pnk explicitly; in most problems
we will know the generating function Gn(z), but we will not have any special
knowledge about the actual probabilities. The important fact is that we can
determine the mean and variance easily from the generating function itself.

To see this, letŠs suppose that we have a generating function whose coeffi-
cients represent probabilities:

G(z) = p0 + p1z + p2z
2 + · · · .

Here pk is the probability that some event has a value k. We wish to calculate
the quantities

mean(G) =

k

kpk, var(G) =

k

k2pk −

mean(G)

2
. (10)

Using differentiation, it is not hard to discover how to do this. Note that

G(1) = 1, (11)

since G(1) = p0 + p1 + p2 + · · · is the sum of all possible probabilities. Similarly,
since G′(z) =

k kpkz

k−1, we have

mean(G) =

k

kpk = G′(1). (12)

Finally, we apply differentiation again and we obtain (see exercise 2)

var(G) = G′′(1) +G′(1)−G′(1)2. (13)

Equations (12) and (13) give the desired expressions of the mean and variance
in terms of the generating function.

In our case, we wish to calculate G′
n(1) = An. From Eq. (7) we have

G′
n(z) =

1
n
Gn−1(z) +

z + n− 1
n

G′
n−1(z);

G′
n(1) =

1
n

+G′
n−1(1).

From the initial condition G′
1(1) = 0, we Ąnd therefore

An = G′
n(1) = Hn − 1. (14)

This is the desired average number of times step M4 is executed; it is approxi-
mately lnn when n is large. [Note: The rth moment of A+1, namely the quantity

k(k + 1)rpnk, is [zn] (1 − z)−1

k

r
k

ln 1

1−z

k, and it has the approximate

value (lnn)r; see P. B. M. Roes CACM 9 (1966), 342. The distribution of A
was Ąrst studied by F. G. Foster and A. Stuart, J. Roy. Stat. Soc. B16 (1954),
1Ű22.]

We can proceed similarly to calculate the variance Vn. Before doing this,
let us state an important simpliĄcation:

1.2.10 ANALYSIS OF AN ALGORITHM 101

Theorem A. Let G and H be two generating functions with G(1) = H(1) = 1.
If the quantities mean(G) and var(G) are deĄned by Eqs. (12) and (13), we have

mean(GH) = mean(G) + mean(H); var(GH) = var(G) + var(H). (15)

We will prove this theorem later. It tells us that the mean and variance of
a product of generating functions may be reduced to a sum.

Letting Qn(z) = (z + n− 1)/n, we have Q′
n(1) = 1/n, Q′′

n(1) = 0; hence

mean(Qn) =
1
n
, var(Qn) =

1
n
− 1
n2
.

Finally, since Gn(z) =
n

k=2 Qk(z), it follows that

mean(Gn) =
n

k=2

mean(Qk) =
n

k=2

1
k

= Hn − 1;

var(Gn) =
n

k=2

var(Qk) =
n

k=1

1
k
− 1
k2

= Hn −H(2)

n .

Summing up, we have found the desired statistics related to quantity A:

A =

min 0, ave Hn − 1, max n− 1, dev

Hn −H(2)

n

. (16)

The notation used in Eq. (16) will be used to describe the statistical character-
istics of other probabilistic quantities throughout this book.

We have completed the analysis of Algorithm M; the new feature that has
appeared in this analysis is the introduction of probability theory. Elementary
probability theory is sufficient for most of the applications in this book: The
simple counting techniques and the deĄnitions of mean, variance, and standard
deviation already given will answer most of the questions we want to ask. More
complicated algorithms will help us develop an ability to reason Ćuently about
probabilities.

Let us consider some simple probability problems, to get a little more
practice using these methods. In all probability the Ąrst question that comes
to mind is a coin-tossing problem: Suppose we Ćip a coin n times and there is a
probability p that heads turns up after any particular toss; what is the average
number of heads that will occur? What is the standard deviation?

We will consider our coin to be biased; that is, we will not assume that
p = 1

2 . This makes the problem more interesting, and, furthermore, every real
coin is biased (or we could not tell one side from the other).

Proceeding as before, we let pnk be the probability that k heads will occur,
and let Gn(z) be the corresponding generating function. We have clearly

pnk = p p(n−1)(k−1) + q p(n−1)k, (17)

where q = 1− p is the probability that tails turns up. As before, we argue from
Eq. (17) that Gn(z) = (q + pz)Gn−1(z); and from the obvious initial condition

102 BASIC CONCEPTS 1.2.10

G1(z) = q + pz we have
Gn(z) = (q + pz)n. (18)

Hence, by Theorem A,

mean(Gn) = n mean(G1) = pn;

var(Gn) = n var(G1) = (p− p2)n = pqn.

For the number of heads, we have therefore

(min 0, ave pn, max n, dev
√
pqn). (19)

Figure 11 shows the values of pnk when p = 3
5 , n = 12. When the standard devi-

ation is proportional to
√
n and the difference between maximum and minimum

is proportional to n, we may consider the situation ŞstableŤ about the average.

0 1 2 3 4 5 6 7 8 9 10 11 12

Fig. 11. Probability distribution for coin-tossing: 12 independent tosses with a chance
of success equal to 3/5 at each toss.

Let us work one more simple problem. Suppose that in some process there
is equal probability of obtaining the values 1, 2, . . . , n. The generating function
for this situation is

G(z) =
1
n
z +

1
n
z2 + · · ·+ 1

n
zn =

1
n

zn+1 − z
z − 1

. (20)

We Ąnd after some rather laborious calculation that

G′(z) =
nzn+1 − (n+ 1)zn + 1

n(z − 1)2
;

G′′(z) =
n(n− 1)zn+1 − 2(n+ 1)(n− 1)zn + n(n+ 1)zn−1 − 2

n(z − 1)3
.

Now to calculate the mean and variance, we need to know G′(1) and G′′(1); but
the form in which we have expressed these equations reduces to 0/0 when we
substitute z = 1. This makes it necessary to Ąnd the limit as z approaches unity,
and that is a nontrivial task.

Fortunately there is a much simpler way to proceed. By TaylorŠs theorem
we have

G(1 + z) = G(1) +G′(1)z +
G′′(1)

2!
z2 + · · · ; (21)

1.2.10 ANALYSIS OF AN ALGORITHM 103

therefore we merely have to replace z by z+1 in (20) and read off the coefficients:

G(1 + z) =
1
n

(1 + z)n+1 − 1− z
z

= 1 +
n+ 1

2
z +

(n+ 1)(n− 1)
6

z2 + · · · .

It follows that G′(1) = 1
2 (n+ 1), G′′(1) = 1

3 (n+ 1)(n− 1), and the statistics for
the uniform distribution are

min 1, ave

n+ 1
2

, max n, dev

(n+ 1)(n− 1)

12

. (22)

In this case the deviation of approximately 0.289n gives us a recognizably un-
stable situation.

We conclude this section by proving Theorem A and relating our notions
to classical probability theory. Suppose X is a random variable that takes on
only nonnegative integer values, where X = k with probability pk. Then G(z) =
p0 + p1z + p2z

2 + · · · is called the probability generating function for X, and the
quantityG(eit) = p0+p1e

it+p2e
2it+· · · is conventionally called the characteristic

function of this distribution. The distribution given by the product of two such
generating functions is called the convolution of the two distributions, and it
represents the sum of two independent random variables belonging to those
respective distributions.

The mean or average value of a random quantity X is often called its expected
value, and denoted by EX. The variance of X is then EX2− (EX)2. Using this
notation, the probability generating function for X is G(z) = E zX , the expected
value of zX, in cases when X takes only nonnegative integer values. Similarly,
if X is a statement that is either true or false, the probability that X is true is
Pr(X) = E[X], using IversonŠs convention

Eq. 1.2.3Ű(16)

.

The mean and variance are just two of the so-called semi-invariants or cu-
mulants introduced by T. N. Thiele in 1889 [see A. Hald, International Statistical
Review 68 (2000), 137Ű153]. The semi-invariants κ1, κ2, κ3, . . . are deĄned by
the rule

κ1t

1!
+
κ2t

2

2!
+
κ3t

3

3!
+ · · · = lnG(et). (23)

We have

κn =
dn

dtn
lnG(et)

t=0

;

in particular,

κ1 =
etG′(et)
G(et)

t=0

= G′(1)

because G(1) =

k pk = 1, and

κ2 =
e2tG′′(et)
G(et)

+
etG′(et)
G(et)

− e2tG′(et)2

G(et)2

t=0

= G′′(1) +G′(1)−G′(1)2.

Since the semi-invariants are deĄned in terms of the logarithm of a generating
function, Theorem A is obvious, and, in fact, it can be generalized to apply to
all of the semi-invariants.

104 BASIC CONCEPTS 1.2.10

A normal distribution is one for which all semi-invariants are zero except
the mean and variance. In a normal distribution, we can improve signiĄcantly
on ChebyshevŠs inequality: The probability that a normally distributed random
value differs from the mean by less than the standard deviation is

1√
2π

 +1

−1

e−t2/2 dt,

that is, about 68.268949213709% of the time. The difference is less than twice
the standard deviation about 95.449973610364% of the time, and it is less than
three times the standard deviation about 99.730020393674% of the time. The
distributions speciĄed by Eqs. (8) and (18) are approximately normal when n is
large (see exercises 13 and 14).

We often need to know that a random variable is unlikely to be much larger
or smaller than its mean value. Two extremely simple yet powerful formulas,
called the tail inequalities, provide convenient estimates of such probabilities.
If X has the probability generating function G(z), then

Pr(X ≤ r) ≤ x−rG(x) for 0 < x ≤ 1; (24)

Pr(X ≥ r) ≤ x−rG(x) for x ≥ 1. (25)

The proofs are easy: If G(z) = p0 + p1z + p2z
2 + · · · , we have

Pr(X ≤ r) = p0 + p1 + · · ·+ p⌊r⌋ ≤ x−rp0 +x1−rp1 + · · ·+x⌊r⌋−rp⌊r⌋ ≤ x−rG(x)

when 0 < x ≤ 1, and

Pr(X ≥ r) = p⌈r⌉ + p⌈r⌉+1 + · · · ≤ x⌈r⌉−rp⌈r⌉ + x⌈r⌉+1−rp⌈r⌉+1 + · · · ≤ x−rG(x)

when x ≥ 1. By choosing values of x that minimize or approximately minimize
the right-hand sides of (24) and (25), we often obtain upper bounds that are
fairly close to the true tail probabilities on the left-hand sides.

Exercises 21Ű23 illustrate the tail inequalities in several important cases.
These inequalities are special cases of a general principle pointed out by A. N.
Kolmogorov in his book Grundbegriffe der Wahrscheinlichkeitsrechnung (1933):
If f(t) ≥ s > 0 for all t ≥ r, and if f(t) ≥ 0 for all t in the domain of the random
variable X, then Pr(X ≥ r) ≤ s−1 E f(X) whenever E f(X) exists. We obtain
(25) when f(t) = xt and s = xr. [S. Bernstein had contributed key ideas in
Uchenye zapiski Nauchno-IssledovatelŠskikh kafedr Ukrainy 1 (1924), 38Ű48.]

EXERCISES

1. [10] Determine the value of pn0 from Eqs. (4) and (5) and interpret this result
from the standpoint of Algorithm M.

2. [HM16] Derive Eq. (13) from Eq. (10).

3. [M15] What are the minimum, maximum, average, and standard deviation of
the number of times step M4 is executed, if we are using Algorithm M to Ąnd the
maximum of 1000 randomly ordered, distinct items? (Give your answer as decimal
approximations to these quantities.)

4. [M10] Give an explicit, closed formula for the values of pnk in the coin-tossing
experiment, Eq. (17).

1.2.10 ANALYSIS OF AN ALGORITHM 105

5. [M13] What are the mean and standard deviation of the distribution in Fig. 11?

6. [HM27] WeŠve computed the mean and the variance of the important probability
distributions (8), (18), (20). What is the third semi-invariant, κ3, in each of those cases?

x 7. [M27] In our analysis of Algorithm M, we assumed that all the X[k] were distinct.
Suppose, instead, that we make only the weaker assumption that X[1], X[2], . . . , X[n]
contain precisely m distinct values; the values are otherwise random, subject to this
constraint. What is the probability distribution of A in this case?

x 8. [M20] Suppose that each X[k] is taken at random from a set of M distinct
elements, so that each of the Mn possible choices for X[1], X[2], . . . , X[n] is considered
equally likely. What is the probability that all the X[k] will be distinct?

9. [M25] Generalize the result of the preceding exercise to Ąnd a formula for the
probability that exactly m distinct values occur among the XŠs. Express your answer
in terms of Stirling numbers.

10. [M20] Combine the results of the preceding three exercises to obtain a formula
for the probability that A = k under the assumption that each X is selected at random
from a set of M objects.

x 11. [M15] What happens to the semi-invariants of a distribution if we change G(z)
to F (z) = znG(z)?

12. [HM21] When G(z) = p0 + p1z+ p2z
2 + · · · represents a probability distribution,

the quantities Mn =

k k

npk and mn =

k(k−M1)npk are called the Şnth momentŤ

and Şnth central moment,Ť respectively. Show that G(et) = 1 +M1t+M2t
2/2! + · · · ;

then use ArbogastŠs formula (exercise 1.2.5Ű21) to show that

κn =

k1,k2,...,kn≥0

k1+2k2+··· =n

(−1)k1+k2+···+kn−1n! (k1 + k2 + · · ·+ kn − 1)!
k1! 1!k1k2! 2!k2 . . . kn!n!kn

Mk1

1 Mk2

2 . . .Mkn
n .

In particular, κ1 = M1, κ2 = M2−M2
1 (as we already knew), κ3 = M3−3M1M2 +2M3

1 ,
and κ4 = M4− 4M1M3 + 12M2

1M2− 3M2
2 − 6M4

1 . What are the analogous expressions
for κn in terms of the central moments m2, m3, . . . , when n ≥ 2?

13. [HM38] A sequence of probability generating functions Gn(z) with means µn and
deviations σn is said to approach a normal distribution if

lim
n→∞

e−itµn/σnGn(eit/σn) = e−t
2/2

for all real values of t. Using Gn(z) as given by Eq. (8), show that Gn(z) approaches
a normal distribution.

Note: ŞApproaching the normal distribution,Ť as deĄned here, can be shown to
be equivalent to the fact that

lim
n→∞

Pr

Xn − µn

σn
≤ x

=

1√
2π

 x

−∞
e−t

2/2 dt,

where Xn is a random quantity whose probabilities are speciĄed by Gn(z). This is
a special case of P. LévyŠs important Şcontinuity theorem,Ť a basic result in mathe-
matical probability theory. A proof of LévyŠs theorem would take us rather far aĄeld,
although it is not extremely difficult [for example, see Limit Distributions for Sums of
Independent Random Variables by B. V. Gnedenko and A. N. Kolmogorov, translated
by K. L. Chung (Reading, Mass.: AddisonŰWesley, 1954)].

106 BASIC CONCEPTS 1.2.10

14. [HM30] (A. de Moivre.) Using the conventions of the previous exercise, show that
the binomial distribution Gn(z) given by Eq. (18) approaches the normal distribution.

15. [HM23] When the probability that some quantity has the value k is e−µ(µk/k!),
it is said to have the Poisson distribution with mean µ.

a) What is the generating function for this set of probabilities?
b) What are the values of the semi-invariants?
c) Show that as n→∞ the Poisson distribution with mean np approaches the normal

distribution in the sense of exercise 13.

16. [M25] Suppose X is a random variable whose values are a mixture of the proba-
bility distributions generated by g1(z), g2(z), . . . , gr(z), in the sense that it uses gk(z)
with probability pk, where p1 + p2 + · · · + pr = 1. What is the generating function
for X? Express the mean and variance of X in terms of the means and variances of g1,
g2, . . . , gr.

x 17. [M27] Let f(z) and g(z) be generating functions that represent probability dis-
tributions.

a) Show that h(z) = g(f(z)) is also a generating function representing a probability
distribution.

b) Interpret the signiĄcance of h(z) in terms of f(z) and g(z). (What is the meaning

of the probabilities represented by the coefficients of h(z)?)
c) Give formulas for the mean and variance of h in terms of those for f and g.

18. [M28] Suppose that the values taken on by X[1], X[2], . . . , X[n] in Algorithm M
include exactly k1 ones, k2 twos, . . . , kn nŠs, arranged in random order. (Here

k1 + k2 + · · ·+ kn = n.

The assumption in the text is that k1 = k2 = · · · = kn = 1.) Show that in this
generalized situation, the generating function (8) becomes

knz

kn

kn−1z + kn
kn−1 + kn

kn−2z + kn−1 + kn
kn−2 + kn−1 + kn

. . .

k1z + k2 + · · ·+ kn
k1 + k2 + · · ·+ kn

z,

using the convention 0/0 = 1.

19. [M21] If ak > aj for 1 ≤ j < k, we say that ak is a left-to-right maximum of the
sequence a1 a2 . . . an. Suppose a1 a2 . . . an is a permutation of {1, 2, . . . , n}, and let
b1 b2 . . . bn be the inverse permutation, so that ak = l if and only if bl = k. Show that
ak is a left-to-right maximum of a1 a2 . . . an if and only if k is a right-to-left minimum
of b1 b2 . . . bn.

x 20. [M22] Suppose we want to calculate max{|a1 − b1|, |a2 − b2|, . . . , |an − bn|} when
b1 ≤ b2 ≤ · · · ≤ bn. Show that it is sufficient to calculate max{mL,mR}, where

mL = max{ak − bk | ak is a left-to-right maximum of a1a2 . . . an} ,
mR = max{bk − ak | ak is a right-to-left minimum of a1a2 . . . an} .

(Thus, if the aŠs are in random order, the number of kŠs for which a subtraction must
be performed is only about 2 lnn.)

x 21. [HM21] Let X be the number of heads that occur when a random coin is Ćipped
n times, with generating function (18). Use (25) to prove that

Pr(X ≥ n(p+ ϵ)) ≤ e−ϵ2n/(2q)

when ϵ ≥ 0, and obtain a similar estimate for Pr(X ≤ n(p− ϵ)).

1.2.11.1 THE O-NOTATION 107

x 22. [HM22] Suppose X has the generating function (q1 +p1z)(q2 +p2z) . . . (qn+pnz),
where pk + qk = 1 for 1 ≤ k ≤ n. Let µ = EX = p1 + p2 + · · ·+ pn. (a) Prove that

Pr(X ≤ µr) ≤ (r−rer−1)µ, when 0 < r ≤ 1;

Pr(X ≥ µr) ≤ (r−rer−1)µ, when r ≥ 1.

(b) Express the right-hand sides of these estimates in convenient form when r ≈ 1.
(c) Show that if r is sufficiently large we have Pr(X ≥ µr) ≤ 2−µr.

23. [HM23] Estimate the tail probabilities for a random variable that has the negative

binomial distribution generated by (q − pz)−n, where q = p+ 1.

*1.2.11. Asymptotic Representations

We often want to know a quantity approximately, instead of exactly, in order to
compare it to another. For example, StirlingŠs approximation to n! is a useful
representation of this type, when n is large, and we have also made use of the
fact that Hn ≈ lnn+ γ. The derivations of such asymptotic formulas generally
involve higher mathematics, although in the following subsections we will use
nothing more than elementary calculus to get the results we need.

*1.2.11.1. The O-notation. Paul Bachmann introduced a very convenient
notation for approximations in his book Analytische Zahlentheorie (1894). It is
the O-notation, which allows us to replace the Ş≈Ť sign by Ş=Ť and to quantify
the degree of accuracy; for example,

Hn = lnn+ γ +O
 1
n

. (1)

(Read, ŞH sub n equals the natural log of n plus EulerŠs constant [pronounced
ŚOilerŠs constantŠ] plus big-oh of one over n.Ť)

In general, the notation O

f(n)

may be used whenever f(n) is a function

of the positive integer n; it stands for a quantity that is not explicitly known,
except that its magnitude isnŠt too large. Every appearance of O

f(n)

means

precisely this: There are positive constants M and n0 such that the number xn
represented by O

f(n)

satisĄes the condition |xn| ≤ M |f(n)|, for all integers

n ≥ n0. We do not say what the constants M and n0 are, and indeed those
constants are usually different for each appearance of O.

For example, Eq. (1) means that |Hn − lnn− γ| ≤ M/n when n ≥ n0.
Although the constantsM and n0 are not stated, we can be sure that the quantity
O(1/n) will be arbitrarily small if n is large enough.

LetŠs look at some more examples. We know that

12 + 22 + · · ·+ n2 = 1
3n(n+ 1

2)(n+ 1) = 1
3n

3 + 1
2n

2 + 1
6n;

so it follows that

12 + 22 + · · ·+ n2 = O(n4), (2)

12 + 22 + · · ·+ n2 = O(n3), (3)

12 + 22 + · · ·+ n2 = 1
3n

3 +O(n2). (4)

108 BASIC CONCEPTS 1.2.11.1

Equation (2) is rather crude, but not incorrect; Eq. (3) is a stronger statement;
and Eq. (4) is stronger yet. To justify these equations we shall prove that if
P (n) = a0 + a1n + · · · + amn

m is any polynomial of degree m or less, then we
have P (n) = O(nm). This follows because

|P (n)| ≤ |a0|+ |a1|n+ · · ·+ |am|nm =

|a0| /nm + |a1| /nm−1 + · · ·+ |am|

nm

≤

|a0|+ |a1|+ · · ·+ |am|

nm,

when n ≥ 1. So we may take M = |a0| + |a1| + · · · + |am| and n0 = 1. Or we
could take, say, M = |a0|/2m + |a1|/2m−1 + · · ·+ |am| and n0 = 2.

The O-notation is a big help in approximation work, since it describes brieĆy
a concept that occurs often and it suppresses detailed information that is usually
irrelevant. Furthermore, it can be manipulated algebraically in familiar ways,
although certain important differences need to be kept in mind. The most impor-
tant consideration is the idea of one-way equalities: We write 1

2n
2 + n = O(n2),

but we never write O(n2) = 1
2n

2 + n. (Or else, since 1
4n

2 = O(n2), we might
come up with the absurd relation 1

4n
2 = 1

2n
2 +n.) We always use the convention

that the right-hand side of an equation does not give more information than the
left-hand side; the right-hand side is a ŞcrudiĄcationŤ of the left.

This convention about the use of Ş=Ť may be stated more precisely as
follows: Formulas that involve the O

f(n)

-notation may be regarded as sets

of functions of n. The symbol O

f(n)

stands for the set of all functions g of

integers such that there exist constants M and n0 with |g(n)| ≤ M |f(n)| for
all integers n ≥ n0. If S and T are sets of functions, then S + T denotes the
set {g + h | g ∈ S and h ∈ T}; we deĄne S + c, S − T, S · T, logS, etc., in a
similar way. If α(n) and β(n) are formulas that involve the O-notation, then
the notation α(n) = β(n) means that the set of functions denoted by α(n) is
contained in the set denoted by β(n).

Consequently we may perform most of the operations we are accustomed to
doing with the Ş=Ť sign: If α(n) = β(n) and β(n) = γ(n), then α(n) = γ(n).
Also, if α(n) = β(n) and if δ(n) is a formula resulting from the substitution of
β(n) for some occurrence of α(n) in a formula γ(n), then γ(n) = δ(n). These two
statements imply, for example, that if g(x1, x2, . . . , xm) is any real function what-
ever, and if αk(n) = βk(n) for 1 ≤ k ≤ m, then g

α1(n), α2(n), . . . , αm(n)

=

g

β1(n), β2(n), . . . , βm(n)

.

Here are some of the simple operations we can do with the O-notation:

f(n) = O

f(n)

, (5)

c ·O

f(n)

= O

f(n)

, if c is a constant, (6)

O

f(n)

+O

f(n)

= O

f(n)

, (7)

O

O(f(n))

= O

f(n)

, (8)

O

f(n)

O

g(n)

= O

f(n)g(n)

, (9)

O

f(n)g(n)

= f(n)O

g(n)

. (10)

1.2.11.1 THE O-NOTATION 109

TheO-notation is also frequently used with functions of a complex variable z,
in the neighborhood of z = 0. We write O

f(z)

to stand for any quantity g(z)

such that |g(z)| ≤M |f(z)| whenever |z| < r. (As before, M and r are unspeciĄed
constants, although we could specify them if we wanted to.) The context of O-
notation should always identify the variable that is involved and the range of
that variable. When the variable is called n, we implicitly assume that O

f(n)

refers to functions of a large integer n; when the variable is called z, we implicitly
assume that O

f(z)

refers to functions of a small complex number z.

Suppose that g(z) is a function given by an inĄnite power series

g(z) =

k≥0

akz
k

that converges for z = z0. Then the sum of absolute values

k≥0 |akzk| also
converges whenever |z| < |z0|. If z0 ̸= 0, we can therefore always write

g(z) = a0 + a1z + · · ·+ amz
m +O(zm+1). (11)

For we have g(z) = a0 +a1z+ · · ·+amz
m + zm+1(am+1 +am+2z+ · · ·); we need

only show that the parenthesized quantity is bounded when |z| ≤ r, for some
positive r, and it is easy to see that |am+1| + |am+2| r + |am+3| r2 + · · · is an
upper bound whenever |z| ≤ r < |z0|.

For example, the generating functions listed in Section 1.2.9 give us many
important asymptotic formulas valid when z is sufficiently small, including

ez = 1 + z +
1
2!
z2 + · · ·+ 1

m!
zm +O(zm+1), (12)

ln(1 + z) = z − 1
2
z2 + · · ·+ (−1)m+1

m
zm +O(zm+1), (13)

(1 + z)α = 1 + αz +

α

2

z2 + · · ·+

α

m

zm +O(zm+1), (14)

1
1− z ln

1
1− z = z +H2z

2 + · · ·+Hmz
m +O(zm+1), (15)

for all nonnegative integers m. It is important to note that the hidden constants
M and r implied by any particular O are related to each other. For example,
the function ez is obviously O(1) when |z| ≤ r, for any Ąxed r, since |ez| ≤ e|z|;
but there is no constant M such that |ez| ≤M for all values of z. Therefore we
need to use larger and larger bounds M as the range r increases.

Sometimes an asymptotic series is correct although it does not correspond
to a convergent inĄnite series. For example, the basic formulas that express
factorial powers in terms of ordinary powers,

nr =
m

k=0

r

r − k

nr−k +O(nr−m−1), (16)

nr =
m

k=0

(−1)k

r

r − k

nr−k +O(nr−m−1), (17)

110 BASIC CONCEPTS 1.2.11.1

are asymptotically valid for any real r and any Ąxed integer m ≥ 0, yet the sum
∞

k=0

1/2

1/2− k

n1/2−k

diverges for all n. (See exercise 12.) Of course, when r is a nonnegative integer,
nr and nr are simply polynomials of degree r, and (17) is essentially the same
as 1.2.6Ű(44). When r is a negative integer and |n| > |r|, the inĄnite sum∞

k=0

r

r−k

nr−k does converge to nr = 1/(n−1)−r; this sum can also be written

in the more natural form
∞

k=0

k−r
−r

nr−k, using Eq. 1.2.6Ű(58).

Let us give one simple example of the concepts we have introduced so far.
Consider the quantity n

√
n; as n gets large, the operation of taking an nth root

tends to decrease the value, but it is not immediately obvious whether n
√
n

decreases or increases. It turns out that n
√
n decreases to unity. Let us consider

the slightly more complicated quantity n(n
√
n − 1). Now (n

√
n − 1) gets smaller

as n gets bigger; what happens to n(n
√
n− 1)?

This problem is easily solved by applying the formulas above. We have
n
√
n = eln n/n = 1 + (lnn/n) +O

(lnn/n)2

, (18)

because lnn/n→ 0 as n→∞; see exercises 8 and 11. This equation proves our
previous contention that n

√
n→ 1. Furthermore, it tells us that

n(n
√
n− 1) = n

lnn/n+O((lnn/n)2)

= lnn+O

(lnn)2/n

. (19)

In other words, n(n
√
n − 1) is approximately equal to lnn; the difference is

O

(lnn)2/n

, which approaches zero as n approaches inĄnity.

People often abuse O-notation by assuming that it gives an exact order of
growth; they use it as if it speciĄes a lower bound as well as an upper bound. For
example, an algorithm to sort n numbers might be called inefficient Şbecause its
running time is O(n2).Ť But a running time of O(n2) does not necessarily imply
that the running time is not also O(n). ThereŠs another notation, Big Omega,
for lower bounds: The statement

g(n) = Ω

f(n)

(20)

means that there are positive constants L and n0 such that
g(n)

 ≥ L
f(n)

 for all n ≥ n0.

Using this notation we can correctly conclude that a sorting algorithm whose
running time is Ω(n2) will not be as efficient as one whose running time is
O(n logn), if n is large enough. However, without knowing the constant factors
implied by O and Ω, we cannot say anything about how large n must be before
the O(n logn) method will begin to win.

Finally, if we want to state an exact order of growth without being precise
about constant factors, we can use Big Theta:

g(n) = Θ

f(n)

⇐⇒ g(n) = O

f(n)

and g(n) = Ω

f(n)

. (21)

1.2.11.2 EULERŠS SUMMATION FORMULA 111

EXERCISES

1. [HM01] What is limn→∞O(n−1/3)?

x 2. [M10] Mr. B. C. Dull obtained astonishing results by using the Şself-evidentŤ
formula O(f(n)) − O(f(n)) = 0. What was his mistake, and what should the right-
hand side of his formula have been?

3. [M15] Multiply (lnn+ γ +O(1/n)) by (n+O(
√
n)), and express your answer in

O-notation.

x 4. [M15] Give an asymptotic expansion of n(n√a− 1), if a > 0, to terms O(1/n3).

5. [M20] Prove or disprove: O(f(n) + g(n)) = f(n) +O(g(n)), if f(n) and g(n) are
positive for all n. (Compare with (10).)

x 6. [M20] What is wrong with the following argument? ŞSince n = O(n), and 2n =
O(n), . . . , we have

n

k=1

kn =
n

k=1

O(n) = O(n2).Ť

7. [HM15] Prove that if m is any integer, there is no M such that ex ≤ Mxm for
arbitrarily large values of x.

8. [HM20] Prove that as n→∞, (lnn)m/n→ 0.

9. [HM20] Show that eO(zm) = 1 +O(zm), for all Ąxed m ≥ 0.

10. [HM22] Make a statement similar to that in exercise 9 about ln(1 +O(zm)).

x 11. [M11] Explain why Eq. (18) is true.

12. [HM25] Prove that

1/2
1/2−k

n−k does not approach zero as k →∞ for any integer n,

using the fact that

1/2
1/2−k

= (− 1

2
)k [zk] (zez/(ez − 1))1/2.

x 13. [M10] Prove or disprove: g(n) = Ω(f(n)) if and only if f(n) = O(g(n)).

*1.2.11.2. EulerŠs summation formula. One of the most useful ways to obtain
good approximations to a sum is an approach due to Leonhard Euler. His method
approximates a Ąnite sum by an integral, and gives us a means to get better
and better approximations in many cases. [Commentarii Academiæ Scientiarum
Imperialis Petropolitanæ 6 (1732), 68Ű97.]

1 2 3 4 5 6 7

Fig. 12. Comparing a sum with an integral.

Figure 12 shows a comparison of
 n

1
f(x) dx and

n−1
k=1 f(k), when n = 7.

EulerŠs strategy leads to a useful formula for the difference between these two
quantities, assuming that f(x) is a differentiable function.

112 BASIC CONCEPTS 1.2.11.2

For convenience we shall use the notation

{x} = xmod 1 = x− ⌊x⌋. (1)

Our derivation starts with the following identity:
 k+1

k

{x} − 1

2

f ′(x) dx = (x− k − 1

2)f(x)
k+1

k
−
 k+1

k

f(x) dx

= 1
2

f(k + 1) + f(k)

−
 k+1

k

f(x) dx. (2)

(This follows from integration by parts.) Adding both sides of this equation for
1 ≤ k < n, we Ąnd that

 n

1

{x} − 1

2

f ′(x) dx =

1≤k<n

f(k) + 1
2

f(n)− f(1)

−
 n

1

f(x) dx;

that is,

1≤k<n

f(k) =
 n

1

f(x) dx− 1
2

f(n)− f(1)

+
 n

1

B1({x})f ′(x) dx, (3)

where B1(x) is the polynomial x− 1
2 . This is the desired connection between the

sum and the integral.
The approximation can be carried further if we continue to integrate by

parts. Before doing this, however, we shall discuss the Bernoulli numbers, which
are the coefficients in the following inĄnite series:

z

ez − 1
= B0 +B1z +

B2z
2

2!
+ · · · =

k≥0

Bkz
k

k!
. (4)

The coefficients of this series, which occur in a wide variety of problems, were
introduced to European mathematicians in James BernoulliŠs Ars Conjectandi,
published posthumously in 1713. Curiously, they were also discovered at about
the same time by Takakazu Seki in Japan Ů and Ąrst published in 1712, shortly
after his death. [See Takakazu SekiŠs Collected Works (Osaka: 1974), 39Ű42.]

We have

B0 = 1, B1 = − 1
2 , B2 = 1

6 , B3 = 0, B4 = − 1
30 ; (5)

further values appear in Appendix A. Since

z

ez − 1
+
z

2
=
z

2
ez + 1
ez − 1

= −z
2
e−z + 1
e−z − 1

is an even function, we see that

B3 = B5 = B7 = B9 = · · · = 0. (6)

1.2.11.2 EULERŠS SUMMATION FORMULA 113

If we multiply both sides of the deĄning equation (4) by ez − 1, and equate
coefficients of equal powers of z, we obtain the formula

k

n

k

Bk = Bn + δn1. (7)

(See exercise 1.) We now deĄne the Bernoulli polynomial

Bm(x) =

k

m

k

Bkx

m−k. (8)

If m = 1, then B1(x) = B0x + B1 = x − 1
2 , corresponding to the polynomial

used above in Eq. (3). If m > 1, we have Bm(1) = Bm = Bm(0), by (7); in other
words, Bm({x}) has no discontinuities at integer points x.

The relevance of Bernoulli polynomials and Bernoulli numbers to our prob-
lem will soon be clear. We Ąnd by differentiating Eq. (8) that

B′
m(x) =

k

m

k

(m− k)Bkx

m−k−1

= m

k

m− 1
k

Bkx

m−1−k

= mBm−1(x), (9)

and therefore when m ≥ 1, we can integrate by parts as follows:

1
m!

 n

1

Bm({x})f (m)(x) dx =
1

(m+ 1)!

Bm+1(1)f (m)(n)−Bm+1(0)f (m)(1)

− 1
(m+ 1)!

 n

1

Bm+1({x})f (m+1)(x) dx.

From this result we can continue to improve the approximation, Eq. (3), and we
obtain EulerŠs general formula:

1≤k<n

f(k) =
 n

1

f(x) dx− 1
2

f(n)− f(1)

+
B2

2!

f ′(n)− f ′(1)

+ · · ·

+
(−1)mBm

m!

f (m−1)(n)− f (m−1)(1)

+Rmn

=
 n

1

f(x) dx+
m

k=1

Bk

k!

f (k−1)(n)− f (k−1)(1)

+Rmn, (10)

using (6), where

Rmn =
(−1)m+1

m!

 n

1

Bm({x})f (m)(x) dx. (11)

The remainder Rmn will be small when Bm({x})f (m)(x)/m! is very small, and
in fact, one can show that

Bm({x})

m!

 ≤
|Bm|
m!

<
4

(2π)m
(12)

114 BASIC CONCEPTS 1.2.11.2

when m is even. [See CMath, §9.5.] On the other hand, it usually turns out that
the magnitude of f (m)(x) gets large as m increases, so there is a ŞbestŤ value of
m at which |Rmn| has its least value when n is given.

It is known that, when m is even, there is a number θ such that

Rmn = θ
Bm+2

(m+ 2)!

f (m+1)(n)− f (m+1)(1)

, 0 < θ < 1, (13)

provided that f (m+2)(x) f (m+4)(x) > 0 for 1 < x < n. So in these circumstances
the remainder has the same sign as, and is less in absolute value than, the Ąrst
discarded term. A simpler version of this result is proved in exercise 3.

Let us now apply EulerŠs formula to some important examples. First, we
set f(x) = 1/x. The derivatives are f (m)(x) = (−1)mm!/xm+1, so we have, by
Eq. (10),

Hn−1 = lnn+
m

k=1

Bk

k
(−1)k−1

 1
nk
− 1

+Rmn. (14)

Now we Ąnd

γ = lim
n→∞

(Hn−1 − lnn) =
m

k=1

Bk

k
(−1)k + lim

n→∞
Rmn. (15)

The fact that limn→∞Rmn = −
∞

1
Bm({x}) dx/xm+1 exists proves that the

constant γ does in fact exist. We can therefore put Eqs. (14) and (15) together,
to deduce a general approximation for the harmonic numbers:

Hn−1 = lnn+ γ +
m

k=1

(−1)k−1Bk

knk
+
 ∞

n

Bm({x}) dx
xm+1

= lnn+ γ +
m−1

k=1

(−1)k−1Bk

knk
+O

 1
nm

.

Replacing m by m+ 1 yields

Hn−1 = lnn+ γ +
m

k=1

(−1)k−1Bk

knk
+O

 1
nm+1

. (16)

Furthermore, by Eq. (13) we see that the error is less than the Ąrst term
discarded. As a particular case we have (adding 1/n to both sides)

Hn = lnn+ γ +
1

2n
− 1

12n2
+

1
120n4

− ϵ, 0 < ϵ <
B6

6n6
=

1
252n6

.

This is Eq. 1.2.7Ű(3). The Bernoulli numbers Bk for large k get very large
(approximately (−1)1+k/22

k!/(2π)k

when k is even), so Eq. (16) cannot be

extended to a convergent inĄnite series for any Ąxed value of n.

1.2.11.2 EULERŠS SUMMATION FORMULA 115

The same technique can be applied to deduce StirlingŠs approximation. This
time we set f(x) = ln x, and Eq. (10) yields

ln(n− 1)! = n lnn− n+ 1− 1
2 lnn+

1<k≤m

Bk(−1)k

k(k − 1)

 1
nk−1

− 1

+Rmn. (17)

Proceeding as above, we Ąnd that the limit

lim
n→∞

(lnn!− n lnn+ n− 1
2 lnn) = 1 +

1<k≤m

Bk(−1)k+1

k(k − 1)
+ lim

n→∞
Rmn

exists; let it be called σ (ŞStirlingŠs constantŤ) temporarily. We get StirlingŠs
result

lnn! = (n+ 1
2) lnn− n+ σ +

1<k≤m

Bk(−1)k

k(k − 1)nk−1
+O

 1
nm

. (18)

In particular, let m = 5; we have

lnn! = (n+ 1
2) lnn− n+ σ +

1
12n
− 1

360n3
+O

 1
n5

.

Now we can take the exponential of both sides:

n! = eσ
√
n

n

e

n
exp

1

12n
− 1

360n3
+O

 1
n5

.

Using the fact that eσ =
√

2π (see exercise 5), and expanding the exponential,
we get our Ąnal result:

n! =
√

2πn

n

e

n
1 +

1
12n

+
1

288n2
− 139

51840n3
− 571

2488320n4
+O
 1
n5

. (19)

EXERCISES

1. [M18] Prove Eq. (7).

2. [HM20] Note that Eq. (9) follows from Eq. (8) for any sequence Bn, not only for
the sequence deĄned by Eq. (4). Explain why the latter sequence is necessary for the
validity of Eq. (10).

3. [HM20] Let Cmn = (Bm/m!)(f (m−1)(n)−f (m−1)(1)) be the mth correction term
in EulerŠs summation formula. Assuming that f (m)(x) has a constant sign for all x in
the range 1 ≤ x ≤ n, prove that |Rmn| ≤ |Cmn| when m = 2k > 0; in other words,
show that the remainder is not larger in absolute value than the last term computed.

x 4. [HM20] (Sums of powers.) When f(x) = xm, the high-order derivatives of f are
all zero, so EulerŠs summation formula gives an exact value for the sum

Sm(n) =

0≤k<n
km

in terms of Bernoulli numbers. (It was the study of Sm(n) for m = 1, 2, 3, . . . that
led Bernoulli and Seki to discover those numbers in the Ąrst place.) Express Sm(n) in
terms of Bernoulli polynomials. Check your answer for m = 0, 1, and 2. (Note that
the desired sum is performed for 0 ≤ k < n instead of 1 ≤ k < n; EulerŠs summation
formula may be applied with 0 replacing 1 throughout.)

116 BASIC CONCEPTS 1.2.11.2

5. [HM30] Given that

n! = κ
√
n

n

e

n
1 +O

 1
n

,

show that κ =
√

2π by using WallisŠs product (exercise 1.2.5Ű18). [Hint: Consider

2n
n

for large values of n.]
x 6. [HM30] Show that StirlingŠs approximation holds for noninteger n as well:

Γ (x+ 1) =
√

2πx

x

e

x
1 +O

 1
x

, x ≥ a > 0.

[Hint: Let f(x) = ln(x+ c) in EulerŠs summation formula, and apply the deĄnition of
Γ (x) given in Section 1.2.5.]

x 7. [HM32] What is the approximate value of 112233 . . . nn?
8. [M23] Find the asymptotic value of ln (an2+bn)! with absolute error O(n−2). Use

it to compute the asymptotic value of

cn2

n

/(cn

n2

n

) with relative error O(n−2), when

c is a positive constant. Here absolute error ϵ means that (truth) = (approximation)+ϵ;
relative error ϵ means that (truth) = (approximation)(1 + ϵ).

x 9. [M25] Find the asymptotic value of

2n
n

with a relative error of O(n−3), in two

ways: (a) via StirlingŠs approximation; (b) via exercise 1.2.6Ű47 and Eq. 1.2.11.1Ű(16).

*1.2.11.3. Some asymptotic calculations. In this subsection we shall inves-
tigate the following three intriguing sums, in order to deduce their approximate
values:

P (n) = 1 +
n− 1
n

+
n− 2
n

n− 2
n− 1

+ · · · =
n

k=0

(n− k)k(n− k)!
n!

, (1)

Q(n) = 1 +
n− 1
n

+
n− 1
n

n− 2
n

+ · · · =
n

k=1

n!
(n− k)!nk

, (2)

R(n) = 1 +
n

n+ 1
+

n

n+ 1
n

n+ 2
+ · · · =

k≥0

n!nk

(n+ k)!
. (3)

These functions, which are similar in appearance yet intrinsically different, arise
in several algorithms that we shall encounter later. Both P (n) and Q(n) are
Ąnite sums, while R(n) is an inĄnite sum. It seems that when n is large, all
three sums will be nearly equal, although it is not obvious what the approximate
value of any of them will be. Our quest for approximate values of these functions
will lead us through a number of very instructive side results. (You may wish to
stop reading temporarily and try your hand at studying these functions before
going on to see how they are attacked here.)

First, we observe an important connection between Q(n) and R(n):

Q(n) +R(n) =
n!
nn

1 + n+ · · ·+ nn−1

(n− 1)!

+

nn

n!
+

nn+1

(n+ 1)!
+ · · ·

=
n! en

nn
. (4)

1.2.11.3 SOME ASYMPTOTIC CALCULATIONS 117

StirlingŠs formula tells us that n! en/nn is approximately
√

2πn, so we can guess
that Q(n) and R(n) will each turn out to be roughly equal to

πn/2.

To get any further we must consider the partial sums of the series for en.
By using TaylorŠs formula with remainder,

f(x) = f(0) + f ′(0)x+ · · ·+ f (n)(0)xn

n!
+
 x

0

tn

n!
f (n+1)(x− t) dt, (5)

we are soon led to an important function known as the incomplete gamma
function:

γ(a, x) =
 x

0

e−tta−1 dt. (6)

We shall assume that a > 0. By exercise 1.2.5Ű20, we have γ(a,∞) = Γ (a); this
accounts for the name Şincomplete gamma function.Ť It has two useful series
expansions in powers of x (see exercises 2 and 3):

γ(a, x) =
xa

a
− xa+1

a+1
+

xa+2

2! (a+2)
− · · · =

k≥0

(−1)kxk+a

k! (k+a)
, (7)

exγ(a, x) =
xa

a
+

xa+1

a(a+1)
+

xa+2

a(a+1)(a+2)
+ · · · =

k≥0

xk+a

a(a+1) . . . (a+k)
. (8)

From the second formula we see the connection with R(n):

R(n) =
n! en

nn

γ(n, n)
(n− 1)!

. (9)

This equation has purposely been written in a more complicated form than
necessary, since γ(n, n) is a fraction of γ(n,∞) = Γ (n) = (n− 1)!, and n! en/nn

is the quantity in (4).
The problem boils down to getting good estimates of γ(n, n)/(n − 1)!. We

shall now determine the approximate value of γ(x+ 1, x+ y)/Γ (x+ 1), when y
is Ąxed and x is large. The methods to be used here are more important than
the results, so the reader should study the following derivation carefully.

By deĄnition, we have

γ(x+ 1, x+ y)
Γ (x+ 1)

=
1

Γ (x+ 1)

 x+y

0

e−ttx dt

= 1− 1
Γ (x+ 1)

 ∞

x

e−ttx dt+
1

Γ (x+ 1)

 x+y

x

e−ttx dt. (10)

Let us set

I1 =
 ∞

x

e−ttx dt,

I2 =
 x+y

x

e−ttx dt,

and consider each integral in turn.

118 BASIC CONCEPTS 1.2.11.3

Estimate of I1: We convert I1 to an integral from 0 to inĄnity by substituting
t = x(1 + u); we further substitute v = u − ln(1 + u), dv =

1 − 1/(1 + u)

du,

which is legitimate since v is a monotone function of u:

I1 = e−xxx
 ∞

0

xe−xu(1 + u)x du = e−xxx
 ∞

0

xe−xv

1 +
1
u

dv. (11)

In the last integral we will replace 1 + 1/u by a power series in v. We have

v = 1
2u

2 − 1
3u

3 + 1
4u

4 − 1
5u

5 + · · · = (u2/2)(1− 2
3u+ 1

2u
2 − 2

5u
3 + · · ·).

Setting w =
√

2v, we have therefore

w = u(1− 2
3u+ 1

2u
2− 2

5u
3 + · · ·)1/2 = u− 1

3u
2 + 7

36u
3− 73

540u
4 + 1331

12960u
5 +O(u6).

(This expansion may be obtained by the binomial theorem; efficient methods for
performing such transformations, and for doing the other power series manipu-
lations needed below, are considered in Section 4.7.) We can now solve for u as
a power series in w:

u = w +
1
3
w2 +

1
36
w3 − 1

270
w4 +

1
4320

w5 +O(w6);

1 +
1
u

= 1 +
1
w
− 1

3
+

1
12
w − 2

135
w2 +

1
864

w3 +O(w4)

=
1√
2
v−1/2 +

2
3

+

√
2

12
v1/2 − 4

135
v +

√
2

432
v3/2 +O(v2). (12)

In all of these formulas, the O-notation refers to small values of the argu-
ment, that is, |u| ≤ r, |v| ≤ r, |w| ≤ r for sufficiently small positive r. Is this
good enough? The substitution of 1 + 1/u in terms of v in Eq. (11) is supposed
to be valid for 0 ≤ v < ∞, not only for |v| ≤ r. Fortunately, it turns out that
the value of the integral from 0 to ∞ depends almost entirely on the values of
the integrand near zero. In fact, we have (see exercise 4)

 ∞

r

xe−xv

1 +
1
u

dv = O(e−rx) (13)

for any Ąxed r > 0 and for large x. We are interested in an approximation up
to terms O(x−m), and since O

(1/er)x

is much smaller than O(x−m) for any

positive r and m, we need integrate only from 0 to r, for any Ąxed positive r. We
therefore take r to be small enough so that all the power series manipulations
done above are justiĄed

see Eqs. 1.2.11.1Ű(11) and 1.2.11.3Ű(13)

.

Now
 ∞

0

xe−xvvα dv =
1
xα

 ∞

0

e−qqα dq =
1
xα
Γ (α+ 1), if α > −1; (14)

so by plugging the series (12) into the integral (11) we have Ąnally

I1 = e−xxx

π

2
x1/2 +

2
3

+

√
2π

24
x−1/2− 4

135
x−1 +

√
2π

576
x−3/2 +O(x−2)

. (15)

1.2.11.3 SOME ASYMPTOTIC CALCULATIONS 119

Estimate of I2: In the integral I2, we substitute t = u+ x and obtain

I2 = e−xxx
 y

0

e−u

1 +
u

x

x
du. (16)

Now

e−u

1 +
u

x

x
= exp

−u+ x ln

1 +

u

x

= exp

−u2

2x
+

u3

3x2
+O(x−3)

= 1− u2

2x
+

u4

8x2
+

u3

3x2
+O(x−3)

for 0 ≤ u ≤ y and large x. Therefore we Ąnd that

I2 = e−xxx

y − y3

6
x−1 +

y4

12
+
y5

40

x−2 +O(x−3)

. (17)

Finally, we analyze the coefficient e−xxx/Γ (x + 1) that appears when we
multiply Eqs. (15) and (17) by the factor 1/Γ (x + 1) in (10). By StirlingŠs
approximation, which is valid for the gamma function by exercise 1.2.11.2Ű6, we
have

e−xxx

Γ (x+ 1)
=
e−1/12x+O(x−3)

√
2πx

=
1√
2π
x−1/2 − 1

12
√

2π
x−3/2 +

1

288
√

2π
x−5/2 +O(x−7/2). (18)

And now the grand summing up: Equations (10), (15), (17), and (18) yield

Theorem A. For large values of x, and Ąxed y,

γ(x+ 1, x+ y)
Γ (x+ 1)

=
1
2

+

y − 2/3√

2π

x−1/2 +

1√
2π

 23
270
− y

12
− y3

6

x−3/2

+O(x−5/2). (19)

The method we have used shows how this approximation could be extended to
further powers of x as far as we please.

Theorem A can be used to obtain the approximate values of R(n) and Q(n),
by using Eqs. (4) and (9), but we shall defer that calculation until later. Let us
now turn to P (n), for which somewhat different methods seem to be required.
We have

P (n) =
n

k=0

kn−kk!
n!

=

√
2π
n!

n

k=0

kn+1/2e−k

1 +
1

12k
+O(k−2)

. (20)

Thus to get the values of P (n), we must study sums of the form

n

k=0

kn+1/2e−k.

120 BASIC CONCEPTS 1.2.11.3

Let f(x) = xn+1/2e−x and apply EulerŠs summation formula:
n

k=0

kn+1/2e−k =
 n

0

xn+1/2e−x dx+ 1
2n

n+1/2e−n + 1
24n

n−1/2e−n −R. (21)

A crude analysis of the remainder (see exercise 5) shows that R = O(nne−n);
and since the integral is an incomplete gamma function, we have

n

k=0

kn+1/2e−k = γ

n+ 3

2 , n

+ 1
2n

n+1/2e−n +O(nne−n). (22)

Our formula, Eq. (20), also requires an estimate of the sum
n

k=0

kn−1/2e−k =

0≤k≤n−1

k(n−1)+1/2e−k + nn−1/2e−n,

and this can also be obtained by Eq. (22).
We now have enough formulas at our disposal to determine the approximate

values of P (n), Q(n), and R(n), and it is only a matter of substituting and
multiplying, etc. In this process we shall have occasion to use the expansion

(n+ α)n+β = nn+βeα

1 + α

β − α

2

 1
n

+O(n−2)

, (23)

which is proved in exercise 6. The method of (21) yields only the Ąrst two terms
in the asymptotic series for P (n); further terms can be obtained by using the
instructive technique described in exercise 14.

The result of all these calculations gives us the desired asymptotic formulas:

P (n) =

πn

2
− 2

3
+

11
24

π

2n
+

4
135n

− 71
1152

π

2n3
+O(n−2), (24)

Q(n) =

πn

2
− 1

3
+

1
12

π

2n
− 4

135n
+

1
288

π

2n3
+O(n−2), (25)

R(n) =

πn

2
+

1
3

+
1
12

π

2n
+

4
135n

+
1

288

π

2n3
+O(n−2). (26)

The functions studied here have received only light treatment in the pub-
lished literature. The Ąrst term

πn/2 in the expansion of P (n) was given by

H. B. Demuth [Ph.D. thesis (Stanford University, October 1956), 67Ű68]. Using
this result, a table of P (n) for n ≤ 2000, and a good slide rule, the author
proceeded in 1963 to deduce the empirical estimate P (n) ≈

πn/2 − 0.6667 +

0.575/
√
n. It was natural to conjecture that 0.6667 was really an approximation

to 2/3, and that 0.575 would perhaps turn out to be an approximation to
γ = 0.57721 . . . (why not be optimistic?). Later, as this section was being
written, the correct expansion of P (n) was developed, and the conjecture 2/3
was veriĄed; for the other coefficient 0.575 we have not γ but 11

24

π/2 ≈ 0.5744.

This nicely conĄrms both the theory and the empirical estimates.

1.2.11.3 SOME ASYMPTOTIC CALCULATIONS 121

Formulas equivalent to the asymptotic values of Q(n) and R(n) were Ąrst
determined by the brilliant self-taught Indian mathematician S. Ramanujan,
who posed the problem of estimating n! en/2nn − Q(n) in J. Indian Math. Soc.
3 (1911), 128; 4 (1912), 151Ű152. In his answer to the problem, he gave the
asymptotic series 1

3 + 4
135n

−1− 8
2835n

−2− 16
8505n

−3 + · · · , which goes considerably
beyond Eq. (25). His derivation was somewhat more elegant than the method
described above; to estimate I1, he substituted t = x + u

√
2x, and expressed

the integrand as a sum of terms of the form cjk
∞

0
exp(−u2)ujx−k/2 du. The

integral I2 can be avoided completely, since aγ(a, x) = xae−x +γ(a+ 1, x) when
a > 0; see (8). An even simpler approach to the asymptotics of Q(n), perhaps
the simplest possible, appears in exercise 20. The derivation we have used,
which is instructive in spite of its unnecessary complications, is due to R. Furch
[Zeitschrift für Physik 112 (1939), 92Ű95], who was primarily interested in the
value of y that makes γ(x+ 1, x+ y) = Γ (x+ 1)/2. The asymptotic properties
of the incomplete gamma function were later extended to complex arguments by
F. G. Tricomi [Math. Zeitschrift 53 (1950), 136Ű148]. See also N. M. Temme,
Math. Comp. 29 (1975), 1109Ű1114; SIAM J. Math. Anal. 10 (1979), 757Ű766.
H. W. Gould has listed references to several other investigations of Q(n) in AMM
75 (1968), 1019Ű1021.

Our derivations of the asymptotic series for P (n), Q(n), and R(n) use only
simple techniques of elementary calculus; notice that we have used different
methods for each function! Actually we could have solved all three problems
using the techniques of exercise 14, which are explained further in Sections 5.1.4
and 5.2.2. That would have been more elegant but less instructive.

For additional information, interested readers should consult the beautiful
book Asymptotic Methods in Analysis by N. G. de Bruijn (Amsterdam: North-
Holland, 1958). See also the more recent survey by A. M. Odlyzko [Handbook
of Combinatorics 2 (MIT Press, 1995), 1063Ű1229], which includes 65 detailed
examples and an extensive bibliography.

EXERCISES

1. [HM20] Prove Eq. (5) by induction on n.

2. [HM20] Obtain Eq. (7) from Eq. (6).

3. [M20] Derive Eq. (8) from Eq. (7).

x 4. [HM10] Prove Eq. (13).

5. [HM24] Show that R in Eq. (21) is O(nne−n).

x 6. [HM20] Prove Eq. (23).

x 7. [HM30] In the evaluation of I2, we had to consider
 y

0

e−u

1 +
u

x

x
du. Give an

asymptotic representation of

 yx1/4

0

e−u

1 +
u

x

x
du

to terms of order O(x−2), when y is Ąxed and x is large.

122 BASIC CONCEPTS 1.2.11.3

8. [HM30] If f(x) = O(xr) as x→∞ and 0 ≤ r < 1, show that
 f(x)

0

e−u

1 +
u

x

x
du =

 f(x)

0

exp
−u2

2x
+

u3

3x2
− · · ·+ (−1)m−1um

mxm−1

du+O(x−s)

if m = ⌈(s + 2r)/(1 − r)⌉. [This proves in particular a result due to Tricomi: If
f(x) = O(

√
x), then

 f(x)

0

e−u

1 +
u

x

x
du =

√
2x

 f(x)/
√

2x

0

e−t
2

dt+O(1).]

x 9. [HM36] What is the behavior of γ(x + 1, px)/Γ (x + 1) for large x? (Here p is a
real constant; and if p < 0, we assume that x is an integer, so that tx is well deĄned for
negative t.) Obtain at least two terms of the asymptotic expansion, before resorting
to O-terms.

10. [HM34] Under the assumptions of the preceding problem, with p ̸= 1, obtain the
asymptotic expansion of γ(x+ 1, px+ py/(p− 1))− γ(x+ 1, px), for Ąxed y, to terms
of the same order as obtained in the previous exercise.

x 11. [HM35] Let us generalize the functions Q(n) and R(n) by introducing a parame-
ter x:

Qx(n) = 1 +
n− 1
n

x+
n− 1
n

n− 2
n

x2 + · · · ,

Rx(n) = 1 +
n

n+ 1
x+

n

n+ 1
n

n+ 2
x2 + · · · .

Explore this situation and Ąnd asymptotic formulas when x ̸= 1.

12. [HM20] The function
 x

0
e−t

2/2 dt that appeared in connection with the normal
distribution (see Section 1.2.10) can be expressed as a special case of the incomplete
gamma function. Find values of a, b, and y such that bγ(a, y) equals

 x
0
e−t

2/2 dt.

13. [HM42] (S. Ramanujan.) Prove that R(n) − Q(n) = 2
3

+ 8/(135(n + θ(n))),
where 2

21
≤ θ(n) ≤ 8

45
. (This implies the much weaker result R(n + 1) − Q(n + 1) <

R(n)−Q(n).)

x 14. [HM39] (N. G. de Bruijn.) The purpose of this exercise is to Ąnd the asymptotic
expansion of

n
k=0 k

n+αe−k for Ąxed α, as n→∞.

a) Replacing k by n−k, show that the given sum equals nn+αe−n
n
k=0 e

−k2/2nf(k, n),
where

f(k, n) =

1− k

n

α
exp

− k3

3n2
− k4

4n3
− · · ·

.

b) Show that for all m ≥ 0 and ϵ > 0, the quantity f(k, n) can be written in the form

0≤i≤j≤m
cijk

2i+jn−i−j +O(n(m+1)(−1/2+3ϵ)), if 0 ≤ k ≤ n1/2+ϵ.

c) Prove that as a consequence of (b), we have

n

k=0

e−k
2/2nf(k, n) =

0≤i≤j≤m
cijn

−i−j

k≥0

k2i+je−k
2/2n +O(n−m/2+δ),

for all δ > 0. [Hint: The sums over the range n1/2+ϵ < k < ∞ are O(n−r) for
all r.]

1.2.11.3 SOME ASYMPTOTIC CALCULATIONS 123

d) Show that the asymptotic expansion of

k≥0 k

te−k
2/2n for Ąxed t ≥ 0 can be

obtained by EulerŠs summation formula.
e) Finally therefore
n

k=0

kn+αe−k = nn+αe−n

πn

2
− 1

6
− α+

 1
12

+
1
2
α+

1
2
α2

π

2n
+O(n−1)

;

this computation can in principle be extended to O(n−r) for any desired r.

15. [HM20] Show that the following integral is related to Q(n):
 ∞

0

1 +

z

n

n
e−z dz.

16. [M24] Prove the identity

k

(−1)k

n

k

kn−1Q(k) = (−1)n(n− 1)!, when n > 0.

17. [HM29] (K. W. Miller.) Symmetry demands that we consider also a fourth series,
which is to P (n) as R(n) is to Q(n):

S(n) = 1 +
n

n+ 1
+

n

n+ 2
n+ 1
n+ 2

+ · · · =

k≥0

(n+ k − 1)!
(n− 1)! (n+ k)k

.

What is the asymptotic behavior of this function?

18. [M25] Show that the sums

n
k

kk(n− k)n−k and

n
k

(k+ 1)k(n− k)n−k can

be expressed very simply in terms of the Q function.

19. [HM30] (WatsonŠs lemma.) Show that if the integral Cn =
∞

0
e−nxf(x) dx exists

for all large n, and if f(x) = O(xα) for 0 ≤ x ≤ r, where r > 0 and α > −1, then
Cn = O(n−1−α).

x 20. [HM30] Let u = w+ 1
3
w2 + 1

36
w3− 1

270
w4 + · · · = ∞

k=1 ckw
k be the power series

solution to the equation w = (u2 − 2
3
u3 + 2

4
u4 − 2

5
u5 + · · ·)1/2, as in (12). Show that

Q(n) + 1 =
m−1

k=1

kckΓ (k/2)

n

2

1−k/2

+O(n1−m/2)

for all m ≥ 1. [Hint: Apply WatsonŠs lemma to the identity of exercise 15.]

I feel as if I should succeed in doing something in mathematics,

although I cannot see why it is so very important.

— HELEN KELLER (1898)

124 BASIC CONCEPTS 1.3

1.3. MIX

In many places throughout this book we will have occasion to refer to a com-
puterŠs internal machine language. The machine we use is a mythical computer
called ŞMIX.Ť MIX is very much like nearly every computer of the 1960s and
1970s, except that it is, perhaps, nicer. The language of MIX has been designed
to be powerful enough to allow brief programs to be written for most algorithms,
yet simple enough so that its operations are easily learned.

The reader is urged to study this section carefully, since MIX language
appears in so many parts of this book. There should be no hesitation about
learning a machine language; indeed, the author once found it not uncommon to
be writing programs in a half dozen different machine languages during the same
week! Everyone with more than a casual interest in computers will probably get
to know at least one machine language sooner or later. MIX has been specially
designed to preserve the simplest aspects of historic computers, so that its
characteristics are easy to assimilate.

However, it must be admitted that MIX is now quite obsolete. Therefore
MIX will be replaced in subsequent editions of this book by a new machine

called MMIX, the 2009. MMIX will be a so-called reduced instruction set computer
(RISC), which will do arithmetic on 64-bit words. It will be even nicer than MIX,
and it will be similar to machines that have become dominant during the 1990s.

The task of converting everything in this book from MIX to MMIX will take a
long time; volunteers are solicited to help with that conversion process. Mean-
while, the author hopes that people will be content to live for a few more years
with the old-fashioned MIX architecture Ů which is still worth knowing, because
it helps to provide a context for subsequent developments.

1.3.1. Description of MIX

MIX is the worldŠs Ąrst polyunsaturated computer. Like most machines, it has
an identifying number Ů the 1009. This number was found by taking 16 actual
computers very similar to MIX and on which MIX could easily be simulated, then
averaging their numbers with equal weight:

(360 + 650 + 709 + 7070 + U3 + SS80 + 1107 + 1604 + G20 + B220

+ S2000 + 920 + 601 + H800 + PDP-4 + II)/16

= 1009. (1)

The same number may also be obtained in a simpler way by taking Roman
numerals.

MIX has a peculiar property in that it is both binary and decimal at the same
time. MIX programmers donŠt actually know whether they are programming a
machine with base 2 or base 10 arithmetic. Therefore algorithms written in
MIX can be used on either type of machine with little change, and MIX can be
simulated easily on either type of machine. Programmers who are accustomed
to a binary machine can think of MIX as binary; those accustomed to decimal
may regard MIX as decimal. Programmers from another planet might choose to
think of MIX as a ternary computer.

1.3.1 DESCRIPTION OF MIX 125

Words. The basic unit of MIX data is a byte. Each byte contains an unspeciĄed
amount of information, but it must be capable of holding at least 64 distinct
values. That is, we know that any number between 0 and 63, inclusive, can be
contained in one byte. Furthermore, each byte contains at most 100 distinct
values. On a binary computer a byte must therefore be composed of six bits; on
a decimal computer we have two digits per byte.*

Programs expressed in MIXŠs language should be written so that no more
than sixty-four values are ever assumed for a byte. If we wish to treat the
number 80, we should always leave two adjacent bytes for expressing it, even
though one byte is sufficient on a decimal computer. An algorithm in MIX should
work properly regardless of how big a byte is. Although it is quite possible to
write programs that depend on the byte size, such actions are anathema to the
spirit of this book; the only legitimate programs are those that would give correct
results with all byte sizes. It is usually not hard to abide by this ground rule,
and we will thereby Ąnd that programming a decimal computer isnŠt so different
from programming a binary one after all.

Two adjacent bytes can express the numbers 0 through 4,095.
Three adjacent bytes can express the numbers 0 through 262,143.
Four adjacent bytes can express the numbers 0 through 16,777,215.
Five adjacent bytes can express the numbers 0 through 1,073,741,823.
A computer word consists of Ąve bytes and a sign. The sign portion has

only two possible values, + and −.

Registers. There are nine registers in MIX (see Fig. 13):

The A-register (Accumulator) consists of Ąve bytes and a sign.
The X-register (Extension), likewise, comprises Ąve bytes and a sign.
The I-registers (Index registers) I1, I2, I3, I4, I5, and I6 each hold two bytes

together with a sign.
The J-register (Jump address) holds two bytes; it behaves as if its sign is

always +.

We shall use a small letter ŞrŤ, preĄxed to the name, to identify a MIX register.
Thus, ŞrAŤ means Şregister A.Ť

The A-register has many uses, especially for arithmetic and for operating
on data. The X-register is an extension on the Şright-hand sideŤ of rA, and it
is used in connection with rA to hold ten bytes of a product or dividend, or
it can be used to hold information shifted to the right out of rA. The index
registers rI1, rI2, rI3, rI4, rI5, and rI6 are used primarily for counting and for
referencing variable memory addresses. The J-register always holds the address
of the instruction following the most recent ŞjumpŤ operation, and it is primarily
used in connection with subroutines.

* Since 1975 or so, the word ŞbyteŤ has come to mean a sequence of precisely eight binary
digits, capable of representing the numbers 0 to 255. Real-world bytes are therefore larger than
the bytes of the hypothetical MIX machine; indeed, MIXŠs old-style bytes are just barely bigger
than nybbles. When we speak of bytes in connection with MIX we shall conĄne ourselves to
the former sense of the word, harking back to the days when bytes were not yet standardized.

126 BASIC CONCEPTS 1.3.1

U0 U1 U7 U8 U14 U15 U16 U17 U18 U19 U20· · · · · ·

Magnetic tape units
←−−−−−−−−−−−−−−−−→

Disks and drums
←−−−−−−−−−−−−−−−−→ C

a
rd

re
a
d
er

C
a
rd

p
u
n
ch

L
in
e

p
ri
n
te
r

T
y
p
e

w
ri
te
r

P
a
p
er

ta
p
e

Register I1

Register I2

Register I3

Register I4

Register I5

Register I6

Register J

± I14 I15

± I24 I25

± I34 I35

± I44 I45

± I54 I55

± I64 I65

+ J4 J5

± A1 A2 A3 A4 A5

Register A

± X1 X2 X3 X4 X5

Register X

Memory cells

0000:

0001:

0002:

0003:

3999:

3998:

...

© Overflow
toggle

E©
G©L©
Comparison
indicator

Fig. 13. The MIX computer.

Besides its registers, MIX contains

an overĆow toggle (a single bit that is either ŞonŤ or ŞoffŤ);
a comparison indicator (having three values: LESS, EQUAL, or GREATER);
memory (4000 words of storage, each word with Ąve bytes and a sign);
and input-output devices (cards, tapes, disks, etc.).

Partial Ąelds of words. The Ąve bytes and sign of a computer word are
numbered as follows:

0 1 2 3 4 5

± Byte Byte Byte Byte Byte
. (2)

1.3.1 DESCRIPTION OF MIX 127

Most of the instructions allow a programmer to use only part of a word if desired.
In such cases a nonstandard ŞĄeld speciĄcationŤ can be given. The allowable
Ąelds are those that are adjacent in a computer word, and they are represented
by (L:R), where L is the number of the left-hand part and R is the number of
the right-hand part of the Ąeld. Examples of Ąeld speciĄcations are:

(0 :0), the sign only.
(0 :2), the sign and the Ąrst two bytes.
(0 :5), the whole word; this is the most common Ąeld speciĄcation.
(1 :5), the whole word except for the sign.
(4 :4), the fourth byte only.
(4 :5), the two least signiĄcant bytes.

The use of Ąeld speciĄcations varies slightly from instruction to instruction,
and it will be explained in detail for each instruction where it applies. Each
Ąeld speciĄcation (L:R) is actually represented inside the machine by the single
number 8L + R; notice that this number Ąts easily in one byte.

Instruction format. Computer words used for instructions have the following
form:

0 1 2 3 4 5

± A A I F C
. (3)

The rightmost byte, C, is the operation code telling what operation is to
be performed. For example, C = 8 speciĄes the operation LDA, Şload the A-
register.Ť

The F-byte holds a modiĄcation of the operation code. It is usually a Ąeld
speciĄcation (L:R) = 8L + R; for example, if C = 8 and F = 11, the operation
is Şload the A-register with the (1 :3) Ąeld.Ť Sometimes F is used for other
purposes; on input-output instructions, for example, F is the number of the
relevant input or output unit.

The left-hand portion of the instruction, ±AA, is the address. (Notice that
the sign is part of the address.) The I-Ąeld, which comes next to the address,
is the index speciĄcation, which may be used to modify the effective address.
If I = 0, the address ±AA is used without change; otherwise I should contain
a number i between 1 and 6, and the contents of index register Ii are added
algebraically to ±AA before the instruction is carried out; the result is used as
the address. This indexing process takes place on every instruction. We will use
the letter M to indicate the address after any speciĄed indexing has occurred.
(If the addition of the index register to the address ±AA yields a result that
does not Ąt in two bytes, the value of M is undeĄned.)

In most instructions, M will refer to a memory cell. The terms Şmemory
cellŤ and Şmemory locationŤ are used almost interchangeably in this book. We
assume that there are 4000 memory cells, numbered from 0 to 3999; hence every
memory location can be addressed with two bytes. For every instruction in which
M refers to a memory cell we must have 0 ≤ M ≤ 3999, and in this case we will
write CONTENTS(M) to denote the value stored in memory location M.

128 BASIC CONCEPTS 1.3.1

On certain instructions, the ŞaddressŤ M has another signiĄcance, and it
may even be negative. Thus, one instruction adds M to an index register, and
such an operation takes account of the sign of M.

Notation. To discuss instructions in a readable manner, we will use the notation

OP ADDRESS,I(F) (4)

to denote an instruction like (3). Here OP is a symbolic name given to the
operation code (the C-part) of the instruction; ADDRESS is the ±AA portion; I
and F represent the I- and F-Ąelds, respectively.

If I is zero, the Ś,IŠ is omitted. If F is the normal F-speciĄcation for this
particular operator, the Ś(F)Š need not be written. The normal F-speciĄcation
for almost all operators is (0 :5), representing a whole word. If a different F is
normal, it will be mentioned explicitly when we discuss a particular operator.

For example, the instruction to load a number into the accumulator is called
LDA and it is operation code number 8. We have

Conventional representation Actual numeric instruction

LDA 2000,2(0:3) + 2000 2 3 8

LDA 2000,2(1:3) + 2000 2 11 8

LDA 2000(1:3) + 2000 0 11 8

LDA 2000 + 2000 0 5 8

LDA -2000,4 - 2000 4 5 8

(5)

The instruction ŚLDA 2000,2(0:3)Š may be read ŞLoad A with the contents of
location 2000 indexed by 2, the zero-three Ąeld.Ť

To represent the numerical contents of a MIX word, we will always use a box
notation like that above. Notice that in the word

+ 2000 2 3 8

the number +2000 is shown Ąlling two adjacent bytes and sign; the actual
contents of byte (1 :1) and of byte (2 :2) will vary from one MIX computer to
another, since byte size is variable. As a further example of this notation for MIX
words, the diagram

- 10000 3000

represents a word with two Ąelds, a three-byte-plus-sign Ąeld containing −10000
and a two-byte Ąeld containing 3000. When a word is split into more than one
Ąeld, it is said to be Şpacked.Ť

Rules for each instruction. The remarks following (3) above have deĄned
the quantities M, F, and C for every word used as an instruction. We will now
deĄne the actions corresponding to each instruction.

1.3.1 DESCRIPTION OF MIX 129

Loading operators.

• LDA (load A). C = 8; F = Ąeld.
The speciĄed Ąeld of CONTENTS(M) replaces the previous contents of register A.

On all operations where a partial Ąeld is used as an input, the sign is used
if it is a part of the Ąeld, otherwise the sign + is understood. The Ąeld is shifted
over to the right-hand part of the register as it is loaded.

Examples: If F is the normal Ąeld speciĄcation (0:5), everything in location
M is copied into rA. If F is (1 :5), the absolute value of CONTENTS(M) is loaded
with a plus sign. If M contains an instruction word and if F is (0:2), the Ş±AAŤ
Ąeld is loaded as

± 0 0 0 A A .

Suppose location 2000 contains the word

- 80 3 5 4 ; (6)

then we get the following results from loading various partial Ąelds:

Instruction Contents of rA afterwards

LDA 2000 - 80 3 5 4

LDA 2000(1:5) + 80 3 5 4

LDA 2000(3:5) + 0 0 3 5 4

LDA 2000(0:3) - 0 0 80 3

LDA 2000(4:4) + 0 0 0 0 5

LDA 2000(0:0) - 0 0 0 0 0

LDA 2000(1:1) + 0 0 0 0 ?

(The last example has a partially unknown effect, since byte size is variable.)

• LDX (load X). C = 15; F = Ąeld.
This is the same as LDA, except that rX is loaded instead of rA.

• LDi (load i). C = 8 + i; F = Ąeld.
This is the same as LDA, except that rIi is loaded instead of rA. An index register
contains only two bytes (not Ąve) and a sign; bytes 1, 2, 3 are always assumed
to be zero. The LDi instruction is undeĄned if it would result in setting bytes 1,
2, or 3 to anything but zero.

In the description of all instructions, ŞiŤ stands for an integer, 1 ≤ i ≤ 6.
Thus, LDi stands for six different instructions: LD1, LD2, . . . , LD6.

• LDAN (load A negative). C = 16; F = Ąeld.
• LDXN (load X negative). C = 23; F = Ąeld.
• LDiN (load i negative). C = 16 + i; F = Ąeld.
These eight instructions are the same as LDA, LDX, LDi, respectively, except that
the opposite sign is loaded.

130 BASIC CONCEPTS 1.3.1

Storing operators.

• STA (store A). C = 24; F = Ąeld.
A portion of the contents of rA replaces the Ąeld of CONTENTS(M) speciĄed by F.
The other parts of CONTENTS(M) are unchanged.

On a store operation the Ąeld F has the opposite signiĄcance from the load
operation: The number of bytes in the Ąeld is taken from the right-hand portion
of the register and shifted left if necessary to be inserted in the proper Ąeld of
CONTENTS(M). The sign is not altered unless it is part of the Ąeld. The contents
of the register are not affected.

Examples: Suppose that location 2000 contains

- 1 2 3 4 5

and register A contains
+ 6 7 8 9 0 .

Then:
Instruction Contents of location 2000 afterwards

STA 2000 + 6 7 8 9 0

STA 2000(1:5) - 6 7 8 9 0

STA 2000(5:5) - 1 2 3 4 0

STA 2000(2:2) - 1 0 3 4 5

STA 2000(2:3) - 1 9 0 4 5

STA 2000(0:1) + 0 2 3 4 5

• STX (store X). C = 31; F = Ąeld.
Same as STA, except that rX is stored rather than rA.

• STi (store i). C = 24 + i; F = Ąeld.
Same as STA, except that rIi is stored rather than rA. Bytes 1, 2, 3 of an index
register are zero; thus if rI1 contains

± m n ,

it behaves as though it were

± 0 0 0 m n .

• STJ (store J). C = 32; F = Ąeld.
Same as STi, except that rJ is stored and its sign is always +.

With STJ the normal Ąeld speciĄcation for F is (0 :2), not (0 :5). This is
natural, since STJ is almost always done into the address Ąeld of an instruction.

• STZ (store zero). C = 33; F = Ąeld.
Same as STA, except that plus zero is stored. In other words, the speciĄed Ąeld
of CONTENTS(M) is cleared to zero.

1.3.1 DESCRIPTION OF MIX 131

Arithmetic operators. On the add, subtract, multiply, and divide operations,
a Ąeld speciĄcation is allowed. A Ąeld speciĄcation of Ş(0 :6)Ť can be used to
indicate a ŞĆoating pointŤ operation (see Section 4.2), but few of the programs
we will write for MIX will use this feature, since we will primarily be concerned
with algorithms on integers.

The standard Ąeld speciĄcation is, as usual, (0 :5). Other Ąelds are treated
as in LDA. We will use the letter V to indicate the speciĄed Ąeld of CONTENTS(M);
thus, V is the value that would have been loaded into register A if the operation
code were LDA.

• ADD. C = 1; F = Ąeld.
V is added to rA. If the magnitude of the result is too large for register A, the
overĆow toggle is set on, and the remainder of the addition appearing in rA is as
though a Ş1Ť had been carried into another register to the left of rA. (Otherwise
the setting of the overĆow toggle is unchanged.) If the result is zero, the sign of
rA is unchanged.

Example: The sequence of instructions below computes the sum of the Ąve
bytes of register A.

STA 2000
LDA 2000(5:5)
ADD 2000(4:4)
ADD 2000(3:3)
ADD 2000(2:2)
ADD 2000(1:1)

This is sometimes called Şsideways addition.Ť
OverĆow will occur in some MIX computers when it would not occur in

others, because of the variable deĄnition of byte size. We have not said that
overĆow will occur deĄnitely if the value is greater than 1073741823; overĆow
occurs when the magnitude of the result is greater than the contents of Ąve bytes,
depending on the byte size. One can still write programs that work properly and
that give the same Ąnal answers, regardless of the byte size.

• SUB (subtract). C = 2; F = Ąeld.
V is subtracted from rA. (Equivalent to ADD but with −V in place of V.)

• MUL (multiply). C = 3; F = Ąeld.
The 10-byte product, V times rA, replaces registers A and X. The signs of rA
and rX are both set to the algebraic sign of the product (namely, + if the signs
of V and rA were the same, − if they were different).

• DIV (divide). C = 4; F = Ąeld.
The value of rA and rX, treated as a 10-byte number rAX with the sign of rA,
is divided by the value V. If V = 0 or if the quotient is more than Ąve bytes in
magnitude (this is equivalent to the condition that |rA| ≥ |V|), registers A and X
are Ąlled with undeĄned information and the overĆow toggle is set on. Otherwise
the quotient ±

|rAX/V|

is placed in rA and the remainder ±

|rAX|mod |V|

is placed in rX. The sign of rA afterwards is the algebraic sign of the quotient

132 BASIC CONCEPTS 1.3.1

(namely, + if the signs of V and rA were the same, − if they were different).
The sign of rX afterwards is the previous sign of rA.

Examples of arithmetic instructions: In most cases, arithmetic is done only
with MIX words that are single Ąve-byte numbers, not packed with several Ąelds.
It is, however, possible to operate arithmetically on packed MIX words, if some
caution is used. The following examples should be studied carefully. (As before,
? designates an unknown value.)

+ 1234 1 150 rA before

+ 100 5 50 Cell 1000

ADD 1000 + 1334 6 200 rA after

- 1234 0 0 9 rA before

- 2000 150 0 Cell 1000

SUB 1000 + 766 149 ? rA after

+ 1 1 1 1 1 rA before

+ 1 1 1 1 1 Cell 1000

MUL 1000 + 0 1 2 3 4 rA after

+ 5 4 3 2 1 rX after

- 112 rA before

? 2 ? ? ? ? Cell 1000

MUL 1000(1:1) - 0 rA after

- 224 rX after

- 50 0 112 4 rA before

- 2 0 0 0 0 Cell 1000

MUL 1000 + 100 0 224 rA after

+ 8 0 0 0 0 rX after

+ 0 rA before

? 17 rX before

+ 3 Cell 1000

DIV 1000 + 5 rA after

+ 2 rX after

1.3.1 DESCRIPTION OF MIX 133

- 0 rA before

+ 1235 0 3 1 rX before

- 0 0 0 2 0 Cell 1000

DIV 1000 + 0 617 ? ? rA after

- 0 0 0 ? 1 rX after

(These examples have been prepared with the philosophy that it is better to give
a complete, baffling description than an incomplete, straightforward one.)

Address transfer operators. In the following operations, the (possibly in-
dexed) ŞaddressŤ M is used as a signed number, not as the address of a cell in
memory.

• ENTA (enter A). C = 48; F = 2.
The quantity M is loaded into rA. The action is equivalent to ŚLDAŠ from a
memory word containing the signed value of M. If M = 0, the sign of the
instruction is loaded.

Examples: ŚENTA 0Š sets rA to zeros, with a + sign. ŚENTA 0,1Š sets rA
to the current contents of index register 1, except that −0 is changed to +0.
ŚENTA -0,1Š is similar, except that +0 is changed to −0.

• ENTX (enter X). C = 55; F = 2.
• ENTi (enter i). C = 48 + i; F = 2.
Analogous to ENTA, loading the appropriate register.

• ENNA (enter negative A). C = 48; F = 3.
• ENNX (enter negative X). C = 55; F = 3.
• ENNi (enter negative i). C = 48 + i; F = 3.
Same as ENTA, ENTX, and ENTi, except that the opposite sign is loaded.

Example: ŚENN3 0,3Š replaces rI3 by its negative, although −0 remains −0.

• INCA (increase A). C = 48; F = 0.
The quantity M is added to rA; the action is equivalent to ŚADDŠ from a memory
word containing the value of M. OverĆow is possible and it is treated just as
in ADD.

Example: ŚINCA 1Š increases the value of rA by one.

• INCX (increase X). C = 55; F = 0.
The quantity M is added to rX. If overĆow occurs, the action is equivalent to
ADD, except that rX is used instead of rA. Register A is never affected by this
instruction.

• INCi (increase i). C = 48 + i; F = 0.
Add M to rIi. OverĆow must not occur; if M + rIi doesnŠt Ąt in two bytes, the
result of this instruction is undeĄned.

134 BASIC CONCEPTS 1.3.1

• DECA (decrease A). C = 48; F = 1.
• DECX (decrease X). C = 55; F = 1.
• DECi (decrease i). C = 48 + i; F = 1.
These eight instructions are the same as INCA, INCX, and INCi, respectively,
except that M is subtracted from the register rather than added.

Notice that the operation code C is the same for ENTA, ENNA, INCA, and
DECA; the F-Ąeld is used to distinguish the various operations from each other.

Comparison operators. MIXŠs comparison operators all compare the value
contained in a register with a value contained in memory. The comparison
indicator is then set to LESS, EQUAL, or GREATER according to whether the value
of the register is less than, equal to, or greater than the value of the memory
cell. A minus zero is equal to a plus zero.

• CMPA (compare A). C = 56; F = Ąeld.
The speciĄed Ąeld of rA is compared with the same Ąeld of CONTENTS(M). If
F does not include the sign position, the Ąelds are both considered nonnegative;
otherwise the sign is taken into account in the comparison. (An equal comparison
always occurs when F is (0 :0), since minus zero equals plus zero.)

• CMPX (compare X). C = 63; F = Ąeld.
This is analogous to CMPA.

• CMPi (compare i). C = 56 + i; F = Ąeld.
Analogous to CMPA. Bytes 1, 2, and 3 of the index register are treated as zero in
the comparison. (Thus if F = (1:2), the result cannot be GREATER.)

Jump operators. Instructions are ordinarily executed in sequential order; in
other words, the command that is performed after the command in location P
is usually the one found in location P + 1. But several ŞjumpŤ instructions
allow this sequence to be interrupted. When a typical jump takes place, the
J-register is set to the address of the next instruction (that is, to the address of
the instruction that would have been next if we hadnŠt jumped). A Şstore JŤ
instruction then can be used by the programmer, if desired, to set the address
Ąeld of another command that will later be used to return to the original place
in the program. The J-register is changed whenever a jump actually occurs in
a program, except when the jump operator is JSJ, and it is never changed by
non-jumps.

• JMP (jump). C = 39; F = 0.
Unconditional jump: The next instruction is taken from location M.

• JSJ (jump, save J). C = 39; F = 1.
Same as JMP except that the contents of rJ are unchanged.

• JOV (jump on overĆow). C = 39; F = 2.
If the overĆow toggle is on, it is turned off and a JMP occurs; otherwise nothing
happens.

• JNOV (jump on no overĆow). C = 39; F = 3.
If the overĆow toggle is off, a JMP occurs; otherwise it is turned off.

1.3.1 DESCRIPTION OF MIX 135

• JL, JE, JG, JGE, JNE, JLE (jump on less, equal, greater, greater-or-equal,
unequal, less-or-equal). C = 39; F = 4, 5, 6, 7, 8, 9, respectively.
Jump if the comparison indicator is set to the condition indicated. For example,
JNE will jump if the comparison indicator is LESS or GREATER. The comparison
indicator is not changed by these instructions.
• JAN, JAZ, JAP, JANN, JANZ, JANP (jump A negative, zero, positive, nonnegative,
nonzero, nonpositive). C = 40; F = 0, 1, 2, 3, 4, 5, respectively.
If the contents of rA satisfy the stated condition, a JMP occurs, otherwise nothing
happens. ŞPositiveŤ means greater than zero (not zero); ŞnonpositiveŤ means
the opposite, namely zero or negative.
• JXN, JXZ, JXP, JXNN, JXNZ, JXNP (jump X negative, zero, positive, nonnegative,
nonzero, nonpositive). C = 47; F = 0, 1, 2, 3, 4, 5, respectively.
• JiN, JiZ, JiP, JiNN, JiNZ, JiNP (jump i negative, zero, positive, nonnegative,
nonzero, nonpositive). C = 40 + i; F = 0, 1, 2, 3, 4, 5, respectively. These 42
instructions are analogous to the corresponding operations for rA.

Miscellaneous operators.

• SLA, SRA, SLAX, SRAX, SLC, SRC (shift left A, shift right A, shift left AX, shift
right AX, shift left AX circularly, shift right AX circularly). C = 6; F = 0, 1, 2,
3, 4, 5, respectively.
These six are the ŞshiftŤ commands, in which M speciĄes a number of MIX bytes
to be shifted left or right; M must be nonnegative. SLA and SRA do not affect rX;
the other shifts affect both registers A and X as though they were a single 10-
byte register. With SLA, SRA, SLAX, and SRAX, zeros are shifted into the register
at one side, and bytes disappear at the other side. The instructions SLC and SRC

call for a ŞcirculatingŤ shift, in which the bytes that leave one end enter in at
the other end. Both rA and rX participate in a circulating shift. The signs of
registers A and X are not affected in any way by any of the shift commands.

Examples: Register A Register X

Initial contents + 1 2 3 4 5 - 6 7 8 9 10

SRAX 1 + 0 1 2 3 4 - 5 6 7 8 9

SLA 2 + 2 3 4 0 0 - 5 6 7 8 9

SRC 4 + 6 7 8 9 2 - 3 4 0 0 5

SRA 2 + 0 0 6 7 8 - 3 4 0 0 5

SLC 501 + 0 6 7 8 3 - 4 0 0 5 0

• MOVE. C = 7; F = number, normally 1.
The number of words speciĄed by F is moved, starting from location M to the
location speciĄed by the contents of index register 1. The transfer occurs one
word at a time, and rI1 is increased by the value of F at the end of the operation.
If F = 0, nothing happens.

Care must be taken when thereŠs overlap between the locations involved; for
example, suppose that F = 3 and M = 1000. Then if rI1 = 999, we transfer

136 BASIC CONCEPTS 1.3.1

CONTENTS(1000) to CONTENTS(999), CONTENTS(1001) to CONTENTS(1000), and
CONTENTS(1002) to CONTENTS(1001); nothing unusual occurred here. But if rI1
were 1001 instead, we would move CONTENTS(1000) to CONTENTS(1001), then
CONTENTS(1001) to CONTENTS(1002), then CONTENTS(1002) to CONTENTS(1003),
so we would have moved the same word CONTENTS(1000) into three places.

• NOP (no operation). C = 0.
No operation occurs, and this instruction is bypassed. F and M are ignored.

• HLT (halt). C = 5; F = 2.
The machine stops. When the computer operator restarts it, the net effect is
equivalent to NOP.

Input-output operators. MIX has a fair amount of input-output equipment
(all of which is optional at extra cost). Each device is given a number as follows:

Unit number Peripheral device Block size

t Tape unit number t (0 ≤ t ≤ 7) 100 words
d Disk or drum unit number d (8 ≤ d ≤ 15) 100 words
16 Card reader 16 words
17 Card punch 16 words
18 Line printer 24 words
19 Typewriter terminal 14 words
20 Paper tape 14 words

Not every MIX installation will have all of this equipment available; we will
occasionally make appropriate assumptions about the presence of certain devices.
Some devices may not be used both for input and for output. The number of
words mentioned in the table above is a Ąxed block size associated with each unit.

Input or output with magnetic tape, disk, or drum units reads or writes full
words (Ąve bytes and a sign). Input or output with units 16 through 20, however,
is always done in a character code where each byte represents one alphameric
character. Thus, Ąve characters per MIX word are transmitted. The character
code is given at the top of Table 1, which appears at the close of this section and
on the end papers of this book. The code 00 corresponds to Ś␣Š, which denotes
a blank space. Codes 01Ű29 are for the letters A through Z with a few Greek
letters thrown in; codes 30Ű39 represent the digits 0, 1, . . . , 9; and further codes
40, 41, . . . represent punctuation marks and other special characters. (MIXŠs
character set harks back to the days before computers could cope with lowercase
letters.) We cannot use character code to read in or write out all possible values
that a byte may have, since certain combinations are undeĄned. Moreover, some
input-output devices may be unable to handle all the symbols in the character
set; for example, the symbols ˚ and ˝ that appear amid the letters will perhaps
not be acceptable to the card reader. When character-code input is being done,
the signs of all words are set to +; on output, signs are ignored. If a typewriter is
used for input, the Şcarriage returnŤ that is typed at the end of each line causes
the remainder of that line to be Ąlled with blanks.

1.3.1 DESCRIPTION OF MIX 137

The disk and drum units are external memory devices each containing 100-
word blocks. On every IN, OUT, or IOC instruction as deĄned below, the particular
100-word block referred to by the instruction is speciĄed by the current contents
of rX, which should not exceed the capacity of the disk or drum involved.

• IN (input). C = 36; F = unit.
This instruction initiates the transfer of information from the input unit speciĄed
into consecutive locations starting with M. The number of locations transferred
is the block size for this unit (see the table above). The machine will wait at
this point if a preceding operation for the same unit is not yet complete. The
transfer of information that starts with this instruction will not be complete
until an unknown future time, depending on the speed of the input device, so a
program must not refer to the information in memory until then. It is improper
to attempt to read any block from magnetic tape that follows the latest block
written on that tape.

• OUT (output). C = 37; F = unit.
This instruction starts the transfer of information from memory locations start-
ing at M to the output unit speciĄed. The machine waits until the unit is ready,
if it is not initially ready. The transfer will not be complete until an unknown
future time, depending on the speed of the output device, so a program must
not alter the information in memory until then.

• IOC (input-output control). C = 35; F = unit.
The machine waits, if necessary, until the speciĄed unit is not busy. Then a
control operation is performed, depending on the particular device being used.
The following examples are used in various parts of this book:

Magnetic tape: If M = 0, the tape is rewound. If M < 0 the tape is skipped
backward −M blocks, or to the beginning of the tape, whichever comes Ąrst.
If M > 0, the tape is skipped forward; it is improper to skip forward over any
blocks following the one last written on that tape.

For example, the sequence ŚOUT 1000(3); IOC -1(3); IN 2000(3)Š writes
out one hundred words onto tape 3, then reads it back in again. Unless the
tape reliability is questioned, the last two instructions of that sequence are only
a slow way to move words 1000Ű1099 to locations 2000Ű2099. The sequence
ŚOUT 1000(3); IOC +1(3)Š is improper.

Disk or drum: M should be zero. The effect is to position the device
according to rX so that the next IN or OUT operation on this unit will take
less time if it uses the same rX setting.

Line printer: M should be zero. ŚIOC 0(18)Š skips the printer to the top of
the following page.

Paper tape: M should be zero. ŚIOC 0(20)Š rewinds the tape.

• JRED (jump ready). C = 38; F = unit.
A jump occurs if the speciĄed unit is ready, that is, Ąnished with the preceding
operation initiated by IN, OUT, or IOC.

• JBUS (jump busy). C = 34; F = unit.
Analogous to JRED, but the jump occurs when the speciĄed unit is not ready.

138 BASIC CONCEPTS 1.3.1

Example: In location 1000, the instruction ŚJBUS 1000(16)Š will be executed
repeatedly until unit 16 is ready.

The simple operations above complete MIXŠs repertoire of input-output in-
structions. There is no Ştape checkŤ indicator, etc., to cover exceptional con-
ditions on the peripheral devices. Any such condition (e.g., paper jam, unit
turned off, out of tape, etc.) causes the unit to remain busy, a bell rings, and
the skilled computer operator Ąxes things manually using ordinary maintenance
procedures. Some more complicated peripheral units, which are more expensive
and more representative of contemporary equipment than the Ąxed-block-size
tapes, drums, and disks described here, are discussed in Sections 5.4.6 and 5.4.9.

Conversion Operators.

• NUM (convert to numeric). C = 5; F = 0.
This operation is used to change the character code into numeric code. M is
ignored. Registers A and X are assumed to contain a 10-byte number in character
code; the NUM instruction sets the magnitude of rA equal to the numerical value
of this number (treated as a decimal number). The value of rX and the sign of
rA are unchanged. Bytes 00, 10, 20, 30, 40, . . . convert to the digit zero; bytes
01, 11, 21, . . . convert to the digit one; etc. OverĆow is possible, and in this case
the remainder modulo b5 is retained, where b is the byte size.

• CHAR (convert to characters). C = 5; F = 1.
This operation is used to change numeric code into character code suitable for
output to punched cards or tape or the line printer. The value in rA is converted
into a 10-byte decimal number that is put into registers A and X in character
code. The signs of rA and rX are unchanged. M is ignored.

Examples: Register A Register X

Initial contents - 00 00 31 32 39 + 37 57 47 30 30

NUM 0 - 12977700 + 37 57 47 30 30

INCA 1 - 12977699 + 37 57 47 30 30

CHAR 0 - 30 30 31 32 39 + 37 37 36 39 39

Timing. To give quantitative information about the efficiency of MIX programs,
each of MIXŠs operations is assigned an execution time typical of vintage-1970
computers.

ADD, SUB, all LOAD operations, all STORE operations (including STZ), all shift
commands, and all comparison operations take two units of time. MOVE requires
one unit plus two for each word moved. MUL, NUM, CHAR each require 10 units and
DIV requires 12. The execution time for Ćoating point operations is speciĄed in
Section 4.2.1. All remaining operations take one unit of time, plus the time the
computer may be idle on the IN, OUT, IOC, or HLT instructions.

Notice in particular that ENTA takes one unit of time, while LDA takes two
units. The timing rules are easily remembered because of the fact that, except

1.3.1 DESCRIPTION OF MIX 139

for shifts, conversions, MUL, and DIV, the number of time units equals the number
of references to memory (including the reference to the instruction itself).

MIXŠs basic unit of time is a relative measure that we will denote simply
by u. It may be regarded as, say, 10 microseconds (for a relatively inexpensive
computer) or as 10 nanoseconds (for a relatively high-priced machine).

Example: The sequence LDA 1000; INCA 1; STA 1000 takes exactly 5u.

And now I see with eye serene

The very pulse of the machine.

— WILLIAM WORDSWORTH,
She Was a Phantom of Delight (1804)

Summary. We have now discussed all the features of MIX, except for its
ŞGO button,Ť which is discussed in exercise 26. Although MIX has nearly 150
different operations, they Ąt into a few simple patterns so that they can easily
be remembered. Table 1 summarizes the operations for each C-setting. The
name of each operator is followed in parentheses by its default F-Ąeld.

The following exercises give a quick review of the material in this section.
They are mostly quite simple, and the reader should try to do nearly all of them.

EXERCISES

1. [00] If MIX were a ternary (base 3) computer, how many ŞtritsŤ would there be
per byte?

2. [02] If a value to be represented within MIX may get as large as 99999999, how
many adjacent bytes should be used to contain this quantity?

3. [02] Give the partial Ąeld speciĄcations, (L:R), for the (a) address Ąeld, (b) index
Ąeld, (c) Ąeld Ąeld, and (d) operation code Ąeld of a MIX instruction.

4. [00] The last example in (5) is ŚLDA -2000,4Š. How can this be legitimate, in
view of the fact that memory addresses should not be negative?

5. [10] What symbolic notation, analogous to (4), corresponds to (6) if (6) is re-
garded as a MIX instruction?

x 6. [10] Assume that location 3000 contains

+ 5 1 200 15 .

What is the result of the following instructions? (State if any of them are undeĄned
or only partially deĄned.) (a) LDAN 3000; (b) LD2N 3000(3:4); (c) LDX 3000(1:3);
(d) LD6 3000; (e) LDXN 3000(0:0).

7. [M15] Give a precise deĄnition of the results of the DIV instruction for all cases
in which overĆow does not occur, using the algebraic operations X mod Y and ⌊X/Y ⌋.

8. [15] The last example of the DIV instruction that appears on page 133 has ŞrX

beforeŤ equal to + 1235 0 3 1 . If this were - 1234 0 3 1 instead, but

other parts of that example were unchanged, what would registers A and X contain
after the DIV instruction?

140 BASIC CONCEPTS 1.3.1

Table 1

Character code: 00

␣
01

A
02

B
03

C
04

D
05

E
06

F
07

G
08

H
09

I
10

´
11

J
12

K
13

L
14

M
15

N
16

O
17

P
18

Q
19

R
20

˚
21

˝
22

S
23

T
24

U

00 1

No operation

NOP(0)

01 2

rA← rA + V

ADD(0:5)
FADD(6)

02 2

rA← rA−V

SUB(0:5)
FSUB(6)

03 10

rAX← rA×V

MUL(0:5)
FMUL(6)

08 2

rA← V

LDA(0:5)

09 2

rI1← V

LD1(0:5)

10 2

rI2← V

LD2(0:5)

11 2

rI3← V

LD3(0:5)

16 2

rA← −V

LDAN(0:5)

17 2

rI1← −V

LD1N(0:5)

18 2

rI2← −V

LD2N(0:5)

19 2

rI3← −V

LD3N(0:5)

24 2

M(F)← rA

STA(0:5)

25 2

M(F)← rI1

ST1(0:5)

26 2

M(F)← rI2

ST2(0:5)

27 2

M(F)← rI3

ST3(0:5)

32 2

M(F)← rJ

STJ(0:2)

33 2

M(F)← 0

STZ(0:5)

34 1

Unit F busy?

JBUS(0)

35 1 + T

Control, unit F

IOC(0)

40 1

rA : 0, jump

JA[+]

41 1

rI1 : 0, jump

J1[+]

42 1

rI2 : 0, jump

J2[+]

43 1

rI3 : 0, jump

J3[+]

48 1

rA← [rA]?±M

INCA(0) DECA(1)
ENTA(2) ENNA(3)

49 1

rI1← [rI1]?±M

INC1(0) DEC1(1)
ENT1(2) ENN1(3)

50 1

rI2← [rI2]?±M

INC2(0) DEC2(1)
ENT2(2) ENN2(3)

51 1

rI3← [rI3]?±M

INC3(0) DEC3(1)
ENT3(2) ENN3(3)

56 2

CI← rA(F) : V

CMPA(0:5)
FCMP(6)

57 2

CI← rI1(F) : V

CMP1(0:5)

58 2

CI← rI2(F) : V

CMP2(0:5)

59 2

CI← rI3(F) : V

CMP3(0:5)

General form:

C t

Description

OP(F)

C = operation code, (5 :5) Ąeld of instruction
F = op variant, (4 :4) Ąeld of instruction
M = address of instruction after indexing
V = M(F) = contents of F Ąeld of location M
OP = symbolic name for operation
(F) = normal F setting
t = execution time; T = interlock time

1.3.1 DESCRIPTION OF MIX 141

25

V
26

W
27

X
28

Y
29

Z
30

0
31

1
32

2
33

3
34

4
35

5
36

6
37

7
38

8
39

9
40

.
41

,
42

(
43

)
44

+
45

-
46

*
47

/
48

=
49

$
50

<
51

>
52

@
53

;
54

:
55

‚

04 12

rA← rAX/V
rX← remainder

DIV(0:5)
FDIV(6)

05 10

Special
NUM(0)
CHAR(1)
HLT(2)

06 2

Shift M bytes
SLA(0) SRA(1)
SLAX(2) SRAX(3)
SLC(4) SRC(5)

07 1 + 2F
Move F words
from M to rI1

MOVE(1)

12 2

rI4← V

LD4(0:5)

13 2

rI5← V

LD5(0:5)

14 2

rI6← V

LD6(0:5)

15 2

rX← V

LDX(0:5)

20 2

rI4← −V

LD4N(0:5)

21 2

rI5← −V

LD5N(0:5)

22 2

rI6← −V

LD6N(0:5)

23 2

rX← −V

LDXN(0:5)

28 2

M(F)← rI4

ST4(0:5)

29 2

M(F)← rI5

ST5(0:5)

30 2

M(F)← rI6

ST6(0:5)

31 2

M(F)← rX

STX(0:5)

36 1 + T

Input, unit F

IN(0)

37 1 + T

Output, unit F

OUT(0)

38 1

Unit F ready?

JRED(0)

39 1

Jumps
JMP(0) JSJ(1)
JOV(2) JNOV(3)
also [*] below

44 1

rI4 : 0, jump

J4[+]

45 1

rI5 : 0, jump

J5[+]

46 1

rI6 : 0, jump

J6[+]

47 1

rX : 0, jump

JX[+]

52 1

rI4← [rI4]?±M

INC4(0) DEC4(1)
ENT4(2) ENN4(3)

53 1

rI5← [rI5]?±M

INC5(0) DEC5(1)
ENT5(2) ENN5(3)

54 1

rI6← [rI6]?±M

INC6(0) DEC6(1)
ENT6(2) ENN6(3)

55 1

rX← [rX]?±M

INCX(0) DECX(1)
ENTX(2) ENNX(3)

60 2

CI← rI4(F) : V

CMP4(0:5)

61 2

CI← rI5(F) : V

CMP5(0:5)

62 2

CI← rI6(F) : V

CMP6(0:5)

63 2

CI← rX(F) : V

CMPX(0:5)

rA = register A
rX = register X

rAX = registers A and X as one
rIi = index register i, 1 ≤ i ≤ 6
rJ = register J
CI = comparison indicator

[*]: [+]:

JL(4) < N(0)
JE(5) = Z(1)
JG(6) > P(2)

JGE(7) ≥ NN(3)
JNE(8) ̸= NZ(4)
JLE(9) ≤ NP(5)

142 BASIC CONCEPTS 1.3.1

x 9. [15] List all the MIX operators that can possibly affect the setting of the overĆow
toggle. (Do not include Ćoating point operators.)

10. [15] List all the MIX operators that can possibly affect the setting of the compar-
ison indicator.

x 11. [15] List all the MIX operators that can possibly affect the setting of rI1.

12. [10] Find a single instruction that has the effect of multiplying the current con-
tents of rI3 by two and leaving the result in rI3.

x 13. [10] Suppose location 1000 contains the instruction ŚJOV 1001Š. This instruction
turns off the overĆow toggle if it is on (and the next instruction executed will be in
location 1001, in any case). If this instruction were changed to ŚJNOV 1001Š, would
there be any difference? What if it were changed to ŚJOV 1000Š or ŚJNOV 1000Š?

14. [20] For each MIX operation, consider whether there is a way to set the ±AA,
I, and F portions so that the result of the instruction is precisely equivalent to NOP

(except that the execution time may be longer). Assume that nothing is known about
the contents of any registers or any memory locations. Whenever it is possible to
produce a NOP, state how it can be done. Examples: INCA is a no-op if the address and
index parts are zero. JMP can never be a no-op, since it affects rJ.

15. [10] How many alphameric characters are there in a typewriter or paper-tape
block? in a card-reader or card-punch block? in a line-printer block?

16. [20] Write a program that sets memory cells 0000Ű0099 all to zero and is (a) as
short a program as possible; (b) as fast a program as possible. [Hint: Consider using
the MOVE command.]

17. [26] This is the same as the previous exercise, except that locations 0000 through
N , inclusive, are to be set to zero, where N is the current contents of rI2. Your
programs (a) and (b) should work for any value 0 ≤ N ≤ 2999; they should start in
location 3000.

x 18. [22] After the following Şnumber oneŤ program has been executed, what changes
to registers, toggles, and memory have taken place? (For example, what is the Ąnal
setting of rI1? of rX? of the overĆow and comparison indicators?)

STZ 1

ENNX 1

STX 1(0:1)

SLAX 1

ENNA 1

INCX 1

ENT1 1

SRC 1

ADD 1

DEC1 -1

STZ 1

CMPA 1

MOVE -1,1(1)

NUM 1

CHAR 1

HLT 1

x 19. [14] What is the execution time of the program in the preceding exercise, not
counting the HLT instruction?

1.3.1 DESCRIPTION OF MIX 143

20. [20] Write a program that sets all 4000 memory cells equal to a ŚHLTŠ instruction,
and then stops.

x 21. [24] (a) Can the J-register ever be zero? (b) Write a program that, given a number
N in rI4, sets register J equal to N, assuming that 0 < N ≤ 3000. Your program should
start in location 3000. When your program has Ąnished its execution, the contents of
all memory cells must be unchanged.

x 22. [28] Location 2000 contains an integer number, X. Write two programs that
compute X13 and halt with the result in register A. One program should use the
minimum number of MIX memory locations; the other should require the minimum
execution time possible. Assume that X13 Ąts into a single word.

23. [27] Location 0200 contains a word

+ a b c d e ;

write two programs that compute the ŞreĆectedŤ word

+ e d c b a

and halt with the result in register A. One program should do this without using
MIXŠs ability to load and store partial Ąelds of words. Both programs should take the
minimum possible number of memory locations under the stated conditions (including
all locations used for the program and for temporary storage of intermediate results).

24. [21] Assuming that registers A and X contain

+ 0 a b c d and + e f g h i ,

respectively, write two programs that change the contents of these registers to

+ a b c d e and + 0 f g h i ,

respectively, using (a) minimum memory space and (b) minimum execution time.

x 25. [30] Suppose that the manufacturer of MIX wishes to come out with a more
powerful computer (ŞMixmasterŤ?), and he wants to convince as many as possible
of those people now owning a MIX computer to invest in the more expensive machine.
He wants to design this new hardware to be an extension of MIX, in the sense that
all programs correctly written for MIX will work on the new machines without change.
Suggest desirable things that could be incorporated in this extension. (For example,
can you make better use of the I-Ąeld of an instruction?)

x 26. [32] This problem is to write a card-loading routine. Every computer has its own
peculiar ŞbootstrappingŤ problems for getting information initially into the machine
and for starting a job correctly. In MIXŠs case, the contents of a card can be read only
in character code, and the cards that contain the loading program itself must meet this
restriction. Not all possible byte values can be read from a card, and each word read
in from cards is positive.

MIX has one feature that has not been explained in the text: There is a ŞGO
button,Ť which is used to get the computer started from scratch when its memory
contains arbitrary information. When this button is pushed by the computer operator,
the following actions take place:

1) A single card is read into locations 0000Ű0015; this is essentially equivalent to the
instruction ŚIN 0(16)Š.

144 BASIC CONCEPTS 1.3.1

2) When the card has been completely read and the card reader is no longer busy,
a JMP to location 0000 occurs. The J-register is also set to zero, and the overĆow
toggle is cleared.

3) The machine now begins to execute the program it has read from the card.

Note: MIX computers without card readers have their GO-button attached to another
input device. But in this problem we will assume the presence of a card reader, unit 16.

The loading routine to be written must satisfy the following conditions:

i) The input deck should begin with the loading routine, followed by information
cards containing the numbers to be loaded, followed by a Ştransfer cardŤ that shuts
down the loading routine and jumps to the beginning of the program. The loading
routine should Ąt onto two cards.

ii) The information cards have the following format:

Columns 1Ű5, ignored by the loading routine.
Column 6, the number of consecutive words to be loaded on this card (a num-

ber between 1 and 7, inclusive).
Columns 7Ű10, the location of word 1, which is always greater than 100 (so

that it does not overlay the loading routine).
Columns 11Ű20, word 1.
Columns 21Ű30, word 2 (if column 6 ≥ 2).
· · ·
Columns 71Ű80, word 7 (if column 6 = 7).

The contents of words 1, 2, . . . are punched numerically as decimal numbers. If a word
is to be negative, a minus (Ş11-punchŤ) is overpunched over the least signiĄcant digit,
e.g., in column 20. Assume that this causes the character code input to be 10, 11, 12,
. . . , 19 rather than 30, 31, 32, . . . , 39. For example, a card that has

ABCDE31000012345678900000000010000000100

punched in columns 1Ű40 should cause the following data to be loaded:

1000: +0123456789; 1001: +0000000001; 1002: −0000000100.

iii) The transfer card has the format TRANS0nnnn in columns 1Ű10, where nnnn is the
place where execution should start.
iv) The loading routine should work for all byte sizes without any changes to the cards

bearing the loading routine. No card should contain any of the characters corresponding
to bytes 20, 21, 48, 49, 50, . . . (namely, the characters ˚, ˝, =, $, <, . . .), since these
characters cannot be read by all card readers. In particular, the ENT, INC, and CMP

instructions cannot be used; they canŠt necessarily be punched on a card.

1.3.2. The MIX Assembly Language

A symbolic language is used to make MIX programs considerably easier to read
and to write, and to save the programmer from worrying about tedious cleri-
cal details that often lead to unnecessary errors. This language, MIXAL (ŞMIX
Assembly LanguageŤ), is an extension of the notation used for instructions in
the previous section. Its main features are the optional use of alphabetic names
to stand for numbers, and a location Ąeld to associate names with memory
locations.

1.3.2 THE MIX ASSEMBLY LANGUAGE 145

MIXAL can readily be comprehended if we consider Ąrst a simple example.
The following code is part of a larger program; it is a subroutine to Ąnd the
maximum of n elements X[1], . . . , X[n], according to Algorithm 1.2.10M.

Program M (Find the maximum). Register assignments: rA ≡ m, rI1 ≡ n,
rI2 ≡ j, rI3 ≡ k, X[i] ≡ CONTENTS(X + i).

Assembled instructions Line no. LOC OP ADDRESS Times Remarks

01 X EQU 1000

02 ORIG 3000

3000: + 3009 0 2 32 03 MAXIMUM STJ EXIT 1 Subroutine linkage
3001: + 0 1 2 51 04 INIT ENT3 0,1 1 M1. Initialize. k ← n.
3002: + 3005 0 0 39 05 JMP CHANGEM 1 j←n, m←X[n], k←n−1.
3003: + 1000 3 5 56 06 LOOP CMPA X,3 n− 1 M3. Compare.
3004: + 3007 0 7 39 07 JGE *+3 n− 1 To M5 if m ≥ X[k].
3005: + 0 3 2 50 08 CHANGEM ENT2 0,3 A+ 1 M4. Change m. j ← k.
3006: + 1000 3 5 08 09 LDA X,3 A+ 1 m← X[k].
3007: + 1 0 1 51 10 DEC3 1 n M5. Decrease k.
3008: + 3003 0 2 43 11 J3P LOOP n M2. All tested? To M3 if k>0.
3009: + 3009 0 0 39 12 EXIT JMP * 1 Return to main program.

This program is an example of several things simultaneously:

a) The columns headed ŞLOCŤ, ŞOPŤ, and ŞADDRESSŤ are of principal interest;
they contain a program in the MIXAL symbolic machine language, and we shall
explain the details of this program below.

b) The column headed ŞAssembled instructionsŤ shows the actual numeric
machine language that corresponds to the MIXAL program. MIXAL has been
designed so that any MIXAL program can easily be translated into numeric
machine language; the translation is usually carried out by another computer
program called an assembly program or assembler. Thus, programmers may
do all of their machine language programming in MIXAL, never bothering to
determine the equivalent numeric codes by hand. Virtually all MIX programs in
this book are written in MIXAL.

c) The column headed ŞLine no.Ť is not an essential part of the MIXAL program;
it is merely included with MIXAL examples in this book so that we can readily
refer to parts of the program.

d) The column headed ŞRemarksŤ gives explanatory information about the
program, and it is cross-referenced to the steps of Algorithm 1.2.10M. The reader
should compare that algorithm (page 96) with the program above. Notice that
a little ŞprogrammerŠs licenseŤ was used during the transcription into MIX code;
for example, step M2 has been put last. The Şregister assignmentsŤ stated at
the beginning of Program M show what components of MIX correspond to the
variables in the algorithm.

e) The column headed ŞTimesŤ will be instructive in many of the MIX programs
we will be studying in this book; it represents the proĄle, the number of times the
instruction on that line will be executed during the course of the program. Thus,

146 BASIC CONCEPTS 1.3.2

line 06 will be performed n−1 times, etc. From this information we can determine
the length of time required to perform the subroutine; it is (5+5n+3A)u, where
A is the quantity that was carefully analyzed in Section 1.2.10.

Now letŠs discuss the MIXAL part of Program M. Line 01,

X EQU 1000 ,

says that symbol X is to be equivalent to the number 1000. The effect of this may
be seen on line 06, where the numeric equivalent of the instruction ŚCMPA X,3Š
appears as

+ 1000 3 5 56 ,

that is, ŚCMPA 1000,3Š.
Line 02 says that the locations for succeeding lines should be chosen sequen-

tially, originating with 3000. Therefore the symbol MAXIMUM that appears in the
LOC Ąeld of line 03 becomes equivalent to the number 3000, INIT is equivalent
to 3001, LOOP is equivalent to 3003, etc.

On lines 03 through 12 the OP Ąeld contains the symbolic names of MIX

instructions: STJ, ENT3, etc. But the symbolic names EQU and ORIG, which
appear in the OP column of lines 01 and 02, are somewhat different; EQU and
ORIG are called pseudo-operations, because they are operators of MIXAL but not of
MIX. Pseudo-operations provide special information about a symbolic program,
without being instructions of the program itself. Thus the line

X EQU 1000

only talks about Program M, it does not signify that any variable is to be set
equal to 1000 when the program is run. Notice that no instructions are assembled
for lines 01 and 02.

Line 03 is a Şstore JŤ instruction that stores the contents of register J into
the (0:2) Ąeld of location EXIT. In other words, it stores rJ into the address part
of the instruction found on line 12.

As mentioned earlier, Program M is intended to be part of a larger program;
elsewhere the sequence

ENT1 100
JMP MAXIMUM
STA MAX

would, for example, jump to Program M with n set to 100. Program M would
then Ąnd the largest of the elements X[1], . . . , X[100] and would return to the
instruction ŚSTA MAXŠ with the maximum value in rA and with its position, j, in
rI2. (See exercise 3.)

Line 05 jumps the control to line 08. Lines 04, 05, 06 need no further
explanation. Line 07 introduces a new notation: An asterisk (read ŞselfŤ) refers
to the location of the line on which it appears; Ś*+3Š (Şself plus threeŤ) therefore
refers to three locations past the current line. Since line 07 is an instruction that
corresponds to location 3004, the Ś*+3Š appearing there refers to location 3007.

The rest of the symbolic code is self-explanatory. Notice the appearance of
an asterisk again on line 12 (see exercise 2).

1.3.2 THE MIX ASSEMBLY LANGUAGE 147

Our next example introduces a few more features of the assembly language.
The object is to compute and print a table of the Ąrst 500 prime numbers, with
10 columns of 50 numbers each. The table should appear as follows on the
line printer:

FIRST FIVE HUNDRED PRIMES

0002 0233 0547 0877 1229 1597 1993 2371 2749 3187

0003 0239 0557 0881 1231 1601 1997 2377 2753 3191

0005 0241 0563 0883 1237 1607 1999 2381 2767 3203

0007 0251 0569 0887 1249 1609 2003 2383 2777 3209

0011 0257 0571 0907 1259 1613 2011 2389 2789 3217
...

...

0229 0541 0863 1223 1583 1987 2357 2741 3181 3571

We will use the following method.

Algorithm P (Print table of 500 primes). This algorithm has two distinct
parts: Steps P1ŰP8 prepare an internal table of 500 primes, and steps P9ŰP11
print the answer in the form shown above. The latter part uses two Şbuffers,Ť
in which line images are formed; while one buffer is being printed, the other one
is being Ąlled.

P1. [Start table.] Set PRIME[1] ← 2, N ← 3, J ← 1. (In the following steps,
N will run through the odd numbers that are candidates for primes; J will
keep track of how many primes have been found so far.)

P2. [N is prime.] Set J← J + 1, PRIME[J]← N.

P3. [500 found?] If J = 500, go to step P9.

P4. [Advance N.] Set N← N + 2.

P5. [K← 2.] Set K← 2. (PRIME[K] will run through the possible prime divisors
of N.)

P6. [PRIME[K]\N?] Divide N by PRIME[K]; let Q be the quotient and R the
remainder. If R = 0 (hence N is not prime), go to P4.

P7. [PRIME[K] large?] If Q ≤ PRIME[K], go to P2. (In such a case, N must
be prime; the proof of this fact is interesting and a little unusual Ů see
exercise 6.)

P8. [Advance K.] Increase K by 1, and go to P6.

P9. [Print title.] Now we are ready to print the table. Advance the printer
to the next page. Set BUFFER[0] to the title line and print this line. Set
B← 1, M← 1.

P10. [Set up line.] Put PRIME[M], PRIME[50 + M], . . . , PRIME[450 + M] into
BUFFER[B] in the proper format.

P11. [Print line.] Print BUFFER[B]; set B ← 1 − B (thereby switching to the
other buffer); and increase M by 1. If M ≤ 50, return to P10; otherwise the
algorithm terminates.

148 BASIC CONCEPTS 1.3.2

P1. Start table

P2. N is prime

P3. 500 found? P4. Advance N P5. K← 2

P6. PRIME[K]\N?P7. PRIME[K] large?

P8. Advance K

P9. Print title P10. Set up line P11. Print line

Yes

Yes

No

Done

Yes

No
No

Fig. 14. Algorithm P.

Program P (Print table of 500 primes). This program has deliberately been
written in a slightly clumsy fashion in order to illustrate most of the features of
MIXAL in a single program. rI1 ≡ J − 500; rI2 ≡ N; rI3 ≡ K; rI4 indicates B; rI5
is M plus multiples of 50.

01 * EXAMPLE PROGRAM ... TABLE OF PRIMES
02 *
03 L EQU 500 The number of primes to Ąnd
04 PRINTER EQU 18 Unit number of the line printer
05 PRIME EQU -1 Memory area for table of primes
06 BUF0 EQU 2000 Memory area for BUFFER[0]
07 BUF1 EQU BUF0+25 Memory area for BUFFER[1]
08 ORIG 3000
09 START IOC 0(PRINTER) Skip to new page.
10 LD1 =1-L= P1. Start table. J← 1.
11 LD2 =3= N← 3.
12 2H INC1 1 P2. N is prime. J← J + 1.
13 ST2 PRIME+L,1 PRIME[J]← N.
14 J1Z 2F P3. 500 found?
15 4H INC2 2 P4. Advance N.
16 ENT3 2 P5. K← 2.
17 6H ENTA 0 P6. PRIME[K]\N?
18 ENTX 0,2 rAX← N.
19 DIV PRIME,3 rA← Q, rX← R.
20 JXZ 4B To P4 if R = 0.
21 CMPA PRIME,3 P7. PRIME[K] large?
22 INC3 1 P8. Advance K.
23 JG 6B To P6 if Q > PRIME[K].
24 JMP 2B Otherwise N is prime.

1.3.2 THE MIX ASSEMBLY LANGUAGE 149

25 2H OUT TITLE(PRINTER) P9. Print title.
26 ENT4 BUF1+10 Set B← 1.
27 ENT5 -50 Set M← 0.
28 2H INC5 L+1 Advance M.
29 4H LDA PRIME,5 P10. Set up line. (Right to left)
30 CHAR Convert PRIME[M] to decimal.
31 STX 0,4(1:4)
32 DEC4 1
33 DEC5 50 (rI5 goes down by 50 until
34 J5P 4B it becomes nonpositive)
35 OUT 0,4(PRINTER) P11. Print line.
36 LD4 24,4 Switch buffers.
37 J5N 2B If rI5 = 0, we are done.
38 HLT
39 * INITIAL CONTENTS OF TABLES AND BUFFERS
40 ORIG PRIME+1
41 CON 2 The Ąrst prime is 2.
42 ORIG BUF0-5
43 TITLE ALF FIRST Alphabetic information for
44 ALF FIVE title line
45 ALF HUND
46 ALF RED P
47 ALF RIMES
48 ORIG BUF0+24
49 CON BUF1+10 Each buffer refers to the other.
50 ORIG BUF1+24
51 CON BUF0+10
52 END START End of routine.

The following points of interest should be noted about this program:

1. Lines 01, 02, and 39 begin with an asterisk: This signiĄes a ŞcommentŤ
line that is merely explanatory, having no actual effect on the assembled program.

2. As in Program M, the pseudo-operation EQU in line 03 sets the equivalent
of a symbol; in this case, the equivalent of L is set to 500. (In the program of lines
10Ű24, L represents the number of primes to be computed.) Notice that in line
05 the symbol PRIME gets a negative equivalent; the equivalent of a symbol may
be any signed Ąve-byte number. In line 07 the equivalent of BUF1 is calculated
as BUF0+25, namely 2025. MIXAL provides a limited amount of arithmetic on
numbers; another example appears on line 13, where the value of PRIME+L (in
this case, 499) is calculated by the assembly program.

3. The symbol PRINTER has been used in the F-part on lines 09, 25, and 35.
The F-part, which is always enclosed in parentheses, may be numeric or symbolic,
just as the other portions of the ADDRESS Ąeld are. Line 31 illustrates the partial
Ąeld speciĄcation Ś(1:4)Š, using a colon.

4. MIXAL provides several ways to specify non-instruction words. Line 41
uses the pseudo-operation CON to specify an ordinary constant, Ś2Š; the result of

150 BASIC CONCEPTS 1.3.2

line 41 is to assemble the word

+ 2 .

Line 49 shows a slightly more complicated constant, ŚBUF1+10Š, which assembles
as the word

+ 2035 .

A constant may be enclosed in equal signs, in which case we call it a literal
constant (see lines 10 and 11). The assembler automatically creates internal
names and inserts ŚCONŠ lines for literal constants. For example, lines 10 and 11
of Program P are effectively changed to

10 LD1 con1
11 LD2 con2

and then at the end of the program, between lines 51 and 52, the lines

51a con1 CON 1-L

51b con2 CON 3

are effectively inserted as part of the assembly procedure (possibly with con2
Ąrst). Line 51a will assemble into the word

- 499 .

The use of literal constants is a decided convenience, because it means that
programmers do not have to invent symbolic names for trivial constants, nor
do they have to remember to insert constants at the end of each program.
Programmers can keep their minds on the central problems and not worry
about such routine details. (However, the literal constants in Program P arenŠt
especially good examples, because we would have had a slightly better program
if we had replaced lines 10 and 11 by the more efficient commands ŚENT1 1-LŠ
and ŚENT2 3Š.)

5. A good assembly language should mimic the way a programmer thinks
about machine programs. One example of this philosophy is the use of literal
constants, as we have just mentioned; another example is the use of Ś*Š, which
was explained in Program M. A third example is the idea of local symbols such
as the symbol 2H, which appears in the location Ąeld of lines 12, 25, and 28.

Local symbols are special symbols whose equivalents can be redeĄned as
many times as desired. A global symbol like PRIME has but one signiĄcance
throughout a program, and if it were to appear in the location Ąeld of more than
one line an error would be indicated by the assembler. But local symbols have a
different nature; we write, for example, 2H (Ş2 hereŤ) in the location Ąeld, and
2F (Ş2 forwardŤ) or 2B (Ş2 backwardŤ) in the address Ąeld of a MIXAL line:

2B means the closest previous location 2H;
2F means the closest following location 2H.

1.3.2 THE MIX ASSEMBLY LANGUAGE 151

Thus the Ś2FŠ in line 14 refers to line 25; the Ś2BŠ in line 24 refers back to line
12; and the Ś2BŠ in line 37 refers to line 28. An address of 2F or 2B never refers
to its own line; for example, the three lines of MIXAL code

2H EQU 10

2H MOVE 2F(2B)

2H EQU 2B-3

are virtually equivalent to the single line

MOVE *-3(10).

The symbols 2F and 2B should never be used in the location Ąeld; the symbol
2H should never be used in the address Ąeld. There are ten local symbols, which
can be obtained by replacing Ś2Š in these examples by any digit from 0 to 9.

The idea of local symbols was introduced by M. E. Conway in 1958, in
connection with an assembly program for the UNIVAC I. Local symbols relieve
programmers from the necessity of choosing symbolic names for every address,
when all they want to do is refer to an instruction a few lines away. There often
is no appropriate name for nearby locations, so programmers have tended to
introduce meaningless symbols like X1, X2, X3, etc., with the potential danger
of duplication. Local symbols are therefore quite useful and natural in an
assembly language.

6. The address part of lines 30 and 38 is blank. This means that the
assembled address will be zero. We could have left the address blank in line 17
as well, but the program would have been less readable without the redundant 0.

7. Lines 43Ű47 use the pseudo-operation ALF, which creates a Ąve-byte
constant in MIX alphameric character code. For example, line 45 causes the
word

+ 00 08 24 15 04

to be assembled, representing Ś␣HUNDŠ Ů part of the title line in Program PŠs
output.

All locations whose contents are not speciĄed in the MIXAL program are
ordinarily set to positive zero (except the locations that are used by the loading
routine, usually 3700Ű3999). Thus there is no need to set the other words of the
title line to blanks, after line 47.

8. Arithmetic may be used together with ORIG: See lines 40, 42, 48, and 50.

9. The last line of a complete MIXAL program always has the OP-code ŚENDŠ.
The address on this line is the location at which the program is to begin, once
it has been loaded into memory.

10. As a Ąnal note about Program P, we can observe that the instructions
have been organized so that index registers are counted towards zero, and tested
against zero, whenever possible. For example, the quantity J-500, not J, is kept
in rI1. Lines 26Ű34 are particularly noteworthy, although perhaps a bit tricky.

152 BASIC CONCEPTS 1.3.2

* EXAMPLE PROGRAM ... TABLE OF PRIMES

*

L EQU 500

PRINTER EQU 18

PRIME EQU -1

BUF0 EQU 2000

BUF1 EQU BUF0+25

ORIG 3000

START IOC 0(PRINTER)

LD1 =1-L=

Fig. 15. The Ąrst lines of Program P punched onto cards, or typed on a terminal.

It may be of interest to note a few of the statistics observed when Program P
was actually run. The division instruction in line 19 was executed 9538 times;
the time to perform lines 10Ű24 was 182144u.

MIXAL programs can be punched onto cards or typed on a computer terminal,
as shown in Fig. 15. The following format is used in the case of punched cards:

Columns 1Ű10 LOC (location) Ąeld;
Columns 12Ű15 OP Ąeld;
Columns 17Ű80 ADDRESS Ąeld and optional remarks;
Columns 11, 16 blank.

However, if column 1 contains an asterisk, the entire card is treated as a com-
ment. The ADDRESS Ąeld ends with the Ąrst blank column following column 16;
any explanatory information may be punched to the right of this Ąrst blank
column with no effect on the assembled program. (Exception: When the OP Ąeld
is ALF, the remarks always start in column 22.)

When the input comes from a terminal, a less restrictive format is used:
The LOC Ąeld ends with the Ąrst blank space, while the OP and ADDRESS Ąelds
(if present) begin with a nonblank character and continue to the next blank; the
special OP-code ALF is, however, followed either by two blank spaces and Ąve
characters of alphameric data, or by a single blank space and Ąve alphameric

1.3.2 THE MIX ASSEMBLY LANGUAGE 153

characters, the Ąrst of which is nonblank. The remainder of each line contains
optional remarks.

The MIX assembly program accepts input Ąles prepared in this manner and
converts them to machine language programs in loadable form. Under favorable
circumstances the reader will have access to a MIX assembler and MIX simulator,
on which various exercises in this book can be worked out.

Now we have seen what can be done in MIXAL. We conclude this section by
describing the rules more carefully, and in particular we shall observe what is not
allowed in MIXAL. The following comparatively few rules deĄne the language.

1. A symbol is a string of one to ten letters and/or digits, containing at least
one letter. Examples: PRIME, TEMP, 20BY20. The special symbols dH, dF, and
dB, where d is a single digit, will for the purposes of this deĄnition be replaced
by other unique symbols according to the Şlocal symbolŤ convention described
earlier.

2. A number is a string of one to ten digits. Example: 00052.

3. Each appearance of a symbol in a MIXAL program is said to be either a
ŞdeĄned symbolŤ or a Şfuture reference.Ť A deĄned symbol is a symbol that has
appeared in the LOC Ąeld of a preceding line of this MIXAL program. A future
reference is a symbol that has not yet been deĄned in this way.

4. An atomic expression is either

a) a number, or

b) a deĄned symbol (denoting the numerical equivalent of that symbol, see
rule 13), or

c) an asterisk (denoting the value of ⊙* ; see rules 10 and 11).

5. An expression is either

a) an atomic expression, or

b) a plus or minus sign followed by an atomic expression, or

c) an expression followed by a binary operation followed by an atomic expres-
sion.

The six admissible binary operations are +, -, *, /, //, and : . They are
deĄned on numeric MIX words as follows:

C = A+B LDA AA; ADD BB; STA CC.

C = A-B LDA AA; SUB BB; STA CC.

C = A*B LDA AA; MUL BB; STX CC.

C = A/B LDA AA; SRAX 5; DIV BB; STA CC.

C = A//B LDA AA; ENTX 0; DIV BB; STA CC.

C = A:B LDA AA; MUL =8=; SLAX 5; ADD BB; STA CC.

Here AA, BB, and CC denote locations containing the respective values of the
symbols A, B, and C. Operations within an expression are carried out from left

154 BASIC CONCEPTS 1.3.2

to right. Examples:

-1+5 equals 4.
-1+5*20/6 equals 4*20/6 equals 80/6 equals 13 (going from left to right).
1//3 equals a MIX word whose value is approximately b5/3 where

b is the byte size; that is, a word representing the fraction 1
3

with an assumed radix point at the left.
1:3 equals 11 (usually used in partial Ąeld speciĄcation).
-3 equals ⊙ minus three.
*** equals ⊙* times ⊙* .

6. An A-part (which is used to describe the address Ąeld of a MIX instruction)
is either

a) vacuous (denoting the value zero), or

b) an expression, or

c) a future reference (denoting the eventual equivalent of the symbol; see
rule 13), or

d) a literal constant (denoting a reference to an internally created symbol; see
rule 12).

7. An index part (which is used to describe the index Ąeld of a MIX instruc-
tion) is either

a) vacuous (denoting the value zero), or

b) a comma followed by an expression (denoting the value of that expression).

8. An F-part (which is used to describe the F-Ąeld of a MIX instruction) is
either

a) vacuous (denoting the normal F-setting, based on the OP Ąeld as shown in
Table 1.3.1Ű1), or

b) a left parenthesis followed by an expression followed by a right parenthesis
(denoting the value of the expression).

9. A W-value (which is used to describe a full-word MIX constant) is either

a) an expression followed by an F-part

in which case a vacuous F-part denotes

(0 :5)

, or

b) a W-value followed by a comma followed by a W-value of the form (a).

A W-value denotes the value of a numeric MIX word determined as follows:
Let the W-value have the form ŞE1(F1),E2(F2), . . . ,En(Fn)Ť, where n ≥ 1,
the EŠs are expressions, and the FŠs are Ąelds. The desired result is the Ąnal
value that would appear in memory location WVAL if the following hypothetical
program were executed:

STZ WVAL; LDA C1; STA WVAL(F1); . . . ; LDA Cn; STA WVAL(Fn).

1.3.2 THE MIX ASSEMBLY LANGUAGE 155

Here C1, . . . , Cn denote locations containing the values of expressions E1, . . . ,
En. Each Fi must have the form 8Li + Ri where 0 ≤ Li ≤ Ri ≤ 5. Examples:

1 is the word + 1

1,-1000(0:2) is the word - 1000 1

-1000(0:2),1 is the word + 1

10. The assembly process makes use of a value denoted by ⊙* (called the
location counter), which is initially zero. The value of ⊙* should always be a
nonnegative number that can Ąt in two bytes. When the location Ąeld of a line
is not blank, it must contain a symbol that has not been previously deĄned. The
equivalent of that symbol is then deĄned to be the current value of ⊙* .

11. After processing the LOC Ąeld as described in rule 10, the assembly
process depends on the value of the OP Ąeld. There are six possibilities for OP:

a) OP is a symbolic MIX operator (see Table 1 at the end of the previous section).
The chart deĄnes the normal C and F values for each MIX operator. In this
case the ADDRESS should be an A-part (rule 6), followed by an index part
(rule 7), followed by an F-part (rule 8). We thereby obtain four values: C,
F, A, and I. The effect is to assemble the word determined by the sequence
ŚLDA C; STA WORD; LDA F; STA WORD(4:4); LDA I; STA WORD(3:3); LDA A;
STA WORD(0:2)Š into the location speciĄed by ⊙* , and to advance ⊙* by 1.

b) OP is ŚEQUŠ. The ADDRESS should be a W-value (see rule 9). If the LOC Ąeld
is nonblank, the equivalent of the symbol appearing there is set equal to the
value speciĄed in ADDRESS. This rule takes precedence over rule 10. The
value of ⊙* is unchanged. (As a nontrivial example, consider the line

BYTESIZE EQU 1(4:4)

which allows the programmer to have a symbol whose value depends on the
byte size. This is an acceptable situation so long as the resulting program
is meaningful with each possible byte size.)

c) OP is ŚORIGŠ. The ADDRESS should be a W-value (see rule 9); the location
counter, ⊙* , is set to this value. (Notice that because of rule 10, a symbol
appearing in the LOC Ąeld of an ORIG line gets as its equivalent the value of
⊙* before it has changed. For example,

TABLE ORIG *+100

sets the equivalent of TABLE to the Ąrst of 100 locations.)

d) OP is ŚCONŠ. The ADDRESS should be a W-value; the effect is to assemble a
word, having this value, into the location speciĄed by ⊙* , and to advance ⊙*
by 1.

e) OP is ŚALFŠ. The effect is to assemble the word of character codes formed by
the Ąrst Ąve characters of the address Ąeld, otherwise behaving like CON.

156 BASIC CONCEPTS 1.3.2

f) OP is ŚENDŠ. The ADDRESS should be a W-value, which speciĄes in its (4 :5)
Ąeld the location of the instruction at which the program begins. The END

line signals the end of a MIXAL program. The assembler effectively inserts
additional lines just before the END line, in arbitrary order, corresponding
to all undeĄned symbols and literal constants (see rules 12 and 13). Thus a
symbol in the LOC Ąeld of the END line will denote the Ąrst location following
the inserted words.

12. Literal constants: A W-value that is less than 10 characters long may
be enclosed between Ś=Š signs and used as a future reference. The effect is to
create a new symbol internally and to insert a CON line deĄning that symbol,
just before the END line (see remark 4 following Program P).

13. Every symbol has one and only one equivalent value; this is a full-
word MIX number that is normally determined by the symbolŠs appearance in
LOC according to rule 10 or rule 11(b). If the symbol never appears in LOC,
a new line is effectively inserted before the END line, having OP = ŚCONŠ and
ADDRESS = Ś0Š and the name of the symbol in LOC.

Note: The most signiĄcant consequence of the rules above is the restriction
on future references. A symbol that has not yet been deĄned in the LOC Ąeld
of a previous line may not be used except as the A-part of an instruction. In
particular, it may not be used (a) in connection with arithmetic operations; or
(b) in the ADDRESS Ąeld of EQU, ORIG, or CON. For example,

LDA 2F+1

and
CON 3F

are both illegal. This restriction has been imposed in order to allow more efficient
assembly of programs, and the experience gained in writing this set of books has
shown that it is a mild limitation that rarely makes much difference.

Actually MIX has two symbolic languages for low-level programming: MIXAL,*
a machine-oriented language that is designed to facilitate one-pass translation
by a very simple assembly program; and PL/MIX, which more adequately reĆects
data and control structures and which looks rather like the Remarks Ąeld of
MIXAL programs.

EXERCISES Ů First set

1. [00] The text remarked that ŚX EQU 1000Š does not assemble any instruction that
sets the value of a variable. Suppose that you are writing a MIX program in which
the algorithm is supposed to set the value contained in a certain memory cell (whose
symbolic name is X) equal to 1000. How could you express this in MIXAL?

x 2. [10] Line 12 of Program M says ŚJMP *Š, where * denotes the location of that line.
Why doesnŠt the program go into an inĄnite loop, endlessly repeating this instruction?

* The author was astonished to learn in 1971 that MIXAL is also the name of a laundry
detergent in Yugoslavia, developed for use with avtomate [automatics].

1.3.2 THE MIX ASSEMBLY LANGUAGE 157

x 3. [23] What is the effect of the following program, if it is used in conjunction with
Program M?

START IN X+1(0)

JBUS *(0)

ENT1 100

1H JMP MAXIMUM

LDX X,1

STA X,1

STX X,2

DEC1 1

J1P 1B

OUT X+1(1)

HLT

END START

x 4. [25] Assemble Program P by hand. (It wonŠt take as long as you think.) What
are the actual numerical contents of memory, corresponding to that symbolic program?

5. [11] Why doesnŠt Program P need a JBUS instruction to determine when the line
printer is ready?

6. [HM20] (a) Show that if n is not prime, n has a divisor d with 1 < d ≤ √n. (b) Use
this fact to show that the test in step P7 of Algorithm P proves that N is prime.

7. [10] (a) What is the meaning of Ś4BŠ in line 34 of Program P? (b) What effect, if
any, would be caused if the location of line 15 were changed to Ś2HŠ and the address of
line 20 were changed to Ś2BŠ?

x 8. [24] What does the following program do? (Do not run it on a computer, Ągure
it out by hand!)

* MYSTERY PROGRAM

BUF ORIG *+3000

1H ENT1 1

ENT2 0

LDX 4F

2H ENT3 0,1

3H STZ BUF,2

INC2 1

DEC3 1

J3P 3B

STX BUF,2

INC2 1

INC1 1

CMP1 =75=

JL 2B

ENN2 2400

OUT BUF+2400,2(18)

INC2 24

J2N *-2

HLT

4H ALF AAAAA

END 1B

158 BASIC CONCEPTS 1.3.2

EXERCISES Ů Second set

These exercises are short programming problems, representing typical computer
applications and covering a wide range of techniques. Every reader is encouraged to
choose a few of these problems, in order to get some experience using MIX as well as
a good review of basic programming skills. If desired, these exercises may be worked
concurrently as the rest of Chapter 1 is being read.

The following list indicates the types of programming techniques that are involved:

The use of switching tables for multiway decisions: exercises 9, 13, and 23.
The use of index registers with two-dimensional arrays: exercises 10, 21, and 23.
Unpacking characters: exercises 13 and 23.
Integer and scaled decimal arithmetic: exercises 14, 16, and 18.
The use of subroutines: exercises 14 and 20.
Input buffering: exercise 13.
Output buffering: exercises 21 and 23.
List processing: exercise 22.
Real-time control: exercise 20.
Graphical display: exercise 23.

Whenever an exercise in this book says, Şwrite a MIX programŤ or Şwrite a MIX

subroutine,Ť you need only write symbolic MIXAL code for what is asked. This code
will not be complete in itself, it will merely be a fragment of a (hypothetical) complete
program. No input or output need be done in a code fragment, if the data is to be
supplied externally; one need write only LOC, OP, and ADDRESS Ąelds of MIXAL lines,
together with appropriate remarks. The numeric machine language, line number, and
ŞtimesŤ columns (see Program M) are not required unless speciĄcally requested, nor
will there be an END line.

On the other hand, if an exercise says, Şwrite a complete MIX program,Ť it implies
that an executable program should be written in MIXAL, including in particular the
Ąnal END line. Assemblers and MIX simulators on which such complete programs can
be tested are widely available.

x 9. [25] Location INST contains a MIX word that purportedly is a MIX instruction.
Write a MIX program that jumps to location GOOD if the word has a valid C-Ąeld,
valid ±AA-Ąeld, valid I-Ąeld, and valid F-Ąeld, according to Table 1.3.1Ű1; your pro-
gram should jump to location BAD otherwise. Remember that the test for a valid F-Ąeld
depends on the C-Ąeld; for example, if C = 7 (MOVE), any F-Ąeld is acceptable, but if C
= 8 (LDA), the F-Ąeld must have the form 8L + R where 0 ≤ L ≤ R ≤ 5. The Ş±AAŤ-
Ąeld is to be considered valid unless C speciĄes an instruction requiring a memory
address and I = 0 and ±AA is not a valid memory address.

Note: Inexperienced programmers tend to tackle a problem like this by writing
a long series of tests on the C-Ąeld, such as ŚLDA C; JAZ 1F; DECA 5; JAN 2F; JAZ 3F;
DECA 2; JAN 4F; . . . Š. This is not good practice! The best way to make multiway
decisions is to prepare an auxiliary table containing information that encapsulates the
desired logic. If there were, for example, a table of 64 entries, we could write ŚLD1 C;
LD1 TABLE,1; JMP 0,1Š Ů thereby jumping very speedily to the desired routine. Other
useful information can also be kept in such a table. A tabular approach to the present
problem makes the program only a little bit longer (including the table) and greatly
increases its speed and Ćexibility.

1.3.2 THE MIX ASSEMBLY LANGUAGE 159

x 10. [31] Assume that we have a 9× 8 matrix

a11 a12 a13 . . . a18

a21 a22 a23 . . . a28

...
...

a91 a92 a93 . . . a98

stored in memory so that aij is in location 1000+8i+j. In memory the matrix therefore
appears as follows:

(1009) (1010) (1011) . . . (1016)

(1017) (1018) (1019) . . . (1024)

...
...

(1073) (1074) (1075) . . . (1080)

.

A matrix is said to have a Şsaddle pointŤ if some position is the smallest value in
its row and the largest value in its column. In symbols, aij is a saddle point if

aij = min
1≤k≤8

aik = max
1≤k≤9

akj .

Write a MIX program that computes the location of a saddle point (if there is at least
one) or zero (if there is no saddle point), and stops with this value in rI1.

11. [M29] What is the probability that the matrix in the preceding exercise has a
saddle point, assuming that the 72 elements are distinct and assuming that all 72!
arrangements are equally probable? What is the corresponding probability if we assume
instead that the elements of the matrix are zeros and ones, and that all 272 such matrices
are equally probable?

12. [HM42] Two solutions are given for exercise 10 (see page 512), and a third is
suggested; it is not clear which of them is better. Analyze the algorithms, using each
of the assumptions of exercise 11, and decide which is the better method.

13. [28] A cryptanalyst wants a frequency count of the letters in a certain code. The
code has been punched on paper tape; the end is signaled by an asterisk. Write a
complete MIX program that reads in the tape, counts the frequency of each character
up to the Ąrst asterisk, and then types out the results in the form

A 0010257

B 0000179

D 0794301

etc., one character per line. The number of blanks should not be counted, nor should
characters for which the count is zero (like C in the above) be printed. For efficiency,
ŞbufferŤ the input: While reading a block into one area of memory you can be counting
characters from another area. You may assume that an extra block (following the one
that contains the terminating asterisk) is present on the input tape.

x 14. [31] The following algorithm, due to the Neapolitan astronomer Aloysius Lilius
and the German Jesuit mathematician Christopher Clavius in the late 16th century, is
used by most Western churches to determine the date of Easter Sunday for any year
after 1582.

160 BASIC CONCEPTS 1.3.2

Algorithm E (Date of Easter). Let Y be the year for which the date of Easter is
desired.

E1. [Golden number.] Set G ← (Y mod 19) + 1. (G is the so-called Şgolden
numberŤ of the year in the 19-year Metonic cycle.)

E2. [Century.] Set C ← ⌊Y/100⌋+ 1. (When Y is not a multiple of 100, C is the
century number; for example, 1984 is in the twentieth century.)

E3. [Corrections.] Set X ← ⌊3C/4⌋ − 12, Z ← ⌊(8C + 5)/25⌋ − 5. (Here X is the
number of years, such as 1900, in which leap year was dropped in order to
keep in step with the sun; Z is a special correction designed to synchronize
Easter with the moonŠs orbit.)

E4. [Find Sunday.] Set D ← ⌊5Y/4⌋−X−10. (March ((−D) mod 7) will actually
be a Sunday.)

E5. [Epact.] Set E ← (11G + 20 + Z − X) mod 30. If E = 25 and the golden
number G is greater than 11, or if E = 24, then increase E by 1. (This number
E is the epact, which speciĄes when a full moon occurs.)

E6. [Find full moon.] Set N ← 44− E. If N < 21 then set N ← N + 30. (Easter
is supposedly the Ąrst Sunday following the Ąrst full moon that occurs on or
after March 21. Actually perturbations in the moonŠs orbit do not make this
strictly true, but we are concerned here with the Şcalendar moonŤ rather than
the actual moon. The Nth of March is a calendar full moon.)

E7. [Advance to Sunday.] Set N ← N + 7− ((D +N) mod 7).

E8. [Get month.] If N > 31, the date is (N − 31) APRIL; otherwise the date is
N MARCH.

Write a subroutine to calculate and print Easter date given the year, assuming
that the year is less than 100000. The output should have the form Şdd MONTH, yyyyyŤ
where dd is the day and yyyyy is the year. Write a complete MIX program that uses
this subroutine to prepare a table of the dates of Easter from 1950 through 2000.

15. [M30] A fairly common error in the coding of the previous exercise is to fail to
realize that the quantity (11G+ 20 +Z−X) in step E5 may be negative; therefore the
positive remainder mod 30 might not be computed properly. (See CACM 5 (1962),
556.) For example, in the year 14250 we would Ąnd G = 1, X = 95, Z = 40; so if we
had E = −24 instead of E = +6 we would get the ridiculous answer Ś42 APRILŠ. Write
a complete MIX program that Ąnds the earliest year for which this error would actually
cause the wrong date to be calculated for Easter.

16. [31] We showed in Section 1.2.7 that the sum 1 + 1
2

+ 1
3

+ · · · becomes inĄnitely
large. But if it is calculated with Ąnite accuracy by a computer, the sum actually
exists, in some sense, because the terms eventually get so small that they contribute
nothing to the sum if added one by one. For example, suppose we calculate the sum
by rounding to one decimal place; then we have 1 + 0.5 + 0.3 + 0.3 + 0.2 + 0.2 + 0.1 +
0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 + 0.1 = 3.9.

More precisely, let rn(x) be the number x rounded to n decimal places; we deĄne
rn(x) = ⌊10nx+ 1

2
⌋/10n. Then we wish to Ąnd

Sn = rn(1) + rn(1
2
) + rn(1

3
) + · · · ;

we know that S1 = 3.9, and the problem is to write a complete MIX program that
calculates and prints Sn for n = 2, 3, 4, and 5.

1.3.2 THE MIX ASSEMBLY LANGUAGE 161

Note: There is a much faster way to do this than the simple procedure of adding
rn(1/m), one number at a time, until rn(1/m) becomes zero. For example, we have
r5(1/m) = 0.00001 for all values of m from 66667 to 200000; itŠs wise to avoid
calculating 1/m all 133334 times! An algorithm along the following lines should rather
be used:

A. Start with mh = 1, S = 1.
B. Set me = mh + 1 and calculate rn(1/me) = r.
C. Find mh, the largest m for which rn(1/m) = r.
D. Add (mh −me + 1)r to S and return to Step B.

17. [HM30] Using the notation of the preceding exercise, prove or disprove the formula

limn→∞(Sn+1 − Sn) = ln 10.

18. [25] The ascending sequence of all reduced fractions between 0 and 1 that have
denominators ≤ n is called the ŞFarey series of order n.Ť For example, the Farey series
of order 7 is

0
1
,

1
7
,

1
6
,

1
5
,

1
4
,

2
7
,

1
3
,

2
5
,

3
7
,

1
2
,

4
7
,

3
5
,

2
3
,

5
7
,

3
4
,

4
5
,

5
6
,

6
7
,

1
1
.

If we denote this series by x0/y0, x1/y1, x2/y2, . . . , exercise 19 proves that

x0 = 0, y0 = 1; x1 = 1, y1 = n;

xk+2 = ⌊(yk + n)/yk+1⌋xk+1 − xk;

yk+2 = ⌊(yk + n)/yk+1⌋yk+1 − yk.

Write a MIX subroutine that computes the Farey series of order n, by storing the values
of xk and yk in locations X + k, Y + k, respectively. (The total number of terms in the
series is approximately 3n2/π2, so you may assume that n is rather small.)

19. [M30] (a) Show that the numbers xk and yk deĄned by the recurrence in the
preceding exercise satisfy the relation xk+1yk−xkyk+1 = 1. (b) Show that the fractions
xk/yk are indeed the Farey series of order n, using the fact proved in (a).

x 20. [33] Assume that MIXŠs overĆow toggle and X-register have been wired up to the
traffic signals at the corner of Del Mar Boulevard and Berkeley Avenue, as follows:

rX(2:2) = Del Mar traffic light
rX(3:3) = Berkeley traffic light

0 off, 1 green, 2 amber, 3 red;

rX(4:4) = Del Mar pedestrian light
rX(5:5) = Berkeley pedestrian light

0 off, 1 ŞWALKŤ, 2 ŞDONŠT WALKŤ.

Cars or pedestrians wishing to travel on Berkeley across the boulevard must trip a
switch that causes the overĆow toggle of MIX to go on. If this condition never occurs,
the light for Del Mar should remain green.

Cycle times are as follows:

Del Mar traffic light is green ≥ 30 sec, amber 8 sec;
Berkeley traffic light is green 20 sec, amber 5 sec.

When a traffic light is green or amber for one direction, the other direction has a red
light. When the traffic light is green, the corresponding WALK light is on, except that

162 BASIC CONCEPTS 1.3.2

22 47 16 41 10 35 04

05 23 48 17 42 11 29

30 06 24 49 18 36 12

13 31 07 25 43 19 37

38 14 32 01 26 44 20

21 39 08 33 02 27 45

46 15 40 09 34 03 28

5

4

6

1

3

8

7

2

START

Fig. 16. A magic square. Fig. 17. JosephusŠs problem, n = 8, m = 4.

DONŠT WALK Ćashes for 12 sec just before a green light turns to amber, as follows:

DONŠT WALK 1
2

sec
off 1

2
sec

repeat 8 times;

DONŠT WALK 4 sec (and remains on through amber and red cycles).

If the overĆow is tripped while the Berkeley light is green, the car or pedestrian
will pass on that cycle, but if it is tripped during the amber or red portions, another
cycle will be necessary after the Del Mar traffic has passed.

Assume that one MIX time unit equals 10 µsec. Write a complete MIX program
that controls these lights by manipulating rX, according to the input given by the
overĆow toggle. The stated times are to be followed exactly unless it is impossible to
do so. Note: The setting of rX changes precisely at the completion of a LDX or INCX

instruction.

21. [28] A magic square of order n is an arrangement of the numbers 1 through n2 in
a square array in such a way that the sum of each row and column is n(n2 +1)/2, and so
is the sum of the two main diagonals. Figure 16 shows a magic square of order 7. The
rule for generating it is easily seen: Start with 1 just below the middle square, then go
down and to the right diagonally Ů when running off the edge imagine an entire plane
tiled with squares Ů until reaching a Ąlled square; then drop down two spaces from the
most-recently-Ąlled square and continue. This method works whenever n is odd.

Using memory allocated in a fashion like that of exercise 10, write a complete
MIX program to generate the 23× 23 magic square by the method above, and to print
the result. [This algorithm is due to Ibn al-Haytham, who was born in Basra about
965 and died in Cairo about 1040. Many other magic square constructions make good
programming exercises; see W. W. Rouse Ball, Mathematical Recreations and Essays,
revised by H. S. M. Coxeter (New York: Macmillan, 1939), Chapter 7.]

22. [31] (The Josephus problem.) There are n men arranged in a circle. Beginning at
a particular position, we count around the circle and brutally execute every mth man;
the circle closes as men die. For example, the execution order when n = 8 and m = 4 is
54613872, as shown in Fig. 17: The Ąrst man is Ąfth to go, the second man is fourth,
etc. Write a complete MIX program that prints out the order of execution when n = 24,
m = 11. Try to design a clever algorithm that works at high speed when n and m are
large (it may save your life). Reference: W. Ahrens, Mathematische Unterhaltungen
und Spiele 2 (Leipzig: Teubner, 1918), Chapter 15.

1.3.2 THE MIX ASSEMBLY LANGUAGE 163

23. [37] This is an exercise designed to give some experience in the many applications
of computers for which the output is to be displayed graphically rather than in the usual
tabular form. In this case, the object is to ŞdrawŤ a crossword puzzle diagram.

You are given as input a matrix of zeros and
ones. An entry of zero indicates a white square; a
one indicates a black square. The output should be a
diagram of the puzzle, with the appropriate squares
numbered for words across and down.

For example, given the matrix

1 0 0 0 0 1
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
1 0 0 0 0 1

,

1 2 3

4 5 6

7 8

9 10

11 12 13

14

Fig. 18. Diagram corresponding
to the matrix in exercise 23.

the corresponding puzzle diagram would be as shown in Fig. 18. A square is numbered
if it is a white square and either (a) the square below it is white and there is no white
square immediately above, or (b) the square to its right is white and there is no white
square immediately to its left. If black squares occur at the edges, they should be
removed from the diagram. This is illustrated in Fig. 18, where the black squares at
the corners were dropped. A simple way to accomplish this is to artiĄcially insert rows
and columns of −1Šs at the top, bottom, and sides of the given input matrix, then to
change every +1 that is adjacent to a −1 into a −1 until no +1 remains next to any −1.

The following method should be used to print the Ąnal diagram on a line printer:
Each box of the puzzle should correspond to 5 columns and 3 rows of the output page,
where the 15 positions are Ąlled as follows:

Unnumbered ␣␣␣␣+ Number nn nn␣␣+ Black +++++

white squares: ␣␣␣␣+ white squares: ␣␣␣␣+ squares: +++++

+++++ +++++ +++++

Ş−1Ť squares, depending on whether there are −1Šs to the right or below:
␣␣␣␣+ ␣␣␣␣+ ␣␣␣␣␣ ␣␣␣␣␣ ␣␣␣␣␣

␣␣␣␣+ ␣␣␣␣+ ␣␣␣␣␣ ␣␣␣␣␣ ␣␣␣␣␣

+++++ ␣␣␣␣+ +++++ ␣␣␣␣+ ␣␣␣␣␣

The diagram shown in Fig. 18 would then be printed as shown in Fig. 19.

The width of a printer line Ů 120 characters Ů
is enough to allow up to 23 columns in the crossword
puzzle. The data supplied as input to your program
will be a 23 × 23 matrix of zeros and ones, where
each row is punched in columns 1Ű23 of an input
card. For example, the card corresponding to the
top row of the matrix above would be punched
Ś10000111111111111111111Š. The diagram will not
necessarily be symmetrical, and it might have long
paths of black squares that are connected to the
outside in strange ways.

Fig. 19. Representation of Fig. 18 on a line printer.

+++++++++++++++++++++
+01 + +02 +03 +
+ + + + +

+++++++++++++++++++++++++++++++
+04 + ++++++05 + +06 +
+ + ++++++ + + +
+++++++++++++++++++++++++++++++
+07 + +08 + ++++++ +
+ + + + ++++++ +
+++++++++++++++++++++++++++++++
+ ++++++09 + +10 + +
+ ++++++ + + + +
+++++++++++++++++++++++++++++++
+11 +12 + ++++++13 + +
+ + + ++++++ + +
+++++++++++++++++++++++++++++++

+14 + + + +
+ + + + +
+++++++++++++++++++++

164 BASIC CONCEPTS 1.3.3

1.3.3. Applications to Permutations

In this section we shall give several more examples of MIX programs, and at the
same time introduce some important properties of permutations. These inves-
tigations will also bring out some interesting aspects of computer programming
in general.

Permutations were discussed earlier in Section 1.2.5; we treated the per-
mutation cd f be a as an arrangement of the six objects a, b, c, d, e, f in a
straight line. Another viewpoint is also possible: We may think of a permutation
as a rearrangement or renaming of the objects. With this interpretation it is
customary to use a two-line notation, for example,

a b c d e f
c d f b e a

, (1)

to mean Şa becomes c, b becomes d, c becomes f , d becomes b, e becomes e,
f becomes a.Ť Considered as a rearrangement, this means that object c moves
to the place formerly occupied by object a; considered as a renaming, it means
that object a is renamed c. The two-line notation is unaffected by changes in
the order of the columns; for example, the permutation (1) could also be written

c d f b a e
f b a d c e

and in 718 other ways.
A cycle notation is often used in connection with this interpretation. Permu-

tation (1) could be written
(a c f) (b d), (2)

again meaning Şa becomes c, c becomes f, f becomes a, b becomes d, d be-
comes b.Ť A cycle (x1 x2 . . . xn) means Şx1 becomes x2, . . . , xn−1 becomes xn,
xn becomes x1.Ť Since e is Ąxed under the permutation, it does not appear
in the cycle notation; that is, singleton cycles like Ş(e)Ť are conventionally not
written. If a permutation Ąxes all elements, so that there are only singleton
cycles present, it is called the identity permutation, and we denote it by Ş()Ť.

The cycle notation is not unique. For example,

(b d) (a c f), (c f a) (b d), (d b) (f a c), (3)

etc., are all equivalent to (2). However, Ş(a f c) (b d)Ť is not the same, since it
says that a goes to f .

It is easy to see why the cycle notation is always possible. Starting with
any element x1, the permutation takes x1 into x2, say, and x2 into x3, etc., until
Ąnally (since there are only Ąnitely many elements) we get to some element xn+1

that has already appeared among x1, . . . , xn. Now xn+1 must equal x1. For if it
were equal to, say, x3, we already know that x2 goes into x3; but by assumption,
xn ̸= x2 goes to xn+1. So xn+1 = x1, and we have a cycle (x1 x2 . . . xn) as
part of our permutation, for some n ≥ 1. If this does not account for the entire
permutation, we can Ąnd another element y1 and get another cycle (y1 y2 . . . ym)

1.3.3 APPLICATIONS TO PERMUTATIONS 165

in the same way. None of the yŠs can equal any of the xŠs, since xi = yj implies
that xi+1 = yj+1, etc., and we would ultimately Ąnd xk = y1 for some k,
contradicting the choice of y1. All cycles will eventually be found.

One application of these concepts to programming comes up whenever some
set of n objects is to be put into a different order. If we want to rearrange
the objects without moving them elsewhere, we must essentially follow the cycle
structure. For example, to do the rearrangement (1), namely to set

(a, b, c, d, e, f)← (c, d, f, b, e, a),

we would essentially follow the cycle structure (2) and successively set

t← a, a← c, c← f, f ← t; t← b, b← d, d← t.

It is frequently useful to realize that any such transformation takes place in
disjoint cycles.

Products of permutations. We can multiply two permutations together, with
the understanding that multiplication means the application of one permutation
after the other. For example, if permutation (1) is followed by the permutation

a b c d e f
b d c a f e

,

we have a becomes c, which then becomes c; b becomes d, which becomes a; etc.:

a b c d e f
c d f b e a

×

a b c d e f
b d c a f e

=

a b c d e f
c d f b e a

×

c d f b e a
c a e d f b

=

a b c d e f
c a e d f b

. (4)

It should be clear that multiplication of permutations is not commutative;
in other words, π1 × π2 is not necessarily equal to π2 × π1 when π1 and π2 are
permutations. The reader may verify that the product in (4) gives a different
result if the two factors are interchanged (see exercise 3).

Some people multiply permutations from right to left rather than the some-
what more natural left-to-right order shown in (4). In fact, mathematicians are
divided into two camps in this regard; should the result of applying transforma-
tion T1, then T2, be denoted by T1T2 or by T2T1? Here we use T1T2.

Equation (4) would be written as follows, using the cycle notation:

(a c f) (b d) (a b d) (e f) = (a c e f b). (5)

Note that the multiplication sign Ş×Ť is conventionally dropped; this does not
conĆict with the cycle notation since it is easy to see that the permutation
(a c f)(b d) is really the product of the permutations (a c f) and (b d).

166 BASIC CONCEPTS 1.3.3

Multiplication of permutations can be done directly in terms of the cycle
notation. For example, to compute the product of several permutations

(a cf g) (b c d) (a e d) (f a d e) (b g f a e), (6)

we Ąnd (proceeding from left to right) that Şa goes to c, then c goes to d, then
d goes to a, then a goes to d, then d is unchangedŤ; so the net result is that
a goes to d under (6), and we write down Ş(a d Ť as the partial answer. Now
we consider the effect on d: Şd goes to b goes to gŤ; we have the partial result
Ş(a d gŤ. Considering g, we Ąnd that Şg goes to a, to e, to f, to aŤ, and so the
Ąrst cycle is closed: Ş(a d g)Ť. Now we pick a new element that hasnŠt appeared
yet, say c; we Ąnd that c goes to e, and the reader may verify that ultimately
the answer Ş(a d g)(c e b)Ť is obtained for (6).

Let us now try to do this process by computer. The following algorithm
formalizes the method described in the preceding paragraph, in a way that is
amenable to machine calculation.

A1. First pass A2. Open

A3. Set CURRENT A4. Scan formula

A5. CURRENT= START?A6. Close
Done

CURRENT

matched

End
reachedNo

Yes

Fig. 20. Algorithm A for multiplying permutations.

Algorithm A (Multiply permutations in cycle form). This algorithm takes a
product of cycles, such as (6), and computes the resulting permutation in the
form of a product of disjoint cycles. For simplicity, the removal of singleton cycles
is not described here; that would be a fairly simple extension of the algorithm.
As this algorithm is performed, we successively ŞtagŤ the elements of the input
formula; that is, we mark somehow those symbols of the input formula that have
been processed.

A1. [First pass.] Tag all left parentheses, and replace each right parenthesis by
a tagged copy of the input symbol that follows its matching left parenthesis.
(See the example in Table 1.)

A2. [Open.] Searching from left to right, Ąnd the Ąrst untagged element of the
input. (If all elements are tagged, the algorithm terminates.) Set START

equal to it; output a left parenthesis; output the element; and tag it.

A3. [Set CURRENT.] Set CURRENT equal to the next element of the formula.

A4. [Scan formula.] Proceed to the right until either reaching the end of the
formula, or Ąnding an element equal to CURRENT; in the latter case, tag it
and go back to step A3.

1.3.3 APPLICATIONS TO PERMUTATIONS 167

Table 1

ALGORITHM A APPLIED TO (6)

After
step START CURRENT (a c f g) (b c d) (a e d) (f a d e) (b g f a e) Output

A1 (a c f g a (b c d b (a e d a (f a d e f (b g f a e b

A2 a (a
⌣

⌢
c f g a (b c d b (a e d a (f a d e f (b g f a e b (a

A3 a c (a c
⌣

⌢
f g a (b c d b (a e d a (f a d e f (b g f a e b

A4 a c (a c f g a (b c
⌣

⌢
d b (a e d a (f a d e f (b g f a e b

. . .
A4 a d (a c f g a (b c d b (a e d

⌣

⌢
a (f a d e f (b g f a e b

. . .
A4 a a (a c f g a (b c d b (a e d a (f a

⌣

⌢
d e f (b g f a e b

. . .
A5 a d (a c f g a (b c d b (a e d a (f a d e f (b g f a e b

⌣

⌢
d

. . .
A5 a g (a c f g a (b c d b (a e d a (f a d e f (b g f a e b

⌣

⌢
g

. . .
A5 a a (a c f g a (b c d b (a e d a (f a d e f (b g f a e b

⌣

⌢

A6 a a (a c f g a (b c d b (a e d a (f a d e f (b g f a e b
⌣

⌢
)

. . .
A2 c a (a c

⌣

⌢
f g a (b c d b (a e d a (f a d e f (b g f a e b (c

. . .
A5 c e (a c f g a (b c d b (a e d a (f a d e f (b g f a e b

⌣

⌢
e

. . .
A5 c b (a c f g a (b c d b (a e d a (f a d e f (b g f a e b

⌣

⌢
b

. . .
A6 c c (a c f g a (b c d b (a e d a (f a d e f (b g f a e b

⌣

⌢
)

. . .
A6 f f (a c f g a (b c d b (a e d a (f a d e f (b g f a e b

⌣

⌢
(f)

Here
⌣

⌢
represents a cursor following the element just scanned; tagged elements are light gray.

A5. [CURRENT = START?] If CURRENT ̸= START, output CURRENT and go back to
step A4 starting again at the left of the formula (thereby continuing the
development of a cycle in the output).

A6. [Close.] (A complete cycle in the output has been found.) Output a right
parenthesis, and go back to step A2.

For example, consider formula (6); Table 1 shows successive stages in its
processing. The Ąrst line of that table shows the formula after right parentheses
have been replaced by the leading element of the corresponding cycle; succeeding
lines show the progress that is made as more and more elements are tagged.
A cursor shows the current point of interest in the formula. The output is
Ş(a d g) (c e b) (f)Ť; notice that singleton cycles will appear in the output.

A MIX program. To implement this algorithm for MIX, the ŞtaggingŤ can be
done by using the sign of a word. Suppose our input is punched onto cards in
the following format: An 80-column card is divided into 16 Ąve-character Ąelds.
Each Ąeld is either (a) Ś␣␣␣␣(Š, representing the left parenthesis beginning a
cycle; (b) Ś)␣␣␣␣Š, representing the right parenthesis ending a cycle; (c) Ś␣␣␣␣␣Š,
all blanks, which may be inserted anywhere to Ąll space; or (d) anything else,
representing an element to be permuted. The last card of the input is recognized
by having columns 76Ű80 equal to Ś␣␣␣␣=Š. For example, (6) might be punched

168 BASIC CONCEPTS 1.3.3

on two cards as follows:

(A C F G) (B C D) (A E D)

(F A D E) (B G F A E) =

The output of our program will consist of a verbatim copy of the input, followed
by the answer in essentially the same format.

Program A (Multiply permutations in cycle form). This program implements
Algorithm A, and it also includes provision for input, output, and the removing
of singleton cycles. But it doesnŠt catch errors in the input.

01 MAXWDS EQU 1200 Maximum length of input
02 PERM ORIG *+MAXWDS The input permutation
03 ANS ORIG *+MAXWDS Place for answer
04 OUTBUF ORIG *+24 Place for printing
05 CARDS EQU 16 Unit number for card reader
06 PRINTER EQU 18 Unit number for printer
07 BEGIN IN PERM(CARDS) Read Ąrst card.
08 ENT2 0
09 LDA EQUALS
10 1H JBUS *(CARDS) Wait for cycle complete.
11 CMPA PERM+15,2
12 JE *+2 Is it the last card?
13 IN PERM+16,2(CARDS) No, read another.
14 ENT1 OUTBUF
15 JBUS *(PRINTER) Print a copy of
16 MOVE PERM,2(16) the input card.
17 OUT OUTBUF(PRINTER)
18 JE 1F
19 INC2 16
20 CMP2 =MAXWDS-16=
21 JLE 1B Repeat until input is complete.
22 HLT 666 Too much input!
23 1H INC2 15 1 At this point, rI2 words of
24 ST2 SIZE 1 input are in PERM, PERM + 1, . . .
25 ENT3 0 1 A1. First pass.
26 2H LDAN PERM,3 A Get next element of input.
27 CMPA LPREN(1:5) A Is it Ś(Š?
28 JNE 1F A
29 STA PERM,3 B If so, tag it.
30 INC3 1 B Put the next nonblank input symbol
31 LDXN PERM,3 B into rX.
32 JXZ *-2 B
33 1H CMPA RPREN(1:5) C
34 JNE *+2 C
35 STX PERM,3 D Replace Ś)Š by tagged rX.
36 INC3 1 C
37 CMP3 SIZE C Have all elements been processed?
38 JL 2B C

1.3.3 APPLICATIONS TO PERMUTATIONS 169

39 LDA LPREN 1 Prepare for main program.
40 ENT1 ANS 1 rI1 = place to store next answer
41 OPEN ENT3 0 E A2. Open.
42 1H LDXN PERM,3 F Look for untagged element.
43 JXN GO F
44 INC3 1 G
45 CMP3 SIZE G
46 JL 1B G
47 * All are tagged. Now comes the output.
48 DONE CMP1 =ANS=
49 JNE *+2 Is answer the identity permutation?
50 MOVE LPREN(2) If so, change to Ś()Š.
51 MOVE =0= Put 23 words of blanks after answer.
52 MOVE -1,1(22)
53 ENT3 0
54 OUT ANS,3(PRINTER)
55 INC3 24
56 LDX ANS,3 Print as many lines as necessary.
57 JXNZ *-3
58 HLT
59 *
60 LPREN ALF (Constants used in the program
61 RPREN ALF)
62 EQUALS ALF =
63 *
64 GO MOVE LPREN H Open a cycle in the output.
65 MOVE PERM,3 H
66 STX START H
67 SUCC STX PERM,3 J Tag an element.
68 INC3 1 J Move one step to the right.
69 LDXN PERM,3(1:5) J A3. Set CURRENT (namely rX).
70 JXN 1F J Skip past blanks.
71 JMP *-3 0
72 5H STX 0,1 Q Output CURRENT.
73 INC1 1 Q
74 ENT3 0 Q Scan formula again.
75 4H CMPX PERM,3(1:5) K A4. Scan formula.
76 JE SUCC K Element = CURRENT?
77 1H INC3 1 L Move to right.
78 CMP3 SIZE L End of formula?
79 JL 4B L
80 CMPX START(1:5) P A5. CURRENT = START?
81 JNE 5B P
82 CLOSE MOVE RPREN R A6. Close.
83 CMPA -3,1 R Note: rA = Ś(Š.
84 JNE OPEN R
85 INC1 -3 S Suppress singleton cycles.
86 JMP OPEN S
87 END BEGIN

170 BASIC CONCEPTS 1.3.3

This program of approximately 75 instructions is quite a bit longer than
the programs of the previous section, and indeed it is longer than most of the
programs we will meet in this book. Its length is not formidable, however, since
it divides into several small parts that are fairly independent. Lines 07Ű22 read
in the input cards and print a copy of each card; lines 23Ű38 accomplish step A1
of the algorithm, the preconditioning of the input; lines 39Ű46 and 64Ű86 do the
main business of Algorithm A; and lines 48Ű57 output the answer.

The reader will Ąnd it instructive to study as many of the MIX programs given
in this book as possible. An ability to read and to understand computer programs
that you havenŠt written yourself is exceedingly important; yet such training has
been sadly neglected in too many computer courses, and some horribly inefficient
uses of computing machinery have arisen as a result.

Timing. The parts of Program A that are not concerned with input-output
have been decorated with frequency counts, as we did for Program 1.3.2M. Thus,
for example, line 30 is supposedly executed B times. For convenience we shall
assume that no blank words appear in the input except at the extreme right end;
under this assumption, line 71 is never executed and the jump in line 32 never
occurs.

By simple addition the total time to execute the program is

(7 + 5A+ 6B + 7C + 2D + E + 3F + 4G+ 8H + 6J

+ 3K + 4L+ 3P + 4Q+ 6R+ 2S)u, (7)

plus the time for input and output. In order to understand the meaning of
formula (7), we need to examine the Ąfteen unknowns A, B, C, D, E, F, G, H,
J, K, L, P , Q, R, S and we must relate them to pertinent characteristics of the
input. LetŠs look at some general principles of attack for problems of this kind.

First we can apply ŞKirchhoffŠs Ąrst lawŤ of electrical circuit theory: The
number of times an instruction is executed must equal the number of times we
transfer to that instruction. This seemingly obvious rule often relates several
quantities in a nonobvious way. Analyzing the Ćow of Program A, we get the
following equations.

From lines We deduce

26, 38, 39 A = 1 + (C − 1)
33, 28, 29 C = B + (A−B)
41, 84, 86 E = 1 +R
42, 46, 48 F = E + (G− 1)
64, 43, 44 H = F −G
67, 70, 76 J = H + (K − (L− J))
75, 79, 80 K = Q+ (L− P)
82, 72, 81 R = P −Q

The equations given by KirchhoffŠs law will not all be independent; in the present
case, for example, we see that the Ąrst and second equations are obviously
equivalent. Furthermore, the last equation can be deduced from the others,

1.3.3 APPLICATIONS TO PERMUTATIONS 171

since the third, fourth, and Ąfth imply that H = R; hence the sixth says that
K = L−R. At any rate we have already eliminated six of our Ąfteen unknowns:

A = C, E = R+ 1, F = R+G, H = R, K = L−R, Q = P −R. (8)

KirchhoffŠs Ąrst law is an effective tool that is analyzed more closely in Section
2.3.4.1.

The next step is to try to match up the variables with important character-
istics of the data. We Ąnd from lines 24, 25, 30, and 36 that

B + C = number of words of input = 16X − 1, (9)

where X is the number of input cards. From line 28,

B = number of Ş(Ť in input = number of cycles in input. (10)

Similarly, from line 34,

D = number of Ş)Ť in input = number of cycles in input. (11)

Now (10) and (11) give us a fact that could not be deduced by KirchhoffŠs law:

B = D. (12)

From line 64,

H = number of cycles in output (including singletons). (13)

Line 82 says R is equal to this same quantity; the fact that H = R was in this
case deducible from KirchhoffŠs law, since it already appears in (8).

Using the fact that each nonblank word is ultimately tagged, and lines 29,
35, and 67, we Ąnd that

J = Y − 2B, (14)

where Y is the number of nonblank words appearing in the input permutations.
From the fact that every distinct element appearing in the input permutation is
written into the output just once, either at line 65 or line 72, we have

P = H +Q = number of distinct elements in input. (15)

See Eqs. (8).

A momentŠs reĆection makes this clear from line 80 as well.

Finally, we see from line 85 that

S = number of singleton cycles in output. (16)

Clearly the quantities B, C, H, J, P , and S that we have now interpreted
are essentially independent parameters that may be expected to enter into the
timing of Program A.

The results we have obtained so far leave us with only the unknowns G
and L to be analyzed. For these we must use a little more ingenuity. The scans
of the input that start at lines 41 and 74 always terminate either at line 47 (the
last time) or at line 80. During each one of these P + 1 loops, the instruction

172 BASIC CONCEPTS 1.3.3

ŚINC3 1Š is performed B+C times; this takes place only at lines 44, 68, and 77,
so we get the nontrivial relation

G+ J + L = (B + C) (P + 1) (17)

connecting our unknowns G and L. Fortunately, the running time (7) is a func-
tion of G+L (it involves · · ·+3F+4G+· · ·+3K+4L+· · · = · · ·+7G+7L+· · ·),
so we need not try to analyze the individual quantities G and L any further.

Summing up all these results, we Ąnd that the total time exclusive of input-
output comes to

(112NX + 304X − 2M − Y + 11U + 2V − 11)u; (18)

in this formula, new names for the data characteristics have been used as follows:

X = number of cards of input,
Y = number of nonblank Ąelds in input (excluding Ąnal Ş=Ť),
M = number of cycles in input,
N = number of distinct element names in input,
U = number of cycles in output (including singletons),
V = number of singleton cycles in output.

(19)

In this way we have found that analysis of a program like Program A is in many
respects like solving an amusing puzzle.

We will show below that, if the output permutation is assumed to be random,
the quantities U and V will be HN and 1, respectively, on the average.

Another approach. Algorithm A multiplies permutations together much as
people ordinarily do the same job. Quite often we Ąnd that problems to be solved
by computer are very similar to problems that have confronted humans for many
years; therefore time-honored methods of solution, which have evolved for use
by mortals such as we, are also appropriate procedures for computer algorithms.

Just as often, however, we encounter new methods that turn out to be
superior for computers, although they are quite unsuitable for human use. The
central reason is that a computer ŞthinksŤ differently; it has a different kind of
memory for facts. An instance of this difference may be seen in our permutation-
multiplication problem: Using the algorithm below, a computer can do the
multiplication in one sweep over the formula, remembering the entire current
state of the permutation as its cycles are being multiplied. The human-oriented
Algorithm A scans the formula many times, once for each element of the output,
but the new algorithm handles everything in one scan. This is a feat that could
not be done reliably by Homo sapiens.

What is this computer-oriented method for permutation multiplication?
Table 2 illustrates the basic idea. The column below each character of the cycle
form in that table says what permutation is represented by the partial cycles to
the right. For example, the fragmentary formula Ş. . . d e)(b g f a e)Ť represents

1.3.3 APPLICATIONS TO PERMUTATIONS 173

Table 2

MULTIPLYING PERMUTATIONS IN ONE PASS

(a c f g) (b c d) (a e d) (f a d e) (b g f a e)

a → d d a a a a a a a a a a a d d d d d d e e e e e e e e a a

b → c c c c c c c c g g g g g g g g g g g g g g g g b b b b b

c → e e e d d d d d d c

d → g g g g g g g))) d d))) b b b b b d d d d d d d d d

e → b b b b b b b b b b b b b b a a a)))) b b))))) e

f → f f f f e e e e e e e e e e e e e e a a a a a a a a f f f

g → a)))) f g g g g

the permutation
a b c d e f g
e g c b ? a f

,

which appears under the rightmost d of the table, except that the unknown
destination of e is represented there by Ś)Š not Ś?Š.

Inspection of Table 2 shows that it can be created systematically, if we
start with the identity permutation on the right and work backward from right
to left. The column below letter x differs from the column to its right (which
records the previous status) only in row x; and the new value in row x is the one
that disappeared in the preceding change. More precisely, we have the following
algorithm:

Algorithm B (Multiply permutations in cycle form). This algorithm accom-
plishes essentially the same result as Algorithm A. Assume that the elements per-
muted are named x1, x2, . . . , xn. We use an auxiliary table T [1], T [2], . . . , T [n];
upon termination of this algorithm, xi goes to xj under the input permutation
if and only if T [i] = j.

B1. [Initialize.] Set T [k] ← k for 1 ≤ k ≤ n. Also, prepare to scan the input
from right to left.

B2. [Next element.] Examine the next element of the input (right to left). If
the input has been exhausted, the algorithm terminates. If the element is a
Ş)Ť, set Z ← 0 and repeat step B2; if it is a Ş(Ť, go to B4. Otherwise the
element is xi for some i; go on to B3.

B3. [Change T [i].] Exchange Z ↔ T [i]. If this makes T [i] = 0, set j ← i. Return
to step B2.

B4. [Change T [j].] Set T [j]← Z. (At this point, j is the row that shows a Ş)Ť
entry in the notation of Table 2, corresponding to the right parenthesis that
matches the left parenthesis just scanned.) Return to step B2.

Of course, after this algorithm has been performed, we still must output the
contents of table T in cycle form; this is easily done by a ŞtaggingŤ method, as
we shall see below.

174 BASIC CONCEPTS 1.3.3

B1. Initialize B2. Next element B3. Change T [i] B4. Change T [j]

Done
“xi”

“(”

“)”

Fig. 21. Algorithm B for multiplying permutations.

Let us now write a MIX program based on the new algorithm. We wish to use
the same ground rules as those in Program A, with input and output in the same
format as before. A slight problem presents itself; namely, how can we implement
Algorithm B without knowing in advance what the elements x1, x2, . . . , xn are?
We donŠt know n, and we donŠt know whether the element named b is to be
x1, or x2, etc. A simple way to solve this problem is to maintain a table of the
element names that have been encountered so far, and to search for the current
name each time (see lines 35Ű44 in the program below).

Program B (Same effect as Program A). rX ≡ Z; rI4 ≡ i; rI1 ≡ j; rI3 = n,
the number of distinct names seen.

01 MAXWDS EQU 1200 Maximum length of input
02 X ORIG *+MAXWDS The table of names
03 T ORIG *+MAXWDS The auxiliary state table
04 PERM ORIG *+MAXWDS The input permutation
05 ANS EQU PERM Place for answer
06 OUTBUF ORIG *+24 Place for printing
07 CARDS EQU 16

 Same as lines 05Ű22 of Program A· · ·
24 HLT 666 At this point, rI2 words of
25 1H INC2 15 1 input are in PERM, PERM + 1, . . .
26 ENT3 0 1 and we havenŠt seen any names yet.
27 RIGHT ENTX 0 A Set Z ← 0.
28 SCAN DEC2 1 B B2. Next element.
29 LDA PERM,2 B
30 JAZ CYCLE B Skip over blanks.
31 CMPA RPREN C
32 JE RIGHT C Is the next element Ş)Ť?
33 CMPA LPREN D
34 JE LEFT D Is it Ş(Ť?
35 ENT4 1,3 E Prepare for the search.
36 STA X E Store at beginning of table.
37 2H DEC4 1 F Search through names table.
38 CMPA X,4 F
39 JNE 2B F Repeat until match found.
40 J4P FOUND G Has the name appeared before?
41 INC3 1 H No; increase the table size.
42 STA X,3 H Insert the new name xn.

1.3.3 APPLICATIONS TO PERMUTATIONS 175

43 ST3 T,3 H Set T [n]← n,
44 ENT4 0,3 H i← n.
45 FOUND LDA T,4 J B3. Change T [i].
46 STX T,4 J Store Z.
47 SRC 5 J Set Z.
48 JANZ SCAN J
49 ENT1 0,4 K If Z was zero, set j ← i.
50 JMP SCAN K
51 LEFT STX T,1 L B4. Change T [j].
52 CYCLE J2P SCAN P Return to B2, unless Ąnished.
53 *
54 OUTPUT ENT1 ANS 1 All input has been scanned.
55 J3Z DONE 1 The x and T tables contain the answer.
56 1H LDAN X,3 Q Now we construct cycle notation.
57 JAP SKIP Q Has name been tagged?
58 CMP3 T,3 R Is there a singleton cycle?
59 JE SKIP R
60 MOVE LPREN S Open a cycle.
61 2H MOVE X,3 T
62 STA X,3 T Tag the name.
63 LD3 T,3 T Find successor of element.
64 LDAN X,3 T
65 JAN 2B T Is it already tagged?
66 MOVE RPREN W Yes, cycle closes.
67 SKIP DEC3 1 Z Move to next name.
68 J3P 1B Z
69 *
70 DONE CMP1 =ANS=

 Same as lines 48Ű62 of Program A· · ·
84 EQUALS ALF =
85 END BEGIN

Lines 54Ű68, which construct the cycle notation from the T table and the table
of names, make a rather pretty little algorithm that merits some study. The
quantities A, B, . . . , R, S, T, W, Z that enter into the timing of this program
are, of course, different from the quantities of the same name in the analysis of
Program A. The reader will Ąnd it an interesting exercise to analyze these times
(see exercise 10).

Experience shows that the main portion of the execution time of Program B
will be spent in searching the names table Ů this is quantity F in the timing.
Much better algorithms for searching and building dictionaries of names are
available; they are called symbol table algorithms, and they are of great impor-
tance in computer applications. Chapter 6 contains a thorough discussion of
efficient symbol table algorithms.

Inverses. The inverse π− of a permutation π is the rearrangement that undoes
the effect of π; if i goes to j under π, then j goes to i under π−. Thus the
product ππ− equals the identity permutation, and so does the product π−π.

176 BASIC CONCEPTS 1.3.3

People often denote the inverse by π−1 instead of π−, but the superscript 1 is
redundant (for the same reason that x1 = x).

Every permutation has an inverse. For example, the inverse of

a b c d e f
c d f b e a

is

c d f b e a
a b c d e f

=

a b c d e f
f d a b e c

.

We will now consider some simple algorithms for computing the inverse of a
permutation.

In the rest of this section, let us assume that we are dealing with permuta-
tions of the numbers {1, 2, . . . , n}. If X[1]X[2] . . . X[n] is such a permutation,
there is a simple method to compute its inverse: Set Y [X[k]]← k for 1 ≤ k ≤ n.
Then Y [1]Y [2] . . . Y [n] is the desired inverse. This method uses 2n memory cells,
namely n for X and n for Y .

Just for fun, however, letŠs suppose that n is very large and suppose also
that we wish to compute the inverse of X[1]X[2] . . . X[n] without using much
additional memory space. We want to compute the inverse Şin place,Ť so that
after our algorithm is Ąnished the array X[1]X[2] . . . X[n] will be the inverse
of the original permutation. Merely setting X[X[k]] ← k for 1 ≤ k ≤ n will
certainly fail, but by considering the cycle structure we can derive the following
simple algorithm:

Algorithm I (Inverse in place). Replace X[1]X[2] . . . X[n], a permutation of
{1, 2, . . . , n}, by its inverse. This algorithm is due to Bing-Chao Huang [Inf.
Proc. Letters 12 (1981), 237Ű238].

I1. [Initialize.] Set m← n, j ← −1.

I2. [Next element.] Set i ← X[m]. If i < 0, go to step I5 (the element has
already been processed).

I3. [Invert one.] (At this point j < 0 and i = X[m]. If m is not the largest ele-
ment of its cycle, the original permutation had X[−j] = m.) Set X[m]← j,
j ← −m, m← i, i← X[m].

I4. [End of cycle?] If i > 0, go back to I3 (the cycle has not ended); otherwise
set i← j. (In the latter case, the original permutation had X[−j] = m, and
m is largest in its cycle.)

I5. [Store Ąnal value.] Set X[m]← −i. (Originally X[−i] was equal to m.)

I6. [Loop on m.] Decrease m by 1. If m > 0, go back to I2; otherwise the
algorithm terminates.

See Table 3 for an example of this algorithm. The method is based on inversion
of successive cycles of the permutation, tagging the inverted elements by making
them negative, afterwards restoring the correct sign.

Algorithm I resembles parts of Algorithm A, and it very strongly resembles
the cycle-Ąnding algorithm in Program B (lines 54Ű68). Thus it is typical
of a number of algorithms involving rearrangements. When preparing a MIX

implementation, we Ąnd that it is most convenient to keep the value of −i in a
register instead of i itself:

1.3.3 APPLICATIONS TO PERMUTATIONS 177

Table 3

COMPUTING THE INVERSE OF 6 2 1 5 4 3 BY ALGORITHM I

After step: I2 I3 I3 I3 I5* I2 I3 I3 I5 I2 I5 I5 I3 I5 I5
X[1] 6 6 6 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 −3 3
X[2] 2 2 2 2 2 2 2 2 2 2 2 2 −4 2 2
X[3] 1 1 −6 −6 −6 −6 −6 −6 −6 −6 −6 6 6 6 6
X[4] 5 5 5 5 5 5 5 −5 −5 −5 5 5 5 5 5
X[5] 4 4 4 4 4 4 −1 −1 4 4 4 4 4 4 4
X[6] 3 −1 −1 −1 1 1 1 1 1 1 1 1 1 1 1
m 6 3 1 6 6 5 4 5 5 4 4 3 2 2 1
j −1 −6 −3 −1 −1 −1 −5 −4 −4 −4 −4 −4 −2 −2 −2
i 3 1 6 −1 −1 4 5 −1 −4 −5 −5 −6 −4 −2 −3

Read the columns from left to right. At point *, the cycle (1 6 3) has been inverted.

Program I (Inverse in place). rI1 ≡ m; rI2 ≡ −i; rI3 ≡ j; and n = N, a symbol
to be deĄned when this program is assembled as part of a larger routine.
01 INVERT ENT1 N 1 I1. Initialize. m← n.
02 ENT3 -1 1 j ← −1.
03 2H LD2N X,1 N I2. Next element. i← X[m].
04 J2P 5F N To I5 if i < 0.
05 3H ST3 X,1 N I3. Invert one. X[m]← j.
06 ENN3 0,1 N j ← −m.
07 ENN1 0,2 N m← i.
08 LD2N X,1 N i← X[m].
09 4H J2N 3B N I4. End of cycle? To I3 if i > 0.
10 ENN2 0,3 C Otherwise set i← j.
11 5H ST2 X,1 N I5. Store Ąnal value. X[m]← −i.
12 6H DEC1 1 N I6. Loop on m.
13 J1P 2B N To I2 if m > 0.

The timing for this program is easily worked out in the manner shown earlier;
every element X[m] is set Ąrst to a negative value in step I3 and later to a positive
value in step I5. The total time comes to (14N +C+ 2)u, where N is the size of
the array and C is the total number of cycles. The behavior of C in a random
permutation is analyzed below.

There is almost always more than one algorithm to do any given task, so
we would expect that there may be another way to invert a permutation. The
following ingenious algorithm is due to J. Boothroyd:

Algorithm J (Inverse in place). This algorithm has the same effect as Algo-
rithm I but uses a different method.
J1. [Negate all.] Set X[k]← −X[k], for 1 ≤ k ≤ n. Also set m← n.
J2. [Initialize j.] Set j ← m.
J3. [Find negative entry.] Set i← X[j]. If i > 0, set j ← i and repeat this step.
J4. [Invert.] Set X[j]← X[−i], X[−i]← m.
J5. [Loop on m.] Decrease m by 1; if m > 0, go back to J2. Otherwise the

algorithm terminates.

178 BASIC CONCEPTS 1.3.3

Table 4

COMPUTING THE INVERSE OF 6 2 1 5 4 3 BY ALGORITHM J

After step: J2 J3 J5 J3 J5 J3 J5 J3 J5 J3 J5 J3 J5
X[1] −6 −6 −6 −6 −6 −6 −6 −6 3 3 3 3 3
X[2] −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 2 2 2
X[3] −1 −1 6 6 6 6 6 6 6 6 6 6 6
X[4] −5 −5 −5 −5 5 5 5 5 5 5 5 5 5
X[5] −4 −4 −4 −4 −5 −5 4 4 4 4 4 4 4
X[6] −3 −3 −1 −1 −1 −1 −1 −1 −6 −6 −6 −6 1
m 6 6 5 5 4 4 3 3 2 2 1 1 0
i −3 −3 −4 −4 −5 −5 −1 −1 −2 −2 −6 −6
j 6 6 6 5 5 5 5 6 6 2 2 6 6

See Table 4 for an example of BoothroydŠs algorithm. Again the method is
essentially based on the cycle structure, but this time it is less obvious that the
algorithm really works! VeriĄcation is left to the reader (see exercise 13).

Program J (Analogous to Program I). rI1 ≡ m; rI2 ≡ j; rI3 ≡ −i.
01 INVERT ENN1 N 1 J1. Negate all.
02 ST1 X+N+1,1(0:0) N Set sign negative.
03 INC1 1 N
04 J1N *-2 N More?
05 ENT1 N 1 m← n.
06 2H ENN3 0,1 N J2. Initialize j. i← m.
07 ENN2 0,3 A j ← i.
08 LD3N X,2 A J3. Find negative entry.
09 J3N *-2 A i > 0?
10 LDA X,3 N J4. Invert.
11 STA X,2 N X[j]← X[−i].
12 ST1 X,3 N X[−i]← m.
13 DEC1 1 N J5. Loop on m.
14 J1P 2B N To J2 if m > 0.

To decide how fast this program runs, we need to know the quantity A; this
quantity is so interesting and instructive, it has been left as an exercise (see
exercise 14).

Although Algorithm J is deucedly clever, analysis shows that Algorithm I is
deĄnitely superior. In fact, the average running time of Algorithm J turns out
to be essentially proportional to n lnn, while that of Algorithm I is essentially
proportional to n. Maybe some day someone will Ąnd a use for Algorithm J (or
some related modiĄcation); it is a bit too pretty to be forgotten altogether.

An unusual correspondence. We have already remarked that the cycle
notation for a permutation is not unique; the six-element permutation (1 6 3)(4 5)
may be written (5 4)(3 1 6), etc. It will be useful to consider a canonical form
for the cyclic notation; the canonical form is unique. To get the canonical form,
proceed as follows:

a) Write all singleton cycles explicitly.

1.3.3 APPLICATIONS TO PERMUTATIONS 179

b) Within each cycle, put the smallest number Ąrst.
c) Order the cycles in decreasing order of the Ąrst number in the cycle.

For example, starting with (3 1 6)(5 4) we would get

(a): (3 1 6) (5 4) (2); (b): (1 6 3) (4 5) (2); (c): (4 5) (2) (1 6 3). (20)

The important property of this canonical form is that the parentheses may
be dropped and uniquely reconstructed again. Thus there is only one way to
insert parentheses in Ş4 5 2 1 6 3Ť to get a canonical cycle form: One must insert
a left parenthesis just before each left-to-right minimum (namely, just before
each element that is preceded by no smaller elements).

This insertion and removal of parentheses gives us an unusual one-to-one
correspondence between the set of all permutations expressed in cycle form
and the set of all permutations expressed in linear form. For example, the
permutation 6 2 1 5 4 3 in canonical cycle form is (4 5) (2) (1 6 3); remove
parentheses to get 4 5 2 1 6 3, which in cycle form is (2 5 6 3) (1 4); remove
parentheses to get 2 5 6 3 1 4, which in cycle form is (3 6 4) (1 2 5); etc.

This correspondence has numerous applications to the study of permutations
of different types. For example, let us ask ŞHow many cycles does a permutation
of n elements have, on the average?Ť To answer this question we consider the set
of all n! permutations expressed in canonical form, and drop the parentheses; we
are left with the set of all n! permutations in some order. Our original question
is therefore equivalent to, ŞHow many left-to-right minima does a permutation of
n elements have, on the average?Ť We have already answered the latter question
in Section 1.2.10; this was the quantity (A + 1) in the analysis of Algorithm
1.2.10M, for which we found the statistics

min 1, ave Hn, max n, dev

Hn −H(2)

n . (21)

(Actually, we discussed the average number of right-to-left maxima, but thatŠs
clearly the same as the number of left-to-right minima.) Furthermore, we proved
in essence that a permutation of n objects has k left-to-right minima with prob-
ability

n
k

/n!; therefore a permutation of n objects has k cycles with probability

n
k

/n!.

We can also ask about the average distance between left-to-right minima,
which becomes equivalent to the average length of a cycle. By (21), the total
number of cycles among all the n! permutations is n!Hn, since it is n! times the
average number of cycles. If we pick one of these cycles at random, what is its
average length?

Imagine all n! permutations of {1, 2, . . . , n} written down in cycle notation;
how many three-cycles are present? To answer this question, let us consider how
many times a particular three-cycle (x y z) appears: It clearly appears in exactly
(n − 3)! of the permutations, since this is the number of ways the remaining
n − 3 elements may be permuted. Now the number of different possible three-
cycles (x y z) is n(n− 1)(n− 2)/3, since there are n choices for x, (n− 1) for y,
(n− 2) for z, and among these n(n− 1)(n− 2) choices each different three-cycle

180 BASIC CONCEPTS 1.3.3

has appeared in three forms (x y z), (y z x), (z x y). Therefore the total number
of three-cycles among all n! permutations is n(n − 1)(n − 2)/3 times (n − 3)!,
namely n!/3. Similarly, the total number of m-cycles is n!/m, for 1 ≤ m ≤ n.
(This provides another simple proof of the fact that the total number of cycles
is n!Hn; hence the average number of cycles in a random permutation is Hn,
as we already knew.) Exercise 17 shows that the average length of a randomly
chosen cycle is n/Hn, if we consider the n!Hn cycles to be equally probable; but
if we choose an element at random in a random permutation, the average length
of the cycle containing that element is somewhat greater than n/Hn.

To complete our analyses of Algorithms A and B, we would like to know
the average number of singleton cycles in a random permutation. This is an
interesting problem. Suppose we write down the n! permutations, listing Ąrst
those with no singleton cycles, then those with just one, etc.; for example, if
n = 4,

no Ąxed elements: 2143 2341 2413 3142 3412 3421 4123 4312 4321
one Ąxed element: 1342 1423 3241 4213 2431 4132 2314 3124

two Ąxed elements: 1243 1432 1324 4231 3214 2134
three Ąxed elements:
four Ąxed elements: 1234

(Singleton cycles, which are the elements that remain Ąxed by a permutation,
have been specially marked in this list.) Permutations with no Ąxed elements
are called derangements; the number of derangements is the number of ways to
put n letters into n envelopes, getting them all wrong.

Let Pnk be the number of permutations of n objects having exactly k Ąxed
elements, so that for example,

P40 = 9, P41 = 8, P42 = 6, P43 = 0, P44 = 1.

An examination of the list above reveals the principal relationship between these
numbers: We can get all permutations with k Ąxed elements by Ąrst choosing
the k that are to be Ąxed

this can be done in

n
k

ways

and then permuting

the remaining n− k elements in all P(n−k)0 ways that leave no further elements
Ąxed. Hence

Pnk =

n

k

P(n−k)0. (22)

We also have the rule that Şthe whole is the sum of its partsŤ:

n! = Pnn + Pn(n−1) + Pn(n−2) + Pn(n−3) + · · · . (23)

Combining Eqs. (22) and (23) and rewriting the result slightly, we Ąnd that

n! =
P00

0!
+ n

P10

1!
+ n(n− 1)

P20

2!
+ n(n− 1)(n− 2)

P30

3!
+ · · · , (24)

an equation that must be true for all positive integers n. This equation has
already confronted us before Ů it appears in Section 1.2.5 in connection with

1.3.3 APPLICATIONS TO PERMUTATIONS 181

StirlingŠs attempt to generalize the factorial function Ů and we found a simple
derivation of its coefficients in Section 1.2.6 (Example 5). We conclude that

Pm0

m!
= 1− 1

1!
+

1
2!
− · · ·+ (−1)m

1
m!
. (25)

Now let pnk be the probability that a permutation of n objects has exactly
k singleton cycles. Since pnk = Pnk/n!, we have from Eqs. (22) and (25)

pnk =
1
k!

1− 1

1!
+

1
2!
− · · ·+ (−1)n−k 1

(n− k)!

. (26)

The generating function Gn(z) = pn0 + pn1z + pn2z
2 + · · · is therefore

Gn(z) = 1 +
1
1!

(z − 1) + · · ·+ 1
n!

(z − 1)n =

0≤j≤n

1
j!

(z − 1)j . (27)

From this formula it follows that G′
n(z) = Gn−1(z), and with the methods of

Section 1.2.10 we obtain the following statistics on the number of singleton cycles:

(min 0, ave 1, max n, dev 1), if n ≥ 2. (28)

A somewhat more direct way to count the number of permutations having
no singleton cycles follows from the principle of inclusion and exclusion, which is
an important method for many enumeration problems. The general principle of
inclusion and exclusion may be formulated as follows: We are given N elements,
and M subsets, S1, S2, . . . , SM, of these elements; and our goal is to count how
many of the elements lie in none of the subsets. Let |S| denote the number of
elements in a set S; then the desired number of objects in none of the sets Sj is

N −

1≤j≤M

|Sj |+

1≤j<k≤M

|Sj ∩ Sk| −

1≤i<j<k≤M

|Si ∩ Sj ∩ Sk|+ · · ·

+ (−1)M |S1 ∩ · · · ∩ SM | . (29)

(Thus we Ąrst subtract the number of elements in S1, . . . , SM from the total
number, N ; but this underestimates the desired total. So we add back the
number of elements that are common to pairs of sets, Sj ∩ Sk, for each pair
Sj and Sk; this, however, gives an overestimate. So we subtract the elements
common to triples of sets, etc.) There are several ways to prove this formula,
and the reader is invited to discover one of them. (See exercise 25.)

To count the number of permutations on n elements having no singleton
cycles, we consider theN = n! permutations and let Sj be the set of permutations
in which element j forms a singleton cycle. If 1 ≤ j1 < j2 < · · · < jk ≤ n, the
number of elements in Sj1

∩ Sj2
∩ · · · ∩ Sjk is the number of permutations in

which j1, . . . , jk are singleton cycles, and this is clearly (n − k)!. Thus formula
(29) becomes

n!−

n

1

(n− 1)! +

n

2

(n− 2)!−

n

3

(n− 3)! + · · ·+ (−1)n

n

n

0! ,

in agreement with (25).

182 BASIC CONCEPTS 1.3.3

The principle of inclusion and exclusion is due to A. de Moivre [see his
Doctrine of Chances (London: 1718), 61Ű63; 3rd ed. (1756, reprinted by Chelsea,
1957), 110Ű112], but its signiĄcance was not generally appreciated until it was
popularized and developed further by I. Todhunter in his Algebra (second edi-
tion, 1860), §762, and by W. A. Whitworth in the well-known book Choice and
Chance (Cambridge: 1867).

Combinatorial properties of permutations are explored further in Section 5.1.

EXERCISES

1. [02] Consider the transformation of {0, 1, 2, 3, 4, 5, 6} that replaces x by 2xmod 7.
Show that this transformation is a permutation, and write it in cycle form.

2. [10] The text shows how we might set (a, b, c, d, e, f)← (c, d, f, b, e, a) by using a
series of replacement operations (x← y) and one auxiliary variable t. Show how to do
the job by using a series of exchange operations (x↔ y) and no auxiliary variables.

3. [03] Compute the product (a
b
b
d
c
c
d
a
e
f
f
e
)× (a

c
b
d
c
f
d
b
e
e
f
a
), and express the answer

in two-line notation. (Compare with Eq. (4).)
4. [10] Express (a b d)(e f)(a c f)(b d) as a product of disjoint cycles.

x 5. [M10] Equation (3) shows several equivalent ways to express the same permuta-
tion in cycle form. How many different ways of writing that permutation are possible,
if all singleton cycles are suppressed?

6. [M28] What changes are made to the timing of Program A if we remove the
assumption that all blank words occur at the extreme right?

7. [10] If Program A is presented with the input (6), what are the quantitiesX, Y , M,
N, U, and V of (19)? What is the time required by Program A, excluding input-output?

x 8. [23] Would it be feasible to modify Algorithm B to go from left to right instead
of from right to left through the input?

9. [10] Both Programs A and B accept the same input and give the answer in
essentially the same form. Is the output exactly the same under both programs?

x 10. [M28] Examine the timing characteristics of Program B, namely, the quantities
A, B, . . . , Z shown there; express the total time in terms of the quantities X, Y , M, N,
U, V deĄned in (19), and of F. Compare the total time for Program B with the total
time for Program A on the input (6), as computed in exercise 7.
11. [15] Find a simple rule for writing π− in cycle form, if the permutation π is given
in cycle form.
12. [M27] (Transposing a rectangular matrix.) Suppose an m×n matrix (aij), m ̸= n,
is stored in memory in a fashion like that of exercise 1.3.2Ű10, so that the value of aij
appears in location L+n(i−1)+(j−1), where L is the location of a11. The problem is
to Ąnd a way to transpose this matrix, obtaining an n×m matrix (bij), where bij = aji
is stored in location L + m(i − 1) + (j − 1). Thus the matrix is to be transposed Şon
itself.Ť (a) Show that the transposition transformation moves the value that appears
in cell L + x to cell L + (mxmodN), for all x in the range 0 ≤ x < N = mn − 1.
(b) Discuss methods for doing this transposition by computer.

x 13. [M24] Prove that Algorithm J is valid.
x 14. [M34] Find the average value of the quantity A in the timing of Algorithm J.

15. [M12] Is there a permutation that represents exactly the same transformation
both in the canonical cycle form without parentheses and in the linear form?

1.3.3 APPLICATIONS TO PERMUTATIONS 183

16. [M15] Start with the permutation 1324 in linear notation; convert it to canonical
cycle form and then remove the parentheses; repeat this process until arriving at the
original permutation. What permutations occur during this process?

17. [M24] (a) The text demonstrates that there are n!Hn cycles altogether, among
all the permutations on n elements. If these cycles (including singleton cycles) are
individually written on n!Hn slips of paper, and if one of these slips of paper is chosen
at random, what is the average length of the cycle that is thereby picked? (b) If we write
the n! permutations on n! slips of paper, and if we choose a number k at random and
also choose one of the slips of paper, what is the probability that the cycle containing
k on that slip is an m-cycle? What is the average length of the cycle containing k?

x 18. [M27] What is pnkm, the probability that a permutation of n objects has exactly
k cycles of length m? What is the corresponding generating function Gnm(z)? What
is the average number of m-cycles and what is the standard deviation? (The text
considers only the case m = 1.)

19. [HM21] Show that, in the notation of Eq. (25), the number Pn0 of derangements
is exactly equal to n!/e rounded to the nearest integer, for all n ≥ 1.

20. [M20] Given that all singleton cycles are written out explicitly, how many different
ways are there to write the cycle notation of a permutation that has α1 one-cycles, α2

two-cycles, . . . ? (See exercise 5.)

21. [M22] What is the probability P (n;α1, α2, . . .) that a permutation of n objects
has exactly α1 one-cycles, α2 two-cycles, etc.?

x 22. [HM34] (The following approach, due to L. Shepp and S. P. Lloyd, gives a con-
venient and powerful method for solving problems related to the cycle structure of
random permutations.) Instead of regarding the number, n, of objects as Ąxed, and
the permutation variable, let us assume instead that we independently choose the
quantities α1, α2, α3, . . . appearing in exercises 20 and 21 according to some probability
distribution. Let w be any real number between 0 and 1.

a) Suppose that we choose the random variables α1, α2, α3, . . . according to the rule
that Şthe probability that αm = k is f(w,m, k),Ť for some function f(w,m, k).
Determine the value of f(w,m, k) so that the following two conditions hold:
(i)

k≥0 f(w,m, k) = 1, for 0 < w < 1 and m ≥ 1; (ii) the probability that

α1 + 2α2 + 3α3 + · · · = n and that α1 = k1, α2 = k2, α3 = k3, . . . equals
(1− w)wnP (n; k1, k2, k3, . . .), where P (n; k1, k2, k3, . . .) is deĄned in exercise 21.

b) A permutation whose cycle structure is α1, α2, α3, . . . clearly permutes exactly
α1 +2α2 +3α3 +· · · objects. Show that if the αŠs are randomly chosen according to
the probability distribution in part (a), the probability that α1+2α2+3α3+· · · = n
is (1− w)wn; the probability that α1 + 2α2 + 3α3 + · · · is inĄnite is zero.

c) Let ϕ(α1, α2, . . .) be any function of the inĄnitely many numbers α1, α2,
Show that if the αŠs are chosen according to the probability distribution in (a),
the average value of ϕ is (1 − w)

n≥0 w

nϕn; here ϕn denotes the average value
of ϕ taken over all permutations of n objects, where the variable αj represents
the number of j-cycles of a permutation. [For example, if ϕ(α1, α2, . . .) = α1, the
value of ϕn is the average number of singleton cycles in a random permutation of
n objects; we showed in (28) that ϕn = 1 for all n.]

d) Use this method to Ąnd the average number of cycles of even length in a random
permutation of n objects.

e) Use this method to solve exercise 18.

184 BASIC CONCEPTS 1.3.3

23. [HM42] (Golomb, Shepp, Lloyd.) If ln denotes the average length of the longest

cycle in a permutation of n objects, show that ln ≈ λn + 1
2
λ, where λ ≈ 0.62433 is a

constant. Prove in fact that limn→∞(ln − λn− 1
2
λ) = 0.

24. [M41] Find the variance of the quantity A that enters into the timing of Algo-
rithm J. (See exercise 14.)

25. [M22] Prove Eq. (29).

x 26. [M24] Extend the principle of inclusion and exclusion to obtain a formula for
the number of elements that are in exactly r of the subsets S1, S2, . . . , SM. (The text
considers only the case r = 0.)

27. [M20] Use the principle of inclusion and exclusion to count the number of integers
n in the range 0 ≤ n < am1m2 . . .mt that are not divisible by any of m1,m2, . . . ,mt.
Here m1, m2, . . . , mt, and a are positive integers, with mj ⊥ mk when j ̸= k.

28. [M21] (I. Kaplansky.) If the ŞJosephus permutationŤ deĄned in exercise 1.3.2Ű
22 is expressed in cycle form, we obtain (1 5 3 6 8 2 4)(7) when n = 8 and m = 4.
Show that this permutation in the general case is the product (n n−1 . . . 2 1)m−1×
(n n−1 . . . 2)m−1 . . . (n n−1)m−1.

29. [M25] Prove that the cycle form of the Josephus permutation when m = 2 can be
obtained by Ąrst expressing the Şperfect shuffleŤ permutation of {1, 2, . . . , 2n}, which
takes (1, 2, . . . , 2n) into (2, 4, . . . , 2n, 1, 3, . . . , 2n−1), in cycle form, then reversing left
and right and erasing all the numbers greater than n. For example, when n = 11 the
perfect shuffle is (1 2 4 8 16 9 18 13 3 6 12)(5 10 20 17 11 22 21 19 15 7 14) and the
Josephus permutation is (7 11 10 5)(6 3 9 8 4 2 1).

30. [M24] Use exercise 29 to show that the Ąxed elements of the Josephus permutation
when m = 2 are precisely the numbers (2d − 1)(2n + 1)/(2d+1 − 1) for all positive
integers d such that this is an integer.

31. [HM38] Generalizing exercises 29 and 30, prove that the jth man to be executed,
for general m and n, is in position x, where x may be computed as follows: Set x← jm;
then, while x > n, set x ← ⌊(m(x − n) − 1)/(m − 1)⌋. Consequently the average
number of Ąxed elements, for 1 ≤ n ≤ N and Ąxed m > 1 as N → ∞, approaches
k≥1(m− 1)k/(mk+1− (m− 1)k). [Since this value lies between (m− 1)/m and 1, the

Josephus permutations have slightly fewer Ąxed elements than random ones do.]

32. [M25] (a) Prove that any permutation π = π1π2 . . . π2m+1 of the form

π = (2 3)e2 (4 5)e4 . . . (2m 2m+1)e2m(1 2)e1 (3 4)e3 . . . (2m−1 2m)e2m−1 ,

where each ek is 0 or 1, has |πk − k| ≤ 2 for 1 ≤ k ≤ 2m+ 1.
(b) Given any permutation ρ of {1, 2, . . . , n}, construct a permutation π of the

stated form such that ρπ is a single cycle. Thus every permutation is ŞnearŤ a cycle.

33. [M33] If m = 22l

and n = 22l+1, show how to construct sequences of permutations
(αj1, αj2, . . . , αjn;βj1, βj2, . . . , βjn) for 0 ≤ j < m with the following ŞorthogonalityŤ
property:

αi1βj1αi2βj2 . . . αinβjn =

(1 2 3 4 5), if i = j;
(), if i ̸= j.

Each αjk and βjk should be a permutation of {1, 2, 3, 4, 5}.
x 34. [M25] (Transposing blocks of data.) One of the most common permutations

needed in practice is the change from αβ to βα, where α and β are substrings of an array.

1.3.3 APPLICATIONS TO PERMUTATIONS 185

In other words, if x0x1 . . . xm−1 = α and xmxm+1 . . . xm+n−1 = β, we want to change
the array x0x1 . . . xm+n−1 = αβ to the array xmxm+1 . . . xm+n−1x0x1 . . . xm−1 = βα;
each element xk should be replaced by xp(k) for 0 ≤ k < m + n, where p(k) =
(k + m) mod (m + n). Show that every such Şcyclic-shiftŤ permutation has a simple
cycle structure, and exploit that structure to devise a simple algorithm for the desired
rearrangement.

35. [M30] Continuing the previous exercise, let x0x1 . . . xl+m+n−1 = αβγ where α,
β, and γ are strings of respective lengths l, m, and n, and suppose that we want to
change αβγ to γβα. Show that the corresponding permutation has a convenient cycle
structure that leads to an efficient algorithm. [Exercise 34 considered the special case
m = 0.] Hint: Consider changing (αβ)(γβ) to (γβ)(αβ).

36. [27] Write a MIX subroutine for the algorithm in the answer to exercise 35, and
analyze its running time. Compare it with the simpler method that goes from αβγ to
(αβγ)R = γRβRαR to γβα, where σR denotes the left-right reversal of the string σ.

37. [M26] (Even permutations.) Let π be a permutation of {1, . . . , n}. Prove that π
can be written as the product of an even number of 2-cycles if and only if π can be
written as the product of exactly two n-cycles.

186 BASIC CONCEPTS 1.4

1.4. SOME FUNDAMENTAL PROGRAMMING TECHNIQUES

1.4.1. Subroutines

When a certain task is to be performed at several different places in a program,
it is usually undesirable to repeat the coding in each place. To avoid this
situation, the coding (called a subroutine) can be put into one place only, and a
few extra instructions can be added to restart the outer program properly after
the subroutine is Ąnished. Transfer of control between subroutines and main
programs is called subroutine linkage.

Each machine has its own peculiar manner for achieving efficient subroutine
linkage, usually involving special instructions. In MIX, the J-register is used for
this purpose; our discussion will be based on MIX machine language, but similar
remarks will apply to subroutine linkage on other computers.

Subroutines are used to save space in a program; they do not save any time,
other than the time implicitly saved by occupying less space Ů for example, less
time to load the program, or fewer passes necessary in the program, or better use
of high-speed memory on machines with several grades of memory. The extra
time taken to enter and leave a subroutine is usually negligible.

Subroutines have several other advantages. They make it easier to visualize
the structure of a large and complex program; they form a logical segmentation
of the entire problem, and this usually makes debugging of the program easier.
Many subroutines have additional value because they can be used by people
other than the programmer of the subroutine.

Most computer installations have built up a large library of useful sub-
routines, and such a library greatly facilitates the programming of standard
computer applications that arise. A programmer should not think of this as the
only purpose of subroutines, however; subroutines should not always be regarded
as general-purpose programs to be used by the community. Special-purpose
subroutines are just as important, even when they are intended to appear in
only one program. Section 1.4.3.1 contains several typical examples.

The simplest subroutines are those that have only one entrance and one exit,
such as the MAXIMUM subroutine we have already considered (see Section 1.3.2,
Program M). For reference, we will recopy that program here, changing it so
that a Ąxed number of cells, 100, is searched for the maximum:

* MAXIMUM OF X[1..100]
MAX100 STJ EXIT Subroutine linkage

ENT3 100 M1. Initialize.
JMP 2F

1H CMPA X,3 M3. Compare.
JGE *+3

2H ENT2 0,3 M4. Change m.
LDA X,3 New maximum found
DEC3 1 M5. Decrease k.
J3P 1B M2. All tested?

EXIT JMP * Return to main program.

(1)

1.4.1 SUBROUTINES 187

In a larger program containing this coding as a subroutine, the single instruction
ŚJMP MAX100Š would cause register A to be set to the current maximum value
of locations X + 1 through X + 100, and the position of the maximum would
appear in rI2. Subroutine linkage in this case is achieved by the instructions
ŚMAX100 STJ EXITŠ and, later, ŚEXIT JMP *Š. Because of the way the J-register
operates, the exit instruction will then jump to the location following the place
where the original reference to MAX100 was made.

Newer computers, such as the machine MMIX that is destined to replace MIX,
have better ways to remember return addresses. The main difference is that

program instructions are no longer modiĄed in memory; the relevant information
is kept in registers or in a special array, not within the program itself. (See
exercise 7.) The next edition of this book will adopt the modern view, but for
now we will stick to the old-time practice of self-modifying code.

It is not hard to obtain quantitative statements about the amount of code
saved and the amount of time lost when subroutines are used. Suppose that
a piece of coding requires k locations and that it appears in m places in the
program. Rewriting this as a subroutine, we need an extra instruction STJ and
an exit line for the subroutine, plus a single JMP instruction in each of the m
places where the subroutine is called. This gives a total of m+ k + 2 locations,
rather than mk, so the amount saved is

(m− 1) (k − 1)− 3. (2)

If k is 1 or m is 1 we cannot possibly save any space by using subroutines; this,
of course, is obvious. If k is 2, m must be greater than 4 in order to gain, etc.

The amount of time lost is the time taken for the extra JMP, STJ, and JMP

instructions, which are not present if the subroutine is not used; therefore if the
subroutine is used t times during a run of the program, 4t extra cycles of time
are required.

These estimates must be taken with a grain of salt, because they were given
for an idealized situation. Many subroutines cannot be called simply with a
single JMP instruction. Furthermore, if the coding is repeated in many parts of a
program, without using a subroutine approach, the coding for each part can be
customized to take advantage of special characteristics of the particular part of
the program in which it lies. With a subroutine, on the other hand, the coding
must be written for the most general case, not a speciĄc case, and this will often
add several additional instructions.

When a subroutine is written to handle a general case, it is expressed in
terms of parameters. Parameters are values that govern the subroutineŠs actions;
they are subject to change from one call of the subroutine to another.

The coding in the outside program that transfers control to the subroutine
and gets it properly started is known as the calling sequence. Particular values
of parameters, supplied when the subroutine is called, are known as arguments.
With our MAX100 subroutine, the calling sequence is simply ŚJMP MAX100Š, but

188 BASIC CONCEPTS 1.4.1

a longer calling sequence is generally necessary when arguments must be sup-
plied. For example, Program 1.3.2M is a generalization of MAX100 that Ąnds the
maximum of the Ąrst n elements of the table. The parameter n appears in index
register 1, and its calling sequence

LD1 =n=
JMP MAXIMUM

or ENT1 n
JMP MAXIMUM

involves two steps.
If the calling sequence takes c memory locations, formula (2) for the amount

of space saved changes to

(m− 1) (k − c)− constant (3)

and the time lost for subroutine linkage is slightly increased.
A further correction to the formulas above can be necessary because certain

registers might need to be saved and restored. For example, in the MAX100

subroutine, we must remember that by writing ŚJMP MAX100Š we are not only
getting the maximum value in register A and its position in register I2; we are
also setting register I3 to zero. A subroutine may destroy register contents, and
this must be kept in mind. In order to prevent MAX100 from changing the setting
of rI3, it would be necessary to include additional instructions. The shortest and
fastest way to do this with MIX would be to insert the instruction ŚST3 3F(0:2)Š
just after MAX100 and then Ś3H ENT3 *Š just before EXIT. The net cost would
be an extra two lines of code, plus three machine cycles on every call of the
subroutine.

A subroutine may be regarded as an extension of the computerŠs machine
language. With the MAX100 subroutine in memory, we now have a single instruc-
tion (namely, ŚJMP MAX100Š) that is a maximum-Ąnder. It is important to deĄne
the effect of each subroutine just as carefully as the machine language operators
themselves have been deĄned; a programmer should therefore be sure to write
down the characteristics of each subroutine, even though nobody else will be
making use of the routine or its speciĄcation. In the case of MAXIMUM as given in
Section 1.3.2, the characteristics are as follows:

Calling sequence: JMP MAXIMUM.
Entry conditions: rI1 = n; assume that n ≥ 1.
Exit conditions: rA = max

1≤k≤n
CONTENTS(X + k) = CONTENTS(X + rI2);

rI3 = 0; rJ and CI are also affected.

(4)

(We will customarily omit mention of the fact that register J and the compar-
ison indicator are affected by a subroutine; it has been mentioned here only
for completeness.) Note that rX and rI1 are unaffected by the action of the
subroutine, for otherwise these registers would have been mentioned in the exit
conditions. A speciĄcation should also mention all memory locations external
to the subroutine that might be affected; in this case the speciĄcation allows us
to conclude that nothing has been stored, since (4) doesnŠt say anything about
changes to memory.

1.4.1 SUBROUTINES 189

Now letŠs consider multiple entrances to subroutines. Suppose we have a
program that requires the general subroutine MAXIMUM, but it usually wants to use
the special case MAX100 in which n = 100. The two can be combined as follows:

MAX100 ENT3 100 First entrance
MAXN STJ EXIT Second entrance

JMP 2F Continue as in (1).
...
EXIT JMP * Return to main program.

(5)

Subroutine (5) is essentially the same as (1), with the Ąrst two instructions
interchanged; we have used the fact that ŚENT3Š does not change the setting of
the J-register. If we wanted to add a third entrance, MAX50, to this subroutine,
we could insert the code

MAX50 ENT3 50
JSJ MAXN

(6)

at the beginning. (Recall that ŚJSJŠ means jump without changing register J.)
When the number of parameters is small, it is often desirable to transmit

them to a subroutine either by having them in convenient registers (as we have
used rI3 to hold the parameter n in MAXN and as we used rI1 to hold the parameter
n in MAXIMUM), or by storing them in Ąxed memory cells.

Another convenient way to supply arguments is simply to list them after
the JMP instruction; the subroutine can refer to its parameters because it knows
the J-register setting. For example, if we wanted to make the calling sequence
for MAXN be

JMP MAXN
CON n

(7)

then the subroutine could be written as follows:
MAXN STJ *+1

ENT1 * rI1← rJ.
LD3 0,1 rI3← n.
JMP 2F Continue as in (1).

...
J3P 1B
JMP 1,1 Return.

(8)

On machines like System/360, for which linkage is ordinarily done by putting the
exit location in an index register, a convention like this is particularly convenient.
It is also useful when a subroutine needs many arguments, or when a program
has been written by a compiler. The technique of multiple entrances that we
used above often fails in this case, however. We could Şfake itŤ by writing

MAX100 STJ 1F
JMP MAXN
CON 100

1H JMP *

but this is not as attractive as (5).

190 BASIC CONCEPTS 1.4.1

A technique similar to that of listing arguments after the jump is normally
used for subroutines with multiple exits. Multiple exit means that we want the
subroutine to return to one of several different locations, depending on conditions
detected by the subroutine. In the strictest sense, the location to which a
subroutine exits is a parameter; so if there are several places to which it might
exit, depending on the circumstances, they should be supplied as arguments.
Our Ąnal example of the ŞmaximumŤ subroutine will have two entrances and
two exits. The calling sequence is:

For general n For n = 100
ENT3 n
JMP MAXN JMP MAX100

Exit here if max ≤ 0 or max ≥ rX. Exit here if max ≤ 0 or max ≥ rX.
Exit here if 0 < max < rX. Exit here if 0 < max < rX.

(In other words, exit is made to the location two past the jump when the
maximum value is positive and less than the contents of register X.) The
subroutine for these conditions is easily written:

MAX100 ENT3 100 Entrance for n = 100
MAXN STJ EXIT Entrance for general n

JMP 2F Continue as in (1).
...

J3P 1B
JANP EXIT Take normal exit if the max is ≤ 0.
STX TEMP
CMPA TEMP
JGE EXIT Take normal exit if the max is ≥ rX.
ENT3 1 Otherwise take the second exit.

EXIT JMP *,3 Return to proper place.

(9)

Subroutines may call on other subroutines; in complicated programs it is not
unusual to have subroutine calls nested more than Ąve deep. The only restriction
that must be followed when using linkage as described here is that no subroutine
may call on any other subroutine that is (directly or indirectly) calling on it. For
example, consider the following scenario:

[Main program] [Subroutine A] [Subroutine B] [Subroutine C]

A STJ EXITA B STJ EXITB C STJ EXITC
...

...
...

...
JMP A JMP B JMP C JMP A
...

...
...

...
EXITA JMP * EXITB JMP * EXITC JMP * (10)

If the main program calls on A, which calls B, which calls C, and then C

calls on A, the address in EXITA referring to the main program is destroyed,
and there is no way to return to that program. A similar remark applies to all
temporary storage cells and registers used by each subroutine. It is not difficult to

1.4.1 SUBROUTINES 191

devise subroutine linkage conventions that will handle such recursive situations
properly; Chapter 8 considers recursion in detail.

We conclude this section by discussing brieĆy how we might go about writing
a complex and lengthy program. How can we decide what kind of subroutines
we will need, and what calling sequences should be used? One successful way to
determine this is to use an iterative procedure:

Step 0 (Initial idea). First we decide vaguely upon the general plan of
attack that the program will use.

Step 1 (A rough sketch of the program). We start now by writing the Şouter
levelsŤ of the program, in any convenient language. A somewhat systematic way
to go about this has been described very nicely by E. W. Dijkstra, Structured
Programming (Academic Press, 1972), Chapter 1, and by N. Wirth, CACM
14 (1971), 221Ű227. We may begin by breaking the whole program into a
small number of pieces, which might be thought of temporarily as subroutines,
although they are called only once. These pieces are successively reĄned into
smaller and smaller parts, having correspondingly simpler jobs to do. Whenever
some computational task arises that seems likely to occur elsewhere or that has
already occurred elsewhere, we deĄne a subroutine (a real one) to do that job.
We do not write the subroutine at this point; we continue writing the main
program, assuming that the subroutine has performed its task. Finally, when
the main program has been sketched, we tackle the subroutines in turn, trying
to take the most complex subroutines Ąrst and then their sub-subroutines, etc.
In this manner we will come up with a list of subroutines. The actual function
of each subroutine has probably already changed several times, so that the Ąrst
parts of our sketch will by now be incorrect; but that is no problem, it is merely
a sketch. For each subroutine we now have a reasonably good idea about how it
will be called and how general-purpose it should be. It usually pays to extend
the generality of each subroutine a little.

Step 2 (First working program). This step goes in the opposite direction
from step 1. We now write in computer language, say MIXAL or PL/MIX or
a higher-level language; we start this time with the lowest level subroutines,
and do the main program last. As far as possible, we try never to write any
instructions that call a subroutine before the subroutine itself has been coded.
(In step 1, we tried the opposite, never considering a subroutine until all of its
calls had been written.)

As more and more subroutines are written during this process, our con-
Ądence gradually grows, since we are continually extending the power of the
machine we are programming. After an individual subroutine is coded, we should
immediately prepare a complete description of what it does, and what its calling
sequences are, as in (4). It is also important not to overlay temporary storage
cells; it may very well be disastrous if every subroutine refers to location TEMP,
although when preparing the sketch in step 1, it was convenient not to worry
about such problems. An obvious way to overcome overlay worries is to have
each subroutine use only its own temporary storage, but if this is too wasteful

192 BASIC CONCEPTS 1.4.1

of space, another scheme that does fairly well is to name the cells TEMP1, TEMP2,
etc.; the numbering within a subroutine starts with TEMPj, where j is one higher
than the greatest number used by any of the sub-subroutines of this subroutine.

Step 3 (Reexamination). The result of step 2 should be very nearly a
working program, but it may be possible to improve on it. A good way is to
reverse direction again, studying for each subroutine all of the calls made on it.
It may well be that the subroutine should be enlarged to do some of the more
common things that are always done by the outside routine just before or after
it uses the subroutine. Perhaps several subroutines should be merged into one;
or perhaps a subroutine is called only once and should not be a subroutine at
all. (Perhaps a subroutine is never called and can be dispensed with entirely.)

At this point, it is often a good idea to scrap everything and start over
again at step 1! This is not intended to be a facetious remark; the time spent in
getting this far has not been wasted, for we have learned a great deal about the
problem. With hindsight, we will probably have discovered several improvements
that could be made to the programŠs overall organization. ThereŠs no reason to
be afraid to go back to step 1 Ů it will be much easier to go through steps 2
and 3 again, now that a similar program has been done already. Moreover, we
will quite probably save as much debugging time later on as it will take to rewrite
everything. Some of the best computer programs ever written owe much of their
success to the fact that all the work was unintentionally lost, at about this stage,
and the authors had to begin again.

On the other hand, there is probably never a point when a complex computer
program cannot be improved somehow, so steps 1 and 2 should not be repeated
indeĄnitely. When signiĄcant improvement can clearly be made, it is well worth
the additional time required to start over, but eventually a point of diminishing
returns is reached.

Step 4 (Debugging). After a Ąnal polishing of the program, including
perhaps the allocation of storage and other last-minute details, it is time to
look at it in still another direction from the three that were used in steps 1,
2, and 3 Ů now we study the program in the order in which the computer will
perform it. This may be done by hand or, of course, by machine. The author
has found it quite helpful at this point to make use of system routines that trace
each instruction the Ąrst two times it is executed; it is important to rethink the
ideas underlying the program and to check that everything is actually taking
place as expected.

Debugging is an art that needs much further study, and the way to approach
it is highly dependent on the facilities available at each computer installation.
A good start towards effective debugging is often the preparation of appropriate
test data. The most effective debugging techniques seem to be those that are
designed and built into the program itself Ů many of todayŠs best programmers
will devote nearly half of their programs to facilitating the debugging process
in the other half; the Ąrst half, which usually consists of fairly straightforward
routines that display relevant information in a readable format, will eventually
be thrown away, but the net result is a surprising gain in productivity.

1.4.2 COROUTINES 193

Another good debugging practice is to keep a record of every mistake made.
Even though this will probably be quite embarrassing, such information is in-
valuable to anyone doing research on the debugging problem, and it will also
help you learn how to reduce the number of future errors.

Note: The author wrote most of the preceding comments in 1964, after he
had successfully completed several medium-sized software projects but before
he had developed a mature programming style. Later, during the 1980s, he
learned that an additional technique, called structured documentation or literate
programming, is probably even more important. A summary of his current beliefs
about the best way to write programs of all kinds appears in the book Literate
Programming (Cambridge Univ. Press, Ąrst published in 1992). Incidentally,
Chapter 11 of that book contains a detailed record of all bugs removed from the
TEX program during the period 1978Ű1991.

Up to a point it is better to let the snags [bugs] be there

than to spend such time in design that there are none

(how many decades would this course take?).

— A. M. TURING, Proposals for ACE (1945)

EXERCISES

1. [10] State the characteristics of subroutine (5), just as (4) gives the characteristics
of Subroutine 1.3.2M.

2. [10] Suggest code to substitute for (6) without using the JSJ instruction.

3. [M15] Complete the information in (4) by stating precisely what happens to
register J and the comparison indicator as a result of the subroutine; state also what
happens if register I1 is not positive.

x 4. [21] Write a subroutine that generalizes MAXN by Ąnding the maximum value of
X[a], X[a+ r], X[a+ 2r], . . . , X[n], where r and n are parameters and a is the smallest
positive number with a ≡ n (modulo r), namely a = 1 + (n− 1) mod r. Give a special
entrance for the case r = 1. List the characteristics of your subroutine, as in (4).

5. [21] Suppose MIX did not have a J-register. Invent a means for subroutine linkage
that does not use register J, and give an example of your invention by writing a MAX100

subroutine effectively equivalent to (1). State the characteristics of this subroutine in
a fashion similar to (4). (Retain MIXŠs conventions of self-modifying code.)

x 6. [26] Suppose MIX did not have a MOVE operator. Write a subroutine entitled MOVE

such that the calling sequence ŚJMP MOVE; NOP A,I(F)Š has an effect just the same as
ŚMOVE A,I(F)Š if the latter were admissible. The only differences should be the effect
on register J and the fact that a subroutine naturally consumes more time and space
than a hardware instruction does.

x 7. [20] Why is self-modifying code now frowned on?

1.4.2. Coroutines

Subroutines are special cases of more general program components, called co-
routines. In contrast to the unsymmetric relationship between a main routine
and a subroutine, there is complete symmetry between coroutines, which call on
each other.

194 BASIC CONCEPTS 1.4.2

To understand the coroutine concept, let us consider another way of thinking
about subroutines. The viewpoint adopted in the previous section was that a
subroutine merely was an extension of the computer hardware, introduced to
save lines of coding. This may be true, but another point of view is possible:
We may consider the main program and the subroutine as a team of programs,
each member of the team having a certain job to do. The main program, in
the course of doing its job, will activate the subprogram; the subprogram will
perform its own function and then activate the main program. We might stretch
our imagination to believe that, from the subroutineŠs point of view, when it
exits it is calling the main routine; the main routine continues to perform its
duty, then ŞexitsŤ to the subroutine. The subroutine acts, then calls the main
routine again.

This somewhat far-fetched philosophy actually takes place with coroutines,
for which it is impossible to distinguish which is a subroutine of the other.
Suppose we have coroutines A and B; when programming A, we may think of B as
our subroutine, but when programming B, we may think of A as our subroutine.
That is, in coroutine A, the instruction ŚJMP BŠ is used to activate coroutine B.
In coroutine B the instruction ŚJMP AŠ is used to activate coroutine A again.
Whenever a coroutine is activated, it resumes execution of its program at the
point where the action was last suspended.

The coroutines A and B might, for example, be two programs that play chess.
We can combine them so that they will play against each other.

With MIX, such linkage between coroutines A and B is done by including the
following four instructions in the program:

A STJ BX B STJ AX

AX JMP A1 BX JMP B1
(1)

This requires four machine cycles for transfer of control each way. Initially AX and
BX are set to jump to the starting places of each coroutine, A1 and B1. Suppose we
start up coroutine A Ąrst, at location A1. When it executes ŚJMP BŠ from location
A2, say, the instruction in location B stores rJ in AX, which then says ŚJMP A2+1Š.
The instruction in BX gets us to location B1, and after coroutine B begins its
execution, it will eventually get to an instruction ŚJMP AŠ in location B2, say. We
store rJ in BX and jump to location A2+1, continuing the execution of coroutine
A until it again jumps to B, which stores rJ in AX and jumps to B2+1, etc.

The essential difference between routine-subroutine and coroutine-coroutine
linkage, as can be seen by studying the example above, is that a subroutine is
always initiated at its beginning, which is usually a Ąxed place; the main routine
or a coroutine is always initiated at the place following where it last terminated.

Coroutines arise most naturally in practice when they are connected with
algorithms for input and output. For example, suppose it is the duty of corou-
tine A to read cards and to perform some transformation on the input, reducing
it to a sequence of items. Another coroutine, which we will call B, does further
processing of these items, and prints the answers; B will periodically call for the
successive input items found by A. Thus, coroutine B jumps to A whenever it

1.4.2 COROUTINES 195

wants the next input item, and coroutine A jumps to B whenever an input item
has been found. The reader may say, ŞWell, B is the main program and A is
merely a subroutine for doing the input.Ť This, however, becomes less true when
the process A is very complicated; indeed, we can imagine A as the main routine
and B as a subroutine for doing the output, and the above description remains
valid. The usefulness of the coroutine idea emerges midway between these two
extremes, when both A and B are complicated and each one calls the other in
numerous places. It is rather difficult to Ąnd short, simple examples of coroutines
that illustrate the importance of the idea; the most useful coroutine applications
are generally quite lengthy.

In order to study coroutines in action, let us consider a contrived example.
Suppose we want to write a program that translates one code into another. The
input code to be translated is a sequence of alphameric characters terminated
by a period, such as

A2B5E3426FG0ZYW3210PQ89R. (2)

This has been punched onto cards; blank columns appearing on these cards are
to be ignored. The input is to be understood as follows, from left to right: If the
next character is a digit 0, 1, . . . , 9, say n, it indicates (n+ 1) repetitions of the
following character, whether the following character is a digit or not. A nondigit
simply denotes itself. The output of our program is to consist of the sequence
indicated in this manner and separated into groups of three characters each,
until a period appears; the last group may have fewer than three characters. For
example, (2) should be translated by our program into

ABB BEE EEE E44 446 66F GZY W22 220 0PQ 999 999 999 R. (3)

Note that 3426F does not mean 3427 repetitions of the letter F; it means 4 fours
and 3 sixes followed by F. If the input sequence is Ś1.Š, the output is simply Ś.Š,
not Ś..Š, because the Ąrst period terminates the output. Our program should
punch the output onto cards, with sixteen groups of three on each card except
possibly the last.

To accomplish this translation, we will write two coroutines and a subrou-
tine. The subroutine, called NEXTCHAR, is designed to Ąnd nonblank characters
of the input, and to put the next such character into register A:

01 * SUBROUTINE FOR CHARACTER INPUT
02 READER EQU 16 Unit number of card reader
03 INPUT ORIG *+16 Place for input cards
04 NEXTCHAR STJ 9F Entrance to subroutine
05 JXNZ 3F Initially rX = 0
06 1H J6N 2F Initially rI6 = 0
07 IN INPUT(READER) Read next card.
08 JBUS *(READER) Wait for completion.
09 ENN6 16 Let rI6 point to the Ąrst word.
10 2H LDX INPUT+16,6 Get the next word of input.
11 INC6 1 Advance pointer.

196 BASIC CONCEPTS 1.4.2

12 3H ENTA 0
13 SLAX 1 Next character→ rA.
14 9H JANZ * Skip blanks.
15 JMP NEXTCHAR+1

This subroutine has the following characteristics:

Calling sequence: JMP NEXTCHAR.
Entry conditions: rX = characters yet to be used; rI6 points to next word, or

rI6 = 0 indicating that a new card must be read.
Exit conditions: rA = next nonblank character of input; rX and rI6 are set for

next entry to NEXTCHAR.

Our Ąrst coroutine, called IN, Ąnds the characters of the input code with
the proper replication. It begins initially at location IN1:

16 * FIRST COROUTINE
17 2H INCA 30 Nondigit found
18 JMP OUT Send it to OUT coroutine.
19 IN1 JMP NEXTCHAR Get character.
20 DECA 30
21 JAN 2B Is it a letter?
22 CMPA =10=
23 JGE 2B Is it a special character?
24 STA *+1(0:2) Digit n found
25 ENT5 * rI5← n.
26 JMP NEXTCHAR Get next character.
27 JMP OUT Send it to OUT coroutine.
28 DEC5 1 Decrease n by 1.
29 J5NN *-2 Repeat if necessary.
30 JMP IN1 Begin new cycle.

(Recall that in MIXŠs character code, the digits 0Ű9 have codes 30Ű39.) This
coroutine has the following characteristics:

Calling sequence: JMP IN.
Exit conditions (when

jumping to OUT): rA = next character of input with proper replication; rI4
unchanged from its value at entry.

Entry conditions
(upon return): rA, rX, rI5, rI6 should be unchanged from their values

at the last exit.

The other coroutine, called OUT, puts the code into three-character groups
and punches the cards. It begins initially at OUT1:

31 * SECOND COROUTINE
32 ALF Constant used for blanking
33 OUTPUT ORIG *+16 Buffer area for answers
34 PUNCH EQU 17 Unit number for card punch
35 OUT1 ENT4 -16 Start new output card.

1.4.2 COROUTINES 197

36 ENT1 OUTPUT
37 MOVE -1,1(16) Set output area to blanks.
38 1H JMP IN Get next translated character.
39 STA OUTPUT+16,4(1:1) Store it in the (1:1) Ąeld.
40 CMPA PERIOD Is it Ś.Š?
41 JE 9F
42 JMP IN If not, get another character.
43 STA OUTPUT+16,4(2:2) Store it in the (2:2) Ąeld.
44 CMPA PERIOD Is it Ś.Š?
45 JE 9F
46 JMP IN If not, get another character.
47 STA OUTPUT+16,4(3:3) Store it in the (3:3) Ąeld.
48 CMPA PERIOD Is it Ś.Š?
49 JE 9F
50 INC4 1 Move to next word in output buffer.
51 J4N 1B End of card?
52 9H OUT OUTPUT(PUNCH) If so, punch it.
53 JBUS *(PUNCH) Wait for completion.
54 JNE OUT1 Return for more, unless
55 HLT Ś.Š was sensed.
56 PERIOD ALF ␣␣␣␣.

This coroutine has the following characteristics:

Calling sequence: JMP OUT.
Exit conditions (when

jumping to IN): rA, rX, rI5, rI6 unchanged from their value at entry; rI1
possibly affected; previous character recorded in output.

Entry conditions
(upon return): rA = next character of input with proper replication; rI4

unchanged from its value at the last exit.

To complete the program, we need to write the coroutine linkage

see (1)

and to provide the proper initialization. Initialization of coroutines tends to be
a little tricky, although not really difficult.

57 * INITIALIZATION AND LINKAGE
58 START ENT6 0 Initialize rI6 for NEXTCHAR.
59 ENTX 0 Initialize rX for NEXTCHAR.
60 JMP OUT1 Start with OUT (see exercise 2).
61 OUT STJ INX Coroutine linkage
62 OUTX JMP OUT1
63 IN STJ OUTX
64 INX JMP IN1
65 END START

This completes the program. The reader should study it carefully, noting in
particular how each coroutine can be written independently as though the other
coroutine were its subroutine.

198 BASIC CONCEPTS 1.4.2

The entry and exit conditions for the IN and OUT coroutines mesh perfectly in
the program above. In general, we would not be so fortunate, and the coroutine
linkage would also include instructions for loading and storing appropriate regis-
ters. For example, if OUT would destroy the contents of register A, the coroutine
linkage would become

OUT STJ INX
STA HOLDA Store A when leaving IN.

OUTX JMP OUT1
IN STJ OUTX

LDA HOLDA Restore A when leaving OUT.
INX JMP IN1

(4)

There is an important relation between coroutines and multipass algorithms.
For example, the translation process we have just described could have been done
in two distinct passes: We could Ąrst have done just the IN coroutine, applying
it to the entire input and writing each character with the proper amount of
replication onto magnetic tape. After this was Ąnished, we could rewind the
tape and then do just the OUT coroutine, taking the characters from tape in
groups of three. This would be called a Ştwo-passŤ process. (Intuitively, a
ŞpassŤ denotes a complete scan of the input. This deĄnition is not precise,
and in many algorithms the number of passes taken is not at all clear; but the
intuitive concept of ŞpassŤ is useful in spite of its vagueness.)

Figure 22(a) illustrates a four-pass process. Quite often we will Ąnd that
the same process can be done in just one pass, as shown in part (b) of the Ągure,
if we substitute four coroutines A, B, C, D for the respective passes A, B, C, D.
Coroutine A will jump to B when pass A would have written an item of output
on tape 1; coroutine B will jump to A when pass B would have read an item of
input from tape 1, and B will jump to C when pass B would have written an item
of output on tape 2; etc. UNIX R⃝ users will recognize this as a Şpipe,Ť denoted by
ŚPassA | PassB | PassC | PassD Š. The programs for passes B, C, and D are
sometimes referred to as ŞĄlters.Ť

Conversely, a process done by n coroutines can often be transformed into an
n-pass process. Due to this correspondence it is worthwhile to compare multipass
algorithms with one-pass algorithms.

a) Psychological difference. A multipass algorithm is generally easier to create
and to understand than a one-pass algorithm for the same problem. Breaking a
process down into a sequence of small steps that happen one after the other is
easier to comprehend than an involved process in which many transformations
take place simultaneously.

Also, if a very large problem is being tackled and if many people are to
co-operate in producing a computer program, a multipass algorithm provides a
natural way to divide up the job.

These advantages of a multipass algorithm are present in coroutines as well,
since each coroutine can be written essentially separate from the others, and the
linkage makes an apparently multipass algorithm into a single-pass process.

1.4.2 COROUTINES 199

Input Pass A Tape 1

Tape 1 Pass B Tape 2

Tape 2 Pass C Tape 3

Tape 3 Pass D Output

Input Coroutine A

Coroutine B

Coroutine C

Coroutine D Output

Fig. 22. Passes: (a) a four-pass algorithm, and (b) a one-pass algorithm.

b) Time difference. The time required to pack, write, read, and unpack the
intermediate data that Ćows between passes (for example, the information on
tapes in Fig. 22) is avoided in a one-pass algorithm. For this reason, a one-pass
algorithm will be faster.

c) Space difference. The one-pass algorithm requires space to hold all the
programs in memory simultaneously, while a multipass algorithm requires space
for only one at a time. This requirement may affect the speed, even to a greater
extent than indicated in statement (b). For example, many computers have a
limited amount of Şfast memoryŤ and a larger amount of slower memory; if each
pass just barely Ąts into the fast memory, the result will be considerably faster
than if we use coroutines in a single pass (since the use of coroutines would
presumably force most of the program to appear in the slower memory or to be
repeatedly swapped in and out of fast memory).

Occasionally there is a need to design algorithms for several computer con-
Ągurations at once, some of which have larger memory capacity than others. In
such cases it is possible to write the program in terms of coroutines, and to let
the memory size govern the number of passes: Load together as many coroutines
as feasible, and supply input or output subroutines for the missing links.

Although this relationship between coroutines and passes is important, we
should keep in mind that coroutine applications cannot always be split into
multipass algorithms. If coroutine B gets input from A and also sends back
crucial information to A, as in the example of chess play mentioned earlier, the
sequence of actions canŠt be converted into pass A followed by pass B.

Conversely, it is clear that some multipass algorithms cannot be converted
to coroutines. Some algorithms are inherently multipass; for example, the second
pass may require cumulative information from the Ąrst pass (like the total

200 BASIC CONCEPTS 1.4.2

number of occurrences of a certain word in the input). There is an old joke
worth noting in this regard:

Little old lady, riding a bus. ŞLittle boy, can you tell me how to get off
at Pasadena Street?Ť

Little boy. ŞJust watch me, and get off two stops before I do.Ť

(The joke is that the little boy gives a two-pass algorithm.)
So much for multipass algorithms. We will see further examples of coroutines

in numerous places throughout this book, for example, as part of the buffering
schemes in Section 1.4.4. Coroutines also play an important role in discrete
system simulation; see Section 2.2.5. The important idea of replicated coroutines
is discussed in Chapter 8, and some interesting applications of this idea may be
found in Chapter 10.

EXERCISES

1. [10] Explain why short, simple examples of coroutines are hard for the author of
a textbook to Ąnd.

x 2. [20] The program in the text starts up the OUT coroutine Ąrst. What would
happen if IN were the Ąrst to be executed Ů that is, if line 60 were changed from
ŚJMP OUT1Š to ŚJMP IN1Š?

3. [20] True or false: The three ŚCMPA PERIODŠ instructions within OUT may all be
omitted, and the program would still work. (Look carefully.)

4. [20] Show how coroutine linkage analogous to (1) can be given for real-life com-
puters you are familiar with.

5. [15] Suppose both coroutines IN and OUT want the contents of register A to remain
untouched between exit and entry; in other words, assume that wherever the instruction
ŚJMP INŠ occurs within OUT, the contents of register A are to be unchanged when control
returns to the next line, and make a similar assumption about ŚJMP OUTŠ within IN.
What coroutine linkage is needed? (Compare with (4).)

x 6. [22] Give coroutine linkage analogous to (1) for the case of three coroutines, A,
B, and C, each of which can jump to either of the other two. (Whenever a coroutine is
activated, it begins where it last left off.)

x 7. [30] Write a MIX program that reverses the translation done by the program in the
text; that is, your program should convert cards punched like (3) into cards punched
like (2). The output should be as short a string of characters as possible, so that the
zero before the Z in (2) would not really be produced from (3).

1.4.3. Interpretive Routines

In this section we will investigate a common type of computer program, the
interpretive routine (which will be called interpreter for short). An interpretive
routine is a computer program that performs the instructions of another pro-
gram, where the other program is written in some machine-like language. By a
machine-like language, we mean a way of representing instructions, where the
instructions typically have operation codes, addresses, etc. (This deĄnition, like
most deĄnitions of todayŠs computer terms, is not precise, nor should it be; we

1.4.3 INTERPRETIVE ROUTINES 201

cannot draw the line exactly and say just which programs are interpreters and
which are not.)

Historically, the Ąrst interpreters were built around machine-like languages
designed specially for simple programming; such languages were easier to use
than a real machine language. The rise of symbolic languages for programming
soon eliminated the need for interpretive routines of that kind, but interpreters
have by no means begun to die out. On the contrary, their use has continued
to grow, to the extent that an effective use of interpretive routines may be
regarded as one of the essential characteristics of modern programming. The
new applications of interpreters are made chieĆy for the following reasons:

a) a machine-like language is able to represent a complicated sequence of deci-
sions and actions in a compact, efficient manner; and

b) such a representation provides an excellent way to communicate between
passes of a multipass process.

In such cases, special purpose machine-like languages are developed for use in
a particular program, and programs in those languages are often generated only
by computers. (TodayŠs expert programmers are also good machine designers, as
they not only create an interpretive routine, they also deĄne a virtual machine
whose language is to be interpreted.)

The interpretive technique has the further advantage of being relatively
machine-independent Ů only the interpreter must be rewritten when changing
computers. Furthermore, helpful debugging aids can readily be built into an
interpretive system.

Examples of interpreters of type (a) appear in several places later in this
series of books; see, for example, the recursive interpreter in Chapter 8 and the
ŞParsing MachineŤ in Chapter 10. We typically need to deal with a situation in
which a great many special cases arise, all similar, but having no really simple
pattern.

For example, consider writing an algebraic compiler in which we want to gen-
erate efficient machine-language instructions that add two quantities together.
There might be ten classes of quantities (constants, simple variables, temporary
storage locations, subscripted variables, the contents of an accumulator or index
register, Ąxed or Ćoating point, etc.) and the combination of all pairs yields 100
different cases. A long program would be required to do the proper thing in
each case. The interpretive solution to this problem is to make up an ad hoc
language whose ŞinstructionsŤ Ąt in one byte. Then we simply prepare a table
of 100 ŞprogramsŤ in this language, where each program ideally Ąts in a single
word. The idea is then to pick out the appropriate table entry and to perform
the program found there. This technique is simple and efficient.

An example interpreter of type (b) appears in the article ŞComputer-Drawn
FlowchartsŤ by D. E. Knuth, CACM 6 (1963), 555Ű563. In a multipass program,
the earlier passes must transmit information to the later passes. This information
is often transmitted most efficiently in a machine-like language, as a set of
instructions for the later pass; the later pass is then nothing but a special purpose

202 BASIC CONCEPTS 1.4.3

interpretive routine, and the earlier pass is a special purpose Şcompiler.Ť This
philosophy of multipass operation may be characterized as telling the later pass
what to do, whenever possible, rather than simply presenting it with a lot of
facts and asking it to Ągure out what to do.

Another example of a type-(b) interpreter occurs in connection with com-
pilers for special languages. If the language includes many features that are not
easily done on the machine except by subroutine, the resulting object programs
will be very long sequences of subroutine calls. This would happen, for example,
if the language were concerned primarily with multiple-precision arithmetic. In
such a case the object program would be considerably shorter if it were expressed
in an interpretive language. See, for example, the book ALGOL 60 Implementa-
tion, by B. Randell and L. J. Russell (New York: Academic Press, 1964), which
describes a compiler to translate from ALGOL 60 into an interpretive language,
and which also describes the interpreter for that language; and see ŞAn ALGOL
60 Compiler,Ť by Arthur Evans, Jr., Ann. Rev. Auto. Programming 4 (1964),
87Ű124, for examples of interpretive routines used within a compiler. The rise of
microprogrammed machines and of special-purpose integrated circuit chips has
made this interpretive approach even more valuable.

The TEX program, which produced the pages of the book you are now
reading, converted a Ąle that contained the text of this section into an interpretive
language called DVI format, designed by D. R. Fuchs in 1979. [See D. E. Knuth,
TEX: The Program (Reading, Mass.: AddisonŰWesley, 1986), Part 31.] The DVI

Ąle that TEX produced was then processed by an interpreter called dvips, written
by T. G. Rokicki, and converted to a Ąle of instructions in another interpretive
language called PostScript R⃝ [Adobe Systems Inc., PostScript Language Reference
Manual, 2nd edition (Reading, Mass.: AddisonŰWesley, 1990)]. The PostScript
Ąle was sent to the publisher, who sent it to a commercial printer, who used
a PostScript interpreter to produce printing plates. This three-pass operation
illustrates interpreters of type (b); TEX itself also includes a small interpreter of
type (a) to process the so-called ligature and kerning information for characters
of each font of type [TEX: The Program, §545].

There is another way to look at a program written in interpretive language:
It may be regarded as a series of subroutine calls, one after another. Such a pro-
gram may in fact be expanded into a long sequence of calls on subroutines, and,
conversely, such a sequence can usually be packed into a coded form that is read-
ily interpreted. The advantages of interpretive techniques are the compactness of
representation, the machine independence, and the increased diagnostic capabil-
ity. An interpreter can often be written so that the amount of time spent in inter-
pretation of the code itself and branching to the appropriate routine is negligible.

1.4.3.1. A MIX simulator. When the language presented to an interpretive
routine is the machine language of another computer, the interpreter is often
called a simulator (or sometimes an emulator).

In the authorŠs opinion, entirely too much programmersŠ time has been
spent in writing such simulators and entirely too much computer time has been

1.4.3.1 A MIX SIMULATOR 203

wasted in using them. The motivation for simulators is simple: A computer
installation buys a new machine and still wants to run programs written for
the old machine (rather than rewriting the programs). However, this usually
costs more and gives poorer results than if a special task force of programmers
were given temporary employment to do the reprogramming. For example, the
author once participated in such a reprogramming project, and a serious error
was discovered in the original program, which had been in use for several years;
the new program worked at Ąve times the speed of the old, besides giving the
right answers for a change! (Not all simulators are bad; for example, it is usually
advantageous for a computer manufacturer to simulate a new machine before it
has been built, so that software for the new machine may be developed as soon as
possible. But that is a very specialized application.) An extreme example of the
inefficient use of computer simulators is the true story of machine A simulating
machine B running a program that simulates machine C ! This is the way to
make a large, expensive computer give poorer results than its cheaper cousin.

In view of all this, why should such a simulator rear its ugly head in this
book? There are two reasons:

a) The simulator we will describe below is a good example of a typical interpre-
tive routine; the basic techniques employed in interpreters are illustrated here.
It also illustrates the use of subroutines in a moderately long program.

b) We will describe a simulator of the MIX computer, written in (of all things)
the MIX language. This will facilitate the writing of MIX simulators for most
computers, which are similar; the coding of our program intentionally avoids
making heavy use of MIX-oriented features. A MIX simulator will be of advantage
as a teaching aid in conjunction with this book and possibly others.

Computer simulators as described in this section should be distinguished
from discrete system simulators. Discrete system simulators are important pro-
grams that will be discussed in Section 2.2.5.

Now letŠs turn to the task of writing a MIX simulator. The input to our
program will be a sequence of MIX instructions and data, stored in locations
0000Ű3499. We want to mimic the precise behavior of MIXŠs hardware, pretending
that MIX itself is interpreting those instructions; thus, we want to implement
the speciĄcations that were laid down in Section 1.3.1. Our program will, for
example, maintain a variable called AREG that will hold the magnitude of the
simulated A-register; another variable, SIGNA, will hold the corresponding sign.
A variable called CLOCK will record how many MIX units of simulated time have
elapsed during the simulated program execution.

The numbering of MIXŠs instructions LDA, LD1, . . . , LDX and other similar
commands suggests that we keep the simulated contents of these registers in
consecutive locations, as follows:

AREG, I1REG, I2REG, I3REG, I4REG, I5REG, I6REG, XREG, JREG, ZERO.

Here ZERO is a ŞregisterŤ Ąlled with zeros at all times. The positions of JREG and
ZERO are suggested by the op-code numbers of the instructions STJ and STZ.

204 BASIC CONCEPTS 1.4.3.1

In keeping with our philosophy of writing the simulator as though it were not
really done with MIX hardware, we will treat the signs as independent parts of
a register. For example, many computers cannot represent the number Şminus
zeroŤ, while MIX deĄnitely can; therefore we will always treat signs specially
in this program. The locations AREG, I1REG, . . . , ZERO will always contain the
absolute values of the corresponding register contents; another set of locations in
our program, called SIGNA, SIGN1, . . . , SIGNZ will contain +1 or −1, depending
on whether the sign of the corresponding register is plus or minus.

An interpretive routine generally has a central control section that is called
into action between interpreted instructions. In our case, the program transfers
to location CYCLE at the end of each simulated instruction.

The control routine does the things common to all instructions, unpacks the
instruction into its various parts, and puts the parts into convenient places for
later use. The program below sets

rI6 = location of the next instruction;
rI5 = M (address of the present instruction, plus indexing);
rI4 = operation code of the present instruction;
rI3 = F-Ąeld of the present instruction;

INST = the present instruction.

Program M.

001 * MIX SIMULATOR
002 ORIG 3500 Simulated memory is in locations 0000 up.
003 BEGIN STZ TIME(0:2)
004 STZ OVTOG OVTOG is the simulated overĆow toggle.
005 STZ COMPI COMPI, ±1 or 0, is comparison indicator.
006 ENT6 0 Take Ąrst instruction from location zero.
007 CYCLE LDA CLOCK Beginning of control routine:
008 TIME INCA 0 This address is set to the execution time
009 STA CLOCK of the previous instruction (see line 033).
010 LDA 0,6 rA← instruction to simulate.
011 STA INST
012 INC6 1 Advance the location counter.
013 LDX INST(1:2) Get absolute value of the address.
014 SLAX 5 Attach sign to the address.
015 STA M
016 LD2 INST(3:3) Examine the index Ąeld.
017 J2Z 1F Is it zero?
018 DEC2 6
019 J2P INDEXERROR Illegal index speciĄed?
020 LDA SIGN6,2 Get sign of the index register.
021 LDX I6REG,2 Get magnitude of the index register.
022 SLAX 5 Attach the sign.
023 ADD M Do signed addition for indexing.
024 CMPA ZERO(1:3) Is the result too large?
025 JNE ADDRERROR If so, simulate an error.
026 STA M Otherwise the address has been found.

1.4.3.1 A MIX SIMULATOR 205

027 1H LD3 INST(4:4) rI3← F-Ąeld.
028 LD5 M rI5← M.
029 LD4 INST(5:5) rI4← C-Ąeld.
030 DEC4 63
031 J4P OPERROR Is the op code ≥ 64?
032 LDA OPTABLE,4(4:4) Get execution time from the table.
033 STA TIME(0:2)
034 LD2 OPTABLE,4(0:2) Get address of the proper routine.
035 JNOV 0,2 Jump to operator.
036 JMP 0,2 (Protect against overĆows.)

The readerŠs attention is called particularly to lines 034Ű036: A Şswitching
tableŤ of the 64 operators is part of the simulator, allowing it to jump rapidly to
the correct routine for the current instruction. This is an important time-saving
technique (see exercise 1.3.2Ű9).

The 64-word switching table, called OPTABLE, gives also the execution time
for the various operators; the following lines indicate the contents of that table:

037 NOP CYCLE(1) Operation code table;
038 ADD ADD(2) typical entry is
039 SUB SUB(2) ŞOP routine(time)Ť
040 MUL MUL(10)
041 DIV DIV(12)
042 HLT SPEC(10)
043 SLA SHIFT(2)
044 MOVE MOVE(1)
045 LDA LOAD(2)
046 LD1 LOAD,1(2)

· · ·
051 LD6 LOAD,1(2)
052 LDX LOAD(2)
053 LDAN LOADN(2)
054 LD1N LOADN,1(2)

· · ·
060 LDXN LOADN(2)
061 STA STORE(2)

· · ·
069 STJ STORE(2)
070 STZ STORE(2)
071 JBUS JBUS(1)
072 IOC IOC(1)
073 IN IN(1)
074 OUT OUT(1)
075 JRED JRED(1)
076 JMP JUMP(1)
077 JAP REGJUMP(1)

· · ·
084 JXP REGJUMP(1)
085 INCA ADDROP(1)

206 BASIC CONCEPTS 1.4.3.1

086 INC1 ADDROP,1(1)
· · ·

092 INCX ADDROP(1)
093 CMPA COMPARE(2)

· · ·
100 OPTABLE CMPX COMPARE(2)

(The entries for operators LDi, LDiN, and INCi have an additional Ś,1Š to set the
(3:3) Ąeld nonzero; this is used below in lines 289Ű290 to indicate the fact that
the size of the quantity within the corresponding index register must be checked
after simulating these operations.)

The next part of our simulator program merely lists the locations used to
contain the contents of the simulated registers:

101 AREG CON 0 Magnitude of A-register
102 I1REG CON 0 Magnitude of index registers

· · ·
107 I6REG CON 0
108 XREG CON 0 Magnitude of X-register
109 JREG CON 0 Magnitude of J-register
110 ZERO CON 0 Constant zero, for ŚSTZŠ
111 SIGNA CON 1 Sign of A-register
112 SIGN1 CON 1 Sign of index registers

· · ·
117 SIGN6 CON 1
118 SIGNX CON 1 Sign of X-register
119 SIGNJ CON 1 Sign of J-register
120 SIGNZ CON 1 Sign stored by ŚSTZŠ
121 INST CON 0 Instruction being simulated
122 COMPI CON 0 Comparison indicator
123 OVTOG CON 0 OverĆow toggle
124 CLOCK CON 0 Simulated execution time

Now we will consider three subroutines used by the simulator. First comes
the MEMORY subroutine:

Calling sequence: JMP MEMORY.

Entry conditions: rI5 = valid memory address (otherwise the subroutine will
jump to MEMERROR).

Exit conditions: rX = sign of word in memory location rI5; rA = magnitude of
word in memory location rI5.

125 * SUBROUTINES
126 MEMORY STJ 9F Memory fetch subroutine:
127 J5N MEMERROR
128 CMP5 =BEGIN= The simulated memory is in
129 JGE MEMERROR locations 0000 to BEGIN− 1.
130 LDX 0,5
131 ENTA 1
132 SRAX 5 rX← sign of word.

1.4.3.1 A MIX SIMULATOR 207

133 LDA 0,5(1:5) rA← magnitude of word.
134 9H JMP * Exit.

The FCHECK subroutine processes a partial Ąeld speciĄcation, making sure
that it has the form 8L + R with L ≤ R ≤ 5.

Calling sequence: JMP FCHECK.

Entry conditions: rI3 = valid Ąeld speciĄcation (otherwise the subroutine will
jump to FERROR).

Exit conditions: rA = rI1 = L, rX = R.

135 FCHECK STJ 9F Field check subroutine:
136 ENTA 0
137 ENTX 0,3 rAX← Ąeld speciĄcation.
138 DIV =8= rA← L, rX← R.
139 CMPX =5= Is R > 5?
140 JG FERROR
141 STX R
142 STA L
143 LD1 L rI1← L.
144 CMPA R
145 9H JLE * Exit unless L > R.
146 JMP FERROR

The last subroutine, GETV, Ąnds the quantity V (namely, the appropriate
Ąeld of location M) used in various MIX operators, as deĄned in Section 1.3.1.

Calling sequence: JMP GETV.

Entry conditions: rI5 = valid memory address; rI3 = valid Ąeld. (If invalid, an
error will be detected as above.)

Exit conditions: rA = magnitude of V; rX = sign of V; rI1 = L; rI2 = −R.
Second entrance: JMP GETAV, used only in comparison operators to extract a

Ąeld from a register.

147 GETAV STJ 9F Special entrance, see line 300.
148 JMP 1F
149 GETV STJ 9F Subroutine to Ąnd V:
150 JMP FCHECK Process the Ąeld and set rI1← L.
151 JMP MEMORY rA← memory magnitude, rX← sign.
152 1H J1Z 2F Is the sign included in the Ąeld?
153 ENTX 1 If not, set the sign positive.
154 SLA -1,1 Zero out all bytes to the left
155 SRA -1,1 of the Ąeld.
156 2H LD2N R Shift right into the
157 SRA 5,2 proper position.
158 9H JMP * Exit.

Now we come to the routines for each individual operator. These routines
are given here for completeness, but the reader should study only a few of them
unless thereŠs a compelling reason to look closer; the SUB and JUMP operators are
recommended as typical examples for study. Notice the way in which routines

208 BASIC CONCEPTS 1.4.3.1

for similar operations can be neatly combined, and notice how the JUMP routine
uses another switching table to govern the type of jump.

159 * INDIVIDUAL OPERATORS
160 ADD JMP GETV Get the value of V in rA and rX.
161 ENT1 0 rI1← index of simulated rA.
162 JMP INC Go to the ŞincreaseŤ routine.
163 SUB JMP GETV Get the value of V in rA and rX.
164 ENT1 0 rI1← index of simulated rA.
165 JMP DEC Go to the ŞdecreaseŤ routine.
166 *
167 MUL JMP GETV Get the value of V in rA and rX.
168 CMPX SIGNA Are signs the same?
169 ENTX 1
170 JE *+2 Set rX to the result sign.
171 ENNX 1
172 STX SIGNA Put it in both simulated registers.
173 STX SIGNX
174 MUL AREG Multiply the operands.
175 JMP STOREAX Store the magnitudes.
176 *
177 DIV LDA SIGNA Set the sign of the remainder.
178 STA SIGNX
179 JMP GETV Get the value of V in rA and rX.
180 CMPX SIGNA Are signs the same?
181 ENTX 1
182 JE *+2 Set rX to the result sign.
183 ENNX 1
184 STX SIGNA Put it in the simulated rA.
185 STA TEMP
186 LDA AREG Divide the operands.
187 LDX XREG
188 DIV TEMP
189 STOREAX STA AREG Store the magnitudes.
190 STX XREG
191 OVCHECK JNOV CYCLE Did overĆow just occur?
192 ENTX 1 If so, set the simulated
193 STX OVTOG overĆow toggle on.
194 JMP CYCLE Return to control routine.
195 *
196 LOADN JMP GETV Get the value of V in rA and rX.
197 ENT1 47,4 rI1← C− 16; indicates register.
198 LOADN1 STX TEMP Negate the sign.
199 LDXN TEMP
200 JMP LOAD1 Change LOADN to LOAD.
201 LOAD JMP GETV Get the value of V in rA and rX.
202 ENT1 55,4 rI1← C− 8, indicates register.
203 LOAD1 STA AREG,1 Store the magnitude.
204 STX SIGNA,1 Store the sign.

1.4.3.1 A MIX SIMULATOR 209

205 JMP SIZECHK Check if the magnitude is too large.
206 *
207 STORE JMP FCHECK rI1← L.
208 JMP MEMORY Get contents of memory location.
209 J1P 1F Is the sign included in the Ąeld?
210 ENT1 1 If so, change L to 1
211 LDX SIGNA+39,4 and ŞstoreŤ the registerŠs sign.
212 1H LD2N R rI2← −R.
213 SRAX 5,2 Save the area to the ĄeldŠs right.
214 LDA AREG+39,4 Insert register in the Ąeld.
215 SLAX 5,2
216 ENN2 0,1 rI2← −L.
217 SRAX 6,2
218 LDA 0,5 Restore the area to the ĄeldŠs left.
219 SRA 6,2
220 SRAX -1,1 Attach the sign.
221 STX 0,5 Store in memory.
222 JMP CYCLE Return to control routine.
223 *
224 JUMP DEC3 9 Jump operators:
225 J3P FERROR Is F too large?
226 LDA COMPI rA← comparison indicator.
227 JMP JTABLE,3 Jump to appropriate routine.
228 JMP ST6 JREG Set the simulated J-register.
229 JMP JSJ
230 JMP JOV
231 JMP JNOV
232 JMP LS
233 JMP EQ
234 JMP GR
235 JMP GE
236 JMP NE
237 JTABLE JMP LE End of the jump table
238 JOV LDX OVTOG Check whether to jump on
239 JMP *+3 overĆow.
240 JNOV LDX OVTOG
241 DECX 1 Get complement of overĆow toggle.
242 STZ OVTOG Shut off overĆow toggle.
243 JXNZ JMP Jump.
244 JMP CYCLE DonŠt jump.
245 LE JAZ JMP Jump if rA zero or negative.
246 LS JAN JMP Jump if rA negative.
247 JMP CYCLE DonŠt jump.
248 NE JAN JMP Jump if rA negative or positive.
249 GR JAP JMP Jump if rA positive.
250 JMP CYCLE DonŠt jump.
251 GE JAP JMP Jump if rA positive or zero.
252 EQ JAZ JMP Jump if rA zero.
253 JMP CYCLE DonŠt jump.

210 BASIC CONCEPTS 1.4.3.1

254 JSJ JMP MEMORY Check for valid memory address.
255 ENT6 0,5 Simulate a jump.
256 JMP CYCLE Return to main control routine.
257 *
258 REGJUMP LDA AREG+23,4 Register jumps:
259 JAZ *+2 Is register zero?
260 LDA SIGNA+23,4 If not, put sign into rA.
261 DEC3 5
262 J3NP JTABLE,3 Change to a conditional JMP, unless
263 JMP FERROR the F-speciĄcation is too large.
264 *
265 ADDROP DEC3 3 Address transfer operators:
266 J3P FERROR Is F too large?
267 ENTX 0,5
268 JXNZ *+2 Find the sign of M.
269 LDX INST
270 ENTA 1
271 SRAX 5 rX← sign of M.
272 LDA M(1:5) rA← magnitude of M.
273 ENT1 15,4 rI1 indicates the register.
274 JMP 1F,3 Four-way jump.
275 JMP INC Increase.
276 JMP DEC Decrease.
277 JMP LOAD1 Enter.
278 1H JMP LOADN1 Enter negative.
279 DEC STX TEMP Reverse the sign.
280 LDXN TEMP Reduce DEC to INC.
281 INC CMPX SIGNA,1 Addition routine:
282 JE 1F Are signs the same?
283 SUB AREG,1 No; subtract magnitudes.
284 JANP 2F Sign change needed?
285 STX SIGNA,1 Change the registerŠs sign.
286 JMP 2F
287 1H ADD AREG,1 Add magnitudes.
288 2H STA AREG,1(1:5) Store magnitude of the result.
289 SIZECHK LD1 OPTABLE,4(3:3) Have we just loaded an
290 J1Z OVCHECK index register?
291 CMPA ZERO(1:3) If so, make sure that the result
292 JE CYCLE Ąts in two bytes.
293 JMP SIZEERROR

294 *
295 COMPARE JMP GETV Get the value of V in rA and rX.
296 SRAX 5 Attach the sign.
297 STX V
298 LDA XREG,4 Get Ąeld F of the appropriate register.
299 LDX SIGNX,4
300 JMP GETAV
301 SRAX 5 Attach the sign.
302 CMPX V Compare (note that −0 = +0).

1.4.3.1 A MIX SIMULATOR 211

303 STZ COMPI Set comparison indicator to
304 JE CYCLE either zero, plus one,
305 ENTA 1 or minus one.
306 JG *+2
307 ENNA 1
308 STA COMPI
309 JMP CYCLE Return to control routine.
310 *
311 END BEGIN

The code above adheres to a subtle rule that was stated in Section 1.3.1: The
instruction ŚENTA -0Š loads minus zero into register A, as does ŚENTA -5,1Š when
index register 1 contains +5. In general, when M is zero, ENTA loads the sign of the
instruction and ENNA loads the opposite sign. The need to specify this condition
was overlooked when the author prepared his Ąrst draft of Section 1.3.1; such
questions usually come to light only when a computer program is being written
to follow the rules.

In spite of its length, the program above is incomplete in several respects:

a) It does not recognize Ćoating point operations.
b) The coding for operation codes 5, 6, and 7 has been left as an exercise.
c) The coding for input-output operators has been left as an exercise.
d) No provision has been made for loading simulated programs (see exercise 4).
e) The error routines

INDEXERROR, ADDRERROR, OPERROR, MEMERROR, FERROR, SIZEERROR

have not been included; they handle error conditions that are detected in
the simulated program.

f) There is no provision for diagnostic facilities. (A useful simulator should,
for example, make it possible to print out the register contents as a program
is being executed.)

EXERCISES

1. [14] Study all the uses of the FCHECK subroutine in the simulator program. Can
you suggest a better way to organize the code? (See step 3 in the discussion at the end
of Section 1.4.1.)

2. [20] Write the SHIFT routine, which is missing from the program in the text
(operation code 6).

x 3. [22] Write the MOVE routine, which is missing from the program in the text
(operation code 7).

4. [14] Change the program in the text so that it begins as though MIXŠs ŞGO buttonŤ
had been pushed (see exercise 1.3.1Ű26).

x 5. [24] Determine the time required to simulate the LDA and ENTA operators, com-
pared with the actual time for MIX to execute these operators directly.

6. [28] Write programs for the input-output operators JBUS, IOC, IN, OUT, and JRED,
which are missing from the program in the text, allowing only units 16 and 18. Assume

212 BASIC CONCEPTS 1.4.3.1

that the operations Şread-cardŤ and Şskip-to-new-pageŤ take T = 10000u, while Şprint-
lineŤ takes T = 7500u. [Note: Experience shows that the JBUS instruction should be
simulated by treating ŚJBUS *Š as a special case; otherwise the simulator seems to stop!]

x 7. [32] Modify the solutions of the previous exercise in such a way that execution
of IN or OUT does not cause I/O transmission immediately; the transmission should
take place after approximately half of the time required by the simulated devices has
elapsed. (This will prevent a frequent student error, in which IN and OUT are used
improperly.)

8. [20] True or false: Whenever line 010 of the simulator program is executed, we
have 0 ≤ rI6 < BEGIN.

*1.4.3.2. Trace routines. When a machine is being simulated on itself (as
MIX was simulated on MIX in the previous section) we have the special case of
a simulator called a trace or monitor routine. Such programs are occasionally
used to help in debugging, since they print out a step-by-step account of how
the simulated program behaves.

The program in the preceding section was written as though another com-
puter were simulating MIX. A quite different approach is used for trace programs;
we generally let registers represent themselves and let the operators perform
themselves. In fact, we usually contrive to let the machine execute most of
the instructions by itself. The chief exception is a jump or conditional jump
instruction, which must not be executed without modiĄcation, since the trace
program must remain in control. Each machine also has idiosyncratic features
that make tracing more of a challenge; in MIXŠs case, the J-register presents the
most interesting problem.

The trace routine given below is initiated when the main program jumps to
location ENTER, with register J set to the address for starting to trace and reg-
ister X set to the address where tracing should stop. The program is interesting
and merits careful study.

01 * TRACE ROUTINE
02 ENTER STX TEST(0:2) Set the exit location.
03 STX LEAVEX(0:2)
04 STA AREG Save the contents of rA.
05 STJ JREG Save the contents of rJ.
06 LDA JREG(0:2) Get the start location for tracing.
07 CYCLE STA PREG(0:2) Store the location of the next instruction.
08 TEST DECA * Is it the exit location?
09 JAZ LEAVE
10 PREG LDA * Get the next instruction.
11 STA INST Copy it.
12 SRA 2
13 STA INST1(0:3) Store the address and index parts.
14 LDA INST(5:5) Get the operation code, C.
15 DECA 38
16 JANN 1F Is C ≥ 38 (JRED)?
17 INCA 6

1.4.3.2 TRACE ROUTINES 213

18 JANZ 2F Is C ̸= 32 (STJ)?
19 LDA INST(0:4)
20 STA *+2(0:4) Change STJ to STA.
21 JREG ENTA * rA← simulated rJ contents.
22 STA *
23 JMP INCP
24 2H DECA 2
25 JANZ 2F Is C ̸= 34 (JBUS)?
26 JMP 3F
27 1H DECA 9 Test for jump instructions.
28 JAP 2F Is C > 47 (JXNP)?
29 3H LDA 8F(0:3) We detected a jump instruction;
30 STA INST(0:3) change its address to ŚJUMPŠ.
31 2H LDA AREG Restore register A.
32 * All registers except J now have proper
33 * values with respect to the external program.
34 INST NOP * The instruction is executed.
35 STA AREG Store register A again.
36 INCP LDA PREG(0:2) Move to the next instruction.
37 INCA 1
38 JMP CYCLE
39 8H JSJ JUMP Constant for lines 29 and 40
40 JUMP LDA 8B(4:5) A jump has occurred.
41 SUB INST(4:5) Was it JSJ?
42 JAZ *+4
43 LDA PREG(0:2) If not, update the simulated
44 INCA 1 J-register.
45 STA JREG(0:2)
46 INST1 ENTA *
47 JMP CYCLE Move to the address of the jump.
48 LEAVE LDA AREG Restore register A.
49 LEAVEX JMP * Stop tracing.
50 AREG CON 0 Simulated rA contents

The following things should be noted about trace routines in general and
this one in particular.

1) We have presented only the most interesting part of a trace program,
the part that retains control while executing another program. For a trace to
be useful, there must also be a routine for writing out the contents of registers,
and this has not been included. Such a routine distracts from the more subtle
features of a trace program, although it certainly is important; the necessary
modiĄcations are left as an exercise (see exercise 2).

2) Space is generally more important than time; that is, the program should
be written to be as short as possible. Then the trace routine will be able to coexist
with extremely large programs. The running time is consumed by output anyway.

3) Care was taken to avoid destroying the contents of most registers; in fact,
the program uses only MIXŠs A-register. Neither the comparison indicator nor

214 BASIC CONCEPTS 1.4.3.2

the overĆow toggle are affected by the trace routine. (The less we use, the less
we need to restore.)

4) When a jump to location JUMP occurs, it is not necessary to ŚSTA AREGŠ,
since rA cannot have changed.

5) After leaving the trace routine, the J-register is not reset properly. Exer-
cise 1 shows how to remedy this.

6) The program being traced is subject to only three restrictions:
a) It must not store anything into the locations used by the trace program.
b) It must not use the output device on which tracing information is being

recorded (for example, JBUS would give an improper indication).
c) It will run at a slower speed while being traced.

EXERCISES

1. [22] Modify the trace routine of the text so that it restores register J when leaving.
(You may assume that register J is not zero.)

2. [26] Modify the trace routine of the text so that before executing each program
step it writes the following information on tape unit 0.

Word 1, (0 :2) Ąeld: location.
Word 1, (4 :5) Ąeld: register J (before execution).
Word 1, (3:3) Ąeld: 2 if comparison is greater, 1 if equal, 0 if less; plus 8 if overĆow

is not on before execution.
Word 2: instruction.
Word 3: register A (before execution).
Words 4Ű9: registers I1ŰI6 (before execution).
Word 10: register X (before execution).

Words 11Ű100 of each 100-word tape block should contain nine more ten-word groups,
in the same format.

3. [10] The previous exercise suggests having the trace program write its output
onto tape. Discuss why this would be preferable to printing directly.

x 4. [25] What would happen if the trace routine were tracing itself ? SpeciĄcally,
consider the behavior if the two instructions ENTX LEAVEX; JMP *+1 were placed just
before ENTER.

5. [28] In a manner similar to that used to solve the previous exercise, consider
the situation in which two copies of the trace routine are placed in different places in
memory, and each is set up to trace the other. What would happen?

x 6. [40] Write a trace routine that is capable of tracing itself, in the sense of exercise 4:
It should print out the steps of its own program at slower speed, and that program will
be tracing itself at still slower speed, ad inĄnitum, until memory capacity is exceeded.

x 7. [25] Discuss how to write an efficient jump trace routine, which emits much less
output than a normal trace. Instead of displaying the register contents, a jump trace
simply records the jumps that occur. It outputs a sequence of pairs (x1, y1), (x2, y2),
. . . , meaning that the program jumped from location x1 to y1, then (after performing
the instructions in locations y1, y1 + 1, . . . , x2) it jumped from x2 to y2, etc. [From
this information it is possible for a subsequent routine to reconstruct the Ćow of the
program and to deduce how frequently each instruction was performed.]

1.4.4 INPUT AND OUTPUT 215

1.4.4. Input and Output

Perhaps the most outstanding differences between one computer and the next are
the facilities available for doing input and output, and the computer instructions
that govern those peripheral devices. We cannot hope to discuss in a single
book all of the problems and techniques that arise in this area, so we will
conĄne ourselves to a study of typical input-output methods that apply to most
computers. The input-output operators of MIX represent a compromise between
the widely varying facilities available in actual machines; to give an example of
how to think about input-output, let us discuss in this section the problem of
getting the best MIX input-output.

Once again the reader is asked to be indulgent about the anachronistic
MIX computer with its punched cards, etc. Although such old-fashioned

devices are now quite obsolete, they still can teach important lessons. The MMIX

computer, when it comes, will of course teach those lessons even better.

Many computer users feel that input and output are not actually part of
ŞrealŤ programming; input and output are considered to be tedious tasks that
people must perform only because they need to get information in and out of
a machine. For this reason, the input and output facilities of a computer are
usually not learned until after all other features have been examined, and it
frequently happens that only a small fraction of the programmers of a particular
machine ever know much about the details of input and output. This attitude
is somewhat natural, because the input-output facilities of machines have never
been especially pretty. However, the situation cannot be expected to improve
until more people give serious thought to the subject. We shall see in this section
and elsewhere (for example, in Section 5.4.6) that some very interesting issues
arise in connection with input-output, and some pleasant algorithms do exist.

A brief digression about terminology is perhaps appropriate here. Although
dictionaries of English formerly listed the words ŞinputŤ and ŞoutputŤ only as
nouns (ŞWhat kind of input are we getting?Ť), it is now customary to use them
grammatically as adjectives (ŞDonŠt drop the input tape.Ť) and as transitive
verbs (ŞWhy did the program output this garbage?Ť). The combined term
Şinput-outputŤ is most frequently referred to by the abbreviation ŞI/OŤ. In-
putting is often called reading, and outputting is, similarly, called writing. The
stuff that is input or output is generally known as ŞdataŤ Ů this word is, strictly
speaking, a plural form of the word Şdatum,Ť but it is used collectively as if it
were singular (ŞThe data has not been read.Ť), just as the word ŞinformationŤ
is both singular and plural. This completes todayŠs English lesson.

Suppose now that we wish to read from magnetic tape. The IN operator
of MIX, as deĄned in Section 1.3.1, merely initiates the input process, and the
computer continues to execute further instructions while the input is taking
place. Thus the instruction ŚIN 1000(5)Š will begin to read 100 words from tape
unit number 5 into memory cells 1000Ű1099, but the ensuing program must not
refer to these memory cells until later. The program can assume that input is
complete only after (a) another I/O operation (IN, OUT, or IOC) referring to unit 5

216 BASIC CONCEPTS 1.4.4

has been initiated, or (b) a conditional jump instruction JBUS(5) or JRED(5)

indicates that unit 5 is no longer Şbusy.Ť
The simplest way to read a tape block into locations 1000Ű1099 and to have

the information present is therefore the sequence of two instructions

IN 1000(5); JBUS *(5). (1)

We have used this rudimentary method in the program of Section 1.4.2 (see lines
07Ű08 and 52Ű53). The method is generally wasteful of computer time, however,
because a very large amount of potentially useful calculating time, say 1000u or
even 10000u, is consumed by repeated execution of the ŚJBUSŠ instruction. The
programŠs running speed can be as much as doubled if this additional time is
utilized for calculation. (See exercises 4 and 5.)

One way to avoid such a Şbusy waitŤ is to use two areas of memory for the
input: We can read into one area while computing with the data in the other.
For example, we could begin our program with the instruction

IN 2000(5) Begin reading Ąrst block. (2)

Subsequently, we may give the following Ąve commands whenever a tape block
is desired:

ENT1 1000 Prepare for MOVE operator.
JBUS *(5) Wait until unit 5 is ready.
MOVE 2000(50) (2000Ű2049)→ (1000Ű1049).
MOVE 2050(50) (2050Ű2099)→ (1050Ű1099).
IN 2000(5) Begin reading next block.

(3)

This has the same overall effect as (1), but it keeps the input tape busy while
the program works on the data in locations 1000Ű1099.

The last instruction of (3) begins to read a tape block into locations 2000Ű
2099 before the preceding block has been examined. This is called Şreading
aheadŤ or anticipated input Ů it is done on faith that the block will eventually be
needed. In fact, however, we might discover that no more input is really required,
after we begin to examine the block in 1000Ű1099. For example, consider the
analogous situation in the coroutine program of Section 1.4.2, where the input
was coming from punched cards instead of tape: A Ś.Š appearing anywhere in the
card meant that it was the Ąnal card of the deck. Such a situation would make
anticipated input impossible, unless we could assume that either (a) a blank
card or special trailer card of some other sort would follow the input deck, or
(b) an identifying mark (e.g., Ś.Š) would appear in, say, column 80 of the Ąnal
card of the deck. Some means for terminating the input properly at the end of
the program must always be provided whenever input has been anticipated.

The technique of overlapping computation time and I/O time is known as
buffering, while the rudimentary method (1) is called unbuffered input. The
area of memory 2000Ű2099 used to hold the anticipated input in (3), as well as
the area 1000Ű1099 to which the input was moved, is called a buffer. WebsterŠs
New World Dictionary deĄnes ŞbufferŤ as Şany person or thing that serves to
lessen shock,Ť and the term is appropriate because buffering tends to keep I/O

1.4.4 INPUT AND OUTPUT 217

devices running smoothly. (Computer engineers often use the word ŞbufferŤ in
another sense, to denote a part of the I/O device that stores information during
the transmission. In this book, however, ŞbufferŤ will signify an area of memory
used by a programmer to hold I/O data.)

The sequence (3) is not always superior to (1), although the exceptions are
rare. Let us compare the execution times: Suppose T is the time required to
input 100 words, and suppose C is the computation time that intervenes between
input requests. Method (1) requires a time of essentially T + C per tape block,
while method (3) takes essentially max(C, T) + 202u. (The quantity 202u is the
time required by the two MOVE instructions.) One way to look at this running
time is to consider Şcritical path timeŤ Ů in this case, the amount of time the
I/O unit is idle between uses. Method (1) keeps the unit idle for C units of time,
while method (3) keeps it idle for 202 units (assuming that C < T).

The relatively slow MOVE commands of (3) are undesirable, particularly
because they take up critical path time when the tape unit must be inactive.
An almost obvious improvement of the method allows us to avoid these MOVE

instructions: The outside program can be revised so that it refers alternately
to locations 1000Ű1099 and 2000Ű2099. While we are reading into one buffer
area, we can be computing with the information in the other; then we can begin
reading into the second buffer while computing with the information in the Ąrst.
This is the important technique known as buffer swapping. The location of the
current buffer of interest will be kept in an index register (or, if no index registers
are available, in a memory location). We have already seen an example of buffer
swapping applied to output in Algorithm 1.3.2P (see steps P9ŰP11) and the
accompanying program.

As an example of buffer swapping on input, suppose that we have a computer
application in which each tape block consists of 100 separate one-word items. The
following program is a subroutine that gets the next word of input and begins
to read in a new block if the current one is exhausted.

01 WORDIN STJ 1F Store the exit location.
02 INC6 1 Advance to the next word.
03 2H LDA 0,6 Is it the end of the
04 CMPA =SENTINEL= buffer?
05 1H JNE * If not, exit.
06 IN -100,6(U) ReĄll this buffer.
07 LD6 1,6 Switch to the other
08 JMP 2B buffer and return.
09 INBUF1 ORIG *+100 First buffer
10 CON SENTINEL Sentinel at end of buffer
11 CON *+1 Address of other buffer
12 INBUF2 ORIG *+100 Second buffer
13 CON SENTINEL Sentinel at end of buffer
14 CON INBUF1 Address of other buffer

(4)

In this routine, index register 6 is used to address the last word of input; we
assume that the calling program does not affect this register. The symbol U

218 BASIC CONCEPTS 1.4.4

refers to a tape unit, and the symbol SENTINEL refers to a value that is known
(from characteristics of the program) to be absent from all tape blocks.

Several things about this subroutine should be noted:

1) The sentinel constant appears as the 101st word of each buffer, and it
makes a convenient test for the end of the buffer. In many applications, however,
the sentinel technique will not be reliable, since any word may appear on tape.
If we were doing card input, a similar method (with the 17th word of the buffer
equal to a sentinel) could always be used without fear of failure; in that case,
any negative word could serve as a sentinel, since MIX input from cards always
gives nonnegative words.

2) Each buffer contains the address of the other buffer (see lines 07, 11,
and 14). This Şlinking togetherŤ facilitates the swapping process.

3) No JBUS instruction was necessary, since the next input was initiated
before any word of the previous block was accessed. If the quantities C and T
refer as before to computation time and tape time, the execution time per tape
block is now max (C, T); it is therefore possible to keep the tape going at full
speed if C ≤ T. (Note: MIX is an idealized computer in this regard, however,
since no I/O errors must be treated by the program. On most machines some
instructions to test the successful completion of the previous operation would be
necessary just before the ŚINŠ instruction here.)

4) To make subroutine (4) work properly, it will be necessary to get things
started out right when the program begins. Details are left to the reader (see
exercise 6).

5) The WORDIN subroutine makes the tape unit appear to have a block length
of 1 rather than 100 as far as the rest of the program is concerned. The idea
of having several program-oriented records Ąlling a single actual tape block is
called blocking of records.

The techniques that we have illustrated for input apply, with minor changes,
to output as well (see exercises 2 and 3).

R

R

G

G

G

G

NEXTR

NEXTG Fig. 23. A circle of buffers (N = 6).

Multiple buffers. Buffer swapping is just the special case N = 2 of a general
method involving N buffers. In some applications it is desirable to have more
than two buffers; for example, consider the following type of algorithm:

1.4.4 INPUT AND OUTPUT 219

Step 1. Read Ąve blocks in rapid succession.
Step 2. Perform a fairly long calculation based on this data.
Step 3. Return to step 1.

Here Ąve or six buffers would be desirable, so that the next batch of Ąve blocks
could be read during step 2. This tendency for I/O activity to be ŞbunchedŤ
makes multiple buffering an improvement over buffer swapping.

Suppose we have N buffers for some input or output process using a single
I/O device; we will imagine that the buffers are arranged in a circle, as in
Fig. 23. The program external to the buffering process can be assumed to have
the following general form with respect to the I/O unit of interest:

...
ASSIGN

...
RELEASE

...
ASSIGN

...
RELEASE

...

in other words, we can assume that the program alternates between an action
called ŞASSIGNŤ and an action called ŞRELEASEŤ, separated by other computa-
tions that do not affect the allocation of buffers.

ASSIGN means that the program acquires the address of the next buffer area;
this address is assigned as the value of some program variable.

RELEASE means that the program is done with the current buffer area.

Between ASSIGN and RELEASE the program is communicating with one of the
buffers, called the current buffer area; between RELEASE and ASSIGN, the program
makes no reference to any buffer area.

Conceivably, ASSIGN could immediately follow RELEASE, and discussions of
buffering have often been based on this assumption. However, if RELEASE is done
as soon as possible, the buffering process has more freedom and will be more
effective; by separating the two essentially different functions of ASSIGN and
RELEASE we will Ąnd that the buffering technique remains easy to understand,
and our discussion will be meaningful even if N = 1.

To be more explicit, let us consider the cases of input and output separately.
For input, suppose we are dealing with a card reader. The action ASSIGN means
that the program needs to see information from a new card; we would like to set
an index register to the memory address at which the next card image is located.
The action RELEASE occurs when the information in the current card image is no
longer needed Ů it has somehow been digested by the program, perhaps copied

220 BASIC CONCEPTS 1.4.4

to another part of memory, etc. The current buffer area may therefore be Ąlled
with further anticipated input.

For output, consider the case of a line printer. The action ASSIGN occurs
when a free buffer area is needed, into which a line image is to be placed for
printing. We wish to set an index register equal to the memory address of such
an area. The action RELEASE occurs when this line image has been fully set up
in the buffer area, in a form ready to be printed.

Example: To print the contents of locations 0800Ű0823, we might write

JMP ASSIGNP (Sets rI5 to buffer location)
ENT1 0,5
MOVE 800(24) Move 24 words into the output buffer.
JMP RELEASEP

(5)

where ASSIGNP and RELEASEP represent subroutines to do the two buffering
functions for the line printer.

In an optimal situation, from the standpoint of the computer, the ASSIGN

operation will require virtually no execution time. This means, on input, that
each card image will have been anticipated, so that the data is available when
the program is ready for it; and on output, it means that there will always be
a free place in memory to record the line image. In either case, no time will be
spent waiting for the I/O device.

To help describe the buffering algorithm, and to make it more colorful, we
will say that buffer areas are either green, yellow, or red (shown as G, Y, and R
in Fig. 24).

Green means that the area is ready to be ASSIGNed; this means that it has
been Ąlled with anticipated information (in an input situation), or that it is a
free area (in an output situation).

Yellow means that the area has been ASSIGNed, not RELEASEd; this means
that it is the current buffer, and the program is communicating with it.

Red means that the area has been RELEASEd; thus it is a free area (in an
input situation) or it has been Ąlled with information (in an output situation).

Figure 23 shows two ŞpointersŤ associated with the circle of buffers. These
are, conceptually, index registers in the program. NEXTG and NEXTR point to
the Şnext greenŤ and Şnext redŤ buffer, respectively. A third pointer, CURRENT
(shown in Fig. 24), indicates the yellow buffer when one is present.

The algorithms below apply equally well to input or output, but for deĄ-
niteness we will consider Ąrst the case of input from a card reader. Suppose that
a program has reached the state shown in Fig. 23. This means that four card
images have been anticipated by the buffering process, and they reside in the
green buffers. At this moment, two things are happening simultaneously: (a) The
program is computing, following a RELEASE operation; (b) a card is being read
into the buffer indicated by NEXTR. This state of affairs will continue until the
input cycle is completed (the unit will then go from ŞbusyŤ to ŞreadyŤ), or until
the program does an ASSIGN operation. Suppose the latter occurs Ąrst; then the
buffer indicated by NEXTG changes to yellow (it is assigned as the current buffer),

1.4.4 INPUT AND OUTPUT 221

R

R

Y

G

G

G

NEXTR

CURRENT

NEXTG

G

R

Y

G

G

G

NEXTR

CURRENT

NEXTG

G

R

R

G

G

G

NEXTR

NEXTG

Fig. 24. Buffer transitions, (a) after ASSIGN, (b) after I/O complete, and (c) after
RELEASE.

NEXTG moves clockwise, and we arrive at the position shown in Fig. 24(a). If
now the input is completed, another anticipated block is present; so the buffer
changes from red to green, and NEXTR moves over as shown in Fig. 24(b). If the
RELEASE operation follows next, we obtain Fig. 24(c).

For an example concerning output, see Fig. 27 on page 226. That illustration
shows the ŞcolorsŤ of buffer areas as a function of time, in a program that opens
with four quick outputs, then produces four at a slow pace, and Ąnally issues two
in rapid succession as the program ends. Three buffers appear in that example.

The pointers NEXTR and NEXTG proceed merrily around the circle, each at an
independent rate of speed, moving clockwise. It is a race between the program
(which turns buffers from green to red) and the I/O buffering process (which
turns them from red to green). Two situations of conĆict can occur:

a) if NEXTG tries to pass NEXTR, the program has gotten ahead of the I/O device
and it must wait until the device is ready.

b) if NEXTR tries to pass NEXTG, the I/O device has gotten ahead of the program
and we must shut it down until the next RELEASE is given.

Both of these situations are depicted in Fig. 24. (See exercise 9.)
Fortunately, in spite of the rather lengthy explanation just given of the ideas

behind a circle of buffers, the actual algorithms for handling the situation are
quite simple. In the following description,

N = total number of buffers;
n = current number of red buffers.

(6)

The variable n is used in the algorithm below to avoid interference between
NEXTG and NEXTR.

Algorithm A (ASSIGN). This algorithm includes the steps implied by ASSIGN

within a computational program, as described above.

A1. [Wait for n < N.] If n = N, stall the program until n < N. (If n = N,
no buffers are ready to be assigned; but Algorithm B below, which runs in
parallel with this one, will eventually succeed in producing a green buffer.)

222 BASIC CONCEPTS 1.4.4

A2. [CURRENT ← NEXTG.] Set CURRENT ← NEXTG (thereby assigning the current
buffer).

A3. [Advance NEXTG.] Advance NEXTG to the next clockwise buffer.

Algorithm R (RELEASE). This algorithm includes the steps implied by RELEASE

within a computational program, as described above.

R1. [Increase n.] Increase n by one.

Algorithm B (Buffer control). This algorithm performs the actual initiation
of I/O operators in the machine; it is to be executed ŞsimultaneouslyŤ with the
main program, in the sense described below.

B1. [Compute.] Let the main program compute for a short period of time; step
B2 will be executed after a certain time delay, at a time when the I/O device
is ready for another operation.

B2. [n = 0?] If n = 0, go to B1. (Thus, if no buffers are red, no I/O action can
be performed.)

B3. [Initiate I/O.] Initiate transmission between the buffer area designated by
NEXTR and the I/O device.

B4. [Compute.] Let the main program run for a period of time; then go to
step B5 when the I/O operation is completed.

B5. [Advance NEXTR.] Advance NEXTR to the next clockwise buffer.

B6. [Decrease n.] Decrease n by one, and go to B2.

In these algorithms, we have two independent processes going on Şsimultane-
ously,Ť the buffering control program and the computation program. These pro-
cesses are, in fact, coroutines, which we will call CONTROL and COMPUTE. Coroutine
CONTROL jumps to COMPUTE in steps B1 and B4; coroutine COMPUTE jumps to
CONTROL by interspersing Şjump readyŤ instructions at sporadic intervals in its
program.

Coding this algorithm for MIX is extremely simple. For convenience, assume
that the buffers are linked so that the word preceding each one is the address of
the next; for example, with N = 3 buffers we have CONTENTS(BUF1− 1) = BUF2,
CONTENTS(BUF2− 1) = BUF3, and CONTENTS(BUF3− 1) = BUF1.

Program A (ASSIGN, a subroutine within the COMPUTE coroutine). rI4 ≡
CURRENT; rI6 ≡ n; calling sequence is JMP ASSIGN; on exit, rX contains NEXTG.

ASSIGN STJ 9F Subroutine linkage
1H JRED CONTROL(U) A1. Wait for n < N.

CMP6 =N=
JE 1B
LD4 NEXTG A2. CURRENT← NEXTG.
LDX -1,4 A3. Advance NEXTG.
STX NEXTG

9H JMP * Exit.

1.4.4 INPUT AND OUTPUT 223

A1.
Wait for n<N

A2.
CURRENT← NEXTG

A3.
Advance NEXTG

ASSIGN

R1.
Increase n

RELEASE

B1.
Compute

B2.
n=0?

B3.
Initiate I/O

B4.
Compute

B5.
Advance
NEXTR

B6.
Decrease n

No

Yes

BUFFER CONTROL

Fig. 25. Algorithms for multiple buffering.

Program R (RELEASE, code used within the COMPUTE coroutine). rI6 ≡ n. This
short code is to be inserted wherever RELEASE is desired.

INC6 1 R1. Increase n.
JRED CONTROL(U) Possible jump to CONTROL coroutine

Program B (The CONTROL coroutine). rI6 ≡ n, rI5 ≡ NEXTR.
CONT1 JMP COMPUTE B1. Compute.
1H J6Z *-1 B2. n = 0?

IN 0,5(U) B3. Initiate I/O.
JMP COMPUTE B4. Compute.
LD5 -1,5 B5. Advance NEXTR.
DEC6 1 B6. Decrease n.
JMP 1B

Besides the code above, we also have the usual coroutine linkage

CONTROL STJ COMPUTEX COMPUTE STJ CONTROLX

CONTROLX JMP CONT1 COMPUTEX JMP COMP1

and the instruction ŚJRED CONTROL(U)Š should be placed within COMPUTE about
once in every Ąfty instructions.

Thus the programs for multiple buffering essentially amount to only seven
instructions for CONTROL, eight for ASSIGN, and two for RELEASE.

It is perhaps remarkable that exactly the same algorithm will work for both
input and output. What is the difference Ů how does the control routine know
whether to anticipate (for input) or to lag behind (for output)? The answer lies
in the initial conditions: For input we start out with n = N (all buffers red) and
for output we start out with n = 0 (all buffers green). Once the routine has been
started properly, it continues to behave as either an input process or an output
process, respectively. The other initial condition is that NEXTR = NEXTG, both
pointing at one of the buffers.

At the conclusion of the program, it is necessary to stop the I/O process (if
it is input) or to wait until it is completed (for output); details are left to the
reader (see exercises 12 and 13).

224 BASIC CONCEPTS 1.4.4

It is important to ask what is the best value of N to use. Certainly as N
gets larger, the speed of the program will not decrease, but it will not increase
indeĄnitely either and so we come to a point of diminishing returns. Let us refer
again to the quantities C and T, representing computation time between I/O
operators and the I/O time itself. More precisely, let C be the amount of time
between successive ASSIGNs, and let T be the amount of time needed to transmit
one block. If C is always greater than T, then N = 2 is adequate, for it is not
hard to see that with two buffers we keep the computer busy at all times. If
C is always less than T , then again N = 2 is adequate, for we keep the I/O
device busy at all times (except when the device has special timing constraints
as in exercise 19). Larger values of N are therefore useful chieĆy when C varies
between small values and large values; the average number of consecutive small
values, plus 1, may be right for N, if the large values of C are signiĄcantly longer
than T. (However, the advantage of buffering is virtually nulliĄed if all input
occurs at the beginning of the program and if all output occurs at the end.)
If the time between ASSIGN and RELEASE is always quite small, the value of N
may be decreased by 1 throughout the discussion above, with little effect on
running time.

This approach to buffering can be adapted in many ways, and we will
mention a few of them brieĆy. So far we have assumed that only one I/O device
was being used; in practice, of course, several devices will be in use at the
same time.

There are several ways to approach the subject of multiple units. In the
simplest case, we can have a separate circle of buffers for each device. Each
unit will have its own values of n, N, NEXTR, NEXTG, and CURRENT, and its own
CONTROL coroutine. This will give efficient buffering action simultaneously on
every I/O device.

It is also possible to ŞpoolŤ buffer areas that are of the same size, so that two
or more devices share buffers from a common list. This can be handled by using
the linked memory techniques of Chapter 2, with all red input buffers linked
together in one list and all green output buffers linked together in another. It
becomes necessary to distinguish between input and output in this case, and
to rewrite the algorithms without using n and N. The algorithm may get
irrevocably stuck, if all buffers in the pool are Ąlled with anticipated input;
so a check should be made that there is always at least one buffer (preferably
one for each device) that is not input-green; only if the COMPUTE routine is stalled
at step A1 for some input device should we allow input into the Ąnal buffer of
the pool from that device.

Some machines have additional constraints on the use of input-output units,
so that it is impossible to be transmitting data from certain pairs of devices at
the same time. (For example, several units might be attached to the computer by
means of a single Şchannel.Ť) This constraint also affects our buffering routine;
when we must choose which I/O unit to initiate next, how is the choice to be
made? This is called the problem of Şforecasting.Ť The best forecasting rule for
the general case would seem to give preference to the unit whose buffer circle

1.4.4 INPUT AND OUTPUT 225

Fig. 26. Input and output from the same circle.

R

R

Y

G

G

P

NEXTR

CURRENT

NEXTG

NEXTP

has the largest value of n/N, assuming that the number of buffers in the circles
has been chosen wisely.

LetŠs conclude this discussion by taking note of a useful method for doing
both input and output from the same buffer circle, under certain conditions.
Figure 26 introduces a new kind of buffer, which has the color purple. In this
situation, green buffers represent anticipated input; the program ASSIGNs and
a green buffer becomes yellow, then upon RELEASE it turns red and represents
a block to be output. The input and output processes follow around the circle
independently as before, except that now we turn red buffers to purple after
the output is done, and convert purple to green on input. It is necessary to
ensure that none of the pointers NEXTG, NEXTR, NEXTP pass each other. At
the instant shown in Fig. 26, the program is computing between ASSIGN and
RELEASE, while accessing the yellow buffer; simultaneously, input is going into
the buffer indicated by NEXTP; and output is coming from the buffer indicated
by NEXTR.

EXERCISES

1. [05] (a) Would sequence (3) still be correct if the MOVE instructions were placed
before the JBUS instruction instead of after it? (b) What if the MOVE instructions were
placed after the IN command?

2. [10] The instructions ŚOUT 1000(6); JBUS *(6)Š may be used to output a tape
block in an unbuffered fashion, just as the instructions (1) did this for input. Give a
method analogous to (2) and (3) that buffers this output, by using MOVE instructions
and an auxiliary buffer in locations 2000Ű2099.

x 3. [22] Write a buffer-swapping output subroutine analogous to (4). The subroutine,
called WORDOUT, should store the word in rA as the next word of output, and if a buffer
is full it should write 100 words onto tape unit V. Index register 5 should be used to
refer to the current buffer position. Show the layout of buffer areas and explain what
instructions (if any) are necessary at the beginning and end of the program to ensure
that the Ąrst and last blocks are properly written. The Ąnal block should be Ąlled out
with zeros if necessary.

4. [M20] Show that if a program refers to a single I/O device, we might be able to
cut the running time in half by buffering the I/O, in favorable circumstances; but we
can never decrease the running time by more than a factor of two, with respect to the
time taken by unbuffered I/O.

226 BASIC CONCEPTS 1.4.4

Output
unit

Com-
puter

O O O O O O O O O O

AAAA

RRR

A

R

A A A AA

R R R R R R

B
u
ff
e
r
1
B
u
ff
e
r
2
B
u
ff
e
r
3

0
0
0
0
0

0
5
0
0
0

1
0
0
0
0

1
5
0
0
0

2
0
0
0
0

2
5
0
0
0

3
0
0
0
0

3
5
0
0
0

4
0
0
0
0

4
5
0
0
0

5
0
0
0
0

5
5
0
0
0

6
0
0
0
0

6
5
0
0
0

7
0
0
0
0

7
5
0
0
0

8
0
0
0
0

8
5
0
0
0

Time −→

A

R

O

Legend

Green
buffer

Yellow
buffer

Red
buffer

Red buffer
being output

Device active

Device idle

Assign

Release
Initiate output

Fig. 27. Output with three buffers (see exercise 9).

x 5. [M21] Generalize the situation of the preceding exercise to the case when the
program refers to n I/O devices instead of just one.

6. [12] What instructions should be placed at the beginning of a program so that
the WORDIN subroutine (4) gets off to the right start? (For example, index register 6
must be set to something.)

7. [22] Write a subroutine called WORDIN that is essentially like (4) except that it
does not make use of a sentinel.

8. [11] The text describes a hypothetical input scenario that leads from Fig. 23
through parts (a), (b), and (c) of Fig. 24. Interpret the same scenario under the
assumption that output to the line printer is being done, instead of input from cards.
(For example, what things are happening at the time shown in Fig. 23?)

x 9. [21] A program that leads to the buffer contents shown in Fig. 27 may be char-
acterized by the following list of times:

A, 1000, R, 1000, A, 1000, R, 1000, A, 1000, R, 1000, A, 1000, R, 1000,
A, 7000, R, 5000, A, 7000, R, 5000, A, 7000, R, 5000, A, 7000, R, 5000,
A, 1000, R, 1000, A, 2000, R, 1000.

This list means Şassign, compute for 1000u, release, compute for 1000u, assign, . . . ,
compute for 2000u, release, compute for 1000u.Ť The computation times given do not
include any intervals during which the computer might have to wait for the output
device to catch up (as at the fourth ŞassignŤ in Fig. 27). The output device operates
at a speed of 7500u per block.

1.4.4 INPUT AND OUTPUT 227

The following chart speciĄes the actions shown in Fig. 27 as time passes:

Time Action Time Action
0 ASSIGN(BUF1) 38500 OUT BUF3

1000 RELEASE, OUT BUF1 40000 ASSIGN(BUF1)

2000 ASSIGN(BUF2) 46000 Output stops.
3000 RELEASE 47000 RELEASE, OUT BUF1

4000 ASSIGN(BUF3) 52000 ASSIGN(BUF2)

5000 RELEASE 54500 Output stops.
6000 ASSIGN (wait) 59000 RELEASE, OUT BUF2

8500 BUF1 assigned, OUT BUF2 64000 ASSIGN(BUF3)

9500 RELEASE 65000 RELEASE

10500 ASSIGN (wait) 66000 ASSIGN(BUF1)

16000 BUF2 assigned, OUT BUF3 66500 OUT BUF3

23000 RELEASE 68000 RELEASE

23500 OUT BUF1 69000 Computation stops.
28000 ASSIGN(BUF3) 74000 OUT BUF1

31000 OUT BUF2 81500 Output stops.
35000 RELEASE

The total time required was therefore 81500u; the computer was idle from 6000Ű8500,
10500Ű16000, and 69000Ű81500, or 20500u altogether; the output unit was idle from
0Ű1000, 46000Ű47000, and 54500Ű59000, or 6500u.

Make a time-action chart like the above for the same program, assuming that there
are only two buffers.

10. [21] Repeat exercise 9, except with four buffers.

11. [21] Repeat exercise 9, except with just one buffer.

12. [24] Suppose that the multiple buffering algorithm in the text is being used for
card input, and suppose the input is to terminate as soon as a card with Ş.Ť in column
80 has been read. Show how the CONTROL coroutine (Algorithm B and Program B)
should be changed so that input is shut off in this way.

13. [20] What instructions should be included at the end of the COMPUTE coroutine
in the text, if the buffering algorithms are being applied to output, to ensure that all
information has been output from the buffers?

x 14. [20] Suppose the computational program does not alternate between ASSIGN and
RELEASE, but instead gives the sequence of actions . . . ASSIGN . . . ASSIGN . . . RELEASE . . .
RELEASE. What effect does this have on the algorithms described in the text? Is it
possibly useful?

x 15. [22] Write a complete MIX program that copies 100 blocks from tape unit 0 to
tape unit 1, using just three buffers. The program should be as fast as possible.

16. [29] Formulate the Şgreen-yellow-red-purpleŤ algorithm, suggested by Fig. 26,
in the manner of the algorithms for multiple buffering given in the text, using three
coroutines (one to control the input device, one for the output device, and one for the
computation).

17. [40] Adapt the multiple-buffer algorithm to pooled buffers; build in methods that
keep the process from slowing down, due to too much anticipated input. Try to make
the algorithm as elegant as possible. Compare your method to nonpooling methods,
applied to real-life problems.

228 BASIC CONCEPTS 1.4.4

x 18. [30] A proposed extension of MIX allows its computations to be interrupted, as
explained below. Your task in this exercise is to modify Algorithms and Programs A,
R, and B of the text so that they use these interrupt facilities instead of the ŚJREDŠ
instructions.

The new MIX features include an additional 3999 memory cells, locations −3999
through −0001. The machine has two internal Şstates,Ť normal state and control state.
In normal state, locations −3999 through −0001 are not admissible memory locations
and the MIX computer behaves as usual. When an ŞinterruptŤ occurs, due to conditions
explained later, locations −0009 through −0001 are set equal to the contents of MIXŠs
registers: rA in −0009; rI1 through rI6 in −0008 through −0003; rX in −0002; and rJ,
the overĆow toggle, the comparison indicator, and the location of the next instruction
are stored in −0001 as

+
next
inst.

OV,
CI rJ ;

the machine enters control state, at a location depending on the type of interrupt.
Location −0010 acts as a ŞclockŤ: Every 1000u of time, the number appearing

in this location is decreased by one, and if the result is zero an interrupt to location
−0011 occurs.

The new MIX instruction ŚINTŠ (C = 5, F = 9) works as follows: (a) In normal state,
an interrupt occurs to location −0012. (Thus a programmer may force an interrupt,
to communicate with a control routine; the address of INT has no effect, although the
control routine may use it for information to distinguish between types of interrupt.)
(b) In control state, all MIX registers are loaded from locations −0009 to −0001, the
computer goes into normal state, and it resumes execution. The execution time for INT
is 2u in each case.

An IN, OUT, or IOC instruction given in control state will cause an interrupt to occur
as soon as the I/O operation is completed. The interrupt goes to location −(0020+
unit number).

No interrupts occur while in control state; any interrupt conditions are ŞsavedŤ
until after the next INT operation, and interrupt will occur after one instruction of the
normal state program has been performed.

x 19. [M28] Special considerations arise when input or output involves short blocks on
a rotating device like a magnetic disk. Suppose a program works with n ≥ 2 consecutive
blocks of information in the following way: Block k begins to be input at time tk, where
t1 = 0. It is assigned for processing at time uk ≥ tk +T and released from its buffer at
time vk = uk + C. The disk rotates once every P units of time, and its reading head
passes the start of a new block every L units; so we must have tk ≡ (k−1)L (modulo P).
Since the processing is sequential, we must also have uk ≥ vk−1 for 1 < k ≤ n. There
are N buffers, hence tk ≥ vk−N for N < k ≤ n.

How large does N have to be so that the Ąnishing time vn has its minimum possible
value, T + C + (n − 1) max(L,C)? Give a general rule for determining the smallest
such N . Illustrate your rule when L = 1, P = 100, T = .5, n = 100, and (a) C = .5;
(b) C = 1.0; (c) C = 1.01; (d) C = 1.5; (e) C = 2.0; (f) C = 2.5; (g) C = 10.0;
(h) C = 50.0; (i) C = 200.0.

1.4.5 HISTORY AND BIBLIOGRAPHY 229

1.4.5. History and Bibliography

Most of the fundamental techniques described in Section 1.4 have been developed
independently by a number of different people, and the exact history of the ideas
will probably never be known. An attempt has been made to record here the
most important contributions to the history, and to put them in perspective.

Subroutines were the Ąrst labor-saving devices invented for programmers.
In the 19th century, Charles Babbage envisioned a library of routines for his
Analytical Engine [see Charles Babbage and His Calculating Engines, edited by
Philip and Emily Morrison (Dover, 1961), 56]; and we might say that his dream
came true in 1944 when Grace M. Hopper wrote a subroutine for computing
sin x on the Harvard Mark I calculator [see Mechanisation of Thought Processes
(London: Nat. Phys. Lab., 1959), 164]. However, these were essentially Şopen
subroutines,Ť meant to be inserted into a program where needed instead of being
linked up dynamically. BabbageŠs planned machine was controlled by sequences
of punched cards, as on the Jacquard loom; the Mark I was controlled by a
number of paper tapes. Thus they were quite different from todayŠs stored-
program computers.

Subroutine linkage appropriate to stored-program machines, with the return
address supplied as a parameter, was discussed by Herman H. Goldstine and
John von Neumann in their widely circulated monograph on programming,
written during 1946 and 1947; see von NeumannŠs Collected Works 5 (New York:
Macmillan, 1963), 215Ű235. The main routine of their programs was responsible
for storing parameters into the body of the subroutine, instead of passing the
necessary information in registers. In England, A. M. Turing had designed
hardware and software for subroutine linkage as early as 1945; see Proceedings of
a Second Symposium on Large-Scale Digital Calculating Machinery (Cambridge,
Mass.: Harvard University, 1949), 87Ű90; B. E. Carpenter and R. W. Doran,
editors, A. M. TuringŠs ACE Report of 1946 and Other Papers (Cambridge,
Mass.: MIT Press, 1986), 35Ű36, 76, 78Ű79. The use and construction of a
very versatile subroutine library is the principal topic of the Ąrst textbook of
computer programming, The Preparation of Programs for an Electronic Digital
Computer, by M. V. Wilkes, D. J. Wheeler, and S. Gill, 1st ed. (Reading, Mass.:
AddisonŰWesley, 1951).

The word ŞcoroutineŤ was coined by M. E. Conway in 1958, after he had
developed the concept, and he Ąrst applied it to the construction of an assembly
program. Coroutines were independently studied by J. Erdwinn and J. Merner,
at about the same time; they wrote a paper entitled ŞBilateral Linkage,Ť which
was not then considered sufficiently interesting to merit publication, and un-
fortunately no copies of that paper seem to exist today. The Ąrst published
explanation of the coroutine concept appeared much later in ConwayŠs article
ŞDesign of a Separable Transition-Diagram Compiler,Ť CACM 6 (1963), 396Ű
408. Actually a primitive form of coroutine linkage had already been noted brieĆy
as a Şprogramming tipŤ in an early UNIVAC publication [The Programmer 1, 2
(February 1954), 4]. A suitable notation for coroutines in ALGOL-like languages
was introduced in Dahl and NygaardŠs SIMULA I [CACM 9 (1966), 671Ű678],

230 BASIC CONCEPTS 1.4.5

and several excellent examples of coroutines (including replicated coroutines)
appear in the book Structured Programming by O.-J. Dahl, E. W. Dijkstra, and
C. A. R. Hoare, Chapter 3.

The Ąrst interpretive routine may be said to be the ŞUniversal Turing
Machine,Ť a Turing machine capable of simulating any other Turing machines.
Turing machines are not actual computers; they are theoretical constructions
used to prove that certain problems are unsolvable by algorithms. Interpretive
routines in the conventional sense were mentioned by John Mauchly in his
lectures at the Moore School in 1946. The most notable early interpreters,
chieĆy intended to provide a convenient means of doing Ćoating point arithmetic,
were certain routines for the Whirlwind I (by C. W. Adams and others) and
for the ILLIAC I (by D. J. Wheeler and others). Turing took a part in this
development also; interpretive systems for the Pilot ACE computer were written
under his direction. For references to the state of interpreters in the early Ąfties,
see the article ŞInterpretative Sub-routinesŤ by J. M. Bennett, D. G. Prinz,
and M. L. Woods, Proc. ACM (Toronto: 1952), 81Ű87; see also various papers
in the Proceedings of the Symposium on Automatic Programming for Digital
Computers (1954), published by the Office of Naval Research, Washington, D.C.

The most extensively used early interpretive routine was probably John
BackusŠs ŞIBM 701 Speedcoding systemŤ [see JACM 1 (1954), 4Ű6]. This
interpreter was slightly modiĄed and skillfully rewritten for the IBM 650 by
V. M. Wolontis and others of the Bell Telephone Laboratories; their routine,
called the ŞBell Interpretive System,Ť became extremely popular. The IPL
interpretive systems, which were designed beginning in 1956 by A. Newell, J. C.
Shaw, and H. A. Simon for applications to quite different problems (see Section
2.6), were used extensively for list processing. Modern uses of interpreters, as
mentioned in the introduction to Section 1.4.3, are often mentioned in passing
in the computer literature; see the references listed in that section for articles
that discuss interpreters in somewhat more detail.

The Ąrst tracing routine was developed by Stanley Gill in 1950; see his
interesting article in Proceedings of the Royal Society of London, series A,
206 (1951), 538Ű554. The text by Wilkes, Wheeler, and Gill mentioned above
includes several programs for tracing. Perhaps the most interesting of them is
subroutine C-10 by D. J. Wheeler, which includes a provision for suppressing
the trace upon entry to a library subroutine, executing the subroutine at full
speed, then continuing the trace. Published information about trace routines is
quite rare in the general computer literature, primarily because the methods are
inherently oriented to a particular machine. The only other early reference known
to the author is H. V. Meek, ŞAn Experimental Monitoring Routine for the IBM
705,Ť Proc. Western Joint Computer Conf. (1956), 68Ű70, which discusses a trace
routine for a machine on which the problem was particularly difficult. See also
the trace routine for IBMŠs System/360 architecture, presented in A Compiler
Generator by W. M. McKeeman, J. J. Horning, and D. B. Wortman (PrenticeŰ
Hall, 1970), 305Ű363. Nowadays the emphasis on trace routines has shifted to
software that provides selective symbolic output and measurements of program

1.4.5 HISTORY AND BIBLIOGRAPHY 231

performance; one of the best such systems was developed by E. Satterthwaite,
and described in Software Practice & Experience 2 (1972), 197Ű217.

Buffering was originally performed by computer hardware, in a manner
analogous to the code 1.4.4Ű(3); an internal buffer area inaccessible to the pro-
grammer played the role of locations 2000Ű2099, and the instructions 1.4.4Ű(3)
were implicitly performed behind the scenes when an input command was given.
During the late 1940s, software buffering techniques that are especially useful for
sorting were developed by early programmers of the UNIVAC (see Section 5.5).
For a good survey of the prevailing philosophy towards I/O in 1952, see the
proceedings of the Eastern Joint Computer Conference held in that year.

The DYSEAC computer [Alan L. Leiner, JACM 1 (1954), 57Ű81] introduced
the idea of input-output devices communicating directly with memory while a
program is running, then interrupting the program upon completion. Such a
system implies that buffering algorithms had been developed, but the details
went unpublished. The Ąrst published reference to buffering techniques in the
sense we have described gives a highly sophisticated approach; see O. Mock and
C. J. Swift, ŞProgrammed Input-Output Buffering,Ť Proc. ACM Nat. Meeting
13 (1958), paper 19, and JACM 6 (1959), 145Ű151. (The reader is cautioned
that both articles contain a good deal of local jargon, which may take some time
to understand, but neighboring articles in JACM 6 will help.) An interrupt
system that enabled buffering of input and output was independently developed
by E. W. Dijkstra in 1957 and 1958, in connection with B. J. LoopstraŠs and
C. S. ScholtenŠs X1 computer [see Comp. J. 2 (1959), 39Ű43]. DijkstraŠs doc-
toral thesis, ŞCommunication with an Automatic ComputerŤ (1959), discussed
primitive synchronization operations by which users could create long chains
of buffers with respect to paper tape and typewriter I/O; each buffer contained
either a single character or a single number. He later developed the ideas into the
important general notion of semaphores, which are basic to the control of all sorts
of concurrent processes, not just input-output [see Programming Languages,
ed. by F. Genuys (Academic Press, 1968), 43Ű112; BIT 8 (1968), 174Ű186;
Acta Informatica 1 (1971), 115Ű138]. The paper ŞInput-Output Buffering and
FORTRANŤ by David E. Ferguson, JACM 7 (1960), 1Ű9, describes buffer circles
and gives a detailed description of simple buffering with many units at once.

About 1,000 instructions is a reasonable upper limit

for the complexity of problems now envisioned.

— HERMAN GOLDSTINE and JOHN VON NEUMANN (1946)

CHAPTER TWO

INFORMATION STRUCTURES

I think that I shall never see

A poem lovely as a tree.

— JOYCE KILMER (1913)

Yea, from the table of my memory

IŠll wipe away all trivial fond records.

— HAMLET (Act I, Scene 5, Line 98)

2.1. INTRODUCTION

Computer programs usually operate on tables of information. In most cases
these tables are not simply amorphous masses of numerical values; they involve
important structural relationships between the data elements.

In its simplest form, a table might be a linear list of elements, when its
relevant structural properties might include the answers to such questions as:
Which element is Ąrst in the list? Which is last? Which elements precede and
follow a given one? How many elements are in the list? A lot can be said about
structure even in this apparently simple case (see Section 2.2).

In more complicated situations, the table might be a two-dimensional array
(a matrix or grid, having both a row and a column structure), or it might be
an n-dimensional array for higher values of n; it might be a tree structure,
representing hierarchical or branching relationships; or it might be a complex
multilinked structure with a great many interconnections, such as we may Ąnd
in a human brain.

In order to use a computer properly, we need to understand the structural
relationships present within data, as well as the basic techniques for representing
and manipulating such structure within a computer.

The present chapter summarizes the most important facts about information
structures: the static and dynamic properties of different kinds of structure;
means for storage allocation and representation of structured data; and efficient
algorithms for creating, altering, accessing, and destroying structural informa-
tion. In the course of this study, we will also work out several important examples
that illustrate the application of such methods to a wide variety of problems.
The examples include topological sorting, polynomial arithmetic, discrete system
simulation, sparse matrix transformation, algebraic formula manipulation, and
applications to the writing of compilers and operating systems. Our concern
will be almost entirely with structure as represented inside a computer; the

232

2.1 INTRODUCTION 233

conversion from external to internal representations is the subject of Chapters 9
and 10.

Much of the material we will discuss is often called ŞList processing,Ť since
a number of programming systems such as LISP have been designed to facilitate
working with general kinds of structures called Lists. (When the word ŞlistŤ
is capitalized in this chapter, it is being used in a technical sense to denote
a particular type of structure that is highlighted in Section 2.3.5.) Although
List processing systems are useful in a large number of situations, they impose
constraints on the programmer that are often unnecessary; it is usually better to
use the methods of this chapter directly in oneŠs own programs, tailoring the data
format and the processing algorithms to the particular application. Many people
unfortunately still feel that List processing techniques are quite complicated (so
that it is necessary to use someone elseŠs carefully written interpretive system or
a prefabricated set of subroutines), and that List processing must be done only
in a certain Ąxed way. We will see that there is nothing magic, mysterious, or
difficult about the methods for dealing with complex structures; these techniques
are an important part of every programmerŠs repertoire, and we can use them
easily whether we are writing a program in assembly language or in an algebraic
language like FORTRAN, C, or Java.

We will illustrate methods of dealing with information structures in terms
of the MIX computer. A reader who does not care to look through detailed
MIX programs should at least study the ways in which structural information is
represented in MIXŠs memory.

It is important at this point to deĄne several terms and notations that we
will be using frequently from now on. The information in a table consists of a
set of nodes (called Şrecords,Ť Şentities,Ť or ŞbeadsŤ by some authors); we will
occasionally say ŞitemŤ or ŞelementŤ instead of Şnode.Ť Each node consists of
one or more consecutive words of the computer memory, divided into named
parts called Ąelds. In the simplest case, a node is just one word of memory, and
it has just one Ąeld comprising that whole word. As a more interesting example,
suppose the elements of our table are intended to represent playing cards; we
might have two-word nodes broken into Ąve Ąelds, TAG, SUIT, RANK, NEXT, and
TITLE:

+ TAG SUIT RANK NEXT

+ TITLE
(1)

(This format reĆects the contents of two MIX words. Recall that a MIX word
consists of Ąve bytes and a sign; see Section 1.3.1. In this example we assume
that the signs are + in each word.) The address of a node, also called a link,
pointer, or reference to that node, is the memory location of its Ąrst word. The
address is often taken relative to some base location, but in this chapter for
simplicity we will take the address to be an absolute memory location.

The contents of any Ąeld within a node may represent numbers, alphabetic
characters, links, or anything else the programmer may desire. In connection
with the example above, we might wish to represent a pile of cards that might

234 INFORMATION STRUCTURES 2.1

appear in a game of solitaire: TAG = 1 means that the card is face down, TAG = 0
means that it is face up; SUIT = 1, 2, 3, or 4 for clubs, diamonds, hearts, or
spades, respectively; RANK = 1, 2, . . . , 13 for ace, deuce, . . . , king; NEXT is a link
to the card below this one in the pile; and TITLE is a Ąve-character alphabetic
name of this card, for use in printouts. A typical pile might look like this:

Actual cards Computer representation

100: + 1 1 10 Λ

101: + ␣ 1 0 ␣ C

386: + 0 4 3 100

387: + ␣ ␣ 3 ␣ S

242: + 0 2 2 386

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

TEX

3

2

2

243: + ␣ ␣ 2 ␣ D

(2)

The memory locations in the computer representation are shown here as 100,
386, and 242; they could have been any other numbers as far as this example
is concerned, since each card links to the one below it. Notice the special link
ŞΛŤ in node 100; we use the capital Greek letter Lambda to denote the null link,
the link to no node. The null link Λ appears in node 100 since the 10 of clubs
is the bottom card of the pile. Within the machine, Λ is represented by some
easily recognizable value that cannot be the address of a node. We will generally
assume that no node appears in location 0; consequently, Λ will almost always
be represented as the link value 0 in MIX programs.

The introduction of links to other elements of data is an extremely important
idea in computer programming; links are the key to the representation of complex
structures. When displaying computer representations of nodes it is usually
convenient to represent links by arrows, so that example (2) would appear thus:

+ 0 2 2

+ 2 D

+ 0 4 3

+ 3 S

+ 1 1 10

+ 1 0 C

TOP
(3)

The actual locations 242, 386, and 100 (which are irrelevant anyway) no longer
appear in representation (3). Electrical circuit notation for a ŞgroundedŤ wire
is used to indicate a null link, shown here at the right of the diagram. Notice
also that (3) indicates the top card by an arrow from ŞTOPŤ; here TOP is a link
variable, often called a pointer variable, namely a variable whose value is a link.
All references to nodes in a program are made directly through link variables (or
link constants), or indirectly through link Ąelds in other nodes.

2.1 INTRODUCTION 235

Now we come to the most important part of the notation, the means of
referring to Ąelds within nodes. This is done simply by giving the name of the
Ąeld followed by a link to the desired node in parentheses; for example, in (2)
and (3) with the Ąelds of (1) we have

RANK(100) = 10; SUIT(TOP) = 2;

TITLE(TOP) = Ş␣␣2␣DŤ; RANK(NEXT(TOP)) = 3.
(4)

The reader should study these examples carefully, since such Ąeld notations
will be used in many algorithms of this chapter and the following chapters. To
make the ideas clearer, we will now state a simple algorithm for placing a new
card face up on top of the pile, assuming that NEWCARD is a link variable whose
value is a link to the new card:

A1. Set NEXT(NEWCARD) ← TOP. (This puts the appropriate link into the new
card node.)

A2. Set TOP← NEWCARD. (This keeps TOP pointing to the top of the pile.)

A3. Set TAG(TOP)← 0. (This marks the card as Şface up.Ť)

Another example is the following algorithm, which counts the number of cards
currently in the pile:

B1. Set N← 0, X← TOP. (Here N is an integer variable, X is a link variable.)

B2. If X = Λ, stop; N is the number of cards in the pile.

B3. Set N← N + 1, X← NEXT(X), and go back to step B2.

Notice that we are using symbolic names for two quite different things in
these algorithms: as names of variables (TOP, NEWCARD, N, X) and as names of
Ąelds (TAG, NEXT). These two usages must not be confused. If F is a Ąeld name
and L ̸= Λ is a link, then F(L) is a variable; but F itself is not a variable Ů it
does not possess a value unless it is qualiĄed by a nonnull link.

Two further notations are used, to convert between addresses and the values
stored there, when we are discussing low-level machine details:

a) CONTENTS always denotes a full-word Ąeld of a one-word node. Thus
CONTENTS(1000) denotes the value stored in memory location 1000; it is a
variable having this value. If V is a link variable, CONTENTS(V) denotes the
value pointed to by V (not the value V itself).

b) If V is the name of some value held in a memory cell, LOC(V) denotes the
address of that cell. Consequently, if V is a variable whose value is stored in a
full word of memory, we have CONTENTS(LOC(V)) = V.

It is easy to transform this notation into MIXAL assembly language code,
although MIXALŠs notation is somewhat backwards. The values of link variables
are put into index registers, and the partial-Ąeld capability of MIX is used to refer

236 INFORMATION STRUCTURES 2.1

to the desired Ąeld. For example, Algorithm A above could be written thus:

NEXT EQU 4:5 DeĄnition of the NEXT

TAG EQU 1:1 and TAG Ąelds for the assembler
LD1 NEWCARD A1. rI1← NEWCARD.
LDA TOP rA← TOP.
STA 0,1(NEXT) NEXT(rI1)← rA.
ST1 TOP A2. TOP← rI1.
STZ 0,1(TAG) A3. TAG(rI1)← 0.

(5)

The ease and efficiency with which these operations can be carried out in a
computer is the primary reason for the importance of the Şlinked memoryŤ
concept.

Sometimes we have a single variable that denotes a whole node; its value is
a sequence of Ąelds instead of just one Ąeld. Thus we might write

CARD← NODE(TOP), (6)

where NODE is a Ąeld speciĄcation just like CONTENTS, except that it refers to an
entire node, and where CARD is a variable that assumes structured values like
those in (1). If there are c words in a node, the notation (6) is an abbreviation
for the c low-level assignments

CONTENTS(LOC(CARD) + j)← CONTENTS(TOP + j), 0 ≤ j < c. (7)

There is an important distinction between assembly language and the no-
tation used in algorithms. Since assembly language is close to the machineŠs
internal language, the symbols used in MIXAL programs stand for addresses
instead of values. Thus in the left-hand columns of (5), the symbol TOP actually
denotes the address where the pointer to the top card appears in memory; but
in (6) and (7) and in the remarks at the right of (5), it denotes the value of
TOP, namely the address of the top card node. This difference between assembly
language and higher-level language is a frequent source of confusion for beginning
programmers, so the reader is urged to work exercise 7. The other exercises also
provide useful drills on the notational conventions introduced in this section.

EXERCISES

1. [04] In the situation depicted in (3), what is the value of (a) SUIT(NEXT(TOP));
(b) NEXT(NEXT(NEXT(TOP)))?

2. [10] The text points out that in many cases CONTENTS(LOC(V)) = V. Under what
conditions do we have LOC(CONTENTS(V)) = V?

3. [11] Give an algorithm that essentially undoes the effect of Algorithm A: It
removes the top card of the pile (if the pile is not empty) and sets NEWCARD to the
address of this card.

4. [18] Give an algorithm analogous to Algorithm A, except that it puts the new
card face down at the bottom of the pile. (The pile may be empty.)

x 5. [21] Give an algorithm that essentially undoes the effect of exercise 4: Assuming
that the pile is not empty and that its bottom card is face down, your algorithm should

2.1 INTRODUCTION 237

remove the bottom card and make NEWCARD link to it. (This algorithm is sometimes
called ŞcheatingŤ in solitaire games.)

6. [06] In the playing card example, suppose that CARD is the name of a variable
whose value is an entire node as in (6). The operation CARD ← NODE(TOP) sets the
Ąelds of CARD respectively equal to those of the top of the pile. After this operation,
which of the following notations stands for the suit of the top card? (a) SUIT(CARD);
(b) SUIT(LOC(CARD)); (c) SUIT(CONTENTS(CARD)); (d) SUIT(TOP) ?

x 7. [04] In the textŠs example MIX program, (5), the link variable TOP is stored in the
MIX computer word whose assembly language name is TOP. Given the Ąeld structure (1),
which of the following sequences of code brings the quantity NEXT(TOP) into register A?
Explain why the other sequence is incorrect.

a) LDA TOP(NEXT) b) LD1 TOP

LDA 0,1(NEXT)

x 8. [18] Write a MIX program corresponding to steps B1ŰB3.

9. [23] Write a MIX program that prints out the alphabetic names of the current
contents of the card pile, starting at the top card, with one card per line, and with
parentheses around cards that are face down.

238 INFORMATION STRUCTURES 2.2

2.2. LINEAR LISTS

2.2.1. Stacks, Queues, and Deques

Data usually has much more structural information than we actually want to
represent directly in a computer. For example, each Şplaying cardŤ node in the
preceding section had a NEXT Ąeld to specify what card was beneath it in the pile,
but we provided no direct way to Ąnd what card, if any, was above a given card,
or to Ąnd what pile a given card was in. And of course we totally suppressed
most of the characteristic features of real playing cards: the details of the design
on the back, the relation to other objects in the room where the game was being
played, the individual molecules within the cards, etc. It is conceivable that such
structural information would be relevant in certain computer applications, but
obviously we never want to store all of the structure that is present in every
situation. Indeed, for most card-playing situations we would not need all of the
facts retained in the earlier example; the TAG Ąeld, which tells whether a card is
face up or face down, will often be unnecessary.

We must decide in each case how much structure to represent in our tables,
and how accessible to make each piece of information. To make such decisions,
we need to know what operations are to be performed on the data. For each
problem considered in this chapter, therefore, we consider not only the data
structure but also the class of operations to be done on the data; the design of
computer representations depends on the desired function of the data as well as
on its intrinsic properties. Indeed, an emphasis on function as well as form is
basic to design problems in general.

In order to illustrate this point further, letŠs consider a related aspect of
computer hardware design. A computer memory is often classiĄed as a Şrandom
access memory,Ť like MIXŠs main memory; or as a Şread-only memory,Ť which
is supposed to contain essentially constant information; or a Şsecondary bulk
memory,Ť like MIXŠs disk units, which cannot be accessed at high speed al-
though large quantities of information can be stored; or an Şassociative memory,Ť
more properly called a Şcontent-addressed memory,Ť for which information is
addressed by its value rather than by its location; and so on. The intended
function of each kind of memory is so important that it enters into the name of
the particular memory type; all of these devices are ŞmemoryŤ units, but the
purposes to which they are put profoundly inĆuence their design and their cost.

A linear list is a sequence of n ≥ 0 nodes X[1], X[2], . . . , X[n] whose
essential structural properties involve only the relative positions between items
as they appear in a line. The only things we care about in such structures are the
facts that, if n > 0, X[1] is the Ąrst node and X[n] is the last; and if 1 < k < n,
the kth node X[k] is preceded by X[k − 1] and followed by X[k + 1].

The operations we might want to perform on linear lists include, for example,
the following.

i) Gain access to the kth node of the list to examine and/or to change the
contents of its Ąelds.

2.2.1 STACKS, QUEUES, AND DEQUES 239

ii) Insert a new node just before or after the kth node.
iii) Delete the kth node.
iv) Combine two or more linear lists into a single list.
v) Split a linear list into two or more lists.
vi) Make a copy of a linear list.
vii) Determine the number of nodes in a list.
viii) Sort the nodes of the list into ascending order based on certain Ąelds of the

nodes.
ix) Search the list for the occurrence of a node with a particular value in some

Ąeld.

In operations (i), (ii), and (iii) the special cases k = 1 and k = n are of principal
importance, since the Ąrst and last items of a linear list may be easier to get at
than a general element is. We will not discuss operations (viii) and (ix) in this
chapter, since those topics are the subjects of Chapters 5 and 6, respectively.

A computer application rarely calls for all nine of these operations in their
full generality, so we Ąnd that there are many ways to represent linear lists
depending on the class of operations that are to be done most frequently. It
is difficult to design a single representation method for linear lists in which all
of these operations are efficient; for example, the ability to gain access to the
kth node of a long list for random k is comparatively hard to do if at the same
time we are inserting and deleting items in the middle of the list. Therefore we
distinguish between types of linear lists depending on the principal operations to
be performed, just as we have noted that computer memories are distinguished
by their intended applications.

Linear lists in which insertions, deletions, and accesses to values occur almost
always at the Ąrst or the last node are very frequently encountered, and we give
them special names:

A stack is a linear list for which all insertions and deletions (and usually all
accesses) are made at one end of the list.

A queue is a linear list for which all insertions are made at one end of the
list; all deletions (and usually all accesses) are made at the other end.

A deque (Şdouble-ended queueŤ) is a linear list for which all insertions and
deletions (and usually all accesses) are made at the ends of the list.

A deque is therefore more general than a stack or a queue; it has some properties
in common with a deck of cards, and it is pronounced the same way. We also
distinguish output-restricted or input-restricted deques, in which deletions or
insertions, respectively, are allowed to take place at only one end.

In some disciplines the word ŞqueueŤ has been used in a much broader sense,
to describe any kind of list that is subject to insertions and deletions; the special
cases identiĄed above are then called various Şqueuing disciplines.Ť Only the
restricted use of the term ŞqueueŤ is intended in this book, however, by analogy
with orderly queues of people waiting in line for service.

240 INFORMATION STRUCTURES 2.2.1

Fig. 1. A stack represented as a rail-
way switching network.

Output from stack Input to stack

Stack

Sometimes it helps to understand the mechanism of a stack in terms of an
analogy from the switching of railroad cars, as suggested by E. W. Dijkstra (see
Fig. 1). A corresponding picture for deques is shown in Fig. 2.

This track closed on input-restricted deque

Deque

This track closed on output-restricted deque

Input

To deque

Output

From deque

Fig. 2. A deque represented as a railway switching network.

With a stack we always remove the ŞyoungestŤ item currently in the list,
namely the one that has been inserted more recently than any other. With a
queue just the opposite is true: The ŞoldestŤ item is always removed; the nodes
leave the list in the same order as they entered it.

Many people who have independently realized the importance of stacks and
queues have given them other names: Stacks have been called push-down lists,
reversion storages, cellars, nesting stores, piles, last-in-Ąrst-out (ŞLIFOŤ) lists,
and even yo-yo lists. Queues are sometimes called circular stores or Ąrst-in-Ąrst-
out (ŞFIFOŤ) lists. The terms LIFO and FIFO have been used for many years
by accountants, as names of methods for pricing inventories. Still another term,
Şshelf,Ť has been applied to output-restricted deques, and input-restricted deques
have been called ŞscrollsŤ or Şrolls.Ť This multiplicity of names is interesting in
itself, since it is evidence for the importance of the concepts. The words stack
and queue are gradually becoming standard terminology; of all the other words
listed above, only Şpush-down listŤ is still reasonably common, particularly in
connection with automata theory.

Stacks arise quite frequently in practice. We might, for example, go through
a set of data and keep a list of exceptional conditions or things to do later; after
weŠre done with the original set, we can then do the rest of the processing by

2.2.1 STACKS, QUEUES, AND DEQUES 241

coming back to the list, removing entries until it becomes empty. (The Şsaddle
pointŤ problem, exercise 1.3.2Ű10, is an instance of this situation.) Either a stack
or a queue will be suitable for such a list, but a stack is generally more convenient.
We all have ŞstacksŤ in our minds when we are solving problems: One problem
leads to another and this leads to another; we stack up problems and subproblems
and remove them as they are solved. Similarly, the process of entering and
leaving subroutines during the execution of a computer program has a stack-like
behavior. Stacks are particularly useful for the processing of languages with a
nested structure, like programming languages, arithmetic expressions, and the
literary German ŞSchachtelsätze.Ť In general, stacks occur most frequently in
connection with explicitly or implicitly recursive algorithms, and we will discuss
this connection thoroughly in Chapter 8.

Top

Next to top

Third from top

Fourth from top

Bottom

In
se
rt

o
r
d
el
et
e

(a) Stack

Delete Insert

Front Second Third Rear

(b) Queue

(c) Deque

Leftmost
Second
from left

Second
from right Rightmost

Insert or
delete

Insert or
delete

Fig. 3. Three important classes of linear lists.

Special terminology is generally used when algorithms refer to these struc-
tures: We put an item onto the top of a stack, or take the top item off (see
Fig. 3a). The bottom of the stack is the least accessible item, and it will not be
removed until all other items have been deleted. (People often say that they push
an item down onto a stack, and pop the stack up when the top item is deleted.
This terminology comes from an analogy with the stacks of plates often found in
cafeterias. The brevity of the words ŞpushŤ and ŞpopŤ has its advantages, but
these terms falsely imply a motion of the whole list within computer memory.
Nothing is physically pushed down; items are added onto the top, as in haystacks
or stacks of boxes.) With queues, we speak of the front and the rear of the queue;
things enter at the rear and are removed when they ultimately reach the front po-
sition (see Fig. 3b). When referring to deques, we speak of the left and right ends
(Fig. 3c). The concepts of top, bottom, front, and rear are sometimes applied to

242 INFORMATION STRUCTURES 2.2.1

deques that are being used as stacks or queues, with no standard conventions as
to whether top, bottom, front, and rear should appear at the left or the right.

Thus we Ąnd it easy to use a rich variety of descriptive words from English in
our algorithms: Şup-downŤ terminology for stacks, Şwaiting in lineŤ terminology
for queues, and Şleft-rightŤ terminology for deques.

A little bit of additional notation has proved to be convenient for dealing
with stacks and queues: We write

A⇐ x (1)

(when A is a stack) to mean that the value x is inserted on top of stack A, or
(when A is a queue) to mean that x is inserted at the rear of the queue. Similarly,
the notation

x⇐ A (2)

is used to mean that the variable x is set equal to the value at the top of stack A
or at the front of queue A, and this value is deleted from A. Notation (2) is
meaningless when A is empty Ů that is, when A contains no values.

If A is a nonempty stack, we may write

top(A) (3)

to denote its top element.

EXERCISES

1. [06] An input-restricted deque is a linear list in which items may be inserted at
one end but removed from either end; clearly an input-restricted deque can operate
either as a stack or as a queue, if we consistently remove all items from one of the two
ends. Can an output-restricted deque also be operated either as a stack or as a queue?

x 2. [15] Imagine four railroad cars positioned on the input side of the track in Fig. 1,
numbered 1, 2, 3, and 4, from left to right. Suppose we perform the following sequence
of operations (which is compatible with the direction of the arrows in the diagram and
does not require cars to Şjump overŤ other cars): (i) move car 1 into the stack; (ii) move
car 2 into the stack; (iii) move car 2 into the output; (iv) move car 3 into the stack;
(v) move car 4 into the stack; (vi) move car 4 into the output; (vii) move car 3 into
the output; (viii) move car 1 into the output.

As a result of these operations the original order of the cars, 1234, has been
changed into 2431. It is the purpose of this exercise and the following exercises to
examine what permutations are obtainable in such a manner from stacks, queues, or
deques.

If there are six railroad cars numbered 123456, can they be permuted into the
order 325641? Can they be permuted into the order 154623? (In case it is possible,
show how to do it.)

3. [25] The operations (i) through (viii) in the previous exercise can be much more
concisely described by the code SSXSSXXX, where S stands for Şmove a car from the
input into the stack,Ť and X stands for Şmove a car from the stack into the output.Ť
Some sequences of SŠs and XŠs specify meaningless operations, since there may be no
cars available on the speciĄed track; for example, the sequence SXXSSXXS cannot be
carried out, since we assume that the stack is initially empty.

2.2.1 STACKS, QUEUES, AND DEQUES 243

Let us call a sequence of SŠs and XŠs admissible if it contains n SŠs and n XŠs, and
if it speciĄes no operations that cannot be performed. Formulate a rule by which it is
easy to distinguish between admissible and inadmissible sequences; show furthermore
that no two different admissible sequences give the same output permutation.

4. [M34] Find a simple formula for an, the number of permutations on n elements
that can be obtained with a stack like that in exercise 2.

x 5. [M28] Show that it is possible to obtain a permutation p1p2 . . . pn from 12 . . . n
using a stack if and only if there are no indices i < j < k such that pj < pk < pi.

6. [00] Consider the problem of exercise 2, with a queue substituted for a stack.
What permutations of 12 . . . n can be obtained with use of a queue?

x 7. [25] Consider the problem of exercise 2, with a deque substituted for a stack.
(a) Find a permutation of 1234 that can be obtained with an input-restricted deque,
but it cannot be obtained with an output-restricted deque. (b) Find a permutation
of 1234 that can be obtained with an output-restricted deque but not with an input-
restricted deque. [As a consequence of (a) and (b), there is deĄnitely a difference
between input-restricted and output-restricted deques.] (c) Find a permutation of 1234
that cannot be obtained with either an input-restricted or an output-restricted deque.

8. [22] Are there any permutations of 12 . . . n that cannot be obtained with the use
of a deque that is neither input- nor output-restricted?

9. [M20] Let bn be the number of permutations on n elements obtainable by the use
of an input-restricted deque. (Note that b4 = 22, as shown in exercise 7.) Show that
bn is also the number of permutations on n elements with an output-restricted deque.

10. [M25] (See exercise 3.) Let S, Q, and X denote respectively the operations of in-
serting an element at the left, inserting an element at the right, and emitting an element
from the left, of an output-restricted deque. For example, the sequence QQXSXSXX
will transform the input sequence 1234 into 1342. The sequence SXQSXSXX gives the
same transformation.

Find a way to deĄne the concept of an admissible sequence of the symbols S, Q,
and X, so that the following property holds: Every permutation of n elements that
is attainable with an output-restricted deque corresponds to precisely one admissible
sequence.

x 11. [M40] As a consequence of exercises 9 and 10, the number bn is the number of
admissible sequences of length 2n. Find a closed form for the generating function
n≥0 bnz

n.

12. [HM34] Compute the asymptotic values of the quantities an and bn in exercises
4 and 11.

13. [M48] How many permutations of n elements are obtainable with the use of a
general deque? [See Rosenstiehl and Tarjan, J. Algorithms 5 (1984), 389Ű390, for an
algorithm that decides in O(n) steps whether or not a given permutation is obtainable.]

x 14. [26] Suppose you are allowed to use only stacks as data structures. How can you
implement a queue efficiently with two stacks?

244 INFORMATION STRUCTURES 2.2.2

2.2.2. Sequential Allocation

The simplest and most natural way to keep a linear list inside a computer is to
put the list items in consecutive locations, one node after the other. Then we
will have

LOC(X[j + 1]) = LOC(X[j]) + c,

where c is the number of words per node. (Usually c = 1. When c > 1, it is
sometimes more convenient to split a single list into c ŞparallelŤ lists, so that
the kth word of node X[j] is stored a Ąxed distance from the location of the
Ąrst word of X[j], depending on k. We will continually assume, however, that
adjacent groups of c words form a single node.) In general,

LOC(X[j]) = L0 + cj, (1)

where L0 is a constant called the base address, the location of an artiĄcially
assumed node X[0].

This technique for representing a linear list is so obvious and well-known
that there seems to be no need to dwell on it at any length. But we will be
seeing many other Şmore sophisticatedŤ methods of representation later on in
this chapter, and it is a good idea to examine the simple case Ąrst to see just
how far we can go with it. It is important to understand the limitations as well
as the power of the use of sequential allocation.

Sequential allocation is quite convenient for dealing with a stack. We simply
have a variable T called the stack pointer. When the stack is empty, we let T = 0.
To place a new element Y on top of the stack, we set

T← T + 1; X[T]← Y. (2)

And when the stack is not empty, we can set Y equal to the top node and delete
that node by reversing the actions of (2):

Y← X[T]; T← T− 1. (3)

(Inside a computer it is usually most efficient to maintain the value cT instead
of T, because of (1). Such modiĄcations are easily made, so we will continue our
discussion as though c = 1.)

The representation of a queue or a more general deque is a little trickier. An
obvious solution is to keep two pointers, say F and R (for the front and rear of
the queue), with F = R = 0 when the queue is empty. Then inserting an element
at the rear of the queue would be

R← R + 1; X[R]← Y. (4)

Removing the front node (F points just below the front) would be

F← F + 1; Y← X[F]; if F = R, then set F← R← 0. (5)

But note what can happen: If R always stays ahead of F (so that there is
always at least one node in the queue) the table entries used are X[1], X[2],
. . . , X[1000], . . . , ad inĄnitum, and this is terribly wasteful of storage space.
The simple method of (4) and (5) should therefore be used only in the situation

2.2.2 SEQUENTIAL ALLOCATION 245

when F is known to catch up to R quite regularly Ů for example, if all deletions
come in spurts that empty the queue.

To circumvent the problem of the queue overrunning memory, we can set
aside M nodes X[1], . . . , X[M] arranged implicitly in a circle with X[1] following
X[M]. Then processes (4) and (5) above become

if R = M then R← 1, otherwise R← R + 1; X[R]← Y. (6)

if F = M then F← 1, otherwise F← F + 1; Y← X[F]. (7)

We have, in fact, already seen circular queuing action like this, when we looked
at input-output buffering in Section 1.4.4.

Our discussion so far has been very unrealistic, because we have tacitly
assumed that nothing could go wrong. When we deleted a node from a stack or
queue, we assumed that there was at least one node present. When we inserted
a node into a stack or queue, we assumed that there was room for it in memory.
But clearly the method of (6) and (7) allows at most M nodes in the entire queue,
and methods (2), (3), (4), (5) allow T and R to reach only a certain maximum
amount within any given computer program. The following speciĄcations show
how the actions should be rewritten for the common case where we do not assume
that these restrictions are automatically satisĄed:

X⇐ Y (insert into stack):

T← T + 1;
if T > M, then OVERFLOW;
X[T]← Y.

(2a)

Y⇐ X (delete from stack):

 if T = 0, then UNDERFLOW;
Y← X[T];
T← T− 1.

(3a)

X⇐ Y (insert into queue):

 if R = M, then R← 1, otherwise R← R + 1;
if R = F, then OVERFLOW;
X[R]← Y.

(6a)

Y⇐ X (delete from queue):

 if F = R, then UNDERFLOW;
if F = M, then F← 1, otherwise F← F + 1;
Y← X[F].

(7a)

Here we assume that X[1], . . . , X[M] is the total amount of space allowed for the
list; OVERFLOW and UNDERFLOW mean an excess or deĄciency of items. The initial
setting F = R = 0 for the queue pointers is no longer valid when we use (6a) and
(7a), because overĆow will not be detected when F = 0; we should start with
F = R = 1, say.

The reader is urged to work exercise 1, which discusses a nontrivial aspect
of this simple queuing mechanism.

The next question is, ŞWhat do we do when UNDERFLOW or OVERFLOW oc-
curs?Ť In the case of UNDERFLOW, we have tried to remove a nonexistent item;
this is usually a meaningful condition Ů not an error situation Ů that can be
used to govern the Ćow of a program. For example, we might want to delete
items repeatedly until UNDERFLOW occurs. An OVERFLOW situation, however, is

246 INFORMATION STRUCTURES 2.2.2

usually an error; it means that the table is full already, yet there is still more
information waiting to be put in. The usual policy in case of OVERFLOW is to
report reluctantly that the program cannot go on because its storage capacity
has been exceeded; then the program terminates.

Of course we hate to give up in an OVERFLOW situation when only one list
has gotten too large, while other lists of the same program may very well have
plenty of room remaining. In the discussion above we were primarily thinking of
a program with only one list. However, we frequently encounter programs that
involve several stacks, each of which has a dynamically varying size. In such a
situation we donŠt want to impose a maximum size on each stack, since the size
is usually unpredictable; and even if a maximum size has been determined for
each stack, we will rarely Ąnd all stacks simultaneously Ąlling their maximum
capacity.

When there are just two variable-size lists, they can coexist together very
nicely if we let the lists grow toward each other:

Beginning
of memory

Program and
fixed-size tables

Bottom Top

List 1

Available
space

BottomTop

List 2
Program and

fixed-size tables

End of
memory

Here list 1 expands to the right, and list 2 (stored in reverse order) expands to
the left. OVERFLOW will not occur unless the total size of both lists exhausts all
memory space. The lists may independently expand and contract so that the
effective maximum size of each one could be signiĄcantly more than half of the
available space. This layout of memory space is used very frequently.

We can easily convince ourselves, however, that there is no way to store three
or more variable-size sequential lists in memory so that (a) OVERFLOW will occur
only when the total size of all lists exceeds the total space, and (b) each list has
a Ąxed location for its ŞbottomŤ element. When there are, say, ten or more
variable-size lists Ů and this is not unusual Ů the storage allocation problem
becomes very signiĄcant. If we wish to satisfy condition (a), we must give up
condition (b); that is, we must allow the ŞbottomŤ elements of the lists to change
their positions. This means that the location L0 of Eq. (1) is not constant any
longer; no reference to the table may be made to an absolute memory address,
since all references must be relative to the base address L0. In the case of MIX,
the coding to bring the Ith one-word node into register A is changed from

LD1 I
LDA L0,1

to, for example,

LD1 I
LDA BASE(0:2)
STA *+1(0:2)
LDA *,1

(8)

where BASE contains L0 0 0 0 . Such relative addressing evidently
takes longer than Ąxed-base addressing, although it would be only slightly slower
if MIX had an Şindirect addressingŤ feature (see exercise 3).

2.2.2 SEQUENTIAL ALLOCATION 247

An important special case occurs when each of the variable-size lists is a
stack. Then, since only the top element of each stack is relevant at any time, we
can proceed almost as efficiently as before. Suppose that we have n stacks; the
insertion and deletion algorithms above become the following, if BASE[i] and
TOP[i] are link variables for the ith stack, and if each node is one word long:

Insertion: TOP[i]← TOP[i] + 1; if TOP[i] > BASE[i+ 1], then

OVERFLOW; otherwise set CONTENTS(TOP[i])← Y. (9)

Deletion: if TOP[i] = BASE[i], then UNDERFLOW; otherwise

set Y← CONTENTS(TOP[i]), TOP[i]← TOP[i]− 1. (10)

Here BASE[i+ 1] is the base location of the (i + 1)st stack. The condition
TOP[i] = BASE[i] means that stack i is empty.

In (9), OVERFLOW is no longer such a crisis as it was before; we can Şrepack
memory,Ť making room for the table that overĆowed by taking some away from
tables that arenŠt yet Ąlled. Several ways to do the repacking suggest themselves;
we will now consider some of them in detail, since they can be quite important
when linear lists are allocated sequentially. We will start by giving the simplest
of the methods, and will then consider some of the alternatives.

Assume that there are n stacks, and that the values BASE[i] and TOP[i]
are to be treated as in (9) and (10). These stacks are all supposed to share a
common memory area consisting of all locations L with L0 < L ≤ L∞. (Here L0

and L∞ are constants that specify the total number of words available for use.)
We might start out with all stacks empty, and

BASE[j] = TOP[j] = L0 for 1 ≤ j ≤ n. (11)

We also set BASE[n+ 1] = L∞ so that (9) will work properly for i = n.
When OVERFLOW occurs with respect to stack i, there are three possibilities:

a) We Ąnd the smallest k for which i < k ≤ n and TOP[k] < BASE[k + 1], if
any such k exist. Now move things up one notch:

Set CONTENTS(L + 1)← CONTENTS(L), for TOP[k] ≥ L > BASE[i+ 1].

(This must be done for decreasing, not increasing, values of L to avoid losing
information. It is possible that TOP[k] = BASE[i+ 1], in which case nothing
needs to be moved.) Finally we set BASE[j]← BASE[j] + 1 and TOP[j]←
TOP[j] + 1, for i < j ≤ k.

b) No k can be found as in (a), but we Ąnd the largest k for which 1 ≤ k < i
and TOP[k] < BASE[k + 1]. Now move things down one notch:

Set CONTENTS(L− 1)← CONTENTS(L), for BASE[k + 1] < L < TOP[i].

(This must be done for increasing values of L.) Then set BASE[j] ←
BASE[j]− 1 and TOP[j]← TOP[j]− 1, for k < j ≤ i.

c) We have TOP[k] = BASE[k + 1] for all k ̸= i. Then obviously we cannot
Ąnd room for the new stack entry, and we must give up.

248 INFORMATION STRUCTURES 2.2.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

B
A
S
E
[
1
]

T
O
P
[
1
]

B
A
S
E
[
2
]

T
O
P
[
2
]

B
A
S
E
[
3
]

T
O
P
[
3
]

B
A
S
E
[
4
]

T
O
P
[
4
]

B
A
S
E
[
5
]

Fig. 4. Example of memory conĄguration after several insertions and deletions.

Figure 4 illustrates the conĄguration of memory for the case n = 4, L0 = 0,
L∞ = 20, after the successive actions

I∗1 I∗1 I4 I∗2 D1 I∗3 I1 I∗1 I∗2 I4 D2 D1. (12)

(Here Ij and Dj refer to insertion and deletion in stack j, and an asterisk refers
to an occurrence of OVERFLOW, assuming that no space is initially allocated to
stacks 1, 2, and 3.)

It is clear that many of the Ąrst stack overĆows that occur with this method
could be eliminated if we chose our initial conditions wisely, instead of allocating
all space initially to the nth stack as suggested in (11). For example, if we expect
each stack to be of the same size, we can start out with

BASE[j] = TOP[j] =

j − 1
n

(L∞ − L0)

+ L0, for 1 ≤ j ≤ n. (13)

Operating experience with a particular program may suggest better starting
values; however, no matter how well the initial allocation is set up, it can save
at most a Ąxed number of overĆows, and the effect is noticeable only in the early
stages of a program run. (See exercise 17.)

Another possible way to improve the method above would be to make room
for more than one new entry each time memory is repacked. This idea has
been exploited by J. Garwick, who suggests a complete repacking of memory
when overĆow occurs, based on the change in size of each stack since the last
repacking. His algorithm uses an additional array, called OLDTOP[j], 1 ≤ j ≤ n,
which retains the value that TOP[j] had just after the previous allocation of
memory. Initially, the tables are set as before, with OLDTOP[j] = TOP[j]. The
algorithm proceeds as follows:

Algorithm G (Reallocate sequential tables). Assume that OVERFLOW has oc-
curred in stack i, according to (9). After Algorithm G has been performed,
either we will Ąnd the memory capacity exceeded or the memory will have been
rearranged so that the action CONTENTS(TOP[i])← Y may be done. (Notice that
TOP[i] has already been increased in (9) before Algorithm G takes place.)

G1. [Initialize.] Set SUM ← L∞ − L0, INC ← 0. Then do step G2 for 1 ≤ j ≤ n.
(The effect will be to make SUM equal to the total amount of memory space
left, and INC equal to the total amount of increases in table sizes since the
last allocation.) After this has been done, go on to step G3.

2.2.2 SEQUENTIAL ALLOCATION 249

G2. [Gather statistics.] Set SUM ← SUM − (TOP[j] − BASE[j]). If TOP[j] >
OLDTOP[j], set D[j] ← TOP[j] − OLDTOP[j] and INC ← INC + D[j];
otherwise set D[j]← 0.

G3. [Is memory full?] If SUM < 0, we cannot proceed.
G4. [Compute allocation factors.] Set α ← 0.1 × SUM/n, β ← 0.9 × SUM/INC.

(Here α and β are fractions, not integers, which are to be computed to
reasonable accuracy. The following step awards the available space to indi-
vidual lists as follows: Approximately 10 percent of the memory presently
available will be shared equally among the n lists, and the other 90 percent
will be divided proportionally to the amount of increase in table size since
the previous allocation.)

G5. [Compute new base addresses.] Set NEWBASE[1] ← BASE[1] and σ ← 0;
then for j = 2, 3, . . . , n set τ ← σ + α + D[j − 1]β, NEWBASE[j] ←
NEWBASE[j − 1] + TOP[j − 1]− BASE[j − 1] + ⌊τ⌋ − ⌊σ⌋, and σ ← τ .

G6. [Repack.] Set TOP[i] ← TOP[i] − 1. (This reĆects the true size of the ith
list, so that no attempt will be made to move information from beyond
the list boundary.) Perform Algorithm R below, and then reset TOP[i] ←
TOP[i] + 1. Finally set OLDTOP[j]← TOP[j] for 1 ≤ j ≤ n.

Perhaps the most interesting part of this whole algorithm is the general
repacking process, which we shall now describe. Repacking is not trivial, since
some portions of memory shift up and others shift down; it is obviously important
not to overwrite any of the good information in memory while it is being moved.

Algorithm R (Relocate sequential tables). For 1 ≤ j ≤ n, the information
speciĄed by BASE[j] and TOP[j] in accord with the conventions stated above
is moved to new positions speciĄed by NEWBASE[j], and the values of BASE[j]
and TOP[j] are suitably adjusted. This algorithm is based on the easily veriĄed
fact that the data to be moved downward cannot overlap with any data that is
to be moved upward, nor with any data that is supposed to stay put.
R1. [Initialize.] Set j ← 1.
R2. [Find start of shift.] (Now all lists from 1 to j that were to be moved down

have been shifted into the desired position.) Increase j in steps of 1 until
Ąnding either
a) NEWBASE[j] < BASE[j]: Go to R3; or
b) j > n: Go to R4.

R3. [Shift list down.] Set δ ← BASE[j]− NEWBASE[j]. Set CONTENTS(L− δ)←
CONTENTS(L), for L = BASE[j]+1, BASE[j]+2, . . . , TOP[j]. (It is possible
for BASE[j] to equal TOP[j], in which case no action is required.) Set
BASE[j]← NEWBASE[j], TOP[j]← TOP[j]− δ. Go back to R2.

R4. [Find start of shift.] (Now all lists from j to n that were to be moved up
have been shifted into the desired position.) Decrease j in steps of 1 until
Ąnding either
a) NEWBASE[j] > BASE[j]: Go to R5; or
b) j = 1: The algorithm terminates.

250 INFORMATION STRUCTURES 2.2.2

R5. [Shift list up.] Set δ ← NEWBASE[j] − BASE[j]. Set CONTENTS(L + δ) ←
CONTENTS(L), for L = TOP[j], TOP[j]−1, . . . , BASE[j]+1. (As in step R3,
no action may actually be needed here.) Set BASE[j] ← NEWBASE[j],
TOP[j]← TOP[j] + δ. Go back to R4.

Notice that stack 1 never needs to be moved. Therefore we should put the
largest stack Ąrst, if we know which one will be largest.

In Algorithms G and R we have purposely made it possible to have

OLDTOP[j] ≡ D[j] ≡ NEWBASE[j + 1]

for 1 ≤ j ≤ n; that is, these three tables can share common memory locations
since their values are never needed at conĆicting times.

We have described these repacking algorithms for stacks, but it is clear that
they can be adapted to any relatively addressed tables in which the current
information is contained between BASE[j] and TOP[j]. Other pointers (for
example, FRONT[j] and REAR[j]) could also be attached to the lists, making
them serve as a queue or deque. See exercise 8, which considers the case of a
queue in detail.

The mathematical analysis of dynamic storage-allocation algorithms like
those above is extremely difficult. Some interesting results appear in the exercises
below, although they only begin to scratch the surface as far as the general
behavior is concerned.

As an example of the theory that can be derived, suppose we consider the
case when the tables grow only by insertion; deletions and subsequent insertions
that cancel their effect are ignored. Let us assume further that each table is
expected to Ąll at the same rate. This situation can be modeled by imagining
a sequence of m insertion operations a1, a2, . . . , am, where each ai is an integer
between 1 and n (representing an insertion on top of stack ai). For example,
the sequence 1, 1, 2, 2, 1 means two insertions to stack 1, followed by two
to stack 2, followed by another onto stack 1. We can regard each of the nm

possible speciĄcations a1, a2, . . . , am as equally likely, and then we can ask for
the average number of times it is necessary to move a word from one location to
another during the repacking operations as the entire table is built. For the Ąrst
algorithm, starting with all available space given to the nth stack, this question
is analyzed in exercise 9. We Ąnd that the average number of move operations
required is

1
2

1− 1

n

m

2

. (14)

Thus, as we might expect, the number of moves is essentially proportional to the
square of the number of times the tables grow. The same is true if the individual
stacks arenŠt equally likely (see exercise 10).

The moral of the story seems to be that a very large number of moves will
be made if a reasonably large number of items is put into the tables. This
is the price we must pay for the ability to pack a large number of sequential
tables together tightly. No theory has been developed to analyze the average

2.2.2 SEQUENTIAL ALLOCATION 251

behavior of Algorithm G, and it is unlikely that any simple model will be able to
describe the characteristics of real-life tables in such an environment. However,
exercise 18 provides a worst-case guarantee that the running time will not be
too bad if the memory doesnŠt get too full.

Experience shows that when memory is only half loaded (that is, when the
available space equals half the total space), we need very little rearranging of the
tables with Algorithm G. The important thing is perhaps that the algorithm
behaves well in the half-full case and that it at least delivers the right answers
in the almost-full case.

But let us think about the almost-full case more carefully. When the tables
nearly Ąll memory, Algorithm R takes rather long to perform its job. And to
make matters worse, OVERFLOW is much more frequent just before the memory
space is used up. There are very few programs that will come close to Ąlling
memory without soon thereafter completely overĆowing it; and those that do
overĆow memory will probably waste enormous amounts of time in Algorithms G
and R just before memory is overrun. Unfortunately, undebugged programs will
frequently overĆow memory capacity. To avoid wasting all this time, a possible
suggestion would be to stop Algorithm G in step G3 if SUM is less than Smin,
where the latter is chosen by the programmer to prevent excessive repacking.
When there are many variable-size sequential tables, we should not expect to
make use of 100 percent of the memory space before storage is exceeded.

Further study of Algorithm G has been made by D. S. Wise and D. C.
Watson, BIT 16 (1976), 442Ű450. See also A. S. Fraenkel, Inf. Proc. Letters 8

(1979), 9Ű10, who suggests working with pairs of stacks that grow towards each
other.

EXERCISES

x 1. [15] In the queue operations given by (6a) and (7a), how many items can be in
the queue at one time without OVERFLOW occurring?

x 2. [22] Generalize the method of (6a) and (7a) so that it will apply to any deque with
fewer than M elements. In other words, give speciĄcations for the other two operations,
Şdelete from rearŤ and Şinsert at front.Ť

3. [21] Suppose that MIX is extended as follows: The I-Ąeld of each instruction is to
have the form 8I1 +I2, where 0 ≤ I1 < 8, 0 ≤ I2 < 8. In assembly language one writes
ŚOP ADDRESS,I1:I2Š or (as presently) ŚOP ADDRESS,I2Š if I1 = 0. The meaning is to
perform Ąrst the Şaddress modiĄcationŤ I1 on ADDRESS, then to perform the Şaddress
modiĄcationŤ I2 on the resulting address, and Ąnally to perform the OP with the new
address. The address modiĄcations are deĄned as follows:

0: M = A
1: M = A + rI1
2: M = A + rI2
. . .

6: M = A + rI6
7: M = resulting address deĄned from the ŚADDRESS,I1:I2Š Ąelds found in location

A. The case I1 = I2 = 7 in location A is not allowed. (The reason for
the latter restriction is discussed in exercise 5.)

252 INFORMATION STRUCTURES 2.2.2

Here A denotes the address before the operation, and M denotes the resulting address
after the address modiĄcation. In all cases the result is undeĄned if the value of M
does not Ąt in two bytes and a sign. The execution time is increased by one unit for
each Şindirect-addressingŤ (modiĄcation 7) operation performed.

As a nontrivial example, suppose that location 1000 contains ŚNOP 1000,1:7Š;
location 1001 contains ŚNOP 1000,2Š; and index registers 1 and 2 respectively contain
1 and 2. Then the command ŚLDA 1000,7:2Š is equivalent to ŚLDA 1004Š, because

1000,7:2 = (1000,1:7),2 = (1001,7),2 = (1000,2),2 = 1002,2 = 1004.

a) Using this indirect addressing feature (if necessary), show how to simplify the
coding on the right-hand side of (8) so that two instructions are saved per reference to
the table. How much faster is your code than (8)?

b) Suppose there are several tables whose base addresses are stored in locations
BASE + 1, BASE + 2, BASE + 3, . . . ; how can the indirect addressing feature be used to
bring the Ith element of the Jth table into register A in one instruction, assuming that
I is in rI1 and J is in rI2?

c) What is the effect of the instruction ŚENT4 X,7Š, assuming that the (3:3)-Ąeld
in location X is zero?

4. [25] Assume that MIX has been extended as in exercise 3. Show how to give a
single instruction (plus auxiliary constants) for each of the following actions:

a) To loop indeĄnitely because indirect addressing never terminates.
b) To bring into register A the value LINK(LINK(x)), where the value of link variable

x is stored in the (0:2) Ąeld of the location whose symbolic address is X, the value
of LINK(x) is stored in the (0:2) Ąeld of location x, etc., assuming that the (3:3)
Ąelds in these locations are zero.

c) To bring into register A the value LINK(LINK(LINK(x))), under assumptions like
those in (b).

d) To bring into register A the contents of location rI1 + rI2 + rI3 + rI4 + rI5 + rI6.
e) To quadruple the current value of rI6.

x 5. [35] The extension of MIX suggested in exercise 3 has an unfortunate restriction
that Ş7:7Ť is not allowed in an indirectly addressed location.

a) Give an example to indicate that, without this restriction, it would probably be
necessary for the MIX hardware to be capable of maintaining a long internal stack
of three-bit items. (This would be prohibitively expensive hardware, even for a
mythical computer like MIX.)

b) Explain why such a stack is not needed under the present restriction; in other
words, design an algorithm with which the hardware of a computer could perform
the desired address modiĄcations without much additional register capacity.

c) Give a milder restriction than that of exercise 3 on the use of 7:7 that alleviates the
difficulties of exercise 4(c), yet can be cheaply implemented in computer hardware.

6. [10] Starting with the memory conĄguration shown in Fig. 4, determine which of
the following sequences of operations causes overĆow or underĆow:

(a) I1; (b) I2; (c) I3; (d) I4I4I4I4I4; (e) D2D2I2I2I2.

7. [12] Step G4 of Algorithm G indicates a division by the quantity INC. Can INC

ever be zero at that point in the algorithm?

x 8. [26] Explain how to modify (9), (10), and the repacking algorithms for the case
that one or more of the lists is a queue being handled circularly as in (6a) and (7a).

2.2.2 SEQUENTIAL ALLOCATION 253

x 9. [M27] Using the mathematical model described near the end of the text, prove
that Eq. (14) is the expected number of moves. (Note that the sequence 1, 1, 4, 2, 3,
1, 2, 4, 2, 1 speciĄes 0 + 0 + 0 + 1 + 1 + 3 + 2 + 0 + 3 + 6 = 16 moves.)

10. [M28] Modify the mathematical model of exercise 9 so that some tables are
expected to be larger than others: Let pk be the probability that aj = k, for 1 ≤ j ≤ m,
1 ≤ k ≤ n. Thus p1 +p2 + · · ·+pn = 1; the previous exercise considered the special case
pk = 1/n for all k. Determine the expected number of moves, as in Eq. (14), for this
more general case. It is possible to rearrange the relative order of the n lists so that
the lists expected to be longer are put to the right (or to the left) of the lists that are
expected to be shorter; what relative order for the n lists will minimize the expected
number of moves, based on p1, p2, . . . , pn?

11. [M30] Generalize the argument of exercise 9 so that the Ąrst t insertions in any
stack cause no movement, while subsequent insertions are unaffected. Thus if t = 2,
the sequence in exercise 9 speciĄes 0+0+0+0+0+3+0+0+3+6 = 12 moves. What
is the average total number of moves under this assumption? [This is an approximation
to the behavior of the algorithm when each stack starts with t available spaces.]

12. [M28] The advantage of having two tables coexist in memory by growing towards
each other, rather than by having them kept in separate independently bounded areas,
may be quantitatively estimated (to a certain extent) as follows. Use the model of
exercise 9 with n = 2; for each of the 2m equally probable sequences a1, a2, . . . , am, let
there be k1 1s and k2 2s. (Here k1 and k2 are the respective sizes of the two tables
after the memory is full. We are able to run the algorithm with m = k1 + k2 locations
when the tables are adjacent, instead of 2 max(k1, k2) locations to get the same effect
with separate tables.)

What is the average value of max(k1, k2)?

13. [HM42] The value max(k1, k2) investigated in exercise 12 will be even greater if
larger Ćuctuations in the tables are introduced by allowing random deletions as well as
random insertions. Suppose we alter the model so that with probability p the sequence
value aj is interpreted as a deletion instead of an insertion; the process continues until
k1 +k2 (the total number of table locations in use) equals m. A deletion from an empty
list causes no effect.

For example, if m = 4 it can be shown that we get the following probability
distribution when the process stops:

(k1, k2) = (0, 4) (1, 3) (2, 2) (3, 1) (4, 0)

with probability
1

16−12p+4p2
,

1
4
,

6−6p+2p2

16−12p+4p2
,

1
4
,

1
16−12p+4p2

.

Thus as p increases, the difference between k1 and k2 tends to increase. It is not
difficult to show that in the limit as p approaches unity, the distribution of k1 becomes
essentially uniform, and the limiting expected value of max(k1, k2) is exactly 3

4
m +

1
4m

[m odd]. This behavior is quite different from that in the previous exercise (when
p = 0); however, it may not be extremely signiĄcant, since when p approaches unity,
the amount of time taken to terminate the process rapidly approaches inĄnity. The
problem posed in this exercise is to examine the dependence of max(k1, k2) on p and
m, and to determine asymptotic formulas for Ąxed p (like p = 1

3
) as m approaches

inĄnity. The case p = 1
2

is particularly interesting.

254 INFORMATION STRUCTURES 2.2.2

14. [HM43] Generalize the result of exercise 12 to arbitrary n ≥ 2, by showing that,
when n is Ąxed and m approaches inĄnity, the quantity

m!
nm

k1+k2+···+kn=m

k1,k2,...,kn≥0

max(k1, k2, . . . , kn)
k1! k2! . . . kn!

has the asymptotic form m/n+cn
√
m+O(1). Determine the constants c2, c3, c4, and c5.

15. [40] Using a Monte Carlo method, simulate the behavior of Algorithm G under
varying distributions of insertions and deletions. What do your experiments imply
about the efficiency of Algorithm G? Compare its performance with the algorithm
given earlier that shifts up and down one node at a time.

16. [20] The text illustrates how two stacks can be located so they grow towards each
other, thereby making efficient use of a common memory area. Can two queues, or a
stack and a queue, make use of a common memory area with the same efficiency?

17. [30] If σ is any sequence of insertions and deletions such as (12), let s0(σ) be the
number of stack overĆows that occur when the simple method of Fig. 4 is applied to σ
with initial conditions (11), and let s1(σ) be the corresponding number of overĆows
with respect to other initial conditions such as (13). Prove that s0(σ) ≤ s1(σ)+L∞−L0.

x 18. [M30] Show that the total running time for any sequence of m insertions and/or
deletions by Algorithms G and R is O(m+n

m
k=1 αk/(1−αk)), where αk is the fraction

of memory occupied on the most recent repacking previous to the kth operation; αk = 0
before the Ąrst repacking. (Therefore if the memory never gets more than, say, 90%
full, each operation takes at most O(n) units of time in an amortized sense, regardless
of the total memory size.) Assume that L∞ − L0 ≥ n2.

x 19. [16] (0-origin indexing.) Experienced programmers learn that it is generally wise
to denote the elements of a linear list by X[0], X[1], . . . , X[n− 1], instead of using the
more traditional notation X[1], X[2], . . . , X[n]. Then, for example, the base address
L0 in (1) points to the smallest cell of the array.

Revise the insertion and deletion methods (2a), (3a), (6a), and (7a) for stacks and
queues so that they conform to this convention. In other words, change them so that
the list elements will appear in the array X[0], X[1], . . . , X[M− 1], instead of X[1],
X[2], . . . , X[M].

2.2.3. Linked Allocation

Instead of keeping a linear list in sequential memory locations, we can make use
of a much more Ćexible scheme in which each node contains a link to the next
node of the list.

Sequential allocation: Linked allocation:

Address Contents Address Contents

L0 + c: Item 1 A: Item 1 B

L0 + 2c: Item 2 B: Item 2 C

L0 + 3c: Item 3 C: Item 3 D

L0 + 4c: Item 4 D: Item 4 E

L0 + 5c: Item 5 E: Item 5 Λ

2.2.3 LINKED ALLOCATION 255

Here A, B, C, D, and E are arbitrary locations in the memory, and Λ is the null
link (see Section 2.1). The program that uses this table in the case of sequential
allocation would have an additional variable or constant whose value indicates
that the table is Ąve items in length, or else this information would be speciĄed
by a sentinel code within item 5 or in the following location. A program for
linked allocation would have a link variable or link constant that points to A; all
the other items of the list can be found from address A.

Recall from Section 2.1 that links are often shown simply by arrows, since
the actual memory locations occupied are usually irrelevant. The linked table
above might therefore be shown as follows:

Item 1 Item 2 Item 3 Item 4 Item 5FIRST

(1)
Here FIRST is a link variable pointing to the Ąrst node of the list.

We can make several obvious comparisons between these two basic forms of
storage:

1) Linked allocation takes up additional memory space for the links. This
can be the dominating factor in some situations. However, we frequently Ąnd
that the information in a node does not take up a whole word anyway, so there
is already space for a link Ąeld present. Also, it is possible in many applications
to combine several items into one node so that there is only one link for several
items of information (see exercise 2.5Ű2). But even more importantly, there is
often an implicit gain in storage by the linked memory approach, since tables
can overlap, sharing common parts; and in many cases, sequential allocation will
not be as efficient as linked allocation unless a rather large number of additional
memory locations are left vacant anyway. For example, the discussion at the end
of the previous section explains why the systems described there are necessarily
inefficient when memory is densely loaded.

2) It is easy to delete an item from within a linked list. For example, to
delete item 3 we need only change the link associated with item 2. But with
sequential allocation such a deletion generally implies moving a large part of the
list up into different locations.

3) It is easy to insert an item into the midst of a list when the linked scheme
is being used. For example, to insert an item 21

2 into (1) we need to change only
two links:

Item 1 Item 2 Item 3 Item 4 Item 5

Item 2
1

2

FIRST

(2)
By comparison, this operation would be extremely time-consuming in a long
sequential table.

4) References to random parts of the list are much faster in the sequential
case. To gain access to the kth item in the list, when k is a variable, takes a Ąxed
time in the sequential case, but we need k iterations to march down to the right

256 INFORMATION STRUCTURES 2.2.3

place in the linked case. Thus the usefulness of linked memory is predicated on
the fact that in the large majority of applications we want to walk through lists
sequentially, not randomly; if items in the middle or at the bottom of the list
are needed, we try to keep an additional link variable or list of link variables
pointing to the proper places.

5) The linked scheme makes it easier to join two lists together, or to break
one apart into two that will grow independently.

6) The linked scheme lends itself immediately to more intricate structures
than simple linear lists. We can have a variable number of variable-size lists;
any node of the list may be a starting point for another list; the nodes may
simultaneously be linked together in several orders corresponding to different
lists; and so on.

7) Simple operations, like proceeding sequentially through a list, are slightly
faster for sequential lists on many computers. For MIX, the comparison is between
ŚINC1 cŠ and ŚLD1 0,1(LINK)Š, which is only one cycle different, but many
machines do not enjoy the property of being able to load an index register from
an indexed location. If the elements of a linked list belong to different pages in
a bulk memory, the memory accesses might take signiĄcantly longer.

Thus we see that the linking technique, which frees us from any constraints
imposed by the consecutive nature of computer memory, gives us a good deal
more efficiency in some operations, while we lose some capabilities in other cases.
It is usually clear which allocation technique will be most appropriate in a given
situation, and both methods are often used in different lists of the same program.

In the next few examples we will assume for convenience that a node has
one word and that it is broken into the two Ąelds INFO and LINK:

INFO LINK . (3)

The use of linked allocation generally implies the existence of some mecha-
nism for Ąnding empty space available for a new node, when we wish to insert
some newly created information onto a list. This is usually done by having a
special list called the list of available space. We will call it the AVAIL list (or the
AVAIL stack, since it is usually treated in a last-in-Ąrst-out manner). The set of
all nodes not currently in use is linked together in a list just like any other list;
the link variable AVAIL refers to the top element of this list. Thus, if we want
to set link variable X to the address of a new node, and to reserve that node for
future use, we can proceed as follows:

X← AVAIL, AVAIL← LINK(AVAIL). (4)

This effectively removes the top of the AVAIL stack and makes X point to the
node just removed. Operation (4) occurs so often that we have a special notation
for it: ŞX⇐ AVAILŤ will mean X is set to point to a new node.

When a node is deleted and no longer needed, process (4) can be reversed:

LINK(X)← AVAIL, AVAIL← X. (5)

2.2.3 LINKED ALLOCATION 257

This operation puts the node addressed by X back onto the list of raw material;
we denote (5) by ŞAVAIL⇐ XŤ.

Several important things have been omitted from this discussion of the AVAIL
stack. We did not say how to set it up at the beginning of a program; clearly
this can be done by (a) linking together all nodes that are to be used for linked
memory, (b) setting AVAIL to the address of the Ąrst of these nodes, and (c)
making the last node link to Λ. The set of all nodes that can be allocated is
called the storage pool.

A more important omission in our discussion was the test for overĆow: We
neglected to check in (4) if all available memory space has been taken. The
operation X⇐ AVAIL should really be deĄned as follows:

if AVAIL = Λ, then OVERFLOW;

otherwise X← AVAIL, AVAIL← LINK(AVAIL). (6)

The possibility of overĆow must always be considered. Here OVERFLOW generally
means that we terminate the program with regrets; or else we can go into a
Şgarbage collectionŤ routine that attempts to Ąnd more available space. Garbage
collection is discussed in Section 2.3.5.

There is another important technique for handling the AVAIL stack: We
often do not know in advance how much memory space should be used for the
storage pool. There may be a sequential table of variable size that wants to
coexist in memory with the linked tables; in such a case we do not want the
linked memory area to take any more space than is absolutely necessary. So
suppose that we wish to place the linked memory area in ascending locations
beginning with L0 and that this area is never to extend past the value of variable
SEQMIN (which represents the current lower bound of the sequential table). Then
we can proceed as follows, using a new variable POOLMAX:

a) Initially set AVAIL← Λ and POOLMAX← L0.
b) The operation X⇐ AVAIL becomes the following:

ŞIf AVAIL ̸= Λ, then X← AVAIL, AVAIL← LINK(AVAIL).
Otherwise set X← POOLMAX and POOLMAX← X + c, where c is the (7)

node size; OVERFLOW now occurs if POOLMAX > SEQMIN.Ť

c) When other parts of the program attempt to decrease the value of SEQMIN,
they should sound the OVERFLOW alarm if SEQMIN < POOLMAX.

d) The operation AVAIL⇐ X is unchanged from (5).

This idea actually represents little more than the previous method with a special
recovery procedure substituted for the OVERFLOW situation in (6). The net
effect is to keep the storage pool as small as possible. Many people like to
use this idea even when all lists occupy the storage pool area (so that SEQMIN is
constant), since it avoids the rather time-consuming operation of initially linking
all available cells together and it facilitates debugging. We could, of course, put
the sequential list on the bottom and the pool on the top, having POOLMIN and
SEQMAX instead of POOLMAX and SEQMIN.

258 INFORMATION STRUCTURES 2.2.3

Thus it is quite easy to maintain a pool of available
nodes, in such a way that free nodes can efficiently be
found and later returned. These methods give us a source
of raw material to use in linked tables. Our discussion
was predicated on the implicit assumption that all nodes
have a Ąxed size, c; the cases that arise when different
sizes of nodes are present are very important, but we
will defer that discussion until Section 2.5. Now we will
consider a few of the most common list operations in the
special case where stacks and queues are involved.

The simplest kind of linked list is a stack. Figure 5
shows a typical stack, with a pointer T to the top of the
stack. When the stack is empty, this pointer will have
the value Λ.

T

Fig. 5. A linked stack.

It is clear how to insert (Şpush downŤ) new information Y onto the top of
such a stack, using an auxiliary pointer variable P.

P⇐ AVAIL, INFO(P)← Y, LINK(P)← T, T← P. (8)

Conversely, to set Y equal to the information at the top of the stack and to Şpop
upŤ the stack:

If T = Λ, then UNDERFLOW;

otherwise set P← T, T← LINK(P), Y← INFO(P), AVAIL⇐ P. (9)

These operations should be compared with the analogous mechanisms for se-
quentially allocated stacks, (2a) and (3a) in Section 2.2.2. The reader should
study (8) and (9) carefully, since they are extremely important operations.

Before looking at the case of queues, let us see how the stack operations can
be expressed conveniently in programs for MIX. A program for insertion, with
P ≡ rI1, can be written as follows:

INFO EQU 0:3 DeĄnition of the INFO Ąeld
LINK EQU 4:5 DeĄnition of the LINK Ąeld

LD1 AVAIL P← AVAIL.
J1Z OVERFLOW Is AVAIL = Λ?
LDA 0,1(LINK)
STA AVAIL AVAIL← LINK(P).

P⇐ AVAIL

LDA Y
STA 0,1(INFO) INFO(P)← Y.
LDA T
STA 0,1(LINK) LINK(P)← T.
ST1 T T← P.

(10)

This takes 17 units of time, compared to 12 units for the comparable operation
with a sequential table (although OVERFLOW in the sequential case would in many
cases take considerably longer). In this program, as in others to follow in this
chapter, OVERFLOW denotes either an ending routine or a subroutine that Ąnds
more space and returns to location rJ− 2.

2.2.3 LINKED ALLOCATION 259

A program for deletion is equally simple:

LD1 T P← T.
J1Z UNDERFLOW Is T = Λ?
LDA 0,1(LINK)
STA T T← LINK(P).
LDA 0,1(INFO)
STA Y Y← INFO(P).
LDA AVAIL
STA 0,1(LINK) LINK(P)← AVAIL.

 AVAIL⇐ P

ST1 AVAIL AVAIL← P.

(11)

It is interesting to observe that each of these operations involves a cyclic
permutation of three links. For example, in the insertion operation let P be the
value of AVAIL before the insertion; if P ̸= Λ, we Ąnd that after the operation

the value of AVAIL has become the previous value of LINK(P),
the value of LINK(P) has become the previous value of T, and
the value of T has become the previous value of AVAIL.

So the insertion process (except for setting INFO(P)← Y) is the cyclic permuta-
tion

AVAIL

T LINK(P)

Similarly in the case of deletion, where P has the value of T before the operation
and we assume that P ̸= Λ, we have Y← INFO(P) and

AVAIL

T LINK(P)

The fact that the permutation is cyclic is not really a relevant issue, since any
permutation of three elements that moves every element is cyclic. The important
point is rather that precisely three links are permuted in these operations.

The insertion and deletion algorithms of (8) and (9) have been described
for stacks, but they apply much more generally to insertion and deletion in any
linear list. Insertion, for example, is performed just before the node pointed to
by link variable T. The insertion of item 2 1

2 in (2) above would be done by using
operation (8) with T = LINK(LINK(FIRST)).

Linked allocation applies in a particularly convenient way to queues. In this
case it is easy to see that the links should run from the front of the queue towards
the rear, so that when a node is removed from the front, the new front node is
directly speciĄed. We will make use of pointers F and R, to the front and rear:

F R (12)

Except for R, this diagram is abstractly identical to Fig. 5 on page 258.

260 INFORMATION STRUCTURES 2.2.3

Whenever the layout of a list is designed, it is important to specify all
conditions carefully, particularly for the case when the list is empty. One of
the most common programming errors connected with linked allocation is the
failure to handle empty lists properly; the other common error is to forget
about changing some of the links when a structure is being manipulated. In
order to avoid the Ąrst type of error, we should always examine the Şboundary
conditionsŤ carefully. To avoid making the second type of error, it is helpful to
draw Şbefore and afterŤ diagrams and to compare them, in order to see which
links must change.

LetŠs illustrate the remarks of the preceding paragraph by applying them to
the case of queues. First consider the insertion operation: If (12) is the situation
before insertion, the picture after insertion at the rear of the queue should be

Y

F

AVAIL ⇒

R

(13)

(The notation used here implies that a new node has been obtained from the
AVAIL list.) Comparing (12) and (13) shows us how to proceed when inserting
the information Y at the rear of the queue:

P⇐ AVAIL, INFO(P)← Y, LINK(P)← Λ, LINK(R)← P, R← P. (14)

Let us now consider the ŞboundaryŤ situation when the queue is empty: In
this case the situation before insertion is yet to be determined, and the situation
ŞafterŤ is

YF R

⇑

AVAIL

(15)

It is desirable to have operations (14) apply in this case also, even if insertion
into an empty queue means that we must change both F and R, not only R.
We Ąnd that (14) will work properly if R = LOC(F) when the queue is empty,
assuming that F ≡ LINK(LOC(F)); the value of variable F must be stored in the
LINK Ąeld of its location if this idea is to work. In order to make the testing for
an empty queue as efficient as possible, we will let F = Λ in this case. Our policy
is therefore that

an empty queue is represented by F = Λ and R = LOC(F).

If the operations (14) are applied under these circumstances, we obtain (15).
The deletion operation for queues is derived in a similar fashion. If (12) is

the situation before deletion, the situation afterwards is

F R

⇓

AVAIL

(16)

For the boundary conditions we must make sure that the deletion operation
works when the queue is empty either before or after the operation. These

2.2.3 LINKED ALLOCATION 261

considerations lead us to the following way to do queue deletion in general:

If F = Λ, then UNDERFLOW;
otherwise set P← F, F← LINK(P), Y← INFO(P), AVAIL⇐ P, (17)

and if F = Λ, then set R← LOC(F).

Notice that R must be changed when the queue becomes empty; this is precisely
the type of Şboundary conditionŤ we should always be watching for.

These suggestions are not the only way to represent queues in a linearly
linked fashion; exercise 30 describes a somewhat more natural alternative, and
we will give other methods later in this chapter. Indeed, none of the operations
above are meant to be prescribed as the only way to do something; they are
intended as examples of the basic means of operating with linked lists. The
reader who has had only a little previous experience with such techniques will
Ąnd it helpful to reread the present section up to this point before going on.

So far in this chapter we have discussed how to perform certain operations
on tables, but our discussions have always been Şabstract,Ť in the sense that
we never exhibited actual programs in which the particular techniques were
useful. People arenŠt generally motivated to study abstractions of a problem until
theyŠve seen enough special instances of the problem to arouse their interest. The
operations discussed so far Ů manipulations of variable-size lists of information
by insertion and deletion, and the use of tables as stacks or queues Ů are of such
wide application, it is hoped that the reader will have encountered them often
enough already to grant their importance. But now we will leave the realm of
the abstract as we begin to study a series of signiĄcant practical examples of the
techniques of this chapter.

Our Ąrst example is a problem called topological sorting, which is an impor-
tant process needed in connection with network problems, with so-called PERT
charts, and even with linguistics; in fact, it is of potential use whenever we have
a problem involving a partial ordering. A partial ordering of a set S is a relation
between the objects of S, which we may denote by the symbol Ş⪯Ť, satisfying
the following properties for any objects x, y, and z (not necessarily distinct)
in S:

i) If x ⪯ y and y ⪯ z, then x ⪯ z. (Transitivity.)

ii) If x ⪯ y and y ⪯ x, then x = y. (Antisymmetry.)

iii) x ⪯ x. (ReĆexivity.)

The notation x ⪯ y may be read Şx precedes or equals y.Ť If x ⪯ y and x ̸= y,
we write x ≺ y and say Şx precedes y.Ť It is easy to see from (i), (ii), and (iii)
that we always have

i′) If x ≺ y and y ≺ z, then x ≺ z. (Transitivity.)

ii′) If x ≺ y, then y ̸≺ x. (Asymmetry.)

iii′) x ̸≺ x. (IrreĆexivity.)

262 INFORMATION STRUCTURES 2.2.3

The relation denoted by y ̸≺ x means Şy does not precede x.Ť If we start with
a relation ≺ satisfying properties (i′), (ii′), and (iii′), we can reverse the process
above and deĄne x ⪯ y if x ≺ y or x = y; then properties (i), (ii), and (iii) are
true. Therefore we may regard either properties (i), (ii), (iii) or properties (i′),
(ii′), (iii′) as the deĄnition of partial order. Notice that property (ii′) is actually
a consequence of (i′) and (iii′), although (ii) does not follow from (i) and (iii).

Partial orderings occur quite frequently in everyday life as well as in math-
ematics. As examples from mathematics we can mention the relation x ≤ y
between real numbers x and y; the relation x ⊆ y between sets of objects;
the relation x\y (x divides y) between positive integers. In the case of PERT
networks, S is a set of jobs that must be done, and the relation Şx ≺ yŤ means
Şx must be done before y.Ť

Fig. 6. A partial ordering.

1

2

3

4

5

6 7

8

9

We will naturally assume that S is a Ąnite set, since we want to work with S
inside a computer. A partial ordering on a Ąnite set can always be illustrated
by drawing a diagram such as Fig. 6, in which the objects are represented by
small boxes and the relation is represented by arrows between these boxes; x ≺ y
means there is a path from the box labeled x to box y that follows the direction
of the arrows. Property (ii) of partial ordering means there are no closed loops
(no paths that close on themselves) in the diagram. If an arrow were drawn from
4 to 1 in Fig. 6, we would no longer have a partial ordering.

The problem of topological sorting is to embed the partial order in a linear
order ; that is, to arrange the objects into a linear sequence a1a2 . . . an such that
whenever aj ≺ ak, we have j < k. Graphically, this means that the boxes are to
be rearranged into a line so that all arrows go towards the right (see Fig. 7). It
is not immediately obvious that such a rearrangement is possible in every case,
although such a rearrangement certainly could not be done if any loops were
present. Therefore the algorithm we will give is interesting not only because it
does a useful operation, but also because it proves that this operation is possible
for every partial ordering.

As an example of topological sorting, imagine a large glossary containing
deĄnitions of technical terms. We can write w2 ≺ w1 if the deĄnition of word w1

2.2.3 LINKED ALLOCATION 263

1 23 4 5 67 89

Fig. 7. The ordering relation of Fig. 6 after topological sorting.

depends directly or indirectly on that of word w2. This relation is a partial
ordering provided that there are no ŞcircularŤ deĄnitions. The problem of
topological sorting in this case is to Ąnd a way to arrange the words in the
glossary so that no term is used before it has been deĄned. Analogous problems
arise in writing programs to process the declarations in certain assembly and
compiler languages; they also arise in writing a userŠs manual describing a
computer language or in writing textbooks about information structures.

There is a very simple way to do topological sorting: We start by taking an
object that is not preceded by any other object in the ordering. This object may
be placed Ąrst in the output. Now we remove this object from the set S; the
resulting set is again partially ordered, and the process can be repeated until the
whole set has been sorted. For example, in Fig. 6 we could start by removing 1
or 9; after 1 has been removed, 3 can be taken, and so on. The only way in which
this algorithm could fail would be if there were a nonempty partially ordered set
in which every element was preceded by another; for in such a case the algorithm
would Ąnd nothing to do. But if every element is preceded by another, we could
construct an arbitrarily long sequence b1, b2, b3, . . . in which bj+1 ≺ bj . Since S
is Ąnite, we must have bj = bk for some j < k; but j < k implies that bk ⪯ bj+1,
hence bj = bk contradicts (ii).

In order to implement this process efficiently by computer, we need to
be ready to perform the actions described above, namely to locate objects
that are not preceded by any others, and to remove them from the set. Our
implementation is also inĆuenced by the desired input and output characteristics.
The most general program would accept alphabetic names for the objects and
would allow gigantic sets of objects to be sorted Ů more than could possibly Ąt
in the computer memory at once. Such complications would obscure the main
points we are trying to make here, however; the handling of alphabetic data can
be done efficiently by using the methods of Chapter 6, and the handling of large
networks is left as an interesting project for the reader.

Therefore we will assume that the objects to be sorted are numbered from 1
to n in any order. The input of the program will be on tape unit 1: Each tape
record contains 50 pairs of numbers, where the pair (j, k) means that object j
precedes object k. The Ąrst pair, however, is (0, n), where n is the number of
objects. The pair (0, 0) terminates the input. We shall assume that n plus the
number of relation pairs will Ąt comfortably in memory; and we shall assume
that it is not necessary to check the input for validity. The output is to be the
numbers of the objects in sorted order, followed by the number 0, on tape unit 2.

264 INFORMATION STRUCTURES 2.2.3

As an example of the input, we might have the relations

9≺ 2, 3≺ 7, 7≺ 5, 5≺ 8, 8≺ 6, 4≺ 6, 1≺ 3, 7≺ 4, 9≺ 5, 2≺ 8. (18)

It is not necessary to give any more relations than are needed to characterize
the desired partial ordering. Thus, additional relations like 9 ≺ 8 (which can
be deduced from 9 ≺ 5 and 5 ≺ 8) may be omitted from or added to the input
without harm. In general, it is necessary to give only the relations corresponding
to arrows on a diagram such as Fig. 6.

The algorithm that follows uses a sequential table X[1], X[2], . . . , X[n],
and each node X[k] has the form

+ 0 COUNT[k] TOP[k] .

Here COUNT[k] is the number of direct predecessors of object k (the number of
relations j ≺ k that have appeared in the input), and TOP[k] is a link to the
beginning of the list of direct successors of object k. The latter list contains
entries in the format

+ 0 SUC NEXT ,

where SUC is a direct successor of k and NEXT is the next item of the list. As an
example of these conventions, Fig. 8 shows the schematic contents of memory
corresponding to the input (18).

0 1 1 1 2 2 1 2 0

3 8 7 6 8 4 6 5

5 2

COUNT[k]

TOP[k]

k

SUC

NEXT

SUC

NEXT

1 2 3 4 5 6 7 8 9

Fig. 8. Computer representation of Fig. 6 corresponding to the relations (18).

Using this memory layout, it is not difficult to work out the algorithm.
We want to output the nodes whose COUNT Ąeld is zero, then to decrease the
COUNT Ąelds of all successors of those nodes by one. The trick is to avoid doing
any ŞsearchingŤ for nodes whose COUNT Ąeld is zero, and this can be done by
maintaining a queue containing those nodes. The links for this queue are kept
in the COUNT Ąeld, which by now has served its previous purpose; for clarity in
the algorithm below, we use the notation QLINK[k] to stand for COUNT[k] when
that Ąeld is no longer being used to keep a count.

2.2.3 LINKED ALLOCATION 265

Algorithm T (Topological sort). This algorithm inputs a sequence of relations
j ≺ k, indicating that object j precedes object k in a certain partial ordering,
assuming that 1 ≤ j, k ≤ n. The output is the set of n objects embed-
ded in a linear order. The internal tables used are: QLINK[0], COUNT[1] =
QLINK[1], COUNT[2] = QLINK[2], . . . , COUNT[n] = QLINK[n]; TOP[1], TOP[2],
. . . , TOP[n]; a storage pool with one node for each input relation and with SUC

and NEXT Ąelds as shown above; P, a link variable used to refer to the nodes in
the storage pool; F and R, integer-valued variables used to refer to the front and
rear of a queue whose links are in the QLINK table; and N, a variable that counts
how many objects have yet to be output.

T1. [Initialize.] Input the value of n. Set COUNT[k] ← 0 and TOP[k] ← Λ for
1 ≤ k ≤ n. Set N← n.

T2. [Next relation.] Get the next relation Şj ≺ kŤ from the input; if the input
has been exhausted, however, go to T4.

T3. [Record the relation.] Increase COUNT[k] by one. Set

P⇐ AVAIL, SUC(P)← k, NEXT(P)← TOP[j], TOP[j]← P.

This is operation (8).

Go back to T2.

T4. [Scan for zeros.] (At this point we have completed the input phase; the input
(18) would now have been transformed into the computer representation
shown in Fig. 8. The next job is to initialize the queue of output, which
is linked together in the QLINK Ąeld.) Set R ← 0 and QLINK[0] ← 0. For
1 ≤ k ≤ n examine COUNT[k], and if it is zero, set QLINK[R] ← k and
R ← k. After this has been done for all k, set F ← QLINK[0] (which will
contain the Ąrst value k encountered for which COUNT[k] was zero).

T5. [Output front of queue.] Output the value of F. If F = 0, go to T8; otherwise,
set N ← N − 1, and set P ← TOP[F]. (Since the QLINK and COUNT tables
overlap, we have QLINK[R] = 0; therefore the condition F = 0 occurs when
the queue is empty.)

T6. [Erase relations.] If P = Λ, go to T7. Otherwise decrease COUNT[SUC(P)]

by one, and if it has thereby gone down to zero, set QLINK[R] ← SUC(P)

and R← SUC(P). Set P← NEXT(P) and repeat this step. (We are removing
all relations of the form ŞF ≺ kŤ for some k from the system, and putting
new nodes into the queue when all their predecessors have been output.)

T7. [Remove from queue.] Set F← QLINK[F] and go back to T5.

T8. [End of process.] The algorithm terminates. If N = 0, we have output all of
the object numbers in the desired Ştopological order,Ť followed by a zero.
Otherwise the N object numbers not yet output contain a loop, in violation
of the hypothesis of partial order. (See exercise 23 for an algorithm that
prints out the contents of one such loop.)

The reader will Ąnd it helpful to try this algorithm by hand on the input
(18). Algorithm T shows a nice interplay between sequential memory and linked

266 INFORMATION STRUCTURES 2.2.3

memory techniques. Sequential memory is used for the main table X[1], . . . ,
X[n], which contains the COUNT[k] and TOP[k] entries, because we want to
make references to ŞrandomŤ parts of this table in step T3. (If the input were
alphabetic, however, another type of table would be used for speedier search, as
in Chapter 6.) Linked memory is used for the tables of Şimmediate successors,Ť
since those table entries have no particular order in the input. The queue of
nodes waiting to be output is kept in the midst of the sequential table by linking
the nodes together in output order. This linking is done by table index instead
of by address; in other words, when the front of the queue is X[k], we have
F = k instead of F = LOC(X[k]). The queue operations used in steps T4, T6,
and T7 are not identical to those in (14) and (17), since we are taking advantage
of special properties of the queue in this system; no nodes need to be created or
returned to available space during this part of the algorithm.

The coding of Algorithm T in MIX assembly language has a few additional
points of interest. Since no deletion from tables is made in the algorithm (because
no storage must be freed for later use), the operation P ⇐ AVAIL can be done
in an extremely simple way, as shown in lines 19 and 32 below; we need not
keep any linked pool of memory, and we can choose new nodes consecutively.
The program includes complete input and output with magnetic tape, according
to the conventions mentioned above, but buffering is omitted for the sake of
simplicity. The reader should not Ąnd it very difficult to follow the details of
the coding in this program, since it corresponds directly to Algorithm T but
with slight changes for efficiency. The efficient use of index registers, which is an
important aspect of linked memory processing, is illustrated here.

Program T (Topological sort). In this program, the following equivalences
should be noted: rI6 ≡ N, rI5 ≡ buffer pointer, rI4 ≡ k, rI3 ≡ j and R, rI2 ≡
AVAIL and P, rI1 ≡ F, TOP[j] ≡ X+ j(4:5), COUNT[k] ≡ QLINK[k] ≡ X+k(2:3).

01 * BUFFER AREA AND FIELD DEFINITIONS

02 COUNT EQU 2:3 DeĄnition of symbolic
03 QLINK EQU 2:3 names of Ąelds
04 TOP EQU 4:5

05 SUC EQU 2:3

06 NEXT EQU 4:5

07 TAPEIN EQU 1 Input is on tape unit 1
08 TAPEOUT EQU 2 Output is on tape unit 2
09 BUFFER ORIG *+100 Tape buffer area
10 CON -1 Sentinel at end of buffer
11 * INPUT PHASE

12 TOPSORT IN BUFFER(TAPEIN) 1 T1. Initialize. Read in the Ąrst
13 JBUS *(TAPEIN) tape block; wait for completion.
14 1H LD6 BUFFER+1 1 N← n.
15 ENT4 0,6 1
16 STZ X,4 n+ 1 Set COUNT[k]← 0 and TOP[k]← Λ,
17 DEC4 1 n+ 1 for 0 ≤ k ≤ n.
18 J4NN *-2 n+ 1 (Anticipate QLINK[0]← 0 in step T4.)
19 ENT2 X,6 1 Available storage starts after X[n].

2.2.3 LINKED ALLOCATION 267

No more

Empty No more

T1. Initialize

T2. Next relation
T3. Record
the relation

T4. Scan
for zeros

T5. Output front
of queue

T6. Erase
relations

T7. Remove
from queue

T8. End of
process

Fig. 9. Topological sorting.

20 ENT5 BUFFER+2 1 Prepare to read the Ąrst pair (j, k).
21 2H LD3 0,5 m+ b T2. Next relation.
22 J3P 3F m+ b Is j > 0?
23 J3Z 4F b Is input exhausted?
24 IN BUFFER(TAPEIN) b− 1 Sentinel sensed; read another
25 JBUS *(TAPEIN) tape block, wait for completion.
26 ENT5 BUFFER b− 1 Reset the buffer pointer.
27 JMP 2B b− 1
28 3H LD4 1,5 m T3. Record the relation.
29 LDA X,4(COUNT) m COUNT[k]
30 INCA 1 m +1
31 STA X,4(COUNT) m → COUNT[k].
32 INC2 1 m AVAIL← AVAIL + 1.
33 LDA X,3(TOP) m TOP[j]
34 STA 0,2(NEXT) m → NEXT(P).
35 ST4 0,2(SUC) m k → SUC(P).
36 ST2 X,3(TOP) m P→ TOP[j].
37 INC5 2 m Increase buffer pointer.
38 JMP 2B m
39 4H IOC 0(TAPEIN) 1 Rewind the input tape.
40 ENT4 0,6 1 T4. Scan for zeros. k ← n.
41 ENT5 -100 1 Reset buffer pointer for output.
42 ENT3 0 1 R← 0.
43 4H LDA X,4(COUNT) n Examine COUNT[k].
44 JAP *+3 n Is it nonzero?
45 ST4 X,3(QLINK) a QLINK[R]← k.
46 ENT3 0,4 a R← k.
47 DEC4 1 n
48 J4P 4B n n ≥ k ≥ 1.

268 INFORMATION STRUCTURES 2.2.3

49 * SORTING PHASE

50 LD1 X(QLINK) 1 F← QLINK[0].
51 5H JBUS *(TAPEOUT) T5. Output front of queue.
52 ST1 BUFFER+100,5 n+ 1 Store F in buffer area.
53 J1Z 8F n+ 1 Is F zero?
54 INC5 1 n Advance buffer pointer.
55 J5N *+3 n Test if buffer is full.
56 OUT BUFFER(TAPEOUT) c− 1 If so, output a tape block.
57 ENT5 -100 c− 1 Reset the buffer pointer.
58 DEC6 1 n N← N− 1.
59 LD2 X,1(TOP) n P← TOP[F].
60 J2Z 7F n T6. Erase relations.
61 6H LD4 0,2(SUC) m rI4← SUC(P).
62 LDA X,4(COUNT) m COUNT[rI4]
63 DECA 1 m −1
64 STA X,4(COUNT) m → COUNT[rI4].
65 JAP *+3 m Has zero been reached?
66 ST4 X,3(QLINK) n− a If so, set QLINK[R]← rI4.
67 ENT3 0,4 n− a R← rI4.
68 LD2 0,2(NEXT) m P← NEXT(P).
69 J2P 6B m If P ̸= Λ, repeat.
70 7H LD1 X,1(QLINK) n T7. Remove from queue.
71 JMP 5B n F← QLINK[F], go to T5.
72 8H OUT BUFFER(TAPEOUT) 1 T8. End of process.
73 IOC 0(TAPEOUT) 1 Output last block and rewind.
74 HLT 0,6 1 Stop, displaying N on console.
75 X END TOPSORT Beginning of table area

The analysis of Algorithm T is quite simple with the aid of KirchhoffŠs law;
the execution time has the approximate form c1m+ c2n, where m is the number
of input relations, n is the number of objects, and c1 and c2 are constants. It
is hard to imagine a faster algorithm for this problem! The exact quantities in
the analysis are given with Program T above, where a = number of objects with
no predecessor, b = number of tape records in input = ⌈(m + 2)/50⌉, and c =
number of tape records in output = ⌈(n + 1)/100⌉. Exclusive of input-output
operations, the total running time in this case is only (32m+24n+7b+2c+16)u.

A topological sorting technique similar to Algorithm T (but without the
important feature of the queue links) was Ąrst published by A. B. Kahn, CACM 5

(1962), 558Ű562. The fact that topological sorting of a partial ordering is always
possible was Ąrst proved in print by E. Szpilrajn, Fundamenta Mathematica 16

(1930), 386Ű389; he proved it for inĄnite sets as well as Ąnite sets, and mentioned
that the result was already known to several of his colleagues.

In spite of the fact that Algorithm T is so efficient, we will study an even
better algorithm for topological sorting in Section 7.4.1.

EXERCISES

x 1. [10] Operation (9) for popping up a stack mentions the possibility of UNDERFLOW;
why doesnŠt operation (8), pushing down a stack, mention the possibility of OVERFLOW?

2.2.3 LINKED ALLOCATION 269

2. [22] Write a Şgeneral purposeŤ MIX subroutine to do the insertion operation, (10).
This subroutine should have the following speciĄcations (as in Section 1.4.1):

Calling sequence: JMP INSERT Jump to subroutine.
NOP T Location of pointer variable

Entry conditions: rA = information to be put into the INFO Ąeld of a new node.
Exit conditions: The stack whose pointer is the link variable T has the new node on

top; rI1 = T; rI2, rI3 are altered.
3. [22] Write a Şgeneral purposeŤ MIX subroutine to do the deletion operation, (11).

This subroutine should have the following speciĄcations:

Calling sequence: JMP DELETE Jump to subroutine.
NOP T Location of pointer variable
JMP UNDERFLOW First exit, if UNDERFLOW sensed

Entry conditions: None
Exit conditions: If the stack whose pointer is the link variable T is empty, the Ąrst

exit is taken; otherwise the top node of that stack is deleted, and exit
is made to the third location following ŚJMP DELETEŠ. In the latter
case, rI1 = T and rA is the contents of the INFO Ąeld of the deleted
node. In either case, rI2 and rI3 are used by this subroutine.

4. [22] The program in (10) is based on the operation P ⇐ AVAIL, as given in
(6). Show how to write an OVERFLOW subroutine so that, without any change in the
coding (10), the operation P⇐ AVAIL makes use of SEQMIN, as given by (7). For general-
purpose use, your subroutine should not change the contents of any registers, except
rJ and possibly the comparison indicator. It should exit to location rJ− 2, instead of
the usual rJ.

x 5. [24] Operations (14) and (17) give the effect of a queue; show how to deĄne the
further operation Şinsert at frontŤ so as to obtain all the actions of an output-restricted
deque. How could the operation Şdelete from rearŤ be deĄned (so that we would have
a general deque)?

6. [21] In operation (14) we set LINK(P) ← Λ, while the very next insertion at the
rear of the queue will change the value of this same link Ąeld. Show how the setting of
LINK(P) in (14) could be avoided if we make a change to the testing of ŞF = ΛŤ in (17).

x 7. [23] Design an algorithm to ŞinvertŤ a linked linear list such as (1), that is, to
change its links so that the items appear in the opposite order. [If, for example, the
list (1) were inverted, we would have FIRST linking to the node containing item 5; that
node would link to the one containing item 4; etc.] Assume that the nodes have the
form (3).

8. [24] Write a MIX program for the problem of exercise 7, attempting to design your
program to operate as fast as possible.

9. [20] Which of the following relations is a partial ordering on the speciĄed set S?
[Note: If the relation Şx ≺ yŤ is deĄned below, the intent is to deĄne the relation
Şx ⪯ y ≡ (x ≺ y or x = y),Ť and then to determine whether ⪯ is a partial ordering.]
(a) S = all rational numbers, x ≺ y means x > y. (b) S = all people, x ≺ y means
x is an ancestor of y. (c) S = all integers, x ⪯ y means x is a multiple of y (that is,
xmod y = 0). (d) S = all the mathematical results proved in this book, x ≺ y means
the proof of y depends upon the truth of x. (e) S = all positive integers, x ⪯ y means
x+ y is even. (f) S = a set of subroutines, x ≺ y means Şx calls y,Ť that is, y may be
in operation while x is in operation, with recursion not allowed.

270 INFORMATION STRUCTURES 2.2.3

10. [M21] Given that Ş⊂Ť is a relation that satisĄes properties (i) and (ii) of a partial
ordering, prove that the relation Ş⪯Ť, deĄned by the rule Şx ⪯ y if and only if x = y
or x ⊂ y,Ť satisĄes all three properties of a partial ordering.

x 11. [24] The result of topological sorting is not always completely determined, since
there may be several ways to arrange the nodes and to satisfy the conditions of
topological order. Find all possible ways to arrange the nodes of Fig. 6 into topological
order.

12. [M20] There are 2n subsets of a set of n elements, and these subsets are partially
ordered by the set-inclusion relation. Give two interesting ways to arrange these subsets
in topological order.

13. [M48] How many ways are there to arrange the 2n subsets described in exercise 12
into topological order? (Give the answer as a function of n.)

14. [M21] A linear ordering of a set S, also called a total ordering, is a partial ordering
that satisĄes the additional ŞcomparabilityŤ condition

(iv) For any two objects x, y in S, either x ⪯ y or y ⪯ x.

Prove directly from the deĄnitions given that a topological sort can result in only one
possible output if and only if the relation ⪯ is a linear ordering. (You may assume that
the set S is Ąnite.)

15. [M25] Show that for any partial ordering on a Ąnite set S there is a unique set
of irredundant relations that characterizes this ordering, as in (18) and Fig. 6. Is the
same fact true also when S is an inĄnite set?

16. [M22] Given any partial ordering on a set S = {x1, . . . , xn}, we can construct its
incidence matrix (aij), where aij = 1 if xi ⪯ xj , and aij = 0 otherwise. Show that
there is a way to permute the rows and columns of this matrix so that all entries below
the diagonal are zero.

x 17. [21] What output does Algorithm T produce if it is presented with the input (18)?

18. [20] What, if anything, is the signiĄcance of the values of QLINK[0], QLINK[1],
. . . , QLINK[n] when Algorithm T terminates?

19. [18] In Algorithm T we examine the front position of the queue in step T5, but
do not remove that element from the queue until step T7. What would happen if we
set F← QLINK[F] at the conclusion of step T5, instead of in T7?

x 20. [24] Algorithm T uses F, R, and the QLINK table to obtain the effect of a queue that
contains those nodes whose COUNT Ąeld has become zero but whose successor relations
have not yet been removed. Could a stack be used for this purpose instead of a queue?
If so, compare the resulting algorithm with Algorithm T.

21. [21] Would Algorithm T still perform a valid topological sort if one of the relations
Şj ≺ kŤ were repeated several times in the input? What if the input contained a relation
of the form Şj ≺ jŤ?

22. [23] Program T assumes that its input tape contains valid information, but a
program that is intended for general use should always make careful tests on its input so
that clerical errors can be detected, and so that the program cannot Şdestroy itself.Ť For
example, if one of the input relations for k were negative, Program T may erroneously
change one of its own instructions when storing into X[k]. Suggest ways to modify
Program T so that it is suitable for general use.

2.2.3 LINKED ALLOCATION 271

x 23. [27] When the topological sort algorithm cannot proceed because it has detected
a loop in the input (see step T8), it is usually of no use to stop and say, ŞThere was
a loop.Ť It is helpful to print out one of the loops, thereby showing part of the input
that was in error. Extend Algorithm T so that it will do this additional printing of a
loop when necessary. [Hint: The text gives a proof for the existence of a loop when
N > 0 in step T8; that proof suggests an algorithm.]

24. [24] Incorporate the extensions of Algorithm T made in exercise 23 into Pro-
gram T.

25. [47] Design as efficient an algorithm as possible for doing a topological sort of very
large sets S having considerably more nodes than the computer memory can contain.
Assume that the input, output, and temporary working space are done with magnetic
tape. [Possible hint: A conventional sort of the input allows us to assume that all
relations for a given node appear together. But then what can be done? In particular,
we must consider the worst case in which the given ordering is already a linear ordering
that has been wildly permuted; exercise 24 in the introduction to Chapter 5 explains
how to handle this case with O(logn)2 passes over the data.]

26. [29] (Subroutine allocation.) Suppose that we have a tape containing the main
subroutine library in relocatable form, for a 1960s-style computer installation. The
loading routine wants to determine the amount of relocation for each subroutine used,
so that it can make one pass through the tape to load the necessary routines. The
problem is that some subroutines require others to be present in memory. Infrequently
used subroutines (which appear toward the end of the tape) may call on frequently
used subroutines (which appear toward the beginning of the tape), and we want to
know all of the subroutines that are required, before passing through the tape.

One way to tackle this problem is to have a Ştape directoryŤ that Ąts in memory.
The loading routine has access to two tables:

a) The tape directory. This table is composed of variable-length nodes having
the form

B SPACE LINK B SPACE LINK

B SUB1 SUB2 B SUB1 SUB2

... or
...

B SUBn 0 B SUB(n−1) SUBn

where SPACE is the number of words of memory required by the subroutine; LINK is a
link to the directory entry for the subroutine that appears on the tape following this
subroutine; SUB1, SUB2, . . . , SUBn (n ≥ 0) are links to the directory entries for any
other subroutines required by this one; B = 0 on all words except the last, B = −1 on
the last word of a node. The address of the directory entry for the Ąrst subroutine on
the library tape is speciĄed by the link variable FIRST.

b) The list of subroutines directly referred to by the program to be loaded. This is
stored in consecutive locations X[1], X[2], . . . , X[N], where N ≥ 0 is a variable known
to the loading routine. Each entry in this list is a link to the directory entry for the
subroutine desired.

The loading routine also knows MLOC, the amount of relocation to be used for the
Ąrst subroutine loaded.

272 INFORMATION STRUCTURES 2.2.3

As a small example, consider the following conĄguration:

Tape directory List of subroutines needed

B SPACE LINK X[1] = 1003
1000: 0 20 1005 X[2] = 1010
1001: −1 1002 0
1002: −1 30 1010 N = 2
1003: 0 200 1007 FIRST = 1002
1004: −1 1000 1006 MLOC = 2400
1005: −1 100 1003
1006: −1 60 1000
1007: 0 200 0
1008: 0 1005 1002
1009: −1 1006 0
1010: −1 20 1006

The tape directory in this case shows that the subroutines on tape are 1002, 1010,
1006, 1000, 1005, 1003, and 1007 in that order. Subroutine 1007 takes 200 locations
and implies the use of subroutines 1005, 1002, and 1006; etc. The program to be loaded
requires subroutines 1003 and 1010, which are to be placed into locations ≥ 2400. These
subroutines in turn imply that 1000, 1006, and 1002 must also be loaded.

The subroutine allocator is to change the X-table so that each entry X[1], X[2],
X[3], . . . has the form

+ 0 BASE SUB

(except the last entry, which is explained below), where SUB is a subroutine to be loaded,
and BASE is the amount of relocation. These entries are to be in the order in which the
subroutines appear on tape. One possible answer for the example above would be

BASE SUB

X[1]: 2400 1002
X[2]: 2430 1010
X[3]: 2450 1006

BASE SUB

X[4]: 2510 1000
X[5]: 2530 1003
X[6]: 2730 0

The last entry contains the Ąrst unused memory address.
(Clearly, this is not the only way to treat a library of subroutines. The proper way

to design a library is heavily dependent upon the computer used and the applications
to be handled. Large modern computers require an entirely different approach to
subroutine libraries. But this is a nice exercise anyway, because it involves interesting
manipulations on both sequential and linked data.)

The problem in this exercise is to design an algorithm for the stated task. Your
allocator may transform the tape directory in any way as it prepares its answer,
since the tape directory can be read in anew by the subroutine allocator on its next
assignment, and the tape directory is not needed by other parts of the loading routine.

27. [25] Write a MIX program for the subroutine allocation algorithm of exercise 26.

28. [40] The following construction shows how to ŞsolveŤ a fairly general type of two-
person game, including chess, nim, and many simpler games: Consider a Ąnite set of
nodes, each of which represents a possible position in the game. For each position there
are zero or more moves that transform that position into some other position. We say
that position x is a predecessor of position y (and y is a successor of x) if there is a
move from x to y. Certain positions that have no successors are classiĄed as won or

2.2.4 CIRCULAR LISTS 273

lost positions. The player to move in position x is the opponent of the player to move
in the successors of position x.

Given such a conĄguration of positions, we can compute the complete set of won
positions (those in which the next player to move can force a victory) and the complete
set of lost positions (those in which the player must lose against an expert opponent)
by repeatedly doing the following operation until it yields no change: Mark a position
ŞlostŤ if all its successors are marked ŞwonŤ; mark a position ŞwonŤ if at least one of
its successors is marked Şlost.Ť

After this operation has been repeated as many times as possible, there may be
some positions that have not been marked at all; a player in such a position can neither
force a victory nor be compelled to lose.

This procedure for obtaining the complete set of won and lost positions can be
adapted to an efficient algorithm for computers that closely resembles Algorithm T.
We may keep with each position a count of the number of its successors that have not
been marked Şwon,Ť and a list of all its predecessors.

The problem in this exercise is to work out the details of the algorithm that has
just been so vaguely described, and to apply it to some interesting games that do not
involve too many possible positions [like the Şmilitary gameŤ: É. Lucas, Récréations
Mathématiques 3 (Paris: 1893) 105Ű116; E. R. Berlekamp, J. H. Conway, and R. K.
Guy, Winning Ways 3 (A. K. Peters, 2003), Chapter 21].

x 29. [21] (a) Give an algorithm to ŞeraseŤ an entire list like (1), by putting all of its
nodes on the AVAIL stack, given only the value of FIRST. The algorithm should operate
as fast as possible. (b) Repeat part (a) for a list like (12), given the values of F and R.

30. [17] Suppose that queues are represented as in (12), but with an empty queue
represented by F = Λ and R undeĄned. What insertion and deletion procedures should
replace (14) and (17)?

2.2.4. Circular Lists

A slight change in the manner of linking furnishes us with an important alter-
native to the methods of the preceding section.

A circularly linked list (brieĆy: a circular list) has the property that its last
node links back to the Ąrst instead of to Λ. It is then possible to access all of
the list starting at any given point; we also achieve an extra degree of symmetry,
and if we choose we need not think of the list as having a last or Ąrst node.

The following situation is typical:

PTR (1)

Assume that the nodes have two Ąelds, INFO and LINK, as in the preceding
section. There is a link variable PTR that points to the rightmost node of the
list, and LINK(PTR) is the address of the leftmost node. The following primitive
operations are most important:

a) Insert Y at left: P⇐ AVAIL, INFO(P)← Y, LINK(P)← LINK(PTR),
LINK(PTR)← P.

b) Insert Y at right: Insert Y at left, then PTR← P.
c) Set Y to left node and delete: P← LINK(PTR), Y← INFO(P), LINK(PTR)←

LINK(P), AVAIL⇐ P.

274 INFORMATION STRUCTURES 2.2.4

Operation (b) is a little surprising at Ąrst glance; the operation PTR← LINK(PTR)

effectively moves the leftmost node to the right in the diagram (1), and this is
quite easy to understand if the list is regarded as a circle instead of as a straight
line with connected ends.

The alert reader will observe that we have made a serious mistake in oper-
ations (a), (b), and (c). What is it? Answer: We have forgotten to consider the
possibility of an empty list. If, for example, operation (c) is applied Ąve times
to the list (1), we will have PTR pointing to a node in the AVAIL list, and this
can lead to serious difficulties; for example, imagine applying operation (c) once
more! If we take the position that PTR will equal Λ in the case of an empty
list, we could remedy the operations by inserting the additional instructions Şif
PTR = Λ, then PTR← LINK(P)← P; otherwise . . . Ť after ŞINFO(P)← YŤ in (a);
preceding (c) by the test Şif PTR = Λ, then UNDERFLOWŤ; and following (c) by Şif
PTR = P, then PTR← ΛŤ.

Notice that operations (a), (b), and (c) give us the actions of an output-
restricted deque, in the sense of Section 2.2.1. Therefore we Ąnd in particular
that a circular list can be used as either a stack or a queue. Operations (a)
and (c) combined give us a stack; operations (b) and (c) give us a queue. These
operations are only slightly less direct than their counterparts in the previous
section, where we saw that operations (a), (b), and (c) can be performed on
linear lists using two pointers F and R.

Other important operations become efficient with circular lists. For example,
it is very convenient to ŞeraseŤ a list, that is, to put an entire circular list onto
the AVAIL stack at once:

If PTR ̸= Λ, then AVAIL↔ LINK(PTR). (2)

[Recall that the Ş↔Ť operation denotes interchange: P ← AVAIL, AVAIL ←
LINK(PTR), LINK(PTR) ← P.] Operation (2) is clearly valid if PTR points any-
where in the circular list. Afterwards we should of course set PTR← Λ.

Using a similar technique, if PTR1 and PTR2 point to disjoint circular lists L1

and L2, respectively, we can insert the entire list L2 at the right of L1:

If PTR2 ̸= Λ, then

(if PTR1 ̸= Λ, then LINK(PTR1)↔ LINK(PTR2); (3)

set PTR1 ← PTR2, PTR2 ← Λ).

Splitting one circular list into two, in various ways, is another simple opera-
tion that can be done. These operations correspond to the concatenation and
deconcatenation of strings.

Thus we see that a circular list can be used not only to represent inherently
circular structures, but also to represent linear structures; a circular list with one
pointer to the rear node is essentially equivalent to a straight linear list with two
pointers to the front and rear. The natural question to ask, in connection with
this observation, is ŞHow do we Ąnd the end of the list, when there is circular
symmetry?Ť There is no Λ link to signal the end! The answer is that when we

2.2.4 CIRCULAR LISTS 275

are operating on an entire list, moving from one node to the next, we should stop
when we get back to our starting place (assuming, of course, that the starting
place is still present in the list).

An alternative solution to the problem just posed is to put a special, recog-
nizable node into each circular list, as a convenient stopping place. This special
node is called the list head, and in applications we often Ąnd it is quite convenient
to insist that every circular list must have exactly one node that is its list head.
One advantage is that the circular list will then never be empty. With a list
head, diagram (1) becomes

List head

(4)

References to lists like (4) are usually made via the list head, which is often in a
Ąxed memory location. The disadvantage of list heads is that there is no pointer
to the right end, so we must sacriĄce operation (b) stated above.

Diagram (4) may be compared with 2.2.3Ű(1) at the beginning of the previ-
ous section, in which the link associated with Şitem 5Ť now points to LOC(FIRST)

instead of to Λ; the variable FIRST is now thought of as a link within a node,
namely the link that is in NODE(LOC(FIRST)). The principal difference between
(4) and 2.2.3Ű(1) is that (4) makes it possible (though not necessarily efficient)
to get to any point of the list from any other point.

As an example of the use of circular lists, we will discuss arithmetic on
polynomials in the variables x, y, and z, with integer coefficients. There are
many problems in which a scientist wants to manipulate polynomials instead of
just numbers; we are thinking of operations like the multiplication of

(x4 + 2x3y + 3x2y2 + 4xy3 + 5y4) by (x2 − 2xy + y2)

to get
(x6 − 6xy5 + 5y6).

Linked allocation is a natural tool for this purpose, since polynomials can grow to
unpredictable sizes and we may want to represent many polynomials in memory
at the same time.

We will consider here the two operations of addition and multiplication. Let
us suppose that a polynomial is represented as a list in which each node stands
for one nonzero term, and has the two-word form

COEF

± A B C LINK
. (5)

Here COEF is the coefficient of the term in xAyBzC. We will assume that the
coefficients and exponents will always lie in the range allowed by this format, and
that it is not necessary to check the ranges during our calculations. The notation
ABC will be used to stand for the ± A B C Ąelds of the node (5), treated as a single
unit. The sign of ABC, namely the sign of the second word in (5), will always be

276 INFORMATION STRUCTURES 2.2.4

plus, except that there is a special node at the end of every polynomial that has
ABC = −1 and COEF = 0. This special node is a great convenience, analogous to
our discussion of a list head above, because it provides a convenient sentinel and
it avoids the problem of an empty list (corresponding to the polynomial 0). The
nodes of the list always appear in decreasing order of the ABC Ąeld, if we follow
the direction of the links, except that the special node (which has ABC = −1)
links to the largest value of ABC. For example, the polynomial x6 − 6xy5 + 5y6

would be represented thus:

+1

+ 6 0 0

-6

+ 1 5 0

+5

+ 0 6 0

0

- 0 0 1

PTR

Algorithm A (Addition of polynomials). This algorithm adds polynomial(P)
to polynomial(Q), assuming that P and Q are pointer variables pointing to
polynomials having the form above. The list P will be unchanged; the list Q

will retain the sum. Pointer variables P and Q return to their starting points
at the conclusion of this algorithm; auxiliary pointer variables Q1 and Q2 are
also used.
A1. [Initialize.] Set P ← LINK(P), Q1 ← Q, Q ← LINK(Q). (Now both P and Q

point to the leading terms of their polynomials. Throughout most of this
algorithm the variable Q1 will be one step behind Q, in the sense that Q =
LINK(Q1).)

A2. [ABC(P):ABC(Q).] If ABC(P) < ABC(Q), set Q1 ← Q and Q ← LINK(Q) and
repeat this step. If ABC(P) = ABC(Q), go to step A3. If ABC(P) > ABC(Q),
go to step A5.

A3. [Add coefficients.] (WeŠve found terms with equal exponents.) If ABC(P)< 0,
the algorithm terminates. Otherwise set COEF(Q) ← COEF(Q) + COEF(P).
Now if COEF(Q) = 0, go to A4; otherwise, set P ← LINK(P), Q1 ← Q,
Q ← LINK(Q), and go to A2. (Curiously the latter operations are identical
to step A1.)

A4. [Delete zero term.] Set Q2 ← Q, LINK(Q1) ← Q ← LINK(Q), and AVAIL ⇐
Q2. (A zero term created in step A3 has been removed from polynomial(Q).)
Set P← LINK(P) and go back to A2.

A5. [Insert new term.] (Polynomial(P) contains a term that is not present
in polynomial(Q), so we insert it in polynomial(Q).) Set Q2 ⇐ AVAIL,
COEF(Q2)← COEF(P), ABC(Q2)← ABC(P), LINK(Q2)← Q, LINK(Q1)← Q2,
Q1← Q2, P← LINK(P), and return to step A2.

One of the most noteworthy features of Algorithm A is the manner in which
the pointer variable Q1 follows the pointer Q around the list. This is very typical
of list processing algorithms, and we will see a dozen more algorithms with the
same characteristic. Can the reader see why this idea was used in Algorithm A?

A reader who has little prior experience with linked lists will Ąnd it very
instructive to study Algorithm A carefully; as a test case, try adding x+ y + z
to x2 − 2y − z.

2.2.4 CIRCULAR LISTS 277

Given Algorithm A, the multiplication operation is surprisingly easy:

Algorithm M (Multiplication of polynomials). This algorithm, analogous to
Algorithm A, replaces polynomial(Q) by

polynomial(Q) + polynomial(M) × polynomial(P).

M1. [Next multiplier.] Set M ← LINK(M). If ABC(M) < 0, the algorithm termi-
nates.

M2. [Multiply cycle.] Perform Algorithm A, except that wherever the notation
ŞABC(P)Ť appears in that algorithm, replace it by Ş(if ABC(P) < 0 then −1,
otherwise ABC(P) + ABC(M))Ť; wherever ŞCOEF(P)Ť appears in that algo-
rithm replace it by ŞCOEF(P)× COEF(M)Ť. Then go back to step M1.

The programming of Algorithm A in MIX language shows again the ease with
which linked lists are manipulated in a computer. In the following code we
assume that OVERFLOW is a subroutine that either terminates the program (due
to lack of memory space) or Ąnds further available space and exits to rJ− 2.

Program A (Addition of polynomials). This is a subroutine written so that it
can be used in conjunction with a multiplication subroutine (see exercise 15).

Calling sequence: JMP ADD

Entry conditions: rI1 = P, rI2 = Q.
Exit conditions: polynomial(Q) has been replaced by polynomial(Q) + poly-

nomial(P); rI1 and rI2 are unchanged; all other registers have
undeĄned contents.

In the coding below, P ≡ rI1, Q ≡ rI2, Q1 ≡ rI3, and Q2 ≡ rI6, in the notation of
Algorithm A.

01 LINK EQU 4:5 DeĄnition of LINK Ąeld
02 ABC EQU 0:3 DeĄnition of ABC Ąeld
03 ADD STJ 3F 1 Entrance to subroutine
04 1H ENT3 0,2 1 +m′′ A1. Initialize. Set Q1← Q.
05 LD2 1,3(LINK) 1 +m′′ Q← LINK(Q1).
06 0H LD1 1,1(LINK) 1 + p P← LINK(P).
07 SW1 LDA 1,1 1 + p rA(0:3)← ABC(P).
08 2H CMPA 1,2(ABC) x A2. ABC(P):ABC(Q).
09 JE 3F x If equal, go to A3.
10 JG 5F p′ + q′ If greater, go to A5.
11 ENT3 0,2 q′ If less, set Q1← Q.
12 LD2 1,3(LINK) q′ Q← LINK(Q1).
13 JMP 2B q′ Repeat.
14 3H JAN * m+ 1 A3. Add coefficients.
15 SW2 LDA 0,1 m COEF(P)

16 ADD 0,2 m + COEF(Q)

17 STA 0,2 m → COEF(Q).
18 JANZ 1B m Jump if nonzero.

278 INFORMATION STRUCTURES 2.2.4

19 ENT6 0,2 m′ A4. Delete zero term. Q2← Q.
20 LD2 1,2(LINK) m′ Q← LINK(Q).
21 LDX AVAIL m′

 AVAIL⇐ Q2.22 STX 1,6(LINK) m′

23 ST6 AVAIL m′

24 ST2 1,3(LINK) m′ LINK(Q1)← Q.
25 JMP 0B m′ Go to advance P.
26 5H LD6 AVAIL p′ A5. Insert new term.
27 J6Z OVERFLOW p′

Q2⇐ AVAIL.

28 LDX 1,6(LINK) p′

29 STX AVAIL p′

30 STA 1,6 p′ ABC(Q2)← ABC(P).
31 SW3 LDA 0,1 p′ rA← COEF(P).
32 STA 0,6 p′ COEF(Q2)← rA.
33 ST2 1,6(LINK) p′ LINK(Q2)← Q.
34 ST6 1,3(LINK) p′ LINK(Q1)← Q2.
35 ENT3 0,6 p′ Q1← Q2.
36 JMP 0B p′ Go to advance P.

Note that Algorithm A traverses each of the two lists just once; it is not
necessary to loop around several times. Using KirchhoffŠs law, we Ąnd that an
analysis of the instruction counts presents no difficulties; the execution time
depends on four quantities

m′ = number of matching terms that cancel with each other;
m′′ = number of matching terms that do not cancel;
p′ = number of unmatched terms in polynomial(P);
q′ = number of unmatched terms in polynomial(Q).

The analysis given with Program A uses the abbreviations

m = m′ +m′′, p = m+ p′, q = m+ q′, x = 1 +m+ p′ + q′;

the running time for MIX is (27m′ + 18m′′ + 27p′ + 8q′ + 13)u. The total number
of nodes in the storage pool needed during the execution of the algorithm is at
least 2 + p+ q, and at most 2 + p+ q + p′.

EXERCISES

1. [21] The text suggests at the beginning of this section that an empty circular list
could be represented by PTR = Λ. It might be more consistent with the philosophy
of circular lists to have PTR = LOC(PTR) indicate an empty list. Does this convention
facilitate operations (a), (b), or (c) described at the beginning of this section?

2. [20] Draw Şbefore and afterŤ diagrams illustrating the effect of the concatenation
operation (3), assuming that PTR1 and PTR2 are ̸= Λ.

x 3. [20] What does operation (3) do if PTR1 and PTR2 are both pointing to nodes in
the same circular list?

4. [20] State insertion and deletion operations that give the effect of a stack, using
representation (4).

2.2.4 CIRCULAR LISTS 279

<

= >

Sentinel

0

A1. Initialize A2. ABC(P) : ABC(Q)

A3. Add

coefficients

A4. Delete

zero term

A5. Insert

new term

Fig. 10. Addition of polynomials.

x 5. [21] Design an algorithm that takes a circular list such as (1) and reverses the
direction of all the arrows.

6. [18] Give diagrams of the list representation for the polynomials (a) xz−3; (b) 0.

7. [10] Why is it useful to assume that the ABC Ąelds of a polynomial list appear in
decreasing order?

x 8. [10] Why is it useful to have Q1 trailing one step behind Q in Algorithm A?

x 9. [23] Would Algorithm A work properly if P = Q (i.e., both pointer variables point
at the same polynomial)? Would Algorithm M work properly if P = M, if P = Q, or if
M = Q?

x 10. [20] The algorithms in this section assume that we are using three variables x, y,
and z in the polynomials, and that their exponents individually never exceed b − 1
(where b is the byte size in MIXŠs case). Suppose instead that we want to do addition
and multiplication of polynomials in only one variable, x, and to let its exponent take
on values up to b3 − 1. What changes should be made to Algorithms A and M?

11. [24] (The purpose of this exercise and many of those following is to create a pack-
age of subroutines useful for polynomial arithmetic, in conjunction with Program A.)
Since Algorithms A and M change the value of polynomial(Q), it is sometimes desirable
to have a subroutine that makes a copy of a given polynomial. Write a MIX subroutine
with the following speciĄcations:

Calling sequence: JMP COPY

Entry conditions: rI1 = P

Exit conditions: rI2 points to a newly created polynomial equal to polynomial(P);
rI1 is unchanged; other registers are undeĄned.

12. [21] Compare the running time of the program in exercise 11 with that of Pro-
gram A when polynomial(Q) = 0.

13. [20] Write a MIX subroutine with the following speciĄcations:

Calling sequence: JMP ERASE

Entry conditions: rI1 = P

Exit conditions: polynomial(P) has been added to the AVAIL list; all register contents
are undeĄned.

[Note: This subroutine can be used in conjunction with the subroutine of exercise 11
in the sequence ŚLD1 Q; JMP ERASE; LD1 P; JMP COPY; ST2 QŠ to achieve the effect
Şpolynomial(Q)← polynomial(P)Ť.]

280 INFORMATION STRUCTURES 2.2.4

14. [22] Write a MIX subroutine with the following speciĄcations:

Calling sequence: JMP ZERO

Entry conditions: None
Exit conditions: rI2 points to a newly created polynomial equal to 0; other register

contents are undeĄned.

15. [24] Write a MIX subroutine to perform Algorithm M, having the following speciĄ-
cations:

Calling sequence: JMP MULT

Entry conditions: rI1 = P, rI2 = Q, rI4 = M.
Exit conditions: polynomial(Q)← polynomial(Q) + polynomial(M)× polynomial(P);

rI1, rI2, rI4 are unchanged; other registers undeĄned.

[Note: Use Program A as a subroutine, changing the settings of SW1, SW2, and SW3.]

16. [M28] Estimate the running time of the subroutine in exercise 15 in terms of some
relevant parameters.

x 17. [22] What advantage is there in representing polynomials with a circular list as
in this section, instead of with a straight linear linked list terminated by Λ as in the
previous section?

x 18. [25] Devise a way to represent circular lists inside a computer in such a way that
the list can be traversed efficiently in both directions, yet only one link Ąeld is used
per node. [Hint: If we are given two pointers, to two successive nodes xi−1 and xi, it
should be possible to locate both xi+1 and xi−2.]

2.2.5. Doubly Linked Lists

For even greater Ćexibility in the manipulation of linear lists, we can include two
links in each node, pointing to the items on either side of that node:

LEFT RIGHT (1)

Here LEFT and RIGHT are pointer variables to the left and right of the list. Each
node of the list includes two links, called, for example, LLINK and RLINK. The
operations of a general deque are readily performed with such a representation;
see exercise 1. However, manipulations of doubly linked lists almost always
become much easier if a list head node is part of each list, as described in the
preceding section. When a list head is present, we have the following typical
diagram of a doubly linked list:

List head

(2)
The RLINK and LLINK Ąelds of the list head take the place of LEFT and RIGHT

in (1). There is complete symmetry between left and right; the list head could
equally well have been shown at the right of (2). If the list is empty, both link
Ąelds of the list head point to the head itself.

The list representation (2) clearly satisĄes the condition

RLINK(LLINK(X)) = LLINK(RLINK(X)) = X (3)

2.2.5 DOUBLY LINKED LISTS 281

if X is the location of any node in the list (including the head). This fact is the
principal reason that representation (2) is preferable to (1).

A doubly linked list usually takes more memory space than a singly linked
one does (although there is sometimes room for another link in a node that
doesnŠt Ąll a complete computer word). But the additional operations that can be
performed efficiently with two-way links are often more than ample compensation
for the extra space requirement. Besides the obvious advantage of being able to
go back and forth at will when examining a doubly linked list, one of the principal
new abilities is the fact that we can delete NODE(X) from the list it is in, given
only the value of X. This deletion operation is easy to derive from a Şbefore and
afterŤ diagram (Fig. 11) and it is very simple:

RLINK(LLINK(X))← RLINK(X), LLINK(RLINK(X))← LLINK(X),

AVAIL⇐ X.
(4)

In a list that has only one-way links, we cannot delete NODE(X) without
knowing which node precedes it in the chain, since the preceding node needs to
have its link altered when NODE(X) is deleted. In all the algorithms considered in
Sections 2.2.3 and 2.2.4 this additional knowledge was present whenever a node
was to be deleted; see, in particular, Algorithm 2.2.4A, where we had pointer Q1
following pointer Q for just this purpose. But we will meet several algorithms
that require removing random nodes from the middle of a list, and doubly linked
lists are frequently used just for this reason. (We should point out that in a
circular list it is possible to delete NODE(X), given X, if we go around the entire
circle to Ąnd the predecessor of X. But this operation is clearly inefficient when
the list is long, so it is rarely an acceptable substitute for doubly linking the list.
See also the answer to exercise 2.2.4Ű8.)

X

Before

After ⇓
AVAIL

Fig. 11. Deletion from
a doubly linked list.

Similarly, a doubly linked list permits the easy insertion of a node adjacent
to NODE(X) at either the left or the right. The steps

P⇐ AVAIL, LLINK(P)← X, RLINK(P)← RLINK(X),
LLINK(RLINK(X))← P, RLINK(X)← P

(5)

do such an insertion to the right of NODE(X); and by interchanging left and
right we get the corresponding algorithm for insertion to the left. Operation
(5) changes the settings of Ąve links, so it is a little slower than an insertion
operation in a one-way list where only three links need to be changed.

282 INFORMATION STRUCTURES 2.2.5

As an example of the use of doubly linked lists, we will now consider the
writing of a discrete simulation program. ŞDiscrete simulationŤ means the
simulation of a system in which all changes in the state of the system may
be assumed to happen at certain discrete instants of time. The ŞsystemŤ being
simulated is usually a set of individual activities that are largely independent
although they interact with each other; examples are customers at a store, ships
in a harbor, people in a corporation. In a discrete simulation, we proceed by
doing whatever is to be done at a certain instant of simulated time, then advance
the simulated clock to the next time when some action is scheduled to occur.

By contrast, a Şcontinuous simulationŤ would be simulation of activities that
are under continuous changes, such as traffic moving on a highway, spaceships
traveling to other planets, etc. Continuous simulation can often be satisfactorily
approximated by discrete simulation with very small time intervals between
steps; however, in such a case we usually have ŞsynchronousŤ discrete simulation,
in which many parts of the system are slightly altered at each discrete time
interval, and such an application generally calls for a somewhat different type of
program organization than the kind considered here.

The program developed below simulates the elevator system in the Mathe-
matics building of the California Institute of Technology. The results of such a
simulation will perhaps be of use only to people who make reasonably frequent
visits to Caltech; and even for them, it may be simpler just to try using the
elevator several times instead of writing a computer program. But, as is usual
with simulation studies, the methods we will use are of much more interest than
the answers given by the program. The methods to be discussed below illustrate
typical implementation techniques used with discrete simulation programs.

The Mathematics building has Ąve Ćoors: sub-basement, basement, Ąrst,
second, and third. There is a single elevator, which has automatic controls
and can stop at each Ćoor. For convenience we will renumber the Ćoors 0, 1,
2, 3, and 4.

On each Ćoor there are two call buttons, one for UP and one for DOWN.
(Actually Ćoor 0 has only UP and Ćoor 4 has only DOWN, but we may ignore
that anomaly since the excess buttons will never be used.) Corresponding to
these buttons, there are ten variables CALLUP[j] and CALLDOWN[j], 0 ≤ j ≤ 4.
There are also variables CALLCAR[j], 0 ≤ j ≤ 4, representing buttons within
the elevator car, which direct it to a destination Ćoor. When a person presses a
button, the appropriate variable is set to 1; the elevator clears the variable to 0
after the request has been fulĄlled.

So far we have described the elevator from a userŠs point of view; the
situation is more interesting as viewed by the elevator. The elevator is in one of
three states: GOINGUP, GOINGDOWN, or NEUTRAL. (The current state is indicated
to passengers by lighted arrows inside the elevator.) If it is in NEUTRAL state and
not on Ćoor 2, the machine will close its doors and (if no command is given by
the time its doors are shut) it will change to GOINGUP or GOINGDOWN, heading
for Ćoor 2. (This is the Şhome Ćoor,Ť since most passengers get in there.) On
Ćoor 2 in NEUTRAL state, the doors will eventually close and the machine will wait

2.2.5 DOUBLY LINKED LISTS 283

silently for another command. The Ąrst command received for another Ćoor
sets the machine GOINGUP or GOINGDOWN as appropriate; it stays in this state
until there are no commands waiting in the same direction, and then it switches
direction or switches to NEUTRAL just before opening the doors, depending on
what other commands are in the CALL variables. The elevator takes a certain
amount of time to open and close its doors, to accelerate and decelerate, and
to get from one Ćoor to another. All of these quantities are indicated in the
algorithm below, which is much more precise than an informal description can
be. The algorithm we will now study may not reĆect the elevatorŠs true principles
of operation, but it is believed to be the simplest set of rules that explain all
the phenomena observed during several hours of experimentation by the author
during the writing of this section.

The elevator system is simulated by using two coroutines, one for the pas-
sengers and one for the elevator; these routines specify all the actions to be
performed, as well as various time delays that are to be used in the simulation.
In the following description, the variable TIME represents the current value of
the simulated time clock. All units of time are given in tenths of seconds. There
are also several other variables:

FLOOR, the current position of the elevator;
D1, a variable that is zero except during the time people are getting in or

out of the elevator;
D2, a variable that becomes zero if the elevator has sat on one Ćoor without

moving for 30 sec or more;
D3, a variable that is zero except when the doors are open but nobody is

getting in or out of the elevator;
STATE, the current state of the elevator (GOINGUP, GOINGDOWN, or NEUTRAL).

Initially FLOOR = 2, D1 = D2 = D3 = 0, and STATE = NEUTRAL.

Coroutine U (Users). Everyone who enters the system begins to perform the
actions speciĄed below, starting at step U1.

U1. [Enter, prepare for successor.] The following quantities are determined in
some manner that will not be speciĄed here:

IN, the Ćoor on which the new user has entered the system;
OUT, the Ćoor to which this user wants to go (OUT ̸= IN);
GIVEUPTIME, the amount of time this user will wait for the elevator before

running out of patience and deciding to walk;
INTERTIME, the amount of time before another user will enter the system.

After these quantities have been computed, the simulation program sets
things up so that another user enters the system at TIME + INTERTIME.

U2. [Signal and wait.] (The purpose of this step is to call for the elevator; some
special cases arise if the elevator is already on the right Ćoor.) If FLOOR = IN

and if the elevatorŠs next action is step E6 below (that is, if the elevator doors
are now closing), send the elevator immediately to its step E3 and cancel its

284 INFORMATION STRUCTURES 2.2.5

activity E6. (This means that the doors will open again before the elevator
moves.) If FLOOR = IN and if D3 ̸= 0, set D3← 0, set D1 to a nonzero value,
and start up the elevatorŠs activity E4 again. (This means that the elevator
doors are open on this Ćoor, but everyone else has already gotten on or
off. Elevator step E4 is a sequencing step that grants people permission to
enter the elevator according to normal laws of courtesy; therefore, restarting
E4 gives this user a chance to get in before the doors close.) In all other
cases, the user sets CALLUP[IN] ← 1 or CALLDOWN[IN] ← 1, according as
OUT > IN or OUT < IN; and if D2 = 0 or the elevator is in its ŞdormantŤ
position E1, the DECISION subroutine speciĄed below is performed. (The
DECISION subroutine is used to take the elevator out of NEUTRAL state at
certain critical times.)

U3. [Enter queue.] Insert this user at the rear of QUEUE[IN], which is a linear
list representing the people waiting on this Ćoor. Now the user waits
patiently for GIVEUPTIME units of time, unless the elevator arrives Ąrst Ů
more precisely, unless step E4 of the elevator routine below sends this user
to U5 and cancels the scheduled activity U4.

U4. [Give up.] If FLOOR ̸= IN or D1 = 0, delete this user from QUEUE[IN]

and from the simulated system. (The user has decided that the elevator is
too slow, or that a bit of exercise will be better than an elevator ride.) If
FLOOR = IN and D1 ̸= 0, the user stays and waits (knowing that the wait
wonŠt be long).

U5. [Get in.] This user now leaves QUEUE[IN] and enters ELEVATOR, which is
a stack-like list representing the people now on board the elevator. Set
CALLCAR[OUT]← 1.

Now if STATE = NEUTRAL, set STATE ← GOINGUP or GOINGDOWN as
appropriate, and set the elevatorŠs activity E5 to be executed after 25 units
of time. (This is a special feature of the elevator, allowing the doors to close
faster than usual if the elevator is in NEUTRAL state when the user selects a
destination Ćoor. The 25-unit time interval gives step E4 the opportunity
to make sure that D1 is properly set up by the time step E5, the door-closing
action, occurs.)

Now the user waits until being sent to step U6 by step E4 below, when
the elevator has reached the desired Ćoor.

U6. [Get out.] Delete this user from the ELEVATOR list and from the simulated
system.

Coroutine E (Elevator). This coroutine represents the actions of the elevator;
step E4 also handles the control of when people get in and out.

E1. [Wait for call.] (At this point the elevator is sitting at Ćoor 2 with the doors
closed, waiting for something to happen.) If someone presses a button, the
DECISION subroutine will take us to step E3 or E6. Meanwhile, wait.

E2. [Change of state?] If STATE = GOINGUP and CALLUP[j] = CALLDOWN[j] =
CALLCAR[j] = 0 for all j > FLOOR, then set STATE ← NEUTRAL or STATE ←

2.2.5 DOUBLY LINKED LISTS 285

GOINGDOWN, according as CALLCAR[j] = 0 for all j < FLOOR or not, and set
all CALL variables for the current Ćoor to zero. If STATE = GOINGDOWN, do
similar actions with directions reversed.

E3. [Open doors.] Set D1 and D2 to any nonzero values. Set elevator activity
E9 to start up independently after 300 units of time. (This activity may be
canceled in step E6 below before it occurs. If it has already been scheduled
and not canceled, we cancel it and reschedule it.) Also set elevator activity
E5 to start up independently after 76 units of time. Then wait 20 units of
time (to simulate opening of the doors) and go to E4.

E4. [Let people out, in.] If anyone in the ELEVATOR list has OUT = FLOOR, send
the user of this type who has most recently entered immediately to step U6,
wait 25 units, and repeat step E4. If no such users exist, but QUEUE[FLOOR]
is not empty, send the front person of that queue immediately to step U5
instead of U4, wait 25 units, and repeat step E4. But if QUEUE[FLOOR]

is empty, set D1 ← 0, make D3 nonzero, and wait for some other activity
to initiate further action. (Step E5 will send us to E6, or step U2 will
restart E4.)

E5. [Close doors.] If D1 ̸= 0, wait 40 units and repeat this step (the doors Ćutter
a little, but they spring open again, since someone is still getting out or in).
Otherwise set D3← 0 and set the elevator to start at step E6 after 20 units
of time. (This simulates closing the doors after people have Ąnished getting
in or out; but if a new user enters on this Ćoor while the doors are closing,
they will open again as stated in step U2.)

E6. [Prepare to move.] Set CALLCAR[FLOOR] to zero; also set CALLUP[FLOOR]

to zero if STATE ̸= GOINGDOWN, and also set CALLDOWN[FLOOR] to zero if
STATE ̸= GOINGUP. (Note: If STATE = GOINGUP, the elevator does not clear
out CALLDOWN, since it assumes that people who are going down will not
have entered; but see exercise 6.) Now perform the DECISION subroutine.

If STATE = NEUTRAL even after the DECISION subroutine has acted, go
to E1. Otherwise, if D2 ̸= 0, cancel the elevator activity E9. Finally, if
STATE = GOINGUP, wait 15 units of time (for the elevator to build up speed)
and go to E7; if STATE = GOINGDOWN, wait 15 units and go to E8.

E7. [Go up a Ćoor.] Set FLOOR ← FLOOR + 1 and wait 51 units of time. If
now CALLCAR[FLOOR] = 1 or CALLUP[FLOOR] = 1, or if

(FLOOR = 2 or

CALLDOWN[FLOOR] = 1) and CALLUP[j] = CALLDOWN[j] = CALLCAR[j] = 0
for all j > FLOOR

, wait 14 units (for deceleration) and go to E2. Otherwise,

repeat this step.

E8. [Go down a Ćoor.] This step is like E7 with directions reversed, and also
the times 51 and 14 are changed to 61 and 23, respectively. (It takes the
elevator longer to go down than up.)

E9. [Set inaction indicator.] Set D2← 0 and perform the DECISION subroutine.
(This independent action is initiated in step E3 but it is almost always
canceled in step E6. See exercise 4.)

286
IN

F
O

R
M

A
T

IO
N

S
T

R
U

C
T

U
R

E
S

2.2.5
Table 1

SOME ACTIONS OF THE ELEVATOR SYSTEM

TIME STATE FLOOR D1 D2 D3 step action

0000 N 2 0 0 0 U1 User 1 arrives at Ćoor 0, destination is 2.
0035 D 2 0 0 0 E8 Elevator moving down
0038 D 1 0 0 0 U1 User 2 arrives at Ćoor 4, destination is 1.
0096 D 1 0 0 0 E8 Elevator moving down
0136 D 0 0 0 0 U1 User 3 arrives at Ćoor 2, destination is 1.
0141 D 0 0 0 0 U1 User 4 arrives at Ćoor 2, destination is 1.
0152 D 0 0 0 0 U4 User 1 decides to give up, leaves the system.
0180 D 0 0 0 0 E2 Elevator stops.
0180 N 0 0 X 0 E3 Elevator doors start to open.
0200 N 0 X X 0 E4 Doors open, nobody is there.
0256 N 0 0 X X E5 Elevator doors start to close.
0291 U 0 0 X 0 U1 User 5 arrives at Ćoor 3, destination is 1.
0291 U 0 0 X 0 E7 Elevator moving up
0342 U 1 0 X 0 E7 Elevator moving up
0364 U 2 0 X 0 U1 User 6 arrives at Ćoor 2, destination is 1.
0393 U 2 0 X 0 E7 Elevator moving up
0444 U 3 0 X 0 E7 Elevator moving up
0509 U 4 0 X 0 E2 Elevator stops.
0509 N 4 0 X 0 E3 Elevator doors start to open.
0529 N 4 X X 0 U5 User 2 gets in.
0540 D 4 X X 0 U4 User 6 decides to give up, leaves the system.
0554 D 4 0 X X E5 Elevator doors start to close.
0589 D 4 0 X 0 E8 Elevator moving down
0602 D 3 0 X 0 U1 User 7 arrives at Ćoor 1, destination is 2.
0673 D 3 0 X 0 E2 Elevator stops.
0673 D 3 0 X 0 E3 Elevator doors start to open.
0693 D 3 X X 0 U5 User 5 gets in.
0749 D 3 0 X X E5 Elevator doors start to close.
0784 D 3 0 X 0 E8 Elevator moving down
0827 D 2 0 X 0 U1 User 8 arrives at Ćoor 1, destination is 0.
0868 D 2 0 X 0 E2 Elevator stops.
0868 D 2 0 X 0 E3 Elevator doors start to open.
0876 D 2 X X 0 U1 User 9 arrives at Ćoor 1, destination is 3.
0888 D 2 X X 0 U5 User 3 gets in.
0913 D 2 X X 0 U5 User 4 gets in.
0944 D 2 0 X X E5 Elevator doors start to close.
0979 D 2 0 X 0 E8 Elevator moving down
1048 D 1 0 X 0 U1 User 10 arrives at Ćoor 0, destination is 4.
1063 D 1 0 X 0 E2 Elevator stops.
1063 D 1 0 X 0 E3 Elevator doors start to open.

TIME STATE FLOOR D1 D2 D3 step action

1083 D 1 X X 0 U6 User 4 gets out, leaves the system.
1108 D 1 X X 0 U6 User 3 gets out, leaves the system.
1133 D 1 X X 0 U6 User 5 gets out, leaves the system.
1139 D 1 X X 0 E5 Doors Ćutter.
1158 D 1 X X 0 U6 User 2 gets out, leaves the system.
1179 D 1 X X 0 E5 Doors Ćutter.
1183 D 1 X X 0 U5 User 7 gets in.
1208 D 1 X X 0 U5 User 8 gets in.
1219 D 1 X X 0 E5 Doors Ćutter.
1233 D 1 X X 0 U5 User 9 gets in.
1259 D 1 0 X X E5 Elevator doors start to close.
1294 D 1 0 X 0 E8 Elevator moving down
1378 D 0 0 X 0 E2 Elevator stops.
1378 U 0 0 X 0 E3 Elevator doors start to open.
1398 U 0 X X 0 U6 User 8 gets out, leaves the system.
1423 U 0 X X 0 U5 User 10 gets in.
1454 U 0 0 X X E5 Elevator doors start to close.
1489 U 0 0 X 0 E7 Elevator moving up
1554 U 1 0 X 0 E2 Elevator stops.
1554 U 1 0 X 0 E3 Elevator doors start to open.
1630 U 1 0 X X E5 Elevator doors start to close.
1665 U 1 0 X 0 E7 Elevator moving up
· · ·
4257 N 2 0 X 0 E1 Elevator dormant
4384 N 2 0 X 0 U1 User 17 arrives at Ćoor 2, destination is 3.
4404 N 2 0 X 0 E3 Elevator doors start to open.
4424 N 2 X X 0 U5 User 17 gets in.
4449 U 2 0 X X E5 Elevator doors start to close.
4484 U 2 0 X 0 E7 Elevator moving up
4549 U 3 0 X 0 E2 Elevator stops.
4549 N 3 0 X 0 E3 Elevator doors start to open.
4569 N 3 X X 0 U6 User 17 gets out, leaves the system.
4625 N 3 0 X X E5 Elevator doors start to close.
4660 D 3 0 X 0 E8 Elevator moving down
4744 D 2 0 X 0 E2 Elevator stops.
4744 N 2 0 X 0 E3 Elevator doors start to open.
4764 N 2 X X 0 E4 Doors open, nobody is there.
4820 N 2 0 X 0 E5 Elevator doors start to close.
4840 N 2 0 X 0 E1 Elevator dormant
· · ·

2.2.5 DOUBLY LINKED LISTS 287

Subroutine D (DECISION subroutine). This subroutine is performed at certain
critical times, as speciĄed in the coroutines above, when a decision about the
elevatorŠs next direction is to be made.

D1. [Decision necessary?] If STATE ̸= NEUTRAL, exit from this subroutine.

D2. [Should doors open?] If the elevator is positioned at E1 and if CALLUP[2],
CALLCAR[2], and CALLDOWN[2] are not all zero, cause the elevator to start
its activity E3 after 20 units of time, and exit from this subroutine. (If
the DECISION subroutine is currently being invoked by the independent
activity E9, it is possible for the elevator coroutine to be positioned at E1.)

D3. [Any calls?] Find the smallest j ̸= FLOOR for which CALLUP[j], CALLCAR[j],
or CALLDOWN[j] is nonzero, and go on to step D4. But if no such j exists,
then set j ← 2 if the DECISION subroutine is currently being invoked by
step E6; otherwise exit from this subroutine.

D4. [Set STATE.] If FLOOR > j, set STATE ← GOINGDOWN; if FLOOR < j, set
STATE← GOINGUP.

D5. [Elevator dormant?] If the elevator coroutine is positioned at step E1, and
if j ̸= 2, set the elevator to perform step E6 after 20 units of time. Exit
from the subroutine.

The elevator system described above is quite complicated by comparison
with other algorithms we have seen in this book, but the choice of a real-life
system is more typical of a simulation problem than any cooked-up Ştextbook
exampleŤ would ever be.

To help understand the system, consider Table 1, which gives part of the
history of one simulation. It is perhaps best to start by examining the simple
case starting at time 4257: The elevator is sitting idly at Ćoor 2 with its doors
shut, when a user arrives (time 4384); letŠs say the userŠs name is Don. Two
seconds later, the doors open, and Don gets in after two more seconds. By
pushing button Ş3Ť he starts the elevator moving up; ultimately he gets off at
Ćoor 3 and the elevator returns to Ćoor 2.

The Ąrst entries in Table 1 show a much more dramatic scenario: A user
calls the elevator to Ćoor 0, but loses patience and gives up after 15.2 sec. The
elevator stops at Ćoor 0 but Ąnds nobody there; then it heads to Ćoor 4, since
there are several calls wanting to go downward; etc.

The programming of this system for a computer (in our case, MIX) merits
careful study. At any given time during the simulation, we may have many
simulated users in the system (in various queues and ready to Şgive upŤ at various
times), and there is also the possibility of essentially simultaneous execution of
steps E4, E5, and E9 if many people are trying to get out as the elevator is
trying to close its doors. The passing of simulated time and the handling of
ŞsimultaneityŤ may be programmed by having each entity represented by a node
that includes a NEXTTIME Ąeld (denoting the time when the next action for this
entity is to take place) and a NEXTINST Ąeld (denoting the memory address where
this entity is to start executing instructions, analogous to ordinary coroutine

288 INFORMATION STRUCTURES 2.2.5

WAIT

0000 1083 1492 1678 1776 1966

E2 U4 U1 U4 U4

QUEUE[1]

ELEVATOR

1 1 1

Fig. 12. Some lists used in the elevator simulation program. (List heads appear at
the left.)

linkage). Each entity waiting for time to pass is placed in a doubly linked
list called the WAIT list; this ŞagendaŤ is sorted on the NEXTTIME Ąelds of its
nodes, so that the actions may be processed in the correct sequence of simulated
times. The program also uses doubly linked lists for the ELEVATOR and for the
QUEUE lists.

Each node representing an activity (whether a user or an elevator action)
has the form

+ IN LLINK1 RLINK1

+ NEXTTIME

+ NEXTINST 0 0 39

+ OUT LLINK2 RLINK2

. (6)

Here LLINK1 and RLINK1 are the links for the WAIT list; LLINK2 and RLINK2 are
used as links in the QUEUE lists or the ELEVATOR. The latter two Ąelds and the
IN and OUT Ąeld are relevant when node (6) represents a user, but they are not
relevant for nodes that represent elevator actions. The third word of the node is
actually a MIX ŚJMPŠ instruction.

Figure 12 shows typical contents of the WAIT list, ELEVATOR list, and one of
the QUEUE lists; each node in the QUEUE list is simultaneously in the WAIT list
with NEXTINST = U4, but this has not been indicated in the Ągure, since the
complexity of the linking would obscure the basic idea.

Now let us consider the program itself. It is quite long, although (as with all
long programs) it divides into small parts each of which is quite simple in itself.

2.2.5 DOUBLY LINKED LISTS 289

First comes a number of lines of code that just serve to deĄne the initial contents
of the tables. There are several points of interest here: We have list heads for the
WAIT list (lines 010Ű011), the QUEUE lists (lines 026Ű031), and the ELEVATOR list
(lines 032Ű033). Each of them is a node of the form (6), but with unimportant
words deleted; the WAIT list head contains only the Ąrst two words of a node,
and the QUEUE and ELEVATOR list heads require only the last word of a node.
We also have four nodes that are always present in the system (lines 012Ű023):
USER1, a node that is always positioned at step U1 ready to enter a new user
into the system; ELEV1, a node that governs the main actions of the elevator
at steps E1, E2, E3, E4, E6, E7, and E8; and ELEV2 and ELEV3, nodes that
are used for the elevator actions E5 and E9, which take place independently of
other elevator actions with respect to simulated time. Each of these four nodes
contains only three words, since they never appear in the QUEUE or ELEVATOR

lists. The nodes representing each actual user in the system will appear in a
storage pool following the main program.

001 * THE ELEVATOR SIMULATION

002 IN EQU 1:1 DeĄnition of Ąelds
003 LLINK1 EQU 2:3 within nodes
004 RLINK1 EQU 4:5

005 NEXTINST EQU 0:2

006 OUT EQU 1:1

007 LLINK2 EQU 2:3

008 RLINK2 EQU 4:5

009 * FIXED-SIZE TABLES AND LIST HEADS

010 WAIT CON *+2(LLINK1),*+2(RLINK1) List head for WAIT list
011 CON 0 NEXTTIME = 0 always
012 USER1 CON *-2(LLINK1),*-2(RLINK1) This node represents action
013 CON 0 U1 and it is initially the
014 JMP U1 sole entry in the WAIT list.
015 ELEV1 CON 0 This node represents the
016 CON 0 elevator actions, except
017 JMP E1 for E5 and E9.
018 ELEV2 CON 0 This node represents the
019 CON 0 independent elevator
020 JMP E5 action at E5.
021 ELEV3 CON 0 This node represents the
022 CON 0 independent elevator
023 JMP E9 action at E9.
024 AVAIL CON 0 Link to available nodes
025 TIME CON 0 Current simulated time
026 QUEUE EQU *-3

027 CON *-3(LLINK2),*-3(RLINK2) List head for QUEUE[0]
028 CON *-3(LLINK2),*-3(RLINK2) List head for QUEUE[1]
029 CON *-3(LLINK2),*-3(RLINK2) All queues initially
030 CON *-3(LLINK2),*-3(RLINK2) are empty
031 CON *-3(LLINK2),*-3(RLINK2) List head for QUEUE[4]

290 INFORMATION STRUCTURES 2.2.5

032 ELEVATOR EQU *-3

033 CON *-3(LLINK2),*-3(RLINK2) List head for ELEVATOR

034 CON 0

035 CON 0 ŞPaddingŤ for CALL table
036 CON 0 (see lines 183Ű186)
037 CON 0

038 CALL CON 0 CALLUP[0], CALLCAR[0], CALLDOWN[0]
039 CON 0 CALLUP[1], CALLCAR[1], CALLDOWN[1]
040 CON 0 CALLUP[2], CALLCAR[2], CALLDOWN[2]
041 CON 0 CALLUP[3], CALLCAR[3], CALLDOWN[3]
042 CON 0 CALLUP[4], CALLCAR[4], CALLDOWN[4]
043 CON 0

044 CON 0 ŞPaddingŤ for CALL table
045 CON 0 (see lines 178Ű181)
046 CON 0

047 D1 CON 0 Indicates doors open, activity
048 D2 CON 0 Indicates no prolonged standstill
049 D3 CON 0 Indicates doors open, inactivity

The next part of the program coding contains basic subroutines and the
main control routines for the simulation process. Subroutines INSERT and DELETE

perform typical manipulations on doubly linked lists; they put the current node
into or take it out of a QUEUE or ELEVATOR list. (In the program, the Şcurrent
nodeŤ C is always represented by index register 6.) There are also subroutines for
the WAIT list: Subroutine SORTIN adds the current node to the WAIT list, sorting
it into the right place based on its NEXTTIME Ąeld. Subroutine IMMED inserts the
current node at the front of the WAIT list. Subroutine HOLD puts the current node
into the WAIT list, with NEXTTIME equal to the current time plus the amount in
register A. Subroutine DELETEW deletes the current node from the WAIT list.

The routine CYCLE is the heart of the simulation control: It decides which
activity is to act next (namely, the Ąrst element of the WAIT list, which we know
is nonempty), and jumps to it. There are two special entrances to CYCLE: CYCLE1
Ąrst sets NEXTINST in the current node, and HOLDC is the same with an additional
call on the HOLD subroutine. Thus, the effect of the instruction ŚJMP HOLDCŠ with
amount t in register A is to suspend activity for t units of simulated time and
then to return to the following location.

050 * SUBROUTINES AND CONTROL ROUTINE

051 INSERT STJ 9F Insert NODE(C) to left of NODE(rI1):
052 LD2 3,1(LLINK2) rI2← LLINK2(rI1).
053 ST2 3,6(LLINK2) LLINK2(C)← rI2.
054 ST6 3,1(LLINK2) LLINK2(rI1)← C.
055 ST6 3,2(RLINK2) RLINK2(rI2)← C.
056 ST1 3,6(RLINK2) RLINK2(C)← rI1.
057 9H JMP * Exit from subroutine.
058 DELETE STJ 9F Delete NODE(C) from its list:
059 LD1 3,6(LLINK2) P← LLINK2(C).
060 LD2 3,6(RLINK2) Q← RLINK2(C).

2.2.5 DOUBLY LINKED LISTS 291

061 ST1 3,2(LLINK2) LLINK2(Q)← P.
062 ST2 3,1(RLINK2) RLINK2(P)← Q.
063 9H JMP * Exit from subroutine.
064 IMMED STJ 9F Insert NODE(C) Ąrst in WAIT list:
065 LDA TIME

066 STA 1,6 Set NEXTTIME(C)← TIME.
067 ENT1 WAIT P← LOC(WAIT).
068 JMP 2F Insert NODE(C) to right of NODE(P).
069 HOLD ADD TIME rA← TIME + rA.
070 SORTIN STJ 9F Sort NODE(C) into WAIT list:
071 STA 1,6 Set NEXTTIME(C)← rA.
072 ENT1 WAIT P← LOC(WAIT).
073 LD1 0,1(LLINK1) P← LLINK1(P).
074 CMPA 1,1 Compare NEXTTIME Ąelds, right to left.
075 JL *-2 Repeat until NEXTTIME(C) ≥ NEXTTIME(P).
076 2H LD2 0,1(RLINK1) Q← RLINK1(P).
077 ST2 0,6(RLINK1) RLINK1(C)← Q.
078 ST1 0,6(LLINK1) LLINK1(C)← P.
079 ST6 0,1(RLINK1) RLINK1(P)← C.
080 ST6 0,2(LLINK1) LLINK1(Q)← C.
081 9H JMP * Exit from subroutine.
082 DELETEW STJ 9F Delete NODE(C) from WAIT list:
083 LD1 0,6(LLINK1) (This is same as lines 058Ű063
084 LD2 0,6(RLINK1) except LLINK1, RLINK1 are used
085 ST1 0,2(LLINK1) instead of LLINK2, RLINK2.)
086 ST2 0,1(RLINK1)

087 9H JMP *

088 CYCLE1 STJ 2,6(NEXTINST) Set NEXTINST(C)← rJ.
089 JMP CYCLE

090 HOLDC STJ 2,6(NEXTINST) Set NEXTINST(C)← rJ.
091 JMP HOLD Insert NODE(C) in WAIT, delay rA.
092 CYCLE LD6 WAIT(RLINK1) Set current node C← RLINK1(LOC(WAIT)).
093 LDA 1,6

094 STA TIME TIME← NEXTTIME(C).
095 JMP DELETEW Remove NODE(C) from WAIT list.
096 JMP 2,6 Jump to NEXTINST(C).

Now comes the program for Coroutine U. At the beginning of step U1,
the current node C is USER1 (see lines 012Ű014 above), and lines 099Ű100 of the
program cause USER1 to be reinserted into the WAIT list so that the next user
will be generated after INTERTIME units of simulated time. The following lines
101Ű114 take care of setting up a node for the newly generated user; the IN and
OUT Ćoors are recorded in this node position. The AVAIL stack is singly linked
in the RLINK1 Ąeld of each node. Note that lines 101Ű108 perform the action
ŞC ⇐ AVAILŤ using the POOLMAX technique, 2.2.3Ű(7); no test for OVERFLOW is
necessary here, since the total size of the storage pool (the number of users in
the system at any one time) rarely exceeds 10 nodes (40 words). The return of
a node to the AVAIL stack appears in lines 156Ű158.

292 INFORMATION STRUCTURES 2.2.5

Throughout the program, index register 4 equals the variable FLOOR, and
index register 5 is positive, negative, or zero, depending on whether STATE =
GOINGUP, GOINGDOWN, or NEUTRAL. The variables CALLUP[j], CALLCAR[j], and
CALLDOWN[j] occupy the respective Ąelds (1 :1), (3 :3), and (5:5) of location
CALL + j.

097 * COROUTINE U U1. Enter, prepare for successor.
098 U1 JMP VALUES Set INFLOOR, OUTFLOOR, GIVEUPTIME, INTERTIME.
099 LDA INTERTIME INTERTIME is computed by VALUES subroutine.
100 JMP HOLD Put NODE(C) in WAIT, delay INTERTIME.
101 LD6 AVAIL C← AVAIL.
102 J6P 1F If AVAIL ̸= Λ, jump.
103 LD6 POOLMAX(0:2)

104 INC6 4 C← POOLMAX + 4.
105 ST6 POOLMAX(0:2) POOLMAX← C.
106 JMP *+3 Assume that memory overĆow wonŠt happen.
107 1H LDA 0,6(RLINK1)

108 STA AVAIL AVAIL← RLINK1(AVAIL).
109 LD1 INFLOOR rI1← INFLOOR (computed by VALUES above).
110 ST1 0,6(IN) IN(C)← rI1.
111 LD2 OUTFLOOR rI2← OUTFLOOR (computed by VALUES).
112 ST2 3,6(OUT) OUT(C)← rI2.
113 ENTA 39 Put constant 39 (JMP operation code)
114 STA 2,6 into third word of node format (6).
115 U2 ENTA 0,4 U2. Signal and wait. Set rA← FLOOR.
116 DECA 0,1 FLOOR− IN.
117 ST6 TEMP Save value of C.
118 JANZ 2F Jump if FLOOR ̸= IN.
119 ENT6 ELEV1 Set C← LOC(ELEV1).
120 LDA 2,6(NEXTINST) Is elevator positioned at E6?
121 DECA E6

122 JANZ 3F

123 ENTA E3 If so, reposition it at E3.
124 STA 2,6(NEXTINST)

125 JMP DELETEW Remove it from WAIT list
126 JMP 4F and reinsert it at front of WAIT.
127 3H LDA D3

128 JAZ 2F Jump if D3 = 0.
129 ST6 D1 Otherwise make D1 nonzero.
130 STZ D3 Set D3← 0.
131 4H JMP IMMED Insert ELEV1 at front of WAIT list.
132 JMP U3 (rI1 and rI2 have changed.)
133 2H DEC2 0,1 rI2← OUT− IN.
134 ENTA 1

135 J2P *+3 Jump if going up.
136 STA CALL,1(5:5) Set CALLDOWN[IN]← 1.
137 JMP *+2

138 STA CALL,1(1:1) Set CALLUP[IN]← 1.
139 LDA D2

2.2.5 DOUBLY LINKED LISTS 293

140 JAZ *+3 If D2 = 0, call the DECISION subroutine.
141 LDA ELEV1+2(NEXTINST)

142 DECA E1 If the elevator is at E1, call
143 JAZ DECISION the DECISION subroutine.
144 U3 LD6 TEMP U3. Enter queue.
145 LD1 0,6(IN)

146 ENT1 QUEUE,1 rI1← LOC(QUEUE[IN]).
147 JMP INSERT Insert NODE(C) at right end of QUEUE[IN].
148 U4A LDA GIVEUPTIME

149 JMP HOLDC Wait GIVEUPTIME units.
150 U4 LDA 0,6(IN) U4. Give up.
151 DECA 0,4 IN(C)− FLOOR.
152 JANZ *+3

153 LDA D1 FLOOR = IN(C).
154 JANZ U4A See exercise 7.
155 U6 JMP DELETE U6. Get out. NODE(C) is deleted
156 LDA AVAIL from QUEUE or ELEVATOR.
157 STA 0,6(RLINK1) AVAIL⇐ C.
158 ST6 AVAIL

159 JMP CYCLE Continue simulation.
160 U5 JMP DELETE U5. Get in. NODE(C) is deleted
161 ENT1 ELEVATOR from QUEUE.
162 JMP INSERT Insert it at right of ELEVATOR.
163 ENTA 1

164 LD2 3,6(OUT)

165 STA CALL,2(3:3) Set CALLCAR[OUT(C)]← 1.
166 J5NZ CYCLE Jump if STATE ̸= NEUTRAL.
167 DEC2 0,4 rI2← OUT(C)− FLOOR.
168 ENT5 0,2 Set STATE to proper direction.
169 ENT6 ELEV2 Set C← LOC(ELEV2).
170 JMP DELETEW Remove E5 action from WAIT list.
171 ENTA 25

172 JMP E5A Restart E5 action 25 units from now.

The program for Coroutine E is a rather straightforward rendition of the
semiformal description given earlier. Perhaps the most interesting portion is the
preparation for the elevatorŠs independent actions in step E3, and the searching
of the ELEVATOR and QUEUE lists in step E4.

173 * COROUTINE E

174 E1A JMP CYCLE1 Set NEXTINST← E1, go to CYCLE.
175 E1 EQU * E1. Wait for call. (no action)
176 E2A JMP HOLDC

177 E2 J5N 1F E2. Change of state?
178 LDA CALL+1,4 State is GOINGUP.
179 ADD CALL+2,4

180 ADD CALL+3,4

181 ADD CALL+4,4

182 JAP E3 Are there calls for higher Ćoors?

294 INFORMATION STRUCTURES 2.2.5

183 LDA CALL-1,4(3:3) If not, have passengers in the
184 ADD CALL-2,4(3:3) elevator called for lower Ćoors?
185 ADD CALL-3,4(3:3)

186 ADD CALL-4,4(3:3)

187 JMP 2F

188 1H LDA CALL-1,4 State is GOINGDOWN.
189 ADD CALL-2,4 Actions are like lines 178Ű186.

...

196 ADD CALL+4,4(3:3)

197 2H ENN5 0,5 Reverse direction of STATE.
198 STZ CALL,4 Set CALL variables to zero.
199 JANZ E3 Jump if called to the opposite direction;
200 ENT5 0 otherwise set STATE← NEUTRAL.
201 E3 ENT6 ELEV3 E3. Open doors.
202 LDA 0,6 If activity E9 is already scheduled,
203 JANZ DELETEW remove it from the WAIT list.
204 ENTA 300

205 JMP HOLD Schedule activity E9 after 300 units.
206 ENT6 ELEV2

207 ENTA 76

208 JMP HOLD Schedule activity E5 after 76 units.
209 ST6 D2 Set D2 nonzero.
210 ST6 D1 Set D1 nonzero.
211 ENTA 20

212 E4A ENT6 ELEV1

213 JMP HOLDC

214 E4 ENTA 0,4 E4. Let people out, in.
215 SLA 4 Set OUT Ąeld of rA to FLOOR.
216 ENT6 ELEVATOR C← LOC(ELEVATOR).
217 1H LD6 3,6(LLINK2) C← LLINK2(C).
218 CMP6 =ELEVATOR= Search ELEVATOR list, right to left.
219 JE 1F If C = LOC(ELEVATOR), search is complete.
220 CMPA 3,6(OUT) Compare OUT(C) with FLOOR.
221 JNE 1B If not equal, continue searching;
222 ENTA U6 otherwise prepare to send user to U6.
223 JMP 2F

224 1H LD6 QUEUE+3,4(RLINK2) Set C← RLINK2(LOC(QUEUE[FLOOR])).
225 CMP6 3,6(RLINK2) Is C = RLINK2(C)?
226 JE 1F If so, the queue is empty.
227 JMP DELETEW If not, cancel action U4 for this user.
228 ENTA U5 Prepare to replace U4 by U5.
229 2H STA 2,6(NEXTINST) Set NEXTINST(C).
230 JMP IMMED Put user at the front of the WAIT list.
231 ENTA 25

232 JMP E4A Wait 25 units and repeat E4.
233 1H STZ D1 Set D1← 0.
234 ST6 D3 Set D3 nonzero.
235 JMP CYCLE Return to simulate other events.

2.2.5 DOUBLY LINKED LISTS 295

236 E5A JMP HOLDC

237 E5 LDA D1 E5. Close doors.
238 JAZ *+3 Is D1 = 0?
239 ENTA 40 If not, people are still getting in or out.
240 JMP E5A Wait 40 units, repeat E5.
241 STZ D3 If D1 = 0, set D3← 0.
242 ENT6 ELEV1

243 ENTA 20

244 JMP HOLDC Wait 20 units, then go to E6.
245 E6 J5N *+2 E6. Prepare to move.
246 STZ CALL,4(1:3) If STATE ̸= GOINGDOWN, CALLUP and CALLCAR

247 J5P *+2 on this Ćoor are reset.
248 STZ CALL,4(3:5) If ̸= GOINGUP, reset CALLCAR and CALLDOWN.
249 J5Z DECISION Perform DECISION subroutine.
250 E6B J5Z E1A If STATE = NEUTRAL, go to E1 and wait.
251 LDA D2

252 JAZ *+4

253 ENT6 ELEV3 Otherwise, if D2 ̸= 0,
254 JMP DELETEW cancel activity E9
255 STZ ELEV3 (see line 202).
256 ENT6 ELEV1

257 ENTA 15 Wait 15 units of time.
258 J5N E8A If STATE = GOINGDOWN, go to E8.
259 E7A JMP HOLDC

260 E7 INC4 1 E7. Go up a Ćoor.
261 ENTA 51

262 JMP HOLDC Wait 51 units.
263 LDA CALL,4(1:3) Is CALLCAR[FLOOR] or CALLUP[FLOOR] ̸= 0?
264 JAP 1F

265 ENT1 -2,4 If not,
266 J1Z 2F is FLOOR = 2?
267 LDA CALL,4(5:5) If not, is CALLDOWN[FLOOR] ̸= 0?
268 JAZ E7 If not, repeat step E7.
269 2H LDA CALL+1,4

270 ADD CALL+2,4

271 ADD CALL+3,4

272 ADD CALL+4,4

273 JANZ E7 Are there calls for higher Ćoors?
274 1H ENTA 14 It is time to stop the elevator.
275 JMP E2A Wait 14 units and go to E2.
276 E8A JMP HOLDC

... (See exercise 8.)

292 JMP E2A

293 E9 STZ 0,6 E9. Set inaction indicator. (See line 202.)
294 STZ D2 D2← 0.
295 JMP DECISION Perform DECISION subroutine.
296 JMP CYCLE Return to simulation of other events.

296 INFORMATION STRUCTURES 2.2.5

We will not consider here the DECISION subroutine (see exercise 9), nor the
VALUES subroutine that is used to specify the demands on the elevator. At the
very end of the program comes the code

BEGIN ENT4 2 Start with FLOOR = 2
ENT5 0 and STATE = NEUTRAL.
JMP CYCLE Begin simulation.

POOLMAX NOP POOL
POOL END BEGIN Storage pool follows literals, temp storage.

The program above does a Ąne job of simulating the elevator system, as it
goes through its paces. But it would be useless to run this program, since there
is no output! Actually, the author added a PRINT subroutine that was called at
most of the critical steps in the program above, and this was used to prepare
Table 1; the details have been omitted, since they are very straightforward but
they only clutter up the code.

Several programming languages have been devised that make it quite easy
to specify the actions in a discrete simulation, and to use a compiler to translate
these speciĄcations into machine language. Assembly language was used in this
section, of course, since we are concerned here with the basic techniques of linked
list manipulation, and we want to see the details of how discrete simulations can
actually be performed by a computer that has a one-track mind. The technique
of using a WAIT list or agenda to control the sequencing of coroutines, as we have
done in this section, is called quasiparallel processing.

It is quite difficult to give a precise analysis of the running time of such a long
program, because of the complex interactions involved; but large programs often
spend most of their time in comparatively short routines doing comparatively
simple things. Therefore we can usually get a good indication of the overall
efficiency by using a special trace routine called a proĄler, which executes the
program and records how often each instruction is performed. This identiĄes the
Şbottlenecks,Ť the places that should be given special attention. [See exercise
1.4.3.2Ű7. See also Software Practice & Experience 1 (1971), 105Ű133, for
examples of such studies on randomly selected FORTRAN programs found in
wastebaskets at the Stanford Computer Center.] The author made such an
experiment with the elevator program above, running it for 10000 units of
simulated elevator time; 26 users entered the simulated system. The instructions
in the SORTIN loop, lines 073Ű075, were executed by far the most often, 1432
times, while the SORTIN subroutine itself was called 437 times. The CYCLE

routine was performed 407 times; so we could gain a little speed by not calling
the DELETEW subroutine at line 095: The four lines of that subroutine could be
written out in full (to save 4u each time CYCLE is used). The proĄler also showed
that the DECISION subroutine was called only 32 times and the loop in E4 (lines
217Ű219) was executed only 142 times.

It is hoped that some reader will learn as much about simulation from the
example above as the author learned about elevators while the example was
being prepared.

2.2.5 DOUBLY LINKED LISTS 297

EXERCISES

1. [21] Give speciĄcations for the insertion and deletion of information at the left
end of a doubly linked list represented as in (1). (With the dual operations at the right
end, which are obtained by symmetry, we therefore have all the actions of a general
deque.)

x 2. [22] Explain why a list that is singly linked cannot allow efficient operation as a
general deque; the deletion of items can be done efficiently at only one end of a singly
linked list.

x 3. [22] The elevator system described in the text uses three call variables, CALLUP,
CALLCAR, and CALLDOWN, for each Ćoor, representing buttons that have been pushed by
the users in the system. It is conceivable that the elevator actually needs only one or
two binary variables for the call buttons on each Ćoor, instead of three. Explain how
an experimenter could push buttons in a certain sequence with this elevator system to
prove that there are three independent binary variables for each Ćoor (except the top
and bottom Ćoors).

4. [24] Activity E9 in the elevator coroutine is usually canceled by step E6; and
even when it hasnŠt been canceled, it doesnŠt do very much. Explain under what
circumstances the elevator would behave differently if activity E9 were deleted from
the system. Would it, for example, sometimes visit Ćoors in a different order?

5. [20] In Table 1, user 10 arrived on Ćoor 0 at time 1048. Show that if user 10 had
arrived on Ćoor 2 instead of Ćoor 0, the elevator would have gone up after receiving
its passengers on Ćoor 1, instead of down, in spite of the fact that user 8 wants to go
down to Ćoor 0.

6. [23] During the time period 1183Ű1233 in Table 1, users 7, 8, and 9 all get in the
elevator on Ćoor 1; then the elevator goes down to Ćoor 0 and only user 8 gets out.
Now the elevator stops again on Ćoor 1, presumably to pick up users 7 and 9 who are
already aboard; nobody is actually on Ćoor 1 waiting to get in. (This situation occurs
not infrequently at Caltech; if you get on the elevator going the wrong way, you must
wait for an extra stop as you go by your original Ćoor again.) In many elevator systems,
users 7 and 9 would not have boarded the elevator at time 1183, since lights outside
the elevator would show that it was going down, not up; those users would have waited
until the elevator came back up and stopped for them. On the system described, there
are no such lights and it is impossible to tell which way the elevator is going to go until
you are in it; hence Table 1 reĆects the actual situation.

What changes should be made to coroutines U and E if we were to simulate the
same elevator system, but with indicator lights, so that people do not get on the elevator
when its state is contrary to their desired direction?

7. [25] Although bugs in programs are often embarrassing to a programmer, if we
are to learn from our mistakes we should record them and tell other people about them
instead of forgetting them. The following error (among others) was made by the author
when he Ąrst wrote the program in this section: Line 154 said ŚJANZ CYCLEŠ instead
of ŚJANZ U4AŠ. The reasoning was that if indeed the elevator had arrived at this userŠs
Ćoor, there was no need to perform the Şgive upŤ activity U4 any more, so we could
simply go to CYCLE and continue simulating other activities. What was the error?

8. [21] Write the code for step E8, lines 277Ű292, which has been omitted from the
program in the text.

298 INFORMATION STRUCTURES 2.2.5

9. [23] Write the code for the DECISION subroutine, which has been omitted from
the program in the text.

10. [40] It is perhaps signiĄcant to note that although the author had used the
elevator system for years and thought he knew it well, it wasnŠt until he attempted
to write this section that he realized there were quite a few facts about the elevatorŠs
system of choosing directions that he did not know. He went back to experiment with
the elevator six separate times, each time believing he had Ąnally achieved a complete
understanding of its modus operandi. (Now he is reluctant to ride it for fear that some
new facet of its operation will appear, contradicting the algorithms given.) We often
fail to realize how little we know about a thing until we attempt to simulate it on a
computer.

Try to specify the actions of some elevator you are familiar with. Check the
algorithm by experiments with the elevator itself (looking at its circuitry is not fair!);
then design a discrete simulator for the system and run it on a computer.

x 11. [21] (A sparse-update memory.) The following problem often arises in synchro-

nous simulations: The system has n variables V[1], . . . , V[n], and at every simulated
step new values for some of them are calculated from the old values. These calculations
are assumed done ŞsimultaneouslyŤ in the sense that the variables do not change to
their new values until after all assignments have been made. Thus, the two statements

V[1]← V[2] and V[2]← V[1]

appearing at the same simulated time would interchange the values of V[1] and V[2];
this is quite different from what would happen in a sequential calculation.

The desired action can of course be simulated by keeping an additional table
NEWV[1], . . . , NEWV[n]. Before each simulated step, we could set NEWV[k] ← V[k] for
1 ≤ k ≤ n, then record all changes of V[k] in NEWV[k], and Ąnally, after the step
we could set V[k] ← NEWV[k], 1 ≤ k ≤ n. But this Şbrute forceŤ approach is not
completely satisfactory, for the following reasons: (1) Often n is very large, but the
number of variables changed per step is rather small. (2) The variables are often not
arranged in a nice table V[1], . . . , V[n], but are scattered throughout memory in a
rather chaotic fashion. (3) This method does not detect the situation (usually an error
in the model) when one variable is given two values in the same simulated step.

Assuming that the number of variables changed per step is rather small, design
an efficient algorithm that simulates the desired actions, using two auxiliary tables
NEWV[k] and LINK[k], 1 ≤ k ≤ n. If possible, your algorithm should give an error stop
if the same variable is being given two different values in the same step.

x 12. [22] Why is it a good idea to use doubly linked lists instead of singly linked or
sequential lists in the simulation program of this section?

2.2.6. Arrays and Orthogonal Lists

One of the simplest generalizations of a linear list is a two-dimensional or higher-
dimensional array of information. For example, consider the case of an m × n
matrix

A[1,1] A[1,2] . . . A[1,n]

A[2,1] A[2,2] . . . A[2,n]
...

...
...

A[m,1] A[m,2] . . . A[m,n]

 . (1)

2.2.6 ARRAYS AND ORTHOGONAL LISTS 299

In this two-dimensional array, each node A[j,k] belongs to two linear lists:
the Şrow jŤ list A[j,1], A[j,2], . . . , A[j,n] and the Şcolumn kŤ list A[1,k],
A[2,k], . . . , A[m,k]. These orthogonal row and column lists essentially account
for the two-dimensional structure of a matrix. Similar remarks apply to higher-
dimensional arrays of information.

Sequential Allocation. When an array like (1) is stored in sequential memory
locations, storage is usually allocated so that

LOC(A[J,K]) = a0 + a1J + a2K, (2)

where a0, a1, and a2 are constants. Let us consider a more general case:
Suppose we have a four-dimensional array with one-word elements Q[I,J,K,L]

for 0 ≤ I ≤ 2, 0 ≤ J ≤ 4, 0 ≤ K ≤ 10, 0 ≤ L ≤ 2. We would like to allocate
storage so that

LOC(Q[I,J,K,L]) = a0 + a1I + a2J + a3K + a4L. (3)

This means that a change in I, J, K, or L leads to a readily calculated change in
the location of Q[I,J,K,L]. The most natural (and most commonly used) way
to allocate storage is to arrange the array elements according to the lexicographic
order of their indices

exercise 1.2.1Ű15(d)

, sometimes called Şrow major orderŤ:

Q[0,0,0,0], Q[0,0,0,1], Q[0,0,0,2], Q[0,0,1,0], Q[0,0,1,1], . . . ,

Q[0,0,10,2], Q[0,1,0,0], . . . , Q[0,4,10,2], Q[1,0,0,0], . . . ,

Q[2,4,10,2].

It is easy to see that this order satisĄes the requirements of (3), and we have

LOC(Q[I,J,K,L]) = LOC(Q[0,0,0,0]) + 165I + 33J + 3K + L. (4)

In general, given a k-dimensional array with c-word elements A[I1,I2, . . . ,Ik]
for

0 ≤ I1 ≤ d1, 0 ≤ I2 ≤ d2, . . . , 0 ≤ Ik ≤ dk,
we can store it in memory as

LOC(A[I1,I2, . . . ,Ik])

= LOC(A[0,0,. . .,0])+c (d2 +1) . . . (dk +1)I1 + · · ·+c (dk +1)Ik−1 +cIk

= LOC(A[0,0,. . .,0])+

1≤r≤k

arIr, (5)

where
ar = c

r<s≤k

(ds + 1). (6)

To see why this formula works, observe that ar is the amount of memory needed
to store the subarray A[I1, . . . ,Ir,Jr+1, . . . ,Jk] if I1, . . . , Ir are constant and
Jr+1, . . . , Jk vary through all values 0 ≤ Jr+1 ≤ dr+1, . . . , 0 ≤ Jk ≤ dk; hence
by the nature of lexicographic order the address of A[I1, . . . ,Ik] should change
by precisely this amount when Ir changes by 1.

300 INFORMATION STRUCTURES 2.2.6

Formulas (5) and (6) correspond to the value of the number I1I2 . . . Ik in a
mixed-radix number system. For example, if we had the array TIME[W,D,H,M,S]

with 0 ≤ W < 4, 0 ≤ D < 7, 0 ≤ H < 24, 0 ≤ M < 60, and 0 ≤ S < 60, the
location of TIME[W,D,H,M,S] would be the location of TIME[0,0,0,0,0] plus
the quantity ŞW weeks + D days + H hours + M minutes + S secondsŤ converted to
seconds. Of course, it takes a pretty fancy application to make use of an array
that has 2,419,200 elements.

The normal method for storing arrays is generally suitable when the array
has a complete rectangular structure, so that all elements A[I1,I2, . . . ,Ik] are
present for indices in the independent ranges l1 ≤ I1 ≤ u1, l2 ≤ I2 ≤ u2, . . . ,
lk ≤ Ik ≤ uk. Exercise 2 shows how to adapt (5) and (6) to the case when the
lower bounds (l1, l2, . . . , lk) are not (0, 0, . . . , 0).

But there are many situations in which an array is not perfectly rectangular.
Most common is the triangular matrix, where we want to store only the entries
A[j,k] for, say, 0 ≤ k ≤ j ≤ n:

A[0,0]

A[1,0] A[1,1]
...

...
. . .

A[n,0] A[n,1] . . . A[n,n]

 . (7)

We may know that all other entries are zero, or that A[j,k] = A[k,j], so that
only half of the values need to be stored. If we want to store the lower triangular
matrix (7) in 1

2 (n + 1)(n + 2) consecutive memory positions, we are forced to
give up the possibility of linear allocation as in Eq. (2), but we can ask instead
for an allocation arrangement of the form

LOC(A[J,K]) = a0 + f1(J) + f2(K) (8)

where f1 and f2 are functions of one variable. (The constant a0 may be absorbed
into either f1 or f2 if desired.) When the addressing has the form (8), a random
element A[j,k] can be quickly accessed if we keep two (rather short) auxiliary
tables of the values of f1 and f2; therefore these functions need to be calculated
only once.

It turns out that lexicographic order of indices for the array (7) satisĄes
condition (8), and with one-word entries we have in fact the simple formula

LOC(A[J,K]) = LOC(A[0,0]) +
J(J + 1)

2
+ K. (9)

But there is actually a far better way to store triangular matrices, if we are
fortunate enough to have two of them with the same size. Suppose that we want
to store both A[j,k] and B[j,k] for 0 ≤ k ≤ j ≤ n. Then we can Ąt them both
into a single matrix C[j,k] for 0 ≤ j ≤ n, 0 ≤ k ≤ n+ 1, using the convention

A[j,k] = C[j,k], B[j,k] = C[k,j + 1]. (10)

2.2.6 ARRAYS AND ORTHOGONAL LISTS 301

Thus

C[0,0] C[0,1] C[0,2] . . . C[0,n+1]

C[1,0] C[1,1] C[1,2] . . . C[1,n+1]
...

...
C[n,0] C[n,1] C[n,2] . . .C[n,n+1]

≡

A[0,0] B[0,0] B[1,0] . . . B[n,0]

A[1,0] A[1,1] B[1,1] . . . B[n,1]
...

...
A[n,0] A[n,1] A[n,2] . . .B[n,n]

.

The two triangular matrices are packed together tightly within the space of
(n+ 1)(n+ 2) locations, and we have linear addressing as in (2).

The generalization of triangular matrices to higher dimensions is called a
tetrahedral array. This interesting topic is the subject of exercises 6 through 8.

As an example of typical programming techniques for use with sequentially
stored arrays, see exercise 1.3.2Ű10 and the two answers given for that exercise.
The fundamental techniques for efficient traversal of rows and columns, as well
as the uses of sequential stacks, are of particular interest within those programs.

Linked Allocation. Linked memory allocation also applies to higher-dimen-
sional arrays of information in a natural way. In general, our nodes can contain
k link Ąelds, one for each list the node belongs to. The use of linked memory is
generally for cases in which the arrays are not strictly rectangular in character.

PERSON[6]

PERSON[5]

PERSON[4]

PERSON[3]

PERSON[2]

PERSON[1]

Female, age 21, brown eyes, dark hair

Male, age 24, brown eyes, dark hair

Female, age 22, green eyes, blonde hair

Male, age 28, hazel eyes, blond hair

Female, age 22, blue eyes, red hair

Female, age 21, blue eyes, blonde hair

M
A
L
E

F
E
M
A
L
E

A
2
1

A
2
2

A
2
3

A
2
4

A
2
8

B
L
U
E

B
R
O
W
N

G
R
E
E
N

H
A
Z
E
L

B
L
O
N
D

R
E
D

D
A
R
K

Fig. 13. Each node in four different lists.

As an example, we might have a list in which every node represents a person,
with four link Ąelds: SEX, AGE, EYES, and HAIR. In the EYES Ąeld we link together
all nodes with the same eye color, etc. (See Fig. 13.) It is easy to visualize efficient
algorithms for inserting new people into the list; deletion would, however, be
much slower, unless we used double linking. We can also conceive of algorithms
of varying degrees of efficiency for doing things like ŞFind all blue-eyed blonde
women of ages 21 through 23Ť; see exercises 9 and 10. Problems in which each
node of a list is to reside in several kinds of other lists at once arise rather
frequently; indeed, the elevator system simulation described in the preceding
section has nodes that are in both the QUEUE and WAIT lists simultaneously.

302 INFORMATION STRUCTURES 2.2.6

As a detailed example of the use of linked allocation for orthogonal lists,
we will consider the case of sparse matrices (that is, matrices of large order in
which most of the elements are zero). The goal is to operate on these matrices
as though the entire matrix were present, but to save great amounts of time
and space because the zero entries need not be represented. One way to do
this, intended for random references to elements of the matrix, would be to use
the storage and retrieval methods of Chapter 6, to Ąnd A[j,k] from the key
Ş[j, k]Ť; however, there is another way to deal with sparse matrices that is often
preferable because it reĆects the matrix structure more appropriately, and this
is the method we will discuss here.

The representation we will discuss consists of circularly linked lists for each
row and column. Every node of the matrix contains three words and Ąve Ąelds:

ROW UP

COL LEFT

VAL

(11)

Here ROW and COL are the row and column indices of the node; VAL is the value
stored at that part of the matrix; LEFT and UP are links to the next nonzero
entry to the left in the row, or upward in the column, respectively. There are
special list head nodes, BASEROW[i] and BASECOL[j], for every row and column.
These nodes are identiĄed by

COL(LOC(BASEROW[i])) < 0 and ROW(LOC(BASECOL[j])) < 0.

As usual in a circular list, the LEFT link in BASEROW[i] is the location of the
rightmost value in that row, and UP in BASECOL[j] points to the bottom-most
value in that column. For example, the matrix

50 0 0 0
10 0 20 0
0 0 0 0

−30 0 −60 5

 (12)

would be represented as shown in Fig. 14.
Using sequential allocation of storage, a 200 × 200 matrix would take 40000

words, and this is more memory than many computers used to have; but a
suitably sparse 200 × 200 matrix can be represented as above even in MIXŠs
4000-word memory. (See exercise 11.) The amount of time taken to access a
random element A[j,k] is also quite reasonable, if there are but few elements
in each row or column; and since most matrix algorithms proceed by walking
sequentially through a matrix, instead of accessing elements at random, this
linked representation often works faster than a sequential one.

As a typical example of a nontrivial algorithm dealing with sparse matrices
in this form, we will consider the pivot step operation, which is an important part
of algorithms for solving linear equations, for inverting matrices, and for solving

2.2.6 ARRAYS AND ORTHOGONAL LISTS 303

−1 −1 −1 −1

−1 1 1 50

−1 2 1 10 2 3 20

−1

−1 4 1 −30 4 3 −60 4 4 5

Fig. 14. Representation of matrix (12), with nodes in the format
LEFT UP

ROW COL VAL
.

List heads appear at the left and at the top.

linear programming problems by the simplex method. A pivot step is the follow-
ing matrix transformation (see M. H. Doolittle, Report of the Superintendent of
the U. S. Coast and Geodetic Survey (1878), 115Ű120):

Before pivot step

Pivot
column

Any
other

column
...

...
Pivot row · · · a · · · b · · ·

...
...

Any other row · · · c · · · d · · ·
...

...

,

After pivot step

Pivot
column

Any
other

column
...

...
· · · 1/a · · · b/a · · ·

...
...

· · · −c/a · · · d− bc/a · · ·
...

...

(13)

It is assumed that the pivot element, a, is nonzero. For example, a pivot step
applied to matrix (12), with the element 10 in row 2 column 1 as pivot, leads to

−5 0 −100 0

0.1 0 2 0

0 0 0 0

3 0 0 5

 . (14)

304 INFORMATION STRUCTURES 2.2.6

Our goal is to design an algorithm that performs this pivot operation on
sparse matrices that are represented as in Fig. 14. It is clear that the trans-
formation (13) affects only those rows of a matrix for which there is a nonzero
element in the pivot column, and it affects only those columns for which there
is a nonzero entry in the pivot row.

The pivoting algorithm is in many ways a straightforward application of
linking techniques we have already discussed; in particular, it bears strong
resemblances to Algorithm 2.2.4A for addition of polynomials. There are two
things, however, that make the problem a little tricky: If in (13) we have b ̸= 0
and c ̸= 0 but d = 0, the sparse matrix representation has no entry for d and we
must insert a new entry; and if b ̸= 0, c ̸= 0, d ̸= 0, but d − bc/a = 0, we must
delete the entry that was formerly there. These insertion and deletion operations
are more interesting in a two-dimensional array than in the one-dimensional case;
to do them we must know what links are affected. Our algorithm processes the
matrix rows successively from bottom to top. The efficient ability to insert and
delete involves the introduction of a set of pointer variables PTR[j], one for each
column considered; these variables traverse the columns upwards, giving us the
ability to update the proper links in both dimensions.

Algorithm S (Pivot step in a sparse matrix). Given a matrix represented as
in Fig. 14, we perform the pivot operation (13). Assume that PIVOT is a link
variable pointing to the pivot element. The algorithm makes use of an auxiliary
table of link variables PTR[j], one for each column of the matrix. The variable
ALPHA and the VAL Ąeld of each node are assumed to be Ćoating point or rational
quantities, while everything else in this algorithm has integer values.

S1. [Initialize.] Set ALPHA← 1.0/VAL(PIVOT), VAL(PIVOT)← 1.0, and

I0← ROW(PIVOT), P0← LOC(BASEROW[I0]);
J0← COL(PIVOT), Q0← LOC(BASECOL[J0]).

S2. [Process pivot row.] Set P0 ← LEFT(P0), J ← COL(P0). If J < 0, go on
to step S3 (the pivot row has been traversed). Otherwise set PTR[J] ←
LOC(BASECOL[J]) and VAL(P0)← ALPHA× VAL(P0), and repeat step S2.

S3. [Find new row.] Set Q0 ← UP(Q0). (The remainder of the algorithm deals
successively with each row, from bottom to top, for which there is an entry
in the pivot column.) Set I← ROW(Q0). If I < 0, the algorithm terminates.
If I = I0, repeat step S3 (we have already done the pivot row). Otherwise
set P← LOC(BASEROW[I]), P1← LEFT(P). (The pointers P and P1 will now
proceed across row I from right to left, as P0 goes in synchronization across
row I0; Algorithm 2.2.4A is analogous. We have P0 = LOC(BASEROW[I0])

at this point.)

S4. [Find new column.] Set P0 ← LEFT(P0), J ← COL(P0). If J < 0, set
VAL(Q0)← −ALPHA× VAL(Q0) and return to S3. If J = J0, repeat step S4.
(Thus we process the pivot column entry in row I after all other column
entries have been processed; the reason is that VAL(Q0) is needed in step S7.)

2.2.6 ARRAYS AND ORTHOGONAL LISTS 305

S5. [Find I, J element.] If COL(P1) > J, set P← P1, P1← LEFT(P), and repeat
step S5. If COL(P1) = J, go to step S7. Otherwise go to step S6 (we need
to insert a new element in column J of row I).

S6. [Insert I, J element.] If ROW(UP(PTR[J])) > I, set PTR[J] ← UP(PTR[J]),
and repeat step S6. (Otherwise, we will have ROW(UP(PTR[J])) < I; the new
element is to be inserted just above NODE(PTR[J]) in the vertical dimension,
and just left of NODE(P) in the horizontal dimension.) Otherwise set X ⇐
AVAIL, VAL(X) ← 0, ROW(X) ← I, COL(X) ← J, LEFT(X) ← P1, UP(X) ←
UP(PTR[J]), LEFT(P)← X, UP(PTR[J])← X, P1← X.

S7. [Pivot.] Set VAL(P1)← VAL(P1)−VAL(Q0)×VAL(P0). If now VAL(P1) = 0,
go to S8. (Note: When Ćoating point arithmetic is being used, this test
ŞVAL(P1) = 0Ť should be replaced by Ş|VAL(P1)| < EPSILONŤ or better yet
by the condition Şmost of the signiĄcant Ągures of VAL(P1) were lost in the
subtraction.Ť) Otherwise, set PTR[J]← P1, P← P1, P1← LEFT(P), and go
back to S4.

S8. [Delete I, J element.] If UP(PTR[J]) ̸= P1 (or, what is essentially the same
thing, if ROW(UP(PTR[J])) > I), set PTR[J] ← UP(PTR[J]) and repeat
step S8; otherwise, set UP(PTR[J]) ← UP(P1), LEFT(P) ← LEFT(P1),
AVAIL⇐ P1, P1← LEFT(P). Go back to S4.

The programming of this algorithm is left as a very instructive exercise for
the reader (see exercise 15). It is worth pointing out here that it is necessary to
allocate only one word of memory to each of the nodes BASEROW[i], BASECOL[j],
since most of their Ąelds are irrelevant. (See the shaded areas in Fig. 14, and see
the program of Section 2.2.5.) Furthermore, the value −PTR[j] can be stored as
ROW(LOC(BASECOL[j])) for additional storage space economy. The running time
of Algorithm S is very roughly proportional to the number of matrix elements
affected by the pivot operation.

This representation of sparse matrices via orthogonal circular lists is in-
structive, but numerical analysts have developed better methods. See Fred G.
Gustavson, ACM Trans. on Math. Software 4 (1978), 250Ű269; see also the graph
and network algorithms in Chapter 7 (for example, Algorithm 7B).

EXERCISES

1. [17] Give a formula for LOC(A[J,K]) if A is the matrix of (1), and if each node
of the array is two words long, assuming that the nodes are stored consecutively in
lexicographic order of the indices.

x 2. [21] Formulas (5) and (6) have been derived from the assumption that 0 ≤ Ir ≤ dr
for 1 ≤ r ≤ k. Give a general formula that applies to the case lr ≤ Ir ≤ ur, where
lr and ur are any lower and upper bounds on the dimensionality.

3. [21] The text considers lower triangular matrices A[j,k] for 0 ≤ k ≤ j ≤ n. How
can the discussion of such matrices readily be modiĄed for the case that subscripts
start at 1 instead of 0, so that 1 ≤ k ≤ j ≤ n?

4. [22] Show that if we store the upper triangular array A[j,k] for 0 ≤ j ≤ k ≤ n
in lexicographic order of the indices, the allocation satisĄes the condition of Eq. (8).
Find a formula for LOC(A[J,K]) in this sense.

306 INFORMATION STRUCTURES 2.2.6

5. [20] Show that it is possible to bring the value of A[J,K] into register A in one
MIX instruction, using the indirect addressing feature of exercise 2.2.2Ű3, even when
A is a triangular matrix as in (9). (Assume that the values of J and K are in index
registers.)

x 6. [M24] Consider the Ştetrahedral arraysŤ A[i,j,k], B[i,j,k], where 0 ≤ k ≤ j ≤
i ≤ n in A, and 0 ≤ i ≤ j ≤ k ≤ n in B. Suppose that both of these arrays are
stored in consecutive memory locations in lexicographic order of the indices; show that
LOC(A[I,J,K]) = a0 + f1(I) + f2(J) + f3(K) for certain functions f1, f2, f3. Can
LOC(B[I,J,K]) be expressed in a similar manner?

7. [M23] Find a general formula to allocate storage for the k-dimensional tetrahedral
array A[i1,i2,. . .,ik], where 0 ≤ ik ≤ · · · ≤ i2 ≤ i1 ≤ n.

8. [33] (P. Wegner.) Suppose we have six tetrahedral arrays A[I,J,K], B[I,J,K],
C[I,J,K], D[I,J,K], E[I,J,K], and F[I,J,K] to store in memory, where 0 ≤ K ≤ J ≤
I ≤ n. Is there a neat way to accomplish this, analogous to (10) in the two-dimensional
case?

9. [22] Suppose a table, like that indicated in Fig. 13 but much larger, has been
set up so that all links go in the same direction as shown there (namely, LINK(X) < X

for all nodes and links). Design an algorithm that Ąnds the addresses of all blue-eyed
blonde women of ages 21 through 23, by going through the various link Ąelds in such
a way that upon completion of the algorithm at most one pass has been made through
each of the lists FEMALE, A21, A22, A23, BLOND, and BLUE.
10. [26] Can you think of a better way to organize a personnel table so that searches
as described in the previous exercise would be more efficient? (The answer to this
exercise is not merely ŞyesŤ or Şno.Ť)
11. [11] Suppose that we have a 200 × 200 matrix in which there are at most four
nonzero entries per row. How much storage is required to represent this matrix as in
Fig. 14, if we use three words per node except for list heads, which will use one word?

x 12. [20] What are VAL(Q0), VAL(P0), and VAL(P1) at the beginning of step S7, in
terms of the notation a, b, c, d used in (13)?

x 13. [22] Why were circular lists used in Fig. 14 instead of straight linear lists? Could
Algorithm S be rewritten so that it does not make use of the circular linkage?
14. [22] Algorithm S actually saves pivoting time in a sparse matrix, since it avoids
consideration of those columns in which the pivot row has a zero entry. Show that
this savings in running time can be achieved in a large sparse matrix that is stored
sequentially, with the help of an auxiliary table LINK[j], 1 ≤ j ≤ n.

x 15. [29] Write a MIXAL program for Algorithm S. Assume that the VAL Ąeld is a
Ćoating point number, and that MIXŠs Ćoating point arithmetic operators FADD, FSUB,
FMUL, and FDIV can be used for operations on this Ąeld. Assume for simplicity that
FADD and FSUB return the answer zero when the operands added or subtracted cancel
most of the signiĄcance, so that the test ŞVAL(P1) = 0Ť may safely be used in step S7.
The Ćoating point operations use only rA, not rX.
16. [25] Design an algorithm to copy a sparse matrix. (In other words, the algorithm
is to yield two distinct representations of a matrix in memory, having the form of
Fig. 14, given just one such representation initially.)
17. [26] Design an algorithm to multiply two sparse matrices; given matrices A and B,
form a new matrix C, where C[i,j] =

k A[i,k]B[k,j]. The two input matrices and

the output matrix should be represented as in Fig. 14.

2.2.6 ARRAYS AND ORTHOGONAL LISTS 307

18. [22] The following algorithm replaces a matrix by the inverse of that matrix,
assuming that the entries are A[i,j], for 1 ≤ i, j ≤ n:

i) For k = 1, 2, . . . , n do the following: Search row k in all columns not yet used
as a pivot column, to Ąnd an entry with the greatest absolute value; set C[k] equal to
the column in which this entry was found, and do a pivot step with this entry as pivot.
(If all such entries are zero, the matrix is singular and has no inverse.)

ii) Permute rows and columns so that what was row k becomes row C[k], and
what was column C[k] becomes column k.

The problem in this exercise is to use the stated algorithm to invert the matrix

1 2 3
0 1 2
0 0 1

by hand calculation.

19. [31] Modify the algorithm described in exercise 18 so that it obtains the inverse
of a sparse matrix that is represented in the form of Fig. 14. Pay special attention to
making the row- and column-permutation operations of step (ii) efficient.

20. [20] A tridiagonal matrix has entries aij that are zero except when |i− j| ≤ 1,
for 1 ≤ i, j ≤ n. Show that there is an allocation function of the form

LOC(A[I,J]) = a0 + a1I + a2J, |I− J| ≤ 1,

which represents all of the relevant elements of a tridiagonal matrix in (3n− 2) consec-
utive locations.

21. [20] Suggest a storage allocation function for n× n matrices where n is variable.
The elements A[I,J] for 1 ≤ I, J ≤ n should occupy n2 consecutive locations, regardless
of the value of n.

22. [M25] (P. Chowla, 1961.) Find a polynomial p(i1, . . . , ik) that assumes each
nonnegative integer value exactly once as the indices (i1, . . . , ik) run through all k-
dimensional nonnegative integer vectors, with the additional property that i1+· · ·+ik <
j1 + · · ·+ jk implies p(i1, . . . , ik) < p(j1, . . . , jk).

23. [23] An extendible matrix is initially 1× 1, then it grows from size m × n either
to size (m+ 1)×n or to size m× (n+ 1) by adding either a new row or a new column.
Show that such a matrix can be given a simple allocation function in which the elements
A[I,J] occupy mn consecutive locations, for 0 ≤ I < m and 0 ≤ J < n; no elements
change location when the matrix grows.

x 24. [25] (The sparse array trick.) Suppose you want to use a large array for random
access, although you wonŠt actually be referring to very many of its entries. You want
A[k] to be zero the Ąrst time you access it, yet you donŠt want to spend the time to
set every location to zero. Explain how it is possible to read and write any desired
elements A[k] reliably, given k, without assuming anything about the actual initial
memory contents, by doing only a small Ąxed number of additional operations per
array access.

308 INFORMATION STRUCTURES 2.3

2.3. TREES

We now turn to a study of trees, the most important nonlinear structures
that arise in computer algorithms. Generally speaking, tree structure means a
ŞbranchingŤ relationship between nodes, much like that found in the trees of
nature.

Let us deĄne a tree formally as a Ąnite set T of one or more nodes such that

a) there is one specially designated node called the root of the tree, root(T);
and

b) the remaining nodes (excluding the root) are partitioned into m ≥ 0 disjoint
sets T1, . . . , Tm, and each of these sets in turn is a tree. The trees T1, . . . , Tm
are called the subtrees of the root.

The deĄnition just given is recursive: We have deĄned a tree in terms of
trees. Of course, there is no problem of circularity involved here, since trees
with one node must consist of only the root, and trees with n > 1 nodes are
deĄned in terms of trees with fewer than n nodes; hence the concept of a tree
with two nodes, three nodes, or ultimately any number of nodes, is determined
by the deĄnition given. There are nonrecursive ways to deĄne trees (for example,
see exercises 10, 12, and 14, and Section 2.3.4), but a recursive deĄnition seems
most appropriate since recursion is an innate characteristic of tree structures.
The recursive character of trees is present also in nature, since buds on young
trees eventually grow into subtrees with buds of their own, and so on. Exercise 3
illustrates how to give rigorous proofs of important facts about trees based on a
recursive deĄnition such as the one above, by using induction on the number of
nodes in a tree.

It follows from our deĄnition that every node of a tree is the root of some
subtree contained in the whole tree. The number of subtrees of a node is called
the degree of that node. A node of degree zero is called a terminal node, or
sometimes a leaf. A nonterminal node is often called a branch node. The level
of a node with respect to T is deĄned recursively: The level of root(T) is zero,
and the level of any other node is one higher than that nodeŠs level with respect
to the subtree of root(T) containing it.

These concepts are illustrated in Fig. 15, which shows a tree with seven
nodes. The root is A, and it has the two subtrees {B} and {C,D,E, F,G}. The
tree {C,D,E, F,G} has node C as its root. Node C is on level 1 with respect to
the whole tree, and it has three subtrees {D}, {E}, and {F,G}; therefore C has
degree 3. The terminal nodes in Fig. 15 are B, D, E, and G; F is the only node
with degree 1; G is the only node with level 3.

If the relative order of the subtrees T1, . . . , Tm in (b) of the deĄnition is
important, we say that the tree is an ordered tree; when m ≥ 2 in an ordered
tree, it makes sense to call T2 the Şsecond subtreeŤ of the root, etc. Ordered trees
are also called Şplane treesŤ by some authors, since the manner of embedding
the tree in a plane is relevant. If we do not care to regard two trees as different
when they differ only in the respective ordering of subtrees of nodes, the tree
is said to be oriented, since only the relative orientation of the nodes, not their

2.3 TREES 309

A

B C

D E F

G

Level 0

Level 1

Level 2

Level 3

Fig. 15. A tree.

A

BC

D EF

G

Fig. 16. Another tree.

order, is being considered. The very nature of computer representation deĄnes
an implicit ordering for any tree, so in most cases ordered trees are of greatest
interest to us. We will therefore tacitly assume that all trees we discuss are
ordered, unless explicitly stated otherwise. Accordingly, the trees of Figs. 15
and 16 will generally be considered to be different, although they would be the
same as oriented trees.

A forest is a set (usually an ordered set) of zero or more disjoint trees.
Another way to phrase part (b) of the deĄnition of tree would be to say that the
nodes of a tree excluding the root form a forest.

There is very little distinction between abstract forests and trees. If we
delete the root of a tree, we have a forest; conversely, if we add just one node to
any forest and regard the trees of the forest as subtrees of the new node, we get a
tree. Therefore the words tree and forest are often used almost interchangeably
during informal discussions about data structures.

A

B

C

D

E

F G(a)

A

B C

D E F

G(b)

A

B

C

D

E

FG (c)

Fig. 17. How shall we draw a tree?

Trees can be drawn in many ways. Besides the diagram of Fig. 15, three of
the principal alternatives are shown in Fig. 17, depending on where the root is
placed. It is not a frivolous joke to worry about how tree structures are drawn
in diagrams, since there are many occasions in which we want to say that one
node is ŞaboveŤ or Şhigher thanŤ another node, or to refer to the ŞrightmostŤ
element, etc. Certain algorithms for dealing with tree structures have become
known as Ştop downŤ methods, as opposed to Şbottom up.Ť Such terminology
leads to confusion unless we adhere to a uniform convention for drawing trees.

It may seem that the form of Fig. 15 would be preferable simply because
that is how trees grow in nature; in the absence of any compelling reason to
adopt any of the other three forms, we might as well adopt natureŠs time-honored

310 INFORMATION STRUCTURES 2.3

C
h
a
r
le
s

E
li
z
a
b
e
t
h

I
I

Elizabeth

Cecilia

Caroline
Anne

Edwyn

Charles
Anne

William

Claude

Frances
Henrietta

Oswald

Claude
Charlotte

Thomas

George VI

Mary

Mary
Augusta

Adolphus

Francis
Claudine

Alexander

George V

Alexandra
Louise

Christian IX

Edward VII
Victoria

Albert

P
h
il
ip

Alice

Victoria

Alice
Victoria

Albert

Louis IV
Elisabeth

Charles

Louis

Julia
Sophie

Maurice

Alexander
Wilhelmina

Louis II

Andrew

Olga

Alexandra
Louise

Joseph

Konstantin
Charlotte

Nicholas I

George I

Louise
Charlotte

William

Christian IX
Louise

William

(a)

Fig. 18. Family trees: (a) pedigree;
(b) lineal chart. [References: BurkeŠs
Peerage (1959); Almanach de Gotha
(1871); Genealogisches Handbuch des
Adels: Fürstliche Häuser, 1; Genesis
10:1Ű25.]

Noah

Shem

Aram

Mash

Gether

Hul

Uz
Lud

Arphaxad Salah Eber
Joktan

Peleg
Asshur

Elam

Ham

Canaan

Hamathite

Zemarite

Arvadite

Sinite

Arkite

Hivite

Girgasite

Amorite

Jebusite

Heth

Sidon
Phut

Mizraim

Caphtorim

Casluhim

Pathrusim

Naphtuhim

Lehabim

Anamim

Ludim

Cush

Nimrod

Sabtechah

Raamah
Dedan

Sheba
Sabtah

Havilah

Seba

Japheth

Tiras

Meshech

Tubal

Javan

Dodanim

Kittim

Tarshish

Elishah
Madai

Magog

Gomer

Togarmah

Riphath

Ashkenaz

(b)

2.3 TREES 311

tradition. With real trees in mind, the author consistently followed a root-at-the-
bottom convention as the present set of books was Ąrst being prepared, but after
two years of trial it was found to be a mistake: Observations of the computer
literature and numerous informal discussions with computer scientists about a
wide variety of algorithms showed that trees were drawn with the root at the
top in more than 80 percent of the cases examined. There is an overwhelming
tendency to make hand-drawn charts grow downwards instead of upwards (and
this is easy to understand in view of the way we write); even the word Şsubtree,Ť
as opposed to Şsupertree,Ť tends to connote a downward relationship. From
these considerations we conclude that Fig. 15 is upside down. Henceforth we
will almost always draw trees as in Fig. 17(b), with the root at the top and
leaves at the bottom. Corresponding to this orientation, we should perhaps call
the root node the apex of the tree, and speak of nodes at shallow and deep levels.

It is necessary to have good descriptive terminology for talking about trees.
Instead of making somewhat ambiguous references to ŞaboveŤ and Şbelow,Ť we
generally use genealogical words taken from the terminology of family trees.
Figure 18 shows two common types of family trees. The two types are quite
different: A pedigree shows the ancestors of a given individual, while a lineal
chart shows the descendants.

If Şcross-breedingŤ occurs, a pedigree is not really a tree, because different
branches of a tree (as we have deĄned it) can never be joined together. To
compensate for this discrepancy, Fig. 18(a) mentions Queen Victoria and Prince
Albert twice in the sixth generation; King Christian IX and Queen Louise
actually appear in both the Ąfth and sixth generations. A pedigree can be
regarded as a true tree if each of its nodes represents Şa person in the role of
mother or father of so-and-so,Ť not simply a person as an individual.

Standard terminology for tree structures is taken from the second form of
family tree, the lineal chart: Each root is said to be the parent of the roots of
its subtrees, and the latter are said to be siblings; they are children of their
parent. The root of the entire tree has no parent. For example, in Fig. 19,
C has three children, D, E, and F ; E is the parent of G; B and C are siblings.
Extension of this terminology Ů for example, A is the great-grandparent of G;
B is an aunt or uncle of F ; H and F are Ąrst
cousins Ů is clearly possible. Some authors use the
masculine designations Şfather, son, brotherŤ in-
stead of Şparent, child, siblingŤ; others use Şmother,
daughter, sister.Ť In any case a node has at most
one parent or progenitor. We use the words ancestor
and descendant to denote a relationship that may
span several levels of the tree: The descendants of C
in Fig. 19 are D, E, F, and G; the ancestors of G are
E, C, and A. Sometimes, especially when talking
about Şnearest common ancestors,Ť we consider a node to be an ancestor of itself
(and a descendant of itself); the inclusive ancestors of G are G, E, C, and A,
while its proper ancestors are just E, C, and A.

A

B C

D E F

G

H J

Fig. 19. Conventional
tree diagram.

312 INFORMATION STRUCTURES 2.3

The pedigree in Figure 18(a) is an example of a binary tree, which is another
important type of tree structure. The reader has undoubtedly seen binary trees
in connection with tennis tournaments or other sporting events. In a binary tree
each node has at most two subtrees; and when only one subtree is present, we
distinguish between the left and right subtree. More formally, let us deĄne a
binary tree as a Ąnite set of nodes that either is empty, or consists of a root
and the elements of two disjoint binary trees called the left and right subtrees
of the root.

This recursive deĄnition of binary tree should be studied carefully. Notice
that a binary tree is not a special case of a tree; it is another concept entirely
(although we will see many relations between the two concepts). For example,
the binary trees

A

B

and
A

B

(1)

are distinct Ů the root has an empty right subtree in one case and a nonempty
right subtree in the other Ů although as trees these diagrams would represent
identical structures. A binary tree can be empty; a tree cannot. Therefore we
will always be careful to use the word ŞbinaryŤ to distinguish between binary
trees and ordinary trees. Some authors deĄne binary trees in a slightly different
manner (see exercise 20).

Tree structure can be represented graphically in several other ways bearing
no resemblance to actual trees. Figure 20 shows three diagrams that reĆect the
structure of Fig. 19: Figure 20(a) essentially represents Fig. 19 as an oriented
tree; this diagram is a special case of the general idea of nested sets, namely
a collection of sets in which any pair of sets is either disjoint or one contains
the other. (See exercise 10.) Part (b) of the Ągure shows nested sets in a line,
much as part (a) shows them in a plane; in part (b) the ordering of the tree is
also indicated. Part (b) may also be regarded as an outline of an algebraic
formula involving nested parentheses. Part (c) shows still another common
way to represent tree structure, using indentation. The number of different
representation methods in itself is ample evidence for the importance of tree
structures in everyday life as well as in computer programming. Any hierarchical
classiĄcation scheme leads to a tree structure.

A

B C

D

E

F

G

H J

(a)

(A(B(H)(J))(C(D)(E(G))(F)))

(b)

A

B

H

J

C

D

E

G

F

(c)

Fig. 20. Further ways to show tree structure: (a) nested sets; (b) nested parentheses;
(c) indentation.

2.3 TREES 313

An algebraic formula deĄnes an implicit tree structure that is often conveyed
by other means instead of, or in addition to, the use of parentheses. For example,
Figure 21 shows a tree corresponding to the arithmetic expression

a− b(c/d+ e/f). (2)

Standard mathematical conventions, according to which multiplication and divi-
sion take precedence over addition and subtraction, allow us to use a simpliĄed
form like (2) instead of the fully parenthesized form Şa−

b×

(c/d) + (e/f)

Ť.

This connection between formulas and trees is very important in applications.

a

b

c d e f

−

×

+

/ /

Fig. 21. Tree representation of formula (2).

Notice that the indented list in Fig. 20(c) looks very much like the table
of contents in a book. Indeed, this book itself has a tree structure; the tree
structure of Chapter 2 is shown in Fig. 22. Here we notice a signiĄcant idea:
The method used to number sections in this book is another way to specify tree
structure. Such a method is often called ŞDewey decimal notationŤ for trees, by
analogy with the similar classiĄcation scheme of this name used in libraries. The
Dewey decimal notation for the tree of Fig. 19 is

1 A; 1.1 B; 1.1.1 H; 1.1.2 J ; 1.2 C;
1.2.1 D; 1.2.2 E; 1.2.2.1 G; 1.2.3 F.

Dewey decimal notation applies to any forest: The root of the kth tree in the
forest is given number k; and if α is the number of any node of degree m, its
children are numbered α.1, α.2, . . . , α.m. The Dewey decimal notation satisĄes
many simple mathematical properties, and it is a useful tool in the analysis
of trees. One example of this is the natural sequential ordering it gives to the
nodes of an arbitrary tree, analogous to the ordering of sections within this book.
Section 2.3 precedes Section 2.3.1, and follows Section 2.2.6.

There is an intimate relation between Dewey decimal notation and the
notation for indexed variables that we have already been using extensively. If
F is a forest of trees, we may let F [1] denote the subtrees of the Ąrst tree, so
that F [1][2] ≡ F [1, 2] stands for the subtrees of the second subtree of F [1], and
F [1, 2, 1] stands for the Ąrst subforest of the latter, and so on. Node a.b.c.d in
Dewey decimal notation is the parent of F [a, b, c, d]. This notation is an extension
of ordinary index notation, because the admissible range of each index depends
on the values in the preceding index positions.

314 INFORMATION STRUCTURES 2.3

2 Information
Structures

2.1 Introduction

2.2 Linear
lists

2.3 Trees

2.4 Multilinked
structures

2.5 Dynamic storage
allocation

2.6 History and
bibliography

2.2.1 Stacks, queues,
and deques

2.2.2 Sequential
allocation

2.2.3 Linked
allocation

2.2.4 Circular lists

2.2.5 Doubly linked
lists

2.2.6 Arrays and
orthogonal lists

2.3.1 Traversing
binary trees

2.3.2 Binary tree repre-
sentation of trees

2.3.3 Other represen-
tations of trees

2.3.4 Basic mathematical
properties of trees

2.3.5 Lists and garbage
collection

2.3.4.1 Free trees

2.3.4.2 Oriented trees

2.3.4.3 The infinity lemma

2.3.4.4 Enumeration

2.3.4.5 Path length

2.3.4.6 History

Fig. 22. The structure of Chapter 2.

2.3 TREES 315

Thus, in particular, we see that any rectangular array can be thought of
as a special case of a tree or forest structure. For example, here are two
representations of a 3× 4 matrix:

A[1, 1] A[1, 2] A[1, 3] A[1, 4]
A[2, 1] A[2, 2] A[2, 3] A[2, 4]
A[3, 1] A[3, 2] A[3, 3] A[3, 4]

A

A
[1
]

A
[2
]

A
[3
]

A
[1
,1
]

A
[1
,2
]

A
[1
,3
]

A
[1
,4
]

A
[2
,1
]

A
[2
,2
]

A
[2
,3
]

A
[2
,4
]

A
[3
,1
]

A
[3
,2
]

A
[3
,3
]

A
[3
,4
]

It is important to observe, however, that this tree structure does not faithfully
reĆect all of the matrix structure; the row relationships appear explicitly in the
tree but the column relationships do not.

A forest can, in turn, be regarded as a special case of what is commonly
called a list structure. The word ŞlistŤ is being used here in a very technical
sense, and to distinguish the technical use of the word we will always capitalize it:
ŞList.Ť A List is deĄned (recursively) as a Ąnite sequence of zero or more atoms
or Lists. Here ŞatomŤ is an undeĄned concept referring to elements from any
universe of objects that might be desired, so long as it is possible to distinguish
an atom from a List. By means of an obvious notational convention involving
commas and parentheses, we can distinguish between atoms and Lists and we
can conveniently display the ordering within a List. As an example, consider

L = (a, (b, a, b), (), c, (((2)))), (3)

which is a List with Ąve elements: Ąrst the atom a, then the List (b, a, b), then
the empty List (), then the atom c, and Ąnally the List (((2))). The latter List
consists of the List ((2)), which consists of the List (2), which consists of the
atom 2.

The following tree structure corresponds to L:
∗

a ∗ ∗ c ∗

b a b ∗

∗

2

(4)

The asterisks in this diagram indicate the deĄnition and appearance of a List,
as opposed to the appearance of an atom. Index notation applies to Lists as it
does to forests; for example, L[2] = (b, a, b), and L[2, 2] = a.

No data is carried in the nodes for the Lists in (4) other than the fact that
they are Lists. But it is possible to label the nonatomic elements of Lists with
information, as we have done for trees and other structures; thus

A = (a : (b, c), d : ())

316 INFORMATION STRUCTURES 2.3

would correspond to a tree that we can draw as follows:

∗

a∗ d∗

b c

The big difference between Lists and trees is that Lists may overlap (that
is, sub-Lists need not be disjoint) and they may even be recursive (may contain
themselves). The List

M = (M) (5)

corresponds to no tree structure, nor does the List

N = (a :M, b :M, c,N). (6)

(In these examples, capital letters refer to Lists, lowercase letters to labels and
atoms.) We might diagram (5) and (6) as follows, using an asterisk to denote
each place where a List is deĄned:

∗[N]

a∗[M] b[M] c [N]

[M]

(7)

Actually, Lists are not so complicated as the examples above might indicate.
They are, in essence, a rather simple generalization of the linear lists that we
have considered in Section 2.2, with the additional proviso that the elements of
linear Lists may be link variables that point to other linear Lists (and possibly
to themselves).

Summary: Four closely related kinds of information structures Ů trees, for-
ests, binary trees, and Lists Ů arise from many sources, and they are therefore
important in computer algorithms. We have seen various ways to diagram these
structures, and we have considered some terminology and notations that are
useful in talking about them. The following sections develop these ideas in
greater detail.

EXERCISES

1. [18] How many different trees are there with three nodes, A, B, and C?

2. [20] How many different oriented trees are there with three nodes, A, B, and C?

3. [M20] Prove rigorously from the deĄnitions that for every node X in a tree there is
a unique path up to the root, namely a unique sequence of k ≥ 1 nodes X1, X2, . . . , Xk

such that X1 is the root of the tree, Xk = X, and Xj is the parent of Xj+1 for 1 ≤ j < k.
(This proof will be typical of the proofs of nearly all the elementary facts about tree
structures.) Hint: Use induction on the number of nodes in the tree.

4. [01] True or false: In a conventional tree diagram (root at the top), if node X has
a higher level number than node Y , then node X appears lower in the diagram than
node Y .

2.3 TREES 317

5. [02] If node A has three siblings and B is the parent of A, what is the degree
of B?

x 6. [21] DeĄne the statement ŞX is an mth cousin of Y , n times removedŤ as a
meaningful relation between nodes X and Y of a tree, by analogy with family trees, if
m > 0 and n ≥ 0. (See a dictionary for the meaning of these terms in regard to family
trees.)

7. [23] Extend the deĄnition given in the previous exercise to all m ≥ −1 and to all
integers n ≥ −(m + 1) in such a way that for any two nodes X and Y of a tree there
are unique m and n such that X is an mth cousin of Y , n times removed.

x 8. [03] What binary tree is not a tree?

9. [00] In the two binary trees of (1), which node is the root (B or A)?

10. [M20] A collection of nonempty sets is said to be nested if, given any pair X, Y
of the sets, either X ⊆ Y or X ⊇ Y or X and Y are disjoint. (In other words, X ∩ Y
is either X, Y , or ∅.) Figure 20(a) indicates that any tree corresponds to a collection
of nested sets; conversely, does every such collection correspond to a tree?

x 11. [HM32] Extend the deĄnition of tree to inĄnite trees by considering collections of
nested sets as in exercise 10. Can the concepts of level, degree, parent, and child be
deĄned for each node of an inĄnite tree? Give examples of nested sets of real numbers
that correspond to a tree in which

a) every node has uncountable degree and there are inĄnitely many levels;
b) there are nodes with uncountable level;
c) every node has degree at least 2 and there are uncountably many levels.

12. [M23] Under what conditions does a partially ordered set correspond to an un-
ordered tree or forest? (Partially ordered sets are deĄned in Section 2.2.3.)

13. [10] Suppose that node X is numbered a1.a2. · · · .ak in the Dewey decimal system;
what are the Dewey numbers of the nodes in the path from X to the root (see
exercise 3)?

14. [M22] Let S be any nonempty set of elements having the form Ş1.a1. · · · .akŤ,
where k ≥ 0 and a1, . . . , ak are positive integers. Show that S speciĄes a tree when it
is Ąnite and satisĄes the following condition: ŞIf α.m is in the set, then so is α.(m− 1)
if m > 1, or α if m = 1.Ť (This condition is clearly satisĄed in the Dewey decimal
notation for a tree; therefore it is another way to characterize tree structure.)

x 15. [20] Invent a notation for the nodes of binary trees, analogous to the Dewey
decimal notation for nodes of trees.

16. [20] Draw trees analogous to Fig. 21 corresponding to the arithmetic expressions
(a) 2(a− b/c); (b) a+ b+ 5c.

17. [01] If Z stands for Fig. 19 regarded as a forest, what node is parent(Z[1, 2, 2])?

18. [08] In List (3), what is L[5, 1, 1]? What is L[3, 1]?

19. [15] Draw a List diagram analogous to (7) for the List L = (a, (L)). What is L[2]
in this List? What is L[2, 1, 1]?

x 20. [M21] DeĄne a 0-2-tree as a tree in which each node has exactly zero or two
children. (Formally, a 0-2-tree consists of a single node, called its root, plus 0 or 2
disjoint 0-2-trees.) Show that every 0-2-tree has an odd number of nodes; and give a
one-to-one correspondence between binary trees with n nodes and (ordered) 0-2-trees
with 2n+ 1 nodes.

318 INFORMATION STRUCTURES 2.3

21. [M22] If a tree has n1 nodes of degree 1, n2 nodes of degree 2, . . . , and nm nodes
of degree m, how many terminal nodes does it have?

x 22. [21] Standard European paper sizes A0, A1, A2, . . . , An, . . . are rectangles whose
sides are in the ratio

√
2 to 1 and whose areas are 2−n square meters. Therefore if we

cut a sheet of An paper in half, we get two sheets of A(n+ 1) paper. Use this principle
to design a graphic representation of binary trees, and illustrate your idea by drawing
the representation of 2.3.1Ű(1) below.

2.3.1. Traversing Binary Trees

It is important to acquire a good understanding of the properties of binary
trees before making further investigations of trees, since general trees are usually
represented in terms of some equivalent binary tree inside a computer.

We have deĄned a binary tree as a Ąnite set of nodes that either is empty,
or consists of a root together with two binary trees. This deĄnition suggests a
natural way to represent binary trees within a computer: We can have two links,
LLINK and RLINK, within each node, and a link variable T that is a Şpointer to
the tree.Ť If the tree is empty, T = Λ; otherwise T is the address of the root node
of the tree, and LLINK(T), RLINK(T) are pointers to the left and right subtrees of
the root, respectively. These rules recursively deĄne the memory representation
of any binary tree; for example,

A

B C

D E F

G H J

(1)

is represented by

A

B C

D E F

G H J

T

(2)

This simple and natural memory representation accounts for the special
importance of binary tree structures. We will see in Section 2.3.2 that general
trees can conveniently be represented as binary trees. Moreover, many trees
that arise in applications are themselves inherently binary, so binary trees are of
interest in their own right.

2.3.1 TRAVERSING BINARY TREES 319

There are many algorithms for manipulation of tree structures, and one
idea that occurs repeatedly in these algorithms is the notion of traversing or
Şwalking throughŤ a tree. This is a method of examining the nodes of the tree
systematically so that each node is visited exactly once. A complete traversal
of the tree gives us a linear arrangement of the nodes, and many algorithms are
facilitated if we can talk about the ŞnextŤ node following or preceding a given
node in such a sequence.

Three principal ways may be used to traverse a binary tree: We can visit
the nodes in preorder, inorder, or postorder. These three methods are deĄned
recursively. When the binary tree is empty, it is ŞtraversedŤ by doing nothing;
otherwise the traversal proceeds in three steps:

Preorder traversal Inorder traversal
Visit the root Traverse the left subtree
Traverse the left subtree Visit the root
Traverse the right subtree Traverse the right subtree

Postorder traversal
Traverse the left subtree
Traverse the right subtree
Visit the root

If we apply these deĄnitions to the binary tree of (1) and (2), we Ąnd that the
nodes in preorder are

A B D C E G F H J. (3)

(First comes the root A, then comes the left subtree

B

D

in preorder, and Ąnally we traverse the right subtree in preorder.) For inorder we
visit the root between visits to the nodes of each subtree, essentially as though
the nodes were ŞprojectedŤ down onto a single horizontal line, and this gives the
sequence

D B A E G C H F J. (4)

The postorder for the nodes of this binary tree is, similarly,

D B G E H J F C A. (5)

We will see that these three ways of arranging the nodes of a binary tree into
a sequence are extremely important, as they are intimately connected with most
of the computer methods for dealing with trees. The names preorder, inorder,
and postorder come, of course, from the relative position of the root with respect
to its subtrees. In many applications of binary trees, there is symmetry between
the meanings of left subtrees and right subtrees, and in such cases the term
symmetric order is used as a synonym for inorder. Inorder, which puts the root

320 INFORMATION STRUCTURES 2.3.1

No

Yes

P← LLINK(P)

Empty

P← RLINK(P)

T1. Initialize T2. P=Λ? T3. Stack⇐ P

T4. P⇐ Stack T5. Visit P

Fig. 23. Algorithm T for inorder traversal.

in the middle, is essentially symmetric between left and right: If the binary tree
is reĆected about a vertical axis, the symmetric order is simply reversed.

A recursively stated deĄnition, such as the one just given for the three basic
orders, must be reworked in order to make it directly applicable to computer
implementation. General methods for doing this are discussed in Chapter 8; we
usually make use of an auxiliary stack, as in the following algorithm:

Algorithm T (Traverse binary tree in inorder). Let T be a pointer to a binary
tree having a representation as in (2); this algorithm visits all the nodes of the
binary tree in inorder, making use of an auxiliary stack A.

T1. [Initialize.] Set stack A empty, and set the link variable P← T.

T2. [P = Λ?] If P = Λ, go to step T4.

T3. [Stack ⇐ P.] (Now P points to a nonempty binary tree that is to be
traversed.) Set A ⇐ P; that is, push the value of P onto stack A. (See
Section 2.2.1.) Then set P← LLINK(P) and return to step T2.

T4. [P ⇐ Stack.] If stack A is empty, the algorithm terminates; otherwise set
P⇐ A.

T5. [Visit P.] Visit NODE(P). Then set P← RLINK(P) and return to step T2.

In the Ąnal step of this algorithm, the word ŞvisitŤ means that we do
whatever activity is intended as the tree is being traversed. Algorithm T runs like
a coroutine with respect to this other activity: The main program activates the
coroutine whenever it wants P to move from one node to its inorder successor.
Of course, since this coroutine calls the main routine in only one place, it is
not much different from a subroutine (see Section 1.4.2). Algorithm T assumes
that the external activity deletes neither NODE(P) nor any of its ancestors from
the tree.

The reader should now attempt to play through Algorithm T using the
binary tree (2) as a test case, in order to see the reasons behind the procedure.
When we get to step T3, we want to traverse the binary tree whose root is
indicated by pointer P. The idea is to save P on a stack and then to traverse the
left subtree; when this has been done, we will get to step T4 and will Ąnd the

2.3.1 TRAVERSING BINARY TREES 321

old value of P on the stack again. After visiting the root, NODE(P), in step T5,
the remaining job is to traverse the right subtree.

Algorithm T is typical of many other algorithms that we will see later, so
it is instructive to look at a formal proof of the remarks made in the preceding
paragraph. Let us now attempt to prove that Algorithm T traverses a binary tree
of n nodes in inorder, by using induction on n. Our goal is readily established if
we can prove a slightly more general result:

Starting at step T2 with P a pointer to a binary tree of n nodes and with
the stack A containing A[1] . . . A[m] for some m ≥ 0, the procedure of steps
T2ŰT5 will traverse the binary tree in question, in inorder, and will then
arrive at step T4 with stack A returned to its original value A[1] . . . A[m].

This statement is obviously true when n = 0, because of step T2. If n > 0,
let P0 be the value of P upon entry to step T2. Since P0 ̸= Λ, we will perform
step T3, which means that stack A is changed to A[1] . . . A[m]P0 and P is set
to LLINK(P0). Now the left subtree has fewer than n nodes, so by induction we
will traverse the left subtree in inorder and will ultimately arrive at step T4 with
A[1] . . . A[m] P0 on the stack. Step T4 returns the stack to A[1] . . . A[m] and
sets P ← P0. Step T5 now visits NODE(P0) and sets P ← RLINK(P0). Now the
right subtree has fewer than n nodes, so by induction we will traverse the right
subtree in inorder and arrive at step T4 as required. The tree has been traversed
in inorder, by the deĄnition of that order. This completes the proof.

An almost identical algorithm may be formulated that traverses binary trees
in preorder (see exercise 12). It is slightly more difficult to achieve the traversal
in postorder (see exercise 13), and for this reason postorder is not as important
for binary trees as the others are.

It is convenient to deĄne a new notation for the successors and predecessors
of nodes in these various orders. If P points to a node of a binary tree, let

P∗ = address of successor of NODE(P) in preorder;
P$ = address of successor of NODE(P) in inorder;
P♯ = address of successor of NODE(P) in postorder;
∗P = address of predecessor of NODE(P) in preorder;
$P = address of predecessor of NODE(P) in inorder;
♯P = address of predecessor of NODE(P) in postorder.

(6)

If there is no such successor or predecessor of NODE(P), the value LOC(T) is
generally used, where T is an external pointer to the tree in question. We have
∗(P∗) = (∗P)∗ = P, $(P$) = ($P)$ = P, and ♯(P♯) = (♯P)♯ = P. As an example of
this notation, let INFO(P) be the letter shown in NODE(P) in the tree (2); then
if P points to the root, we have INFO(P) = A, INFO(P∗) = B, INFO(P$) = E,
INFO($P) = B, INFO(♯P) = C, and P♯ = ∗P = LOC(T).

At this point the reader will perhaps experience a feeling of insecurity about
the intuitive meanings of P∗, P$, etc. As we proceed further, the ideas will
gradually become clearer; exercise 16 at the end of this section may also be of
help. The Ş$Ť in ŞP$Ť is meant to suggest the letter S, for Şsymmetric order.Ť

322 INFORMATION STRUCTURES 2.3.1

There is an important alternative to the memory representation of binary
trees given in (2), which is somewhat analogous to the difference between circular
lists and straight one-way lists. Notice that there are more null links than other
pointers in the tree (2), and indeed this is true of any binary tree represented by
the conventional method (see exercise 14). But we donŠt really need to waste all
that memory space. For example, we could store two ŞtagŤ indicators with each
node, which would tell in just two bits of memory whether or not the LLINK or
RLINK, or both, are null; the memory space for terminal links could then be used
for other purposes.

An ingenious use of this extra space has been suggested by A. J. Perlis
and C. Thornton, who devised the so-called threaded tree representation. In this
method, terminal links are replaced by ŞthreadsŤ to other parts of the tree, as
an aid to traversal. The threaded tree equivalent to (2) is

A

B C

D E F

G H J

(7)

Here dotted lines represent the Şthreads,Ť which always go to a higher node of the
tree. Every node now has two links: Some nodes, like C, have two ordinary links
to left and right subtrees; other nodes, like H, have two thread links; and some
nodes have one link of each type. The special threads emanating from D and J
will be explained later. They appear in the ŞleftmostŤ and ŞrightmostŤ nodes.

In the memory representation of a threaded binary tree it is necessary to
distinguish between the dotted and solid links; this can be done as suggested
above by two additional one-bit Ąelds in each node, LTAG and RTAG. The threaded
representation may be deĄned precisely as follows:

Unthreaded representation Threaded representation

LLINK(P) = Λ LTAG(P) = 1, LLINK(P) = $P

LLINK(P) = Q ̸= Λ LTAG(P) = 0, LLINK(P) = Q

RLINK(P) = Λ RTAG(P) = 1, RLINK(P) = P$

RLINK(P) = Q ̸= Λ RTAG(P) = 0, RLINK(P) = Q

According to this deĄnition, each new thread link points directly to the
predecessor or successor of the node in question, in symmetric order (inorder).
Figure 24 illustrates the general orientation of thread links in any binary tree.

In some algorithms it can be guaranteed that the root of any subtree always
will appear in a lower memory location than the other nodes of the subtree.
Then LTAG(P) will be 1 if and only if LLINK(P) < P, so LTAG will be redundant.
The RTAG bit will be redundant for the same reason.

2.3.1 TRAVERSING BINARY TREES 323

$P

P

k = 0

$P

P

∗P

k = 1

$P

P

∗P

∗∗P

k = 2

$P

P

∗P

∗
k
P

General k

P$

P

P♯

P♯
k

General k

P$

P

P♯

P♯♯

k = 2

P$

P

P♯

k = 1

P$

P

k = 0

Fig. 24. General orientation of left and right thread links in a threaded binary tree.
Wavy lines indicate links or threads to other parts of the tree.

The great advantage of threaded trees is that traversal algorithms become
simpler. For example, the following algorithm calculates P$, given P:

Algorithm S (Symmetric (inorder) successor in a threaded binary tree). If P
points to a node of a threaded binary tree, this algorithm sets Q← P$.

S1. [RLINK(P) a thread?] Set Q ← RLINK(P). If RTAG(P) = 1, terminate the
algorithm.

S2. [Search to left.] If LTAG(Q) = 0, set Q ← LLINK(Q) and repeat this step.
Otherwise the algorithm terminates.

Notice that no stack is needed here to accomplish what was done using a
stack in Algorithm T. In fact, the ordinary representation (2) makes it impossible
to Ąnd P$ efficiently, given only the address of a random point P in the tree. Since
no links point upward in an unthreaded representation, there is no clue to what
nodes are above a given node, unless we retain a history of how we reached that
point. The stack in Algorithm T provides the necessary history when threads
are absent.

We claim that Algorithm S is Şefficient,Ť although this property is not
immediately obvious, since step S2 can be executed any number of times. In
view of the loop in step S2, would it perhaps be faster to use a stack after all,

324 INFORMATION STRUCTURES 2.3.1

as Algorithm T does? To investigate this question, we will consider the average
number of times that step S2 must be performed if P is a ŞrandomŤ point in
the tree; or what is the same, we will determine the total number of times that
step S2 is performed if Algorithm S is used repeatedly to traverse an entire tree.

At the same time as this analysis is being carried out, it will be instructive
to study complete programs for both Algorithms S and T. As usual, we should
be careful to set all of our algorithms up so that they work properly with empty
binary trees; and if T is the pointer to the tree, we would like to have LOC(T)∗
and LOC(T)$ be the Ąrst nodes in preorder or symmetric order, respectively. For
threaded trees, it turns out that things will work nicely if NODE(LOC(T)) is made
into a Şlist headŤ for the tree, with

LLINK(HEAD) = T,

RLINK(HEAD) = HEAD,

LTAG(HEAD) = 0,
RTAG(HEAD) = 0.

(8)

(Here HEAD denotes LOC(T), the address of the list head.) An empty threaded
tree will satisfy the conditions

LLINK(HEAD) = HEAD, LTAG(HEAD) = 1. (9)

The tree grows by having nodes inserted to the left of the list head. (These
initial conditions are primarily dictated by the algorithm to compute P∗, which
appears in exercise 17.) In accordance with these conventions, the computer
representation for the binary tree (1), as a threaded tree, is

A

B C

D E F

G H J

List head

(10)

With these preliminaries out of the way, we are now ready to consider MIX

versions of Algorithms S and T. The following programs assume that binary tree
nodes have the two-word form

LTAG LLINK INFO1

RTAG RLINK INFO2
.

In an unthreaded tree, LTAG and RTAG will always be Ş+Ť and terminal links will
be represented by zero. In a threaded tree, we will use Ş+Ť for tags that are 0
and Ş−Ť for tags that are 1. The abbreviations LLINKT and RLINKT will be used
to stand for the combined LTAG-LLINK and RTAG-RLINK Ąelds, respectively.

2.3.1 TRAVERSING BINARY TREES 325

The two tag bits occupy otherwise-unused sign positions of a MIX word, so
they cost nothing in memory space. Similarly, with the MMIX computer we

will be able to use the least signiĄcant bits of link Ąelds as tag bits that come
Şfor free,Ť because pointer values will generally be even, and because MMIX will
make it easy to ignore the low-order bits when addressing memory.

The following two programs traverse a binary tree in symmetric order (that
is, inorder), jumping to location VISIT periodically with index register 5 pointing
to the node that is currently of interest.

Program T. In this implementation of Algorithm T, the stack is kept in loca-
tions A + 1, A + 2, . . . , A + MAX; rI6 is the stack pointer and rI5 ≡ P. OVERFLOW

occurs if the stack grows too large. The program has been rearranged slightly
from Algorithm T (step T2 appears thrice), so that the test for an empty stack
need not be made when going directly from T3 to T2 to T4.

01 LLINK EQU 1:2
02 RLINK EQU 1:2
03 T1 LD5 HEAD(LLINK) 1 T1. Initialize. Set P← T.
04 T2A J5Z DONE 1 Stop if P = Λ.
05 ENT6 0 1
06 T3 DEC6 MAX n T3. Stack⇐ P.
07 J6NN OVERFLOW n Has that stack reached capacity?
08 INC6 MAX+1 n If not, increase the stack pointer.
09 ST5 A,6 n Store P in the stack.
10 LD5 0,5(LLINK) n P← LLINK(P).
11 T2B J5NZ T3 n To T3 if P ̸= Λ.
12 T4 LD5 A,6 n T4. P⇐ Stack.
13 DEC6 1 n Decrease the stack pointer.
14 T5 JMP VISIT n T5. Visit P.
15 LD5 1,5(RLINK) n P← RLINK(P).
16 T2C J5NZ T3 n T2. P = Λ?
17 J6NZ T4 a Test if the stack is empty.
18 DONE ...

Program S. Algorithm S has been augmented with initialization and termina-
tion conditions to make this program comparable to Program T.

01 LLINKT EQU 0:2
02 RLINKT EQU 0:2
03 S0 ENT5 HEAD 1 S0. Initialize. Set P← HEAD.
04 JMP 2F 1
05 S3 JMP VISIT n S3. Visit P.
06 S1 LD5N 1,5(RLINKT) n S1. RLINK(P) a thread?
07 J5NN 1F n Jump if RTAG(P) = 1.
08 ENN6 0,5 n− a Otherwise set Q← RLINK(P).
09 S2 ENT5 0,6 n S2. Search to left. Set P← Q.
10 2H LD6 0,5(LLINKT) n+ 1 Q← LLINKT(P).
11 J6P S2 n+ 1 If LTAG(P) = 0, repeat.
12 1H ENT6 -HEAD,5 n+ 1
13 J6NZ S3 n+ 1 Visit unless P = HEAD.

326 INFORMATION STRUCTURES 2.3.1

An analysis of the running time appears with the code above. These quan-
tities are easy to determine, using KirchhoffŠs law and the facts that

i) in Program T, the number of insertions onto the stack must equal the number
of deletions;

ii) in Program S, the LLINK and RLINK of each node are examined precisely
once;

iii) the number of ŞvisitsŤ is the number of nodes in the tree.

The analysis tells us Program T takes 15n+ a+ 4 units of time, and Program S
takes 11n− a+ 7 units, where n is the number of nodes in the tree and a is the
number of terminal right links (nodes with no right subtree). The quantity a
can be as low as 1, assuming that n ̸= 0, and it can be as high as n. If left and
right are symmetrical, the average value of a is (n + 1)/2, as a consequence of
facts proved in exercise 14.

The principal conclusions we may reach on the basis of this analysis are:

i) Step S2 of Algorithm S is performed only once on the average per execution
of that algorithm, if P is a random node of the tree.

ii) Traversal is slightly faster for threaded trees, because it requires no stack
manipulation.

iii) Algorithm T needs more memory space than Algorithm S because of the
auxiliary stack required. In Program T we kept the stack in consecutive
memory locations; therefore we needed to put an arbitrary bound on its
size. It would be very embarrassing if this bound were exceeded, so it must
be set reasonably large (see exercise 10); thus the memory requirement
of Program T is signiĄcantly more than Program S. Not infrequently a
complex computer application will be independently traversing several trees
at once, and a separate stack will be needed for each tree under Program T.
This suggests that Program T might use linked allocation for its stack (see
exercise 20); its execution time then becomes 30n + a + 4 units, roughly
twice as slow as before, although the traversal speed may not be terribly
important when the execution time for the other coroutine is added in. Still
another alternative is to keep the stack links within the tree itself in a tricky
way, as discussed in exercise 21.

iv) Algorithm S is, of course, more general than Algorithm T, since it allows us
to go from P to P$ when we are not necessarily traversing the entire binary
tree.

So a threaded binary tree is decidedly superior to an unthreaded one, with
respect to traversal. These advantages are offset in some applications by the
slightly increased time needed to insert and delete nodes in a threaded tree. It
is also sometimes possible to save memory space by ŞsharingŤ common subtrees
with an unthreaded representation, while threaded trees require adherence to a
strict tree structure with no overlapping of subtrees.

Thread links can also be used to compute P∗, $P, and ♯P with efficiency
comparable to that of Algorithm S. The functions ∗P and P♯ are slightly harder

2.3.1 TRAVERSING BINARY TREES 327

to compute, just as they are for unthreaded tree representations. The reader is
urged to work exercise 17.

Most of the usefulness of threaded trees would disappear if it were hard to
set up the thread links in the Ąrst place. What makes the idea really work is that
threaded trees grow almost as easily as ordinary ones do. We have the following
algorithm:

Algorithm I (Insertion into a threaded binary tree). This algorithm attaches
a single node, NODE(Q), as the right subtree of NODE(P), if the right subtree is
empty (that is, if RTAG(P) = 1); otherwise it inserts NODE(Q) between NODE(P)

and NODE(RLINK(P)), making the latter node the right child of NODE(Q). The
binary tree in which the insertion takes place is assumed to be threaded as in
(10); for a modiĄcation, see exercise 23.

I1. [Adjust tags and links.] Set RLINK(Q) ← RLINK(P), RTAG(Q) ← RTAG(P),
RLINK(P)← Q, RTAG(P)← 0, LLINK(Q)← P, LTAG(Q)← 1.

I2. [Was RLINK(P) a thread?] If RTAG(Q) = 0, set LLINK(Q$) ← Q. (Here Q$ is
determined by Algorithm S, which will work properly even though LLINK(Q$)

now points to NODE(P) instead of NODE(Q). This step is necessary only when
inserting into the midst of a threaded tree instead of merely inserting a new
leaf.)

By reversing the roles of left and right (in particular, by replacing Q$ by $Q

in step I2), we obtain an algorithm that inserts to the left in a similar way.
Our discussion of threaded binary trees so far has made use of thread links

both to the left and to the right. There is an important middle ground between
the completely unthreaded and completely threaded methods of representation:
A right-threaded binary tree combines the two approaches by making use of
threaded RLINKs, while representing empty left subtrees by LLINK = Λ. (Simi-
larly, a left-threaded binary tree threads only the null LLINKs.) Algorithm S does
not make essential use of threaded LLINKs; if we change the test ŞLTAG = 0Ť in
step S2 to ŞLLINK ̸= ΛŤ, we obtain an algorithm for traversing right-threaded
binary trees in symmetric order. Program S works without change in the right-
threaded case. A great many applications of binary tree structures require only
a left-to-right traversal of trees using the functions P$ and/or P∗, and for these
applications there is no need to thread the LLINKs. We have described threading
in both the left and right directions in order to indicate the symmetry and
possibilities of the situation, but in practice one-sided threading is much more
common.

Let us now consider an important property of binary trees, and its con-
nection to traversal. Two binary trees T and T ′ are said to be similar if they
have the same structure; formally, this means that (a) they are both empty, or
(b) they are both nonempty and their left and right subtrees are respectively
similar. Similarity means, informally, that the diagrams of T and T ′ have the
same Şshape.Ť Another way to phrase similarity is to say that there is a one-to-
one correspondence between the nodes of T and T ′ that preserves the structure:

328 INFORMATION STRUCTURES 2.3.1

If nodes u1 and u2 in T correspond respectively to u′1 and u′2 in T ′, then u1 is in
the left subtree of u2 if and only if u′1 is in the left subtree of u′2, and the same
is true for right subtrees.

The binary trees T and T ′ are said to be equivalent if they are similar and if
corresponding nodes contain the same information. Formally, let info(u) denote
the information contained in a node u; the trees are equivalent if and only if
(a) they are both empty, or (b) they are both nonempty and info

root(T)

=

info

root(T ′)

and their left and right subtrees are respectively equivalent.

As examples of these deĄnitions, consider the four binary trees

A

B

C D

A

B

C D

W

X

Y Z

A

B

C D

in which the Ąrst two are dissimilar. The second, third, and fourth are similar
and, in fact, the second and fourth are equivalent.

Some computer applications involving tree structures require an algorithm
to decide whether two binary trees are similar or equivalent. The following
theorem is useful in this regard:

Theorem A. Let the nodes of binary trees T and T ′ be respectively

u1, u2, . . . , un and u′1, u
′
2, . . . , u

′
n′

in preorder. For any node u let

l(u) = 1 if u has a nonempty left subtree, l(u) = 0 otherwise;
r(u) = 1 if u has a nonempty right subtree, r(u) = 0 otherwise.

(11)

Then T and T ′ are similar if and only if n = n′ and

l(uj) = l(u′j), r(uj) = r(u′j) for 1 ≤ j ≤ n. (12)

Moreover, T and T ′ are equivalent if and only if in addition we have

info(uj) = info(u′j) for 1 ≤ j ≤ n. (13)

Notice that l and r are the complements of the LTAG and RTAG bits in a
threaded tree. This theorem characterizes any binary tree structure in terms of
two sequences of 0s and 1s.

Proof. It is clear that the condition for equivalence of binary trees will follow
immediately if we prove the condition for similarity; furthermore the conditions
n = n′ and (12) are certainly necessary, since corresponding nodes of similar
trees must have the same position in preorder. Therefore it suffices to prove that
the conditions (12) and n = n′ are sufficient to guarantee the similarity of T
and T ′. The proof is by induction on n, using the following auxiliary result:

2.3.1 TRAVERSING BINARY TREES 329

Lemma P. Let the nodes of a nonempty binary tree be u1, u2, . . . , un in preorder,
and let f(u) = l(u) + r(u)− 1. Then

f(u1)+f(u2)+· · ·+f(un) =−1, and f(u1)+· · ·+f(uk)≥ 0, 1≤ k<n. (14)

Proof. The result is clear for n = 1. If n > 1, the binary tree consists of its
root u1 and further nodes. If f(u1) = 0, then either the left subtree or the right
subtree is empty, so the condition is obviously true by induction. If f(u1) = 1,
let the left subtree have nl nodes; by induction we have

f(u1) + · · ·+ f(uk) > 0 for 1 ≤ k ≤ nl, f(u1) + · · ·+ f(unl+1) = 0, (15)

and the condition (14) is again evident.

(For other theorems analogous to Lemma P, see the discussion of Polish
notation in Chapter 10.)

To complete the proof of Theorem A, we note that the theorem is clearly
true when n = 0. If n > 0, the deĄnition of preorder implies that u1 and u′1 are
the respective roots of their trees, and there are integers nl and n′

l (the sizes of
the left subtrees) such that

u2, . . . , un
l
+1 and u′2, . . . , u

′
n′
l
+1 are the left subtrees of T and T ′;

un
l
+2, . . . , un and u′n′

l
+2, . . . , u

′
n are the right subtrees of T and T ′.

The proof by induction will be complete if we can show nl = n′
l. There are three

cases:

if l(u1) = 0, then nl = 0 = n′
l;

if l(u1) = 1, r(u1) = 0, then nl = n− 1 = n′l;
if l(u1) = r(u1) = 1, then by Lemma P we can Ąnd the least k > 0 such

that f(u1) + · · ·+ f(uk) = 0; and nl = k − 1 = n′
l

see (15)

.

As a consequence of Theorem A, we can test two threaded binary trees for
equivalence or similarity by simply traversing them in preorder and checking
the INFO and TAG Ąelds. Some interesting extensions of Theorem A have been
obtained by A. J. Blikle, Bull. de lŠAcad. Polonaise des Sciences, Série des
Sciences Math., Astr., Phys., 14 (1966), 203Ű208; he considered an inĄnite class
of possible traversal orders, only six of which (including preorder) were called
ŞaddresslessŤ because of their simple properties.

We conclude this section by giving a typical, yet basic, algorithm for binary
trees, one that makes a copy of a binary tree into different memory locations.

Algorithm C (Copy a binary tree). Let HEAD be the address of the list head
of a binary tree T ; thus, T is the left subtree of HEAD, reached via LLINK(HEAD).
Let NODE(U) be a node with an empty left subtree. This algorithm makes a copy
of T and the copy becomes the left subtree of NODE(U). In particular, if NODE(U)
is the list head of an empty binary tree, this algorithm changes the empty tree
into a copy of T.

C1. [Initialize.] Set P← HEAD, Q← U. Go to C4.

330 INFORMATION STRUCTURES 2.3.1

C2. [Anything to right?] If NODE(P) has a nonempty right subtree, set R ⇐
AVAIL, and attach NODE(R) to the right of NODE(Q). (At the beginning of
step C2, the right subtree of NODE(Q) was empty.)

C3. [Copy INFO.] Set INFO(Q)← INFO(P). (Here INFO denotes all parts of the
node that are to be copied, except for the links.)

C4. [Anything to left?] If NODE(P) has a nonempty left subtree, set R⇐ AVAIL,
and attach NODE(R) to the left of NODE(Q). (At the beginning of step C4,
the left subtree of NODE(Q) was empty.)

C5. [Advance.] Set P← P∗, Q← Q∗.
C6. [Test if complete.] If P = HEAD (or equivalently if Q = RLINK(U), assuming

that NODE(U) has a nonempty right subtree), the algorithm terminates;
otherwise go to step C2.

This simple algorithm shows a typical application of tree traversal. The
description here applies to threaded, unthreaded, or partially threaded trees.
Step C5 requires the calculation of preorder successors P∗ and Q∗; for unthreaded
trees, this generally is done with an auxiliary stack. A proof of the validity
of Algorithm C appears in exercise 29; a MIX program corresponding to this
algorithm in the case of a right-threaded binary tree appears in exercise 2.3.2Ű13.
For threaded trees, the ŞattachingŤ in steps C2 and C4 is done using Algorithm I.

The exercises that follow include quite a few topics of interest relating to
the material of this section.

Binary or dichotomous systems, although regulated by a principle,

are among the most artiĄcial arrangements

that have ever been invented.

— WILLIAM SWAINSON, A Treatise on the Geography and

ClassiĄcation of Animals (1835)

EXERCISES

1. [01] In the binary tree (2), let INFO(P) denote the letter stored in NODE(P). What
is INFO(LLINK(RLINK(RLINK(T))))?

2. [11] List the nodes of the binary tree
1

2 3

4 5 6 7

in (a) preorder; (b) symmetric
order; (c) postorder.

3. [20] Is the following statement true or false? ŞThe terminal nodes of a binary
tree occur in the same relative position in preorder, inorder, and postorder.Ť

x 4. [20] The text deĄnes three basic orders for traversing a binary tree; another
alternative would be to proceed in three steps as follows:

a) Visit the root,
b) traverse the right subtree,
c) traverse the left subtree,

using the same rule recursively on all nonempty subtrees. Does this new order bear
any simple relation to the three orders already discussed?

2.3.1 TRAVERSING BINARY TREES 331

5. [22] The nodes of a binary tree may be identiĄed by a sequence of zeros and
ones, in a notation analogous to ŞDewey decimal notationŤ for trees, as follows: The
root (if present) is represented by the sequence Ş1Ť. Roots (if present) of the left
and right subtrees of the node represented by α are respectively represented by α0
and α1. For example, the node H in (1) would have the representation Ş1110Ť. (See
exercise 2.3Ű15.)

Show that preorder, inorder, and postorder can be described conveniently in terms
of this notation.

6. [M22] Suppose that a binary tree has n nodes that are u1 u2 . . . un in preorder
and up1

up2
. . . upn in inorder. Show that the permutation p1p2 . . . pn can be obtained

by passing 12 . . . n through a stack, in the sense of exercise 2.2.1Ű2. Conversely, show
that any permutation p1p2 . . . pn obtainable with a stack corresponds to some binary
tree in this way.

7. [22] Show that if we are given the preorder and the inorder of the nodes of a
binary tree, the binary tree structure may be constructed. (Assume that the nodes are
distinct.) Does the same result hold true if we are given the preorder and postorder,
instead of preorder and inorder? Or if we are given the inorder and postorder?

8. [20] Find all binary trees whose nodes appear in exactly the same sequence in
both (a) preorder and inorder; (b) preorder and postorder; (c) inorder and postorder.
(As in the previous exercise, we assume that the nodes have distinct labels.)

9. [M20] When a binary tree having n nodes is traversed using Algorithm T, state
how many times each of steps T1, T2, T3, T4, and T5 is performed (as a function of n).

x 10. [20] What is the largest number of entries that can be in the stack at once,
during the execution of Algorithm T, if the binary tree has n nodes? (The answer
to this question is very important for storage allocation, if the stack is being stored
consecutively.)

11. [HM41] Analyze the average value of the largest stack size occurring during the
execution of Algorithm T as a function of n, given that all binary trees with n nodes
are considered equally probable.

12. [22] Design an algorithm analogous to Algorithm T that traverses a binary tree
in preorder, and prove that your algorithm is correct.

x 13. [24] Design an algorithm analogous to Algorithm T that traverses a binary tree
in postorder.

14. [20] Show that if a binary tree with n nodes is represented as in (2), the total
number of Λ links in the representation can be expressed as a simple function of n; this
quantity does not depend on the shape of the tree.

15. [15] In a threaded-tree representation like (10), each node except the list head has
exactly one link pointing to it from above, namely the link from its parent. Some of the
nodes also have links pointing to them from below; for example, the node containing C
has two pointers coming up from below, while node E has just one. Is there any
simple connection between the number of links pointing to a node and some other
basic property of that node? (We need to know how many links point to a given node
when we are changing the tree structure.)

x 16. [22] The diagrams in Fig. 24 help to provide an intuitive characterization of the
position of NODE(Q$) in a binary tree, in terms of the structure near NODE(Q): If NODE(Q)
has a nonempty right subtree, consider Q = P, Q = P in the upper diagrams; NODE(Q$)

332 INFORMATION STRUCTURES 2.3.1

is the ŞleftmostŤ node of that right subtree. If NODE(Q) has an empty right subtree,
consider Q = P in the lower diagrams; NODE(Q$) is located by proceeding upward in the
tree until after the Ąrst upward step to the right.

Give a similar ŞintuitiveŤ rule for Ąnding the position of NODE(Q∗) in a binary tree
in terms of the structure near NODE(Q).

x 17. [22] Give an algorithm analogous to Algorithm S for determining P∗ in a threaded
binary tree. Assume that the tree has a list head as in (8), (9), and (10).

18. [24] Many algorithms dealing with trees like to visit each node twice instead of
once, using a combination of preorder and inorder that we might call double order.
Traversal of a binary tree in double order is deĄned as follows: If the binary tree is
empty, do nothing; otherwise

a) visit the root, for the Ąrst time;
b) traverse the left subtree, in double order;
c) visit the root, for the second time;
d) traverse the right subtree, in double order.

For example, traversal of (1) in double order gives the sequence

A1B1D1D2B2A2C1E1E2G1G2C2F1H1H2F2J1J2 ,

where A1 means that A is being visited for the Ąrst time.
If P points to a node of the tree and if d = 1 or 2, deĄne (P, d)∆ = (Q, e) if the

next step in double order after visiting NODE(P) the dth time is to visit NODE(Q) the eth
time; or, if (P, d) is the last step in double order, we write (P, d)∆ = (HEAD, 2), where
HEAD is the address of the list head. We also deĄne (HEAD, 1)∆ as the Ąrst step in double
order.

Design an algorithm analogous to Algorithm T that traverses a binary tree in
double order, and also design an algorithm analogous to Algorithm S that computes
(P, d)∆. Discuss the relation between these algorithms and exercises 12 and 17.

x 19. [27] Design an algorithm analogous to Algorithm S for the calculation of P♯ in
(a) a right-threaded binary tree; (b) a fully threaded binary tree. If possible, the
average running time of your algorithm should be at most a small constant, when P is
a random node of the tree.

20. [23] Modify Program T so that it keeps the stack in a linked list, not in consecutive
memory locations.

x 21. [33] Design an algorithm that traverses an unthreaded binary tree in inorder
without using any auxiliary stack. It is permissible to alter the LLINK and RLINK Ąelds
of the tree nodes in any manner whatsoever during the traversal, subject only to the
condition that the binary tree should have the conventional representation illustrated
in (2) both before and after your algorithm has traversed the tree. No other bits in the
tree nodes are available for temporary storage.

22. [25] Write a MIX program for the algorithm given in exercise 21 and compare its
execution time to Programs S and T.

23. [22] Design algorithms analogous to Algorithm I for insertion to the right and
insertion to the left in a right-threaded binary tree. Assume that the nodes have the
Ąelds LLINK, RLINK, and RTAG.

24. [M20] Is Theorem A still valid if the nodes of T and T ′ are given in symmetric
order instead of preorder?

2.3.1 TRAVERSING BINARY TREES 333

25. [M24] Let T be a set of binary trees in which the value of each info Ąeld belongs
to a given set S, where S is linearly ordered by a relation Ş⪯Ť (see exercise 2.2.3Ű14).
Given any trees T, T ′ in T , let us now deĄne T ⪯ T ′ if and only if

i) T is empty; or
ii) T and T ′ are not empty, and info(root(T)) ≺ info(root(T ′)); or

iii) T and T ′ are not empty, info(root(T)) = info(root(T ′)), left(T) ⪯ left(T ′), and
left(T) is not equivalent to left(T ′); or

iv) T and T ′ are not empty, info(root(T)) = info(root(T ′)), left(T) is equivalent to
left(T ′), and right(T) ⪯ right(T ′).

Here left(T) and right(T) denote the left and right subtrees of T . Prove that (a) T ⪯ T ′

and T ′⪯ T ′′ implies T ⪯ T ′′; (b) T is equivalent to T ′ if and only if T ⪯ T ′ and T ′⪯ T ;
(c) for any T, T ′ in T we have either T ⪯ T ′ or T ′⪯ T . [Thus, if equivalent trees in T
are regarded as equal, the relation ⪯ induces a linear ordering on T . This ordering has
many applications (for example, in the simpliĄcation of algebraic expressions). When
S has only one element, so that the ŞinfoŤ of each node is the same, we have the special
case that equivalence is the same as similarity.]

26. [M24] Consider the ordering T ⪯ T ′ deĄned in the preceding exercise. Prove
a theorem analogous to Theorem A, giving a necessary and sufficient condition that
T ⪯ T ′, and making use of double order as deĄned in exercise 18.

x 27. [28] Design an algorithm that tests two given trees T and T ′ to see whether
T ≺ T ′, T ≻ T ′, or T is equivalent to T ′, in terms of the relation deĄned in exercise 25,
assuming that both binary trees are right-threaded. Assume that each node has the
Ąelds LLINK, RLINK, RTAG, INFO; use no auxiliary stack.

28. [00] After Algorithm C has been used to make a copy of a tree, is the new binary
tree equivalent to the original, or similar to it?

29. [M25] Prove as rigorously as possible that Algorithm C is valid.

x 30. [22] Design an algorithm that threads an unthreaded tree; for example, it should
transform (2) into (10). Note: Always use notations like P∗ and P$ when possible,
instead of repeating the steps for traversal algorithms like Algorithm T.

31. [23] Design an algorithm that ŞerasesŤ a right-threaded binary tree. Your algo-
rithm should return all of the tree nodes except the list head to the AVAIL list, and it
should make the list head signify an empty binary tree. Assume that each node has
the Ąelds LLINK, RLINK, RTAG; use no auxiliary stack.

32. [21] Suppose that each node of a binary tree has four link Ąelds: LLINK and RLINK,
which point to left and right subtrees or Λ, as in an unthreaded tree; SUC and PRED,
which point to the successor and predecessor of the node in symmetric order. (Thus
SUC(P) = P$ and PRED(P) = $P. Such a tree contains more information than a threaded
tree.) Design an algorithm like Algorithm I for insertion into such a tree.

x 33. [30] There is more than one way to thread a tree! Consider the following repre-
sentation, using three Ąelds LTAG, LLINK, RLINK in each node:

LTAG(P): deĄned the same as in a threaded binary tree;
LLINK(P): always equal to P∗;
RLINK(P): deĄned the same as in an unthreaded binary tree.

Discuss insertion algorithms for such a representation, and write out the copying
algorithm, Algorithm C, in detail for this representation.

334 INFORMATION STRUCTURES 2.3.1

34. [22] Let P point to a node in some binary tree, and let HEAD point to the list head
of an empty binary tree. Give an algorithm that (i) removes NODE(P) and all of its
subtrees from whatever tree it was in, and then (ii) attaches NODE(P) and its subtrees
to NODE(HEAD). Assume that all the binary trees in question are right-threaded, with
Ąelds LLINK, RTAG, RLINK in each node.

35. [40] DeĄne a ternary tree (and, more generally, a t-ary tree for any t ≥ 2) in a
manner analogous to our deĄnition of a binary tree, and explore the topics discussed
in this section (including topics found in the exercises above) that can be generalized
to t-ary trees in a meaningful way.

36. [M23] Exercise 1.2.1Ű15 shows that lexicographic order extends a well-ordering of
a set S to a well-ordering of the n-tuples of elements of S. Exercise 25 above shows that
a linear ordering of the information in tree nodes can be extended to a linear ordering
of trees, using a similar deĄnition. If the relation ≺ well-orders S, is the extended
relation of exercise 25 a well-ordering of T ?

x 37. [24] (D. Ferguson.) If two computer words are necessary to contain two link Ąelds
and an INFO Ąeld, representation (2) requires 2n words of memory for a tree with n
nodes. Design a representation scheme for binary trees that uses less space, assuming
that one link and an INFO Ąeld will Ąt in a single computer word.

2.3.2. Binary Tree Representation of Trees

We turn now from binary trees to just plain trees. Let us recall the basic
differences between trees and binary trees as we have deĄned them:

1) A tree always has a root node, so it is never empty; each node of a tree can
have 0, 1, 2, 3, . . . children.

2) A binary tree can be empty, and each of its nodes can have 0, 1, or 2 children;
we distinguish between a ŞleftŤ child and a ŞrightŤ child.

Recall also that a forest is an ordered set of zero or more trees. The subtrees
immediately below any node of a tree form a forest.

There is a natural way to represent any forest as a binary tree. Consider
the following forest of two trees:

A

B C

D

E F G

H JK

(1)

The corresponding binary tree is obtained by linking together the children of
each family and removing vertical links except from a parent to a Ąrst child:

A

B C

D

E F G

H JK

(2)

2.3.2 BINARY TREE REPRESENTATION OF TREES 335

Then, tilt the diagram 45◦ clockwise and tweak it slightly, obtaining a binary
tree:

A

B

C D

E

F

G

H

J

K

(3)

Conversely, it is easy to see that any binary tree corresponds to a unique forest
of trees by reversing the process.

The transformation from (1) to (3) is extremely important; it is called the
natural correspondence between forests and binary trees. In particular, it gives
a correspondence between trees and a special class of binary trees, namely the
binary trees that have a root but no right subtree. (We might also change our
viewpoint slightly and let the root of a tree correspond to the list head of a binary
tree, thus obtaining a one-to-one correspondence between trees with n+ 1 nodes
and binary trees with n nodes.)

Let F = (T1, T2, . . . , Tn) be a forest of trees. The binary tree B(F) corre-
sponding to F can be deĄned rigorously as follows:

a) If n = 0, B(F) is empty.
b) If n > 0, the root of B(F) is root(T1); the left subtree of B(F) is B(T11, T12,

. . . , T1m), where T11, T12, . . . , T1m are the subtrees of root(T1); and the right
subtree of B(F) is B(T2, . . . , Tn).

These rules specify the transformation from (1) to (3) precisely.
It will occasionally be convenient to draw our binary tree diagram as in (2),

without the 45◦ rotation. The threaded binary tree corresponding to (1) is

A

B C

D

E F G

H JK

(4)

(compare with Fig. 24, giving the latter a 45◦ change in orientation). Notice
that right thread links go from the rightmost child of a family to the parent.

336 INFORMATION STRUCTURES 2.3.2

Left thread links do not have such a natural interpretation, due to the lack of
symmetry between left and right.

The ideas about traversal explored in the previous section can be recast
in terms of forests (and, therefore, trees). There is no simple analog of the
inorder sequence, since there is no obvious place to insert a root among its
descendants; but preorder and postorder carry over in an obvious manner. Given
any nonempty forest, the two basic ways to traverse it may be deĄned as follows:

Preorder traversal Postorder traversal

Visit the root of the Ąrst tree Traverse the subtrees of the Ąrst tree
Traverse the subtrees of the Ąrst tree Visit the root of the Ąrst tree
Traverse the remaining trees Traverse the remaining trees

In order to understand the signiĄcance of these two methods of traversal,
consider the following notation for expressing tree structure by nested parenthe-
ses:

A(B,C(K)), D(E(H), F (J), G)

. (5)

This notation corresponds to the forest (1): We represent a tree by the informa-
tion written in its root, followed by a representation of its subtrees; we represent
a nonempty forest by a parenthesized list of the representations of its trees,
separated by commas.

If (1) is traversed in preorder, we visit the nodes in the sequence A B C K D
E H F J G; this is simply (5) with the parentheses and commas removed. Preorder
is a natural way to list the nodes of a tree: We list the root Ąrst, then the
descendants. If a tree structure is represented by indentation as in Fig. 20(c),
the rows appear in preorder. The section numbers of this book itself (see Fig. 22)
appear in preorder; thus, for example, Section 2.3 is followed by Section 2.3.1,
then come Sections 2.3.2, 2.3.3, 2.3.4, 2.3.4.1, . . . , 2.3.4.6, 2.3.5, 2.4, etc.

It is interesting to note that preorder is a time-honored concept that might
meaningfully be called dynastic order. At the death of a king, duke, or earl, the
title passes to the Ąrst son, then to descendants of the Ąrst son, and Ąnally if
these all die out it passes to other sons of the family in the same way. (English
custom also includes daughters in a family on the same basis as sons, except
that they come after all the sons.) In theory, we could take a lineal chart of all
the aristocracy and write out the nodes in preorder; then if we consider only the
people presently living, we would obtain the order of succession to the throne
(except as modiĄed by Acts of Abdication).

Postorder for the nodes in (1) is B K C A H E J F G D; this is analogous
to preorder, except that it corresponds to the similar parenthesis notation

(B, (K)C)A, ((H)E, (J)F, G)D

, (6)

in which a node appears just after its descendants instead of just before.
The deĄnitions of preorder and postorder mesh very nicely with the natural

correspondence between trees and binary trees, since the subtrees of the Ąrst
tree correspond to the left binary subtree, and the remaining trees correspond to
the right binary subtree. By comparing these deĄnitions with the corresponding

2.3.2 BINARY TREE REPRESENTATION OF TREES 337

deĄnitions on page 319, we Ąnd that traversing a forest in preorder is exactly
the same as traversing the corresponding binary tree in preorder. Traversing a
forest in postorder is exactly the same as traversing the corresponding binary
tree in inorder. The algorithms developed in Section 2.3.1 may therefore be
used without change. (Note that postorder for trees corresponds to inorder,
not postorder, for binary trees. This is fortunate, since we have seen that it
is comparatively hard to traverse binary trees in postorder.) Because of this
equivalence, we use the notation P$ for the postorder successor of node P in a
tree or forest, while it denotes the inorder successor in a binary tree.

As an example of the application of these methods to a practical problem,
we will consider the manipulation of algebraic formulas. Such formulas are
most properly regarded as representations of tree structures, not as one- or two-
dimensional conĄgurations of symbols, nor even as binary trees. For example,
the formula y = 3 ln(x+ 1)− a/x2 has the tree representation

−

× /

3 ln a ↑

+ x 2

x 1

y

−

× /

3 ln a ↑

+ x 2

x 1

= (7)

Here the illustration on the left is a conventional tree diagram like Fig. 21, in
which the binary operators +, −, ×, /, and ↑ (the latter denotes exponentiation)
have two subtrees corresponding to their operands; the unary operator ŞlnŤ has
one subtree; variables and constants are terminal nodes. The illustration on the
right shows the equivalent right-threaded binary tree, including an additional
node y that is a list head for the tree. The list head has the form described in
2.3.1Ű(8).

It is important to note that, even though the left-hand tree in (7) bears
a superĄcial resemblance to a binary tree, we are treating it here as a tree,
and representing it by a quite different binary tree, shown at the right in (7).
Although we could develop routines for algebraic manipulations based directly
on binary tree structures Ů the so-called Şthree-address codeŤ representations of
algebraic formulas Ů several simpliĄcations occur in practice if we use the general
tree representation of algebraic formulas, as in (7), because postorder traversal
is easier in a tree.

338 INFORMATION STRUCTURES 2.3.2

The nodes of the left-hand tree in (7) are

− × 3 ln + x 1 / a ↑ x 2 in preorder; (8)
3 x 1 + ln × a x 2 ↑ / − in postorder. (9)

Algebraic expressions like (8) and (9) are very important, and they are known
as ŞPolish notationsŤ because form (8) was introduced by the Polish logician,
Jan čukasiewicz. Expression (8) is the preĄx notation for formula (7), and (9)
is the corresponding postĄx notation. We will return to the interesting topic of
Polish notation in later chapters; for now let us be content with the knowledge
that Polish notation is directly related to the basic orders of tree traversal.

We shall assume that tree structures for the algebraic formulas with which
we will be dealing have nodes of the following form in MIX programs:

RTAG RLINK TYPE LLINK

INFO
(10)

Here RLINK and LLINK have the usual signiĄcance, and RTAG is negative for thread
links (corresponding to RTAG = 1 in the statements of algorithms). The TYPE

Ąeld is used to distinguish different kinds of nodes: TYPE = 0 means that the node
represents a constant, and INFO is the value of the constant. TYPE = 1 means
that the node represents a variable, and INFO is the Ąve-letter alphabetic name
of this variable. TYPE ≥ 2 means that the node represents an operator; INFO is
the alphabetic name of the operator and the value TYPE = 2, 3, 4, . . . is used to
distinguish the different operators +, −, ×, /, etc. We will not concern ourselves
here with how the tree structure has been set up inside the computer memory
in the Ąrst place, since this topic is analyzed in great detail in Chapter 10; let us
merely assume that the tree already appears in our computer memory, deferring
questions of input and output until later.

We shall now discuss the classical example of algebraic manipulation, Ąnding
the derivative of a formula with respect to the variable x. Programs for algebraic
differentiation were among the Ąrst symbol-manipulation routines ever written
for computers; they were used as early as 1952. The process of differentiation il-
lustrates many of the techniques of algebraic manipulation, and it is of signiĄcant
practical value in scientiĄc applications.

Readers who are not familiar with mathematical calculus may consider this
problem as an abstract exercise in formula manipulation, deĄned by the following
rules:

D(x) = 1 (11)
D(a) = 0, if a is a constant or a variable ̸= x (12)
D(ln u) = D(u)/u, if u is any formula (13)
D(−u) = −D(u) (14)
D(u+ v) = D(u) +D(v) (15)
D(u− v) = D(u)−D(v) (16)
D(u× v) = D(u)× v + u×D(v) (17)

2.3.2 BINARY TREE REPRESENTATION OF TREES 339

D(u / v) = D(u)/v −

u×D(v)

/(v ↑ 2) (18)

D(u ↑ v) = D(u)×

v × (u ↑ (v − 1))

+

(ln u)×D(v)

× (u ↑ v) (19)

These rules allow us to evaluate the derivative D(y) for any formula y composed
of the operators listed. The Ş−Ť sign in rule (14) is a unary operator, which
is different from the binary Ş−Ť in (16); we will use ŞnegŤ to stand for unary
negation in the tree nodes below.

Unfortunately rules (11)Ű(19) donŠt tell the whole story. If we apply them
blindly to a rather simple formula like

y = 3 ln(x+ 1)− a/x2,

we get

D(y) = 0 · ln(x+ 1) + 3

(1 + 0)/(x+ 1)

−

0/x2 −

a(1(2x2−1) + ((ln x) · 0)x2)

/(x2)2

, (20)

which is correct but totally unsatisfactory. To avoid so many redundant opera-
tions in the answer, we must recognize the special cases of adding or multiplying
by zero, multiplying by one, or raising to the Ąrst power. These simpliĄcations
reduce (20) to

D(y) = 3

1/(x+ 1)

−

−(a(2x))/(x2)2

, (21)

which is more acceptable but still not ideal. The concept of a really satisfactory
answer is not well-deĄned, because different mathematicians will prefer formulas
to be expressed in different ways; however, it is clear that (21) is not as simple
as it could be. In order to make substantial progress over formula (21), it is
necessary to develop algebraic simpliĄcation routines (see exercise 17), which
would reduce (21) to, for example,

D(y) = 3(x+ 1)−1 + 2ax−3. (22)

We will content ourselves here with routines that can produce (21), not (22).
Our main interest in this algorithm is, as usual, in the details of how the

process is carried out inside a computer. Many higher-level languages and special
routines are available at most computer installations, with built-in facilities
to simplify algebraic manipulations like these; but the purpose of the present
example is to gain more experience in fundamental tree operations.

The idea behind the following algorithm is to traverse the tree in postorder,
forming the derivative of each node as we go, until eventually the entire derivative
has been calculated. Using postorder means that we will arrive at an operator
node (like Ş+Ť) after its operands have been differentiated. Rules (11) through
(19) imply that every subformula of the original formula will have to be differen-
tiated, sooner or later, so we might as well do the differentiations in postorder.

By using a right-threaded tree, we avoid the need for a stack during the
operation of the algorithm. On the other hand, a threaded tree representation
has the disadvantage that we will need to make copies of subtrees; for example,
in the rule for D(u ↑ v) we might need to copy u and v three times each. If we

340 INFORMATION STRUCTURES 2.3.2

had chosen to use a List representation as in Section 2.3.5 instead of a tree, we
could have avoided such copying.

Algorithm D (Differentiation). If Y is the address of a list head that points to
a formula represented as described above, and if DY is the address of the list head
for an empty tree, this algorithm makes NODE(DY) point to a tree representing
the analytic derivative of Y with respect to the variable ŞXŤ.
D1. [Initialize.] Set P ← Y$ (namely, the Ąrst node of the tree, in postorder,

which is the Ąrst node of the corresponding binary tree in inorder).
D2. [Differentiate.] Set P1← LLINK(P); and if P1 ̸= Λ, also set Q1← RLINK(P1).

Then perform the routine DIFF[TYPE(P)], described below. (The routines
DIFF[0], DIFF[1], etc., will form the derivative of the tree with root P, and
will set pointer variable Q to the address of the root of the derivative. The
variables P1 and Q1 are set up Ąrst, in order to simplify the speciĄcation of
the DIFF routines.)

D3. [Restore link.] If TYPE(P) denotes a binary operator, set RLINK(P1)← P2.
(See the next step for an explanation.)

D4. [Advance to P$.] Set P2 ← P, P ← P$. Now if RTAG(P2) = 0 (that is, if
NODE(P2) has a sibling to the right), set RLINK(P2)← Q. (This is the tricky
part of the algorithm: We temporarily destroy the structure of tree Y, so
that a link to the derivative of P2 is saved for future use. The missing link
will be restored later in step D3. See exercise 21 for further discussion of
this trick.)

D5. [Done?] If P ̸= Y, return to step D2. Otherwise set LLINK(DY) ← Q and
RLINK(Q)← DY, RTAG(Q)← 1.
The procedure described in Algorithm D is just the background routine

for the differentiation operations that are performed by the processing routines
DIFF[0], DIFF[1], . . . , called in step D2. In many ways, Algorithm D is like the
control routine for an interpretive system or machine simulator, as discussed in
Section 1.4.3, but it traverses a tree instead of a simple sequence of instructions.

To complete Algorithm D we must deĄne the routines that do the actual
differentiation. In the following discussion, the statement ŞP points to a treeŤ
means that NODE(P) is the root of a tree stored as a right-threaded binary tree,
although both RLINK(P) and RTAG(P) will be meaningless so far as this tree is
concerned. We will make use of a tree construction function that makes new
trees by joining smaller ones together: Let x denote some kind of node, either a
constant, variable, or operator, and let U and V denote pointers to trees; then

TREE(x,U,V) makes a new tree with x in its root node and with U and V

the subtrees of the root: W ⇐ AVAIL, INFO(W) ← x, LLINK(W) ← U,
RLINK(U)← V, RTAG(U)← 0, RLINK(V)← W, RTAG(V)← 1.

TREE(x,U) similarly makes a new tree with only one subtree: W ⇐ AVAIL,
INFO(W)← x, LLINK(W)← U, RLINK(U)← W, RTAG(U)← 1.

TREE(x) makes a new tree with x as a terminal root node: W ⇐ AVAIL,
INFO(W)← x, LLINK(W)← Λ.

2.3.2 BINARY TREE REPRESENTATION OF TREES 341

Furthermore TYPE(W) is set appropriately, depending on x. In all cases, the
value of TREE is W, that is, a pointer to the tree just constructed. The reader
should study these three deĄnitions carefully, since they illustrate the binary
tree representation of trees. Another function, COPY(U), makes a copy of the
tree pointed to by U and has as its value a pointer to the tree thereby created.
The basic functions TREE and COPY make it easy to build up a tree for the
derivative of a formula, step by step.

Nullary operators (constants and variables). For these operations, NODE(P)
is a terminal node, and the values of P1, P2, Q1, and Q before the operation are
irrelevant.

DIFF[0]: (NODE(P) is a constant.) Set Q← TREE(0).

DIFF[1]: (NODE(P) is a variable.) If INFO(P) = ŞXŤ, set Q ← TREE(1);
otherwise set Q← TREE(0).

Unary operators (logarithm and negation). For these operations, NODE(P) has
one child, U, pointed to by P1, and Q points to D(U). The values of P2 and Q1

before the operation are irrelevant.

DIFF[2]: (NODE(P) is ŞlnŤ.) If INFO(Q) ̸= 0, set Q←TREE(Ş/Ť,Q,COPY(P1)).

DIFF[3]: (NODE(P) is ŞnegŤ.) If INFO(Q) ̸= 0, set Q← TREE(ŞnegŤ,Q).

Binary operators (addition, subtraction, multiplication, division, exponentia-
tion). For these operations, NODE(P) has two children, U and V , pointed to
respectively by P1 and P2; Q1 and Q point respectively to D(U), D(V).

DIFF[4]: (Ş+Ť operation.) If INFO(Q1) = 0, set AVAIL⇐ Q1. Otherwise if
INFO(Q) = 0, set AVAIL⇐ Q and Q← Q1; otherwise set Q← TREE(Ş+Ť,Q1,Q).

DIFF[5]: (Ş−Ť operation.) If INFO(Q) = 0, set AVAIL ⇐ Q and Q ← Q1.
Otherwise if INFO(Q1) = 0, set AVAIL ⇐ Q1 and set Q ← TREE(ŞnegŤ,Q);
otherwise set Q← TREE(Ş−Ť,Q1,Q).

DIFF[6]: (Ş×Ť operation.) If INFO(Q1) ̸= 0, set Q1← MULT(Q1,COPY(P2)).
Then if INFO(Q) ̸= 0, set Q← MULT(COPY(P1),Q). Then go to DIFF[4].

Here MULT(U,V) is a new function that constructs a tree for U× V but also
makes a test to see if U or V is equal to 1:

if INFO(U) = 1 and TYPE(U) = 0, set AVAIL⇐ U and MULT(U,V)← V;
if INFO(V) = 1 and TYPE(V) = 0, set AVAIL⇐ V and MULT(U,V)← U;

otherwise set MULT(U,V)← TREE(Ş×Ť,U,V).

DIFF[7]: (Ş/Ť operation.) If INFO(Q1) ̸= 0, set

Q1← TREE(Ş/Ť,Q1,COPY(P2)).

Then if INFO(Q) ̸= 0, set

Q← TREE(Ş/Ť,MULT(COPY(P1),Q),TREE(Ş↑Ť,COPY(P2),TREE(2))).
Then go to DIFF[5].

DIFF[8]: (Ş↑Ť operation.) See exercise 12.

342 INFORMATION STRUCTURES 2.3.2

We conclude this section by showing how all of the operations above are
readily transformed into a computer program, starting Şfrom scratchŤ with only
MIX machine language as a basis.

Program D (Differentiation). The following MIXAL program performs Algo-
rithm D, with rI2 ≡ P, rI3 ≡ P2, rI4 ≡ P1, rI5 ≡ Q, rI6 ≡ Q1. The order of
computations has been rearranged a little, for convenience.

001 * DIFFERENTIATION IN A RIGHT-THREADED TREE
002 LLINK EQU 4:5 DeĄnition of Ąelds, see (10)
003 RLINK EQU 1:2
004 RLINKT EQU 0:2
005 TYPE EQU 3:3
006 * MAIN CONTROL ROUTINE D1. Initialize.
007 D1 STJ 9F Treat the whole procedure as a subroutine.
008 LD4 Y(LLINK) P1← LLINK(Y), prepare to Ąnd Y$.
009 1H ENT2 0,4 P← P1.
010 2H LD4 0,2(LLINK) P1← LLINK(P).
011 J4NZ 1B If P1 ̸= Λ, repeat.
012 D2 LD1 0,2(TYPE) D2. Differentiate.
013 JMP *+1,1 Jump to DIFF[TYPE(P)].
014 JMP CONSTANT Switch to table entry for DIFF[0].
015 JMP VARIABLE DIFF[1].
016 JMP LN DIFF[2].
017 JMP NEG DIFF[3].
018 JMP ADD DIFF[4].
019 JMP SUB DIFF[5].
020 JMP MUL DIFF[6].
021 JMP DIV DIFF[7].
022 JMP PWR DIFF[8].
023 D3 ST3 0,4(RLINK) D3. Restore link. RLINK(P1)← P2.
024 D4 ENT3 0,2 D4. Advance to P$. P2← P.
025 LD2 0,2(RLINKT) P← RLINKT(P).
026 J2N 1F Jump if RTAG(P) = 1;
027 ST5 0,3(RLINK) otherwise set RLINK(P2)← Q.
028 JMP 2B Note that NODE(P$) will be terminal.
029 1H ENN2 0,2
030 D5 ENT1 -Y,2 D5. Done?
031 LD4 0,2(LLINK) P1← LLINK(P), prepare for step D2.
032 LD6 0,4(RLINK) Q1← RLINK(P1).
033 J1NZ D2 Jump to D2 if P ̸= Y;
034 ST5 DY(LLINK) otherwise set LLINK(DY)← Q.
035 ENNA DY
036 STA 0,5(RLINKT) RLINK(Q)← DY, RTAG(Q)← 1.
037 9H JMP * Exit from differentiation subroutine.

The next part of the program contains the basic subroutines TREE and COPY. The
former has three entrances TREE0, TREE1, and TREE2, according to the number
of subtrees of the tree being constructed. Regardless of which entrance to the
subroutine is used, rA will contain the address of a special constant indicating

2.3.2 BINARY TREE REPRESENTATION OF TREES 343

what type of node forms the root of the tree being constructed; these special
constants appear in lines 105Ű124.

038 * BASIC SUBROUTINES FOR TREE CONSTRUCTION
039 TREE0 STJ 9F TREE(rA) function:
040 JMP 2F
041 TREE1 ST1 3F(0:2) TREE(rA,rI1) function:
042 JSJ 1F
043 TREE2 STX 3F(0:2) TREE(rA,rX,rI1) function:
044 3H ST1 *(RLINKT) RLINK(rX)← rI1, RTAG(rX)← 0.
045 1H STJ 9F
046 LDXN AVAIL
047 JXZ OVERFLOW
048 STX 0,1(RLINKT) RLINK(rI1)← AVAIL, RTAG(rI1)← 1.
049 LDX 3B(0:2)
050 STA *+1(0:2)
051 STX *(LLINK) Set LLINK of next root node.
052 2H LD1 AVAIL rI1⇐ AVAIL.
053 J1Z OVERFLOW
054 LDX 0,1(LLINK)
055 STX AVAIL
056 STA *+1(0:2) Copy root info to new node.
057 MOVE *(2)
058 DEC1 2 Reset rI1 to point to the new root.
059 9H JMP * Exit from TREE, rI1 points to new tree.
060 COPYP1 ENT1 0,4 COPY(P1), special entrance to COPY

061 JSJ COPY
062 COPYP2 ENT1 0,3 COPY(P2), special entrance to COPY

063 COPY STJ 9F COPY(rI1) function:
...

... (see exercise 13)
104 9H JMP * Exit from COPY, rI1 points to new tree.
105 CON0 CON 0 Node representing the constant Ş0Ť
106 CON 0
107 CON1 CON 0 Node representing Ş1Ť
108 CON 1
109 CON2 CON 0 Node representing Ş2Ť
110 CON 2
111 LOG CON 2(TYPE) Node representing ŞlnŤ
112 ALF LN
113 NEGOP CON 3(TYPE) Node representing ŞnegŤ
114 ALF NEG
115 PLUS CON 4(TYPE) Node representing Ş+Ť
116 ALF +
117 MINUS CON 5(TYPE) Node representing Ş−Ť
118 ALF -
119 TIMES CON 6(TYPE) Node representing Ş×Ť
120 ALF *
121 SLASH CON 7(TYPE) Node representing Ş/Ť
122 ALF /

344 INFORMATION STRUCTURES 2.3.2

123 UPARROW CON 8(TYPE) Node representing Ş↑Ť
124 ALF **

The remaining portion of the program corresponds to the differentiation routines
DIFF[0], DIFF[1], . . . ; these routines are written to return control to step D3
after processing a binary operator, otherwise they return to step D4.
125 * DIFFERENTIATION ROUTINES
126 VARIABLE LDX 1,2
127 ENTA CON1
128 CMPX 2F Is INFO(P) = ŞXŤ?
129 JE *+2 If so, call TREE(1).
130 CONSTANT ENTA CON0 Call TREE(0).
131 JMP TREE0
132 1H ENT5 0,1 Q← location of new tree.
133 JMP D4 Return to control routine.
134 2H ALF X
135 LN LDA 1,5
136 JAZ D4 Return to control routine if INFO(Q) = 0;
137 JMP COPYP1 otherwise set rI1← COPY(P1).
138 ENTX 0,5
139 ENTA SLASH
140 JMP TREE2 rI1← TREE(Ş/Ť,Q,rI1).
141 JMP 1B Q← rI1, return to control.
142 NEG LDA 1,5
143 JAZ D4 Return if INFO(Q) = 0.
144 ENTA NEGOP
145 ENT1 0,5
146 JMP TREE1 rI1← TREE(ŞnegŤ,Q).
147 JMP 1B Q← rI1, return to control.
148 ADD LDA 1,6
149 JANZ 1F Jump unless INFO(Q1) = 0.
150 3H LDA AVAIL AVAIL⇐ Q1.
151 STA 0,6(LLINK)
152 ST6 AVAIL
153 JMP D3 Return to control, binary operator.
154 1H LDA 1,5
155 JANZ 1F Jump unless INFO(Q) = 0.
156 2H LDA AVAIL AVAIL⇐ Q.
157 STA 0,5(LLINK)
158 ST5 AVAIL
159 ENT5 0,6 Q← Q1.
160 JMP D3 Return to control.
161 1H ENTA PLUS Prepare to call TREE(Ş+Ť,Q1,Q).
162 4H ENTX 0,6
163 ENT1 0,5
164 JMP TREE2
165 ENT5 0,1 Q← TREE(Ş±Ť,Q1,Q).
166 JMP D3 Return to control.
167 SUB LDA 1,5
168 JAZ 2B Jump if INFO(Q) = 0.

2.3.2 BINARY TREE REPRESENTATION OF TREES 345

169 LDA 1,6
170 JANZ 1F Jump unless INFO(Q1) = 0.
171 ENTA NEGOP
172 ENT1 0,5
173 JMP TREE1
174 ENT5 0,1 Q← TREE(ŞnegŤ,Q).
175 JMP 3B AVAIL⇐ Q1 and return.
176 1H ENTA MINUS Prepare to call TREE(Ş−Ť,Q1,Q).
177 JMP 4B
178 MUL LDA 1,6
179 JAZ 1F Jump if INFO(Q1) = 0;
180 JMP COPYP2 otherwise set rI1← COPY(P2).
181 ENTA 0,6
182 JMP MULT rI1← MULT(Q1,COPY(P2)).
183 ENT6 0,1 Q1← rI1.
184 1H LDA 1,5
185 JAZ ADD Jump if INFO(Q) = 0;
186 JMP COPYP1 otherwise set rI1← COPY(P1).
187 ENTA 0,1
188 ENT1 0,5
189 JMP MULT rI1← MULT(COPY(P1),Q).
190 ENT5 0,1 Q← rI1.
191 JMP ADD
192 MULT STJ 9F MULT(rA,rI1) subroutine:
193 STA 1F(0:2) Let rA ≡ U, rI1 ≡ V.
194 ST2 8F(0:2) Save rI2.
195 1H ENT2 * rI2← U.
196 LDA 1,2 Test if INFO(U) = 1
197 DECA 1
198 JANZ 1F
199 LDA 0,2(TYPE) and if TYPE(U) = 0.
200 JAZ 2F
201 1H LDA 1,1 If not, test if INFO(V) = 1
202 DECA 1
203 JANZ 1F
204 LDA 0,1(TYPE) and if TYPE(V) = 0.
205 JANZ 1F
206 ST1 *+2(0:2) If so, interchange U ↔ V.
207 ENT1 0,2
208 ENT2 *
209 2H LDA AVAIL AVAIL⇐ U.
210 STA 0,2(LLINK)
211 ST2 AVAIL
212 JMP 8F Result is V.
213 1H ENTA TIMES
214 ENTX 0,2
215 JMP TREE2 Result is TREE(Ş×Ť,U,V).
216 8H ENT2 * Restore rI2 setting.
217 9H JMP * Exit MULT with result in rI1.

346 INFORMATION STRUCTURES 2.3.2

The other two routines DIV and PWR are similar and they have been left as
exercises (see exercises 15 and 16).

EXERCISES

x 1. [20] The text gives a formal deĄnition of B(F), the binary tree corresponding to
a forest F. Give a formal deĄnition that reverses the process; in other words, deĄne
F (B), the forest corresponding to a binary tree B.

x 2. [20] We deĄned Dewey decimal notation for forests in Section 2.3, and for binary
trees in exercise 2.3.1Ű5. Thus the node ŞJŤ in (1) is represented by Ş2.2.1Ť, and in
the equivalent binary tree (3) it is represented by Ş11010Ť. If possible, give a rule
that directly expresses the natural correspondence between trees and binary trees as a
correspondence between the Dewey decimal notations.

3. [22] What is the relation between Dewey decimal notation for the nodes of a
forest and the preorder and postorder of those nodes?

4. [19] Is the following statement true or false? ŞThe terminal nodes of a tree occur
in the same relative position in preorder and postorder.Ť

5. [23] Another correspondence between forests and binary trees could be deĄned by
letting RLINK(P) point to the rightmost child of NODE(P), and LLINK(P) to the nearest
sibling on the left. Let F be a forest that corresponds in this way to a binary tree B.
What order, on the nodes of B, corresponds to (a) preorder (b) postorder on F?

6. [25] Let T be a nonempty binary tree in which each node has 0 or 2 children. If
we regard T as an ordinary tree, it corresponds (via the natural correspondence) to
another binary tree T ′. Is there any simple relation between preorder, inorder, and
postorder of the nodes of T (as deĄned for binary trees) and the same three orders for
the nodes of T ′?

7. [M20] A forest may be regarded as a partial ordering, if we say that each node
precedes its descendants in the tree. Are the nodes topologically sorted (as deĄned in
Section 2.2.3) when they are listed in (a) preorder? (b) postorder? (c) reverse preorder?
(d) reverse postorder?

8. [M20] Exercise 2.3.1Ű25 shows how an ordering between the information stored
in the individual nodes of a binary tree may be extended to a linear ordering of all
binary trees. The same construction leads to an ordering of all trees, under the natural
correspondence. Reformulate the deĄnition of that exercise, in terms of trees.

9. [M21] Show that the total number of nonterminal nodes in a forest has a simple
relation to the total number of right links equal to Λ in the corresponding unthreaded
binary tree.

10. [M23] Let F be a forest of trees whose nodes in preorder are u1, u2, . . . , un, and
let F ′ be a forest whose nodes in preorder are u′

1, u
′
2, . . . , u

′
n′ . Let d(u) denote the

degree (the number of children) of node u. In terms of these ideas, formulate and prove
a theorem analogous to Theorem 2.3.1A.

11. [15] Draw trees analogous to those shown in (7), corresponding to the formula
y = e−x

2

.

12. [M21] Give speciĄcations for the routine DIFF[8] (the Ş↑Ť operation), which was
omitted from the algorithm in the text.

2.3.2 BINARY TREE REPRESENTATION OF TREES 347

x 13. [26] Write a MIX program for the COPY subroutine (which Ąts in the program of
the text between lines 063Ű104). [Hint: Adapt Algorithm 2.3.1C to the case of right-
threaded binary trees, with suitable initial conditions.]

x 14. [M21] How long does it take the program of exercise 13 to copy a tree with n
nodes?

15. [23] Write a MIX program for the DIV routine, corresponding to DIFF[7] as speci-
Ąed in the text. (This routine should be added to the program in the text after line 217.)

16. [24] Write a MIX program for the PWR routine, corresponding to DIFF[8] as speci-
Ąed in exercise 12. (This routine should be added to the program in the text after the
solution to exercise 15.)

17. [M40] Write a program to do algebraic simpliĄcation capable of reducing, for
example, (20) or (21) to (22). [Hints: Include a new Ąeld with each node, representing
its coefficient (for summands) or its exponent (for factors in a product). Apply algebraic
identities, like replacing ln(u ↑ v) by v lnu; remove the operations −, /, ↑, and neg
when possible by using equivalent addition or multiplication operations. Make + and
× into n-ary instead of binary operators; collect like terms by sorting their operands
in tree order (exercise 8); some sums and products will now reduce to zero or unity,
presenting perhaps further simpliĄcations. Other adjustments, like replacing a sum of
logarithms by the logarithm of a product, also suggest themselves.]

x 18. [25] An oriented tree speciĄed by n links PARENT[j] for 1 ≤ j ≤ n implicitly deĄnes
an ordered tree if the nodes in each family are ordered by their location. Design an
efficient algorithm that constructs a doubly linked circular list containing the nodes of
this ordered tree in preorder. For example, given

j = 1 2 3 4 5 6 7 8
PARENT[j] = 3 8 4 0 4 8 3 4

your algorithm should produce

LLINK[j] = 3 8 4 6 7 2 1 5
RLINK[j] = 7 6 1 3 8 4 5 2

and it should also report that the root node is 4.

19. [M35] A free lattice is a mathematical system, which (for the purposes of this
exercise) can be simply deĄned as the set of all formulas composed of variables and
two abstract binary operators Ş∨Ť and Ş∧Ť. A relation ŞX ⪰ Y Ť is deĄned between
certain formulas X and Y in the free lattice by the following rules:

i) X ∨ Y ⪰ W ∧ Z if and only if X ∨ Y ⪰ W or X ∨ Y ⪰ Z or X ⪰ W ∧ Z or
Y ⪰W ∧ Z;

ii) X ∧ Y ⪰ Z if and only if X ⪰ Z and Y ⪰ Z;

iii) X ⪰ Y ∨ Z if and only if X ⪰ Y and X ⪰ Z;

iv) x ⪰ Y ∧ Z if and only if x ⪰ Y or x ⪰ Z, when x is a variable;

v) X ∨ Y ⪰ z if and only if X ⪰ z or Y ⪰ z, when z is a variable;

vi) x ⪰ y if and only if x = y, when x and y are variables.

For example, we Ąnd a ∧ (b ∨ c) ⪰ (a ∧ b) ∨ (a ∧ c) ̸⪰ a ∧ (b ∨ c).
Design an algorithm that tests whether or not X ⪰ Y , given two formulas X and Y

in the free lattice.

348 INFORMATION STRUCTURES 2.3.2

x 20. [M22] Prove that if u and v are nodes of a forest, u is a proper ancestor of v if
and only if u precedes v in preorder and u follows v in postorder.

21. [25] Algorithm D controls the differentiation activity for binary operators, unary
operators, and nullary operators, thus for trees whose nodes have degree 2, 1, and 0; but
it does not indicate explicitly how the control would be handled for ternary operators
and nodes of higher degree. (For example, exercise 17 suggests making addition and
multiplication into operators with any number of operands.) Is it possible to extend
Algorithm D in a simple way so that it will handle operators of degree more than 2?

x 22. [M26] If T and T ′ are trees, let us say T can be embedded in T ′, written T ⊆ T ′,
if there is a one-to-one function f from the nodes of T into the nodes of T ′ such that
f preserves both preorder and postorder. (In other words, u precedes v in preorder
for T if and only if f(u) precedes f(v) in preorder for T ′, and the same holds for
postorder. See Fig. 25.)

a

b c

d e f

a′

b′ c′

d′ e′

f ′

Fig. 25. One tree embedded in another (see exercise 22).

If T has more than one node, let l(T) be the leftmost subtree of root(T) and let
r(T) be the rest of T, that is, T with l(T) deleted. Prove that T can be embedded in
T ′ if (i) T has just one node, or (ii) both T and T ′ have more than one node and either
T ⊆ l(T ′), or T ⊆ r(T ′), or (l(T) ⊆ l(T ′) and r(T) ⊆ r(T ′)). Does the converse hold?

2.3.3. Other Representations of Trees

There are many ways to represent tree structures inside a computer besides the
LLINK-RLINK (left child Ű right sibling) method given in the previous section.
As usual, the proper choice of representation depends heavily on what kind of
operations we want to perform on the trees. In this section we will consider a
few of the tree representation methods that have proved to be especially useful.

First we can use sequential memory techniques. As in the case of linear lists,
this mode of allocation is most suitable when we want a compact representation
of a tree structure that is not going to be subject to radical dynamic changes in
size or shape during program execution. There are many situations in which we
need essentially constant tables of tree structures for reference within a program,
and the desired form of these trees in memory depends on the way in which the
tables are to be examined.

The most common sequential representation of trees (and forests) corres-
ponds essentially to the omission of LLINK Ąelds, by using consecutive addressing

2.3.3 OTHER REPRESENTATIONS OF TREES 349

instead. For example, let us look again at the forest

A(B,C(K)), D(E(H), F (J), G)

(1)

considered in the previous section, which has the tree diagrams

A

B C

D

E F G

H JK

and A

B C

D

E F G

H JK (2)

The preorder sequential representation has the nodes appearing in preorder,
with the Ąelds INFO, RLINK, and LTAG in each node:

A B C D E F GH JK

RLINK

INFO

LTAG

(3)

Here nonnull RLINKs have been indicated by arrows, and LTAG = 1 (for terminal
nodes) is indicated by Ş⌋Ť. LLINK is unnecessary, since it would either be null
or it would point to the next item in sequence. It is instructive to compare (1)
with (3).

This representation has several interesting properties. In the Ąrst place,
all subtrees of a node appear immediately after that node, so that all subtrees
within the original forest appear in consecutive blocks. [Compare this with the
Şnested parenthesesŤ in (1) and in Fig. 20(b).] In the second place, notice that
the RLINK arrows never cross each other in (3); this will be true in general, for
in a binary tree all nodes between X and RLINK(X) in preorder lie in the left
subtree of X, hence no outward arrows will emerge from that part of the tree.
In the third place, we may observe that the LTAG Ąeld, which indicates whether
a node is terminal or not, is redundant, since Ş⌋Ť occurs only at the end of the
forest and just preceding every downward pointing arrow.

Indeed, these remarks show that the RLINK Ąeld itself is almost redundant;
all we really need to represent the structure is RTAG and LTAG. Thus it is possible
to deduce (3) from much less data:

A B C D E F GH JK

RTAG

INFO

LTAG

(4)

As we scan (4) from left to right, the positions with RTAG ̸= Ş⌉Ť correspond
to nonnull RLINKs that must be Ąlled in. Each time we pass an item with
LTAG = Ş⌋Ť, we should complete the most recent instance of an incomplete
RLINK. (The locations of incomplete RLINKs can therefore be kept on a stack.)
We have essentially proved Theorem 2.3.1A again.

The fact that RLINK or LTAG is redundant in (3) is of little or no help to
us unless we are scanning the entire forest sequentially, since extra computation
is required to deduce the missing information. Therefore we often need all of

350 INFORMATION STRUCTURES 2.3.3

the data in (3). However, there is evidently some wasted space, since more than
half of the RLINK Ąelds are equal to Λ for this particular forest. There are two
common ways to make use of the wasted space:

1) Fill the RLINK of each node with the address following the subtree below
that node. The Ąeld is now often called ŞSCOPEŤ instead of RLINK, since it
indicates the right boundary of the ŞinĆuenceŤ (descendants) of each node.
Instead of (3), we would have

A B C D E F GH JK

SCOPE

INFO

(5)

The arrows still do not cross each other. Furthermore, LTAG(X) = Ş⌋Ť is char-
acterized by the condition SCOPE(X) = X+ c, where c is the number of words per
node. One example of the use of this SCOPE idea appears in exercise 2.4Ű12.

2) Decrease the size of each node by removing the RLINK Ąeld, and add
special ŞlinkŤ nodes just before nodes that formerly had a nonnull RLINK:

A B C D E F GH JKINFO

LTAG

∗ ∗ ∗ ∗ (6)

Here Ş∗Ť indicates the special link nodes, whose INFO somehow characterizes
them as links pointing as shown by the arrows. If the INFO and RLINK Ąelds of
(3) occupy roughly the same amount of space, the net effect of the change to (6)
is to consume less memory, since the number of Ş∗Ť nodes is always less than
the number of non-Ş∗Ť nodes. Representation (6) is somewhat analogous to a
sequence of instructions in a one-address computer like MIX, with the Ş∗Ť nodes
corresponding to conditional jump instructions.

Another sequential representation analogous to (3) may be devised by omit-
ting RLINKs instead of LLINKs. In this case we list the nodes of the forest in a new
order that may be called family order since the members of each family appear
together. Family order for any forest may be deĄned recursively as follows:

Visit the root of the Ąrst tree.
Traverse the remaining trees (in family order).
Traverse the subtrees of the root of the Ąrst tree (in family order).

(Compare this with the deĄnitions of preorder and postorder in the previous sec-
tion. Family order is identical with the reverse of postorder in the corresponding
binary tree.)

The family order sequential representation of the trees (2) is

A B CD E F G HJ K

LLINK

INFO

RTAG

(7)

In this case the RTAG entries serve to delimit the families. Family order begins
by listing the roots of all trees in the forest, then continues by listing individual
families, successively choosing the family of the most recently appearing node
whose family has not yet been listed. It follows that the LLINK arrows will

2.3.3 OTHER REPRESENTATIONS OF TREES 351

never cross; and the other properties of preorder representation carry over in a
similar way.

Instead of using family order, we could also simply list the nodes from left
to right, one level at a time. This is called Şlevel orderŤ [see G. Salton, CACM 5

(1962), 103Ű114], and the level order sequential representation of (2) is

A B CD E F G H JK

LLINK

INFO

RTAG

(8)

This is like (7), but the families are chosen in Ąrst-in-Ąrst-out fashion rather than
last-in-Ąrst-out. Either (7) or (8) may be regarded as a natural analog, for trees,
of the sequential representation of linear lists.

The reader will easily see how to design algorithms that traverse and analyze
trees represented sequentially as above, since the LLINK and RLINK information
is essentially available just as though we had a fully linked tree structure.

Another sequential method, called postorder with degrees, is somewhat dif-
ferent from the techniques above. We list the nodes in postorder and give the
degree of each node instead of links:

DEGREE 0 0 1 2 0 1 0 1 0 3
INFO B K C A H E J F G D

(9)

For a proof that this is sufficient to characterize the tree structure, see exercise
2.3.2Ű10. This order is useful for the Şbottom-upŤ evaluation of functions deĄned
on the nodes of a tree, as in the following algorithm.

Algorithm F (Evaluate a locally deĄned function in a tree). Suppose f is a
function of the nodes of a tree, such that the value of f at a node x depends only
on x and the values of f on the children of x. The following algorithm, using an
auxiliary stack, evaluates f at each node of a nonempty forest.

F1. [Initialize.] Set the stack empty, and let P point to the Ąrst node of the forest
in postorder.

F2. [Evaluate f .] Set d← DEGREE(P). (The Ąrst time this step is reached, d will
be zero. In general, when we get to this point, it will always be true that
the top d items of the stack are f(xd), . . . , f(x1) Ů from the top of the
stack downward Ů where x1, . . . , xd are the children of NODE(P) from left
to right.) Evaluate f

NODE(P)

, using the values of f(xd), . . . , f(x1) found

on the stack.

F3. [Update the stack.] Remove the top d items of the stack; then put the value
f

NODE(P)

on top of the stack.

F4. [Advance.] If P is the last node in postorder, terminate the algorithm.
(The stack will then contain f

root(Tm)

, . . . , f

root(T1)

, from top to

bottom, where T1, . . . , Tm are the trees of the given forest.) Otherwise
set P to its successor in postorder

this would be simply P ← P + c in the

representation (9)

, and return to step F2.

352 INFORMATION STRUCTURES 2.3.3

The validity of Algorithm F follows by induction on the size of the trees
processed (see exercise 16). This algorithm bears a striking similarity to the
differentiation procedure of the previous section (Algorithm 2.3.2D), which eval-
uates a function of a closely related type; see exercise 3. The same idea is used
in many interpretive routines in connection with the evaluation of arithmetic
expressions in postĄx notation; we will return to this topic in Chapter 8. See
also exercise 17, which gives another important procedure similar to Algorithm F.

Thus we have seen various sequential representations of trees and forests.
There are also a number of linked forms of representation, which we shall now
consider.

The Ąrst idea is related to the transformation that takes (3) into (6): We
remove the INFO Ąelds from all nonterminal nodes and put this information as
a new terminal node below the previous node. For example, the trees (2) would
become

A B

C

D

E F

G

H JK

∗

∗

∗

∗ ∗ (10)

This new form shows that we may assume (without loss of generality) that
all INFO in a tree structure appears in its terminal nodes. Therefore in the
natural binary tree representation of Section 2.3.2, the LLINK and INFO Ąelds
are mutually exclusive and they can share the same Ąeld in each node. A node
might have the Ąelds

LTAG LLINK or INFO RLINK

where the sign LTAG tells whether the second Ąeld is a link or not. (Compare
this representation with, for example, the two-word format of (10) in Section
2.3.2.) By cutting INFO down from 5 bytes to 3, we can Ąt each node into one
word. However, notice that there are now 15 nodes instead of 10; the forest (10)
takes 15 words of memory while (2) takes 20, yet the latter has 50 bytes of INFO
compared to 30 in the other. There is no real gain in memory space in (10)
unless the excess INFO space was going to waste; the LLINKs replaced in (10)
are removed at the expense of about the same number of new RLINKs in the
added nodes. Precise details of the differences between the two representations
are discussed in exercise 4.

In the standard binary tree representation of a tree, the LLINK Ąeld might
be more accurately called the LCHILD Ąeld, since it points from a parent node to
its leftmost child. The leftmost child is usually the ŞyoungestŤ of the children
in the tree, since it is easier to insert a node at the left of a family than at the
right; so the abbreviation LCHILD may also be thought of as the Şlast childŤ or
Şleast child.Ť

2.3.3 OTHER REPRESENTATIONS OF TREES 353

Many applications of tree structures require rather frequent references up-
ward in the tree as well as downward. A threaded tree gives us the ability to
go upward, but not with great speed; we can sometimes do better if we have a
third link, PARENT, in each node. This leads to a triply linked tree, where each
node has LCHILD, RLINK, and PARENT links. Figure 26 shows a triply linked
tree representation of (2). For an example of the use of triply linked trees, see
Section 2.4.

INFO PARENT

LCHILD RLINK Fig. 26. A triply linked tree.

A

B C

D

E F G

H JK

It is clear that the PARENT link all by itself is enough to specify any oriented
tree (or forest) completely. For we can draw the diagram of the tree if we know all
the upward links. Every node except the root has just one parent, but there may
be several children; so it is simpler to give upward links than downward ones.
Why then havenŠt we considered upward links much earlier in our discussion?
The answer, of course, is that upward links by themselves are hardly adequate
in most situations, since it is very difficult to tell quickly if a node is terminal
or not, or to locate any of its children, etc. There is, however, a very important
application in which upward links are sufficient by themselves: We now turn to
a brief study of an elegant algorithm for dealing with equivalence relations, due
to M. J. Fischer and B. A. Galler.

An equivalence relation Ş≡Ť is a relation between the elements of a set of
objects S satisfying the following three properties for any objects x, y, and z
(not necessarily distinct) in S:

i) If x ≡ y and y ≡ z, then x ≡ z. (Transitivity.)
ii) If x ≡ y, then y ≡ x. (Symmetry.)
iii) x ≡ x. (ReĆexivity.)

(Compare this with the deĄnition of a partial ordering relation in Section 2.2.3;
equivalence relations are quite different from partial orderings, in spite of the fact
that two of the three deĄning properties are the same.) Examples of equivalence
relations are the relation Ş=Ť, the relation of congruence (modulom) for integers,
the relation of similarity between trees as deĄned in Section 2.3.1, etc.

354 INFORMATION STRUCTURES 2.3.3

The equivalence problem is to read in pairs of equivalent elements and to
determine later whether two particular elements can be proved equivalent or
not on the basis of the given pairs. For example, suppose that S is the set
{1, 2, 3, 4, 5, 6, 7, 8, 9} and suppose that we are given the pairs

1 ≡ 5, 6 ≡ 8, 7 ≡ 2, 9 ≡ 8, 3 ≡ 7, 4 ≡ 2, 9 ≡ 3. (11)

It follows that, for example, 2 ≡ 6, since 2 ≡ 7 ≡ 3 ≡ 9 ≡ 8 ≡ 6. But we cannot
show that 1 ≡ 6. In fact, the pairs (11) divide S into two classes

{1, 5} and {2, 3, 4, 6, 7, 8, 9}, (12)

such that two elements are equivalent if and only if they belong to the same
class. It is not difficult to prove that any equivalence relation partitions its set S
into disjoint classes (called the equivalence classes), such that two elements are
equivalent if and only if they belong to the same class.

Therefore a solution to the equivalence problem is a matter of keeping track
of equivalence classes like (12). We may start with each element alone in its
class, thus:

{1} {2} {3} {4} {5} {6} {7} {8} {9} (13)

Now if we are given the relation 1 ≡ 5, we put {1, 5} together in a class. After
processing the Ąrst three relations 1 ≡ 5, 6 ≡ 8, and 7 ≡ 2, we will have changed
(13) to

{1, 5} {2, 7} {3} {4} {6, 8} {9}. (14)

Now the pair 9 ≡ 8 puts {6, 8, 9} together, etc.
The problem is to Ąnd a good way to represent situations like (12), (13),

and (14) within a computer so that we can efficiently perform the operations
of merging classes together and of testing whether two given elements are in
the same class. The algorithm below uses oriented tree structures for this
purpose: The elements of S become nodes of an oriented forest; and two nodes
are equivalent, as a consequence of the equivalent pairs read so far, if and only if
they belong to the same tree. This test is easy to make, since two elements are in
the same tree if and only if they are below the same root element. Furthermore,
it is easy to merge two oriented trees together, by simply attaching one as a new
subtree of the otherŠs root.

Algorithm E (Process equivalence relations). Let S be the set of numbers
{1, 2, . . . , n}, and let PARENT[1], PARENT[2], . . . , PARENT[n] be integer vari-
ables. This algorithm inputs a set of relations such as (11) and adjusts the PARENT
table to represent a set of oriented trees, so that two elements are equivalent as
a consequence of the given relations if and only if they belong to the same
tree. (Note: In a more general situation, the elements of S would be symbolic
names instead of simply the numbers from 1 to n; then a search routine, as in
Chapter 6, would locate nodes corresponding to the elements of S, and PARENT

would be a Ąeld in each node. The modiĄcations for this more general case are
straightforward.)

2.3.3 OTHER REPRESENTATIONS OF TREES 355

E1. [Initialize.] Set PARENT[k] ← 0 for 1 ≤ k ≤ n.

This means that all trees

initially consist of a root alone, as in (13).

E2. [Input new pair.] Get the next pair of equivalent elements Şj ≡ kŤ from the
input. If the input is exhausted, the algorithm terminates.

E3. [Find roots.] If PARENT[j] > 0, set j ← PARENT[j] and repeat this step.
If PARENT[k] > 0, set k ← PARENT[k] and repeat this step. (After this
operation, j and k have moved up to the roots of two trees that are to be
made equivalent. The input relation j ≡ k was redundant if and only if we
now have j = k.)

E4. [Merge trees.] If j ̸= k, set PARENT[j]← k. Go back to step E2.

The reader should try this algorithm on the input (11). After processing
1 ≡ 5, 6 ≡ 8, 7 ≡ 2, and 9 ≡ 8, we will have

PARENT[k]: 5 0 0 0 0 8 2 0 8
k : 1 2 3 4 5 6 7 8 9

(15)

which represents the trees

1

2 3 4 5

67

8

9

. (16)

After this point, the remaining relations of (11) are somewhat more interesting;
see exercise 9.

This equivalence problem arises in many applications. We will discuss
signiĄcant reĄnements of Algorithm E in Section 7.4.1, when we study the
connectivity of graphs. A more general version of the problem, which arises when
a compiler processes Şequivalence declarationsŤ in languages like FORTRAN, is
discussed in exercise 11.

A

B C

D

E F G

H JK

Fig. 27. A ring structure.

There are still more ways to represent trees in computer memory. Recall that
we discussed three principal methods for representing linear lists in Section 2.2:
the straight representation with terminal link Λ, the circularly linked lists, and
the doubly linked lists. The representation of unthreaded binary trees described
in Section 2.3.1 corresponds to a straight representation in both LLINKs and

356
IN

F
O

R
M

A
T

IO
N

S
T

R
U

C
T

U
R

E
S

2.3.3
(a) Fields

UP EXP RIGHT

LEFT CV DOWN

(b) Polynomial = c (constant)

c

(c) Polynomial = g0 + g1xe1 + g2xe2 + · · ·+ gnxen

x

0 e1 en
· · ·

︸ ︷︷ ︸
g0

︸ ︷︷ ︸
g1

︸ ︷︷ ︸
gn

· · ·

(d) Example: 3 + x2 + xyz + z3 − 3xz3

0

z

0

x

1

y

3

x

0

3

2

1

0

0

1

x

0

1

1

−3

0

0

1

1

Root

Fig. 28. Representation of polynomials using four-directional links. Shaded areas of nodes indicate information that is irrelevant in
the context considered.

2.3.3 OTHER REPRESENTATIONS OF TREES 357

RLINKs. It is possible to get eight other binary tree representations by indepen-
dently using any of these three methods in the LLINK and RLINK directions. For
example, Fig. 27 shows what we get if circular linking is used in both directions.
If circular links are used throughout as in the Ągure, we have what is called a
ring structure; ring structures have proved to be quite Ćexible in a number of
applications. The proper choice of representation depends, as always, on the
types of insertions, deletions, and traversals that are needed in the algorithms
that manipulate these structures. A reader who has looked over the examples
given so far in this chapter should have no difficulty understanding how to deal
with any of these memory representations.

We close this section with an example of modiĄed doubly linked ring struc-
tures applied to a problem we have considered before: arithmetic on polynomials.
Algorithm 2.2.4A performs the addition of one polynomial to another, given that
the two polynomials are expressed as circular lists; various other algorithms in
that section give other operations on polynomials. However, the polynomials
of Section 2.2.4 are restricted to at most three variables. When multi-variable
polynomials are involved, it is usually more appropriate to use a tree structure
instead of a linear list.

A polynomial either is a constant or has the form

0≤j≤n

gjx
ej ,

where x is a variable, n > 0, 0 = e0 < e1 < · · · < en, and g0, . . . , gn are
polynomials involving only variables alphabetically less than x; g1, . . . , gn are not
zero. This recursive deĄnition of polynomials lends itself to tree representation
as indicated in Fig. 28. Nodes have six Ąelds, which in the case of MIX might Ąt
in three words:

+ 0 LEFT RIGHT

+ EXP UP DOWN

CV

(17)

Here LEFT, RIGHT, UP, and DOWN are links; EXP is an integer representing an
exponent; and CV is either a constant (coefficient) or the alphabetic name of a
variable. The root node has UP = Λ, EXP = 0, LEFT = RIGHT = ∗ (self).

The following algorithm illustrates traversal, insertion, and deletion in such
a four-way-linked tree, so it bears careful study.

Algorithm A (Addition of polynomials). This algorithm adds polynomial(P) to
polynomial(Q), assuming that P and Q are pointer variables that link to the roots
of distinct polynomial trees having the form shown in Fig. 28. At the conclusion
of the algorithm, polynomial(P) will be unchanged, and polynomial(Q) will
contain the sum.

A1. [Test type of polynomial.] If DOWN(P) = Λ (that is, if P points to a
constant), then set Q ← DOWN(Q) zero or more times until DOWN(Q) = Λ

358 INFORMATION STRUCTURES 2.3.3

and go to A3. If DOWN(P) ̸= Λ, then if DOWN(Q) = Λ or if CV(Q) < CV(P),
go to A2. Otherwise if CV(Q) = CV(P), set P ← DOWN(P), Q ← DOWN(Q)

and repeat this step; if CV(Q) > CV(P), set Q ← DOWN(Q) and repeat this
step. (Step A1 either Ąnds two matching terms of the polynomials or
else determines that an insertion of a new variable must be made into the
current part of polynomial(Q).)

A2. [Downward insertion.] Set R ⇐ AVAIL, S ← DOWN(Q). If S ̸= Λ, set
UP(S) ← R, S ← RIGHT(S) and if EXP(S) ̸= 0, repeat this operation
until ultimately EXP(S) = 0. Set UP(R) ← Q, DOWN(R) ← DOWN(Q),
LEFT(R) ← R, RIGHT(R) ← R, CV(R) ← CV(Q) and EXP(R) ← 0. Finally,
set CV(Q)← CV(P) and DOWN(Q)← R, and return to A1. (We have inserted
a ŞdummyŤ zero polynomial just below NODE(Q), to obtain a match with
a corresponding polynomial found within PŠs tree. The link manipulations
done in this step are straightforward and may be derived easily using
Şbefore-and-afterŤ diagrams, as explained in Section 2.2.3.)

A3. [Match found.] (At this point, P and Q point to corresponding terms of
the given polynomials, so addition is ready to proceed.) Set CV(Q) ←
CV(Q) + CV(P). If this sum is zero and if EXP(Q) ̸= 0, go to step A8. If
EXP(Q) = 0, go to A7.

A4. [Advance to left.] (After successfully adding a term, we look for the next
term to add.) Set P ← LEFT(P). If EXP(P) = 0, go to A6. Otherwise
set Q ← LEFT(Q) one or more times until EXP(Q) ≤ EXP(P). If then
EXP(Q) = EXP(P), return to step A1.

A5. [Insert to right.] Set R ⇐ AVAIL. Set UP(R) ← UP(Q), DOWN(R) ← Λ,
CV(R)← 0, LEFT(R)← Q, RIGHT(R)← RIGHT(Q), LEFT(RIGHT(R))← R,
RIGHT(Q) ← R, EXP(R) ← EXP(P), and Q ← R. Return to step A1. (We
needed to insert a new term in the current row, just to the right of NODE(Q),
in order to match a corresponding exponent in polynomial(P). As in
step A2, a Şbefore-and-afterŤ diagram makes the operations clear.)

A6. [Return upward.] (A row of polynomial(P) has now been completely tra-
versed.) Set P← UP(P).

A7. [Move Q up to right level.] If UP(P) = Λ, go to A11; otherwise set
Q ← UP(Q) zero or more times until CV(UP(Q)) = CV(UP(P)). Return
to step A4.

A8. [Delete zero term.] Set R← Q, Q← RIGHT(R), S← LEFT(R), LEFT(Q)← S,
RIGHT(S)← Q, and AVAIL⇐ R. (Cancellation occurred, so a row element
of polynomial(Q) is deleted.) If now EXP(LEFT(P)) = 0 and Q = S, go
to A9; otherwise return to A4.

A9. [Delete constant polynomial.] (Cancellation has caused a polynomial to
reduce to a constant, so a row of polynomial(Q) is deleted.) Set R ← Q,
Q ← UP(Q), DOWN(Q) ← DOWN(R), CV(Q) ← CV(R), and AVAIL ⇐ R. Set
S← DOWN(Q); if S ̸= Λ, set UP(S)← Q, S← RIGHT(S), and if EXP(S) ̸= 0,
repeat this operation until ultimately EXP(S) = 0.

2.3.3 OTHER REPRESENTATIONS OF TREES 359

A10. [Zero detected?] If DOWN(Q) = Λ, CV(Q) = 0, and EXP(Q) ̸= 0, set P ←
UP(P) and go to A8; otherwise go to A6.

A11. [Terminate.] Set Q ← UP(Q) zero or more times until UP(Q) = Λ (thus
bringing Q to the root of the tree).

This algorithm will actually run much faster than Algorithm 2.2.4A if poly-
nomial(P) has few terms and polynomial(Q) has many, since it is not necessary
to pass over all of polynomial(Q) during the addition process. The reader will
Ąnd it instructive to simulate Algorithm A by hand, adding the polynomial
xy − x2 − xyz − z3 + 3xz3 to the polynomial shown in Fig. 28. (This case does
not demonstrate the efficiency of the algorithm, but it makes the algorithm go
through all of its paces by showing the difficult situations that must be handled.)
For further commentary on Algorithm A, see exercises 12 and 13.

No claim is being made here that the representation shown in Fig. 28 is the
ŞbestŤ for polynomials in several variables; in Chapter 8 we will consider another
format for polynomial representation, together with arithmetic algorithms using
an auxiliary stack, with signiĄcant advantages of conceptual simplicity when
compared to Algorithm A. Our main interest in Algorithm A is the way it
typiĄes manipulations on trees with many links.

EXERCISES

x 1. [20] If we had only LTAG, INFO, and RTAG Ąelds (not LLINK) in a level order
sequential representation like (8), would it be possible to reconstruct the LLINKs? (In
other words, are the LLINKs redundant in (8), as the RLINKs are in (3)?)

2. [22] (Burks, Warren, and Wright, Math. Comp. 8 (1954), 53Ű57.) The trees (2)
stored in preorder with degrees would be

DEGREE 2 0 1 0 3 1 0 1 0 0
INFO A B C K D E H F J G

[compare with (9), where postorder was used]. Design an algorithm analogous to
Algorithm F to evaluate a locally deĄned function of the nodes by going from right to
left in this representation.

x 3. [24] Modify Algorithm 2.3.2D so that it follows the ideas of Algorithm F, placing
the derivatives it computes as intermediate results on a stack, instead of recording their
locations in an anomalous fashion as is done in step D3. (See exercise 2.3.2Ű21.) The
stack may be maintained by using the RLINK Ąeld in the root of each derivative.

4. [18] The trees (2) contain 10 nodes, Ąve of which are terminal. Representation
of these trees in the normal binary-tree fashion involves 10 LLINK Ąelds and 10 RLINK

Ąelds (one for each node). Representation of these trees in the form (10), where LLINK

and INFO share the same space in a node, requires 5 LLINKs and 15 RLINKs. There are
10 INFO Ąelds in each case.

Given a forest with n nodes, m of which are terminal, compare the total number of
LLINKs and RLINKs that must be stored using these two methods of tree representation.

5. [16] A triply linked tree, as shown in Fig. 26, contains PARENT, LCHILD, and RLINK

Ąelds in each node, with liberal use of Λ-links when there is no appropriate node to
mention in the PARENT, LCHILD, or RLINK Ąeld. Would it be a good idea to extend this

360 INFORMATION STRUCTURES 2.3.3

representation to a threaded tree, by putting ŞthreadŤ links in place of the null LCHILD
and RLINK entries, as we did in Section 2.3.1?

x 6. [24] Suppose that the nodes of an oriented forest have three link Ąelds, PARENT,
LCHILD, and RLINK, but only the PARENT link has been set up to indicate the tree
structure. The LCHILD Ąeld of each node is Λ and the RLINK Ąelds are set as a linear
list that simply links the nodes together in some order. The link variable FIRST points
to the Ąrst node, and the last node has RLINK = Λ.

Design an algorithm that goes through these nodes and Ąlls in the LCHILD and
RLINK Ąelds compatible with the PARENT links, so that a triply linked tree representation
like that in Fig. 26 is obtained. Also, reset FIRST so that it now points to the root of
the Ąrst tree in this representation.

7. [15] What classes would appear in (12) if the relation 9 ≡ 3 had not been given
in (11)?

8. [15] Algorithm E sets up a tree structure that represents the given pairs of equiv-
alent elements, but the text does not mention explicitly how the result of Algorithm E
can be used. Design an algorithm that answers the question, ŞIs j ≡ k?Ť, assuming
that 1 ≤ j ≤ n, 1 ≤ k ≤ n, and that Algorithm E has set up the PARENT table for some
set of equivalences.

9. [20] Give a table analogous to (15) and a diagram analogous to (16) that shows
the trees present after Algorithm E has processed all of the equivalences in (11) from
left to right.

10. [28] In the worst case, Algorithm E may take order n2 steps to process n equiv-
alences. Show how to modify the algorithm so that the worst case is not this bad.

x 11. [24] (Equivalence declarations.) Several compiler languages, notably FORTRAN,
provide a facility for overlapping the memory locations assigned to sequentially stored
tables. The programmer gives the compiler a set of relations of the form X[j] ≡
Y[k], which means that variable X[j + s] is to be assigned to the same location as
variable Y[k + s] for all s. Each variable is also given a range of allowable subscripts:
ŞARRAY X[l:u]Ť means that space is to be set aside in memory for the table entries
X[l], X[l + 1], . . . , X[u]. For each equivalence class of variables, the compiler reserves
as small a block of consecutive memory locations as possible, to contain all the table
entries for the allowable subscript values of these variables.

For example, suppose we have ARRAY X[0:10], ARRAY Y[3:10], ARRAY A[1:1], and
ARRAY Z[−2:0], plus the equivalences X[7] ≡ Y[3], Z[0] ≡ A[0], and Y[1] ≡ A[8].
We must set aside 20 consecutive locations

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

• • • • • • • • • • • • • • • • • • • •
Z−2 Z−1 Z0 A1 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10

for these variables. (The location following A[1] is not an allowable subscript value for
any of the arrays, but it must be reserved anyway.)

The object of this exercise is to modify Algorithm E so that it applies to the
more general situation just described. Assume that we are writing a compiler for
such a language, and the tables inside our compiler program itself have one node for
each array, containing the Ąelds NAME, PARENT, DELTA, LBD, and UBD. Assume that
the compiler program has previously processed all the ARRAY declarations, so that if

2.3.3 OTHER REPRESENTATIONS OF TREES 361

ARRAY X[l:u] has appeared and if P points to the node for X, then

NAME(P) = ŞXŤ, PARENT(P) = Λ, DELTA(P) = 0,

LBD(P) = l, UBD(P) = u.

The problem is to design an algorithm that processes the equivalence declarations, so
that, after this algorithm has been performed,

PARENT(P) = Λ means that locations X[LBD(P)], . . . , X[UBD(P)] are to be reserved
in memory for this equivalence class;

PARENT(P) = Q ̸= Λ means that location X[k] equals location Y[k + DELTA(P)],
where NAME(Q) = ŞYŤ.

For example, before the equivalences listed above we might have the nodes

P NAME(P) PARENT(P) DELTA(P) LBD(P) UBD(P)

α X Λ 0 0 10
β Y Λ 0 3 10
γ A Λ 0 1 1
δ Z Λ 0 −2 0

After the equivalences are processed, the nodes might appear thus:

α X Λ ∗ −5 14
β Y α 4 ∗ ∗
γ A δ 0 ∗ ∗
δ Z α −3 ∗ ∗

(Ş∗Ť denotes irrelevant information.)
Design an algorithm that makes this transformation. Assume that inputs to your

algorithm have the form (P, j, Q, k), denoting X[j] ≡ Y[k], where NAME(P) = ŞXŤ and
NAME(Q) = ŞYŤ. Be sure to check whether the equivalences are contradictory; for
example, X[1] ≡ Y[2] contradicts X[2] ≡ Y[1].

12. [21] At the beginning of Algorithm A, the variables P and Q point to the roots of
two trees. Let P0 and Q0 denote the values of P and Q before execution of Algorithm A.
(a) After the algorithm terminates, is Q0 always the address of the root of the sum of
the two given polynomials? (b) After the algorithm terminates, have P and Q returned
to their original values P0 and Q0?

x 13. [M29] Give an informal proof that at the beginning of step A8 of Algorithm A we
always have EXP(P) = EXP(Q) and CV(UP(P)) = CV(UP(Q)). (This fact is important to
the proper understanding of that algorithm.)

14. [40] Give a formal proof (or disproof) of the validity of Algorithm A.

15. [40] Design an algorithm to compute the product of two polynomials represented
as in Fig. 28.

16. [M24] Prove the validity of Algorithm F.

x 17. [25] Algorithm F evaluates a Şbottom-upŤ locally deĄned function, namely, one
that should be evaluated at the children of a node before it is evaluated at the node.
A Ştop-downŤ locally deĄned function f is one in which the value of f at a node x
depends only on x and the value of f at the parent of x. Using an auxiliary stack,
design an algorithm analogous to Algorithm F that evaluates a Ştop-downŤ function f
at each node of a tree. (Like Algorithm F, your algorithm should work efficiently on
trees that have been stored in postorder with degrees, as in (9).)

362 INFORMATION STRUCTURES 2.3.3

x 18. [28] Design an algorithm that, given the two tables INFO1[j] and RLINK[j] for
1 ≤ j ≤ n corresponding to preorder sequential representation, forms tables INFO2[j]
and DEGREE[j] for 1 ≤ j ≤ n, corresponding to postorder with degrees. For example,
according to (3) and (9), your algorithm should transform

j 1 2 3 4 5 6 7 8 9 10
INFO1[j] A B C K D E H F J G

RLINK[j] 5 3 0 0 0 8 0 10 0 0

into

INFO2[j] B K C A H E J F G D

DEGREE[j] 0 0 1 2 0 1 0 1 0 3

19. [M27] Instead of using SCOPE links in (5), we could simply list the number of
descendants of each node, in preorder:

DESC 3 0 1 0 5 1 0 1 0 0
INFO A B C K D E H F J G

Let d1d2 . . . dn be the sequence of descendant numbers of a forest, obtained in this way.
a) Show that k+dk ≤ n for 1 ≤ k ≤ n, and that k ≤ j ≤ k+dk implies j+dj ≤ k+dk.
b) Conversely, prove that if d1d2 . . . dn is a sequence of nonnegative integers satisfying

the conditions of (a), it is the sequence of descendant numbers of a forest.
c) Suppose d1d2 . . . dn and d′1d

′
2 . . . d

′
n are the descendant number sequences for two

forests. Prove that there is a third forest whose descendant numbers are

min(d1, d
′
1) min(d2, d

′
2) . . .min(dn, d

′
n).

2.3.4. Basic Mathematical Properties of Trees

Tree structures have been the object of extensive mathematical investigations for
many years, long before the advent of computers, and many interesting facts have
been discovered about them. In this section we will survey the mathematical
theory of trees, which not only gives us more insight into the nature of tree
structures but also has important applications to computer algorithms.

Nonmathematical readers are advised to skip to subsection 2.3.4.5, which
discusses several topics that arise frequently in the applications we shall study
later.

The material that follows comes mostly from a larger area of mathematics
known as the theory of graphs. Unfortunately, there will probably never be
a standard terminology in this Ąeld, and so the author has followed the usual
practice of contemporary books on graph theory, namely to use words that are
similar but not identical to the terms used in any other books on graph theory.
An attempt has been made in the following subsections (and, indeed, throughout
this book) to choose short, descriptive words for the important concepts, selected
from those that are in reasonably common use and that do not sharply conĆict
with other common terminology. The nomenclature used here is also biased
towards computer applications. Thus, an electrical engineer may prefer to call a
ŞtreeŤ what we call a Şfree treeŤ; but we want the shorter term ŞtreeŤ to stand for
the concept that is generally used in the computer literature and that is so much

2.3.4.1 FREE TREES 363

A B

C D

E

Fig. 29. A graph.

A

B
C

D

E
F G

H

I

J
K

L M

N

Fig. 30. A free tree.

more important in computer applications. If we were to follow the terminology
of some authors on graph theory, we would have to say ŞĄnite labeled rooted
ordered treeŤ instead of just Ştree,Ť and Ştopological bifurcating arborescenceŤ
instead of Şbinary treeŤ!

2.3.4.1. Free trees. A graph is generally deĄned to be a set of points (called
vertices) together with a set of lines (called edges) joining certain pairs of distinct
vertices. There is at most one edge joining any pair of vertices. Two vertices are
called adjacent if there is an edge joining them. If V and V ′ are vertices and if
n ≥ 0, we say that (V0, V1, . . . , Vn) is a walk of length n from V to V ′ if V = V0,
Vk is adjacent to Vk+1 for 0 ≤ k < n, and Vn = V ′. The walk is a path if vertices
V0, V1, . . . , Vn are distinct; it is a cycle if V0 through Vn−1 are distinct, Vn = V0,
and n ≥ 3. Sometimes we are less precise, and refer to a cycle as Şa path from a
vertex to itself.Ť We often speak of a Şsimple pathŤ to emphasize the fact that
weŠre talking about a path instead of an arbitrary walk. A graph is connected if
there is a path between any two vertices of the graph.

These deĄnitions are illustrated in Fig. 29, which shows a connected graph
with Ąve vertices and six edges. Vertex C is adjacent to A but not to B; there
are two paths of length two from B to C, namely (B,A,C) and (B,D,C). There
are several cycles, including (B,D,E,B).

A free tree or Şunrooted treeŤ (Fig. 30) is deĄned to be a connected graph
with no cycles. This deĄnition applies to inĄnite graphs as well as to Ąnite ones,
although for computer applications we naturally are most concerned with Ąnite
trees. There are many equivalent ways to deĄne a free tree; some of them appear
in the following well-known theorem:

Theorem A. If G is a graph, the following statements are equivalent:
a) G is a free tree.
b) G is connected, but if any edge is deleted, the resulting graph is no longer

connected.
c) If V and V ′ are distinct vertices of G, there is exactly one simple path from

V to V ′.
Furthermore, if G is Ąnite, containing exactly n > 0 vertices, the following
statements are also equivalent to (a), (b), and (c):
d) G contains no cycles and has n− 1 edges.
e) G is connected and has n− 1 edges.

364 INFORMATION STRUCTURES 2.3.4.1

Proof. (a) implies (b), for if the edge V −−−V ′ is deleted but G is still connected,
there must be a simple path (V, V1, . . . , V

′) of length two or more Ů see exer-
cise 2 Ů and then (V, V1, . . . , V

′, V) would be a cycle in G.
(b) implies (c), for there is at least one simple path from V to V ′. And if

there were two such paths (V, V1, . . . , V
′) and (V, V ′

1 , . . . , V
′), we could Ąnd the

smallest k for which Vk ̸= V ′
k; deleting the edge Vk−1−−−Vk would not disconnect

the graph, since there would still be a path (Vk−1, V
′
k, . . . , V

′, . . . , Vk) from Vk−1

to Vk that does not use the deleted edge.
(c) implies (a), for if G contains a cycle (V, V1, . . . , V), there are two simple

paths from V to V1.
To show that (d) and (e) are also equivalent to (a), (b), and (c), let us Ąrst

prove an auxiliary result: If G is any Ąnite graph that has no cycles and at least
one edge, then there is at least one vertex that is adjacent to exactly one other
vertex. This follows because we can Ąnd some vertex V1 and an adjacent vertex
V2; for k ≥ 2 either Vk is adjacent to Vk−1 and no other, or it is adjacent to a
vertex that we may call Vk+1 ̸= Vk−1. Since there are no cycles, V1, V2, . . . , Vk+1

must be distinct vertices, so this process must ultimately terminate.
Now assume that G is a free tree with n > 1 vertices, and let Vn be a vertex

that is adjacent to only one other vertex, namely Vn−1. If we delete Vn and the
edge Vn−1−−−Vn, the remaining graph G′ is a free tree, since Vn appears in no
simple path of G except as the Ąrst or the last element. This argument proves
(by induction on n) that G has n− 1 edges; hence (a) implies (d).

Assume that G satisĄes (d) and let Vn, Vn−1, G′ be as in the preceding
paragraph. Then the graph G is connected, since Vn is connected to Vn−1,
which (by induction on n) is connected to all other vertices of G′. Thus (d)
implies (e).

Finally assume that G satisĄes (e). If G contains a cycle, we can delete any
edge appearing in that cycle and G would still be connected. We can therefore
continue deleting edges in this way until we obtain a connected graph G′ with
n − 1 − k edges and no cycles. But since (a) implies (d), we must have k = 0,
that is, G = G′.

The idea of a free tree can be applied directly to the analysis of computer
algorithms. In Section 1.3.3, we discussed the application of KirchhoffŠs Ąrst
law to the problem of counting the number of times each step of an algorithm
is performed; we found that KirchhoffŠs law does not completely determine the
number of times each step is executed, but it reduces the number of unknowns
that must be specially interpreted. The theory of trees tells us how many
independent unknowns will remain, and it gives us a systematic way to Ąnd them.

It is easier to understand the method that follows if an example is studied,
so we will work an example as the theory is being developed. Figure 31 shows an
abstracted Ćow chart for Program 1.3.3A, which was subjected to a ŞKirchhoffŠs
lawŤ analysis in Section 1.3.3. Each box in Fig. 31 represents part of the
computation, and the letter or number inside the box denotes the number of
times that computation will be performed during one run of the program, using

2.3.4.1 FREE TREES 365

Start A B C D C 1 E F G

S R P H

Q L K J

Stope1 e3 e4 e6 e7 e9 e10 e11 e12

e15

e14
e26

e25

e27
e24

e23 e16
e22

e18

e19 e21

e2 e5

e8

e13

e20

e17

Fig. 31. Abstracted Ćow chart of Program 1.3.3A.

the notation of Section 1.3.3. An arrow between boxes represents a possible
jump in the program. The arrows have been labeled e1, e2, . . . , e27. Our goal is
to Ąnd all relations between the quantities A, B, C, D, E, F, G, H, J, K, L, P ,
Q, R, and S that are implied by KirchhoffŠs law, and at the same time we hope
to gain some insight into the general problem. (Note: Some simpliĄcations have
already been made in Fig. 31; for example, the box between C and E has been
labeled Ş1Ť, and this in fact is a consequence of KirchhoffŠs law.)

Let Ej denote the number of times branch ej is taken during the execution
of the program being studied; KirchhoffŠs law is

sum of EŠs into box = value in box = sum of EŠs leaving box; (1)

for example, in the case of the box marked K we have

E19 + E20 = K = E18 + E21. (2)

In the discussion that follows, we will regard E1, E2, . . . , E27 as the unknowns,
instead of A,B, . . . , S.

The Ćow chart in Fig. 31 may be abstracted further so that it becomes
a graph G as in Fig. 32. The boxes have shrunk to vertices, and the arrows
e1, e2, . . . now represent edges of the graph. (A graph, strictly speaking, has
no implied direction in its edges, and the direction of the arrows should be
ignored when we refer to graph-theoretical properties of G. Our application
to KirchhoffŠs law, however, makes use of the arrows, as we will see shortly.)
For convenience an extra edge e0 has been drawn from the Stop vertex to the
Start vertex, so that KirchhoffŠs law applies uniformly to all parts of the graph.
Figure 32 also includes some other minor changes from Fig. 31: An extra vertex
and edge have been added to divide e13 into two parts e′13 and e′′13, so that the
basic deĄnition of a graph (no two edges join the same two vertices) is valid; e19

has also been split up in this way. A similar modiĄcation would have been made
if we had any vertex with an arrow leading back to itself.

Some of the edges in Fig. 32 have been drawn much heavier than the others.
These edges form a free subtree of the graph, connecting all the vertices. It
is always possible to Ąnd a free subtree of the graphs arising from Ćow charts,
because the graphs must be connected and, by part (b) of Theorem A, if G
is connected and not a free tree, we can delete some edge and still have the

366 INFORMATION STRUCTURES 2.3.4.1

Start Stop

e1

e3 e4 e6 e7 e9 e10 e11 e12

e15

e14

e
′

13

e26
e27

e24

e23 e16
e22

e18

e
′

19

e21

e25

e
′′

13

e
′′

19

e0

e2 e5

e8

e20

e17

Fig. 32. Graph corresponding to Fig. 31, including a free subtree.

resulting graph connected; this process can be iterated until we reach a free
subtree. Another algorithm for Ąnding a free subtree appears in exercise 6. We
can in fact always discard the edge e0 (which went from the Stop to the Start
vertex) Ąrst; thus we may assume that e0 does not appear in the subtree chosen.

Let G′ be a free subtree of the graph G found in this way, and consider
any edge V −−− V ′ of G that is not in G′. We may now note an important
consequence of Theorem A: G′ plus this new edge V −−−V ′ contains a cycle; and
in fact there is exactly one cycle, having the form (V, V ′, . . . , V), since there is
a unique simple path from V ′ to V in G′. For example, if G′ is the free subtree
shown in Fig. 32, and if we add the edge e2, we obtain a cycle that goes along
e2 and then (in the direction opposite to the arrows) along e4 and e3. This cycle
may be written algebraically as Şe2 − e4 − e3Ť, using plus signs and minus signs
to indicate whether the cycle goes in the direction of the arrows or not.

If we carry out this process for each edge not in the free subtree, we obtain
the so-called fundamental cycles, which in the case of Fig. 32 are

C0: e0 + e1 + e3 + e4 + e6 + e7 + e9 + e10 + e11 + e12 + e14,

C2: e2 − e4 − e3,

C5: e5 − e7 − e6,

C8: e8 + e3 + e4 + e6 + e7,

C ′′
13: e′′13 + e12 + e′13,

C17: e17 + e22 + e24 + e27 + e11 + e15 + e16,

C ′′
19: e′′19 + e18 + e′19,

C20: e20 + e18 + e22 + e23,

C21: e21 − e16 − e15 − e11 − e27 − e24 − e22 − e18,

C25: e25 + e26 − e27.

(3)

2.3.4.1 FREE TREES 367

Obviously an edge ej that is not in the free subtree will appear in only one of
the fundamental cycles, namely Cj .

We are now approaching the climax of this construction. Each fundamental
cycle represents a solution to KirchhoffŠs equations; for example, the solution
corresponding to C2 is to let E2 = +1, E4 = −1, E3 = −1, and all other EŠs = 0.
It is clear that Ćow around a cycle in a graph always satisĄes the condition
(1) of KirchhoffŠs law. Moreover, KirchhoffŠs equations are Şhomogeneous,Ť
so the sum or difference of solutions to (1) yields another solution. Therefore
we may conclude that the values of E0, E2, E5, . . . , E25 are independent in the
following sense:

If x0, x2, . . . , x25 are any real numbers (one xj for each ej not in the free
subtree G′), there is a solution to KirchhoffŠs equations (1) such that
E0 = x0, E2 = x2, . . . , E25 = x25.

(4)

Such a solution is found by going x0 times around the cycle C0, x2 times around
cycle C2, etc. Furthermore, we Ąnd that the values of the remaining variables
E1, E3, E4, . . . are completely dependent on the values E0, E2, . . . , E25:

The solution mentioned in statement (4) is unique. (5)

For if there are two solutions to KirchhoffŠs equations such that E0 = x0, . . . ,
E25 = x25, we can subtract one from the other and we thereby obtain a solution
in which E0 = E2 = E5 = · · · = E25 = 0. But now all Ej must be zero, for it is
easy to see that a nonzero solution to KirchhoffŠs equations is impossible when
the graph is a free tree (see exercise 4). Therefore the two assumed solutions
must be identical. We have now proved that all solutions of KirchhoffŠs equations
may be obtained as sums of multiples of the fundamental cycles.

When these remarks are applied to the graph in Fig. 32, we obtain the
following general solution of KirchhoffŠs equations in terms of the independent
variables E0, E2, . . . , E25:

E1 = E0, E14 = E0,

E3 = E0 − E2 + E8, E15 = E17 − E21,

E4 = E0 − E2 + E8, E16 = E17 − E21,

E6 = E0 − E5 + E8, E18 = E′′
19 + E20 − E21,

E7 = E0 − E5 + E8, E′
19 = E′′

19,

E9 = E0, E22 = E17 + E20 − E21,

E10 = E0, E23 = E20,

E11 = E0 + E17 − E21, E24 = E17 − E21,

E12 = E0 + E′′
13, E26 = E25,

E′
13 = E′′

13, E27 = E17 − E21 − E25.

(6)

To obtain these equations, we merely list, for each edge ej in the subtree, all Ek

for which ej appears in cycle Ck, with the appropriate sign. [Thus, the matrix
of coefficients in (6) is just the transpose of the matrix of coefficients in (3).]

368 INFORMATION STRUCTURES 2.3.4.1

Strictly speaking, C0 should not be called a fundamental cycle, since it
involves the special edge e0. We may call C0 minus the edge e0 a fundamental
path from Start to Stop. Our boundary condition, that the Start and Stop boxes
in the Ćow chart are performed exactly once, is equivalent to the relation

E0 = 1. (7)

The preceding discussion shows how to obtain all solutions to KirchhoffŠs
law; the same method may be applied (as Kirchhoff himself applied it) to
electrical circuits instead of program Ćow charts. It is natural to ask at this
point whether KirchhoffŠs law is the strongest possible set of equations that can
be given for the case of program Ćow charts, or whether more can be said: Any
execution of a computer program that goes from Start to Stop gives us a set of
values E1, E2, . . . , E27 for the number of times each edge is traversed, and these
values obey KirchhoffŠs law; but are there solutions to KirchhoffŠs equations that
do not correspond to any computer program execution? (In this question, we do
not assume that we know anything about the given computer program, except
its Ćow chart.) If there are solutions that meet KirchhoffŠs conditions but do not
correspond to actual program execution, we can give stronger conditions than
KirchhoffŠs law. For the case of electrical circuits Kirchhoff himself gave a second
law [Ann. Physik und Chemie 64 (1845), 497Ű514]: The sum of the voltage drops
around a fundamental cycle must be zero. This second law does not apply to
our problem.

There is indeed an obvious further condition that the EŠs must satisfy, if
they are to correspond to some actual walk in the Ćow chart from Start to Stop;
they must be integers, and in fact they must be nonnegative integers. This is
not a trivial condition, since we cannot simply assign any arbitrary nonnegative
integer values to the independent variables E2, E5, . . . , E25; for example, if we
take E2 = 2 and E8 = 0, we Ąnd from (6) and (7) that E3 = −1. (Thus,
no execution of the Ćow chart in Fig. 31 will take branch e2 twice without
taking branch e8 at least once.) The condition that all the EŠs be nonnegative
integers is not enough either; for example, consider the solution in which E′′

19 = 1,
E2 = E5 = · · · = E17 = E20 = E21 = E25 = 0; there is no way to get to e18

except via e15. The following condition is a necessary and sufficient condition
that answers the problem raised in the previous paragraph: Let E2, E5, . . . , E25

be any given values, and determine E1, E3, . . . , E27 according to (6), (7). Assume
that all the EŠs are nonnegative integers, and assume that the graph whose edges
are those ej for which Ej > 0, and whose vertices are those that touch such ej , is
connected. Then there is a walk from Start to Stop in which edge ej is traversed
exactly Ej times. This fact is proved in the next section (see exercise 2.3.4.2Ű24).

Let us now summarize the preceding discussion:

Theorem K. If a Ćow chart (such as Fig. 31) contains n boxes (including Start
and Stop) and m arrows, it is possible to Ąnd m − n + 1 fundamental cycles
and a fundamental path from Start to Stop, such that any walk from Start
to Stop is equivalent (in terms of the number of times each edge is traversed)

2.3.4.1 FREE TREES 369

to one traversal of the fundamental path plus a uniquely determined number
of traversals of each of the fundamental cycles. (The fundamental path and
fundamental cycles may include some edges that are to be traversed in a direction
opposite that shown by the arrow on the edge; we conventionally say that such
edges are being traversed −1 times.)

Conversely, for any traversal of the fundamental path and the fundamental
cycles in which the total number of times each edge is traversed is nonnegative,
and in which the vertices and edges corresponding to a positive number of
traversals form a connected graph, there is at least one equivalent walk from
Start to Stop.

The fundamental cycles are found by picking a free subtree as in Fig. 32; if
we choose a different subtree we get, in general, a different set of fundamental
cycles. The fact that there are m − n + 1 fundamental cycles follows from
Theorem A. The modiĄcations we made to get from Fig. 31 to Fig. 32, after
adding e0, do not change the value of m − n + 1, although they may increase
both m and n; the construction could have been generalized so as to avoid these
trivial modiĄcations entirely (see exercise 9).

Theorem K is encouraging because it says that KirchhoffŠs law (which con-
sists of n equations in the m unknowns E1, E2, . . . , Em) has just one Şredun-
dancyŤ: These n equations allow us to eliminate n− 1 unknowns. However, the
unknown variables throughout this discussion have been the number of times the
edges have been traversed, not the number of times each box of the Ćow chart
has been entered. Exercise 8 shows how to construct another graph whose edges
correspond to the boxes of the Ćow chart, so that the theory above can be used
to deduce the true number of redundancies between the variables of interest.

Applications of Theorem K to software for measuring the performance of
programs in high-level languages are discussed by Thomas Ball and James R.
Larus in ACM Trans. Prog. Languages and Systems 16 (1994), 1319Ű1360.

EXERCISES

1. [14] List all cycles from B to B that are present in the graph of Fig. 29.

2. [M20] Prove that if V and V ′ are vertices of a graph and if there is a walk from
V to V ′, then there is a (simple) path from V to V ′.

3. [15] What walk from Start to Stop is equivalent (in the sense of Theorem K) to
one traversal of the fundamental path plus one traversal of cycle C2 in Fig. 32?

x 4. [M20] Let G′ be a Ąnite free tree in which arrows have been drawn on its edges
e1, . . . , en−1; let E1, . . . , En−1 be numbers satisfying KirchhoffŠs law (1) in G′. Show
that E1 = · · · = En−1 = 0.

5. [20] Using Eqs. (6), express the quantities A,B, . . . , S that appear inside the
boxes of Fig. 31 in terms of the independent variables E2, E5, . . . , E25.

x 6. [M27] Suppose a graph has n vertices V1, . . . , Vn and m edges e1, . . . , em. Each
edge e is represented by a pair of integers (a, b) if it joins Va to Vb. Design an algorithm
that takes the input pairs (a1, b1), . . . , (am, bm) and prints out a subset of edges that
forms a free tree; the algorithm reports failure if this is impossible. Strive for an efficient
algorithm.

370 INFORMATION STRUCTURES 2.3.4.1

7. [22] Carry out the construction in the text for the Ćow chart

Start StopA B

C

D

e1 e2

e4

e5

e7

e8

e3

e9

e6

using the free subtree consisting of edges e1, e2, e3, e4, e9. What are the fundamental
cycles? Express E1, E2, E3, E4, E9 in terms of E5, E6, E7, and E8.

x 8. [M25] When applying KirchhoffŠs Ąrst law to program Ćow charts, we usually are
interested only in the vertex Ćows (the number of times each box of the Ćow chart
is performed), not the edge Ćows analyzed in the text. For example, in the graph of
exercise 7, the vertex Ćows are A = E2 +E4, B = E5, C = E3 +E7 +E8, D = E6 +E9.

If we group some vertices together, treating them as one Şsupervertex,Ť we can
combine edge Ćows that correspond to the same vertex Ćow. For example, edges e2

and e4 can be combined in the Ćow chart above if we also put B with D:

Start StopA B,D C
e1 e2+e4

e5

e7

e8

e3

e0

e9e6

(Here e0 has also been added from Stop to Start, as in the text.) Continuing this
procedure, we can combine e3 + e7, then (e3 + e7) + e8, then e6 + e9, until we obtain
the reduced Ćow chart having edges s = e1, a = e2 + e4, b = e5, c = e3 + e7 + e8,
d = e6 + e9, t = e0, precisely one edge for each vertex in the original Ćow chart:

Start CA,B,D, Stop
s

t c

b

d

a

By construction, KirchhoffŠs law holds in this reduced Ćow chart. The new edge
Ćows are the vertex Ćows of the original; hence the analysis in the text, applied to the
reduced Ćow chart, shows how the original vertex Ćows depend on each other.

Prove that this reduction process can be reversed, in the sense that any set of
Ćows {a, b, . . .} satisfying KirchhoffŠs law in the reduced Ćow chart can be Şsplit upŤ
into a set of edge Ćows {e0, e1, . . .} in the original Ćow chart. These Ćows ej satisfy
KirchhoffŠs law and combine to yield the given Ćows {a, b, . . .}; some of them might,
however, be negative. (Although the reduction procedure has been illustrated here for
only one particular Ćow chart, your proof should be valid in general.)

9. [M22] Edges e13 and e19 were split into two parts in Fig. 32, since a graph is not
supposed to have two edges joining the same two vertices. However, if we look at the
Ąnal result of the construction, this splitting into two parts seems quite artiĄcial since
E′

13 = E′′
13 and E′

19 = E′′
19 are two of the relations found in (6), while E′′

13 and E′′
19 are

two of the independent variables. Explain how the construction could be generalized
so that an artiĄcial splitting of edges may be avoided.

2.3.4.1 FREE TREES 371

10. [16] An electrical engineer, designing the circuitry for a computer, has n terminals
T1, T2, . . . , Tn that should be at essentially the same voltage at all times. To achieve
this, the engineer can solder wires between any pairs of terminals; the idea is to make
enough wire connections so that there is a path through the wires from any terminal to
any other. Show that the minimum number of wires needed to connect all the terminals
is n− 1, and n− 1 wires achieve the desired connection if and only if they form a free
tree (with terminals and wires standing for vertices and edges).

11. [M27] (R. C. Prim, Bell System Tech. J. 36 (1957), 1389Ű1401.) Consider the
wire connection problem of exercise 10 with the additional proviso that a cost c(i, j) is
given for each i < j, denoting the expense of wiring terminal Ti to terminal Tj . Show
that the following algorithm gives a connection tree of minimum cost: ŞIf n = 1, do
nothing. Otherwise, renumber terminals {1, . . . , n−1} and the associated costs so that
c(n − 1, n) = min1≤i<n c(i, n); connect terminal Tn−1 to Tn; then change c(j, n − 1)
to min(c(j, n − 1), c(j, n)) for 1 ≤ j < n − 1, and repeat the algorithm for n − 1
terminals T1, . . . , Tn−1 using these new costs. (The algorithm is to be repeated with
the understanding that whenever a connection is subsequently requested between the
terminals now called Tj and Tn−1, the connection is actually made between terminals
now called Tj and Tn if it is cheaper; thus Tn−1 and Tn are being regarded as though
they were one terminal in the remainder of the algorithm.)Ť This algorithm may also
be stated as follows: ŞChoose a particular terminal to start with; then repeatedly make
the cheapest possible connection from an unchosen terminal to a chosen one, until all
have been chosen.Ť

Fig. 33. Free tree
of minimum cost.
(See exercise 11.)

(a)

0
0

1

1

2

2

3

3

4

4

5

5
T1 T2

T3 T4

T5 T6

T7

T8

T9

(b)

For example, consider Fig. 33(a), which shows nine terminals on a grid; let the
cost of connecting two terminals be the wire length, namely the distance between them.
(The reader may wish to try to Ąnd a minimal cost tree by hand, using intuition instead
of the suggested algorithm.) The algorithm would Ąrst connect T8 to T9, then T6 to
T8, T5 to T6, T2 to T6, T1 to T2, T3 to T1, T7 to T3, and Ąnally T4 to either T2 or T6.
A minimum cost tree (wire length 7 + 2

√
2 + 2

√
5) is shown in Fig. 33(b).

x 12. [29] The algorithm of exercise 11 is not stated in a fashion suitable for direct
computer implementation. Reformulate that algorithm, specifying in more detail the
operations that are to be done, in such a way that a computer program can carry out
the process with reasonable efficiency.

13. [M24] Consider a graph with n vertices and m edges, in the notation of exercise 6.
Show that it is possible to write any permutation of the integers {1, 2, . . . , n} as
a product of transpositions (ak1

bk1
) (ak2

bk2
) . . . (aktbkt) if and only if the graph is

connected. (Hence there are sets of n−1 transpositions that generate all permutations
on n elements, but no set of n− 2 will do so.)

372 INFORMATION STRUCTURES 2.3.4.2

2.3.4.2. Oriented trees. In the previous section, we saw that an abstracted
Ćow chart may be regarded as a graph, if we ignore the direction of the arrows
on its edges; the graph-theoretic ideas of cycle, free subtree, etc., were shown to
be relevant in the study of Ćow charts. There is a good deal more that can be
said when the direction of each edge is given more signiĄcance, and in this case
we have what is called a Şdirected graphŤ or Şdigraph.Ť

Let us deĄne a directed graph formally as a set of vertices and a set of arcs,
each arc leading from a vertex V to a vertex V ′. If e is an arc from V to V ′

we say V is the initial vertex of e, and V ′ is the Ąnal vertex, and we write
V = init(e), V ′ = Ąn(e). The case that init(e) = Ąn(e) is not excluded (although
it was excluded from the deĄnition of edge in an ordinary graph), and several
different arcs may have the same initial and Ąnal vertices. The out-degree of a
vertex V is the number of arcs leading out from it, namely the number of arcs e
such that init(e) = V ; similarly, the in-degree of V is deĄned to be the number
of arcs with Ąn(e) = V .

The concepts of paths and cycles are deĄned for directed graphs in a manner
similar to the corresponding deĄnitions for ordinary graphs, but some important
new technicalities must be considered. If e1, e2, . . . , en are arcs (with n ≥ 1),
we say that (e1, e2, . . . , en) is an oriented walk of length n from V to V ′ if V =
init(e1), V ′ = Ąn(en), and Ąn(ek) = init(ek+1) for 1 ≤ k < n. An oriented walk
(e1, e2, . . . , en) is called simple if init(e1), . . . , init(en) are distinct and Ąn(e1),
. . . , Ąn(en) are distinct; such a walk is an oriented cycle if Ąn(en) = init(e1),
otherwise itŠs an oriented path. (An oriented cycle can have length 1 or 2, but
such short cycles were excluded from our deĄnition of ŞcycleŤ in the previous
section. Can the reader see why this makes sense?)

As examples of these straightforward deĄnitions, we may refer to Fig. 31 in
the previous section. The box labeled ŞJ Ť is a vertex with in-degree 2 (because
of the arcs e16, e21) and out-degree 1. The sequence (e17, e19, e18, e22) is an
oriented walk of length 4 from J to P ; this walk is not simple since, for example,
init(e19) = L = init(e22). The diagram contains no oriented cycles of length 1,
but (e18, e19) is an oriented cycle of length 2.

A directed graph is said to be strongly connected if there is an oriented path
from V to V ′ for any two vertices V ̸= V ′. It is said to be rooted if there is at
least one root, that is, at least one vertex R such that there is an oriented path
from V to R for all V ̸= R. ŞStrongly connectedŤ always implies Şrooted,Ť but
the converse does not hold. A Ćow chart such as Fig. 31 in the previous section
is an example of a rooted digraph, with R the Stop vertex; with the additional
arc from Stop to Start (Fig. 32) it becomes strongly connected.

Every directed graph G corresponds in an obvious manner to an ordinary
graph G0, if we ignore orientations and discard duplicate edges or loops. For-
mally speaking, G0 has an edge from V to V ′ if and only if V ̸= V ′ and G has an
arc from V to V ′ or from V ′ to V . We can speak of (unoriented) paths and cycles
in G with the understanding that these are paths and cycles of G0; we can say
that G is connected Ů this is a much weaker property than Şstrongly connected,Ť
even weaker than ŞrootedŤ Ů if the corresponding graph G0 is connected.

2.3.4.2 ORIENTED TREES 373

An oriented tree (see Fig. 34), sometimes called
a Şrooted treeŤ by other authors, is a directed graph
with a speciĄed vertex R such that:

a) Each vertex V ̸= R is the initial vertex of exactly
one arc, denoted by e[V].

b) R is the initial vertex of no arc;

c) R is a root in the sense deĄned above (that is,
for each vertex V ̸= R there is an oriented path
from V to R).

It follows immediately that for each vertex V ̸=R
there is a unique oriented path from V to R; and
hence there are no oriented cycles.

e[C]

C

e[A]

A

e[B]

B

e[D]

D

e[E]

E

e[F]

F

e[G]

G

e[H]

H

R

Fig. 34. An oriented tree.

Our previous deĄnition of Şoriented treeŤ (at the beginning of Section 2.3)
is easily seen to be compatible with the new deĄnition just given, when there
are Ąnitely many vertices. The vertices correspond to nodes, and the arc e[V] is
the link from V to PARENT[V].

The (undirected) graph corresponding to an oriented tree is connected,
because of property (c). Furthermore, it has no cycles. For if (V0, V1, . . . , Vn)
is an undirected cycle with n ≥ 3, and if the edge between V0 and V1 is e[V1],
then the edge between V1 and V2 must be e[V2], and similarly the edge between
Vk−1 and Vk must be e[Vk] for 1 ≤ k ≤ n, contradicting the absence of oriented
cycles. If the edge between V0 and V1 is not e[V1], it must be e[V0], and the same
argument applies to the cycle

(V1, V0, Vn−1, . . . , V1),

because Vn = V0. Therefore an oriented tree is a free tree when the direction of
the arcs is neglected.

Conversely, it is important to note that we can reverse the process just
described. If we start with any nonempty free tree, such as that in Fig. 30, we
can choose any vertex as the root R, and assign directions to the edges. The
intuitive idea is to Şpick upŤ the graph at vertex R and shake it; then assign
upward-pointing arrows. More formally, the rule is this:

Change the edge V −−−V ′ to an arc from V to V ′ if and only if the simple
path from V to R leads through V ′, that is, if it has the form (V0, V1, . . . , Vn),
where n > 0, V0 = V , V1 = V ′, Vn = R.

To verify that such a construction is valid, we need to prove that each edge
V −−− V ′ is assigned the direction V ←−− V ′ or the direction V −−→ V ′; and this
is easy to prove, for if (V, V1, . . . , R) and (V ′, V ′

1 , . . . , R) are simple paths, there
is a cycle unless V = V ′

1 or V1 = V ′. This construction demonstrates that the
directions of the arcs in an oriented tree are completely determined if we know
which vertex is the root, so they need not be shown in diagrams when the root
is explicitly indicated.

374 INFORMATION STRUCTURES 2.3.4.2

a

b c

d e f

g h

a

bc

d ef

g h

a

b

c

d

ef

g h

Fig. 35. Three tree structures.

We now see the relation between three types of trees: the (ordered) tree,
which is of principal importance in computer programs, as deĄned at the be-
ginning of Section 2.3; the oriented tree (or unordered tree); and the free tree.
Both of the latter two types arise in the study of computer algorithms, but not
as often as the Ąrst type. The essential distinction between these types of tree
structure is merely the amount of information that is taken to be relevant. For
example, Fig. 35 shows three trees that are distinct if they are considered as
ordered trees (with root at the top). As oriented trees, the Ąrst and second are
identical, since the left-to-right order of subtrees is immaterial; as free trees, all
three graphs in Fig. 35 are identical, since the root is immaterial.

An Eulerian trail in a directed graph is an oriented walk (e1, e2, . . . , em) such
that every arc in the directed graph occurs exactly once, and Ąn(em) = init(e1).
This is a Şcomplete traversalŤ of the arcs of the digraph. (Eulerian trails get
their name from Leonhard EulerŠs famous discussion in 1736 of the impossibility
of traversing each of the seven bridges in the city of Königsberg exactly once
during a Sunday stroll. He treated the analogous problem for undirected graphs.
Eulerian trails should be distinguished from ŞHamiltonian cycles,Ť which are
oriented cycles that encounter each vertex exactly once; see Chapter 7.)

A directed graph is said to be balanced (see Fig. 36) if every vertex V has
the same in-degree as its out-degree, that is, if there are just as many edges
with V as their initial vertex as there are with V as their Ąnal vertex. This
condition is closely related to KirchhoffŠs law (see exercise 24). If a directed
graph has an Eulerian trail, it must obviously be connected and balanced Ů
unless it has isolated vertices, which are vertices with in-degree and out-degree
both equal to zero.

So far in this section weŠve looked at quite a few deĄnitions (directed graph,
arc, initial vertex, Ąnal vertex, out-degree, in-degree, oriented walk, oriented
path, oriented cycle, oriented tree, Eulerian trail, isolated vertex, and the prop-
erties of being strongly connected, rooted, and balanced), but there has been
a scarcity of important results connecting these concepts. Now we are ready
for meatier material. The Ąrst basic result is a theorem due to I. J. Good
[J. London Math. Soc. 21 (1947), 167Ű169], who showed that Eulerian trails are
always possible unless they are obviously impossible:

2.3.4.2 ORIENTED TREES 375

e01 e12

e
′

01
e
′

12

e21
e00 e22

e10

e20

V0 V1 V2

Fig. 36. A balanced directed graph.

Theorem G. A Ąnite, directed graph with no isolated vertices possesses an
Eulerian trail if and only if it is connected and balanced.

Proof. Assume that G is balanced, and let

P = (e1, . . . , em)

be an oriented walk of longest possible length that uses no arc twice. Then if
V = Ąn(em), and if k is the out-degree of V , all k arcs e with init(e) = V must
already appear in P ; otherwise we could add e and get a longer walk. But if
init(ej) = V and j > 1, then Ąn(ej−1) = V . Hence, since G is balanced, we must
have

init(e1) = V = Ąn(em),

otherwise the in-degree of V would be at least k + 1.
Now by the cyclic permutation of P it follows that any arc e not in the walk

has neither initial nor Ąnal vertex in common with any arc in the walk. So if
P is not an Eulerian trail, G is not connected.

There is an important connection between Eulerian trails and oriented trees:

Lemma E. Let (e1, . . . , em) be an Eulerian trail of a directed graph G having
no isolated vertices. Let R = Ąn(em) = init(e1). For each vertex V ̸= R let e[V]
be the last exit from V in the trail; that is,

e[V] = ej if init(ej) = V and init(ek) ̸= V for j < k ≤ m. (1)

Then the vertices of G with the arcs e[V] form an oriented tree with root R.

Proof. Properties (a) and (b) of the deĄnition of oriented tree are evidently
satisĄed. By exercise 7 we need only show that there are no oriented cycles
among the e[V]; but this is immediate, since if Ąn(e[V]) = V ′ = init(e[V ′]),
where e[V] = ej and e[V ′] = ej′ , then j < j′.

This lemma can perhaps be better understood if we turn things around
and consider the ŞĄrst entrancesŤ to each vertex; the Ąrst entrances form an
unordered tree with all arcs pointing away fromR. Lemma E has a surprising and
important converse, proved by T. van Aardenne-Ehrenfest and N. G. de Bruijn
[Simon Stevin 28 (1951), 203Ű217]:

376 INFORMATION STRUCTURES 2.3.4.2

Theorem D. Let G be a Ąnite, balanced, directed graph, and let G′ be an
oriented tree consisting of the vertices of G plus some of the arcs of G. Let R
be the root of G′ and let e[V] be the arc of G′ with initial vertex V . Let e1 be
any arc of G with init(e1) = R. Then P = (e1, e2, . . . , em) is an Eulerian trail if
it is an oriented walk for which

i) no arc is used more than once; that is, ej ̸= ek when j ̸= k.
ii) e[V] is not used in P unless it is the only choice consistent with rule (i);

that is, if ej = e[V] and if e is an arc with init(e) = V , then e = ek for some
k ≤ j.

iii) P terminates only when it cannot be continued by rule (i); that is, if
init(e) = Ąn(em), then e = ek for some k.

Proof. By (iii) and the argument in the proof of Theorem G, we must have
Ąn(em) = init(e1) = R. Now if e is an arc not appearing in P , let V = Ąn(e).
Since G is balanced, it follows that V is the initial vertex of some arc not in P ;
and if V ̸= R, condition (ii) tells us that e[V] is not in P . Now use the same
argument with e = e[V], and we ultimately Ąnd that R is the initial vertex of
some arc not in the walk, contradicting (iii).

The essence of Theorem D is that it shows us a simple way to construct an
Eulerian trail in a balanced directed graph, given any oriented subtree of the
graph. (See the example in exercise 14.) In fact, Theorem D allows us to count
the exact number of Eulerian trails in a directed graph; this result and many
other important consequences of the ideas developed in this section appear in
the exercises that follow.

EXERCISES

1. [M20] Prove that if V and V ′ are vertices of a directed graph and if there is an
oriented walk from V to V ′, then there is a simple oriented path from V to V ′.

2. [15] Which of the ten Şfundamental cyclesŤ listed in (3) of Section 2.3.4.1 are
oriented cycles in the directed graph (Fig. 32) of that section?

3. [16] Draw the diagram for a directed graph that is connected but not rooted.

x 4. [M20] The concept of topological sorting can be deĄned for any Ąnite directed
graph G as a linear arrangement of the vertices V1V2 . . . Vn such that init(e) precedes
Ąn(e) in the ordering for all arcs e of G. (See Section 2.2.3, Figs. 6 and 7.) Not all Ąnite
directed graphs can be topologically sorted; which ones can be? (Use the terminology
of this section to give the answer.)

5. [M16] Let G be a directed graph that contains an oriented walk (e1, . . . , en) with
Ąn(en) = init(e1). Give a proof that G is not an oriented tree, using the terminology
deĄned in this section.

6. [M21] True or false: A directed graph that is rooted and contains no cycles and
no oriented cycles is an oriented tree.

x 7. [M22] True or false: A directed graph satisfying properties (a) and (b) of the
deĄnition of oriented tree, and having no oriented cycles, is an oriented tree.

2.3.4.2 ORIENTED TREES 377

8. [HM40] Study the properties of automorphism groups of oriented trees, namely
the groups consisting of all permutations π of the vertices and arcs for which we have
init(eπ) = init(e)π, Ąn(eπ) = Ąn(e)π.

9. [18] By assigning directions to the edges, draw the oriented tree corresponding to
the free tree in Fig. 30 on page 363, with G as the root.

10. [22] An oriented tree with vertices V1, . . . , Vn can be represented inside a computer
by using a table P [1], . . . , P [n] as follows: If Vj is the root, P [j] = 0; otherwise P [j] = k,
if the arc e[Vj] goes from Vj to Vk. (Thus P [1], . . . , P [n] is the same as the ŞparentŤ
table used in Algorithm 2.3.3E.)

The text shows how a free tree can be converted into an oriented tree by choosing
any desired vertex to be the root. Consequently, it is possible to start with an
oriented tree that has root R, then to convert this into a free tree by neglecting the
orientation of the arcs, and Ąnally to assign new orientations, obtaining an oriented
tree with any speciĄed vertex as the root. Design an algorithm that performs this
transformation: Starting with a table P [1], . . . , P [n], representing an oriented tree, and
given an integer j, 1 ≤ j ≤ n, design the algorithm to transform the P table so that it
represents the same free tree but with Vj as the root.

x 11. [28] Using the assumptions of exercise 2.3.4.1Ű6, but with (ak, bk) representing
an arc from Vak to Vbk , design an algorithm that not only prints out a free subtree as
in that algorithm, but also prints out the fundamental cycles. [Hint: The algorithm
given in the solution to exercise 2.3.4.1Ű6 can be combined with the algorithm in the
preceding exercise.]

12. [M10] In the correspondence between oriented trees as deĄned here and oriented
trees as deĄned at the beginning of Section 2.3, is the degree of a tree node equal to
the in-degree or the out-degree of the corresponding vertex?

x 13. [M24] Prove that if R is a root of a (possibly inĄnite) directed graph G, then
G contains an oriented subtree with the same vertices as G and with root R. (As a
consequence, it is always possible to choose the free subtree in Ćow charts like Fig. 32
of Section 2.3.4.1 so that it is actually an oriented subtree; this would be the case in
that diagram if we had selected e′′13, e′′19, e20, and e17 instead of e′13, e′19, e23, and e15.)

14. [21] Let G be the balanced digraph shown in Fig. 36, and let G′ be the oriented
subtree with vertices V0, V1, V2 and arcs e01, e21. Find all oriented walks P that meet
the conditions of Theorem D, starting with arc e12.

15. [M20] True or false: A directed graph that is connected and balanced is strongly
connected.

x 16. [M24] In a popular solitaire game called Şclock,Ť the 52 cards of an ordinary deck
of playing cards are dealt face down into 13 piles of four each; 12 piles are arranged
in a circle like the 12 hours of a clock and the thirteenth pile goes in the center. The
solitaire game now proceeds by turning up the top card of the center pile, and then
if its face value is k, by placing it next to the kth pile. (The numbers 1, 2, . . . , 13 are
equivalent to A, 2, . . . , 10, J,Q,K.) Play continues by turning up the top card of the
kth pile and putting it next to its pile, etc., until we reach a point where we cannot
continue since there are no more cards to turn up on the designated pile. (The player
has no choice in the game, since the rules completely specify what to do.) The game is
won if all cards are face up when play terminates. [Reference: E. D. Cheney, Patience
(Boston: Lee & Shepard, 1870), 62Ű65; the game was called ŞTravellersŠ PatienceŤ in

378 INFORMATION STRUCTURES 2.3.4.2

England, according to M. Whitmore Jones, Games of Patience (London: L. Upcott
Gill, 1900), Chapter 7.]

Show that the game will be won if and only if the following directed graph is an
oriented tree: The vertices are V1, V2, . . . , V13; the arcs are e1, e2, . . . , e12, where ej goes
from Vj to Vk if k is the bottom card in pile j after the deal.

(In particular, if the bottom card of pile j is a ŞjŤ, for j ̸= 13, it is easy to see
that the game is certainly lost, since this card could never be turned up. The result
proved in this exercise gives a much faster way to play the game!)

17. [M32] What is the probability of winning the solitaire game of clock (described
in exercise 16), assuming the deck is randomly shuffled? What is the probability that
exactly k cards are still face down when the game is over?

18. [M30] Let G be a graph with n+1 vertices V0, V1, . . . , Vn and m edges e1, . . . , em.
Make G into a directed graph by assigning an arbitrary orientation to each edge; then
construct the m× (n+ 1) matrix A with

aij =

+1, if init(ei) = Vj ;
−1, if Ąn(ei) = Vj ;

0, otherwise.

Let A0 be the m× n matrix A with column 0 deleted.

a) If m = n, show that the determinant of A0 is equal to 0 if G is not a free tree, and
equal to ±1 if G is a free tree.

b) Show that for general m the determinant of AT0A0 is the number of free subtrees
of G (namely the number of ways to choose n of the m edges so that the resulting
graph is a free tree). [Hint: Use (a) and the result of exercise 1.2.3Ű46.]

19. [M31] (The matrix tree theorem.) Let G be a directed graph with n + 1 vertices
V0, V1, . . . , Vn. Let A be the (n+ 1)× (n+ 1) matrix with

aij =

−k, if i ̸= j and there are k arcs from Vi to Vj ;
t, if i = j and there are t arcs from Vj to other vertices.

(It follows that ai0 + ai1 + · · · + ain = 0 for 0 ≤ i ≤ n.) Let A0 be the same matrix
with row 0 and column 0 deleted. For example, if G is the directed graph of Fig. 36,
we have

A =

2 −2 0
−1 3 −2
−1 −1 2

 , A0 =

3 −2
−1 2

.

a) Show that if a00 = 0 and ajj = 1 for 1 ≤ j ≤ n, and if G contains no arcs from a
vertex to itself, then detA0 = [G is an oriented tree with root V0].

b) Show that in general, detA0 is the number of oriented subtrees of G rooted at V0

(namely the number of ways to select n of the arcs of G so that the resulting
directed graph is an oriented tree, with V0 as the root). [Hint: Use induction on
the number of arcs.]

20. [M21] If G is an undirected graph on n+ 1 vertices V0, . . . , Vn, let B be the n×n
matrix deĄned as follows for 1 ≤ i, j ≤ n:

bij =

t, if i = j and there are t edges touching Vj ;
−1, if i ̸= j and Vi is adjacent to Vj ;

0, otherwise.

2.3.4.2 ORIENTED TREES 379

For example, if G is the graph of Fig. 29 on page 363, with (V0, V1, V2, V3, V4) =
(A,B,C,D,E), we Ąnd that

B =

3 0 −1 −1
0 2 −1 0
−1 −1 3 −1
−1 0 −1 2

 .

Show that the number of free subtrees of G is det B. [Hint: Use exercise 18 or 19.]

21. [HM38] (T. van Aardenne-Ehrenfest and N. G. de Bruijn.) Figure 36 is an
example of a directed graph that is not only balanced, it is regular, which means that
every vertex has the same in-degree and out-degree as every other vertex. Let G be
a regular digraph with n vertices V0, V1, . . . , Vn−1, in which every vertex has in-degree
and out-degree equal to m. (Hence there are mn arcs in all.) Let G∗ be the digraph
with mn vertices corresponding to the arcs of G; let a vertex of G∗ corresponding to
an arc from Vj to Vk in G be denoted by Vjk. An arc goes from Vjk to Vj′k′ in G∗ if
and only if k = j′. For example, if G is the directed graph of Fig. 36, G∗ is shown in
Fig. 37. An Eulerian trail in G is a Hamiltonian cycle in G∗ and conversely.

Prove that the number of oriented subtrees of G∗ is m(m−1)n times the number of
oriented subtrees of G. [Hint: Use exercise 19.]

V00

V10 V22

V01 V12

V21

V
′

01 V
′

12
V20

Fig. 37. Arc digraph corresponding to Fig. 36. (See exercise 21.)

380 INFORMATION STRUCTURES 2.3.4.2

x 22. [M26] Let G be a balanced, directed graph with vertices V1, V2, . . . , Vn and no
isolated vertices. Let σj be the out-degree of Vj . Show that the number of Eulerian
trails of G is

(σ1 + σ2 + · · ·+ σn)T
n

j=1

(σj − 1)!,

where T is the number of oriented subtrees of G with root V1. [Note: The factor
(σ1 + · · ·+ σn), which is the number of arcs of G, may be omitted if the Eulerian trail
(e1, . . . , em) is regarded as equal to (ek, . . . , em, e1, . . . , ek−1).]

x 23. [M33] (N. G. de Bruijn.) For each sequence of nonnegative integers x1, . . . , xk
less than m, let f(x1, . . . , xk) be a nonnegative integer less than m. DeĄne an inĄnite
sequence as follows: X1 = X2 = · · · = Xk = 0; Xn+k+1 = f(Xn+k, . . . , Xn+1) when
n ≥ 0. For how many of the mmk

possible functions f is this sequence periodic
with a period of the maximum length mk? [Hint: Construct a directed graph with
vertices (x1, . . . , xk−1) for all 0 ≤ xj < m, and with arcs from (x1, x2, . . . , xk−1) to
(x2, . . . , xk−1, xk); apply exercises 21 and 22.]

x 24. [M20] Let G be a connected digraph with arcs e0, e1, . . . , em. Let E0, E1, . . . , Em
be a set of positive integers that satisfy KirchhoffŠs law for G; that is, for each vertex V ,

init(ej)=V

Ej =

fin(ej)=V

Ej .

Assume further that E0 = 1. Prove that there is an oriented walk in G from Ąn(e0) to
init(e0) such that edge ej appears exactly Ej times, for 1 ≤ j ≤ m, while edge e0 does
not appear. [Hint: Apply Theorem G to a suitable directed graph.]

25. [26] Design a computer representation for directed graphs that generalizes the
right-threaded binary tree representation of a tree. Use two link Ąelds ALINK, BLINK
and two one-bit Ąelds ATAG, BTAG; and design the representation so that: (i) there is
one node for each arc of the directed graph (not for each vertex); (ii) if the directed
graph is an oriented tree with root R, and if we add an arc from R to a new vertex H,
then the representation of this directed graph is essentially the same as a right-threaded
representation of this oriented tree (with some order imposed on the children in each
family), in the sense that ALINK, BLINK, BTAG are respectively the same as LLINK,
RLINK, RTAG in Section 2.3.2; and (iii) the representation is symmetric in the sense that
interchanging ALINK, ATAG, with BLINK, BTAG is equivalent to changing the direction on
all the arcs of the directed graph.

x 26. [HM39] (Analysis of a random algorithm.) Let G be a directed graph on the
vertices V1, V2, . . . , Vn. Assume that G represents the Ćow chart for an algorithm,
where V1 is the Start vertex and Vn is the Stop vertex. (Therefore Vn is a root of G.)
Suppose each arc e of G has been assigned a probability p(e), where the probabilities
satisfy the conditions

0 < p(e) ≤ 1;

init(e)=Vj

p(e) = 1 for 1 ≤ j < n.

Consider a random walk, which starts at V1 and subsequently chooses branch e of G
with probability p(e), until Vn is reached; the choice of branch taken at each step is to
be independent of all previous choices.

2.3.4.2 ORIENTED TREES 381

For example, consider the graph of exercise 2.3.4.1Ű7, and assign the respective
probabilities 1, 1

2
, 1

2
, 1

2
, 1, 3

4
, 1

4
, 1

4
, 1

4
to arcs e1, e2, . . . , e9. Then the walk ŞStartŰAŰ

BŰCŰAŰDŰBŰCŰStopŤ is chosen with probability 1 · 1
2
· 1 · 1

2
· 1

2
· 3

4
· 1 · 1

4
= 3

128
.

Such random walks are called Markov chains, after the Russian mathematician
Andrei A. Markov, who Ąrst made extensive studies of stochastic processes of this
kind. The situation serves as a model for certain algorithms, although our requirement
that each choice must be independent of the others is a very strong assumption. The
purpose of this exercise is to analyze the computation time for algorithms of this kind.

The analysis is facilitated by considering the n × n matrix A = (aij), where
aij =

p(e) summed over all arcs e that go from Vi to Vj . If there is no such arc,

aij = 0. The matrix A for the example considered above is

0 1 0 0 0 0
0 0 1

2
0 1

2
0

0 0 0 1 0 0
0 1

2
0 0 1

4
1
4

0 0 3
4

0 0 1
4

0 0 0 0 0 0

.

It follows easily that (Ak)ij is the probability that a walk starting at Vi will be at Vj
after k steps.

Prove the following facts, for an arbitrary directed graph G of the stated type:
a) The matrix (I −A) is nonsingular. [Hint: Show that there is no nonzero vector x

with xAn = x.]
b) The average number of times that vertex Vj appears in the walk is

(I −A)−1
1j = cofactorj1(I −A)/det(I −A), for 1 ≤ j ≤ n.

[Thus in the example considered we Ąnd that the vertices A, B, C, D are traversed
respectively 13

6
, 7

3
, 7

3
, 5

3
times, on the average.]

c) The probability that Vj occurs in the walk is

aj = cofactorj1(I −A)/cofactorjj(I −A);

furthermore, an = 1, so the walk terminates in a Ąnite number of steps with
probability one.

d) The probability that a random walk starting at Vj will never return to Vj is
bj = det (I −A)/cofactorjj(I −A).

e) The probability that Vj occurs exactly k times in the walk is aj(1− bj)k−1bj , for
k ≥ 1, 1 ≤ j ≤ n.

27. [M30] (Steady states.) Let G be a directed graph on vertices V1, . . . , Vn, whose
arcs have been assigned probabilities p(e) as in exercise 26. Instead of having Start
and Stop vertices, however, assume that G is strongly connected; thus each ver-
tex Vj is a root, and we assume that the probabilities p(e) are positive and satisfy

init(e)=Vj
p(e) = 1 for all j. A random process of the kind described in exercise 26 is

said to have a Şsteady stateŤ (x1, . . . , xn) if

xj =

init(e)=Vi
fin(e)=Vj

p(e)xi, for 1 ≤ j ≤ n.

382 INFORMATION STRUCTURES 2.3.4.2

Let tj be the sum, over all oriented subtrees Tj of G that are rooted at Vj , of the
products

e∈Tj

p(e). Prove that (t1, . . . , tn) is a steady state of the random process.

x 28. [M35] Consider the (m+n)× (m+n) determinant illustrated here for m = 2 and
n = 3:

det

a10 + a11 + a12 + a13 0 a11 a12 a13

0 a20 + a21 + a22 + a23 a21 a22 a23

b11 b12 b10 + b11 + b12 0 0
b21 b22 0 b20 + b21 + b22 0
b31 b32 0 0 b30 + b31 + b32

.

Show that when this determinant is expanded as a polynomial in the aŠs and bŠs, each
nonzero term has coefficient +1. How many terms appear in the expansion? Give a
rule, related to oriented trees, that characterizes exactly which terms are present.

*2.3.4.3. The ŞinĄnity lemma.Ť Until now we have concentrated mainly on
trees that have only Ąnitely many vertices (nodes), but the deĄnitions we have
given for free trees and oriented trees apply to inĄnite graphs as well. InĄnite
ordered trees can be deĄned in several ways; we can, for example, extend the
concept of ŞDewey decimal notationŤ to inĄnite collections of numbers, as in
exercise 2.3Ű14. Even in the study of computer algorithms there is occasionally
a need to know the properties of inĄnite trees Ů for example, to prove by contra-
diction that a certain tree is not inĄnite. One of the most fundamental properties
of inĄnite trees, Ąrst stated in its full generality by D. Kőnig, is the following:

Theorem K (The ŞinĄnity lemmaŤ). Every inĄnite oriented tree in which
every vertex has Ąnite degree has an inĄnite path to the root, that is, an inĄnite
sequence of vertices V0, V1, V2, . . . in which V0 is the root and Ąn(e[Vj+1]) = Vj
for all j ≥ 0.

Proof. We deĄne the path by starting with V0, the root of the oriented tree.
Assume that j ≥ 0 and that Vj has been chosen having inĄnitely many de-
scendants. The degree of Vj is Ąnite by hypothesis, so Vj has Ąnitely many
children U1, . . . , Un. At least one of these children must possess inĄnitely many
descendants, so we take Vj+1 to be such a child of Vj .

Now V0, V1, V2, . . . is an inĄnite path to the root.

Students of calculus may recognize that the argument used here is essentially
like that used to prove the classical BolzanoŰWeierstrass theorem, ŞA bounded
inĄnite set of real numbers has an accumulation point.Ť One way of stating
Theorem K, as Kőnig observed, is this: ŞIf the human race never dies out,
somebody now living has a line of descendants that will never die out.Ť

Most people think that Theorem K is completely obvious when they Ąrst
encounter it, but after more thought and a consideration of further examples
they realize that there is something profound about it. Although the degree of
each node of the tree is Ąnite, we have not assumed that the degrees are bounded
(less than some number N for all vertices), so there may be nodes with higher
and higher degrees. It is at least conceivable that everyoneŠs descendants will
ultimately die out although there will be some families that go on a million

2.3.4.3 THE ŞINFINITY LEMMAŤ 383

generations, others a billion, and so on. In fact, H. W. Watson once published a
ŞproofŤ that under certain laws of biological probability carried out indeĄnitely,
there will be inĄnitely many people born in the future but each family line will
die out with probability one. His paper [J. Anthropological Inst. Gt. Britain and
Ireland 4 (1874), 138Ű144] contains important and far-reaching theorems in spite
of the minor slip that caused him to make this statement, and it is signiĄcant
that he did not Ąnd his conclusions to be logically inconsistent.

The contrapositive of Theorem K is directly applicable to computer algo-
rithms: If we have an algorithm that periodically divides itself up into Ąnitely
many subalgorithms, and if each chain of subalgorithms ultimately terminates,
then the algorithm itself terminates.

Phrased yet another way, suppose we have a set S, Ąnite or inĄnite, such
that each element of S is a sequence (x1, x2, . . . , xn) of positive integers of Ąnite
length n ≥ 0. If we impose the conditions that

i) if (x1, . . . , xn) is in S, so is (x1, . . . , xk) for 0 ≤ k ≤ n;
ii) if (x1, . . . , xn) is in S, only Ąnitely many xn+1 exist for which (x1, . . . ,

xn, xn+1) is also in S;
iii) there is no inĄnite sequence (x1, x2, . . .) all of whose initial subsequences

(x1, x2, . . . , xn) lie in S;

then S is essentially an oriented tree, speciĄed essentially in a Dewey decimal
notation, and Theorem K tells us that S is Ąnite.

One of the most convincing examples of the potency of Theorem K arises in
connection with a family of interesting tiling problems introduced by Hao Wang.
A tetrad type is a square divided into four parts, each part having a speciĄed
number in it, such as

�
�
�
�❅

❅
❅
❅

3
10 2

5
. (1)

The problem of tiling the plane is to take a Ąnite set of tetrad types, with an
inĄnite supply of tetrads of each type, and to show how to place one in each
square of an inĄnite plane (without rotating or reĆecting the tetrad types) in
such a way that two tetrads are adjacent only if they have equal numbers where
they touch. For example, we can tile the plane using the six tetrad types

�
�
�
�❅

❅
❅
❅

1
3 1

2
�
�
�
�❅

❅
❅
❅

11
1 2

12
�

�
�
�❅

❅
❅
❅

21
2 3

22
�
�

�
�❅

❅
❅
❅

2
13 11

1
�
�
�
�❅

❅
❅
❅

12
11 12

11
�
�
�
�❅

❅
❅
❅

22
12 13

21
(2)

in essentially only one way, by repeating the rectangle

�
�
�
�❅

❅
❅
❅

1
3 1

2
�
�
�
�❅

❅
❅
❅

11
1 2

12
�
�
�
�❅

❅
❅
❅

21
2 3

22

�
�
�
�❅

❅
❅
❅

2
13 11

1
�
�
�
�❅

❅
❅
❅

12
11 12

11
�
�
�
�❅

❅
❅
❅

22
12 13

21

(3)

384 INFORMATION STRUCTURES 2.3.4.3

over and over. The reader may easily verify that there is no way to tile the plane
with the three tetrad types

�
�
�
�❅

❅
❅
❅

1
3 1

2
�
�
�
�❅

❅
❅
❅

1
1 2

1
�
�
�
�❅

❅
❅
❅

2
2 3

2
. (4)

WangŠs observation [ScientiĄc American 213, 5 (November 1965), 98Ű106] is
that if it is possible to tile the upper right quadrant of the plane, it is possible to
tile the whole plane. This is certainly unexpected, because a method for tiling
the upper right quadrant involves a ŞboundaryŤ along the x and y axes, and it
would seem to give no hint as to how to tile the upper left quadrant of the plane
(since tetrad types may not be rotated or reĆected). We cannot get rid of the
boundary merely by shifting the upper-quadrant solution down and to the left,
since it does not make sense to shift the solution by more than a Ąnite amount.
But WangŠs proof runs as follows: The existence of an upper-right-quadrant
solution implies that there is a way to tile a 2n × 2n square, for all n. The set
of all solutions to the problem of tiling squares with an even number of cells on
each side forms an oriented tree, if the children of each 2n × 2n solution x are
the possible (2n+ 2)× (2n+ 2) solutions that can be obtained by bordering x.
The root of this oriented tree is the 0 × 0 solution; its children are the 2 × 2
solutions, etc. Each node has only Ąnitely many children, since the problem of
tiling the plane assumes that only Ąnitely many tetrad types are given; hence by
the inĄnity lemma there is an inĄnite path to the root. This means that there
is a way to tile the whole plane (although we may be at a loss to Ąnd it)!

For later developments in tetrad tiling, see the beautiful book Tilings and
Patterns by B. Grünbaum and G. C. Shephard (Freeman, 1987), Chapter 11.

EXERCISES

1. [M10] The text refers to a set S containing Ąnite sequences of positive integers,
and states that this set is Şessentially an oriented tree.Ť What is the root of this
oriented tree, and what are the arcs?

2. [20] Show that if rotation of tetrad types is allowed, it is always possible to tile
the plane.

x 3. [M23] If it is possible to tile the upper right quadrant of the plane when given an
inĄnite set of tetrad types, is it always possible to tile the whole plane?

4. [M25] (H. Wang.) The six tetrad types (2) lead to a toroidal solution to the
tiling problem, that is, a solution in which some rectangular pattern Ů namely (3) Ů
is replicated throughout the entire plane.

Assume without proof that whenever it is possible to tile the plane with a Ąnite
set of tetrad types, there is a toroidal solution using those tetrad types. Use this
assumption together with the inĄnity lemma to design an algorithm that, given the
speciĄcations of any Ąnite set of tetrad types, determines in a Ąnite number of steps
whether or not there exists a way to tile the plane with these types.

5. [M40] Show that using the following 92 tetrad types it is possible to tile the plane,
but that there is no toroidal solution in the sense of exercise 4.

2.3.4.3 THE ŞINFINITY LEMMAŤ 385

To simplify the speciĄcation of the 92 types, let us Ąrst introduce some notation.
DeĄne the following Şbasic codesŤ:

α = (1, 2, 1, 2) β = (3, 4, 2, 1) γ = (2, 1, 3, 4) δ = (4, 3, 4, 3)
a = (Q,D, P,R) b = (, , L, P) c = (U, Q, T, S) d = (, , S, T)
N = (Y, ,X,) J = (D,U, ,X) K = (, Y, R, L) B = (, , ,)
R = (, , R,R) L = (, , L, L) P = (, , P, P) S = (, , S, S)

T = (, , T, T) X = (, , X,X)
Y = (Y, Y, ,) U = (U,U, ,) D = (D,D, ,) Q = (Q,Q, ,)

The tetrad types are now

α{a, b, c, d} [4 types]
β{Y {B,U,Q}{P, T}, {B,U,D,Q}{P, S, T}, K{B,U,Q}} [21 types]
γ{{{X,B}{L,P, S, T}, R}{B,Q}, J{L,P, S, T}} [22 types]
δ{X{L,P, S, T}{B,Q}, Y {B,U,Q}{P, T}, N{a, b, c, d},

J{L,P, S, T}, K{B,U,Q}, {R,L, P, S, T}{B,U,D,Q}} [45 types]

These abbreviations mean that the basic codes are to be put together component by
component and sorted into alphabetic order in each component; thus

βY {B,U,Q}{P, T}
stands for six types βYBP, βYUP, βYQP, βYBT , βYUT , βYQT . The type βYQT is

(3, 4, 2, 1)(Y, Y, ,)(Q,Q, ,)(, , T, T) = (3QY, 4QY, 2T, 1T)

after multiplying corresponding components and sorting into order.
This is intended to correspond to the tetrad type shown on the right,
where we use strings of symbols instead of numbers in the four quarters
of the type. Two tetrad types can be placed next to each other only if
they have the same string of symbols at the place they touch.

�
�
�
�❅

❅
❅
❅

3QY

2T 1T

4QY

A β-tetrad is one that has a β in its speciĄcation as given above. To get started
on the solution to this exercise, note that any β-tetrad must have an α-tetrad to its
left and to its right, and a δ-tetrad above and below. An αa-tetrad must have βKB or
βKU or βKQ to its right, and then must come an αb-tetrad, etc.

(This construction is a simpliĄed version of a similar one given by Robert Berger,
who went on to prove that the general problem in exercise 4, without the invalid
assumption, cannot be solved. See Memoirs Amer. Math. Soc. 66 (1966).)

x 6. [M23] (Otto Schreier.) In a famous paper [Nieuw Archief voor Wiskunde (2) 15

(1927), 212Ű216], B. L. van der Waerden proved the following theorem:

If k and m are positive integers, and if we have k sets S1, . . . , Sk of positive integers
with every positive integer included in at least one of these sets, then at least one
of the sets Sj contains an arithmetic progression of length m.

(The latter statement means there exist integers a and δ > 0 such that a + δ, a + 2δ,
. . . , a + mδ are all in Sj .) If possible, use this result and the inĄnity lemma to prove
the following stronger statement:

If k and m are positive integers, there is a number N such that if we have k sets
S1, . . . , Sk of integers with every integer between 1 and N included in at least one
of these sets, then at least one of the sets Sj contains an arithmetic progression of
length m.

386 INFORMATION STRUCTURES 2.3.4.3

x 7. [M30] If possible, use van der WaerdenŠs theorem of exercise 6 and the inĄnity
lemma to prove the following stronger statement:

If k is a positive integer, and if we have k sets S1, . . . , Sk of integers with every
positive integer included in at least one of these sets, then at least one of the
sets Sj contains an inĄnitely long arithmetic progression.

x 8. [M39] (J. B. Kruskal.) If T and T ′ are (Ąnite, ordered) trees, let the notation
T ⊆ T ′ signify that T can be embedded in T ′, as in exercise 2.3.2Ű22. Prove that if
T1, T2, T3, . . . is any inĄnite sequence of trees, there exist integers j < k such that
Tj ⊆ Tk. (In other words, it is impossible to construct an inĄnite sequence of trees in
which no tree contains any of the earlier trees of the sequence. This fact can be used
to prove that certain algorithms must terminate.)

*2.3.4.4. Enumeration of trees. Some of the most instructive applications of
the mathematical theory of trees to the analysis of algorithms are connected with
formulas for counting how many different trees there are of various kinds. For
example, if we want to know how many different oriented trees can be constructed
having four indistinguishable vertices, we Ąnd that there are just 4 possibilities:

(1)

For our Ąrst enumeration problem, let us determine the number an of
structurally different oriented trees with n vertices. Obviously, a1 = 1. If n > 1,
the tree has a root and various subtrees; suppose there are j1 subtrees with 1
vertex, j2 with 2 vertices, etc. Then we may choose jk of the ak possible k-vertex
trees in

ak + jk − 1
jk

ways, since repetitions are allowed (exercise 1.2.6Ű60), and so we see that

an =

j1+2j2+···=n−1

a1 + j1 − 1

j1

· · ·

an−1 + jn−1 − 1

jn−1

, for n > 1. (2)

If we consider the generating function A(z) =

n anz
n, with a0 = 0, we Ąnd

that the identity
1

(1− zr)a
=

j

a+ j − 1

j

zrj

together with (2) implies

A(z) =
z

(1− z)a1(1− z2)a2(1− z3)a3 . . .
. (3)

This is not an especially nice form for A(z), since it involves an inĄnite product
and the coefficients a1, a2, . . . appear on the right-hand side. A somewhat more
aesthetic way to represent A(z) is given in exercise 1; it leads to a reasonably

2.3.4.4 ENUMERATION OF TREES 387

efficient formula for calculating the values an (see exercise 2) and, in fact, it also
can be used to deduce the asymptotic behavior of an for large n (see exercise 4).
We Ąnd that

A(z) = z + z2 + 2z3 + 4z4 + 9z5 + 20z6 + 48z7 + 115z8

+ 286z9 + 719z10 + 1842z11 + · · · . (4)

Now that we have essentially found the number of oriented trees, it is quite
interesting to determine the number of structurally different free trees with n
vertices. There are just two distinct free trees with four vertices, namely

and (5)

because the Ąrst two and last two oriented trees of (1) become identical when
the orientation is dropped.

We have seen that it is possible to select any vertex X of a free tree and to
assign directions to the edges in a unique way so that it becomes an oriented tree
with X as root. Once this has been done, for a given vertex X, suppose there are
k subtrees of the root X, with s1, s2, . . . , sk vertices in these respective subtrees.
Clearly, k is the number of arcs touching X, and s1 + s2 + · · ·+ sk = n− 1. In
these circumstances we say that the weight of X is max(s1, s2, . . . , sk). Thus in
the tree

A

B

C D

E F

G

HJ K

(6)

the vertex D has weight 3 (each of the subtrees leading from D has three of the
nine remaining vertices), and vertex E has weight max(7, 2) = 7. A vertex with
minimum weight is called a centroid of the free tree.

Let X and s1, s2, . . . , sk be as above, and let Y1, Y2, . . . , Yk be the roots of
the subtrees emanating from X. If Y is any node in the Y1 subtree, its weight
must be at least n−s1 = 1+s2 + · · ·+sk, since when Y is the assumed root there
are at least n − s1 vertices in its subtree containing X. Thus if Y is a centroid
we have

weight (X) = max (s1, s2, . . . , sk) ≥ weight (Y) ≥ 1 + s2 + · · ·+ sk,

and this is possible only if s1 > s2 + · · ·+ sk. A similar result may be derived if
we replace Y1 by Yj in this discussion. So at most one of the subtrees at a vertex
can contain a centroid.

This is a strong condition, for it implies that there are at most two centroids
in a free tree, and if two centroids exist, they are adjacent. (See exercise 9.)

Conversely, if s1 > s2 + · · ·+ sk, there is a centroid in the Y1 subtree, since

weight (Y1) ≤ max (s1 − 1, 1 + s2 + · · ·+ sk) ≤ s1 = weight (X),

388 INFORMATION STRUCTURES 2.3.4.4

and the weight of all nodes in the Y2, . . . , Yk subtrees is at least s1 + 1. We have
proved that the vertex X is the only centroid of a free tree if and only if

sj ≤ s1 + · · ·+ sk − sj , for 1 ≤ j ≤ k. (7)

Therefore the number of free trees with n vertices, having only one centroid,
is the number of oriented trees with n vertices minus the number of such oriented
trees violating condition (7); the latter consist essentially of an oriented tree with
sj vertices and another oriented tree with n−sj ≤ sj vertices. The number with
one centroid therefore comes to

an − a1an−1 − a2an−2 − · · · − a⌊n/2⌋a⌈n/2⌉. (8)

A free tree with two centroids has an even number of vertices, and the weight of
each centroid is n/2 (see exercise 10). So if n = 2m, the number of bicentroidal
free trees is the number of choices of 2 things out of am with repetition, namely

am + 1

2

.

To get the total number of free trees, we therefore add 1
2an/2(an/2 + 1) to (8)

when n is even. The form of Eq. (8) suggests a simple generating function, and
indeed, we Ąnd without difficulty that the generating function for the number of
structurally different free trees is

F (z) = A(z)− 1
2
A(z)2 +

1
2
A(z2)

= z + z2 + z3 + 2z4 + 3z5 + 6z6 + 11z7 + 23z8

+ 47z9 + 106z10 + 235z11 + · · · . (9)

This simple relation between F (z) and A(z) is due primarily to C. Jordan, who
considered the problem in 1869.

Now let us turn to the question of enumerating ordered trees, which are our
principal concern with respect to computer programming algorithms. There are
Ąve structurally different ordered trees with four vertices:

(10)

The Ąrst two are identical as oriented trees, so only one of them appeared in (1)
above.

Before we examine the number of different ordered tree structures, let us
Ąrst consider the case of binary trees, since this is closer to the actual computer
representation and it is easier to study. Let bn be the number of different binary
trees with n nodes. From the deĄnition of binary tree it is apparent that b0 = 1,
and for n > 0 the number of possibilities is the number of ways to put a binary

2.3.4.4 ENUMERATION OF TREES 389

tree with k nodes to the left of the root and another with n− 1− k nodes to the
right. So

bn = b0bn−1 + b1bn−2 + · · ·+ bn−1b0, n ≥ 1. (11)

From this relation it is clear that the generating function

B(z) = b0 + b1z + b2z
2 + · · ·

satisĄes the equation
zB(z)2 = B(z)− 1. (12)

Solving this quadratic equation and using the fact that B(0) = 1, we obtain

B(z) =
1
2z

1−
√

1− 4z

=
1
2z

1−

k≥0

 1
2

k

(−4z)k

= 2

n≥0

 1
2

n+ 1

(−4z)n =

n≥0

− 1
2

n

(−4z)n

n+ 1

=

n≥0

2n
n

zn

n+ 1

= 1 + z + 2z2 + 5z3 + 14z4 + 42z5 + 132z6 + 429z7

+ 1430z8 + 4862z9 + 16796z10 + · · · . (13)

(See exercise 1.2.6Ű47.) The desired answer is therefore

bn =
1

n+ 1

2n
n

. (14)

By StirlingŠs formula, this is asymptotically 4n/n
√
πn + O(4nn−5/2). Some

important generalizations of Eq. (14) appear in exercises 11 and 32.
Returning to our question about ordered trees with n nodes, we can see that

this is essentially the same question as the number of binary trees, since we have
a natural correspondence between binary trees and forests, and a tree minus its
root is a forest. Hence the number of (ordered) trees with n vertices is bn−1, the
number of binary trees with n− 1 vertices.

The enumerations performed above assume that the vertices are indistin-
guishable points. If we label the vertices 1, 2, 3, 4 in (1) and insist that 1 is to
be the root, we now get 16 different oriented trees:

3

2

1

4

4

2

1

3

2

3

1

4

4

3

1

2

2

4

1

3

3

4

1

2

1

4

3

2

1

4

2

3

1

3

4

2

1

3

2

4

1

2

4

3

1

2

3

4

1

2

3

4

1

3

2

4

1

2

4

3

1

2 3 4
(15)

390 INFORMATION STRUCTURES 2.3.4.4

The question of enumeration for labeled trees is clearly quite different from the
one solved above. In this case it can be rephrased as follows: ŞConsider drawing
three lines, pointing from each of the vertices 2, 3, and 4 to another vertex;
there are three choices of lines emanating from each vertex, so there are 33 = 27
possibilities in all. How many of these 27 ways will yield oriented trees with 1
as the root?Ť The answer, as we have seen, is 16. A similar reformulation of the
same problem, this time for the case of n vertices, is the following: ŞLet f(x) be
an integer-valued function such that f(1) = 1 and 1 ≤ f(x) ≤ n for all integers
1 ≤ x ≤ n. We call f a tree mapping if f [n](x), that is, f

f(· · · (f(x)) · · ·)

iterated n times, equals 1, for all x. How many tree mappings are there?Ť This
problem comes up, for example, in connection with random number generation.
We will Ąnd, rather surprisingly, that on the average exactly one out of every n
such functions f is a tree mapping.

The solution to this enumeration problem can readily be derived using the
general formulas for counting subtrees of graphs that have been developed in
previous sections (see exercise 12). But there is a much more informative way
to solve the problem, one that gives us a new and compact manner to represent
oriented tree structure.

Suppose that weŠve been given an oriented tree with vertices {1, 2, . . . , n}
and with n − 1 arcs, where the arcs go from j to f(j) for all j except the root.
There is at least one terminal (leaf) vertex; let V1 be the smallest number of a
leaf. If n > 1, write down f(V1) and delete both V1 and the arc V1 → f(V1)
from the tree; then let V2 be the smallest number whose vertex is terminal in
the resulting tree. If n > 2, write down f(V2) and delete both V2 and the arc
V2 → f(V2) from the tree; and proceed in this way until all vertices have been
deleted except the root. The resulting sequence of n− 1 numbers,

f(V1), f(V2), . . . , f(Vn−1), 1 ≤ f(Vj) ≤ n, (16)

is called the canonical representation of the original oriented tree.
For example, the oriented tree

3

1 4 5

2 9 7 10

6 8

(17)

with 10 vertices has the canonical representation 1, 3, 10, 5, 10, 1, 3, 5, 3.
The important point here is that we can reverse this process and go from

any sequence of n− 1 numbers (16) back to the oriented tree that produced it.
For if we have any sequence x1, x2, . . . , xn−1 of numbers between 1 and n, let
V1 be the smallest number that does not appear in the sequence x1, . . . , xn−1;
then let V2 be the smallest number ̸= V1 that does not appear in the sequence
x2, . . . , xn−1; and so on. After obtaining a permutation V1V2 . . . Vn of the integers
{1, 2, . . . , n} in this way, draw arcs from vertex Vj to vertex xj , for 1 ≤ j < n.
This gives a construction of a directed graph with no oriented cycles, and by

2.3.4.4 ENUMERATION OF TREES 391

exercise 2.3.4.2Ű7 it is an oriented tree. Clearly, the sequence x1, x2, . . . , xn−1 is
the same as the sequence (16) for this oriented tree.

Since the process is reversible, we have obtained a one-to-one correspondence
between (n − 1)-tuples of numbers {1, 2, . . . , n} and oriented trees on these
vertices. Hence there are nn−1 distinct oriented trees with n labeled vertices. If
we specify that one vertex is to be the root, there is clearly no difference between
one vertex and another, so there are nn−2 distinct oriented trees on {1, 2, . . . , n}
having a given root. This accounts for the 16 = 44−2 trees in (15). From this
information it is easy to determine the number of free trees with labeled vertices
(see exercise 22). The number of ordered trees with labeled vertices is also easy to
determine, once we know the answer to that problem when no labels are involved
(see exercise 23). So we have essentially solved the problems of enumerating the
three fundamental classes of trees, with both labeled and unlabeled vertices.

It is interesting to see what would happen if we were to apply our usual
method of generating functions to the problem of enumerating labeled oriented
trees. For this purpose we would probably Ąnd it easiest to consider the quantity
r(n, q), the number of labeled directed graphs with n vertices, with no oriented
cycles, and with one arc emanating from each of q designated vertices. The
number of labeled oriented trees with a speciĄed root is therefore r(n, n−1). In
this notation we Ąnd by simple counting arguments that, for any Ąxed integer m,

r(n, q) =

k

q

k

r(m+k, k)r(n−m−k, q−k), if 0 ≤ m ≤ n− q, (18)

r(n, q) =

k

q

k

r(n−1, q−k), if q = n−1. (19)

The Ąrst of these relations is obtained if we partition the undesignated vertices
into two groups A and B, with m vertices in A and n − q − m vertices in B;
then the q designated vertices are partitioned into k vertices that begin paths
leading into A, and q−k vertices that begin paths leading into B. Relation (19)
is obtained by considering oriented trees in which the root has degree k.

The form of these relations indicates that we can work proĄtably with the
generating function

Gm(z) = r(m, 0) + r(m+ 1, 1)z +
r(m+ 2, 2)z2

2!
+ · · · =

k

r(k +m, k)zk

k!
.

In these terms Eq. (18) says that Gn−q(z) = Gm(z)Gn−q−m(z), and therefore by
induction on m, we Ąnd that Gm(z) = G1(z)m. Now from Eq. (19), we obtain

G1(z) =

n≥1

r(n, n− 1)zn−1

(n− 1)!
=

k≥0

n≥1

r(n− 1, n− 1− k)zn−1

k! (n− 1− k)!

=

k≥0

zk

k!
Gk(z) =

k≥0

zG1(z)

k

k!
= ezG1(z).

392 INFORMATION STRUCTURES 2.3.4.4

In other words, putting G1(z) = w, the solution to our problem comes from
the coefficients of the solution to the transcendental equation

w = ezw. (20)

This equation can be solved with the use of LagrangeŠs inversion formula:
z = ζ/f(ζ) implies that

ζ =

n≥1

zn

n!
g(n−1)
n (0), (21)

where gn(ζ) = f(ζ)n, when f is analytic in the neighborhood of the origin, and
f(0) ̸= 0 (see exercise 4.7Ű16). In this case, we may set ζ = zw, f(ζ) = eζ, and
we deduce the solution

w =

n≥0

(n+ 1)n−1

n!
zn, (22)

in agreement with the answer obtained above.
G. N. Raney has shown that we can extend this method in an important

way to obtain an explicit power series for the solution to the considerably more
general equation

w = y1e
z1w + y2e

z2w + · · ·+ yse
zsw,

solving for w in terms of a power series in y1, . . . , ys and z1, . . . , zs. For this
generalization, let us consider s-dimensional vectors of integers

n = (n1, n2, . . . , ns),

and let us write for convenience

n = n1 + n2 + · · ·+ ns.

Suppose that we have s colors C1, C2, . . . , Cs, and consider directed graphs
in which each vertex is assigned a color; for example,

1 Blue 2 Red 3
Blue

4 Yellow 5 Red

6 Yellow
7 Red

(23)

Let r(n,q) be the number of ways to draw arcs and to assign colors to the
vertices {1, 2, . . . , n}, such that

i) for 1 ≤ i ≤ s there are exactly ni vertices of color Ci (hence n =

n);
ii) there are q arcs, one leading from each of the vertices {1, 2, . . . , q};
iii) for 1 ≤ i ≤ s there are exactly qi arcs leading to vertices of color Ci (hence

q =

q);
iv) there are no oriented cycles (hence q < n, unless q = n = 0).

Let us call this an (n,q)-construction.

2.3.4.4 ENUMERATION OF TREES 393

For example, if C1 = red, C2 = yellow, and C3 = blue, then (23) shows
a

(3, 2, 2), (1, 2, 2)

-construction. When there is only one color, we have the

oriented tree problem that we have already solved. RaneyŠs idea is to generalize
the one-dimension construction to s dimensions.

Let n and q be Ąxed s-place vectors of nonnegative integers, and let n =

n,
q =

q. For each (n,q)-construction and each number k, 1 ≤ k ≤ n, we will
deĄne a canonical representation consisting of four things:

a) a number t, with q < t ≤ n;
b) a sequence of n colors, with ni of color Ci;
c) a sequence of q colors, with qi of color Ci;
d) for 1 ≤ i ≤ s, a sequence of qi elements of the set {1, 2, . . . , ni}.

The canonical representation is deĄned thus: First list the vertices {1, 2, . . . , q}
in the order V1, V2, . . . , Vq of the canonical representation of oriented trees (as
given above), and then write below vertex Vj the number f(Vj) of the vertex on
the arc leading from Vj . Let t = f(Vq); and let the sequence (c) of colors be the
respective colors of the vertices f(V1), . . . , f(Vq). Let the sequence (b) of colors
be the respective colors of the vertices k, k+ 1, . . . , n, 1, . . . , k− 1. Finally, let
the ith sequence in (d) be xi1, xi2, . . . , xiqi , where xij = m if the jth Ci-colored
element of the sequence f(V1), . . . , f(Vq) is the mth Ci-colored element of the
sequence k, k + 1, . . . , n, 1, . . . , k − 1.

For example, consider construction (23) and let k = 3. We start by listing
V1, . . . , V5 and f(V1), . . . , f(V5) below them as follows:

1 2 4 5 3
7 6 3 3 6

Hence t = 6, and sequence (c) represents the respective colors of 7, 6, 3, 3, 6,
namely red, yellow, blue, blue, yellow. Sequence (b) represents the respective
colors of 3, 4, 5, 6, 7, 1, 2, namely blue, yellow, red, yellow, red, blue, red.
Finally, to get the sequences in (d), proceed as follows:

elements this color elements this color encode column 3
color in 3, 4, 5, 6, 7, 1, 2 in 7, 6, 3, 3, 6 by column 2

red 5, 7, 2 7 2
yellow 4, 6 6, 6 2, 2
blue 3, 1 3, 3 1, 1

Hence the (d) sequences are 2; 2, 2; and 1, 1.
From the canonical representation, we can recover both the original (n,q)-

construction and the number k as follows: From (a) and (c) we know the color of
vertex t. The last element of the (d) sequence for this color tells us, in conjunction
with (b), the position of t in the sequence k, . . . , n, 1, . . . , k − 1; hence we know
k and the colors of all vertices. Then the subsequences in (d) together with
(b) and (c) determine f(V1), f(V2), . . . , f(Vq), and Ąnally the directed graph is
reconstructed by locating V1, . . . , Vq as we did for oriented trees.

394 INFORMATION STRUCTURES 2.3.4.4

The reversibility of this canonical representation allows us to count the
number of possible (n,q)-constructions, since there are n − q choices for (a),
and the multinomial coefficient

n

n1, . . . , ns

choices for (b), and
q

q1, . . . , qs

choices for (c), and nq1

1 nq2

2 . . . n
qs
s choices for (d). Dividing by the n choices for k,

we have the general result

r(n,q) =
n− q
n

n!
n1! . . . ns!

q!
q1! . . . qs!

nq1

1 nq2

2 . . . n
qs
s . (24)

Furthermore, we can derive analogs of Eqs. (18) and (19):

r(n,q) =

k,t
(t−k)=m

q

k

r(t,k) r(n− t,q − k) if 0 ≤ m ≤

(n− q), (25)

with the convention that r(0,0) = 1, and r(n,q) = 0 if any ni or qi is negative
or if q > n;

r(n,q) =
s

i=1

k

q

k

r(n− ei, q − kei) if

n = 1 +

q, (26)

where ei is the vector with 1 in position i and zeros elsewhere. Relation (25)
is based on breaking the vertices {q + 1, . . . , n} into two parts having m and
n − q − m elements, respectively; the second relation is derived by removing
the unique root and considering the remaining structure. We now obtain the
following result:

Theorem R. [George N. Raney, Canadian J. Math. 16 (1964), 755Ű762.] Let

w =

n,q
(n−q)=1

r(n,q)
(

q)!
yn1

1 . . . yns
s zq1

1 . . . zqss , (27)

where r(n,q) is deĄned by (24), and where n, q are s-dimensional integer vectors.
Then w satisĄes the identity

w = y1e
z1w + y2e

z2w + · · ·+ yse
zsw. (28)

Proof. By (25) and induction on m, we Ąnd that

wm =

n,q
(n−q)=m

r(n,q)
(

q)!
yn1

1 . . . yns
s zq1

1 . . . zqss . (29)

2.3.4.4 ENUMERATION OF TREES 395

Now by (26),

w =
s

i=1

k

n,q
(n−q)=1

r(n− ei, q − kei)
k! (

q − k)!
yn1

1 . . . yns
s zq1

1 . . . zqss

=
s

i=1

k

1
k!
yiz

k
i

n,q
(n−q)=k

r(n,q)
(

q)!
yn1

1 . . . yns
s zq1

1 . . . zqss

=
s

i=1

k

1
k!
yiz

k
i w

k.

The special case where s = 1 and z1 = 1 in (27) and (28) is especially
important in applications, so it has become known as the Ştree functionŤ

T (y) =

n≥1

nn−1

n!
yn = yeT (y). (30)

See Corless, Gonnet, Hare, Jeffrey, and Knuth, Advances in Computational
Math. 5 (1996), 329Ű359, for a discussion of this functionŠs history and some
of its remarkable properties.

A survey of enumeration formulas for trees, based on skillful manipulations
of generating functions, has been given by I. J. Good [Proc. Cambridge Philos.
Soc. 61 (1965), 499Ű517; 64 (1968), 489]. More recently, a mathematical theory
of species developed by André Joyal [Advances in Math. 42 (1981), 1Ű82] has
led to a high-level viewpoint in which algebraic operations on generating func-
tions correspond directly to combinatorial properties of structures. The book
Combinatorial Species and Tree-like Structures by F. Bergeron, G. Labelle, and
P. Leroux (Cambridge Univ. Press, 1998), presents numerous examples of this
beautiful and instructive theory, generalizing many of the formulas derived above.

EXERCISES

1. [M20] (G. Pólya.) Show that

A(z) = z · exp (A(z) + 1
2
A(z2) + 1

3
A(z3) + · · ·).

[Hint: Take logarithms of (3).]

2. [HM24] (R. Otter.) Show that the numbers an satisfy the following condition:

nan+1 = a1sn1 + 2a2sn2 + · · ·+ nansnn,

where

snk =

1≤j≤n/k
an+1−jk.

(These formulas are useful for the calculation of the an, since snk = s(n−k)k +an+1−k.)

396 INFORMATION STRUCTURES 2.3.4.4

3. [M40] Write a computer program that determines the number of (unlabeled) free
trees and of oriented trees with n vertices, for n ≤ 100. (Use the result of exercise 2.)
Explore arithmetical properties of these numbers; can anything be said about their
prime factors, or their residues modulo p?

x 4. [HM39] (G. Pólya, 1937.) Using complex variable theory, determine the asymp-
totic value of the number of oriented trees as follows:

a) Show that there is a real number α between 0 and 1 for which A(z) has ra-
dius of convergence α and A(z) converges absolutely for all complex z such that
|z| ≤ α, having maximum value A(α) = a < ∞. [Hint: When a power series has
nonnegative coefficients, it either is entire or has a positive real singularity; and
show that A(z)/z is bounded as z → α−, by using the identity in exercise 1.]

b) Let
F (z, w) = exp (zw + 1

2
A(z2) + 1

3
A(z3) + · · ·)− w.

Show that in a neighborhood of (z, w) = (α, a/α), F (z, w) is analytic in each
variable separately.

c) Show that at the point (z, w) = (α, a/α), we have ∂F/∂w = 0; hence a = 1.
d) At the point (z, w) = (α, 1/α) show that

∂F

∂z
= β = α−2 +

k≥2

αk−2A′(αk), and
∂2F

∂w2
= α.

e) When |z| = α and z ̸= α, show that ∂F/∂w ̸= 0; hence A(z) has only one
singularity on |z| = α.

f) Prove that there is a region larger than |z| < α in which

1
z
A(z) =

1
α
−

2β(1− z/α) + (1− z/α)R(z),

where R(z) is an analytic function of
√
z − α.

g) Prove that consequently

an =
1

αn−1n

β/2πn+O(n−5/2α−n).

[Note: 1/α ≈ 2.955765285652, and α

β/2π ≈ 0.439924012571.]

x 5. [M25] (A. Cayley.) Let cn be the number of (unlabeled) oriented trees having
n leaves (namely, vertices with in-degree zero) and having at least two subtrees at
every other vertex. Thus c3 = 2, by virtue of the two trees

Find a formula analogous to (3) for the generating function

C(z) =

n

cnz
n.

6. [M25] Let an Şoriented binary treeŤ be an oriented tree in which each vertex has
in-degree two or less. Find a reasonably simple relation that deĄnes the generating
function G(z) for the number of distinct oriented binary trees with n vertices, and Ąnd
the Ąrst few values.

2.3.4.4 ENUMERATION OF TREES 397

7. [HM40] Obtain asymptotic values for the numbers of exercise 6. (See exercise 4.)

8. [20] According to Eq. (9), there are six free trees with six vertices. Draw them,
and indicate their centroids.

9. [M20] From the fact that at most one subtree of a vertex in a free tree can contain
a centroid, prove that there are at most two centroids in a free tree; furthermore if there
are two, then they must be adjacent.

x 10. [M22] Prove that a free tree with n vertices and two centroids consists of two free
trees with n/2 vertices, joined by an edge. Conversely, if two free trees with m vertices
are joined by an edge, we obtain a free tree with 2m vertices and two centroids.

x 11. [M28] The text derives the number of different binary trees with n nodes (14).
Generalize this to Ąnd the number of different t-ary trees with n nodes. (See exercise
2.3.1Ű35; a t-ary tree is either empty or consists of a root and t disjoint t-ary trees.)
Hint: Use Eq. (21) of Section 1.2.9.

12. [M20] Find the number of labeled oriented trees with n vertices by using deter-
minants and the result of exercise 2.3.4.2Ű19. (See also exercise 1.2.3Ű36.)

13. [15] What oriented tree on the vertices {1, 2, . . . , 10} has the canonical represen-
tation 3, 1, 4, 1, 5, 9, 2, 6, 5?

14. [10] True or false: The last entry, f(Vn−1), in the canonical representation of an
oriented tree is always the root of that tree.

15. [21] Discuss the relationships that exist (if any) between the topological sort
algorithm of Section 2.2.3 and the canonical representation of an oriented tree.

16. [25] Design an algorithm (as efficient as possible) that converts from the canonical
representation of an oriented tree to a conventional computer representation using
PARENT links.

x 17. [M26] Let f(x) be an integer-valued function, where 1 ≤ f(x) ≤ m for all integers
1 ≤ x ≤ m. DeĄne x ≡ y if f [r](x) = f [s](y) for some r, s ≥ 0, where f [0](x) = x and
f [r+1](x) = f(f [r](x)). By using methods of enumeration like those in this section,
show that the number of functions such that x ≡ y for all x and y is mm−1Q(m),
where Q(m) is the function deĄned in Section 1.2.11.3.

18. [24] Show that the following method is another way to deĄne a one-to-one cor-
respondence between (n − 1)-tuples of numbers from 1 to n and oriented trees with
n labeled vertices: Let the leaves of the tree be V1, . . . , Vk in ascending order. Let
(V1, Vk+1, Vk+2, . . . , Vq) be the path from V1 to the root, and write down the vertices
Vq, . . . , Vk+2, Vk+1. Then let (V2, Vq+1, Vq+2, . . . , Vr) be the shortest oriented path from
V2 such that Vr has already been written down, and write down Vr, . . . , Vq+2, Vq+1.
Then let (V3, Vr+1, . . . , Vs) be the shortest oriented path from V3 such that Vs has
already been written, and write Vs, . . . , Vr+1; and so on. For example, the tree (17)
would be encoded as 3, 1, 3, 3, 5, 10, 5, 10, 1. Show that this process is reversible,
and in particular, draw the oriented tree with vertices {1, 2, . . . , 10} and representation
3, 1, 4, 1, 5, 9, 2, 6, 5.

19. [M24] How many different labeled, oriented trees are there having n vertices, k of
which are leaves (have in-degree zero)?

20. [M24] (J. Riordan.) How many different labeled, oriented trees are there having
n vertices, k0 of which have in-degree 0, k1 have in-degree 1, k2 have in-degree 2, . . . ?
(Note that necessarily k0 + k1 + k2 + · · · = n, and k1 + 2k2 + 3k3 + · · · = n− 1.)

398 INFORMATION STRUCTURES 2.3.4.4

x 21. [M21] Enumerate the number of labeled oriented trees in which each vertex has
in-degree zero or two. (See exercise 20 and exercise 2.3Ű20.)

22. [M20] How many labeled free trees are possible with n vertices? (In other words, if

we are given n vertices, there are 2(n2) possible graphs having these vertices, depending
on which of the

n
2

possible edges are incorporated into the graph; how many of these

graphs are free trees?)

23. [M21] How many ordered trees are possible with n labeled vertices? (Give a
simple formula involving factorials.)

24. [M16] All labeled oriented trees with vertices 1, 2, 3, 4 and with root 1 are shown
in (15). How many would there be if we listed all labeled ordered trees with these
vertices and this root?

25. [M20] What is the value of the quantity r(n, q) that appears in Eqs. (18) and
(19)? (Give an explicit formula; the text only mentions that r(n, n− 1) = nn−2.)

26. [20] In terms of the notation at the end of this section, draw the ((3, 2, 4), (1, 4, 2))-
construction, analogous to (23), and Ąnd the number k that corresponds to the canon-
ical representation having t = 8, the sequences of colors Şred, yellow, blue, red, yellow,
blue, red, blue, blueŤ and Şred, yellow, blue, yellow, yellow, blue, yellowŤ, and the
index sequences 3; 1, 2, 2, 1; 2, 4.

x 27. [M28] Let U1, U2, . . . , Up, . . . , Uq; V1, V2, . . . , Vr be vertices of a directed graph,
where 1 ≤ p ≤ q. Let f be any function from the set {p+1, . . . , q} into the set
{1, 2, . . . , r}, and let the directed graph contain exactly q− p arcs, from Uk to Vf(k) for
p < k ≤ q. Show that the number of ways to add r additional arcs, one from each of the
V Šs to one of the U Šs, such that the resulting directed graph contains no oriented cycles,
is qr−1p. Prove this by generalizing the canonical representation method; that is, set
up a one-to-one correspondence between all such ways of adding r further arcs and the
set of all sequences of integers a1, a2, . . . , ar, where 1 ≤ ak ≤ q for 1 ≤ k < r, and
1 ≤ ar ≤ p.
28. [M22] (Bipartite trees.) Use the result of exercise 27 to enumerate the number
of labeled free trees on vertices U1, . . . , Um, V1, . . . , Vn, such that each edge joins
Uj to Vk for some j and k.

29. [HM26] Prove that if Ek(r, t) = r(r + kt)k−1/k!, and if zxt = ln x, then

xr =

k≥0

Ek(r, t)zk

for Ąxed t and for sufficiently small |z| and |x− 1|. [Use the fact that Gm(z) = G1(z)m

in the discussion following Eq. (19).] In this formula, r stands for an arbitrary real
number. [Note: As a consequence of this formula we have the identity

n

k=0

Ek(r, t)En−k(s, t) = En(r + s, t);

this implies AbelŠs binomial theorem, Eq. (16) of Section 1.2.6. Compare also Eq. (30)
of that section.]

30. [M23] Let n, x, y, z1, . . . , zn be positive integers. Consider a set of x + y + z1 +
· · · + zn + n vertices ri, sjk, tj (1 ≤ i ≤ x + y, 1 ≤ j ≤ n, 1 ≤ k ≤ zj), in which arcs
have been drawn from sjk to tj for all j and k. According to exercise 27, there are
(x+ y)(x+ y + z1 + · · ·+ zn)n−1 ways to draw one arc from each of t1, . . . , tn to other

2.3.4.5 PATH LENGTH 399

vertices such that the resulting directed graph contains no oriented cycles. Use this
fact to prove HurwitzŠs generalization of the binomial theorem:

x(x+ϵ1z1 + · · ·+ϵnzn)ϵ1+···+ϵn−1y(y+(1−ϵ1)z1 + · · ·+(1−ϵn)zn)n−1−ϵ1−···−ϵn

= (x+y)(x+y+z1 + · · ·+zn)n−1,

where the sum is over all 2n choices of ϵ1, . . . , ϵn equal to 0 or 1.

31. [M24] Solve exercise 5 for ordered trees; that is, derive the generating function for
the number of unlabeled ordered trees with n terminal nodes and no nodes of degree 1.

32. [M37] (A. Erdélyi and I. M. H. Etherington, Edinburgh Math. Notes 32 (1941),
7Ű12.) How many (ordered, unlabeled) trees are there with n0 nodes of degree 0, n1 of
degree 1, . . . , nm of degree m, and none of degree higher than m? (An explicit solution
to this problem can be given in terms of factorials, thereby considerably generalizing
the result of exercise 11.)

x 33. [M28] The text gives an explicit power series solution for the equation w =
y1e

z1w + · · · + yre
zrw, based on enumeration formulas for certain oriented forests.

Similarly, show that the enumeration formula of exercise 32 leads to an explicit power
series solution to the equation

w = z1w
e1 + z2w

e2 + · · ·+ zrw
er ,

expressing w as a power series in z1, . . . , zr. (Here e1, . . . , er are Ąxed nonnegative
integers, at least one of which is zero.)

2.3.4.5. Path length. The concept of the Şpath lengthŤ of a tree is of great
importance in the analysis of algorithms, since this quantity is often directly
related to the execution time. Our primary concern is with binary trees, since
they are so close to actual computer representations.

In the following discussion we will extend each binary tree diagram by adding
special nodes wherever a null subtree was present in the original tree, so that

becomes (1)

The latter is called an extended binary tree. After the square-shaped nodes have
been added in this way, the structure is sometimes more convenient to deal with,
and we shall therefore meet extended binary trees frequently in later chapters.
It is clear that every circular node has two children and every square node has
none. (Compare with exercise 2.3Ű20.) If there are n circular nodes and s square
nodes, we have n+s−1 edges (since the diagram is a free tree); counting another

400 INFORMATION STRUCTURES 2.3.4.5

way, by the number of children, we see that there are 2n edges. Hence it is clear
that

s = n+ 1; (2)

in other words, the number of ŞexternalŤ nodes just added is one more than
the number of ŞinternalŤ nodes we had originally. (For another proof, see
exercise 2.3.1Ű14.) Formula (2) is correct even when n = 0.

Assume that a binary tree has been extended in this way. The external path
length of the tree, E, is deĄned to be the sum Ů taken over all external (square)
nodes Ů of the lengths of the paths from the root to each node. The internal
path length, I, is the same quantity summed over the internal (circular) nodes.
In (1) the external path length is

E = 3 + 3 + 2 + 3 + 4 + 4 + 3 + 3 = 25,

and the internal path length is

I = 2 + 1 + 0 + 2 + 3 + 1 + 2 = 11.

These two quantities are always related by the formula

E = I + 2n, (3)

where n is the number of internal nodes.
To prove formula (3), consider deleting an internal node V at a distance k

from the root, where both children of V are external. The quantity E goes down
by 2(k + 1), since the children of V are removed, then it goes up by k, since V
becomes external; so the net change in E is −k − 2. The net change in I is −k,
so (3) follows by induction.

It is not hard to see that the internal path length (and hence the external
path length also) is greatest when we have a degenerate tree with linear structure;
in that case the internal path length is

(n− 1) + (n− 2) + · · ·+ 1 + 0 =
n2 − n

2
.

It can be shown that the ŞaverageŤ path length over all binary trees is essentially
proportional to n

√
n (see exercise 5).

Consider now the problem of constructing a binary tree with n nodes that
has minimum path length. Such a tree will be important, since it will minimize
the computation time for various algorithms. Clearly, only one node (the root)
can be at zero distance from the root; at most two nodes can be at distance 1
from the root, at most four can be 2 away, and so on. Therefore the internal
path length is always at least as big as the sum of the Ąrst n terms of the series

0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4,

This is the sum
n

k=1⌊lg k⌋, which we know from exercise 1.2.4Ű42 is

(n+ 1)q − 2q+1 + 2, q = ⌊lg(n+ 1)⌋. (4)

2.3.4.5 PATH LENGTH 401

The optimum value (4) is n lgn+O(n), since q = lgn+O(1); it is clearly achieved
in a tree that looks like this (illustrated for n = 12):

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25

(5)

A tree such as (5) is called the complete binary tree with n internal nodes.
In the general case we can number the internal nodes 1, 2, . . . , n; this numbering
has the useful property that the parent of node k is node ⌊k/2⌋, and the children
of node k are nodes 2k and 2k + 1. The external nodes are numbered n + 1
through 2n+ 1, inclusive.

It follows that a complete binary tree may simply be represented in sequen-
tial memory locations, with the structure implicit in the locations of the nodes
(not in links). The complete binary tree appears explicitly or implicitly in many
important computer algorithms, so the reader should give it special attention.

These concepts have important generalizations to ternary, quaternary, and
higher-order trees. We deĄne a t-ary tree as a set of nodes that is either empty
or consists of a root and t ordered, disjoint t-ary trees. (This generalizes the
deĄnition of binary tree in Section 2.3.) Here, for example, is the complete
ternary tree with 12 internal nodes:

1

2 3 4

5 6 7 8 9 10 11 12 13

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 (6)

It is easy to see that the same construction works for any t ≥ 2. In the complete
t-ary tree with internal nodes {1, 2, . . . , n}, the parent of node k is node

⌊(k + t− 2)/t⌋ = ⌈(k − 1)/t⌉,
and the children of node k are

t(k − 1) + 2, t(k − 1) + 3, . . . , tk + 1.

402 INFORMATION STRUCTURES 2.3.4.5

This tree has the minimum internal path length among all t-ary trees with n
internal nodes; exercise 8 proves that its internal path length is

n+

1
t− 1

q − (tq+1 − t)

(t− 1)2
, q =

logt((t− 1)n+ 1)

. (7)

These results have another important generalization if we shift our point
of view slightly. Suppose that we are given m real numbers w1, w2, . . . , wm;
the problem is to Ąnd an extended binary tree with m external nodes, and to
associate the numbers w1, . . . , wm with these nodes in such a way that the sum
wj lj is minimized, where lj is the length of path from the root and the sum is

taken over all external nodes. For example, if the given numbers are 2, 3, 4, 11,
we can form extended binary trees such as these three:

11

3

4

2

2

11

3

4

2 11 3 4

(8)

Here the ŞweightedŤ path lengths

wj lj are 34, 53, and 40, respectively. (There-

fore a perfectly balanced tree does not give the minimum weighted path length
when the weights are 2, 3, 4, and 11, although we have seen that it does give the
minimum in the special case w1 = w2 = · · · = wm = 1.)

Several interpretations of weighted path length arise in connection with
different computer algorithms; for example, we can apply it to the merging of
sorted sequences of respective lengths w1, w2, . . . , wm (see Chapter 5). One of
the most straightforward applications of this idea is to consider a binary tree
as a general search procedure, where we start at the root and then make some
test; the outcome of the test sends us to one of the two branches, where we may
make further tests, etc. For example, if we want to decide which of four different
alternatives is true, and if these possibilities will be true with the respective
probabilities 2

20 , 3
20 , 4

20 , and 11
20 , a tree that minimizes the weighted path length

will constitute an optimal search procedure. [These are the weights shown in (8),
times a scale factor.]

An elegant algorithm for Ąnding a tree with minimum weighted path length
was discovered by D. Huffman [Proc. IRE 40 (1952), 1098Ű1101]: First Ąnd the
two wŠs of lowest value, say w1 and w2. Then solve the problem for m−1 weights
w1 + w2, w3, . . . , wm, and replace the node

w1+w2 (9)

2.3.4.5 PATH LENGTH 403

in this solution by

w1 w2

. (10)

As an example of HuffmanŠs method, let us Ąnd the optimal tree for the
weights 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41. First we combine 2 + 3,
and look for the solution to 5, 5, 7, . . . , 41; then we combine 5 + 5, etc. The
computation is summarized as follows:

2 3 5 7 11 13 17 19 23 29 31 37 41
5 5 7 11 13 17 19 23 29 31 37 41

10 7 11 13 17 19 23 29 31 37 41
17 11 13 17 19 23 29 31 37 41
17 24 17 19 23 29 31 37 41

24 34 19 23 29 31 37 41
24 34 42 29 31 37 41

34 42 53 31 37 41
42 53 65 37 41
42 53 65 78

95 65 78
95 143

238
Therefore the following tree corresponds to HuffmanŠs construction:

238

95 143

42 53 65 78

19 23 24 29 34 31 37 41

11 13 17 17

10 7

5 5

2 3

(11)

(The numbers inside the circular nodes show the correspondence between this
tree and our computation; see also exercise 9.)

It is not hard to prove that this method does in fact minimize the weighted
path length, by induction on m. Suppose we have w1 ≤ w2 ≤ w3 ≤ · · · ≤ wm,
where m ≥ 2, and suppose that we are given a tree that minimizes the weighted
path length. (Such a tree certainly exists, since only Ąnitely many binary trees
with m terminal nodes are possible.) Let V be an internal node of maximum
distance from the root. If w1 and w2 are not the weights already attached to the
children of V , we can interchange them with the values that are already there;

404 INFORMATION STRUCTURES 2.3.4.5

such an interchange does not increase the weighted path length. Thus there is
a tree that minimizes the weighted path length and contains the subtree (10).
Now it is easy to prove that the weighted path length of a tree for the weights
w1, . . . , wm that contains (10) as a subtree is minimized if and only if that tree
with (10) replaced by (9) has minimum path length for the weights w1 +w2, w3,
. . . , wm. (See exercise 9.)

Every time this construction combines two weights, they are at least as big as
the weights previously combined, if the given wi were nonnegative. This means
that there is a neat way to Ąnd HuffmanŠs tree, provided that the given weights
have been sorted into nondecreasing order: We simply maintain two queues, one
containing the original weights and the other containing the combined weights.
At each step the smallest unused weight will appear at the front of one of the
queues, so we never have to search for it. See exercise 13, which shows that the
same idea works even when the weights might be negative.

In general, there are many trees that minimize

wj lj . If the algorithm

sketched in the preceding paragraph always uses an original weight instead of a
combined weight in case of ties, then the tree it constructs has the smallest value
of max lj and of

lj among all trees that minimize

wj lj . If the weights are

positive, this tree actually minimizes

wjf(lj) for any convex function f , over

all such trees. [See E. S. Schwartz, Information and Control 7 (1964), 37Ű44;
G. Markowsky, Acta Informatica 16 (1981), 363Ű370.]

HuffmanŠs method can be generalized to t-ary trees as well as binary trees.
(See exercise 10.) Another important generalization of HuffmanŠs method is
discussed in Section 6.2.2. Further discussion of path length appears in Sections
5.3.1, 5.4.9, and 6.3.

EXERCISES

1. [12] Are there any other binary trees with 12 internal nodes and minimum path
length, besides the complete binary tree (5)?

2. [17] Draw an extended binary tree with terminal nodes containing the weights
1, 4, 9, 16, 25, 36, 49, 64, 81, 100, having minimum weighted path length.

x 3. [M24] An extended binary tree with m external nodes determines a set of path
lengths l1, l2, . . . , lm that describe the lengths of paths from the root to the respective
external nodes. Conversely, if we are given a set of numbers l1, l2, . . . , lm, is it always
possible to construct an extended binary tree in which these numbers are the path
lengths in some order? Show that this is possible if and only if

m
j=1 2−lj = 1.

x 4. [M25] (E. S. Schwartz and B. Kallick.) Assume that w1 ≤ w2 ≤ · · · ≤ wm. Show
that there is an extended binary tree that minimizes

wj lj and for which the terminal

nodes in left to right order contain the respective values w1, w2, . . . , wm. [For example,
tree (11) does not meet this condition since the weights appear in the order 19, 23,
11, 13, 29, 2, 3, 5, 7, 17, 31, 37, 41. We seek a tree for which the weights appear in
ascending order, and this does not always happen with HuffmanŠs construction.]

5. [HM26] Let

B(w, z) =

n,p≥0

bnpw
pzn,

2.3.4.5 PATH LENGTH 405

where bnp is the number of binary trees with n nodes and internal path length p. [Thus,

B(w, z) = 1 + z + 2wz2 + (w2 + 4w3)z3 + (4w4 + 2w5 + 8w6)z4 + · · · ;

B(1, z) is the function B(z) of Eq. (13) in Section 2.3.4.4.]
a) Find a functional relation that characterizes B(w, z), generalizing 2.3.4.4Ű(12).
b) Use the result of (a) to determine the average internal path length of a binary tree

with n nodes, assuming that each of the 1
n+1

2n
n

trees is equally probable.

c) Find the asymptotic value of this quantity.

6. [16] If a t-ary tree is extended with square nodes as in (1), what is the relation
between the number of square and circular nodes corresponding to Eq. (2)?

7. [M21] What is the relation between external and internal path length in a t-ary
tree? (See exercise 6; a generalization of Eq. (3) is desired.)

8. [M23] Prove Eq. (7).

9. [M21] The numbers that appear in the circular nodes of (11) are equal to the
sums of the weights in the external nodes of the corresponding subtree. Show that the
sum of all values in the circular nodes is equal to the weighted path length.

x 10. [M26] (D. Huffman.) Show how to construct a t-ary tree with minimum weighted
path length, given nonnegative weights w1, w2, . . . , wm. Construct an optimal ternary
tree for weights 1, 4, 9, 16, 25, 36, 49, 64, 81, 100.

11. [16] Is there any connection between the complete binary tree (5) and the ŞDewey
decimal notationŤ for binary trees described in exercise 2.3.1Ű5?

x 12. [M20] Suppose that a node has been chosen at random in a binary tree, with each
node equally likely. Show that the average size of the subtree rooted at that node is
related to the path length of the tree.

13. [22] Design an algorithm that begins with m weights w1 ≤ w2 ≤ · · · ≤ wm and
constructs an extended binary tree having minimum weighted path length. Represent
the Ąnal tree in three arrays

A[1] . . . A[2m− 1], L[1] . . . L[m− 1], R[1] . . . R[m− 1];

here L[i] and R[i] point to the left and right children of internal node i, the root is
node 1, and A[i] is the weight of node i. The original weights should appear as the
external node weights A[m], . . . , A[2m − 1]. Your algorithm should make fewer than
2m weight-comparisons. Caution: Some or all of the given weights may be negative!

14. [25] (T. C. Hu and A. C. Tucker.) After k steps of HuffmanŠs algorithm, the
nodes combined so far form a forest of m − k extended binary trees. Prove that this
forest has the smallest total weighted path length, among all forests of m− k extended
binary trees that have the given weights.

15. [M25] Show that a Huffman-like algorithm will Ąnd an extended binary tree that
minimizes (a) max(w1 + l1, . . . , wm + lm); (b) w1x

l1 + · · ·+ wmx
lm , given x > 1.

16. [M25] (F. K. Hwang.) Let w1 ≤ · · · ≤ wm and w′
1 ≤ · · · ≤ w′

m be two sets of
weights with

k

j=1

wj ≤
k

j=1

w′
j for 1 ≤ k ≤ m.

Prove that the minimum weighted path lengths satisfy
m
j=1 wj lj ≤

m
j=1 w

′
j l

′
j .

406 INFORMATION STRUCTURES 2.3.4.5

17. [HM30] (C. R. Glassey and R. M. Karp.) Let s1, . . . , sm−1 be the numbers
inside the internal (circular) nodes of an extended binary tree formed by HuffmanŠs
algorithm, in the order of construction. Let s′1, . . . , s′m−1 be the internal node weights
of any extended binary tree on the same set of weights {w1, . . . , wm}, listed in any
order such that each nonroot internal node appears before its parent. (a) Prove thatk
j=1 sj ≤

k
j=1 s

′
j for 1 ≤ k < m. (b) The result of (a) is equivalent to

m−1

j=1

f(sj) ≤
m−1

j=1

f(s′j)

for every nondecreasing concave function f , namely every function f with f ′(x) ≥ 0
and f ′′(x) ≤ 0. [See Hardy, Littlewood, and Pólya, Messenger of Math. 58 (1929),
145Ű152.] Use this fact to show that the minimum value in the recurrence

F (n) = f(n) + min
1≤k<n

(F (k) + F (n− k)) , F (1) = 0

always occurs when k = 2⌈lg(n/3)⌉, given any function f(n) with the property that
∆f(n) = f(n+ 1)− f(n) ≥ 0 and ∆2f(n) = ∆f(n+ 1)−∆f(n) ≤ 0.

*2.3.4.6. History and bibliography. Trees have of course been in existence
since the third day of creation, and through the ages tree structures (especially
family trees) have been in common use. The concept of tree as a formally deĄned
mathematical entity seems to have appeared Ąrst in the work of G. Kirchhoff
[Annalen der Physik und Chemie 72 (1847), 497Ű508, English translation in
IRE Transactions CT-5 (1958), 4Ű7]; Kirchhoff used free trees to Ąnd a set of
fundamental cycles in an electrical network in connection with the law that bears
his name, essentially as we did in Section 2.3.4.1. The concept also appeared at
about the same time in the book Geometrie der Lage (pages 20Ű21) by K. G. Chr.
von Staudt. The name ŞtreeŤ and many results dealing mostly with enumeration
of trees began to appear ten years later in a series of papers by Arthur Cayley [see
Collected Mathematical Papers of A. Cayley 3 (1857), 242Ű246; 4 (1859), 112Ű
115; 9 (1874), 202Ű204; 9 (1875), 427Ű460; 10 (1877), 598Ű600; 11 (1881), 365Ű
367; 13 (1889), 26Ű28]. Cayley was unaware of the previous work of Kirchhoff
and von Staudt; his investigations began with studies of the structure of algebraic
formulas, and they were later inspired chieĆy by applications to the problem of
isomers in chemistry. Tree structures were also studied independently by C. W.
Borchardt [Crelle 57 (1860), 111Ű121]; J. B. Listing [Göttinger Abhandlungen,
Math. Classe, 10 (1862), 137Ű139]; and C. Jordan [Crelle 70 (1869), 185Ű190].

The ŞinĄnity lemmaŤ was formulated Ąrst by Dénes König [Fundamenta
Math. 8 (1926), 114Ű134], and he gave it a prominent place in his classic book
Theorie der endlichen und unendlichen Graphen (Leipzig: 1936), Chapter 6.
A similar result called the Şfan theoremŤ occurred slightly earlier in the work
of L. E. J. Brouwer [Verhandelingen Akad. Amsterdam 12 (1919), 7], but this
involved much stronger hypotheses; see A. Heyting, Intuitionism (1956), Sec-
tion 3.4, for a discussion of BrouwerŠs work.

Formula (3) of Section 2.3.4.4 for enumerating unlabeled oriented trees was
given by Cayley in his Ąrst paper on trees. In his second paper he enumerated
unlabeled ordered trees; an equivalent problem in geometry (see exercise 1)

2.3.4.6 HISTORY AND BIBLIOGRAPHY 407

had already been proposed and solved by L. Euler, who mentioned his results
in a letter to C. Goldbach on 4 September 1751 [see J. von Segner and L.
Euler, Novi Commentarii Academiæ Scientiarum Petropolitanæ 7 (1758Ű1759),
summary 13Ű15, 203Ű210]. EulerŠs problem was the subject of seven papers by
G. Lamé, E. Catalan, O. Rodrigues, and J. Binet in Journal de mathématiques
3, 4 (1838, 1839); additional references appear in the answer to exercise 2.2.1Ű4.
The corresponding numbers are now commonly called ŞCatalan numbers.Ť A
Mongolian Chinese mathematician, An-TŠu Ming, had encountered the Catalan
numbers before 1750 in his study of inĄnite series, but he did not relate them to
trees or other combinatorial objects [see J. Luo, Acta Scientiarum Naturalium
Universitatis Intramongolicæ 19 (1988), 239Ű245; Combinatorics and Graph
Theory (World ScientiĄc Publishing, 1993), 68Ű70]. Catalan numbers occur in
an enormous number of different contexts; Richard Stanley explains more than
60 of them in his magniĄcent book Enumerative Combinatorics 2 (Cambridge
Univ. Press, 1999), Chapter 6. Perhaps most surprising of all is the Catalan
connection to certain arrangements of numbers that H. S. M. Coxeter has called
Şfrieze patternsŤ because of their symmetry; see exercise 4.

The formula nn−2 for the number of labeled free trees was discovered by J. J.
Sylvester [Quart. J. Pure and Applied Math. 1 (1857), 55Ű56], as a byproduct
of his evaluation of a certain determinant (exercise 2.3.4.2Ű28). Cayley gave
an independent derivation of the formula in 1889 [see the reference above];
his discussion, which was extremely vague, hinted at a connection between
labeled oriented trees and (n−1)-tuples of numbers. An explicit correspondence
demonstrating such a connection was Ąrst published by Heinz Prüfer [Arch.
Math. und Phys. 27 (1918), 142Ű144], quite independently of CayleyŠs prior work.
A large literature on this subject has developed, and the classical results are
surveyed beautifully in J. W. MoonŠs book, Counting Labelled Trees (Montreal:
Canadian Math. Congress, 1970).

A very important paper on the enumeration of trees and many other kinds
of combinatorial structures was published by G. Pólya in Acta Math. 68 (1937),
145Ű253. For a discussion of enumeration problems for graphs and an excellent
bibliography of the early literature, see the survey by Frank Harary in Graph
Theory and Theoretical Physics (London: Academic Press, 1967), 1Ű41.

The principle of minimizing weighted path length by repeatedly combining
the smallest weights was discovered by D. Huffman [Proc. IRE 40 (1952), 1098Ű
1101], in connection with the design of codes for minimizing message lengths.
The same idea was independently published by Seth Zimmerman [AMM 66

(1959), 690Ű693].
Several other noteworthy papers about the theory of tree structures have

been cited in Sections 2.3.4.1 through 2.3.4.5 in connection with particular topics.

EXERCISES

x 1. [21] Find a simple one-to-one correspondence between binary trees with n nodes
and dissections of an (n+ 2)-sided convex polygon into n triangles, assuming that the
sides of the polygon are distinct.

408 INFORMATION STRUCTURES 2.3.4.6

x 2. [M26] T. P. Kirkman conjectured in 1857 that the number of ways to draw k non-
overlapping diagonals in an r-sided polygon is

r+k
k+1

r−3
k

/(r + k).

a) Extend the correspondence of exercise 1 to obtain an equivalent problem about
the enumeration of trees.

b) Prove KirkmanŠs conjecture by using the methods of exercise 2.3.4.4Ű32.

x 3. [M30] Consider all ways of partitioning the vertices of a convex n-gon into k non-
empty parts, in such a way that no diagonal between two vertices of one part crosses
a diagonal between two vertices of another part.

a) Find a one-to-one correspondence between noncrossing partitions and an interest-
ing class of tree structures.

b) Given n and k, how many ways are there to make such a partition?

x 4. [M38] (Conway and Coxeter.) A frieze pattern is an inĄnite array such as

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . . .
3 1 3 1 4 1 2 3 1 3 1 4 1 2 3 1 3 1 4 . . .

5 2 2 2 3 3 1 5 2 2 2 3 3 1 5 2 2 2 3 . . .
3 3 1 5 2 2 2 3 3 1 5 2 2 2 3 3 1 5 2 . . .

1 4 1 2 3 1 3 1 4 1 2 3 1 3 1 4 1 2 3 . . .
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . . .

in which the top and bottom rows consist entirely of 1s, and each diamond of adjacent
values a

b
c
d satisĄes ad − bc = 1. Find a one-to-one correspondence between n-node

binary trees and (n+ 1)-rowed frieze patterns of positive integers.

2.3.5. Lists and Garbage Collection

Near the beginning of Section 2.3 we deĄned a List informally as Şa Ąnite
sequence of zero or more atoms or Lists.Ť

Any forest is a List; for example,

a

b c d

e

f g

h

(1)

may be regarded as the List

a: (b, c, d), e: (f, g: (h))

, (2)

and the corresponding List diagram would be

∗

a∗

b c d

e∗

f g∗

h

(3)

The reader should review at this point the introduction to Lists given earlier,
in particular (3), (4), (5), (6), (7) in the opening pages of Section 2.3. Recall that,
in (2) above, the notation Şa: (b, c, d)Ť means that (b, c, d) is a List of three atoms,
which has been labeled with the attribute ŞaŤ. This convention is compatible

2.3.5 LISTS AND GARBAGE COLLECTION 409

with our general policy that each node of a tree may contain information besides
its structural connections. However, as was discussed for trees in Section 2.3.3,
it is quite possible and sometimes desirable to insist that all Lists be unlabeled,
so that all the information appears in the atoms.

Although any forest may be regarded as a List, the converse is not true.
The following List is perhaps more typical than (2) and (3) since it shows how
the restrictions of tree structure might be violated:

L =

a:N, b, c: (d:N), e:L

, N =

f : (), g: (h:L, j:N)

(4)

which may be diagrammed as

∗[L]

a∗[N] b c∗ e[L]

f∗ g∗ d[N]

h[L] j[N]

(5)

[Compare with the example in 2.3Ű(7). The form of these diagrams need not be
taken too seriously.]

As we might expect, there are many ways to represent List structures within
a computer memory. These methods are usually variations on the same basic
theme by which we have used binary trees to represent general forests of trees:
One Ąeld, say RLINK, is used to point to the next element of a List, and another
Ąeld DLINK may be used to point to the Ąrst element of a sub-List. By a natural
extension of the memory representation described in Section 2.3.2, we would
represent the List (5) as follows:

a b (atom) c

d

e

f g

h j

(6)

Unfortunately, this simple idea is not quite adequate for the most common
List processing applications. For example, suppose that we have the List L =
A, a, (A,A)

, which contains three references to another List A = (b, c, d). One

of the typical List processing operations is to remove the leftmost element of A,
so that A becomes (c, d); but this requires three changes to the representation
of L, if we are to use the technique shown in (6), since each pointer to A points

410 INFORMATION STRUCTURES 2.3.5

to the element b that is being deleted. A momentŠs reĆection will convince the
reader that it is extremely undesirable to change the pointers in every reference
to A just because the Ąrst element of A is being deleted. (In this example we
could try to be tricky, assuming that there are no pointers to the element c, by
copying the entire element c into the location formerly occupied by b and then
deleting the old element c. But this trick fails to work when A loses its last
element and becomes empty.)

For this reason the representation scheme (6) is generally replaced by another
scheme that is similar, but uses a List head to begin each List, as was introduced
in Section 2.2.4. Each List contains an additional node called its List head, so
that the conĄguration (6) would, for example, be represented thus:

a b (atom) c

d

e

f g

h j

(7)

The introduction of such header nodes is not really a waste of memory space
in practice, since many uses for the apparently unused Ąelds Ů the shaded areas
in diagram (7) Ů generally present themselves. For example, there is room for a
reference count, or a pointer to the right end of the List, or an alphabetic name,
or a ŞscratchŤ Ąeld that aids traversal algorithms, etc.

In our original diagram (6), the node containing b is an atom while the node
containing f speciĄes an empty List. These two things are structurally identical,
so the reader would be quite justiĄed in asking why we bother to talk about
ŞatomsŤ at all; with no loss of generality we could have deĄned Lists as merely
Şa Ąnite sequence of zero or more Lists,Ť with our usual convention that each
node of a List may contain data besides its structural information. This point
of view is certainly defensible and it makes the concept of an ŞatomŤ seem very
artiĄcial. There is, however, a good reason for singling out atoms as we have
done, when efficient use of computer memory is taken into consideration, since
atoms are not subject to the same sort of general-purpose manipulation that is
desired for Lists. The memory representation (6) shows there is probably more
room for information in an atomic node, b, than in a List node, f ; and when
List head nodes are also present as in (7), there is a dramatic difference between
the storage requirements for the nodes b and f . Thus the concept of atoms is
introduced primarily to aid in the effective use of computer memory. Typical

2.3.5 LISTS AND GARBAGE COLLECTION 411

Lists contain many more atoms than our example would indicate; the example of
(4)Ű(7) is intended to show the complexities that are possible, not the simplicities
that are usual.

A List is in essence nothing more than a linear list whose elements may
contain pointers to other Lists. The common operations we wish to perform on
Lists are the usual ones desired for linear lists (creation, destruction, insertion,
deletion, splitting, concatenation), plus further operations that are primarily of
interest for tree structures (copying, traversal, input and output of nested infor-
mation). For these purposes any of the three basic techniques for representing
linked linear lists in memory Ů namely straight, circular, or double linkage Ů can
be used, with varying degrees of efficiency depending on the algorithms being
employed. For these three types of representation, diagram (7) might appear in
memory as follows:

Memory Straight linkage Circular linkage Double linkage

location INFO DLINK RLINK INFO DLINK RLINK INFO DLINK LLINK RLINK

010: Ů head 020 Ů head 020 Ů head 050 020
020: a 060 030 a 060 030 a 060 010 030
030: b atom 040 b atom 040 b atom 020 040
040: c 090 050 c 090 050 c 090 030 050
050: e 010 Λ e 010 010 e 010 040 010
060: Ů head 070 Ů head 070 Ů head 080 070
070: f 110 080 f 110 080 f 110 060 080
080: g 120 Λ g 120 060 g 120 070 060
090: Ů head 100 Ů head 100 Ů head 100 100
100: d 060 Λ d 060 090 d 060 090 090
110: Ů head Λ Ů head 110 Ů head 110 110
120: Ů head 130 Ů head 130 Ů head 140 130
130: h 010 140 h 010 140 h 010 120 140
140: j 060 Λ j 060 120 j 060 130 120

(8)

Here ŞLLINKŤ is used for a pointer to the left in a doubly linked representation.
The INFO and DLINK Ąelds are identical in all three forms.

There is no need to repeat here the algorithms for List manipulation in any
of these three forms, since we have already discussed the ideas many times. The
following important points about Lists, which distinguish them from the simpler
special cases treated earlier, should however be noted:

1) It is implicit in the memory representation above that atomic nodes are
distinguishable from nonatomic nodes; furthermore, when circular or doubly
linked Lists are being used, it is desirable to distinguish header nodes from the
other types, as an aid in traversing the Lists. Therefore each node generally
contains a TYPE Ąeld that tells what kind of information the node represents.
This TYPE Ąeld is often used also to distinguish between various types of atoms
(for example, between alphabetic, integer, or Ćoating point quantities, for use
when manipulating or displaying the data).

2) The format of nodes for general List manipulation with the MIX computer
might be designed in one of the following two ways.

412 INFORMATION STRUCTURES 2.3.5

a) Possible one-word format, assuming that all INFO appears in atoms:

S T REF RLINK (9)

S (sign): Mark bit used in garbage collection (see below).

T (type): T = 0 for List head; T = 1 for sub-List element; T > 1 for atoms.

REF: When T = 0, REF is a reference count (see below); when T = 1,
REF points to the List head of the sub-List in question; when
T > 1, REF points to a node containing a mark bit and Ąve bytes
of atomic information.

RLINK: Pointer for straight or circular linkage as in (8).

b) Possible two-word format:

S T LLINK RLINK

INFO
(10)

S, T: As in (9).

LLINK, RLINK: The usual pointers for double linkage as in (8).

INFO: A full word of information associated with this node; for a
header node this may include a reference count, a running
pointer to the interior of the List to facilitate linear traversal,
an alphabetic name, etc. When T = 1 this information
includes DLINK.

3) It is clear that Lists are very general structures; indeed, it seems fair to
state that any structure whatsoever can be represented as a List when appropri-
ate conventions are made. Because of this universality of Lists, a large number
of programming systems have been designed to facilitate List manipulation, and
there are usually several such systems available at any computer installation.
Such systems are based on a general-purpose format for nodes such as (9) or
(10) above, designed for Ćexibility in List operations. Actually, it is clear that
this general-purpose format is usually not the best format suited to a partic-
ular application, and the processing time using the general-purpose routines
is noticeably slower than a person would achieve by hand-tailoring the system
to a particular problem. For example, it is easy to see that nearly all of the
applications we have worked out so far in this chapter would be encumbered by
a general-List representation as in (9) or (10) instead of the node format that was
given in each case. A List manipulation routine must often examine the T-Ąeld
when it processes nodes, and that was not needed in any of our programs so
far. This loss of efficiency is repaid in many instances by the comparative ease
of programming and the reduction of debugging time when a general-purpose
system is used.

4) There is also an extremely signiĄcant difference between algorithms for
List processing and the algorithms given previously in this chapter. Since a single

2.3.5 LISTS AND GARBAGE COLLECTION 413

List may be contained in many other Lists, it is by no means clear exactly when
a List should be returned to the pool of available storage. Our algorithms so far
have always said ŞAVAIL ⇐ XŤ, whenever NODE(X) was no longer needed. But
since general Lists can grow and die in a completely unpredictable manner, it is
often quite difficult to tell just when a particular node is superĆuous. Therefore
the problem of maintaining the list of available space is considerably more
difficult with Lists than it was in the simple cases considered previously. We will
devote the rest of this section to a discussion of the storage reclamation problem.

Let us imagine that we are designing a general-purpose List processing
system that will be used by hundreds of other programmers. Two principal
methods have been suggested for maintaining the available space list: the use
of reference counters, and garbage collection. The reference-counter technique
makes use of a new Ąeld in each node, which contains a count of how many
arrows point to this node. Such a count is rather easy to maintain as a program
runs, and whenever it drops to zero, the node in question becomes available.
The garbage-collection technique, on the other hand, requires a new one-bit Ąeld
in each node called the mark bit. The idea in this case is to write nearly all
the algorithms so that they do not return any nodes to free storage, and to let
the program run merrily along until all of the available storage is gone; then a
ŞrecyclingŤ algorithm makes use of the mark bits to identify all nodes that are
not currently accessible and to return them to available storage, after which the
program can continue.

Neither of these two methods is completely satisfactory. The principal
drawback of the reference-counter method is that it does not always free all
the nodes that are available. It works Ąne for overlapped Lists (Lists that
contain common sub-Lists); but recursive Lists, like our examples L and N in
(4), will never be returned to storage by the reference-counter technique. Their
counts will be nonzero (since they refer to themselves) even when no other List
accessible to the running program points to them. Furthermore, the reference-
counter method uses a good chunk of space in each node (although this space is
sometimes available anyway due to the computer word size).

The difficulty with the garbage-collection technique, besides the annoying
loss of a bit in each node, is that it runs very slowly when nearly all the memory
space is in use; and in such cases the number of free storage cells found by the
reclamation process is not worth the effort. Programs that exceed the capacity
of storage (and many undebugged programs do!) often waste a good deal of time
calling the garbage collector several almost fruitless times just before storage is
Ąnally exhausted. A partial solution to this problem is to let the programmer
specify a number k, signifying that processing should not continue after a garbage
collection run has found k or fewer free nodes.

Another problem is the occasional difficulty of determining exactly what
Lists are not garbage at a given stage. If the programmer has been using any
nonstandard techniques or keeping any pointer values in unusual places, chances
are good that the garbage collector will go awry. Some of the greatest mysteries
in the history of debugging have been caused by the fact that garbage collection

414 INFORMATION STRUCTURES 2.3.5

suddenly took place at an unexpected time during the running of programs
that had worked many times before. Garbage collection also requires that
programmers keep valid information in all pointer Ąelds at all times, although
we often Ąnd it convenient to leave meaningless information in Ąelds that the
program doesnŠt use Ů for example, the link in the rear node of a queue; see
exercise 2.2.3Ű6.

Although garbage collection requires one mark bit for each node, we could
keep a separate table of all the mark bits packed together in another memory
area, with a suitable correspondence between the location of a node and its mark
bit. On some computers this idea can lead to a method of handling garbage
collection that is more attractive than giving up a bit in each node.

J. Weizenbaum has suggested an interesting modiĄcation of the reference-
counter technique. Using doubly linked List structures, he puts a reference
counter only in the header of each List. Thus, when pointer variables traverse
a List, they are not included in the reference counts for the individual nodes. If
we know the rules by which reference counts are maintained for entire Lists, we
know (in theory) how to avoid referring to any List that has a reference count
of zero. We also have complete freedom to explicitly override reference counts
and to return particular Lists to available storage. These ideas require careful
handling; they prove to be somewhat dangerous in the hands of inexperienced
programmers, and theyŠve tended to make program debugging more difficult due
to the consequences of referring to nodes that have been erased. The nicest part
of WeizenbaumŠs approach is his treatment of Lists whose reference count has just
gone to zero: Such a List is appended at the end of the current available list Ů
this is easy to do with doubly linked Lists Ů and it is considered for available
space only after all previously available cells are used up. Eventually, as the
individual nodes of this List do become available, the reference counters of Lists
they refer to are decreased by one. This delayed action of erasing Lists is quite
efficient with respect to running time; but it tends to make incorrect programs
run correctly for awhile! For further details see CACM 6 (1963), 524Ű544.

Algorithms for garbage collection are quite interesting for several reasons.
In the Ąrst place, such algorithms are useful in other situations when we want to
mark all nodes that are directly or indirectly referred to by a given node. (For
example, we might want to Ąnd all subroutines called directly or indirectly by a
certain subroutine, as in exercise 2.2.3Ű26.)

Garbage collection generally proceeds in two phases. We assume that the
mark bits of all nodes are initially zero (or we set them all to zero). Now the Ąrst
phase marks all the nongarbage nodes, starting from those that are immediately
accessible to the main program. The second phase makes a sequential pass over
the entire memory pool area, putting all unmarked nodes onto the list of free
space. The marking phase is the most interesting, so we will concentrate our
attention on it. Certain variations on the second phase can, however, make it
nontrivial; see exercise 9.

When a garbage collection algorithm is running, only a very limited amount
of storage is available to control the marking procedure. This intriguing problem

2.3.5 LISTS AND GARBAGE COLLECTION 415

will become clear in the following discussion; it is a difficulty that is not appre-
ciated by most people when they Ąrst hear about the idea of garbage collection,
and for several years there was no good solution to it.

The following marking algorithm is perhaps the most obvious.

Algorithm A (Marking). Let the entire memory used for List storage be
NODE(1), NODE(2), . . . , NODE(M), and suppose that these words either are atoms
or contain two link Ąelds ALINK and BLINK. Assume that all nodes are initially
unmarked. The purpose of this algorithm is to mark all of the nodes that can be
reached by a chain of ALINK and/or BLINK pointers in nonatomic nodes, starting
from a set of Şimmediately accessibleŤ nodes, that is, nodes pointed to by certain
Ąxed locations in the main program; these Ąxed pointers are used as a source for
all memory accesses.

A1. [Initialize.] Mark all nodes that are immediately accessible. Set K← 1.

A2. [Does NODE(K) imply another?] Set K1 ← K + 1. If NODE(K) is an atom
or unmarked, go to step A3. Otherwise, if NODE(ALINK(K)) is unmarked:
Mark it and, if it is not an atom, set K1 ← min(K1, ALINK(K)). Similarly,
if NODE(BLINK(K)) is unmarked: Mark it and, if it is not an atom, set
K1← min(K1, BLINK(K)).

A3. [Done?] Set K ← K1. If K ≤ M, return to step A2; otherwise the algorithm
terminates.

Throughout this algorithm and the ones that follow in this section, we will
assume for convenience that the nonexistent node ŞNODE(Λ)Ť is marked. (For
example, ALINK(K) or BLINK(K) may equal Λ in step A2.)

A variant of Algorithm A sets K1← M+ 1 in step A1, removes the operation
ŞK1← K + 1Ť from step A2, and instead changes step A3 to

A3′. [Done?] Set K ← K + 1. If K ≤ M, return to step A2. Otherwise if K1 ≤ M,
set K← K1 and K1← M+1 and return to step A2. Otherwise the algorithm
terminates.

It is very difficult to give a precise analysis of Algorithm A, or to determine
whether it is better or worse than the variant just described, since no meaningful
way to describe the probability distribution of the input presents itself. We can
say that it takes up time proportional to nM in the worst case, where n is the
number of cells it marks; and, in general, we can be sure that it is very slow
when n is large. Algorithm A is too slow to make garbage collection a usable
technique.

Another fairly evident marking algorithm is to follow all paths and to record
branch points on a stack as we go:

Algorithm B (Marking). This algorithm achieves the same effect as Algo-
rithm A, using STACK[1], STACK[2], . . . as auxiliary storage to keep track of all
paths that have not yet been pursued to completion.

B1. [Initialize.] Let T be the number of immediately accessible nodes; mark
them and place pointers to them in STACK[1], . . . , STACK[T].

416 INFORMATION STRUCTURES 2.3.5

B2. [Stack empty?] If T = 0, the algorithm terminates.

B3. [Remove top entry.] Set K← STACK[T], T← T− 1.

B4. [Examine links.] If NODE(K) is an atom, return to step B2. Otherwise, if
NODE(ALINK(K)) is unmarked, mark it and set T ← T + 1, STACK[T] ←
ALINK(K); if NODE(BLINK(K)) is unmarked, mark it and set T ← T + 1,
STACK[T]← BLINK(K). Return to B2.

Algorithm B clearly has an execution time essentially proportional to the
number of cells it marks, and this is as good as we could possibly expect; but it
is not really usable for garbage collection because there is no place to keep the
stack! It does not seem unreasonable to assume that the stack in Algorithm B
might grow up to, say, Ąve percent of the size of memory; but when garbage
collection is called, and all available space has been used up, there is only a
Ąxed (rather small) number of cells to use for such a stack. Most of the early
garbage collection procedures were essentially based on this algorithm. If the
special stack space was used up, the entire program had to be terminated.

A somewhat better alternative is possible, using a Ąxed stack size, by com-
bining Algorithms A and B:

Algorithm C (Marking). This algorithm achieves the same effect as Algo-
rithms A and B, using an auxiliary table of H cells, STACK[0], STACK[1], . . . ,
STACK[H− 1].

In this algorithm, the action Şinsert X on the stackŤ means the following:
ŞSet T← (T+ 1) mod H, and STACK[T]← X. If T = B, set B← (B+ 1) mod H and
K1 ← min(K1, STACK[B]).Ť (Note that T points to the current top of the stack,
and B points one place below the current bottom; STACK essentially operates as
an input-restricted deque.)

C1. [Initialize.] Set T← H− 1, B← H− 1, K1← M+ 1. Mark all the immediately
accessible nodes, and successively insert their locations onto the stack (as
just described above).

C2. [Stack empty?] If T = B, go to C5.

C3. [Remove top entry.] Set K← STACK[T], T← (T− 1) mod H.

C4. [Examine links.] If NODE(K) is an atom, return to step C2. Otherwise, if
NODE(ALINK(K)) is unmarked, mark it and insert ALINK(K) on the stack.
Similarly, if NODE(BLINK(K)) is unmarked, mark it and insert BLINK(K) on
the stack. Return to C2.

C5. [Sweep.] If K1 > M, the algorithm terminates. (The variable K1 represents
the smallest location where there is a possibility of a new lead to a node
that should be marked.) Otherwise, if NODE(K1) is an atom or unmarked,
increase K1 by 1 and repeat this step. If NODE(K1) is marked, set K ← K1,
increase K1 by 1, and go to C4.

This algorithm and Algorithm B can be improved if X is never put on the
stack when NODE(X) is an atom; moreover, steps B4 and C4 need not put items
on the stack when they know that the items will immediately be removed. Such

2.3.5 LISTS AND GARBAGE COLLECTION 417

modiĄcations are straightforward and they have been left out to avoid making
the algorithms unnecessarily complicated.

Algorithm C is essentially equivalent to Algorithm A when H = 1, and to
Algorithm B when H = M; it gradually becomes more efficient as H becomes
larger. Unfortunately, Algorithm C deĄes a precise analysis for the same reason
as Algorithm A, and we have no good idea how large H should be to make this
method fast enough. It is plausible but uncomfortable to say that a value like
H = 50 is sufficient to make Algorithm C usable for garbage collection in most
applications.

Algorithms B and C use a stack kept in sequential memory locations; but we
have seen earlier in this chapter that linked memory techniques are well suited to
maintaining stacks that are not consecutive in memory. This suggests the idea
that we might keep the stack of Algorithm B somehow scattered through the
same memory area in which we are collecting garbage. This could be done easily
if we were to give the garbage collection routine a little more room in which
to breathe. Suppose, for example, we assume that all Lists are represented as
in (9), except that the REF Ąelds of List head nodes are used for garbage collection
purposes instead of as reference counts. We can then redesign Algorithm B so
that the stack is maintained in the REF Ąelds of the header nodes:

Algorithm D (Marking). This algorithm achieves the same effect as Algorithms
A, B, and C, but it assumes that the nodes have S, T, REF, and RLINK Ąelds as
described above, instead of ALINKs and BLINKs. The S Ąeld is used as the mark
bit, so that S(P) = 1 means that NODE(P) is marked.

D1. [Initialize.] Set TOP ← Λ. Then for each pointer P to the head of an
immediately accessible List (see step A1 of Algorithm A), if S(P) = 0, set
S(P)← 1, REF(P)← TOP, TOP← P.

D2. [Stack empty?] If TOP = Λ, the algorithm terminates.

D3. [Remove top entry.] Set P← TOP, TOP← REF(P).

D4. [Move through List.] Set P ← RLINK(P); then if P = Λ, or if T(P) = 0, go
to D2. Otherwise set S(P) ← 1. If T(P) > 1, set S(REF(P)) ← 1 (thereby
marking the atomic information). Otherwise (T(P) = 1), set Q ← REF(P);
if Q ̸= Λ and S(Q) = 0, set S(Q) ← 1, REF(Q) ← TOP, TOP ← Q. Repeat
step D4.

Algorithm D may be compared to Algorithm B, which is quite similar, and
its running time is essentially proportional to the number of nodes marked.
However, Algorithm D is not recommended without qualiĄcation, because its
seemingly rather mild restrictions are often too stringent for a general List-
processing system. This algorithm essentially requires that all List structures
be well-formed, as in (7), whenever garbage collection is called into action.
But algorithms for List manipulations momentarily leave the List structures
malformed, and a garbage collector such as Algorithm D must not be used during
those momentary periods. Moreover, care must be taken in step D1 when the
program contains pointers to the middle of a List.

418 INFORMATION STRUCTURES 2.3.5

Yes

No

Marked
already

Marked
already

After
ALINK

After
BLINK

E1.
Initialize

E2.
Mark

E3.
Atom?

E4.
Down
ALINK

E5.
Down
BLINK

E6. Up

Fig. 38. Algorithm E for marking with no auxiliary stack space.

These considerations bring us to Algorithm E, which is an elegant marking
method discovered independently by Peter Deutsch and by Herbert Schorr and
W. M. Waite in 1965. The assumptions used in this algorithm are just a little
different from those of Algorithms A through D.

Algorithm E (Marking). Assume that a collection of nodes is given having the
following Ąelds:

MARK (a one-bit Ąeld),
ATOM (another one-bit Ąeld),
ALINK (a pointer Ąeld),
BLINK (a pointer Ąeld).

When ATOM = 0, the ALINK and BLINK Ąelds may contain Λ or a pointer to
another node of the same format; when ATOM = 1, the contents of the ALINK and
BLINK Ąelds are irrelevant to this algorithm.

Given a nonnull pointer P0, this algorithm sets the MARK Ąeld equal to 1 in
NODE(P0) and in every other node that can be reached from NODE(P0) by a chain
of ALINK and BLINK pointers in nodes with ATOM = MARK = 0. The algorithm
uses three pointer variables, T, Q, and P. It modiĄes the links and control bits in
such a way that all ATOM, ALINK, and BLINK Ąelds are restored to their original
settings after completion, although they may be changed temporarily.

E1. [Initialize.] Set T ← Λ, P ← P0. (Throughout the remainder of this
algorithm, the variable T has a dual signiĄcance: When T ̸= Λ, it points
to the top of what is essentially a stack as in Algorithm D; and the node
that T points to once contained a link equal to P in place of the ŞartiĄcialŤ
stack link that currently occupies NODE(T).)

E2. [Mark.] Set MARK(P)← 1.

E3. [Atom?] If ATOM(P) = 1, go to E6.

E4. [Down ALINK.] Set Q ← ALINK(P). If Q ̸= Λ and MARK(Q) = 0, set
ATOM(P) ← 1, ALINK(P) ← T, T ← P, P ← Q, and go to E2. (Here the
ATOM Ąeld and ALINK Ąelds are temporarily being altered, so that the List
structure in certain marked nodes has been rather drastically changed. But
these changes will be restored in step E6.)

E5. [Down BLINK.] Set Q ← BLINK(P). If Q ̸= Λ and MARK(Q) = 0, set
BLINK(P)← T, T← P, P← Q, and go to E2.

2.3.5 LISTS AND GARBAGE COLLECTION 419

a

b

c

d

e

(Atom)

a
ALINK[MARK] b[0] . ˜[1] . b
BLINK[ATOM] c[0] . [1] . [0] ˜ c

b ALINK[MARK] −[0] . . [1]
BLINK[ATOM] −[1]

c ALINK[MARK] b[0] [1]
BLINK[ATOM] d[0] a d .

d ALINK[MARK] e[0] c[1] . . e . . .
BLINK[ATOM] d[0] [1] . . [0] . . .

e ALINK[MARK] ˜[0] [1]
BLINK[ATOM] c[0]

T Ů ˜ a a ˜ a a c d d d c c a ˜

P Ů a b b a c c d e e e d d c a

Next step E1 E2 E2 E6 E5 E2 E5 E2 E2 E5 E6 E5 E6 E6 E6

Nesting

Fig. 39. A structure marked by Algorithm E. (The table shows only changes that
have occurred since the previous step.)

E6. [Up.] (This step undoes the link switching made in step E4 or E5; the
setting of ATOM(T) tells whether ALINK(T) or BLINK(T) is to be restored.)
If T = Λ, the algorithm terminates. Otherwise set Q ← T. If ATOM(Q) = 1,
set ATOM(Q)← 0, T← ALINK(Q), ALINK(Q)← P, P← Q, and return to E5.
If ATOM(Q) = 0, set T← BLINK(Q), BLINK(Q)← P, P← Q, and repeat E6.

An example of this algorithm in action appears in Fig. 39, which shows the
successive steps encountered for a simple List structure. The reader will Ąnd it
worthwhile to study Algorithm E very carefully; notice how the linking structure
is artiĄcially changed in steps E4 and E5, in order to maintain a stack analogous
to the stack in Algorithm D. When we return to a previous state, the ATOM

Ąeld is used to tell whether ALINK or BLINK contains the artiĄcial address. The
ŞnestingŤ shown at the bottom of Fig. 39 illustrates how each nonatomic node
is visited three times during Algorithm E: The same conĄguration (T,P) occurs
at the beginning of steps E2, E5, and E6.

420 INFORMATION STRUCTURES 2.3.5

A proof that Algorithm E is valid can be formulated by induction on the
number of nodes that are to be marked. We prove at the same time that P

returns to its initial value P0 at the conclusion of the algorithm; for details, see
exercise 3. Algorithm E will run faster if step E3 is deleted and if special tests
for ŞATOM(Q) = 1Ť and appropriate actions are made in steps E4 and E5, as
well as a test ŞATOM(P0) = 1Ť in step E1. We have stated the algorithm in its
present form for simplicity; the modiĄcations just stated appear in the answer
to exercise 4.

The idea used in Algorithm E can be applied to problems other than garbage
collection; in fact, its use for tree traversal has already been mentioned in
exercise 2.3.1Ű21. The reader may also Ąnd it useful to compare Algorithm E
with the simpler problem solved in exercise 2.2.3Ű7.

Of all the marking algorithms we have discussed, only Algorithm D is
directly applicable to Lists represented as in (9). The other algorithms all
test whether or not a given node P is an atom, and the conventions of (9) are
incompatible with such tests because they allow atomic information to Ąll an
entire word except for the mark bit. However, each of the other algorithms
can be modiĄed so that they will work when atomic data is distinguished from
pointer data in the word that links to it instead of by looking at the word
itself. In Algorithms A or C we can simply avoid marking atomic words until
all nonatomic words have been properly marked; then one further pass over all
the data suffices to mark all the atomic words. Algorithm B is even easier to
modify, since we need merely keep atomic words off the stack. The adaptation of
Algorithm E is almost as simple, although if both ALINK and BLINK are allowed
to point to atomic data it will be necessary to introduce another 1-bit Ąeld in
nonatomic nodes. This is generally not hard to do. (For example, when there
are two words per node, the least signiĄcant bit of each link Ąeld may be used
to store temporary information.)

Although Algorithm E requires a time proportional to the number of nodes
it marks, this constant of proportionality is not as small as in Algorithm B;
the fastest garbage collection method known combines Algorithms B and E, as
discussed in exercise 5.

Let us now try to make some quantitative estimates of the efficiency of
garbage collection, as opposed to the philosophy of ŞAVAIL ⇐ XŤ that was
used in most of the previous examples in this chapter. In each of the previous
cases we could have omitted all speciĄc mention of returning nodes to free
space and we could have substituted a garbage collector instead. (In a special-
purpose application, as opposed to a set of general-purpose List manipulation
subroutines, the programming and debugging of a garbage collector is more
difficult than the methods we have used, and, of course, garbage collection
requires an extra bit reserved in each node; but we are interested here in the
relative speed of the programs once they have been written and debugged.)

The best garbage collection routines known have an execution time essen-
tially of the form c1N + c2M, where c1 and c2 are constants, N is the number of
nodes marked, and M is the total number of nodes in the memory. Thus M− N is

2.3.5 LISTS AND GARBAGE COLLECTION 421

the number of free nodes found, and the amount of time required to return these
nodes to free storage is (c1N + c2M)/(M − N) per node. Let N = ρM; this Ągure
becomes (c1ρ+c2)/(1−ρ). So if ρ = 3

4 , that is, if the memory is three-fourths full,
we spend 3c1 + 4c2 units of time per free node returned to storage; when ρ = 1

4 ,
the corresponding cost is only 1

3c1 + 4
3c2. If we do not use the garbage collection

technique, the amount of time per node returned is essentially a constant, c3,
and it is doubtful that c3/c1 will be very large. Hence we can see to what extent
garbage collection is inefficient when the memory becomes full, and how it is
correspondingly efficient when the demand on memory is light.

Many programs have the property that the ratio ρ = N/M of good nodes
to total memory is quite small. When the pool of memory becomes full in such
cases, it might be best to move all the active List data to another memory pool of
equal size, using a copying technique (see exercise 10) but without bothering to
preserve the contents of the nodes being copied. Then when the second memory
pool Ąlls up, we can move the data back to the Ąrst one again. With this method
more data can be kept in high-speed memory at once, because link Ąelds tend
to point to nearby nodes. Moreover, thereŠs no need for a marking phase, and
storage allocation is simply sequential.

It is possible to combine garbage collection with some of the other methods
of returning cells to free storage; these ideas are not mutually exclusive, and some
systems employ both the reference counter and the garbage collection schemes,
besides allowing the programmer to erase nodes explicitly. The idea is to employ
garbage collection only as a Şlast resortŤ whenever all other methods of returning
cells have failed. An elaborate system, which implements this idea and also
includes a mechanism for postponing operations on reference counts in order to
achieve further efficiency, has been described by L. P. Deutsch and D. G. Bobrow
in CACM 19 (1976), 522Ű526.

A sequential representation of Lists, which saves many of the link Ąelds at
the expense of more complicated storage management, is also possible. See N. E.
Wiseman and J. O. Hiles, Comp. J. 10 (1968), 338Ű343; W. J. Hansen, CACM
12 (1969), 499Ű507; and C. J. Cheney, CACM 13 (1970), 677Ű678.

Daniel P. Friedman and David S. Wise have observed that the reference
counter method can be employed satisfactorily in many cases even when Lists
point to themselves, if certain link Ąelds are not included in the counts [Inf. Proc.
Letters 8 (1979), 41Ű45].

A great many variants and reĄnements of garbage collection algorithms
have been proposed. Jacques Cohen, in Computing Surveys 13 (1981), 341Ű
367, presents a detailed review of the literature prior to 1981, with important
comments about the extra cost of memory accesses when pages of data are
shuttled between slow memory and fast memory.

Garbage collection as we have described it is unsuitable for Şreal timeŤ
applications, where each basic List operation must be quick; even if the garbage
collector goes into action infrequently, it requires large chunks of computer time
on those occasions. Exercise 12 discusses some approaches by which real-time
garbage collection is possible.

422 INFORMATION STRUCTURES 2.3.5

It is a very sad thing nowadays

that there is so little useless information.

— OSCAR WILDE (1894)

EXERCISES

x 1. [M21] In Section 2.3.4 we saw that trees are special cases of the ŞclassicalŤ
mathematical concept of a directed graph. Can Lists be described in graph-theoretic
terminology?

2. [20] In Section 2.3.1 we saw that tree traversal can be facilitated using a threaded
representation inside the computer. Can List structures be threaded in an analogous
way?

3. [M26] Prove the validity of Algorithm E. [Hint: See the proof of Algorithm
2.3.1T.]

4. [28] Write a MIX program for Algorithm E, assuming that nodes are represented as
one MIX word, with MARK the (0:0) Ąeld [Ş+Ť = 0, Ş−Ť = 1], ATOM the (1:1) Ąeld, ALINK
the (2:3) Ąeld, BLINK the (4:5) Ąeld, and Λ = 0. Also determine the execution time
of your program in terms of relevant parameters. (In the MIX computer the problem
of determining whether a memory location contains −0 or +0 is not quite trivial, and
this can be a factor in your program.)

5. [25] (Schorr and Waite.) Give a marking algorithm that combines Algorithms B
and E as follows: The assumptions of Algorithm E with regard to Ąelds within the
nodes, etc., are retained; but an auxiliary stack STACK[1], STACK[2], . . . , STACK[N] is
used as in Algorithm B, and the mechanism of Algorithm E is employed only when the
stack is full.

6. [00] The quantitative discussion at the end of this section says that the cost of
garbage collection is approximately c1N+ c2M units of time; where does the Şc2MŤ term
come from?

7. [24] (R. W. Floyd.) Design a marking algorithm that is similar to Algorithm E in
using no auxiliary stack, except that (i) it has a more difficult task to do, because each
node contains only MARK, ALINK, and BLINK Ąelds Ů there is no ATOM Ąeld to provide
additional control; yet (ii) it has a simpler task to do, because it marks only a binary
tree instead of a general List. Here ALINK and BLINK are the usual LLINK and RLINK in
a binary tree.

x 8. [27] (L. P. Deutsch.) Design a marking algorithm similar to Algorithms D and E
in that it uses no auxiliary memory for a stack, but modify the method so that it
works with nodes of variable size and with a variable number of pointers having the
following format: The Ąrst word of a node has two Ąelds MARK and SIZE; the MARK Ąeld
is to be treated as in Algorithm E, and the SIZE Ąeld contains a number n ≥ 0. This
means that there are n consecutive words after the Ąrst word, each containing two
Ąelds MARK (which is zero and should remain so) and LINK (which is Λ or points to the
Ąrst word of another node). For example, a node with three pointers would comprise
four consecutive words:

First word MARK = 0 (will be set to 1) SIZE = 3
Second word MARK = 0 LINK = Ąrst pointer
Third word MARK = 0 LINK = second pointer
Fourth word MARK = 0 LINK = third pointer.

Your algorithm should mark all nodes reachable from a given node P0.

2.3.5 LISTS AND GARBAGE COLLECTION 423

x 9. [28] (D. Edwards.) Design an algorithm for the second phase of garbage collection
that Şcompacts storageŤ in the following sense: Let NODE(1), . . . , NODE(M) be one-word
nodes with Ąelds MARK, ATOM, ALINK, and BLINK, as described in Algorithm E. Assume
that MARK = 1 in all nodes that are not garbage. The desired algorithm should relocate
the marked nodes, if necessary, so that they all appear in consecutive locations NODE(1),
. . . , NODE(K), and at the same time the ALINK and BLINK Ąelds of nonatomic nodes
should be altered if necessary so that the List structure is preserved.

x 10. [28] Design an algorithm that copies a List structure, assuming that an internal
representation like that in (7) is being used. (Thus, if your procedure is asked to copy
the List whose head is the node at the upper left corner of (7), a new set of Lists having
14 nodes, and with structure and information identical to that shown in (7), should
be created.)

Assume that the List structure is stored in memory using S, T, REF, and RLINK

Ąelds as in (9), and that NODE(P0) is the head of the List to be copied. Assume further
that the REF Ąeld in each List head node is Λ; to avoid the need for additional memory
space, your copying procedure should make use of the REF Ąelds (and reset them to Λ
again afterwards).

11. [M30] Any List structure can be Şfully expandedŤ into a tree structure by repeat-
ing all overlapping elements until none are left; when the List is recursive, this gives an
inĄnite tree. For example, the List (5) would expand into an inĄnite tree whose Ąrst
four levels are

∗

a∗ b c∗ e∗

f∗ g∗ d∗ a∗ b c∗ e∗

h∗ j∗ f∗ g∗ f∗ g∗ d∗ a∗ b c∗ e∗

Design an algorithm to test the equivalence of two List structures, in the sense
that they have the same diagram when fully expanded. For example, Lists A and B
are equivalent in this sense, if

A = (a:C, b, a: (b:D))
B = (a: (b:D), b, a:E)
C = (b: (a:C))
D = (a: (b:D))
E = (b: (a:C)).

12. [30] (M. Minsky.) Show that it is possible to use a garbage collection method
reliably in a Şreal timeŤ application, for example when a computer is controlling
some physical device, even when stringent upper bounds are placed on the maximum
execution time required for each List operation performed. [Hint: Garbage collection
can be arranged to work in parallel with the List operations, if appropriate care is
taken.]

424 INFORMATION STRUCTURES 2.4

2.4. MULTILINKED STRUCTURES

Now that we have examined linear lists and tree structures in detail, the
principles of representing structural information within a computer should be
evident. In this section we will look at another application of these techniques,
this time for the typical case in which the structural information is slightly more
complicated: In higher-level applications, several types of structure are usually
present simultaneously.

A Şmultilinked structureŤ involves nodes with several link Ąelds in each
node, not just one or two as in most of our previous examples. We have already
seen some examples of multiple linkage, such as the simulated elevator system
in Section 2.2.5 and the multivariate polynomials in Section 2.3.3.

We shall see that the presence of many different kinds of links per node does
not necessarily make the accompanying algorithms any more difficult to write
or to understand than the algorithms already studied. We will also discuss the
important question, ŞHow much structural information ought to be explicitly
recorded in memory?Ť

The problem we will consider arises in connection with writing a compiler
program for the translation of COBOL and related languages. A programmer who
uses COBOL may give alphabetic names to program variables on several levels;
for example, the program might refer to Ąles of data for sales and purchases,
having the following structure:

1 SALES 1 PURCHASES

2 DATE 2 DATE

3 MONTH 3 DAY

3 DAY 3 MONTH

3 YEAR 3 YEAR

2 TRANSACTION 2 TRANSACTION

3 ITEM 3 ITEM

3 QUANTITY 3 QUANTITY

3 PRICE 3 PRICE

3 TAX 3 TAX

3 BUYER 3 SHIPPER

4 NAME 4 NAME

4 ADDRESS 4 ADDRESS

(1)

This conĄguration indicates that each item in SALES consists of two parts, the
DATE and the TRANSACTION; the DATE is further divided into three parts, and the
TRANSACTION likewise has Ąve subdivisions. Similar remarks apply to PURCHASES.
The relative order of these names indicates the order in which the quantities
appear in external representations of the Ąle (for example, magnetic tape or
printed forms); notice that in this example ŞDAYŤ and ŞMONTHŤ appear in opposite
order in the two Ąles. The programmer also gives further information, not shown
in this illustration, that tells how much space each item of information occupies
and in what format it appears; such considerations are not relevant to us in this
section, so they will not be mentioned further.

2.4 MULTILINKED STRUCTURES 425

A COBOL programmer Ąrst describes the Ąle layout and the other program
variables, then speciĄes the algorithms that manipulate those quantities. To
refer to an individual variable in the example above, it would not be sufficient
merely to give the name DAY, since there is no way of telling if the variable called
DAY is in the SALES Ąle or in the PURCHASES Ąle. Therefore a COBOL programmer
is given the ability to write ŞDAY OF SALESŤ to refer to the DAY part of a SALES

item. The programmer could also write, more completely,

ŞDAY OF DATE OF SALESŤ,

but in general there is no need to give more qualiĄcation than necessary to avoid
ambiguity. Thus,

ŞNAME OF SHIPPER OF TRANSACTION OF PURCHASESŤ

may be abbreviated to
ŞNAME OF SHIPPERŤ

since only one part of the data has been called SHIPPER.

These rules of COBOL may be stated more precisely as follows:

a) Each name is immediately preceded by an associated positive integer called
its level number. A name either refers to an elementary item or it is the
name of a group of one or more items whose names follow. In the latter
case, each item of the group must have the same level number, which must
be greater than the level number of the group name. (For example, DATE
and TRANSACTION above have level number 2, which is greater than the level
number 1 of SALES.)

b) To refer to an elementary item or group of items named A0, the general
form is

A0 OF A1 OF . . . OF An,

where n ≥ 0 and where, for 0 ≤ j < n, Aj is the name of some item
contained directly or indirectly within a group named Aj+1. There must be
exactly one item A0 satisfying this condition.

c) If the same name A0 appears in several places, there must be a way to refer
to each use of the name by using qualiĄcation.

As an example of rule (c), the data conĄguration

1 AA

2 BB

3 CC

3 DD

2 CC

(2)

would not be allowed, since there is no unambiguous way to refer to the second
appearance of CC. (See exercise 4.)

426 INFORMATION STRUCTURES 2.4

COBOL has another feature that affects compiler writing and the application
we are considering, namely an option in the language that makes it possible to
refer to many items at once. A COBOL programmer may write

MOVE CORRESPONDING α TO β

which moves all items with corresponding names from data area α to data area β.
For example, the COBOL statement

MOVE CORRESPONDING DATE OF SALES TO DATE OF PURCHASES

would mean that the values of MONTH, DAY, and YEAR from the SALES Ąle are to
be moved to the variables MONTH, DAY, and YEAR in the PURCHASES Ąle. (The
relative order of DAY and MONTH is thereby interchanged.)

The problem we will investigate in this section is to design three algorithms
suitable for use in a COBOL compiler, which are to do the following things:

Operation 1. To process a description of names and level numbers such
as (1), putting the relevant information into tables within the compiler for use
in operations 2 and 3.

Operation 2. To determine if a given qualiĄed reference, as in rule (b), is
valid, and when it is valid to locate the corresponding data item.

Operation 3. To Ąnd all corresponding pairs of items indicated by a given
CORRESPONDING statement.

We will assume that our compiler already has a Şsymbol table subroutineŤ
that will convert an alphabetic name into a link that points to a table entry for
that name. (Methods for constructing symbol table algorithms are discussed in
detail in Chapter 6.) In addition to the Symbol Table, there is a larger table
that contains one entry for each item of data in the COBOL source program that
is being compiled; we will call this the Data Table.

Clearly, we cannot design an algorithm for operation 1 until we know what
kind of information is to be stored in the Data Table, and the form of the Data
Table depends on what information we need in order to perform operations 2
and 3; thus we look Ąrst at operations 2 and 3.

In order to determine the meaning of the COBOL reference

A0 OF A1 OF . . . OF An, n ≥ 0, (3)

we should Ąrst look up the name A0 in the Symbol Table. There ought to be
a series of links from the Symbol Table entry to all Data Table entries for this
name. Then for each Data Table entry we will want a link to the entry for the
group item that contains it. Now if there is a further link Ąeld from the Data
Table items back to the Symbol Table, it is not hard to see how a reference like
(3) can be processed. Furthermore, we will want some sort of links from the
Data Table entries for group items to the items in the group, in order to locate
the pairs indicated by ŞMOVE CORRESPONDINGŤ.

2.4 MULTILINKED STRUCTURES 427

We have thereby found a potential need for Ąve link Ąelds in each Data
Table entry:

PREV (a link to the previous entry with the same name, if any);
PARENT (a link to the smallest group, if any, containing this item);
NAME (a link to the Symbol Table entry for this item);
CHILD (a link to the Ąrst subitem of a group);
SIB (a link to the next subitem in the group containing this item).

It is clear that COBOL data structures like those for SALES and PURCHASES above
are essentially trees; and the PARENT, CHILD, and SIB links that appear here are
familiar from our previous study. (The conventional binary tree representation
of a tree consists of the CHILD and SIB links; adding the PARENT link gives what
we have called a Ştriply linked tree.Ť The Ąve links above consist of these three
tree links together with PREV and NAME, which superimpose further information
on the tree structure.)

Perhaps not all Ąve of these links will turn out to be necessary, or sufficient,
but we will try Ąrst to design our algorithms under the tentative assumption
that Data Table entries will involve these Ąve link Ąelds (plus further information
irrelevant to our problems). As an example of the multiple linking used, consider
the two COBOL data structures

1 A 1 H

3 B 5 F

7 C 8 G

7 D 5 B

3 E 5 C

3 F 9 E

4 G 9 D

9 G

(4)

They would be represented as shown in (5) (with links indicated symbolically).
The LINK Ąeld of each Symbol Table entry points to the most recently encoun-
tered Data Table entry for the symbolic name in question.

The Ąrst algorithm we require is one that builds the Data Table in such
a form. Note the Ćexibility in choice of level numbers that is allowed by the
COBOL rules; the left structure in (4) is completely equivalent to

1 A

2 B

3 C

3 D

2 E

2 F

3 G

because level numbers do not have to be sequential.

428 INFORMATION STRUCTURES 2.4

Symbol Table

LINK

A: A1

B: B5

C: C5

D: D9

E: E9

F: F5

G: G9

H: H1

Empty boxes indicate
additional information
not relevant here

Data Table

PREV PARENT NAME CHILD SIB

A1: Λ Λ A B3 H1

B3: Λ A1 B C7 E3

C7: Λ B3 C Λ D7

D7: Λ B3 D Λ Λ

E3: Λ A1 E Λ F3

F3: Λ A1 F G4 Λ

G4: Λ F3 G Λ Λ

H1: Λ Λ H F5 Λ

F5: F3 H1 F G8 B5

G8: G4 F5 G Λ Λ

B5: B3 H1 B Λ C5

C5: C7 H1 C E9 Λ

E9: E3 C5 E Λ D9

D9: D7 C5 D Λ G9

G9: G8 C5 G Λ Λ

(5)

Some sequences of level numbers are illegal, however; for example, if the
level number of D in (4) were changed to Ş6Ť (in either place) we would have
a meaningless data conĄguration, violating the rule that all items of a group
must have the same number. The following algorithm therefore makes sure that
COBOLŠs rule (a) has not been broken.

Algorithm A (Build Data Table). This algorithm is given a sequence of pairs
(L, P), where L is a positive integer Şlevel numberŤ and P points to a Symbol
Table entry, corresponding to COBOL data structures such as (4) above. The
algorithm builds a Data Table as in the example (5) above. When P points to a
Symbol Table entry that has not appeared before, LINK(P) will equal Λ. This
algorithm uses an auxiliary stack that is treated as usual (using either sequential
memory allocation, as in Section 2.2.2, or linked allocation, as in Section 2.2.3).

A1. [Initialize.] Set the stack contents to the single entry (0, Λ). (The stack
entries throughout this algorithm are pairs (L, P), where L is an integer
and P is a pointer; as this algorithm proceeds, the stack contains the level
numbers and pointers to the most recent data entries on all levels higher in
the tree than the current level. For example, just before encountering the
pair Ş3 FŤ in the example above, the stack would contain

(0, Λ) (1,A1) (3,E3)

from bottom to top.)

2.4 MULTILINKED STRUCTURES 429

A2. [Next item.] Let (L, P) be the next data item from the input. If the input
is exhausted, however, the algorithm terminates. Set Q ⇐ AVAIL (that is,
let Q be the location of a new node in which we can put the next Data Table
entry).

A3. [Set name links.] Set

PREV(Q)← LINK(P), LINK(P)← Q, NAME(Q)← P.

(This properly sets two of the Ąve links in NODE(Q). We now want to set
PARENT, CHILD, and SIB appropriately.)

A4. [Compare levels.] Let the top entry of the stack be (L1, P1). If L1 < L, set
CHILD(P1) ← Q (or, if P1 = Λ, set FIRST ← Q, where FIRST is a variable
that will point to the Ąrst Data Table entry) and go to A6.

A5. [Remove top level.] If L1 > L, remove the top stack entry, let (L1, P1) be the
new entry that has just come to the top of the stack, and repeat step A5. If
L1 < L, signal an error (mixed numbers have occurred on the same level).
Otherwise, namely when L1 = L, set SIB(P1) ← Q, remove the top stack
entry, and let (L1, P1) be the pair that has just come to the top of the stack.

A6. [Set family links.] Set PARENT(Q)← P1, CHILD(Q)← Λ, SIB(Q)← Λ.

A7. [Add to stack.] Place (L, Q) on top of the stack, and return to step A2.

The introduction of an auxiliary stack, as explained in step A1, makes this
algorithm so transparent that it needs no further explanation.

The next problem is to locate the Data Table entry corresponding to a
reference

A0 OF A1 OF . . . OF An, n ≥ 0. (6)

A good compiler will also check to ensure that such a reference is unambiguous.
In this case, a suitable algorithm suggests itself immediately: All we need to do
is to run through the list of Data Table entries for the name A0 and make sure
that exactly one of these entries matches the stated qualiĄcation A1, . . . , An.

Algorithm B (Check a qualiĄed reference). Corresponding to reference (6), a
Symbol Table subroutine will Ąnd pointers P0, P1, . . . , Pn to the Symbol Table
entries for A0, A1, . . . , An, respectively.

The purpose of this algorithm is to examine P0, P1, . . . , Pn and either to
determine that reference (6) is in error, or to set variable Q to the address of the
Data Table entry for the item referred to by (6).

B1. [Initialize.] Set Q← Λ, P← LINK(P0).

B2. [Done?] If P = Λ, the algorithm terminates; at this point Q will equal Λ if
(6) does not correspond to any Data Table entry. But if P ̸= Λ, set S ← P

and k ← 0. (S is a pointer variable that will run from P up the tree through
PARENT links; k is an integer variable that goes from 0 to n. In practice, the
pointers P0, . . . , Pn would often be kept in a linked list, and instead of k, we
would substitute a pointer variable that traverses this list; see exercise 5.)

430 INFORMATION STRUCTURES 2.4

B3. [Match complete?] If k < n go on to B4. Otherwise we have found a
matching Data Table entry; if Q ̸= Λ, this is the second entry found, so an
error condition is signaled. Set Q← P, P← PREV(P), and go to B2.

B4. [Increase k.] Set k ← k + 1.

B5. [Move up tree.] Set S ← PARENT(S). If S = Λ, we have failed to Ąnd a
match; set P← PREV(P) and go to B2.

B6. [Ak match?] If NAME(S) = Pk, go to B3, otherwise go to B5.

Note that the CHILD and SIB links are not needed by this algorithm.

No No

Yes

Second
time

Yes

At top

No
Yes

B1. Initialize B2. Done?
B3. Match
complete? B4. Increase k B5. Move up tree

B6. Ak match?

Error

Fig. 40. Algorithm for checking a COBOL reference.

The third and Ąnal algorithm that we need concerns ŞMOVE CORRESPONDINGŤ;
before we design such an algorithm, we must have a precise deĄnition of what is
required. The COBOL statement

MOVE CORRESPONDING α TO β (7)

where α and β are references such as (6) to data items, is an abbreviation for
the set of all statements

MOVE α′ TO β′

where there exists an integer n ≥ 0 and n names A0, A1, . . . , An−1 such that

α′ = A0 OF A1 OF . . . OF An−1 OF α

β′ = A0 OF A1 OF . . . OF An−1 OF β
(8)

and either α′ or β′ is an elementary item (not a group item). Furthermore we
require that the Ąrst levels of (8) show complete qualiĄcations, namely that Aj+1

be the parent of Aj for 0 ≤ j < n − 1 and that α and β are parents of An−1;
α′ and β′ must be exactly n levels farther down in the tree than α and β are.

With respect to our example (4),

MOVE CORRESPONDING A TO H

is therefore an abbreviation for the statements

MOVE B OF A TO B OF H

MOVE G OF F OF A TO G OF F OF H

The algorithm to recognize all corresponding pairs α′, β′ is quite interesting
although not difficult; we move through the tree whose root is α, in preorder,

2.4 MULTILINKED STRUCTURES 431

simultaneously looking in the β tree for matching names, and skipping over
subtrees in which no corresponding elements can possibly occur. The names
A0, . . . , An−1 of (8) are discovered in the opposite order An−1, . . . , A0.

Algorithm C (Find CORRESPONDING pairs). Given P0 and Q0, which point to
Data Table entries for α and β, respectively, this algorithm successively Ąnds
all pairs (P, Q) of pointers to items (α′, β′) satisfying the constraints mentioned
above.

C1. [Initialize.] Set P ← P0, Q ← Q0. (In the remainder of this algorithm, the
pointer variables P and Q will walk through trees having the respective roots
α and β.)

C2. [Elementary?] If CHILD(P) = Λ or CHILD(Q) = Λ, output (P, Q) as one of the
desired pairs and go to C5. Otherwise set P ← CHILD(P), Q ← CHILD(Q).
(In this step, P and Q point to items α′ and β′ satisfying (8), and we wish to
MOVE α′ TO β′ if and only if either α′ or β′ (or both) is an elementary item.)

C3. [Match name.] (Now P and Q point to data items that have respective
complete qualiĄcations of the forms

A0 OF A1 OF . . . OF An−1 OF α

and
B0 OF A1 OF . . . OF An−1 OF β.

The object is to see if we can make B0 = A0 by examining all the names
of the group A1 OF . . . OF An−1 OF β.) If NAME(P) = NAME(Q), go to C2
(a match has been found). Otherwise, if SIB(Q) ̸= Λ, set Q ← SIB(Q) and
repeat step C3. (If SIB(Q) = Λ, no matching name is present in the group,
and we continue on to step C4.)

C4. [Move on.] If SIB(P) ̸= Λ, set P ← SIB(P) and Q ← CHILD(PARENT(Q)),
and go back to C3. If SIB(P) = Λ, set P← PARENT(P) and Q← PARENT(Q).

C5. [Done?] If P = P0, the algorithm terminates; otherwise go to C4.

A Ćow chart for this algorithm is shown in Fig. 41. A proof that this algorithm
is valid can readily be constructed by induction on the size of the trees involved
(see exercise 9).

C1.
Initialize

C2.
Elementary?

C3.
Match name

C4.
Move
on

C5.
Done?

No No

match

P←PARENT(P)

Yes

Q←SIB(Q)

Match P←SIB(P) No
Yes

Fig. 41. Algorithm for ŞMOVE CORRESPONDINGŤ.

432 INFORMATION STRUCTURES 2.4

At this point it is worthwhile to study the ways in which the Ąve link Ąelds
PREV, PARENT, NAME, CHILD, and SIB are used by Algorithms B and C. The
striking feature is that these Ąve links constitute a Şcomplete setŤ in the sense
that Algorithms B and C do virtually the minimum amount of work as they
move through the Data Table. Whenever they need to refer to another Data
Table entry, its address is immediately available; there is no need to conduct a
search. It would be difficult to imagine how Algorithms B and C could possibly
be made any faster if any additional link information were present in the table.
(See exercise 11, however.)

Each link Ąeld may be viewed as a clue to the program, planted there in
order to make the algorithms run faster. (Of course, the algorithm that builds
the tables, Algorithm A, runs correspondingly slower, since it has more links to
Ąll in. But table-building is done only once.) It is clear, on the other hand, that
the Data Table constructed above contains much redundant information. Let us
consider what would happen if we were to delete certain of the link Ąelds.

The PREV link, while not used in Algorithm C, is extremely important for
Algorithm B, and it seems to be an essential part of any COBOL compiler unless
lengthy searches are to be carried out. A Ąeld that links together all items of
the same name therefore seems essential for efficiency. We could perhaps modify
the strategy slightly and adopt circular linking instead of terminating each list
with Λ, but there is no reason to do this unless other link Ąelds are changed or
eliminated.

The PARENT link is used in both Algorithms B and C, although its use in
Algorithm C could be avoided if we used an auxiliary stack in that algorithm, or
if we augmented SIB so that thread links are included (as in Section 2.3.2). So we
see that the PARENT link has been used in an essential way only in Algorithm B. If
the SIB link were threaded, so that the items that now have SIB = Λ would have
SIB = PARENT instead, it would be possible to locate the parent of any data item
by following the SIB links; the added thread links could be distinguished either
by having a new TAG Ąeld in each node that says whether the SIB link is a thread,
or by the condition ŞSIB(P) < PŤ if the Data Table entries are kept consecutively
in memory in order of appearance. This would mean a short search would be
necessary in step B5, and the algorithm would be correspondingly slower.

The NAME link is used by the algorithms only in steps B6 and C3. In both
cases we could make the tests ŞNAME(S) = PkŤ and ŞNAME(P) = NAME(Q)Ť in
other ways if the NAME link were not present (see exercise 10), but this would
signiĄcantly slow down the inner loops of both Algorithms B and C. Here again
we see a trade-off between the space for a link and the speed of the algorithms.
(The speed of Algorithm C is not especially signiĄcant in COBOL compilers, when
typical uses of MOVE CORRESPONDING are considered; but Algorithm B should be
fast.) Experience indicates that other important uses are found for the NAME link
within a COBOL compiler, especially in printing diagnostic information.

Algorithm A builds the Data Table step by step, and it never has occasion
to return a node to the pool of available storage; so we usually Ąnd that Data
Table entries take consecutive memory locations in the order of appearance of

2.4 MULTILINKED STRUCTURES 433

the data items in the COBOL source program. Thus in our example (5), locations
A1, B3, . . . would follow each other. This sequential nature of the Data Table
leads to certain simpliĄcations; for example, the CHILD link of each node is
either Λ or it points to the node immediately following, so CHILD can be reduced
to a 1-bit Ąeld. Alternatively, CHILD could be removed in favor of a test if
PARENT(P + c) = P, where c is the node size in the Data Table.

Thus the Ąve link Ąelds are not all essential, although they are helpful from
the standpoint of speed in Algorithms B and C. This situation is fairly typical
of most multilinked structures.

It is interesting to note that at least half a dozen people writing COBOL
compilers in the early 1960s arrived independently at this same way to maintain
a Data Table using Ąve links (or four of the Ąve, usually with the CHILD link
missing). The Ąrst publication of such a technique was by H. W. Lawson, Jr.
[ACM National Conference Digest (Syracuse, N.Y.: 1962)]. But in 1965 an
ingenious technique for achieving the effects of Algorithms B and C, using only
two link Ąelds and sequential storage of the Data Table, without a very great
decrease in speed, was introduced by David Dahm; see exercises 12 through 14.

EXERCISES

1. [00] Considering COBOL data conĄgurations as tree structures, are the data items
listed by a COBOL programmer in preorder, postorder, or neither of those orders?

2. [10] Comment about the running time of Algorithm A.

3. [22] The PL/I language accepts data structures like those in COBOL, except that
any sequence of level numbers is possible. For example, the sequence

1 A 1 A

3 B 2 B

5 C is equivalent to 3 C

4 D 3 D

2 E 2 E

In general, rule (a) is modiĄed to read, ŞThe items of a group must have a sequence
of nonincreasing level numbers, all of which are greater than the level number of the
group name.Ť What modiĄcations to Algorithm A would change it from the COBOL
convention to this PL/I convention?

x 4. [26] Algorithm A does not detect the error if a COBOL programmer violates rule
(c) stated in the text. How should Algorithm A be modiĄed so that only data structures
satisfying rule (c) will be accepted?

5. [20] In practice, Algorithm B may be given a linked list of Symbol Table references
as input, instead of what we called ŞP0, P1, . . . , Pn.Ť Let T be a pointer variable such
that

INFO(T)≡P0, INFO(RLINK(T))≡P1, . . . , INFO(RLINK
[n](T))≡Pn, RLINK[n+1]

(T)=Λ.

Show how to modify Algorithm B so that it uses such a linked list as input.

6. [23] The PL/I language accepts data structures much like those in COBOL, but
does not make the restriction of rule (c); instead, we have the rule that a qualiĄed
reference (3) is unambiguous if it shows ŞcompleteŤ qualiĄcation Ů that is, if Aj+1 is

434 INFORMATION STRUCTURES 2.4

the parent of Aj for 0 ≤ j < n, and if An has no parent. Rule (c) is now weakened
to the simple condition that no two items of a group may have the same name. The
second ŞCCŤ in (2) would be referred to as ŞCC OF AAŤ without ambiguity; the three
data items

1 A

2 A

3 A

would be referred to as ŞAŤ, ŞA OF AŤ, ŞA OF A OF AŤ with respect to the PL/I con-
vention just stated. [Note: Actually the word ŞOFŤ is replaced by a period in PL/I,
and the order is reversed; ŞCC OF AAŤ is really written ŞAA.CCŤ in PL/I, but this is not
important for the purposes of the present exercise.] Show how to modify Algorithm B
so that it follows the PL/I convention.

7. [15] Given the data structures in (1), what does the COBOL statement ŞMOVE
CORRESPONDING SALES TO PURCHASESŤ mean?

8. [10] Under what circumstances is ŞMOVE CORRESPONDING α TO βŤ exactly the
same as ŞMOVE α TO βŤ, according to the deĄnition in the text?

9. [M23] Prove that Algorithm C is correct.

10. [23] (a) How could the test ŞNAME(S) = PkŤ in step B6 be performed if there were
no NAME link in the Data Table nodes? (b) How could the test ŞNAME(P) = NAME(Q)Ť
in step C3 be performed if there were no NAME link in the Data Table entries? (Assume
that all other links are present as in the text.)

x 11. [23] What additional links or changes in the strategy of the algorithms of the text
could make Algorithm B or Algorithm C faster?

12. [25] (D. M. Dahm.) Consider representing the Data Table in sequential locations
with just two links for each item:

PREV (as in the text);

SCOPE (a link to the last elementary item in this group).

We have SCOPE(P) = P if and only if NODE(P) represents an elementary item. For
example, the Data Table of (5) would be replaced by

PREV SCOPE PREV SCOPE PREV SCOPE

A1: Λ G4 F3: Λ G4 B5: B3 B5
B3: Λ D7 G4: Λ G4 C5: C7 G9
C7: Λ C7 H1: Λ G9 E9: E3 E9
D7: Λ D7 F5: F3 G8 D9: D7 D9
E3: Λ E3 G8: G4 G8 G9: G8 G9

(Compare with (5) of Section 2.3.3.) Notice that NODE(P) is part of the tree below
NODE(Q) if and only if Q < P ≤ SCOPE(Q). Design an algorithm that performs the
function of Algorithm B when the Data Table has this format.

x 13. [24] Give an algorithm to substitute for Algorithm A when the Data Table is to
have the format shown in exercise 12.

x 14. [28] Give an algorithm to substitute for Algorithm C when the Data Table has
the format shown in exercise 12.

15. [25] (David S. Wise.) Reformulate Algorithm A so that no extra storage is used
for the stack. [Hint: The SIB Ąelds of all nodes pointed to by the stack are Λ in the
present formulation.]

2.5 DYNAMIC STORAGE ALLOCATION 435

2.5. DYNAMIC STORAGE ALLOCATION

We have seen how the use of links implies that data structures need not be
sequentially located in memory; a number of tables may independently grow and
shrink in a common pooled memory area. However, our discussions have always
tacitly assumed that all nodes have the same size Ů that every node occupies a
certain Ąxed number of memory cells.

For a great many applications, a suitable compromise can be found so that
a uniform node size is indeed used for all structures (for example, see exercise 2).
Instead of simply taking the maximum size that is needed and wasting space in
smaller nodes, it is customary to pick a rather small node size and to employ
what may be called the classical linked-memory philosophy: ŞIf there isnŠt room
for the information here, letŠs put it somewhere else and plant a link to it.Ť

For a great many other applications, however, a single node size is not
reasonable; we often wish to have nodes of varying sizes sharing a common
memory area. Putting this another way, we want algorithms for reserving and
freeing variable-size blocks of memory from a larger storage area, where these
blocks are to consist of consecutive memory locations. Such techniques are
generally called dynamic storage allocation algorithms.

Sometimes, often in simulation programs, we want dynamic storage alloca-
tion for nodes of rather small sizes (say one to ten words); and at other times,
often in operating systems, we are dealing primarily with rather large blocks of
information. These two points of view lead to slightly different approaches to
dynamic storage allocation, although the methods have much in common. For
uniformity in terminology between these two approaches, we will generally use
the terms block and area rather than ŞnodeŤ in this section, to denote a set of
contiguous memory locations.

In 1975 or so, several authors began to call the pool of available memory
a Şheap.Ť But in the present series of books, we will use that word only in its
more traditional sense related to priority queues (see Section 5.2.3).

A. Reservation. Figure 42 shows a typical memory map or Şcheckerboard,Ť a
chart showing the current state of some memory pool. In this case the memory is
shown partitioned into 53 blocks of storage that are Şreserved,Ť or in use, mixed
together with 21 ŞfreeŤ or ŞavailableŤ blocks that are not in use. After dynamic
storage allocation has been in operation for awhile, the computer memory will
perhaps look something like this. Our Ąrst problem is to answer two questions:

a) How is this partitioning of available space to be represented inside the
computer?

b) Given such a representation of the available spaces, what is a good algorithm
for Ąnding a block of n consecutive free spaces and reserving them?

The answer to question (a) is, of course, to keep a list of the available space
somewhere; this is almost always done best by using the available space itself to
contain such a list. (An exception is the case when we are allocating storage for
a disk Ąle or other memory in which nonuniform access time makes it better to
maintain a separate directory of available space.)

436 INFORMATION STRUCTURES 2.5

00000

20000

40000

60000

80000

100000

120000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Reserved area:

Free area:

Fig. 42. A memory map.

Thus, we can link together the available segments: The Ąrst word of each
free storage area can contain the size of that block and the address of the next
free area. The free blocks can be linked together in increasing or decreasing order
of size, or in order of memory address, or in essentially random order.

For example, consider Fig. 42, which illustrates a memory of 131,072 words,
addressed from 0 to 131071. If we were to link together the available blocks in
order of memory location, we would have one variable AVAIL pointing to the
Ąrst free block (in this case AVAIL would equal 0), and the other blocks would
be represented as follows:

location SIZE LINK

0 101 632
632 42 1488

...
...

... [17 similar entries]
73654 1909 77519
77519 53553 Λ [special marker for last link]

Thus locations 0 through 100 form the Ąrst available block; after the reserved
areas 101Ű290 and 291Ű631 shown in Fig. 42, we have more free space in location
632Ű673; etc.

As for question (b), if we want n consecutive words, clearly we must locate
some block of m ≥ n available words and reduce its size to m−n. (Furthermore,
when m = n, we must also delete this block from the list.) There may be several
blocks with n or more cells, and so the question becomes, which area should be
chosen?

Two principal answers to this question suggest themselves: We can use the
best-Ąt method or the Ąrst-Ąt method. In the former case, we decide to choose
an area with m cells, where m is the smallest value present that is n or more.
This might require searching the entire list of available space before a decision
can be made. The Ąrst-Ąt method, on the other hand, simply chooses the Ąrst
area encountered that has ≥ n words.

Historically, the best-Ąt method was widely used for several years; this
naturally appears to be a good policy since it saves the larger available areas

2.5 DYNAMIC STORAGE ALLOCATION 437

for a later time when they might be needed. But several objections to the best-
Ąt technique can be raised: It is rather slow, since it involves a fairly long search;
if best-Ąt is not substantially better than Ąrst-Ąt for other reasons, this extra
searching time is not worthwhile. More importantly, the best-Ąt method tends
to increase the number of very small blocks, and proliferation of small blocks is
usually undesirable. There are certain situations in which the Ąrst-Ąt technique
is demonstrably better than the best-Ąt method; for example, suppose we are
given just two available areas of memory, of sizes 1300 and 1200, and suppose
there are subsequent requests for blocks of sizes 1000, 1100, and 250:

memory available areas, available areas,
request Ąrst-Ąt best-Ąt

Ů 1300, 1200 1300, 1200
1000 300, 1200 1300, 200
1100 300, 100 200, 200
250 50, 100 stuck

(1)

(A contrary example appears in exercise 7.) The point is that neither method
clearly dominates the other, hence the simple Ąrst-Ąt method can be recom-
mended.

Algorithm A (First-Ąt method). Let AVAIL point to the Ąrst available block
of storage, and suppose that each available block with address P has two Ąelds:
SIZE(P), the number of words in the block; and LINK(P), a pointer to the next
available block. The last pointer is Λ. This algorithm searches for and reserves
a block of N words, or reports failure.

A1. [Initialize.] Set Q ← LOC(AVAIL). (Throughout the algorithm we use two
pointers, Q and P, which are generally related by the condition P = LINK(Q).
We assume that LINK(LOC(AVAIL)) = AVAIL.)

A2. [End of list?] Set P ← LINK(Q). If P = Λ, the algorithm terminates
unsuccessfully; there is no room for a block of N consecutive words.

A3. [Is SIZE enough?] If SIZE(P) ≥ N, go to A4; otherwise set Q← P and return
to step A2.

A4. [Reserve N.] Set K ← SIZE(P) − N. If K = 0, set LINK(Q) ← LINK(P)

(thereby removing an empty area from the list); otherwise set SIZE(P)← K.
The algorithm terminates successfully, having reserved an area of length N

beginning with location P + K.

This algorithm is certainly straightforward enough. However, a signiĄcant
improvement in its running speed can be made with only a rather slight change
in strategy. This improvement is quite important, and the reader will Ąnd it a
pleasure to discover it without being told the secret (see exercise 6).

Algorithm A may be used whether storage allocation is desired for small N
or large N. Let us assume temporarily, however, that we are primarily interested
in large values of N. Then notice what happens when SIZE(P) is equal to N+1 in
that algorithm: We get to step A4 and reduce SIZE(P) to 1. In other words, an

438 INFORMATION STRUCTURES 2.5

available block of size 1 has just been created; this block is so small it is virtually
useless, and it just clogs up the system. We would have been better off if we had
reserved the whole block of N + 1 words, instead of saving the extra word; it is
often better to expend a few words of memory to avoid handling unimportant
details. Similar remarks apply to blocks of N + K words when K is very small.

If we allow the possibility of reserving slightly more than N words it will be
necessary to remember how many words have been reserved, so that later when
this block becomes available again the entire set of N + K words is freed. This
added amount of bookkeeping means that we are tying up space in every block
in order to make the system more efficient only in certain circumstances when
a tight Ąt is found; so the strategy doesnŠt seem especially attractive. However,
a special control word as the Ąrst word of each variable-size block often turns
out to be desirable for other reasons, and so it is usually not unreasonable to
expect the SIZE Ąeld to be present in the Ąrst word of all blocks, whether they
are available or reserved.

In accordance with these conventions, we would modify step A4 above to
read as follows:

A4′. [Reserve ≥ N.] Set K ← SIZE(P) − N. If K < c (where c is a small positive
constant chosen to reĆect an amount of storage we are willing to sacriĄce in
the interests of saving time), set LINK(Q)← LINK(P) and L← P. Otherwise
set SIZE(P) ← K, L ← P + K, SIZE(L) ← N. The algorithm terminates
successfully, having reserved an area of length N or more beginning with
location L.

A value for the constant c of about 8 or 10 is suggested, although very little
theory or empirical evidence exists to compare this with other choices. When
the best-Ąt method is being used, the test of K < c is even more important than
it is for the Ąrst-Ąt method, because tighter Ąts (smaller values of K) are much
more likely to occur, and the number of available blocks should be kept as small
as possible for that algorithm.

B. Liberation. Now letŠs consider the inverse problem: How should we return
blocks to the available space list when they are no longer needed?

It is perhaps tempting to dismiss this problem by using garbage collection
(see Section 2.3.5); we could follow a policy of simply doing nothing until space
runs out, then searching for all the areas currently in use and fashioning a new
AVAIL list.

The idea of garbage collection is not to be recommended, however, for all
applications. In the Ąrst place, we need a fairly ŞdisciplinedŤ use of pointers if we
are to be able to guarantee that all areas currently in use will be easy to locate,
and this amount of discipline is often lacking in the applications considered here.
Secondly, as we have seen before, garbage collection tends to be slow when the
memory is nearly full.

There is another more important reason why garbage collection is not satis-
factory, due to a phenomenon that did not confront us in our previous discussion
of the technique: Suppose that there are two adjacent areas of memory, both

2.5 DYNAMIC STORAGE ALLOCATION 439

of which are available, but because of the garbage-collection philosophy one of
them (shown shaded) is not in the AVAIL list.

(2)

In this diagram, the heavily shaded areas at the extreme left and right are
unavailable. We may now reserve a section of the area known to be available:

(3)

If garbage collection occurs at this point, we have two separate free areas,

(4)

Boundaries between available and reserved areas have a tendency to perpetuate
themselves, and as time goes on the situation gets progressively worse. But if
we had used a philosophy of returning blocks to the AVAIL list as soon as they
become free, and collapsing adjacent available areas together, we would have
collapsed (2) into

(5)

and we would have obtained

(6)

which is much better than (4). This phenomenon causes the garbage-collection
technique to leave memory more broken up than it should be.

In order to remove this difficulty, we can use garbage collection together
with the process of compacting memory, that is, moving all the reserved blocks
into consecutive locations, so that all available blocks come together whenever
garbage collection is done. The allocation algorithm now becomes completely
trivial by contrast with Algorithm A, since there is only one available block at all
times. Even though this technique takes time to recopy all the locations that are
in use, and to change the value of the link Ąelds therein, it can be applied with
reasonable efficiency when there is a disciplined use of pointers, and when there
is a spare link Ąeld in each block for use by the garbage collection algorithms.
(See exercise 33.)

Since many applications do not meet the requirements for the feasibility of
garbage collection, we shall now study methods for returning blocks of memory
to the available space list. The only difficulty in these methods is the collapsing
problem: Two adjacent free areas should be merged into one. In fact, when an
area bounded by two available blocks becomes free, all three areas should be
merged together into one. In this way a good balance is obtained in memory
even though storage areas are continually reserved and freed over a long period
of time. (For a proof of this fact, see the ŞĄfty-percent ruleŤ below.)

The problem is to determine whether the areas at either side of the returned
block are currently available; and if they are, we want to update the AVAIL list
properly. The latter operation is a little more difficult than it sounds.

440 INFORMATION STRUCTURES 2.5

The Ąrst solution to these problems is to maintain the AVAIL list in order of
increasing memory locations.

Algorithm B (Liberation with sorted list). Under the assumptions of Algo-
rithm A, with the additional assumption that the AVAIL list is sorted by memory
location (that is, if P points to an available block and LINK(P) ̸= Λ, then
LINK(P) > P), this algorithm adds the block of N consecutive cells beginning
at location P0 to the AVAIL list. We naturally assume that none of these N cells
is already available.

B1. [Initialize.] Set Q← LOC(AVAIL). (See the remarks in step A1 above.)

B2. [Advance P.] Set P ← LINK(Q). If P = Λ, or if P > P0, go to B3; otherwise
set Q← P and repeat step B2.

B3. [Check upper bound.] If P0 + N = P and P ̸= Λ, set N ← N + SIZE(P) and
set LINK(P0)← LINK(P). Otherwise set LINK(P0)← P.

B4. [Check lower bound.] If Q + SIZE(Q) = P0 (we assume that

SIZE(LOC(AVAIL)) = 0,

so this test always fails when Q = LOC(AVAIL)), set SIZE(Q)← SIZE(Q)+N

and LINK(Q)← LINK(P0). Otherwise set LINK(Q)← P0, SIZE(P0)← N.

Steps B3 and B4 do the desired collapsing, based on the fact that the pointers
Q < P0 < P are the beginning locations of three consecutive available areas.

If the AVAIL list is not maintained in order of locations, the reader can see
that a Şbrute forceŤ approach to the collapsing problem would require a complete
search through the entire AVAIL list; Algorithm B reduces this to a search through
about half of the AVAIL list (in step B2) on the average. Exercise 11 shows how
Algorithm B can be modiĄed so that, on the average, only about one-third of the
AVAIL list must be searched. But obviously, when the AVAIL list is long, all of
these methods are much slower than we want them to be. IsnŠt there some way
to reserve and free storage areas so that we donŠt need to do extensive searching
through the AVAIL list?

We will now consider a method that eliminates all searching when storage
is returned and that can be modiĄed, as in exercise 6, to avoid almost all of
the searching when storage is reserved. The technique makes use of a TAG Ąeld
at both ends of each block, and a SIZE Ąeld in the Ąrst word of each block;
this overhead is negligible when reasonably large blocks are being used, although
it is perhaps too much of a penalty to pay in situations when the blocks have a
very small average size. Another method described in exercise 19 requires only
one bit in the Ąrst word of each block, at the expense of a little more running
time and a slightly more complicated program.

At any rate, let us now assume that we donŠt mind adding a little bit of
control information, in order to save a good deal of time over Algorithm B when
the AVAIL list is long. The method we will describe assumes that each block has

2.5 DYNAMIC STORAGE ALLOCATION 441

the following form:

Reserved block (TAG = Ş+Ť) Free block (TAG = Ş−Ť)

+ SIZE First word - SIZE LINK

Second word LINK

...

SIZE-2 words

...

+ Last word - SIZE

(7)

The idea in the following algorithm is to maintain a doubly linked AVAIL list,
so that entries may conveniently be deleted from random parts of the list. The
TAG Ąeld at either end of a block can be used to control the collapsing process,
since we can tell easily whether or not both adjacent blocks are available.

Double linking is achieved in a familiar way, by letting the LINK in the Ąrst
word point to the next free block in the list, and letting the LINK in the second
word point back to the previous block; thus, if P is the address of an available
block, we always have

LINK(LINK(P) + 1) = P = LINK(LINK(P + 1)). (8)

To ensure proper Şboundary conditions,Ť the list head is set up as follows:

- 0 0

- 0 0 to last block in available space list

to first block in available space list

LOC(AVAIL)+1:

LOC(AVAIL):
(9)

A Ąrst-Ąt reservation algorithm for this technique may be designed very
much like Algorithm A, so we shall not consider it here (see exercise 12). The
principal new feature of this method is the way the block can be freed in
essentially a Ąxed amount of time:

Algorithm C (Liberation with boundary tags). Assume that blocks of locations
have the forms shown in (7), and assume that the AVAIL list is doubly linked, as
described above. This algorithm puts the block of locations starting with address
P0 into the AVAIL list. If the pool of available storage runs from locations m0

through m1, inclusive, the algorithm assumes for convenience that

TAG(m0 − 1) = TAG(m1 + 1) = Ş+Ť.

C1. [Check lower bound.] If TAG(P0− 1) = Ş+Ť, go to C3.

C2. [Delete lower area.] Set P← P0−SIZE(P0− 1), and then set P1← LINK(P),
P2 ← LINK(P + 1), LINK(P1 + 1) ← P2, LINK(P2) ← P1, SIZE(P) ←
SIZE(P) + SIZE(P0), P0← P.

C3. [Check upper bound.] Set P← P0 + SIZE(P0). If TAG(P) = Ş+Ť, go to C5.

C4. [Delete upper area.] Set P1← LINK(P), P2← LINK(P+1), LINK(P1+1)←
P2, LINK(P2)← P1, SIZE(P0)← SIZE(P0) + SIZE(P), P← P + SIZE(P).

442 INFORMATION STRUCTURES 2.5

C5. [Add to AVAIL list.] Set SIZE(P− 1) ← SIZE(P0), LINK(P0) ← AVAIL,
LINK(P0 + 1) ← LOC(AVAIL), LINK(AVAIL + 1) ← P0, AVAIL ← P0,
TAG(P0)← TAG(P− 1)← Ş−Ť.

The steps of Algorithm C are straightforward consequences of the storage
layout (7); a slightly longer algorithm that is a little faster appears in exercise 15.
In step C5, AVAIL is an abbreviation for LINK(LOC(AVAIL)), as shown in (9).

C. The Şbuddy system.Ť We will now study another approach to dynamic
storage allocation, suitable for use with binary computers. This method uses one
bit of overhead in each block, and it requires all blocks to be of length 1, 2, 4,
8, or 16, etc. If a block is not 2k words long for some integer k, the next higher
power of 2 is chosen and extra unused space is allocated accordingly.

The idea of this method is to keep separate lists of available blocks of each
size 2k, 0 ≤ k ≤ m. The entire pool of memory space under allocation consists
of 2m words, which can be assumed to have the addresses 0 through 2m − 1.
Originally, the entire block of 2m words is available. Later, when a block of
2k words is desired, and if nothing of this size is available, a larger available
block is split into two equal parts; ultimately, a block of the right size 2k will
appear. When one block splits into two (each of which is half as large as the
original), these two blocks are called buddies. Later when both buddies are
available again, they coalesce back into a single block; thus the process can be
maintained indeĄnitely, unless we run out of space at some point.

The key fact underlying the practical usefulness of this method is that if we
know the address of a block (the memory location of its Ąrst word), and if we
also know the size of that block, we know the address of its buddy. For example,
the buddy of the block of size 16 beginning in binary location 101110010110000
is a block starting in binary location 101110010100000. To see why this must be
true, we Ąrst observe that as the algorithm proceeds, the address of a block of
size 2k is a multiple of 2k. In other words, the address in binary notation has at
least k zeros at the right. This observation is easily justiĄed by induction: If it
is true for all blocks of size 2k+1, it is certainly true when such a block is halved.

Therefore a block of size, say, 32 has an address of the form xx. . . x00000
(where the xŠs represent either 0 or 1); if it is split, the newly formed buddy blocks
have the addresses xx. . . x00000 and xx. . . x10000. In general, let buddyk(x) =
address of the buddy of the block of size 2k whose address is x; we Ąnd that

buddyk(x) =

x+ 2k, if xmod 2k+1 = 0;
x− 2k, if xmod 2k+1 = 2k.

(10)

This function is readily computed with the Şexclusive orŤ instruction (sometimes
called Şselective complementŤ or Şadd without carryŤ) usually found on binary
computers; see exercise 28.

The buddy system makes use of a one-bit TAG Ąeld in each block:

TAG(P) = 0, if the block with address P is reserved;
TAG(P) = 1, if the block with address P is available.

(11)

2.5 DYNAMIC STORAGE ALLOCATION 443

This TAG Ąeld is present in all blocks, and it must not be tampered with by
the users who reserve blocks. The available blocks also have two link Ąelds,
LINKF and LINKB, which are the usual forward and backward links of a doubly
linked list; and they also have a KVAL Ąeld to specify k when their size is 2k.
The algorithms below make use of the table locations AVAIL[0], AVAIL[1], . . . ,
AVAIL[m], which serve respectively as the heads of the lists of available storage
of sizes 1, 2, 4, . . . , 2m. These lists are doubly linked, so as usual the list heads
contain two pointers (see Section 2.2.5):

AVAILF[k] = LINKF(LOC(AVAIL[k])) = link to rear of AVAIL[k] list;
AVAILB[k] = LINKB(LOC(AVAIL[k])) = link to front of AVAIL[k] list.

(12)

Initially, before any storage has been allocated, we have

AVAILF[m] = AVAILB[m] = 0,

LINKF(0) = LINKB(0) = LOC(AVAIL[m]), (13)

TAG(0) = 1, KVAL(0) = m

(indicating a single available block of length 2m, beginning in location 0), and

AVAILF[k] = AVAILB[k] = LOC(AVAIL[k]), for 0 ≤ k < m (14)

(indicating empty lists for available blocks of lengths 2k for all k < m).
From this description of the buddy system, the reader may Ąnd it enjoyable

to design the necessary algorithms for reserving and freeing storage areas before
looking at the algorithms given below. Notice the comparative ease with which
blocks can be halved in the reservation algorithm.

Algorithm R (Buddy system reservation). This algorithm Ąnds and reserves
a block of 2k locations, or reports failure, using the organization of the buddy
system as explained above.

R1. [Find block.] Let j be the smallest integer in the range k ≤ j ≤ m for
which AVAILF[j] ̸= LOC(AVAIL[j]), that is, for which the list of available
blocks of size 2j is not empty. If no such j exists, the algorithm terminates
unsuccessfully, since there are no known available blocks of sufficient size to
meet the request.

R2. [Remove from list.] Set L ← AVAILB[j], P ← LINKB(L), AVAILB[j] ← P,
LINKF(P)← LOC(AVAIL[j]), and TAG(L)← 0.

R3. [Split required?] If j = k, the algorithm terminates (we have found and
reserved an available block starting at address L).

R4. [Split.] Decrease j by 1. Then set P ← L + 2j , TAG(P) ← 1, KVAL(P) ← j,
LINKF(P) ← LINKB(P) ← LOC(AVAIL[j]), AVAILF[j] ← AVAILB[j] ← P.
(This splits a large block and enters the unused half in the AVAIL[j] list,
which was empty.) Go back to step R3.

Algorithm S (Buddy system liberation). This algorithm returns a block of 2k

locations, starting in address L, to free storage, using the organization of the
buddy system as explained above.

444 INFORMATION STRUCTURES 2.5

S1. [Is buddy available?] Set P ← buddyk(L).

See Eq. (10).

If k = m or if

TAG(P) = 0, or if TAG(P) = 1 and KVAL(P) ̸= k, go to S3.

S2. [Combine with buddy.] Set

LINKF(LINKB(P))← LINKF(P), LINKB(LINKF(P))← LINKB(P).

(This removes block P from the AVAIL[k] list.) Then set k ← k + 1, and if
P < L set L← P. Return to S1.

S3. [Put on list.] Set TAG(L)← 1, P← AVAILF[k], LINKF(L)← P, LINKB(P)← L,
KVAL(L)← k, LINKB(L)← LOC(AVAIL[k]), AVAILF[k]← L. (This puts
block L on the AVAIL[k] list.)

D. Comparison of the methods. The mathematical analysis of these dynamic
storage-allocation algorithms has proved to be quite difficult, but there is one
interesting phenomenon that is fairly easy to analyze, namely the ŞĄfty-percent
ruleŤ:

If Algorithms A and B are used continually in such a way that the system
tends to an equilibrium condition, where there are N reserved blocks in the
system, on the average, each equally likely to be the next one freed, and
where the quantity K in Algorithm A takes on nonzero values (or, more
generally, values ≥ c as in step A4′) with probability p, then the average
number of available blocks tends to approximately 1

2pN.

This rule tells us approximately how long the AVAIL list will be. When the
quantity p is near 1 Ů this will happen if c is very small and if the block sizes are
infrequently equal to each other Ů we have about half as many available blocks
as unavailable ones; hence the name ŞĄfty-percent rule.Ť

It is not hard to derive this rule. Consider the following memory map:

A B C C B A B B B C B B

This shows the reserved blocks divided into three categories:

A: when freed, the number of available blocks will decrease by one;
B: when freed, the number of available blocks will not change;
C: when freed, the number of available blocks will increase by one.

Now let N be the number of reserved blocks, and let M be the number of
available ones; let A, B, and C be the number of blocks of the types identiĄed
above. We have

N = A+B + C

M = 1
2 (2A+B + ϵ)

(15)

where ϵ = 0, 1, or 2 depending on conditions at the lower and upper boundaries.
Let us assume that N is essentially constant, but that A, B, C, and ϵ are

random quantities that reach a stationary distribution after a block is freed and a
(slightly different) stationary distribution after a block is allocated. The average
change in M when a block is freed is the average value of (C−A)/N ; the average
change in M when a block is allocated is −1 + p. So the equilibrium assumption

2.5 DYNAMIC STORAGE ALLOCATION 445

tells us that the average value of C −A−N + pN is zero. But then the average
value of 2M is pN plus the average value of ϵ, since 2M = N+A−C+ϵ by (15).
The Ąfty-percent rule follows.

Our assumption that each deletion applies to a random reserved block will
be valid if the lifetime of a block is an exponentially distributed random variable.
On the other hand, if all blocks have roughly the same lifetime, this assumption
is false; John E. Shore has pointed out that type A blocks tend to be ŞolderŤ
than type C blocks when allocations and liberations tend to have a somewhat
Ąrst-in-Ąrst-out character, since a sequence of adjacent reserved blocks tends to
be in order from youngest to oldest and since the most recently allocated block
is almost never type A. This tends to produce a smaller number of available
blocks, giving even better performance than the Ąfty-percent rule would predict.
[See CACM 20 (1977), 812Ű820.]

For more detailed information about the Ąfty-percent rule, see D. J. M.
Davies, BIT 20 (1980), 279Ű288; C. M. Reeves, Comp. J. 26 (1983), 25Ű35;
G. Ch. PĆug, Comp. J. 27 (1984), 328Ű333.

Besides this interesting rule, our knowledge of the performance of dynamic
storage allocation algorithms is based almost entirely on Monte Carlo exper-
iments. Readers will Ąnd it instructive to conduct their own simulation ex-
periments when they are choosing between storage allocation algorithms for a
particular machine and a particular application or class of applications. The
author carried out several such experiments just before writing this section (and,
indeed, the Ąfty-percent rule was noticed during those experiments before a
proof for it was found); let us brieĆy examine the methods and results of those
experiments here.

The basic simulation program ran as follows, with TIME initially zero and
with the memory area initially all available:

P1. [Tick.] Advance TIME by 1.

P2. [Sync.] Free all blocks in the system that are scheduled to be freed at the
current value of TIME.

P3. [Get data.] Calculate two quantities S (a random size) and T (a random
lifetime), based on some probability distributions, using the methods of
Chapter 3.

P4. [Use data.] Reserve a new block of length S, which is due to be freed at
(TIME + T). Return to P1.

Whenever TIME was a multiple of 200, detailed statistics about the performance
of the reservation and liberation algorithms were printed. The same sequence
of values of S and T was used for each pair of algorithms tested. After TIME

advanced past 2000, the system usually had reached a more or less steady state
that gave every indication of being maintained indeĄnitely thereafter. However,
depending on the total amount of storage available and on the distributions of
S and T in step P3, the allocation algorithms would occasionally fail to Ąnd
enough space and the simulation experiment was then terminated.

446 INFORMATION STRUCTURES 2.5

Let C be the total number of memory locations available, and let S̄ and T̄
denote the average values of S and T in step P3. It is easy to see that the expected
number of unavailable words of memory at any given time is S̄T̄ , once TIME

is sufficiently large. When S̄T̄ was greater than about 2
3C in the experiments,

memory overĆow usually occurred, often before C words of memory were actually
needed. The memory was able to become over 90 percent Ąlled when the block
size was small compared to C, but when the block sizes were allowed to exceed
1
3C (as well as taking on much smaller values) the program tended to regard the
memory as ŞfullŤ when fewer than 1

2C locations were actually in use. Empirical
evidence suggests strongly that block sizes larger than 1

10C should not be used
with dynamic storage allocation if effective operation is expected.

The reason for this behavior can be understood in terms of the Ąfty-percent
rule: If the system reaches an equilibrium condition in which the size f of an
average free block is less than the size r of an average block in use, we can expect
to get an unĄllable request unless a large free block is available for emergencies.
Hence f ≥ r in a saturated system that doesnŠt overĆow, and we have C =
fM + rN ≥ rM + rN ≈ (p/2 + 1)rN. The total memory in use is therefore
rN ≤ C/(p/2 + 1); when p ≈ 1 we are unable to use more than about 2/3 of the
memory cells.

The experiments were conducted with three size distributions for S:

(S1) an integer chosen uniformly between 100 and 2000;
(S2) sizes (1, 2, 4, 8, 16, 32) chosen with respective probabilities (1

2 ,
1
4 ,

1
8 ,

1
16 ,

1
32 ,

1
32);

(S3) sizes (10, 12, 14, 16, 18, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200,
250, 500, 1000, 2000, 3000, 4000) selected with equal probability.

The time distribution T was usually a random integer chosen uniformly between
1 and t, for Ąxed t = 10, 100, or 1000.

Experiments were also made in which T was chosen uniformly between 1 and
min

5
4U

, 12500

in step P3, where U is the number of time units remaining

until the next scheduled freeing of some currently reserved block in the system.
This time distribution was meant to simulate an Şalmost-last-in-Ąrst-outŤ be-
havior: For if T were always chosen ≤ U, the storage allocation system would
degenerate into simply a stack operation requiring no complex algorithms. (See
exercise 1.) The stated distribution causes T to be chosen greater than U about
20 percent of the time, so we have almost, but not quite, a stack operation. When
this distribution was used, algorithms such as A, B, and C behaved much better
than usual; there were rarely, if ever, more than two items in the entire AVAIL

list, while there were about 14 reserved blocks. On the other hand, the buddy
system algorithms, R and S, were slower when this distribution was used, because
they tend to split and coalesce blocks more frequently in a stack-like operation.
The theoretical properties of this time distribution appear to be quite difficult
to deduce (see exercise 32).

Figure 42, which appeared near the beginning of this section, was the
conĄguration of memory at TIME = 5000, with size distribution (S1) and with

2.5 DYNAMIC STORAGE ALLOCATION 447

00000

20000

40000

60000

80000

100000

120000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Fig. 43. Memory map obtained with the best-Ąt method. (Compare this with Fig. 42,
which shows the Ąrst-Ąt method, and Fig. 44, which shows the buddy system, for the
same sequence of storage requests.)

the times distributed uniformly in {1, . . . , 100}, using the Ąrst-Ąt method just as
in Algorithms A and B above. For this experiment, the probability p that enters
into the ŞĄfty-percent ruleŤ was essentially 1, so we would expect about half as
many available blocks as reserved blocks. Actually Fig. 42 shows 21 available
and 53 reserved. This does not disprove the Ąfty-percent rule: For example,
at TIME = 4600 there were 25 available and 49 reserved. The conĄguration in
Fig. 42 merely shows how the Ąfty-percent rule is subject to statistical variations.
The number of available blocks generally ranged between 20 and 30, while the
number of reserved blocks was generally between 45 and 55.

Figure 43 shows the conĄguration of memory obtained with the same data
as Fig. 42 but with the best-Ąt method used instead of the Ąrst-Ąt method. The
constant c in step A4′ was set to 16, to eliminate small blocks, and as a result
the probability p dropped to about 0.7 and there were fewer available areas.

When the time distribution was changed to vary from 1 to 1000 instead of
1 to 100, situations precisely analogous to those shown in Figs. 42 and 43 were
obtained, with all appropriate quantities approximately multiplied by 10. For
example, there were 515 reserved blocks; and 240 free blocks in the equivalent
of Fig. 42, 176 free blocks in the equivalent of Fig. 43.

In all experiments comparing the best-Ąt and Ąrst-Ąt methods, the latter
always appeared to be superior. When memory size was exhausted, the Ąrst-Ąt
method actually stayed in action longer than the best-Ąt method before memory
overĆow occurred, in most instances.

The buddy system was also applied to the same data that led to Figs. 42
and 43, and Fig. 44 was the result. Here, all sizes in the range 257 to 512 were
treated as 512, those between 513 and 1024 were raised to 1024, etc. On the
average this means that more than four thirds as much memory was requested
(see exercise 21); the buddy system, of course, works better on size distributions
like that of (S2) above, instead of (S1). Notice that there are available blocks
of sizes 29, 210, 211, 212, 213, and 214 in Fig. 44.

Simulation of the buddy system showed that it performs much better than
might be expected. It is clear that the buddy system will sometimes allow two
adjacent areas of the same size to be available without merging them into one

448 INFORMATION STRUCTURES 2.5

2
17

2
16

2
15

2
14

2
13

2
12

2
11

2
10

2
9

2
8

Fig. 44. Memory map obtained with the buddy system. (The tree structure indicates
the division of certain large blocks into buddies of half the size. Squares indicate
available blocks.)

(if they are not buddies); but this situation is not present in Fig. 44 and, in
fact, it is rare in practice. In cases where memory overĆow occurred, memory
was 95 percent reserved, and this reĆects a surprisingly good allocation balance.
Furthermore, it was very seldom necessary to split blocks in Algorithm R, or to
merge them in Algorithm S; the tree remained much like Fig. 44, with available
blocks on the most commonly used levels. Some mathematical results that give
insight into this behavior, at the lowest level of the tree, have been obtained by
P. W. Purdom, Jr., and S. M. Stigler, JACM 17 (1970), 683Ű697.

Another surprise was the excellent behavior of Algorithm A after the modiĄ-
cation described in exercise 6; only 2.8 inspections of available block sizes were
necessary on the average (using size distribution (S1) and times chosen uniformly
between 1 and 1000), and more than half of the time only the minimum value,
one iteration, was necessary. This was true in spite of the fact that about
250 available blocks were present. The same experiment with Algorithm A
unmodiĄed showed that about 125 iterations were necessary on the average
(so about half of the AVAIL list was being examined each time); 200 or more
iterations were found to be necessary about 20 percent of the time.

This behavior of Algorithm A unmodiĄed can, in fact, be predicted as a
consequence of the Ąfty-percent rule. At equilibrium, the portion of memory
containing the last half of the reserved blocks will also contain the last half of
the free blocks; that portion will be involved half of the time when a block is
freed, and so it must be involved in half of the allocations in order to maintain
equilibrium. The same argument holds when one-half is replaced by any other
fraction. (These observations are due to J. M. Robson.)

2.5 DYNAMIC STORAGE ALLOCATION 449

The exercises below include MIX programs for the two principal methods
that are recommended as a consequence of the remarks above: (i) the boundary
tag system, as modiĄed in exercises 12 and 16; and (ii) the buddy system. Here
are the approximate results:

Time for reservation Time for liberation

Boundary tag system: 33 + 7A 18, 29, 31, or 34
Buddy system: 19 + 25R 27 + 26S

Here A ≥ 1 is the number of iterations necessary when searching for an available
block that is large enough; R ≥ 0 is the number of times a block is split in two
(the initial difference of j−k in Algorithm R); and S ≥ 0 is the number of times
buddy blocks are reunited during Algorithm S. The simulation experiments
indicate that under the stated assumptions with size distribution (S1) and time
chosen between 1 and 1000, we may take A = 2.8, R = S = 0.04 on the average.
(The average values A = 1.3, R = S = 0.9 were observed when the Şalmost-last-
in-Ąrst-outŤ time distribution was substituted as explained above.) This shows
that both methods are quite fast, with the buddy system slightly faster in MIXŠs
case. Remember that the buddy system requires about 44 percent more space
when block sizes are not constrained to be powers of 2.

A corresponding time estimate for the garbage collection and compacting
algorithm of exercise 33 is about 104 units of time to locate a free node, assuming
that garbage collection occurs when the memory is approximately half full, and
assuming that the nodes have an average length of 5 words with 2 links per
node. The pros and cons of garbage collection are discussed in Section 2.3.5.
When the memory is not heavily loaded and when the appropriate restrictions
are met, garbage collection and compacting is very efficient; for example, on the
MIX computer, the garbage collection method is faster than the other two, if the
accessible items never occupy more than about one-third of the total memory
space, and if the nodes are relatively small.

If the assumptions underlying garbage collection are met, the best strategy
may be to divide the pool of memory into two halves and to do all allocation
sequentially within one half. Instead of freeing blocks as they become available,
we simply wait until the current active half of memory is full; then we can copy all
active data to the other half, simultaneously removing all holes between blocks,
with a method like that of exercise 33. The size of each half pool might also be
adjusted as we switch from one half to the other.

The simulation techniques mentioned above were applied also to some other
storage allocation algorithms. The other methods were so poor by comparison
with the algorithms of this section that they will be given only brief mention here:

a) Separate AVAIL lists were kept for each size. A single free block was
occasionally split into two smaller blocks when necessary, but no attempt was
made to put such blocks together again. The memory map became fragmented
into Ąner and Ąner parts until it was in terrible shape; a simple scheme like this
is almost equivalent to doing separate allocation in disjoint areas, one area for
each block size.

450 INFORMATION STRUCTURES 2.5

b) An attempt was made to do two-level allocation: The memory was divided
into 32 large sectors. A brute-force allocation method was used to reserve large
blocks of 1, 2, or 3 (rarely more) adjacent sectors; each large block such as this
was subdivided to meet storage requests until no more room was left within
the current large block, and then another large block was reserved for use in
subsequent allocations. Each large block was returned to free storage only when
all space within it became available. This method almost always ran out of
storage space very quickly.

Although this particular method of two-level allocation was a failure for
the data considered in the authorŠs simulation experiments, there are other
circumstances (which occur not infrequently in practice) when a multiple-level
allocation strategy can be beneĄcial. For example, if a rather large program
operates in several stages, we might know that certain types of nodes are needed
only within a certain subroutine. Some programs might also Ąnd it desirable
to use quite different allocation strategies for different classes of nodes. The
idea of allocating storage by zones, with possibly different strategies employed
in each zone and with the ability to free an entire zone at once, is discussed by
Douglas T. Ross in CACM 10 (1967), 481Ű492.

For further empirical results about dynamic storage allocation, see the arti-
cles by B. Randell, CACM 12 (1969), 365Ű369, 372; P. W. Purdom, S. M. Stigler,
and T. O. Cheam, BIT 11 (1971), 187Ű195; B. H. Margolin, R. P. Parmelee, and
M. Schatzoff, IBM Systems J. 10 (1971), 283Ű304; J. A. Campbell, Comp. J.
14 (1971), 7Ű9; John E. Shore, CACM 18 (1975), 433Ű440; Norman R. Nielsen,
CACM 20 (1977), 864Ű873.

*E. Distributed Ąt. If the distribution of block sizes is known in advance,
and if each block present is equally likely to be the next one freed regardless
of when it was allocated, we can use a technique that has substantially better
memory utilization than the general-purpose techniques described so far, by
following the suggestions of E. G. Coffman, Jr., and F. T. Leighton [J. Computer
and System Sci. 38 (1989), 2Ű35]. Their Şdistributed-Ąt methodŤ works by
partitioning memory into roughly N +

√
N lgN slots, where N is the desired

maximum number of blocks to be handled in steady state. Each slot has a Ąxed
size, although different slots may have different sizes; the main point is that any
given slot has Ąxed boundaries, and it will either be empty or contain a single
allocated block.

The Ąrst N slots in Coffman and LeightonŠs scheme are laid out according
to the assumed distribution of sizes, while the last

√
N lgN slots all have the

maximum size. For example, if we assume that the block sizes will be uniformly
distributed between 1 and 256, and if we expect to handle N = 214 such blocks,
we would divide the memory into N/256 = 26 slots of each size 1, 2, . . . , 256,
followed by an ŞoverĆow areaŤ that contains

√
N lgN = 27 · 14 = 1792 blocks of

size 256. When the system is operating at full capacity, we expect it to handle
N blocks of average size 257

2 , occupying 257
2 N = 221 + 213 = 2,105,344 locations;

this is the amount of space we have allocated to the Ąrst N slots. We have also

2.5 DYNAMIC STORAGE ALLOCATION 451

set aside an additional 1792 · 256 = 458,752 locations to handle the effects of
random variations; this additional overhead amounts to O(N−1/2 logN) of the
total space, rather than a constant multiple of N as in the buddy system, so it
becomes a negligible fraction when N → ∞. In our example, however, it still
amounts to about 18% of the total allocation.

The slots should be arranged in order so that the smaller slots precede the
larger ones. Given this arrangement, we can allocate blocks by using either the
Ąrst-Ąt or the best-Ąt technique. (Both methods are equivalent in this case,
because the slot sizes are ordered.) The effect, under our assumptions, is to
start searching at an essentially random place among the Ąrst N slots whenever
a new allocation request comes in, and to continue until we Ąnd an empty slot.

If the starting slot for each search is truly random between 1 and N , we will
not have to invade the overĆow area very often. Indeed, if we insert exactly N
items starting at random slots, overĆow will occur only O(

√
N) times, on the

average. The reason is that we can compare this algorithm to hashing with linear
probing (Algorithm 6.4L), which has the same behavior except that the search
for an empty cell wraps around from N to 1 instead of going into an overĆow
area. The analysis of Algorithm 6.4L in Theorem 6.4K shows that, when N
items have been inserted, the average displacement of each item from its hash
address is 1

2 (Q(N) − 1) ∼

πN/8; by circular symmetry this average is easily

seen to be the same as the average number of times a search goes from slot k
to slot k + 1, for each k. OverĆows in the distributed-Ąt method correspond to
searches that go from slot N to slot 1, except that our situation is even better
because we avoid some congestion by not wrapping around. Therefore fewer than
πN/8 overĆows will occur, on the average. This analysis does not take account

of deletions, which preserve the assumptions of Algorithm 6.4L only if we move
blocks back when deleting another block that intervened between their starting
slots and their allocated slots (see Algorithm 6.4R); again, however, moving
them back would only increase the chance of overĆow. Our analysis also fails to
account for the effect of having more than N blocks present at once; this can
happen if we assume only that the arrival time between blocks is about one Nth
of the residence time. For the case of more than N blocks we need to extend the
analysis of Algorithm 6.4L, but Coffman and Leighton proved that the overĆow
area will almost never need more than

√
N lgN slots; the probability of running

off the end is less than O(N−M) for all M .
In our example, the starting slot for the search during an allocation is not

uniform among slots 1, 2, . . . , N ; it is, instead, uniform among slots 1, 65, 129,
. . . , N − 63, because there are N/256 = 64 slots of each size. But this deviation
from the random model considered in the previous paragraph makes overĆow
even less likely than predicted. All bets are off, of course, if the assumptions
about block size distribution and occupancy time are violated.

F. OverĆow. What do we do when no more room is available? Suppose there
is a request for, say, n consecutive words, when all available blocks are too small.
The Ąrst time this happens, there usually are more than n available locations

452 INFORMATION STRUCTURES 2.5

present, but they are not consecutive; compacting memory (that is, moving
some of the locations that are in use, so that all available locations are brought
together) would mean that we could continue processing. But compacting is slow,
and it requires a disciplined use of pointers; moreover, the vast majority of cases
in which the Ąrst-Ąt method runs out of room will soon thereafter run completely
out of space anyway, no matter how much compacting and re-compacting is
done. Therefore it is generally not worthwhile to write a compacting program,
except under special circumstances in connection with garbage collection, as
in exercise 33. If overĆow is expected to occur, some method for removing
items from memory and storing them on an external memory device can be
used, with provision for bringing the information back again when it is needed.
This implies that all programs referring to the dynamic memory area must be
severely restricted with regard to the allowable references they make to other
blocks, and special computer hardware (for example, interrupt on absence of
data, or automatic ŞpagingŤ) is generally required for efficient operation under
these conditions.

Some decision procedure is necessary to decide which blocks are the most
likely candidates for removal. One idea is to maintain a doubly linked list of the
reserved blocks, in which a block is moved up to the front of the list each time
it is accessed; then the blocks are effectively sorted in order of their last access,
and the block at the rear of the list is the one to remove Ąrst. A similar effect
can be achieved more simply by putting the reserved blocks into a circular list
and including a Şrecently usedŤ bit in each block; the latter is set to 1 whenever
the block is accessed. When it is time to remove a block, a pointer moves along
the circular list, resetting all Şrecently usedŤ bits to 0 until Ąnding a block that
has not been used since the last time the pointer reached this part of the circle.

J. M. Robson has shown [JACM 18 (1971), 416Ű423] that dynamic storage
allocation strategies that never relocate reserved blocks cannot possibly be guar-
anteed to use memory efficiently; there will always be pathological circumstances
in which the method breaks down. For example, even when blocks are restricted
to be of sizes 1 and 2, overĆow might occur with the memory only about 2

3 full,
no matter what allocation algorithm is used! RobsonŠs interesting results are
surveyed in exercises 36Ű40, and in exercises 42Ű43 where he has shown that the
best-Ąt method has a very bad worst case by comparison with Ąrst-Ąt.

G. For further reading. A comprehensive survey and critical review of
dynamic storage allocation techniques, based on many more years of experience
than were available to the author when the material above was written, has
been compiled by Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David
Boles, Lecture Notes in Computer Science 986 (1995), 1Ű116.

EXERCISES

1. [20] What simpliĄcations can be made to the reservation and liberation algo-
rithms of this section, if storage requests always appear in a Şlast-in-Ąrst-outŤ manner,
that is, if no reserved block is freed until after all blocks that were reserved subsequently
have already been freed?

2.5 DYNAMIC STORAGE ALLOCATION 453

2. [HM23] (E. Wolman.) Suppose that we want to choose a Ąxed node size for
variable-length items, and suppose also that when each node has length k and when an
item has length l, it takes ⌈l/(k − b)⌉ nodes to store this item. (Here b is a constant,
signifying that b words of each node contain control information, such as a link to
the next node.) If the average length l of an item is L, what choice of k minimizes
the average amount of storage space required? (Assume that the average value of
(l/(k − b)) mod 1 is equal to 1/2, for any Ąxed k, as l varies.)

3. [40] By computer simulation, compare the best-Ąt, Ąrst-Ąt, and worst-Ąt methods
of storage allocation; in the latter method, the largest available block is always chosen.
Is there any signiĄcant difference in the memory usage?

4. [22] Write a MIX program for Algorithm A, paying special attention to making
the inner loop fast. Assume that the SIZE Ąeld is (4 :5), the LINK Ąeld is (0 :2), and
Λ < 0.

x 5. [18] Suppose it is known that N is always 100 or more in Algorithm A. Would it
be a good idea to set c = 100 in the modiĄed step A4′?

x 6. [23] (Next Ąt.) After Algorithm A has been used repeatedly, there will be a strong
tendency for blocks of small SIZE to remain at the front of the AVAIL list, so that it will
often be necessary to search quite far into the list before Ąnding a block of length N or
more. For example, notice how the size of the blocks essentially increases in Fig. 42,
for both reserved and free blocks, from the beginning of memory to the end. (The
AVAIL list used while Fig. 42 was being prepared was kept sorted by order of location,
as required by Algorithm B.) Can you suggest a way to modify Algorithm A so that
(a) short blocks wonŠt tend to accumulate in a particular area, and (b) the AVAIL list
may still be kept in order of increasing memory locations, for purposes of algorithms
like Algorithm B?

7. [10] The example (1) shows that Ąrst-Ąt can sometimes be deĄnitely superior to
best-Ąt. Give a similar example that shows a case where best-Ąt is superior to Ąrst-Ąt.

8. [21] Show how to modify Algorithm A in a simple way to obtain an algorithm for
the best-Ąt method, instead of Ąrst-Ąt.

x 9. [26] In what ways could a reservation algorithm be designed to use the best-Ąt
method, without searching through the whole AVAIL list? (Try to think of ways that
cut down the necessary search as much as possible.)

10. [22] Show how to modify Algorithm B so that the block of N consecutive cells
beginning at location P0 is made available, without assuming that each of these N cells
is currently unavailable; assume, in fact, that the area being freed may actually overlap
several blocks that are already free.

11. [M25] Show that the improvement to Algorithm A suggested in the answer to
exercise 6 can also be used to lead to a slight improvement in Algorithm B, which cuts
the average length of search from half the length of the AVAIL list to one-third this
length. (Assume that the block being freed will be inserted into a random place within
the sorted AVAIL list.)

x 12. [20] Modify Algorithm A so that it follows the boundary-tag conventions of
(7)Ű(9), uses the modiĄed step A4′ described in the text, and also incorporates the
improvement of exercise 6.

13. [21] Write a MIX program for the algorithm of exercise 12.

454 INFORMATION STRUCTURES 2.5

14. [21] What difference would it make to Algorithm C and the algorithm of exer-
cise 12, (a) if the SIZE Ąeld were not present in the last word of a free block? or (b) if
the SIZE Ąeld were not present in the Ąrst word of a reserved block?

x 15. [24] Show how to speed up Algorithm C at the expense of a slightly longer
program, by not changing any more links than absolutely necessary in each of four
cases depending on whether TAG(P0− 1), TAG(P0 + SIZE(P0)) are plus or minus.

16. [24] Write a MIX program for Algorithm C, incorporating the ideas of exercise 15.

17. [10] What should the contents of LOC(AVAIL) and LOC(AVAIL)+ 1 be in (9) when
there are no available blocks present?

x 18. [20] Figures 42 and 43 were obtained using the same data, and essentially the
same algorithms (Algorithms A and B), except that Fig. 43 was prepared by modifying
Algorithm A to choose best-Ąt instead of Ąrst-Ąt. Why did this cause Fig. 42 to have a
large available area in the higher locations of memory, while in Fig. 43 there is a large
available area in the lower locations?

x 19. [24] Suppose that blocks of memory have the form of (7), but without the TAG or
SIZE Ąelds required in the last word of the block. Suppose further that the following
simple algorithm is being used to make a reserved block free again: Q ← AVAIL,
LINK(P0)← Q, LINK(P0+1)← LOC(AVAIL), LINK(Q+1)← P0, AVAIL← P0, TAG(P0)←
Ş−Ť. (This algorithm does nothing about collapsing adjacent areas together.)

Design a reservation algorithm, similar to Algorithm A, that does the necessary
collapsing of adjacent free blocks while searching the AVAIL list, and at the same time
avoids any unnecessary fragmentation of memory as in (2), (3), and (4).

20. [00] Why is it desirable to have the AVAIL[k] lists in the buddy system doubly
linked instead of simply having straight linear lists?

21. [HM25] Examine the ratio an/bn, where an is the sum of the Ąrst n terms of
1 + 2 + 4 + 4 + 8 + 8 + 8 + 8 + 16 + 16 + · · · , and bn is the sum of the Ąrst n terms of
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + · · · , as n goes to inĄnity.

x 22. [21] The text repeatedly states that the buddy system allows only blocks of size 2k

to be used, and exercise 21 shows this can lead to a substantial increase in the storage
required. But if an 11-word block is needed in connection with the buddy system, why
couldnŠt we Ąnd a 16-word block and divide it into an 11-word piece together with two
free blocks of sizes 4 and 1?

23. [05] What is the binary address of the buddy of the block of size 4 whose binary
address is 011011110000? What would it be if the block were of size 16 instead of 4?

24. [20] According to the algorithm in the text, the largest block (of size 2m) has no
buddy, since it represents all of storage. Would it be correct to deĄne buddym(0) = 0
(namely, to make this block its own buddy), and then to avoid testing k = m in step S1?

x 25. [22] Criticize the following idea: ŞDynamic storage allocation using the buddy
system will never reserve a block of size 2m in practical situations (since this would Ąll
the whole memory), and, in general, there is a maximum size 2n for which no blocks of
greater size will ever be reserved. Therefore it is a waste of time to start with such large
blocks available, and to combine buddies in Algorithm S when the combined block has
a size larger than 2n.Ť

x 26. [21] Explain how the buddy system could be used for dynamic storage allocation
in memory locations 0 through M−1 even when M does not have the form 2m as required
in the text.

2.5 DYNAMIC STORAGE ALLOCATION 455

27. [24] Write a MIX program for Algorithm R, and determine its running time.

28. [25] Assume that MIX is a binary computer, with a new operation code XOR deĄned
as follows (using the notation of Section 1.3.1): ŞC = 5, F = 5. For each bit position in
location M that equals 1, the corresponding bit position in register A is complemented
(changed from 0 to 1 or 1 to 0); the sign of rA is unaffected. The execution time is 2u.Ť

Write a MIX program for Algorithm S, and determine its running time.

29. [20] Could the buddy system do without the tag bit in each reserved block?

30. [M48] Analyze the average behavior of Algorithms R and S, given reasonable
distributions for the sequence of storage requests.

31. [M40] Can a storage allocation system analogous to the buddy system be designed
using the Fibonacci sequence instead of powers of two? (Thus, we might start with Fm
available words, and split an available block of Fk words into two buddies of respective
lengths Fk−1 and Fk−2.)

32. [HM46] Determine limn→∞ αn, if it exists, where αn is the mean value of tn in
a random sequence deĄned as follows: Given the values of tk for 0 ≤ k < n, let tn be
chosen uniformly from {1, 2, . . . , gn}, where

gn = ⌊ 5
4

min(10000, f(tn−1 − 1), f(tn−2 − 2), . . . , f(t0 − n))⌋,
and f(x) = x if x > 0, f(x) =∞ if x ≤ 0. [Note: Some limited empirical tests indicate
that αn might be approximately 14, but this is probably not very accurate.]

x 33. [28] (Garbage collection and compacting.) Assume that memory locations 1, 2,
. . . , AVAIL − 1 are being used as a storage pool for nodes of varying sizes, having the
following form: The Ąrst word of NODE(P) contains the Ąelds

SIZE(P) = number of words in NODE(P);
T(P) = number of link Ąelds in NODE(P); T(P) < SIZE(P);

LINK(P) = special link Ąeld for use only during garbage collection.

The node immediately following NODE(P) in memory is NODE(P + SIZE(P)). Assume
that the only Ąelds in NODE(P) that are used as links to other nodes are LINK(P + 1),
LINK(P + 2), . . . , LINK(P + T(P)), and each of these link Ąelds is either Λ or the address
of the Ąrst word of another node. Finally, assume that there is one further link variable
in the program, called USE, and it points to one of the nodes.

Design an algorithm that (i) determines all nodes accessible directly or indirectly
from the variable USE, (ii) moves these nodes into memory locations 1 through K−1, for
some K, changing all links so that structural relationships are preserved, and (iii) sets
AVAIL← K.

For example, consider the following contents of memory, where INFO(L) denotes
the contents of location L, excluding LINK(L):

1: SIZE = 2, T = 1 6: SIZE = 2, T = 0 AVAIL = 11,
2: LINK = 6, INFO = A 7: CONTENTS = D USE = 3.
3: SIZE = 3, T = 1 8: SIZE = 3, T = 2
4: LINK = 8, INFO = B 9: LINK = 8, INFO = E
5: CONTENTS = C 10: LINK = 3, INFO = F

Your algorithm should transform this into

1: SIZE = 3, T = 1 4: SIZE = 3, T = 2 AVAIL = 7,
2: LINK = 4, INFO = B 5: LINK = 4, INFO = E USE = 1.
3: CONTENTS = C 6: LINK = 1, INFO = F

456 INFORMATION STRUCTURES 2.5

34. [29] Write a MIX program for the algorithm of exercise 33, and determine its
running time.

35. [22] Contrast the dynamic storage allocation methods of this section with the
techniques for variable-size sequential lists discussed at the end of Section 2.2.2.

x 36. [20] A certain lunch counter in Hollywood, California, contains 23 seats in a row.
Diners enter the shop in groups of one or two, and a glamorous hostess shows them
where to sit. Prove that she will always be able to seat people immediately without
splitting up any pairs, if no customer who comes alone is assigned to any of the seats
numbered 2, 5, 8, . . . , 20, provided that there never are more than 16 customers present
at a time. (Pairs leave together.)

x 37. [26] Continuing exercise 36, prove that the hostess canŠt always do such a good
job when there are only 22 seats at the counter: No matter what strategy she uses,
it will be possible to reach a situation where two friends enter and only 14 people are
seated, but no two adjacent seats are vacant.

38. [M21] (J. M. Robson.) The lunch-counter problem in exercises 36 and 37 can be
generalized to establish the worst-case performance of any dynamic storage allocation
algorithm that never relocates reserved blocks. Let N(n,m) be the smallest amount of
memory such that any series of requests for allocation and liberation can be handled
without overĆow, provided that all block sizes are ≤ m and the total amount of space
requested never exceeds n. Exercises 36 and 37 prove that N(16, 2) = 23; determine
the exact value of N(n, 2) for all n.

39. [HM23] (J. M. Robson.) In the notation of exercise 38, show that N(n1+n2, m) ≤
N(n1, m) +N(n2, m) +N(2m−2, m); hence for Ąxed m, limn→∞N(n,m)/n = N(m)
exists.

40. [HM50] Continuing exercise 39, determine N(3), N(4), and limm→∞N(m)/ lgm
if it exists.

41. [M27] The purpose of this exercise is to consider the worst-case memory usage
of the buddy system. A particularly bad case occurs, for example, if we start with an
empty memory and proceed as follows: First reserve n = 2r+1 blocks of length 1, which
go into locations 0 through n − 1; then for k = 1, 2, . . . , r, liberate all blocks whose
starting location is not divisible by 2k, and reserve 2−k−1n blocks of length 2k, which
go into locations 1

2
(1 + k)n through 1

2
(2 + k)n− 1. This procedure uses 1 + 1

2
r times

as much memory as is ever occupied.
Prove that the worst case cannot be substantially worse than this: When all

requests are for block sizes 1, 2, . . . , 2r, and if the total space requested at any time
never exceeds n, where n is a multiple of 2r, the buddy system will never overĆow a
memory area of size (r + 1)n.

42. [M40] (J. M. Robson, 1975.) Let NBF(n,m) be the amount of memory needed to
guarantee non-overĆow when the best-Ąt method is used for allocation as in exercise 38.
Find an attacking strategy to show that NBF(n,m) ≥ mn−O(n+m2).

43. [HM35] Continuing exercise 42, let NFF(n,m) be the memory needed when the
Ąrst-Ąt method is used. Find a defensive strategy to show that NFF(n,m) ≤ Hmn/ln 2.
(Hence the worst case of Ąrst-Ąt is not far from the best possible worst case.)

44. [M21] Suppose the distribution function F (x) = (probability that a block has
size ≤ x) is continuous. For example, F (x) is (x− a)/(b− a) for a ≤ x ≤ b if the sizes
are uniformly distributed between a and b. Give a formula that expresses the sizes of
the Ąrst N slots that should be set up when we use the distributed-Ąt method.

2.6 HISTORY AND BIBLIOGRAPHY 457

2.6. HISTORY AND BIBLIOGRAPHY

Linear lists and rectangular arrays of information kept in consecutive memory
locations were widely used from the earliest days of stored-program computers,
and the earliest treatises on programming gave the basic algorithms for traversing
these structures. [For example, see J. von Neumann, Collected Works 5, 113Ű
116 (written 1946); M. V. Wilkes, D. J. Wheeler, S. Gill, The Preparation
of Programs for an Electronic Digital Computer (Reading, Mass.: AddisonŰ
Wesley, 1951), subroutine V-1; and see especially also the work of Konrad Zuse,
Berichte der Gesellschaft für Mathematik und Datenverarbeitung 63 (Bonn:
1972), written in 1945. Zuse was the Ąrst to develop nontrivial algorithms
that worked with lists of dynamically varying lengths.] Before the days of
index registers, operations on sequential linear lists were done by performing
arithmetic on the machine language instructions themselves, and the need to do
such arithmetic was one of the early motivations for having a computer whose
programs share memory space with the data they manipulate.

Techniques that permit variable-length linear lists to share sequential loca-
tions, in such a way that they shift back and forth when necessary as described
in Section 2.2.2, were apparently a much later invention. J. Dunlap of Digitek
Corporation developed such techniques before 1963 in connection with the de-
sign of a series of compiler programs; about the same time the idea appeared
independently in the design of a COBOL compiler at IBM Corporation, and a
collection of related subroutines called CITRUS was subsequently used at various
installations. The techniques remained unpublished until after they had been
developed independently by Jan Garwick of Norway; see BIT 4 (1964), 137Ű140.

The idea of having linear lists in nonsequential locations seems to have orig-
inated in connection with the design of computers with rotating drum memories.
After executing the instruction in location n, such a computer was usually not
ready to get its next instruction from location n + 1, because the drum had
already rotated past that point. Depending on the instruction being performed,
the most favorable position for the next instruction might be n + 7 or n + 18,
say, and the machine could operate up to six or seven times faster if its in-
structions were located optimally rather than consecutively. [For a discussion of
the interesting problems concerning the best placement of instructions, see the
authorŠs article in JACM 8 (1961), 119Ű150.] Therefore an extra address Ąeld
was provided in each machine language instruction, to serve as a link to the next
command. This idea, called Şone-plus-one addressing,Ť was discussed by John
Mauchly in 1946 [Theory and Techniques for the Design of Electronic Comput-
ers 4 (U. of Pennsylvania, 1946), Lecture 37]; it contained the notion of linked
lists in embryonic form, although the dynamic insertion and deletion operations
that we have used so frequently in this chapter were still unknown. Another
early appearance of links in programs was in H. P. LuhnŠs 1953 memorandum
suggesting the use of ŞchainingŤ for external searching; see Section 6.4.

Linked memory techniques were really born when A. Newell, J. C. Shaw,
and H. A. Simon began their investigations of heuristic problem-solving by
machine. As an aid to writing programs that searched for proofs in mathematical

458 INFORMATION STRUCTURES 2.6

logic, they designed the Ąrst List-processing language, IPL-II, in the spring of
1956. (IPL was an acronym for Information Processing Language.) This was
a system that made use of pointers and included important concepts like the
list of available space, but the concept of stacks was not yet well developed.
IPL-III, designed a year later, included Şpush downŤ and Şpop upŤ for stacks as
important basic operations. [For references to IPL-II see IRE Transactions IT-2

(September 1956), 61Ű70; Proc. Western Joint Comp. Conf. 9 (1957), 218Ű240.
Material on IPL-III Ąrst appeared in course notes given at the University of
Michigan in the summer of 1957.]

The work of Newell, Shaw, and Simon inspired many other people to use
linked memory, which was often referred to as NSS memory at the time, but
mostly for problems dealing with simulation of human thought processes. Grad-
ually, the techniques became recognized as basic computer-programming tools;
the Ąrst article describing the usefulness of linked memory for Şdown-to-earthŤ
problems was published by J. W. Carr, III, in CACM 2, 2 (February 1959), 4Ű6.
Carr pointed out in this article that linked lists can readily be manipulated in
ordinary programming languages, without requiring sophisticated subroutines
or interpretive systems. See also G. A. Blaauw, ŞIndexing and control-word
techniques,Ť IBM J. Res. and Dev. 3 (1959), 288Ű301.

At Ąrst, one-word nodes were used for linked tables, but about 1959 the
usefulness of several consecutive words per node and ŞmultilinkedŤ lists was
gradually being discovered by several different groups of people. The Ąrst article
dealing speciĄcally with this idea was published by D. T. Ross, CACM 4 (1961),
147Ű150. At that time he used the term ŞplexŤ for what has been called a ŞnodeŤ
in this chapter, but he subsequently used the word ŞplexŤ in a different sense to
denote a class of nodes combined with associated algorithms for their traversal.

Notations for referring to Ąelds within nodes are generally of two kinds: The
name of the Ąeld either precedes or follows the pointer designation. Thus, while
we have written ŞINFO(P)Ť in this chapter, some other authors write, for exam-
ple, ŞP.INFOŤ. At the time this chapter was prepared, the two notations seemed
to be equally prominent. The notation adopted here has the great advantage
that it translates immediately into FORTRAN, COBOL, or similar languages, if
we deĄne INFO and LINK arrays and use P as the index. Furthermore it seems
natural to use mathematical functional notation to describe attributes of a node.
Note that ŞINFO(P)Ť is pronounced Şinfo of PŤ in conventional mathematical
verbalization, just as f(x) is rendered Şf of x.Ť The alternative notation P.INFO

has less of a natural Ćavor, since it tends to put the emphasis on P, although it
can be read ŞPŠs infoŤ; the reason INFO(P) seems preferable is apparently the
fact that P is variable, but INFO has a Ąxed signiĄcance when the notation is
employed. By analogy, we could consider a vector A = (A[1], A[2], . . . , A[100])
to be a node having 100 Ąelds named 1, 2, . . . , 100. Now the second Ąeld would
be referred to as Ş2(P)Ť in our notation, where P points to the vector A; but
if we are referring to the jth element of the vector, we Ąnd it more natural to
write A[j], putting the variable quantity ŞjŤ second. Similarly it seems most
appropriate to put the variable quantity ŞPŤ second in the notation INFO(P).

2.6 HISTORY AND BIBLIOGRAPHY 459

Perhaps the Ąrst people to recognize that the concepts ŞstackŤ (last-in-Ąrst-
out) and ŞqueueŤ (Ąrst-in-Ąrst-out) are important objects of study were cost
accountants interested in reducing income tax assessments; for a discussion of
the ŞLIFOŤ and ŞFIFOŤ methods of pricing inventories, see any intermediate ac-
counting textbook, e.g., C. F. and W. J. Schlatter, Cost Accounting (New York:
Wiley, 1957), Chapter 7. In the mid-1940s, A. M. Turing developed a stack mech-
anism called Reversion Storage for subroutine linkage, local variables, and pa-
rameters. His names for ŞpushŤ and ŞpopŤ were ŞburyŤ and Şdisinter/unbury.Ť
(See the references in Section 1.4.5.) No doubt simple uses of stacks kept in
sequential memory locations were common in computer programming from the
earliest days, since a stack is such an intuitive concept. The programming of
stacks in linked form appeared Ąrst in IPL, as stated above; the name ŞstackŤ
stems from IPL terminology (although Şpushdown listŤ was the more official IPL
wording), and it was also independently introduced by E. W. Dijkstra [Numer.
Math. 2 (1960), 312Ű318]. ŞDequeŤ is a term coined by E. J. Schweppe in 1966.

The origin of circular and doubly linked lists is obscure; presumably these
ideas occurred naturally to many people. A strong factor in the popularization
of such techniques was the existence of general List-processing systems based on
them [principally the Knotted List Structures, CACM 5 (1962), 161Ű165, and
Symmetric List Processor, CACM 6 (1963), 524Ű544, of J. Weizenbaum]. Ivan
Sutherland introduced the use of independent doubly linked lists within larger
nodes, in his Sketchpad system (Ph.D. thesis, Mass. Inst. of Technology, 1963).

Various methods for addressing and traversing multidimensional arrays of
information were developed independently by clever programmers since the ear-
liest days of computers, and thus another part of the unpublished computer
folklore was born. This subject was Ąrst surveyed in print by H. Hellerman,
CACM 5 (1962), 205Ű207. See also J. C. Gower, Comp. J. 4 (1962), 280Ű286.

Tree structures represented explicitly in computer memory were originally
used for applications to algebraic formula manipulation. The machine language
for several early computers used a three-address code to represent the compu-
tation of arithmetic expressions; the latter is equivalent to the INFO, LLINK,
and RLINK of a binary tree representation. In 1952, H. G. Kahrimanian devel-
oped algorithms for differentiating algebraic formulas represented in an extended
three-address code; see Symposium on Automatic Programming (Washington,
D.C.: Office of Naval Research, May 1954), 6Ű14.

Since then, tree structures in various guises have been studied independently
by many people in connection with numerous computer applications, but the
basic techniques for tree manipulation (not general List manipulation) have
seldom appeared in print except in detailed description of particular algorithms.
The Ąrst general survey was made in connection with a more general study of
all data structures by K. E. Iverson and L. R. Johnson [IBM Corp. research
reports RC-390, RC-603, 1961; see Iverson, A Programming Language (New
York: Wiley, 1962), Chapter 3]. See also G. Salton, CACM 5 (1962), 103Ű114.

The concept of threaded trees is due to A. J. Perlis and C. Thornton, CACM
3 (1960), 195Ű204. Their paper also introduced the important idea of traversing

460 INFORMATION STRUCTURES 2.6

trees in various orders, and gave numerous examples of algebraic manipulation
algorithms. Unfortunately, this important paper was prepared hastily and it
contains many misprints. The threaded lists of Perlis and Thornton were only
Şright-threaded treesŤ in our terminology; binary trees that are threaded in
both directions were independently discovered by A. W. Holt, A Mathematical
and Applied Investigation of Tree Structures (Thesis, U. of Pennsylvania, 1963).
Postorder and preorder for the nodes of trees were called Şnormal along orderŤ
and Şdual along orderŤ by Z. Pawlak [Colloquium on the Foundation of Math-
ematics, Tihany, 1962 (Budapest: Akadémiai Kiadó, 1965), 227Ű238]. Preorder
was called Şsubtree orderŤ by Iverson and Johnson in the references cited above.
Graphical ways to represent the connection between tree structures and cor-
responding linear notations were described by A. G. Oettinger, Proc. Harvard
Symp. on Digital Computers and their Applications (April 1961), 203Ű224. The
representation of trees in preorder by degrees, with associated algorithms relating
this representation to Dewey decimal notation and other properties of trees, was
presented by S. Gorn, Proc. Symp. Math. Theory of Automata (Brooklyn: Poly.
Inst., 1962), 223Ű240.

The history of tree structures as mathematical entities, together with a
bibliography of the subject, is reviewed in Section 2.3.4.6.

At the time this section was Ąrst written in 1966, the most widespread
knowledge about information structures was due to programmersŠ exposure to
List processing systems, which played a very important part in this history.
The Ąrst widely used system was IPL-V (a descendant of IPL-III, developed late
in 1959); IPL-V was an interpretive system in which a programmer learned a
machine-like language for List operations. At about the same time, FLPL (a set
of FORTRAN subroutines for List manipulation, also inspired by IPL but using
subroutine calls instead of interpretive language) was developed by H. Gelernter
and others. A third system, LISP, was designed by J. McCarthy, also in 1959.
LISP was quite different from its predecessors: Its programs were (and still
are) expressed in mathematical functional notation combined with Şconditional
expressions,Ť then converted into a List representation. Many List processing
systems came into existence during the 1960s; the most prominent among these
from a historical standpoint was J. WeizenbaumŠs SLIP, a set of subroutines that
implemented doubly linked Lists in FORTRAN.

An article by Bobrow and Raphael, CACM 7 (1964), 231Ű240, may be
read as a brief introduction to IPL-V, LISP, and SLIP; it gives a comparison
of these systems. An excellent early introduction to LISP was published by
P. M. Woodward and D. P. Jenkins, Comp. J. 4 (1961), 47Ű53. See also the
authorsŠ discussions of their own systems, which are articles of considerable
historical importance: ŞAn introduction to IPL-VŤ by A. Newell and F. M. Tonge,
CACM 3 (1960), 205Ű211; ŞA FORTRAN-compiled List Processing LanguageŤ
by H. Gelernter, J. R. Hansen, and C. L. Gerberich, JACM 7 (1960), 87Ű
101; ŞRecursive functions of symbolic expressions and their computation by
machine, IŤ by John McCarthy, CACM 3 (1960), 184Ű195; ŞSymmetric List
ProcessorŤ by J. Weizenbaum, CACM 6 (1963), 524Ű544. WeizenbaumŠs article

2.6 HISTORY AND BIBLIOGRAPHY 461

included a complete description of all of the algorithms used in SLIP. Of all these
early systems, only LISP had the necessary ingredients to survive the ensuing
decades of further progress. McCarthy has described LISPŠs early history in
History of Programming Languages (Academic Press, 1981), 173Ű197.

Several string manipulation systems also appeared during the 1960s; they
were primarily concerned with operations on variable-length strings of alphabetic
information Ů looking for occurrences of certain substrings and replacing them
by others, etc. The most important of these from a historical perspective were
COMIT [V. H. Yngve, CACM 6 (1963), 83Ű84] and SNOBOL [D. J. Farber, R.
E. Griswold, and I. P. Polonsky, JACM 11 (1964), 21Ű30]. String manipulation
systems were used widely, and they were composed primarily of algorithms like
the ones we have seen in this chapter, but they played a comparatively small
role in the history of the techniques of information structure representation; users
of such systems were isolated from the details of the actual internal processes
carried on by the computer. For a survey of early string manipulation techniques,
see S. E. Madnick, CACM 10 (1967), 420Ű424.

The IPL-V and FLPL systems for List-processing did not use either a garbage
collection or a reference count technique for the problem of shared Lists; instead,
each List was ŞownedŤ by one List and ŞborrowedŤ by all other Lists that referred
to it, and a List was erased when its ŞownerŤ allowed it to disappear. Hence, the
programmer was enjoined to make sure that no List was still borrowing any Lists
that were being erased. The reference counter technique for Lists was introduced
by G. E. Collins, CACM 3 (1960), 655Ű657, and explained further in CACM 9

(1966), 578Ű588. Garbage collection was Ąrst described in McCarthyŠs article of
1960; see also WeizenbaumŠs remarks in CACM 7 (1964), 38, and an article by
Cohen and Trilling, BIT 7 (1967), 22Ű30.

An increasing realization of the importance of link manipulations led natu-
rally to their inclusion in algebraic programming languages designed after 1965.
The new languages allowed programmers to choose suitable forms of data rep-
resentation without resorting to assembly language or paying the overhead of
completely general List structures. Some of the fundamental steps in this de-
velopment were the work of N. Wirth and H. Weber [CACM 9 (1966), 13Ű23,
25, 89Ű99]; H. W. Lawson [CACM 10 (1967), 358Ű367]; C. A. R. Hoare [Symbol
Manipulation Languages and Techniques, ed. by D. G. Bobrow (Amsterdam:
North-Holland, 1968), 262Ű284]; O.-J. Dahl and K. Nygaard [CACM 9 (1966),
671Ű678]; A. van Wijngaarden, B. J. Mailloux, J. E. L. Peck, and C. H. A.
Koster [Numerische Math. 14 (1969), 79Ű218]; Dennis M. Ritchie [History of
Programming Languages Ů II (ACM Press, 1996), 671Ű698].

Dynamic storage allocation algorithms were in use several years before they
were ever described in print. A very readable discussion was prepared by W.
T. Comfort in 1961 and published in CACM 7 (1964), 357Ű362. The boundary-
tag method, introduced in Section 2.5, was designed by the author in 1962 for
use in an operating system for the Burroughs B5000 computer. The buddy
system was Ąrst used by H. Markowitz in connection with the SIMSCRIPT
programming system in 1963, and it was independently discovered and published

462 INFORMATION STRUCTURES 2.6

by K. Knowlton, CACM 8 (1965), 623Ű625; see also CACM 9 (1966), 616Ű625.
For additional early discussions of dynamic storage allocation, see the articles
by Iliffe and Jodeit, Comp. J. 5 (1962), 200Ű209; Bailey, Barnett, and Burleson,
CACM 7 (1964), 339Ű346; A. T. Berztiss, CACM 8 (1965), 512Ű513; and D. T.
Ross, CACM 10 (1967), 481Ű492.

A general discussion of information structures and their relation to program-
ming was prepared by Mary dŠImperio, ŞData Structures and their Representa-
tion in Storage,Ť Annual Review in Automatic Programming 5 (Oxford: Perga-
mon Press, 1969). Her paper is a valuable guide to the history of the topic, since
it includes a detailed analysis of the structures used in connection with twelve
List processing and string manipulation systems. See also the proceedings of two
symposia, CACM 3 (1960), 183Ű234 and CACM 9 (1966), 567Ű643, for further
historical details. (Several of the individual papers from those proceedings have
already been cited above.)

An excellent annotated bibliography of early work on symbol manipulation
and algebraic formula manipulation, having numerous connections with the ma-
terial of this chapter, was compiled by Jean E. Sammet; see Computing Reviews
7 (JulyŰAugust 1966), B1ŰB31.

In this chapter we have looked at particular types of information structures
in great detail, and (lest we fail to see the forest for the trees) it is perhaps
wise to take stock of what we have learned and to summarize brieĆy the general
subject of information structures from a broader perspective. Starting with the
basic idea of a node as an element of data, we have seen many examples that
illustrate convenient ways to represent structural relationships either implicitly
(based on the relative order in which nodes are stored in computer memory) or
explicitly (by means of links in the nodes, which point to other nodes). The
amount of structural information that ought to be represented within the tables
of a computer program depends on the operations that are to be performed on
the nodes.

For pedagogic reasons, we have largely concentrated on the connections
between information structures and their machine representations, instead of
discussing those issues separately. However, to gain a deeper understanding it is
helpful to consider the subject from a more abstract point of view, distilling off
several layers of ideas that can be studied by themselves. Several noteworthy ap-
proaches of this kind have been developed, and the following thought-provoking
papers are especially recommended from the early literature: G. Mealy, ŞAnother
look at data,Ť Proc. AFIPS Fall Joint Computer Conf. 31 (1967), 525Ű534;
J. Earley, ŞToward an understanding of data structures,Ť CACM 14 (1971), 617Ű
627; C. A. R. Hoare, ŞNotes on data structuring,Ť in Structured Programming
by O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare (Academic Press, 1972), 83Ű
174; Robert W. Engles, ŞA tutorial on data-base organization,Ť Annual Review
in Automatic Programming 7 (1972), 3Ű63.

The discussion in this chapter does not cover the entire subject of informa-
tion structures in full generality; at least three important aspects of the subject
have not been treated here:

2.6 HISTORY AND BIBLIOGRAPHY 463

a) We often want to search through a table to Ąnd a node or set of nodes
possessing a certain value, and the need for such an operation often has a
profound effect on the structure of the table. This situation is explored in detail
in Chapter 6.

b) We have primarily been concerned with the internal representation of
structure within a computer; but that is obviously only part of the story, since
structure must also be represented in the external input and output data. In
simple cases, external structure can be treated by essentially the same techniques
that we have been considering; but the processes of converting between strings of
characters and more complex structures are also very important. Those processes
are analyzed in Chapters 9 and 10.

c) We have primarily discussed representations of structures within a high-
speed random-access memory. When slower memory devices such as disks or
tapes are being used, we Ąnd that all of the structural problems are intensiĄed;
it becomes much more crucial to have efficient algorithms and efficient schemes
for data representation. Nodes that link to each other in such cases ought to
go into nearby areas of the memory. Usually the problems are highly dependent
on the characteristics of individual machines, so it is difficult to discuss them in
general. The simpler examples treated in this chapter should help to prepare the
reader for solving the more difficult problems that arise in connection with less
ideal memory devices; Chapters 5 and 6 discuss some of these problems in detail.

What are the main implications of the subjects treated in this chapter?
Perhaps the most important conclusion we can reach is that the ideas we have
encountered are not limited to computer programming alone; they apply more
generally to everyday life. A collection of nodes containing Ąelds, some of which
point to other nodes, appears to be a very good abstract model for structural
relationships of all kinds. This model shows how we can build up complicated
structures from simple ones, and we have seen that corresponding algorithms for
manipulating the structure can be designed in a natural manner.

Therefore it seems appropriate to develop much more theory about linked
sets of nodes than we know at this time. Perhaps the most obvious way to
start such a theory is to deĄne a new kind of abstract machine or ŞautomatonŤ
that deals with linked structures. For example, such a device might be deĄned
informally as follows: There are numbers k, l, r, and s, such that the automaton
processes nodes containing k link Ąelds and r information Ąelds; it has l link
registers and s information registers, which enable it to control the processes
it is performing. The information Ąelds and registers may contain any symbols
from some given set of information symbols; each of the link Ąelds and link
registers either contains Λ or points to a node. The machine can (i) create
new nodes (putting a link to the node into a register), (ii) compare information
symbols or link values for equality, and (iii) transfer information symbols or link
values between registers and nodes. Only nodes pointed to by link registers
are immediately accessible. Suitable restrictions on the machineŠs behavior will
make it equivalent to several other species of automata.

464 INFORMATION STRUCTURES 2.6

A related model of computation was proposed by A. N. Kolmogorov as
early as 1952. His machine essentially operates on graphs G, having a specially
designated starting vertex v0. The action at each step depends only on the
subgraph G′ consisting of all vertices at distance ≤ n from v0 in G, replacing
G′ in G by another graph G′′ = f(G′), where G′′ includes v0 and the vertices
at distance exactly n from v0, and possibly other vertices (which are newly
created); the remainder of graph G is left unaltered. Here n is a Ąxed number
speciĄed in advance for any particular algorithm, but it can be arbitrarily large.
A symbol from a Ąnite alphabet is attached to each vertex, and restrictions
are made so that no two vertices with the same symbol can be adjacent to a
common vertex. (See A. N. Kolmogorov, Uspekhi Mat. Nauk 8, 4 (1953), 175Ű
176; Kolmogorov and Uspensky, Uspekhi Mat. Nauk 13, 4 (1958), 3Ű28; Amer.
Math. Soc. Translations, series 2, 29 (1963), 217Ű245.)

Linking automata can easily simulate graph machines, taking at most a
bounded number of steps per graph step. Conversely, however, it is unlikely that
graph machines can simulate arbitrary linking automata without unboundedly
increasing the running time, unless the deĄnition is changed from undirected to
directed graphs, in view of the restriction to vertices of bounded degree. The
linking model is, of course, quite close to the operations available to programmers
on real machines, while the graph model is not.

Some of the most interesting problems to solve for such devices would be
to determine how fast they can solve certain problems, or how many nodes
they need to solve certain problems (for example, to translate certain formal
languages). At the time this chapter was Ąrst written, several interesting results
of this kind had been obtained (notably by J. Hartmanis and R. E. Stearns) but
only for special classes of Turing machines having multiple tapes and read/write
heads. The Turing machine model is comparatively unrealistic, so these results
tended to have little to do with practical problems.

We must admit that, as the number n of nodes created by a linking automa-
ton approaches inĄnity, we donŠt know how to build such a device physically,
since we want the machine operations to take the same amount of time regardless
of the size of n; if linking is represented by using addresses as in a computer
memory, it is necessary to put a bound on the number of nodes, since the link
Ąelds have a Ąxed size. A multitape Turing machine is therefore a more realistic
model when n approaches inĄnity. Yet it seems reasonable to believe that a
linking automaton as described above leads to a more appropriate theory of
the complexity of algorithms than Turing machines do, even when asymptotic
formulas for large n are considered, because the theory is more likely to be
relevant for practical values of n. Furthermore when n gets bigger than 1030

or so, not even a one-tape Turing machine is realistic: It could never be built.
Relevance is more important than realism.

Many years have passed since the author wrote most of the comments above,
and everybody can be glad that substantial progress has indeed been made on
the theory of linking automata (now called pointer machines). But of course
much still remains to be done.

2.6 HISTORY AND BIBLIOGRAPHY 465

General rules for programming have been discovered.

Most of them have been used in the

Kansas City freight yards for a long time.

— DERRICK LEHMER (1949)

I must explain, to begin with,

that all the Trees, in this system, grow head-downwards:
the Root is at the top, and the Branches are below.

If it be objected that the name ŞTreeŤ is a misnomer, my answer

is that I am only following the example of all writers on Genealogy.
A Genealogical tree always grows downwards:

then why many not a Logical ŞTreeŤ do likewise?

— LEWIS CARROLL, in Symbolic Logic (1896)

You will, I am sure, agree with me . . . that if page

534 Ąnds us only in the second chapter, the length of

the Ąrst one must have been really intolerable.

— SHERLOCK HOLMES, in The Valley of Fear (1888)

ANSWERS TO EXERCISES

I am not bound to please thee with my answers.

— SHYLOCK, in The Merchant of Venice (Act IV, Scene 1, Line 65)

NOTES ON THE EXERCISES

1. An average problem for a mathematically inclined reader.

4. See W. J. LeVeque, Topics in Number Theory 2 (Reading, Mass.: AddisonŰWesley,
1956), Chapter 3; P. Ribenboim, 13 Lectures on FermatŠs Last Theorem (New York:
Springer-Verlag, 1979); A. Wiles, Annals of Mathematics (2) 141 (1995), 443Ű551.

SECTION 1.1

1. t← a, a← b, b← c, c← d, d← t.

2. After the Ąrst time, the values of the variables m and n are the previous values of
n and r, respectively; and n > r.

3. Algorithm F (EuclidŠs algorithm). Given two positive integers m and n, Ąnd
their greatest common divisor.

F1. [Remainder m/n.] Divide m by n and let m be the remainder.

F2. [Is it zero?] If m = 0, the algorithm terminates with answer n.

F3. [Remainder n/m.] Divide n by m and let n be the remainder.

F4. [Is it zero?] If n = 0, the algorithm terminates with answer m; otherwise go
back to step F1.

4. By Algorithm E, n = 6099, 2166, 1767, 399, 171, 57. Answer: 57.

5. Not Ąnite nor deĄnite nor effective, perhaps no output; in format, no letter is given
before step numbers, no summary phrase appears, and there is no Ş Ť.

6. Trying Algorithm E with n = 5 and m = 1, 2, 3, 4, 5, we Ąnd that step E1 is
executed 2, 3, 4, 3, 1 times, respectively. So the average is 2.6 = T5.

7. In all but a Ąnite number of cases, n > m. And when n > m, the Ąrst iteration of
Algorithm E merely exchanges these numbers; so Um = Tm + 1.

466

1.1 ANSWERS TO EXERCISES 467

8. Let A = {a, b, c}, N = 5. The algorithm will terminate with the string agcd(m,n).

j θj ϕj bj aj

0 ab (empty) 1 2 Remove one a and one b, or go to 2.
1 (empty) c 0 0 Add c at extreme left, go back to 0.
2 a b 2 3 Change all aŠs to bŠs.
3 c a 3 4 Change all cŠs to aŠs.
4 b b 0 5 If bŠs remain, repeat.

Each iteration either decreases m or keeps m unchanged and decreases n.

9. For example we can say C2 represents C1 if there is a function g from I1 into I2,
a function h from Q2 into Q1, and a function j from Q2 into the positive integers,
satisfying the following conditions:

a) If x is in I1 then h(g(x)) = x.
b) If q is in Q2 then f1(h(q)) = h(f [j(q)]

2 (q)), where f [j(q)]
2 means that the function

f2 is to be iterated j(q) times.
c) If q is in Q2 then h(q) is in Ω1 if and only if q is in Ω2.

For example, let C1 be as in (2) and let C2 have I2 = {(m,n)}, Ω2 = {(m,n, d)},
Q2 = I2 ∪ Ω2 ∪ {(m,n, a, b, 1)} ∪ {(m,n, a, b, r, 2)} ∪ {(m,n, a, b, r, 3)} ∪ {(m,n, a, b,
r, 4)} ∪ {(m,n, a, b, 5)}. Let f2((m,n)) = (m,n,m, n, 1); f2((m,n, d)) = (m,n, d);
f2((m,n, a, b, 1)) = (m,n, a, b, amod b, 2); f2((m,n, a, b, r, 2)) = (m,n, b) if r = 0,
otherwise (m,n, a, b, r, 3); f2((m,n, a, b, r, 3)) = (m,n, b, b, r, 4); f2((m,n, a, b, r, 4)) =
(m,n, a, r, 5); f2((m,n, a, b, 5)) = f2((m,n, a, b, 1)).

Now let h((m,n)) = g((m,n)) = (m,n); h((m,n, d)) = (d); h((m,n, a, b, 1)) =
(a, b, 0, 1); h((m,n, a, b, r, 2)) = (a, b, r, 2); h((m,n, a, b, r, 3)) = (a, b, r, 3); h((m,n, a,
b, r, 4)) = h(f2((m,n, a, b, r, 4))); h((m,n, a, b, 5)) = (a, b, b, 1); j((m,n, a, b, r, 3)) =
j((m,n, a, b, r, 4)) = 2, otherwise j(q) = 1. Then C2 represents C1.

Notes: It is tempting to try to deĄne things in a more simple way Ů for example,
to let g map Q1 into Q2 and to insist only that when x0, x1, . . . is a computational
sequence in C1 then g(x0), g(x1), . . . is a subsequence of the computational sequence in
C2 that begins with g(x0). But this is inadequate; in the example above, C1 forgets
the original value of m and n but C2 does not.

If C2 represents C1 by means of functions g, h, j, and if C3 represents C2 by means
of functions g′, h′, j′, then C3 represents C1 by means of functions g′′, h′′, j′′, where

g′′(x) = g′(g(x)), h′′(x) = h(h′(x)), and j′′(q) =

0≤k<j(h′(q))

j′(qk),

if q0 = q and qk+1 = f
[j′(qk)]
3 (qk). Hence the relation deĄned above is transitive. We

can say C2 directly represents C1 if the function j is bounded; this relation is also
transitive. The relation ŞC2 represents C1Ť generates an equivalence relation in which
two computational methods apparently are equivalent if and only if they compute
isomorphic functions of their inputs; the relation ŞC2 directly represents C1Ť generates
a more interesting equivalence relation that perhaps matches the intuitive idea of being
Şessentially the same algorithm.Ť

For an alternative approach to simulation, see R. W. Floyd and R. Beigel, The
Language of Machines (Computer Science Press, 1994), Section 3.3.

468 ANSWERS TO EXERCISES 1.2.1

SECTION 1.2.1

1. (a) Prove P (0). (b) Prove that P (0), . . . , P (n) implies P (n+ 1), for all n ≥ 0.

2. The theorem has not been proved for n = 2. In the second part of the proof,
take n = 1; we assume there that a(n−1)−1 = a−1 = 1. If this condition is true (so that
a = 1), the theorem is indeed valid.

3. The correct answer is 1 − 1/n. The mistake occurs in the proof for n = 1, when
the formula on the left either may be assumed to be meaningless, or it may be assumed
to be zero (since there are n− 1 terms).

5. If n is prime, it is trivially a product of one or more primes. Otherwise n has
factors, so n = km for some k and m with 1 < k,m < n. Since both k and m are less
than n, by induction they can be written as products of primes; hence n is the product
of the primes appearing in the representations of k and m.

6. In the notation of Fig. 4, we prove A5 implies A6. This is clear since A5 implies
(a′ − qa)m+ (b′ − qb)n = (a′m+ b′n)− q(am+ bn) = c− qd = r.

7. n2 − (n− 1)2 + · · · − (−1)n12 = 1 + 2 + · · ·+ n = n(n+ 1)/2.

8. (a) We must show that (n2 − n + 1) + (n2 − n + 3) + · · · + (n2 + n − 1) equals
n3: And indeed, the sum is n(n2 − n) + (1 + 3 + · · · + (2n−1)) = n3 − n2 + n2, by
Eq. (2). But an inductive proof was requested, so another approach should be taken!
For n = 1, the result is obvious. Let n ≥ 1; we have (n+ 1)2 − (n+ 1) = n2 − n+ 2n,
so the Ąrst terms for n+ 1 are 2n larger; thus the sum for n+ 1 is the sum for n plus

2n+ · · ·+ 2n
n times

+(n+ 1)2 + (n+ 1)− 1;

this equals n3 + 2n2 + n2 + 3n + 1 = (n + 1)3. (b) We have shown that the Ąrst
term for (n + 1)3 is two greater than the last term for n3. Therefore by Eq. (2),
13 + 23 + · · ·+n3 = sum of consecutive odd numbers starting with unity = (number of
terms)2 = (1 + 2 + · · ·+ n)2.

10. Obvious for n = 10. If n ≥ 10, we have 2n+1 = 2 · 2n > (1 + 1/n)32n and by
induction this is greater than (1 + 1/n)3n3 = (n+ 1)3.

11. (−1)n(n+ 1)/(4(n+ 1)2 + 1).

12. The only nontrivial part of the extension is the calculation of the integer q in E2.
This can be done by repeated subtraction, reducing to the problem of determining
whether u+ v

√
2 is positive, negative, or zero, and the latter problem is readily solved.

It is easy to show that whenever u+ v
√

2 = u′ + v′
√

2, we must have u = u′ and
v = v′, since

√
2 is irrational. Now it is clear that 1 and

√
2 have no common divisor,

if we deĄne divisor in the sense that u+ v
√

2 divides a(u+ v
√

2) if and only if a is an
integer. The algorithm extended in this way computes the regular continued fraction
of the ratio of its inputs; see Section 4.5.3.

[Note: If we extend the concept of divisor so that u+ v
√

2 divides a(u+ v
√

2) if
and only if a has the form u′ + v′

√
2 for integers u′ and v′, there is a way to extend

Algorithm E so that it always will terminate: If in step E2 we have c = u+v
√

2 and d =
u′+v′

√
2, compute c/d = c(u′−v′

√
2)/(u′2−2v′2) = x+y

√
2 where x and y are rational.

Now let q = u′′ + v′′
√

2, where u′′ and v′′ are the nearest integers to x and y; and let
r = c−qd. If r = u′′′+v′′′

√
2, it follows that |u′′′2−2v′′′2| < |u′2−2v′2|, hence the com-

putation will terminate. See Şquadratic Euclidean domainsŤ in number theory texts.]

13. Add ŞT ≤ 3(n−d)+kŤ to assertions A3, A4, A5, A6, where k takes the respective
values 2, 3, 3, 1. Also add Şd > 0Ť to A4.

1.2.2 ANSWERS TO EXERCISES 469

15. (a) Let A = S in (iii); every nonempty well-ordered set has a least element.
(b) Let x ≺ y if |x| < |y| or if |x| = |y| and x < 0 < y.
(c) No, the subset of all positive reals fails to satisfy (iii). [Note: Using the so-

called axiom of choice, a rather complicated argument can be given to show that every
set can be well-ordered somehow; but nobody has yet been able to deĄne an explicit
relation that well-orders the real numbers.]

(d) To prove (iii) for Tn, use induction on n: Let A be a nonempty subset of Tn
and consider A1, the set of Ąrst components of A. Since A1 is a nonempty subset of S,
and S is well-ordered, A1 contains a smallest element x. Now consider Ax, the subset
of A in which the Ąrst component equals x; Ax may be considered a subset of Tn−1

if its Ąrst component is suppressed, so by induction Ax contains a smallest element
(x, x2, . . . , xn) that in fact is the smallest element of A.

(e) No, although properties (i) and (ii) are valid. If S contains at least two distinct
elements, a ≺ b, the set (b), (a, b), (a, a, b), (a, a, a, b), (a, a, a, a, b), . . . has no least ele-
ment. On the other hand T can be well-ordered if we deĄne (x1, . . . , xm) ≺ (y1, . . . , yn)
whenever m < n, or m = n and (x1, . . . , xn) ≺ (y1, . . . , yn) in Tn.

(f) Let S be well-ordered by ≺. If such an inĄnite sequence exists, the set A
consisting of the members of the sequence fails to satisfy property (iii), for no element
of the sequence can be smallest. Conversely if ≺ is a relation satisfying (i) and (ii) but
not (iii), let A be a nonempty subset of S that has no smallest element. Since A is not
empty, we can Ąnd x1 in A; since x1 is not the smallest element of A, there is x2 in A
for which x2 ≺ x1; since x2 is not the smallest element either, we can Ąnd x3 ≺ x2; etc.

(g) Let A be the set of all x for which P (x) is false. If A is not empty, it contains a
smallest element x0. Hence P (y) is true for all y ≺ x0. But this implies P (x0) is true,
so x0 is not in A (a contradiction). Therefore A must be empty: P (x) is always true.

SECTION 1.2.2

1. There is none; if r is a positive rational, r/2 is smaller.

2. Not if inĄnitely many nines appear in a row; in that case the decimal expansion
of the number is 1 + .24000000 . . . , according to Eq. (2).

3. −1/27, but the text hasnŠt deĄned it.

4. 4.

6. The decimal expansion of a number is unique, so x = y if and only if m = n and
di = ei for all i ≥ 1. If x ̸= y, one may compare m vs. n, d1 vs. e1, d2 vs. e2, etc.; when
the Ąrst inequality occurs, the larger quantity belongs to the larger of {x, y}.

7. One may use induction on x, Ąrst proving the laws for x positive, and then for x
negative. Details are omitted here.

8. By trying n = 0, 1, 2, . . . we Ąnd the value of n for which nm ≤ u < (n + 1)m.
Assuming inductively that n, d1, . . . , dk−1 have been determined, dk is the digit such
that

n+
d1

10
+ · · ·+ dk

10k

m
≤ u <

n+

d1

10
+ · · ·+ dk

10k
+

1
10k

m
.

This construction canŠt make dk = 9 for all k > l, because that could happen only if
(n+ d1/10 + · · ·+ dl/10l + 1/10l)m ≤ u.

9. ((bp/q)u/v)qv = (((bp/q)u/v)v)q = ((bp/q)u)q = ((bp/q)q)u = bpu, hence (bp/q)u/v =
bpu/qv. This proves the second law. We prove the Ąrst law using the second: bp/qbu/v =
(b1/qv)pv(b1/qv)qu = (b1/qv)pv+qu = bp/q+u/v.

470 ANSWERS TO EXERCISES 1.2.2

10. If log10 2 = p/q, with p and q positive, then 2q = 10p, which is absurd since the
right-hand side is divisible by 5 but the left-hand side isnŠt.
11. InĄnitely many! No matter how many digits of x are given, we will not know
whether 10x = 1.99999 . . . or 2.00000 . . . , if xŠs digits agree with the digits of log10 2.
There is nothing mysterious or paradoxical in this; a similar situation occurs in addition,
if we are adding .444444 . . . to .55555
12. They are the only values of d1, . . . , d8 that satisfy Eq. (7).
13. (a) First prove by induction that if y > 0, 1 + ny ≤ (1 + y)n. Then set y = x/n,
and take nth roots. (b) x = b− 1, n = 10k.
14. Set x = logb c in the second equation of (5), then take logarithms of both sides.
15. Prove it, by transposing Şlogb yŤ to the other side of the equation and using (11).
16. lnx/ln 10, by (14).
17. 5; 1; 1; 0; undeĄned.
18. No, log8 x = lg x/lg 8 = 1

3
lg x.

19. Yes, since lgn < (log10 n)/.301 < 14/.301 < 47.
20. They are reciprocals.
21. (ln lnx− ln ln b)/ ln b.
22. From the tables in Appendix A, lg x ≈ 1.442695 lnx; log10 x ≈ .4342945 lnx. The
relative error is ≈ (1.442695− 1.4342945)/1.442695 ≈ 0.582%.
23. Take the Ągure of area ln y, and divide its height by x while multiplying its length
by x. This deformation preserves its area and makes it congruent to the piece left when
lnx is removed from ln xy, since the height at point x+ xt in the diagram for lnxy is
1/(x+ xt) = (1/(1 + t))/x.
24. Substitute 2 everywhere 10 appears.
25. Note that z = 2−p⌊2p−kx⌋ > 0, when p is the precision (the number of binary
digits after the radix point). The quantity y + logb x stays approximately constant.
27. Prove by induction on k that

x2k

(1− δ)2k+1−1 ≤ 102k(n+b1/2+···+bk/2k)x′k ≤ x2k

(1 + ϵ)2k+1−1

and take logarithms.
28. The following solution uses the same auxiliary table as before.

E1. [Initialize.] Set x ← 1− ϵ− x, y ← y0, and k ← 1, where 1− ϵ is the largest
possible value of x, and y0 is the nearest approximation to b1−ϵ. (The quantity
yb−x will remain approximately constant in the following steps.)

E2. [Test for end.] If x = 0, stop.
E3. [Compare.] If x < logb(2k/(2k − 1)), increase k by 1 and repeat this step.
E4. [Reduce values.] Set x ← x − logb(2k/(2k − 1)), y ← y − (y shifted right k),

and go to E2.
If y is set to b1−ϵ(1 + ϵ0) in step E1, the subsequent computational error arises

when x← x+ logb(1− 2−k) + δj and y ← y(1− 2−k)(1 + ϵj) during the jth execution
of step E4, for certain small errors δj and ϵj . When the algorithm terminates we have
computed y = bx−Σδj

j(1 + ϵj). Further analysis depends on b and the computer

word size. Notice that both in this case and in exercise 26, it is possible to reĄne the
error estimates somewhat if the base is e, since for most values of k the table entry
ln(2k/(2k − 1)) can be given with high accuracy: It equals 2−k + 1

2
2−2k + 1

3
2−3k + · · · .

1.2.3 ANSWERS TO EXERCISES 471

Note: Similar algorithms can be given for trigonometric functions; see J. E.
Meggitt, IBM J. Res. and Dev. 6 (1962), 210Ű226; 7 (1963), 237Ű245. See also T. C.
Chen, IBM J. Res. and Dev. 16 (1972), 380Ű388; V. S. Linsky, Vychisl. Mat. 2 (1957),
90Ű119; D. E. Knuth, METAFONT : The Program (Reading, Mass.: AddisonŰWesley,
1986), §120Ű§147.

29. e; 3; 4.

30. x.

SECTION 1.2.3

1. −a1; and a2 + · · · + a1 = 0. In general, sums with Ś· · ·Š are deĄned so that
(ap + · · ·+ aq) + (aq+1 + · · ·+ ar) = ap + · · ·+ ar for arbitrary integers p, q, and r.

2. a1 + a2 + a3.

3. 1
1

+ 1
3

+ 1
5

+ 1
7

+ 1
9

+ 1
11

; 1
9

+ 1
3

+ 1
1

+ 1
3

+ 1
9
. The rule for p(j) is violated: In the

Ąrst case n2 = 3 occurs for no n, and in the second case n2 = 4 occurs for two n. [See
Eq. (18).]

4. (a11) + (a21 + a22) + (a31 + a32 + a33) = (a11 + a21 + a31) + (a22 + a32) + (a33).

5. It is only necessary to use the rule a

R(i) xi =

R(i)(axi):

R(i)

ai

S(j)

bj

=

R(i)

ai

S(j)

bj

=

R(i)

S(j)

aibj

.

7. Use Eq. (3); the two limits are interchanged and the terms between a0 and ac
must be transferred from one limit to the other.

8. Let a(i+1)i = +1, and ai(i+1) = −1, for all i ≥ 0, and all other aij zero; let
R(i) = S(i) = Şi ≥ 0Ť. The left-hand side is −1, the right-hand side is +1.

9, 10. No; the applications of rule (d) assume that n ≥ 0. (The result is correct for
n = −1 but the derivation isnŠt.)

11. (n+ 1)a.

12. 7
6
(1− 1/7n+1).

13. m(n−m+ 1) + 1
2
(n−m)(n−m+ 1); or, 1

2
(n(n+ 1)−m(m− 1)).

14. 1
4
(n(n+ 1)−m(m− 1))(s(s+ 1)− r(r − 1)), if m ≤ n and r ≤ s.

15, 16. Key steps:

0≤j≤n
jxj = x

1≤j≤n
jxj−1 = x

0≤j≤n−1

(j + 1)xj

= x

0≤j≤n
jxj − nxn+1 + x

0≤j≤n−1

xj .

17. The number of elements in S.

18. S′(j) = Ş1 ≤ j < nŤ. R′(i, j) = Şn is a multiple of i and i > jŤ.

19. (an − am−1)[m≤n].

20. (b− 1)
n
k=0(n− k)bk + n+ 1 =

n
k=0 b

k; this formula follows from (14) and the
result of exercise 16.

21.

R(j) aj +

S(j) aj =

j aj [R(j)] +

j aj [S(j)] =

j aj([R(j)] + [S(j)]); now

use the fact that [R(j)]+[S(j)] = [R(j) or S(j)]+[R(j) and S(j)]. In general, bracket
notation gives us the ability to manipulate Şon the lineŤ instead of Şbelow the line.Ť

472 ANSWERS TO EXERCISES 1.2.3

22. For (5) and (7), just change

to

. We also have

R(i) bici = (

R(i) bi)(

R(i) ci)

and

R(j)

aj

S(j)

aj

=

R(j) orS(j)

aj

R(j) andS(j)

aj

.

23. 0 + x = x and 1 · x = x. This makes many operations and equations simpler, such
as rule (d) and its analog in the previous exercise.

25. The Ąrst step and last step are OK. The second step uses i for two different
purposes at once. The third step should probably be

n
i=1 n.

26. Key steps, after transforming the problem as in Example 2:

n

i=0

 n

j=0

aiaj

=

n

i=0

an+1
i

n

j=0

aj

=

 n

i=0

an+1
i

 n

i=0

 n

j=0

aj

=

 n

i=0

ai

2n+2

.

The answer is (
n
i=0 ai)

n+2.

28. (n+ 1)/2n.

29. (a)

0≤k≤j≤i≤n aiajak. (b) Let Sr =
n
i=0 a

r
i . Solution: 1

3
S3 + 1

2
S1S2 + 1

6
S3

1 .
The general solution to this problem, as the number of indices gets larger, may be
found in Section 1.2.9, Eq. (38).

30. Write the left side as

1≤j,k≤n ajbkxjyk, and do a similar thing on the right.
(This identity is the special case m = 2 of exercise 46.)

31. Set aj = uj , bj = 1, xj = vj , and yj = 1, to obtain the answer n
n
j=1 ujvj −

(
n
j=1 uj)(

n
j=1 vj). Consequently we have (

n
j=1 uj)(

n
j=1 vj) ≤ n

n
j=1 ujvj when

u1 ≤ u2 ≤ · · · ≤ un and v1 ≤ v2 ≤ · · · ≤ vn, a result known as ChebyshevŠs monotonic

inequality. [See Soobshch. mat. obshch. Khar,kovskom Univ. 4, 2 (1882), 93Ű98.]

33. This can be proved by induction on n, if we rewrite the formula as

1
xn − xn−1

 n

j=1

xrj (xj − xn−1)
1≤k≤n, k ̸=j(xj − xk)

−
n

j=1

xrj (xj − xn)
1≤k≤n, k ̸=j(xj − xk)

.

Each of these sums now has the form of the original sum, except on n − 1 elements,
and the values turn out nicely by induction when 0 ≤ r ≤ n− 1. When r = n, consider
the identity

0 =
n

j=1

n
k=1(xj − xk)

1≤k≤n, k ̸=j(xj − xk)
=

n

j=1

xnj − (x1 + · · ·+ xn)xn−1
j + P (xj)

1≤k≤n, k ̸=j(xj − xk)

where P (xj) is a polynomial of degree n − 2 in xj whose coefficients are symmetric
functions of {x1, . . . , xn} that donŠt depend on j. (See exercise 1.2.9Ű10.) We obtain
the desired answer from the solutions for r = 0, 1, . . . , n− 1.

Notes: Dr. Matrix was anticipated in this discovery by L. Euler, who wrote to
Christian Goldbach about it on 9 November 1762. See EulerŠs Institutionum Calculi
Integralis 2 (1769), §1169; and E. Waring, Phil. Trans. 69 (1779), 64Ű67. The following
alternative method of proof, using complex variable theory, is less elementary but more
elegant: By the residue theorem, the value of the given sum is

1
2πi

|z|=R

zr dz

(z − x1) . . . (z − xn)

1.2.3 ANSWERS TO EXERCISES 473

where R > |x1| , . . . , |xn|. The Laurent expansion of the integrand converges uniformly
on |z| = R; it is

zr−n

1
1− x1/z

. . .

1

1− xn/z

= zr−n + (x1 + · · ·+ xn)zr−n−1 + (x2
1 + x1x2 + · · ·)zr−n−2 + · · · .

Integrating term by term, everything vanishes except the coefficient of z−1. This
method gives us the general formula for an arbitrary integer r ≥ 0:

j1+···+jn=r−n+1
j1,...,jn≥0

xj1

1 . . . xjnn =

1≤j1≤···≤jr−n+1≤n
xj1

. . . xjr−n+1
;

see Eq. 1.2.9Ű(33). [J. J. Sylvester, Quart. J. Math. 1 (1857), 141Ű152.]

34. If the reader has tried earnestly to solve this problem, without getting the answer,
perhaps its purpose has been achieved. The temptation to regard the numerators as
polynomials in x rather than as polynomials in k is almost overwhelming. It would
undoubtedly be easier to prove the considerably more general result

n

k=1

1≤r≤n−1(yk − zr)

1≤r≤n, r ̸=k(yk − yr)

= 1,

which is an identity in 2n− 1 variables!

35. If R(j) never holds, the value should be −∞. The stated analog of rule (a) is based
on the identity a+max(b, c) = max(a+ b, a+ c). Similarly if all ai, bj are nonnegative,
we have

supR(i) ai supS(j) bj = supR(i) supS(j) aibj .

Rules (b), (c) do not change; for rule (d) we get the simpler form

sup(supR(j) aj , supS(j) aj) = supR(j) orS(j) aj .

36. Subtract column one from columns 2, . . . , n. Add rows 2, . . . , n to row one. The
result is a triangular determinant.

37. Subtract column one from columns 2, . . . , n. Then subtract x1 times row k − 1
from row k, for k = n, n−1, . . . , 2 (in that order). Now factor x1 out of the Ąrst column
and factor xk−x1 out of columns k = 2, . . . , n, obtaining x1(x2−x1) . . . (xn − x1) times
a Vandermonde determinant of order n− 1. The process continues by induction.

Alternative proof, using ŞhigherŤ mathematics: The determinant is a polynomial
in the variables x1, . . . , xn of total degree 1+2+· · ·+n. It vanishes if xj = 0 or if xi = xj
(i < j), and the coefficient of x1

1 x
2
2 . . . x

n
n is +1. These facts characterize its value. In

general, if two rows of a matrix become equal for xi = xj , their difference is usually
divisible by xi − xj , and this observation often speeds the evaluation of determinants.

38. Subtract column one from columns 2, . . . , n, and factor out

(x1 + y1)−1 . . . (xn + y1)−1(y1 − y2) . . . (y1 − yn)

from rows and columns. Now subtract row one from rows 2, . . . , n and factor out
(x1−x2) . . . (x1−xn)(x1+y2)−1 . . . (x1+yn)−1; we are left with the Cauchy determinant
of order n− 1.

39. Let I be the identity matrix (δij), and J the matrix of all ones. Since J2 = nJ,
we have (xI + yJ)((x+ ny)I − yJ) = x(x+ ny)I.

474 ANSWERS TO EXERCISES 1.2.3

40. [A. de Moivre, The Doctrine of Chances, 2nd edition (London: 1738), 197Ű199.]
We have

n

t=1

bitx
t
j = xj

1≤k≤n
k ̸=i

(xk − xj)

xi

1≤k≤n
k ̸=i

(xk − xi) = δij .

41. This follows immediately from the relation of an inverse matrix to its cofactors.
It may also be interesting to give a direct proof here: We have

n

t=1

1
xi + yt

btj =
n

t=1

k ̸=t(xj + yk − x)

k ̸=i(xk + yt)

k ̸=j(xj − xk)

k ̸=t(yt − yk)

when x = 0. This is a polynomial of degree at most n− 1 in x. If we set x = xj + ys,
1 ≤ s ≤ n, the terms are zero except when s = t, so the value of this polynomial is

k ̸=i
(−xk − ys)

k ̸=j
(xj − xk) =

k ̸=i
(xj − xk − x)

k ̸=j
(xj − xk).

These polynomials of degree at most n− 1 agree at n distinct points x, so they agree
also for x = 0; hence

n

t=1

1
xi + yt

btj =

k ̸=i
(xj − xk)

k ̸=j
(xj − xk) = δij .

42. n/(x+ ny).

43. 1−n
k=1(1− 1/xk). This is easily veriĄed if any xi = 1, since the inverse of any

matrix having a row or column all of ones must have elements whose sum is 1. If none of
the xi equals one, sum the elements of row i by setting x = 1 in exercise 40 and obtaining
k ̸=i(xk − 1)/xi

k ̸=i(xk − xi). After multiplying numerator and denominator by

xi − 1, we can sum on i by applying exercise 33 with r = 0 to the n + 2 numbers
{0, 1, x1, . . . , xn}.
44. We Ąnd

cj =
n

i=1

bij =
n

k=1

(xj + yk)

1≤k≤n
k ̸=j

(xj − xk),

after applying exercise 33. And
n

j=1

cj =
n

j=1

(xnj + (y1 + · · ·+ yn)xn−1
j + · · ·)

1≤k≤n, k ̸=j(xj − xk)

= (x1 + x2 + · · ·+ xn) + (y1 + y2 + · · ·+ yn).

45. Let xi = i, yj = j − 1. From exercise 44, the sum of the elements of the inverse is
(1 + 2 + · · ·+ n) + ((n− 1) + (n− 2) + · · ·+ 0) = n2. From exercise 38, the elements
of the inverse are

bij =
(−1)i+j(i+ n− 1)! (j + n− 1)!

(i+ j − 1)(i− 1)!2(j − 1)!2(n− i)! (n− j)! .

This quantity can be put into several forms involving binomial coefficients, for example

(−1)i+jij
i+j−1

−i
n

n

i

−j
n

n

j

= (−1)i+jj

i+j−2
i−1

i+n−1
i−1

j+n−1
n− i

n

j

.

1.2.3 ANSWERS TO EXERCISES 475

From the latter formula we see that bij is not only an integer, it is divisible by i, j, n,
i+ j − 1, i+ n− 1, j + n− 1, n− i+ 1, and n− j + 1. Perhaps the prettiest formula
for bij is

(i+ j − 1)

i+ j − 2
i− 1

2−(i+ j)
n− i

−(i+ j)
n− j

.

The solution to this problem would be extremely difficult if we had not realized
that a Hilbert matrix is a special case of a Cauchy matrix; the more general problem is
much easier to solve than its special case! It is frequently wise to generalize a problem
to its Şinductive closure,Ť i.e., to the smallest generalization such that all subproblems
that arise in an attempted proof by mathematical induction belong to the same class.
In this case, we see that cofactors of a Cauchy matrix are determinants of Cauchy
matrices, but cofactors of Hilbert matrices are not determinants of Hilbert matrices.
[For further information, see J. Todd, J. Research Nat. Bur. Stand. 65 (1961), 19Ű22;
A. Cauchy, Exercices dŠanalyse et de physique mathématique 2 (1841), 151Ű159.]

46. For any integers k1, k2, . . . , km, let ϵ(k1, . . . , km) = sign(

1≤i<j≤m(kj−ki)), where
signx = [x> 0]− [x< 0]. If (l1, . . . , lm) is equal to (k1, . . . , km) except for the fact that
ki and kj have been interchanged, we have ϵ(l1, . . . , lm) = −ϵ(k1, . . . , km). Therefore
we have the equation det(Bk1...km) = ϵ(k1, . . . , km) det(Bj1...jm), if j1 ≤ · · · ≤ jm are
the numbers k1, . . . , km rearranged into nondecreasing order. Now by deĄnition of the
determinant,

det(AB) =

1≤l1,...,lm≤m
ϵ(l1, . . . , lm)

 n

k=1

a1kbkl1

. . .

 n

k=1

amkbklm

=

1≤k1,...,km≤n
a1k1

. . . amkm

1≤l1,...,lm≤m
ϵ(l1, . . . , lm)bk1l1 . . . bkmlm

=

1≤k1,...,km≤n
a1k1

. . . amkm det(Bk1...km)

=

1≤k1,...,km≤n
ϵ(k1, . . . , km)a1k1

. . . amkm det(Bj1...jm)

=

1≤j1≤···≤jm≤n
det(Aj1...jm) det(Bj1...jm).

Finally, if ji = ji+1, det(Aj1...jm) = 0. [J. de lŠÉcole Polytechnique 9 (1813), 280Ű354;
10 (1815), 29Ű112. Binet and Cauchy presented their papers on the same day in 1812.]

47. Let aij = (
j−1
k=1(xi+pk))(

n
k=j+1(xi+qk)). Subtract column k−1 from column k

and factor out pk−j − qk, for k = n, n − 1, . . . , j + 1 (in that order), for j = 1,
2, . . . , n − 1 (in that order). This leaves

1≤i<j≤n(pi − qj) times det(bij) where

bij =
n
k=j+1(xi + qk). Now subtract qk+j times column k + 1 from column k for

k = 1, . . . , n − j, and for j = 1, . . . , n − 1; this leaves det(cij), where cij = xn−ji

essentially deĄnes a Vandermonde matrix. We can now proceed as in exercise 37,
operating on rows instead of columns, obtaining

det(aij) =

1≤i<j≤n
(xi − xj)(pi − qj).

When pj = qj = yj for 1 ≤ j ≤ n, the matrix in this exercise is a Cauchy matrix
with row i multiplied by

n
j=1(xi + yj). Therefore this result generalizes exercise 38

by adding n− 2 independent parameters. [Manuscripta Math. 69 (1990), 177Ű178.]

476 ANSWERS TO EXERCISES 1.2.4

SECTION 1.2.4

1. 1, −2, −1, 0, 5.

2. ⌊x⌋.
3. By deĄnition, ⌊x⌋ is the greatest integer less than or equal to x; therefore ⌊x⌋ is

an integer, ⌊x⌋ ≤ x, and ⌊x⌋+ 1 > x. The latter properties, plus the fact that when m
and n are integers we have m < n if and only if m ≤ n − 1, lead to an easy proof of
propositions (a) and (b). Similar arguments prove (c) and (d). Finally, (e) and (f) are
just combinations of previous parts of this exercise.

4. x− 1 < ⌊x⌋ ≤ x; so −x+ 1 > −⌊x⌋ ≥ −x; hence the result.

5. ⌊x + 1
2
⌋. The value of (−x rounded) will be the same as −(x rounded), except

when xmod 1 = 1
2
. In the latter case, the negative value is rounded towards zero and

the positive value is rounded away from zero.

6. (a) is true: ⌊√x⌋ = n ⇐⇒ n2 ≤ x < (n + 1)2 ⇐⇒ n2 ≤ ⌊x⌋ < (n + 1)2 ⇐⇒
⌊⌊x⌋ ⌋ = n. Similarly, (b) is true. But (c) fails when x is, say, 1.1.

7. ⌊x+y⌋ = ⌊⌊x⌋+xmod 1+⌊y⌋+y mod 1⌋ = ⌊x⌋+⌊y⌋+⌊xmod 1+y mod 1⌋. The
inequality should be ≥ for ceilings, and then equality holds if and only if either x or y is
an integer or xmod 1+y mod 1 > 1; that is, if and only if (−x) mod 1+(−y) mod 1 < 1.

8. 1, 2, 5, −100.

9. −1, 0, −2.

10. 0.1, 0.01, −0.09.

11. x = y.

12. All.

13. +1, −1.

14. 8.

15. Multiply both sides of Eq. (1) by z; the result is also easily veriĄed if y = 0.

17. As an example, consider the multiplication portion of Law A: We have a = b+qm
and x = y + rm, for some integers q and r; so ax = by + (br + yq + qrm)m.

18. We have a − b = kr for some integer k, and also kr ≡ 0 (modulo s). Hence by
Law B, k ≡ 0 (modulo s), so a− b = qsr for some integer q.

20. Multiply both sides of the congruence by a′.

21. There is at least one such representation, by the previously proved exercise. If there
are two representations, n = p1 . . . pk = q1 . . . qm, we have q1 . . . qm ≡ 0 (modulo p1);
so if none of the qŠs equals p1 we could cancel them all by Law B and obtain 1 ≡ 0
(modulo p1). The latter is impossible since p1 is not equal to 1. So some qj equals p1,
and n/p1 = p2 . . . pk = q1 . . . qj−1qj+1 . . . qm. Either n is prime, when the result is
clearly true, or by induction the two factorizations of n/p1 are the same.

22. Let m = ax, where a > 1 and x > 0. Then ax ≡ 0 but x ̸≡ 0 (modulo m).

24. Law A is always valid for addition and subtraction; Law C is always valid.

26. If b is not a multiple of p, then b2 − 1 is, so one of the factors must be.

27. A number is relatively prime to pe if and only if it is not a multiple of p. So we
count those that are not multiples of p and get φ(pe) = pe − pe−1.

1.2.4 ANSWERS TO EXERCISES 477

28. If a and b are relatively prime to m, so is abmodm, since any prime dividing the
latter and m must divide a or b also. Now simply let x1, . . . , xφ(m) be the numbers
relatively prime to m, and observe that ax1 modm, . . . , axφ(m) modm are the same
numbers in some order, etc.

29. We prove (b): If r ⊥ s and if k2 divides rs, then p2 divides rs for some prime p,
so p divides r (say) and cannot divide s; so p2 divides r. We see that f(rs) = 0 if and
only if f(r) = 0 or f(s) = 0.

30. Suppose r ⊥ s. One idea is to prove that the φ(rs) numbers relatively prime to rs
are precisely the φ(r)φ(s) distinct numbers (sxi + ryj) mod (rs) where x1, . . . , xφ(r)

and y1, . . . , yφ(s) are the corresponding values for r and s.
Since φ is multiplicative, φ(106) = φ(26)φ(56) = (26 − 25)(56 − 55) = 400000.

And in general when n = pe1

1 . . . perr , we have φ(n) = (pe1

1 − pe1−1
1) . . . (perr − per−1

r) =
n

p\n, p prime(1− 1/p). (Another proof appears in exercise 1.3.3Ű27.)

31. Use the fact that the divisors of rs may be uniquely written in the form cd where
c divides r and d divides s. Similarly, if f(n) ≥ 0, one can show that the function
maxd\n f(d) is multiplicative (see exercise 1.2.3Ű35).

33. Either n+m or n−m+ 1 is even, so one of the quantities inside the brackets is
an integer; so equality holds in exercise 7, and we obtain (a) n; (b) n+ 1.

34. b must be an integer ≥ 2. (Set x = b.) The sufficiency is proved as in exercise 6.
The same condition is necessary and sufficient for ⌈logb x⌉ = ⌈logb⌈x⌉⌉.

Note: R. J. McEliece has pointed out the following generalization: Let f be a
continuous, strictly increasing function deĄned on an interval A, and assume that both
⌊x⌋ and ⌈x⌉ are in A whenever x is in A. Then the relation ⌊f(x)⌋ = ⌊f(⌊x⌋)⌋ holds
for all x in A if and only if the relation ⌈f(x)⌉ = ⌈f(⌈x⌉)⌉ holds for all x in A,
if and only if the following condition is satisĄed for all x in A: Şf(x) is an integer
implies x is an integer.Ť The condition is obviously necessary, for if f(x) is an integer
and it equals ⌊f(⌊x⌋)⌋ or ⌈f(⌈x⌉)⌉ then x must equal ⌊x⌋ or ⌈x⌉. Conversely if, say,
⌊f(⌊x⌋)⌋ < ⌊f(x)⌋ then by continuity there is some y with ⌊x⌋ < y ≤ x for which f(y)
is an integer; but y cannot be an integer.

35.
x+m

n
− 1 =

x+m

n
− 1
n
− n− 1

n
<
⌊x⌋+m

n
− n− 1

n
≤
⌊x⌋+m

n

≤ x+m

n
;

apply exercise 3. Use of exercise 4 gives a similar result for the ceiling function. Both
identities follow as a special case of McElieceŠs theorem in exercise 34.

36. Assume Ąrst that n = 2t. Then

n

k=1

k

2

=

n

k=1

n+ 1− k

2

;

hence

n

k=1

k

2

=

1
2

n

k=1

k

2

+

n+ 1− k

2

=

1
2

n

k=1

2t+ 1
2

= t2 =

n2

4
,

by exercise 33. And if n = 2t + 1, we have t2 + ⌊n/2⌋ = t2 + t = n2/4 − 1/4. For the
second sum we get, similarly, ⌈n(n+ 2)/4⌉.

478 ANSWERS TO EXERCISES 1.2.4

37.

0≤k<n

mk + x

n
=
m(n− 1)

2
+ x. Let {y} denote y mod 1; we must subtract

S =

0≤k<n

mk + x

n

.

This quantity S consists of d copies of the same sum, since if t = n/d we have

mk + x

n

=

m(k + t) + x

n

.

Let u = m/d; then

0≤k<t

mk + x

n

=

0≤k<t

x

n
+
uk

t

,

and since t ⊥ u this sum may be rearranged to equal

xmod d

n

+

xmod d

n
+

1
t

+ · · ·+

xmod d

n
+
t− 1
t

.

Finally, since (xmod d)/n < 1/t, the braces in this sum may be removed and we have

S = d

t(xmod d)

n
+
t− 1

2

.

An application of exercise 4 yields the similar identity

0≤k<n

mk + x

n

=

(m+ 1)(n− 1)
2

− d− 1
2

+ d⌈x/d⌉.

This formula would become symmetric in m and n if it were extended over the range
0 < k ≤ n. (The symmetry can be explained by drawing the graph of the summand as
a function of k, then reĆecting about the line y = x.)

38. Both sides increase by ⌈y⌉ when x increases by 1, so we can assume that 0 ≤ x < 1.
Then both sides are zero when x = 0, and both sides increase by 1 when x increases
past the values 1− k/y for y > k ≥ 0. [Crelle 136 (1909), 42; the case y = n is due to
C. Hermite, Acta Math. 5 (1884), 315.]

39. Proof of part (f): Consider the more general identity

0≤k<n2 sinπ(x + k/n) =
2 sinπnx, which can be demonstrated as follows: Since 2 sin θ = (eiθ − e−iθ)/i =
(1− e−2iθ)eiθ−iπ/2, the identity is a consequence of the two formulas

0≤k<n
(1− e−2π(x+ik/n)) = 1− e−2πnx and

0≤k<n
eπ(x−(1/2)+(k/n)) = eπ(nx−1/2).

The latter is true since the function x− 1
2

is replicative; and the former is true because
we may set z = 1 in the factorization of the polynomial zn − αn = (z − α)(z − ωα) . . .
(z − ωn−1α), where ω = e−2πi/n.

40. (Note by N. G. de Bruijn.) If f is replicative, f(nx+ 1)− f(nx) = f(x+ 1)− f(x)
for all n > 0. Hence if f is continuous, f(x + 1) − f(x) = c for all x, and g(x) =
f(x)− c⌊x⌋ is replicative and periodic. Now

 1

0

e2πinxg(x) dx =
1
n

 1

0

e2πiyg(y) dy ;

1.2.4 ANSWERS TO EXERCISES 479

expanding in Fourier series shows that g(x) = (x − 1
2
)a for 0 < x < 1. It follows

that f(x) = (x − 1
2
)a. In general, this argument shows that any replicative locally

Riemann-integrable function has the form (x− 1
2
)a+bmax(⌊x⌋, 0)+cmin(⌊x⌋, 0) almost

everywhere. For further results see L. J. Mordell, J. London Math. Soc. 33 (1958), 371Ű
375; M. F. Yoder, Æquationes Mathematicæ 13 (1975), 251Ű261.

41. We want an = k when 1
2
k(k − 1) < n ≤ 1

2
k(k + 1). Since n is an integer, this is

equivalent to
k(k − 1)

2
+

1
8
< n <

k(k + 1)
2

+
1
8
,

i.e., k− 1
2
<
√

2n < k+ 1
2
. Hence an = ⌊√2n+ 1

2
⌋, the nearest integer to

√
2n. Other

correct answers are ⌈√2n− 1
2
⌉, ⌈(√8n+ 1− 1)/2⌉, ⌊(√8n− 7 + 1)/2⌋, etc.

42. (a) See exercise 1.2.7Ű10. (b) The given sum is n⌊logb n⌋ − S, where

S =

1≤k<n
k+1 is a power of b

k =

1≤t≤logb n

(bt − 1) = (b⌊logb n⌋+1 − b)/(b− 1)− ⌊logb n⌋.

43. ⌊√n⌋ (n− 1
6
(2⌊√n⌋+ 5)(⌊√n⌋ − 1)).

44. The sum is n+ 1 when n is negative.

45. ⌊mj/n⌋ = r if and only if

rn

m

≤ j <

 (r + 1)n
m

, and we Ąnd that the given

sum is therefore

0≤r<m
f(r)

 (r + 1)n
m

−

rn

m

.

The stated result follows by rearranging the latter sum, grouping the terms with a
particular value of ⌈rn/m⌉. The second formula is immediate by the substitution

f(x) =

x+ 1
k

.

46.

0≤j<αn f(⌊mj/n⌋) =

0≤r<αm⌈rn/m⌉(f(r − 1)− f(r)) + ⌈αn⌉f(⌈αm⌉ − 1).

47. (a) The numbers 2, 4, . . . , p − 1 are the even residues (modulo p); since 2kq =
p⌊2kq/p⌋+ (2kq) mod p, the number (−1)⌊2kq/p⌋((2kq) mod p) will be an even residue
or an even residue minus p, and each even residue clearly occurs just once. Hence
(−1)σq(p−1)/22 · 4 . . . (p − 1) ≡ 2 · 4 . . . (p − 1). (b) Let q = 2. If p = 4n + 1, σ = n; if
p = 4n + 3, σ = n + 1. Hence

2
p

= (1,−1,−1, 1) according as pmod 8 = (1, 3, 5, 7),

respectively. (c) For k < p/4, we have

⌊(p−1−2k)q/p⌋ = q−⌈(2k+1)q/p⌉ = q−1−⌊(2k+1)q/p⌋ ≡ ⌊(2k+1)q/p⌋ (modulo 2).

Hence we may replace the last terms ⌊(p − 1)q/p⌋, ⌊(p − 3)q/p⌋, . . . by ⌊q/p⌋, ⌊3q/p⌋,
etc. (d)

0≤k<p/2⌊kq/p⌋ +

0≤r<q/2⌈rp/q⌉ = ⌈p/2⌉(⌈q/2⌉ − 1) = (p + 1)(q − 1)/4.

Also

0≤r<q/2⌈rp/q⌉ =

0≤r<q/2⌊rp/q⌋+ (q− 1)/2. The idea of this proof goes back
to G. Eisenstein, Crelle 28 (1844), 246Ű248; Eisenstein also gave several other proofs
of this and other reciprocity laws in the same volume.

48. (a) This is clearly not always true when n < 0; when n > 0 it is easy to verify.
(b) ⌊(n+ 2− ⌊n/25⌋)/3⌋ = ⌈(n− ⌊n/25⌋)/3⌉ = ⌈(n+ ⌈−n/25⌉)/3⌉ = ⌈⌈24n/25⌉/3⌉ =
⌈8n/25⌉ = ⌊(8n+ 24)/25⌋. The penultimate equality is justiĄed by exercise 35.

480 ANSWERS TO EXERCISES 1.2.4

49. Since f(0) = f(f(0)) = f(f(0) + 0) = f(0) + f(0), we have f(n) = n for all
integers n. If f(1

2
) = k ≤ 0, we have k = f(1

1−2k
f(1

2
− k)) = f(1

1−2k
(f(1

2
) − k)) =

f(0) = 0. And if f(1
n−1

) = 0 we have f(1
n

) = f(1
n
f(1 + 1

n−1
)) = f(1

n−1
) = 0;

furthermore 1 ≤ m < n implies f(m
n

) = f(1
a
f(am

n
)) = f(1

a
) = 0, for a = ⌈n/m⌉,

by induction on m. Thus f(1
2
) ≤ 0 implies f(x) = ⌊x⌋ for all rational x. On the

other hand, if f(1
2
) > 0 the function g(x) = −f(−x) satisĄes (i) and (ii) and has

g(1
2
) = 1 − f(1

2
) ≤ 0; hence f(x) = −g(−x) = −⌊−x⌋ = ⌈x⌉ for all rational x.

[P. Eisele and K. P. Hadeler, AMM 97 (1990), 475Ű477.]
It does not follow, however, that f(x) = ⌊x⌋ or ⌈x⌉ for all real values of x. If, for

example, h(x) is any function with h(1) = 1 and h(x + y) = h(x) + h(y) for all real x
and y, then the function f(x) = ⌊h(x)⌋ satisĄes (i) and (ii); but h(x) may be unbounded
and highly erratic when 0 < x < 1 [G. Hamel, Math. Annalen 60 (1905), 459Ű462].

SECTION 1.2.5

1. 52!. For the curious, this number is 806 58175 17094 38785 71660 63685 64037
66975 28950 54408 83277 82400 00000 00000. (!)

2. pnk = pn(k−1)(n− k + 1). After the Ąrst n− 1 objects have been placed, there is
only one possibility for the last object.

3. 5 3 1 2 4, 3 5 1 2 4, 3 1 5 2 4, 3 1 2 5 4, 3 1 2 4 5; 4 2 3 5 1, 4 1 3 5 2, 4 1 2 5 3, 3 1 2 5 4, 3 1 2 4 5.

4. There are 2568 digits. The leading digit is 4 (since log10 4 = 2 log10 2 ≈ .602). The
least signiĄcant digit is zero, and in fact by Eq. (8) the low order 249 digits are all zero.
The exact value of 1000! was calculated by H. S. Uhler using a desk calculator and much
patience over a period of several years, and appears in Scripta Mathematica 21 (1955),
266Ű267. It begins with 402 38726 00770 (The last step in the calculation, to
multiply the two numbers 750! and

1000
k=751 k, was performed on UNIVAC I by John W.

Wrench, Jr., Şin the extraordinary time of 21/2 minutes.Ť Nowadays, of course, a
desktop machine easily produces 1000! in a fraction of a second, and we can conĄrm
that UhlerŠs value was 100% correct.)

5. (39902)(97/96) ≈ 416 + 39902 = 40318.

6. 218 · 38 · 54 · 72 · 11 · 13 · 17 · 19.

8. It is limm→∞mnm!/((n + m)!/n!) = n! limm→∞mn/((m + 1) . . . (m + n)) = n!,
since m/(m+ k)→ 1.

9.
√
π and −2

√
π. (Exercise 10 used.)

10. Yes, except when x is zero or a negative integer. For we have

Γ (x+ 1) = x lim
m→∞

mxm!
x(x+ 1) . . . (x+m)

m

x+m+ 1

.

11, 12. µ = (akp
k−1 + · · ·+ a1) + (akp

k−2 + · · ·+ a2) + · · ·+ ak

= ak(pk−1 + · · ·+ p+ 1) + · · ·+ a1 = (ak(pk − 1) + · · ·+ a0(p0− 1))/(p− 1)

= (n− ak − · · ·− a1− a0)/(p− 1).

13. For each n, 1 ≤ n < p, determine n′ as in exercise 1.2.4Ű19. There is exactly
one such n′, by Law 1.2.4B; and (n′)′ = n. Therefore we can pair off the numbers in
groups of two, provided that n′ ̸= n. If n′ = n, we have n2 ≡ 1 (modulo p); hence, as
in exercise 1.2.4Ű26, n = 1 or n = p− 1. So (p− 1)! ≡ 1 · 1 . . . 1 · (−1), since 1 and p− 1
are the only unpaired elements.

1.2.5 ANSWERS TO EXERCISES 481

14. Among the numbers {1, 2, . . . , n} that are not multiples of p, there are ⌊n/p⌋
complete sets of p − 1 consecutive elements, each with a product congruent to −1
(modulo p) by WilsonŠs theorem. There are also a0 left over, which are congruent
to a0! (modulo p); so the contribution from the factors that are not multiples of p is
(−1)⌊n/p⌋a0!. The contribution from the factors that are multiples of p is the same as
the contribution in ⌊n/p⌋!; this argument can therefore be repeated to get the desired
formula.

15. (n!)3. There are n! terms. Each term has one entry from each row and each
column, so it has the value (n!)2.

16. The terms do not approach zero, since the coefficients approach 1/e.

17. Express the gamma functions as limits by Eq. (15).

18.

n≥1

n

n− 1
2

n

n+ 1
2

=
Γ (1

2
)Γ (3

2
)

Γ (1)Γ (1)
= 2Γ (3

2
)2.

[WallisŠs own heuristic ŞproofŤ can be found in D. J. StruikŠs Source Book in Mathe-
matics (Harvard University Press, 1969), 244Ű253.]

19. Change of variable t = mt, integration by parts, and induction.

20. [For completeness, we prove the stated inequality. Start with the easily veriĄed
inequality 1 +x ≤ ex; set x = ±t/n and raise to the nth power to get (1± t/n)n ≤ e±t.
Hence e−t ≥ (1−t/n)n = e−t(1−t/n)net ≥ e−t(1−t/n)n(1+t/n)n = e−t(1−t2/n2)n ≥
e−t(1− t2/n) by exercise 1.2.1Ű9.]

Now the given integral minus Γm(x) is
 ∞

m

e−ttx−1 dt+
 m

0

e−t −

1− t

m

m
tx−1 dt.

As m → ∞, the Ąrst of these integrals approaches zero, since tx−1 < et/2 for large t;
and the second is less than

1
m

 m

0

tx+1e−t dt <
1
m

 ∞

0

tx+1e−t dt→ 0.

21. If c(n, j, k1, k2, . . .) denotes the appropriate coefficient, we Ąnd

c(n+1, j, k1, . . .) = c(n, j−1, k1−1, k2, . . .)+(k1 +1)c(n, j, k1 +1, k2−1, k3, . . .)

+(k2 +1)c(n, j, k1, k2 +1, k3−1, k4, . . .)+· · · ,

by differentiation. The equations k1 +k2 + · · · = j and k1 + 2k2 + · · · = n are preserved
in this induction relationship. We can easily factor n!/(k1! (1!)k1k2! (2!)k2 . . .) out of
each term appearing on the right-hand side of the equation for c(n+ 1, j, k1, . . .), and
we are left with k1 + 2k2 + 3k3 + · · · = n+ 1. (In the proof it is convenient to assume
that there are inĄnitely many kŠs, although clearly kn+1 = kn+2 = · · · = 0.)

The solution just given makes use of standard techniques, but it doesnŠt give
a satisfactory explanation of why the formula has this form, nor how it could have
been discovered in the Ąrst place. Let us examine this question using a combinatorial
argument suggested by H. S. Wall [Bull. Amer. Math. Soc. 44 (1938), 395Ű398]. Write
for convenience wj = Dj

uw, uk = Dk
xu. Then Dx(wj) = wj+1u1 and Dx(uk) = uk+1.

482 ANSWERS TO EXERCISES 1.2.5

By these two rules and the rule for derivative of a product we Ąnd

D1
xw = w1u1

D2
xw = (w2u1u1 + w1u2)

D3
xw = ((w3u1u1u1 + w2u2u1 + w2u1u2) + (w2u1u2 + w1u3)), etc.

Analogously we may set up a corresponding tableau of set partitions thus:

D1 = {1}
D2 = ({2}{1}+ {2, 1})
D3 = (({3}{2}{1}+ {3, 2}{1}+ {2}{3, 1}) + ({3}{2, 1}+ {3, 2, 1})), etc.

Formally, if a1a2 . . . aj is a partition of the set {1, 2, . . . , n− 1}, deĄne

Da1a2 . . . aj = {n}a1a2 . . . aj + (a1 ∪ {n})a2 . . . aj

+ a1(a2 ∪ {n}) . . . aj + · · ·+ a1a2 . . . (aj ∪ {n}).

This rule is an exact parallel of the rule

Dx(wjur1
ur2

. . . urj) = wj+1u1ur1
ur2

. . . urj + wjur1+1ur2
. . . urj

+ wjur1
ur2+1 . . . urj + · · ·+ wjur1

ur2
. . . urj+1,

if we let the term wjur1
ur2

. . . urj correspond to a partition a1a2 . . . aj with rt elements
in at, 1 ≤ t ≤ j. So there is a natural mapping from Dn onto Dn

xw, and furthermore
it is easy to see that Dn includes each partition of the set {1, 2, . . . , n} exactly once.
(See exercise 1.2.6Ű64.)

From these observations we Ąnd that if we collect like terms in Dn
xw, we obtain a

sum of terms c(k1, k2, . . .)wju
k1

1 uk2

2 . . . , where j = k1 +k2 + · · · and n = k1 + 2k2 + · · · ,
and where c(k1, k2, . . .) is the number of partitions of {1, 2, . . . , n} into j subsets such

that there are kt subsets having t elements.
It remains to count these partitions. Consider an array of kt boxes of capacity t:

k1

. . .

k2

. . .

k3

.

The number of ways to put n different elements into these boxes is the multinomial
coefficient

n

1, 1, . . . , 1, 2, 2, . . . , 2, 3, 3, . . . , 3, 4, . . .

=

n!
1!k1 2!k2 3!k3 . . .

.

To get c(k1, k2, k3, . . .) we should divide this by k1! k2! k3! . . . , since the boxes in each
group of kt are indistinguishable from each other; they may be permuted in kt! ways
without affecting the set partition.

ArbogastŠs original proof [Du Calcul des Dérivations (Strasbourg: 1800), §52] was
based on the fact that Dk

xu/k! is the coefficient of zk in u(x + z) and Dj
uw/j! is the

1.2.6 ANSWERS TO EXERCISES 483

coefficient of yj in w(u+ y), hence the coefficient of zn in w(u(x+ z)) is

Dn
xw

n!
=

n

j=0

Dj
uw

j!

k1+k2+···+kn=j

k1+2k2+···+nkn=n

k1,k2,...,kn≥0

j!
k1! k2! . . . kn!

D1
xu

1!

k1

D2
xu

2!

k2

. . .

Dn
xu

n!

kn
.

His formula was forgotten for many years, then rediscovered independently by F. Faà
di Bruno [Quarterly J. Math. 1 (1857), 359Ű360], who observed that it can also be
expressed as a determinant

Dn
x = det

n−1

0

u1

n−1

1

u2

n−1

2

u3 . . .

n−1
n−2

un−1

n−1
n−1

un

−1

n−2

0

u1

n−2

1

u2 . . .

n−2
n−3

un−2

n−2
n−2

un−1

0 −1

n−3

0

u1 . . .

n−3
n−4

un−3

n−3
n−3

un−2

...
...

...
. . .

...
...

0 0 0 . . . −1

0
0

u1

where uj = (Dj
xu)Du; both sides of this equation are differential operators to be applied

to w. For a generalization of ArbogastŠs formula to functions of several variables, and
a list of references to other related work, see the paper by I. J. Good, Annals of
Mathematical Statistics 32 (1961), 540Ű541.

22. The hypothesis that limn→∞(n+x)!/(n!nx) = 1 is valid for integers x; for example,
if x is positive, the quantity is (1+1/n)(1+2/n) . . . (1+x/n), which certainly approaches
unity. If we also assume that x! = x(x − 1)!, the hypothesis leads us to conclude
immediately that

1 = lim
n→∞

(n+ x)!
n!nx

= x! lim
n→∞

(x+ 1) . . . (x+ n)
n!nx

,

which is equivalent to the deĄnition given in the text.

23. z (−z)!Γ (z) = limm→∞
m
n=1(1− z/n)−1(1 + z/n)−1 by (13) and (15).

24. nn/n! =
n−1
k=1 (k + 1)k/kk ≤ n−1

k=1 e; n!/nn+1 =
n−1
k=1 k

k+1/(k + 1)k+1 ≤n−1
k=1 e

−1.

25. xm+n = xm(x −m)n; xm+n = xm(x + m)n. These laws hold also when m and n
are nonintegers, by (21).

SECTION 1.2.6

1. n, since each combination leaves out one item.

2. 1. ThereŠs exactly one way to choose nothing from the empty set.

3.

52
13

. The actual number is 635013559600.

4. 24 · 52 · 72 · 17 · 23 · 41 · 43 · 47.

5. (10 + 1)4 = 10000 + 4(1000) + 6(100) + 4(10) + 1.

6. r = −3: 1 −3 6 −10 15 −21 28 −36 . . .
r = −2: 1 −2 3 −4 5 −6 7 −8 . . .
r = −1: 1 −1 1 −1 1 −1 1 −1 . . .

7. ⌊n/2⌋; or, alternatively, ⌈n/2⌉. It is clear from (3) that for smaller values the
binomial coefficient is strictly increasing, and afterwards it decreases to zero.

484 ANSWERS TO EXERCISES 1.2.6

8. The nonzero entries in each row are the same from left to right as from right to left.

9. One if n is positive or zero; zero if n is negative.

10. (a), (b) and (f) follow immediately from (e); (c) and (d) follow from (a), (b), and
Eq. (9). Thus it suffices to prove (e). Consider

n
k

as a fraction, given by Eq. (3) with

factors in numerator and denominator. The Ąrst k mod p factors have no pŠs in the
denominator, and in the numerator and denominator these terms are clearly congruent
to the corresponding terms of

nmod p
k mod p

,

which differ by multiples of p. (When dealing with non-multiples of p we may work
modulo p in both numerator and denominator, since if a ≡ c and b ≡ d and a/b, c/d
are integers, then a/b ≡ c/d.) There remain k − k mod p factors, which fall into ⌊k/p⌋
groups of p consecutive values each. Each group contains exactly one multiple of p;
the other p− 1 factors in a group are congruent (modulo p) to (p− 1)! so they cancel
in numerator and denominator. It remains to investigate the ⌊k/p⌋ multiples of p in
numerator and denominator; we divide each of them by p and are left with the binomial
coefficient ⌊(n− k mod p)/p⌋

⌊k/p⌋

.

If k mod p ≤ nmod p, this equals ⌊n/p⌋
⌊k/p⌋

as desired; and if k mod p > nmod p, the other factor

n mod p
k mod p

is zero, so the formula

holds in general. [American J. Math. 1 (1878), 229Ű230; see also L. E. Dickson, Quart.
J. Math. 33 (1902), 383Ű384; N. J. Fine, AMM 54 (1947), 589Ű592.]

11. If a = arp
r + · · · + a0, b = brp

r + · · · + b0, and a + b = crp
r + · · · + c0, the value

of n (according to exercise 1.2.5Ű12 and Eq. (5)) is

(a0 + · · ·+ ar + b0 + · · ·+ br − c0 − · · · − cr)/(p− 1).

A carry decreases cj by p and increases cj+1 by 1, giving a net change of +1 in this
formula. [Similar results hold for q-nomial and Fibonomial coefficients; see Knuth and
Wilf, Crelle 396 (1989), 212Ű219.]

12. By either of the two previous exercises, n must be one less than a power of 2. More
generally,

n
k

is never divisible by the prime p, 0 ≤ k ≤ n, if and only if n = apm − 1,

1 ≤ a < p, m ≥ 0.

14. 24

n+ 1

5

+ 36

n+ 1

4

+ 14

n+ 1

3

+

n+ 1

2

=
n5

5
+
n4

2
+
n3

3
− n

30
=
n(n+ 1)(n+ 1

2
)(3n2 + 3n− 1)

15
.

15. Induction and (9).

17. We may assume that r and s are positive integers. Also

n

r + s

n

xn = (1 + x)r+s =

k

r

k

xk

m

s

m

xm

=

k

r

k

xk

n

s

n− k

xn−k =

n

k

r

k

s

n− k

xn

for all x, so the coefficients of xn must be identical.

1.2.6 ANSWERS TO EXERCISES 485

21. The left-hand side is a polynomial of degree ≤ n; the right-hand side is a polyno-
mial of degree m+n+ 1. The polynomials agree at n+ 1 points, but that isnŠt enough
to prove them equal. [In fact, the correct formula in general is

r

k=0

r − k
m

s+ k

n

=

r + s+ 1
m+ n+ 1

−

m

k=0

r + 1
k

s

m+ n+ 1− k

when m, n, and r are nonnegative integers.]

22. Assume that n > 0. The kth term is r/(r − tk) times

1
n!

n

k

0≤j<k
(r − tk − j)

0≤j<n−k
(n− 1− r + tk − j)

=
(−1)k−1

n!

n

k

0≤j<k
(−r + tk + j)

k≤j<n
(−r + tk + j)

and the two products give a polynomial of degree n − 1 in k after division by r − tk.
So the sum over k is zero by Eq. (34).

24. The proof is by induction on n. If n ≤ 0 the identity is obvious. If n > 0, we
prove it holds for (r, n− r+nt+m, t, n), by induction on the integer m ≥ 0, using the
previous two exercises and the validity for n−1. This establishes the identity (r, s, t, n)
for inĄnitely many s, and it holds for all s since both sides are polynomials in s.

25. Using the ratio test and straightforward estimates for large values of k we can
prove convergence. When w is sufficiently small, we have

1 =

k,j

(−1)j

k

j

r − jt
k

r

r − jt w
k =

j

(−1)j
r

r − jt

k

k

j

r − jt
k

wk

=

j

(−1)jr
r − jt

k

r − jt
j

r − jt− j
k − j

wk =

j

(−1)jAj(r, t)(1 + w)r−jt−jwj .

Now let x = 1/(1+w), z = −w/(1+w)1+t. This proof is due to H. W. Gould [AMM 63

(1956), 84Ű91]. See also the more general formulas in exercises 2.3.4.4Ű33 and 4.7Ű22.

26. We could start with identity (35) in the form

j

(−1)j

k

j

r − jt
k

= tk

and proceed as in exercise 25. Another way is to differentiate the formula of that
exercise with respect to z; we get

k

kAk(r, t)zk = z
d(xr)
dz

=
(xt+1 − xt)rxr

(t+ 1)xt+1 − txt ,

hence we can obtain the value of

k

1− t

r
k

Ak(r, t)zk.

27. For Eq. (26), multiply the series for xr+1/((t + 1)x − t) by the series for xs, and
get a series for xr+s+1/((t + 1)x − t) in which coefficients of z may be equated to the
coefficients arising from the series for x(r+s)+1/((t+ 1)x− t).

486 ANSWERS TO EXERCISES 1.2.6

28. Denoting the left-hand side by f(r, s, t, n), we Ąnd

r + s

n

+ tf(r + t− 1, s− t, t, n− 1) = f(r, s, t, n)

by considering the identity

k

r + tk

k

s− tk
n− k

r

r + tk
+

k

r + tk

k

s− tk
n− k

tk

r + tk
= f(r, s, t, n).

29. (−1)k

n

k

n! = (−1)k/(k! (n− k)!) = (−1)n

0≤j≤n
j ̸=k

(k − j).
30. Apply (7), (6), and (19) to get

k≥0

−m− 2k − 1
n−m− k

2k + 1
k

 (−1)n−m

2k + 1
.

Now we can apply Eq. (26) with (r, s, t, n) = (1,m− 2n− 1,−2, n−m), obtaining

(−1)n−m
 −m
n−m

=

n− 1
n−m

.

This result is the same as our previous formula, when n is positive, but when n = 0 the
answer we have obtained is correct while

n−1
m−1

is not. Our derivation has a further

bonus, since the answer

n−1
n−m

is valid for n ≥ 0 and all integers m.

31. [This sum was Ąrst obtained in closed form by J. F. Pfaff, Nova Acta Acad. Scient.
Petr. 11 (1797), 38Ű57.] We have

k

j

m− r + s

k

n+ r − s
n− k

r

m+ n− j

k

j

=

j

k

m− r + s

j

n+ r − s
n− k

r

m+ n− j

m− r + s− j
k − j

=

j

m− r + s

j

r

m+ n− j

m+ n− j
n− j

.

Changing

m+n−j
n−j

to

m+n−j
m

and applying (20) again, we get

j

m− r + s

j

r

m

r −m
n− j

=

r

m

s

n

.

32. Replace x by −x in (44).

33, 34. [Mém. Acad. Roy. Sci. (Paris, 1772), part 1, 492; C. Kramp, Élémens dŠArith-
métique Universelle (Cologne: 1808), 359; Giornale di Mat. Battaglini 33 (1895), 179Ű
182.] Since xn = n!

x+n−1
n

, the equation may be transformed into

x+ y + n− 1

n

=

k

x+ (1− z)k

k

y − 1 + nz + (n− k)(1− z)

n− k

x

x+ (1− z)k
,

which is a case of (26). Similarly, (x + y)n =

k

n
k

x(x− kz − 1)k−1(y + kz)n−k, an

equivalent formula of Rothe [Formulæ de Serierum Reversione (Leipzig: 1793), 18].

35. For example, we prove the Ąrst formula:

k

(−1)n+1−k

n

n

k

+

n

k − 1

xk = −nxn + xxn = xn+1.

1.2.6 ANSWERS TO EXERCISES 487

36. By (13), assuming that n is a nonnegative integer, we get 2n and δn0, respectively.

37. When n > 0, 2n−1. (The odd and even terms cancel, so each equals half the total
sum.)

38. Let ω = e2πi/m. Then

0≤j<m
(1 + ωj)nω−jk =

t

0≤j<m

n

t

ωj(t−k).

Now

0≤j<m
ωrj = m [r≡ 0 (modulo m)]

(it is the sum of a geometric progression), so the right-hand sum is m

t mod m=k

n

t

.

The original sum on the left is

0≤j<m
(ω−j/2 + ωj/2)nωj(n/2−k) =

0≤j<m

2 cos

jπ

m

n
ωj(n/2−k).

Since the quantity is known to be real, we may take the real part and obtain the stated
formula. [See Crelle 11 (1834), 353Ű355.]

The cases m = 3 and m = 5 have special properties discussed in CMath, exercises
5.75 and 6.57.

39. n!; δn0− δn1. (The row sums in the second triangle are not so simple; we will Ąnd
(exercise 64) that

k

n
k

is the number of ways to partition a set of n elements into

disjoint sets, which is the number of equivalence relations on {1, 2, . . . , n}.)
40. Proof of (c): By parts,

B(x+ 1, y) = − t
x(1− t)y

y

1

0
+
x

y

 1

0

tx−1(1− t)y dt.

Now use (b).

41. mxB(x, m+ 1)→ Γ (x) as m→∞, regardless of whether m runs through integer
values or not (by monotonicity). Hence, (m + y)xB(x, m + y + 1) → Γ (x), and
(m/(m+ y))x → 1.

42. 1/((r + 1)B(k + 1, r − k + 1)), if this is deĄned according to exercise 41(b). In
general when z and w are arbitrary complex numbers we deĄne

z

w

= lim
ζ→z

lim
ω→w

ζ!
ω! (ζ − ω)!

, where ζ! = Γ (ζ + 1);

the value is inĄnite when z is a negative integer and w is not an integer.
With this deĄnition, the symmetry condition (6) holds for all complex n and k,

except when n is a negative integer and k is an integer; Eqs. (7), (9), and (20) are
never false, although they may occasionally take indeterminate forms such as 0 · ∞ or
∞+∞. Equation (17) becomes

z

w

=

sinπ(w − z − 1)
sinπz

w − z − 1

w

.

We can even extend the binomial theorem (13) and VandermondeŠs convolution (21),
obtaining

k

r

α+k

zα+k = (1 + z)r and

k

r

α+k

s

β−k

=

r+s
α+β

; these formulas hold

for all complex r, s, z, α, and β whenever the series converge, provided that complex
powers are suitably deĄned. [See L. Ramshaw, Inf. Proc. Letters 6 (1977), 223Ű226.]

488 ANSWERS TO EXERCISES 1.2.6

43.
 1

0
dt/(t1/2(1− t)1/2) = 2

 1

0
du/(1− u2)1/2 = 2 arcsin u|1

0
= π.

45. For large r,
1

kΓ (k)

r

r − k
1
ek

(1− k/r)k
(1− k/r)r →

1
Γ (k + 1)

.

46.

1

2π

 1
x

+
1
y

1 +

y

x

x
1 +

x

y

y
, and

2n
n

≈ 4n/

√
πn.

47. Each quantity is δk0 when k ≤ 0, and is multiplied by (r− k)(r− 1
2
− k)/(k + 1)2

when k is replaced by k + 1. When r = − 1
2

this implies
−1/2

k

= (−1/4)k

2k
k

.

48. This can be proved by induction, using the fact that

0 =

k

n

k

(−1)k =

k

n

k

 (−1)kk
k + x

+

k

n

k

 (−1)kx
k + x

when n > 0. Alternatively, we have

B(x, n+ 1) =
 1

0

tx−1(1− t)n dt =

k

n

k

(−1)k

 1

0

tx+k−1 dt.

(In fact, the stated sum equals B(x, n + 1) for noninteger n also, when the series
converges.)

49.

r

m

=

k

r

k

 −r
m− 2k

(−1)m+k, integer m. (See exercise 17.)

50. The kth summand is

n
k

(−1)n−k(x− kz)n−1x. Apply Eq. (34).

51. The right-hand side is

k

n

n− k

x(x− kz)k−1

j

n− k
j

(x+ y)j(−x+ kz)n−k−j

=

j

n

j

(x+ y)j

k

n− j

n− j − k

x(x− kz)k−1(−x+ kz)n−k−j

=

j≤n

n

j

(x+ y)j0n−j = (x+ y)n.

The same device may be used to prove TorelliŠs sum (exercise 34).
Another neat proof of AbelŠs formula comes from the fact that it is readily trans-

formed into the more symmetric identity derived in exercise 2.3.4.4Ű29:

k

n

k

x(x+ kz)k−1y(y + (n− k)z)n−k−1 = (x+ y)(x+ y + nz)n−1.

AbelŠs theorem has been generalized even further by A. Hurwitz [Acta Mathema-
tica 26 (1902), 199Ű203] as follows:

x(x+ ϵ1z1 + · · ·+ ϵnzn)ϵ1+···+ϵn−1(y − ϵ1z1 − · · · − ϵnzn)n−ϵ1−···−ϵn = (x+ y)n

where the sum is over all 2n choices of ϵ1, . . . , ϵn = 0 or 1 independently. This is an
identity in x, y, z1, . . . , zn, and AbelŠs formula is the special case z1 = z2 = · · · = zn.
HurwitzŠs formula follows from the result in exercise 2.3.4.4Ű30.

1.2.6 ANSWERS TO EXERCISES 489

52.

k≥0(k + 1)−2 = π2/6. [M. L. J. Hautus observes that the sum is absolutely

convergent for all complex x, y, z, n whenever z ̸= 0, since the terms for large k
are always of order 1/k2. This convergence is uniform in bounded regions, so we may
differentiate the series term by term. If f(x, y, n) is the value of the sum when z = 1, we
Ąnd (∂/∂y)f(x, y, n) = nf(x, y, n− 1) and (∂/∂x)f(x, y, n) = nf(x− 1, y + 1, n− 1).
These formulas are consistent with f(x, y, n) = (x+y)n; but actually the latter equality
seems to hold rarely, if ever, unless the sum is Ąnite. Furthermore the derivative with
respect to z is almost always nonzero.]

53. For (b), set r = 1
2

and s = − 1
2

in the result of (a).

54. Insert minus signs in a checkerboard pattern as shown.

1 −0 0 −0
−1 1 −0 0

1 −2 1 −0
−1 3 −3 1

This is equivalent to multiplying aij by (−1)i+j. The result is the desired inverse, by
Eq. (33).

55. Insert minus signs in one triangle, as in the previous exercise, to get the inverse of
the other. (Eq. (47).)
56. 210 310 320 321 410 420 421 430 431 432 510 520 521 530 531 532 540 541 542
543 610. With a Ąxed, b and c run through the combinations of a things two at a time;
with a and b Ąxed, c runs through the combinations of b things one at a time.

Similarly, we could express all numbers in the form n =

a
4

+

b
3

+

c
2

+

d
1

with

a > b > c > d ≥ 0; the sequence begins 3210 4210 4310 4320 4321 5210 5310 5320
We can Ąnd the combinatorial representation by a ŞgreedyŤ method, Ąrst choosing the
largest possible a, then the largest possible b for n−

a
4

, etc. [Section 7.2.1.3 discusses

further properties of this representation.]

58. [Systematisches Lehrbuch der Arithmetik (Leipzig: 1811), xxix.] Use induction
and

n

k

q

=

n− 1
k

q

+

n− 1
k − 1

q
qn−k =

n− 1
k

q
qk +

n− 1
k − 1

q
.

Therefore [F. Schweins, Analysis (Heidelberg: 1820), §151] the q-generalization of (21)
is

k

r

k

q

s

n− k

q
q(r−k)(n−k) =

k

r

k

q

s

n− k

q
q(s−n+k)k =

r + s

n

q
.

And the identity 1− qt = −qt(1− q−t) makes it easy to generalize (17) to

r

k

q

= (−1)k

k − r − 1

k

q
qkr−k(k−1)/2.

The q-nomial coefficients arise in many diverse applications; see, for example, Section
5.1.2, and the authorŠs note in J. Combinatorial Theory A10 (1971), 178Ű180.

Useful facts: When n is a nonnegative integer,

n
k

q

is a polynomial of degree
k(n− k) in q with nonnegative integer coefficients, and it satisĄes the reĆective laws

n

k

q

=

n

n− k

q

= qk(n−k)

n

k

q−1

.

If |q| < 1 and |x| < 1, the q-nomial theorem holds when n is an arbitrary real number,
if we replace the left-hand side by

k≥0((1 + qkx)/(1 + qn+kx)). Properties of power

490 ANSWERS TO EXERCISES 1.2.6

series make it necessary to verify this only when n is a positive integer, because we can
set qn = y; the identity has then been veriĄed for inĄnitely many values of y. Now we
can negate the upper index in the q-nomial theorem, obtaining

k≥0

(1− qk+r+1x)
(1− qkx)

=

k

−r − 1
k

q
qk(k−1)/2(−qr+1x)k =

k

k + r

k

q
xk.

For further information, see G. Gasper and M. Rahman, Basic Hypergeometric Series
(Cambridge Univ. Press, 1990). The q-nomial coefficients were introduced by Gauss in
Commentationes societatis regiæ scientiarum Gottingensis recentiores 1 (1808), 147Ű
186; see also Cauchy [Comptes Rendus Acad. Sci. 17 (Paris, 1843), 523Ű531], Jacobi
[Crelle 32 (1846), 197Ű204], Heine [Crelle 34 (1847), 285Ű328], and Section 7.2.1.4.

59. (n+ 1)

n
k

−

n
k+1

.

60.

n+ k − 1

k

. This formula can be remembered easily, since it is

n(n+ 1) . . . (n+ k − 1)
k(k − 1) . . . 1

,

like Eq. (2) except that the numbers in the numerator go up instead of down. A
slick way to prove it is to note that we want to count the number of integer solutions
(a1, . . . , ak) to the relations 1 ≤ a1 ≤ a2 ≤ · · · ≤ ak ≤ n. This is the same as
0 < a1 < a2 + 1 < · · · < ak + k − 1 < n+ k; and the number of solutions to

0 < b1 < b2 < · · · < bk < n+ k

is the number of choices of k distinct things from the set {1, 2, . . . , n+ k − 1}. (This
trick is due to H. F. Scherk, Crelle 3 (1828), 97; curiously it was also given by W. A.
Förstemann in the same journal, 13 (1835), 237, who said ŞOne would almost believe
this must have been known long ago, but I have found it nowhere, even though I have
consulted many works in this regard.Ť)

61. If amn is the desired quantity, we have amn = nam(n−1) + δmn by (46) and
(47). Hence the answer is [n≥m]n!/m!. The same formula is also easily obtained
by inversion of (56).

62. Use the identity of exercise 31, with (m,n, r, s, k)← (m+k, l−k, m+n, n+ l, j):

k

(−1)k

l +m

l + k

m+ n

m+ k

n+ l

n+ k

=

j,k

(−1)k

l +m

l + k

l + k

j

m− k
l − k − j

m+ n+ j

m+ l

=

j,k

(−1)k
 2l − 2j
l − j + k

 (m+ n+ j)!
(2l − 2j)! j! (m− l + j)! (n+ j − l)! ,

by rearranging the factorial signs. The sum on k now vanishes unless j = l.
The case l = m = n of this identity was published by A. C. Dixon [Messenger

of Math. 20 (1891), 79Ű80], who established the general case twelve years later [Proc.
London Math. Soc. 35 (1903), 285Ű289]. However, L. J. Rogers had already published
a much more general formula in the meantime [Proc. London Math. Soc. 26 (1895),
15Ű32, §8]. See also papers by P. A. MacMahon, Quarterly Journal of Pure and Applied
Math. 33 (1902), 274Ű288, and John Dougall, Proc. Edinburgh Math. Society 25

1.2.6 ANSWERS TO EXERCISES 491

(1907), 114Ű132. The corresponding q-nomial identities are

k

m− r + s

k

q

n+ r − s
n− k

q

r + k

m+ n

q
q(m−r+s−k)(n−k) =

r

m

q

s

n

q
,

k

(−1)k

l +m

l + k

q

m+ n

m+ k

q

n+ l

n+ k

q
q(3k2−k)/2 =

(l +m+ n)!q
l!qm!qn!q

,

where n!q =
n
k=1(1 + q + · · ·+ qk−1).

63. See CMath, exercises 5.83 and 5.106.

64. Let f(n,m) be the number of partitions of {1, 2, . . . , n} into m parts. Clearly
f(1,m) = δ1m. If n > 1, the partitionings are of two varieties: (a) The element
n alone forms a set of the partition; there are f(n − 1, m − 1) ways to construct
partitions like this. (b) The element n appears together with another element; there
are m ways to insert n into any m-partition of {1, 2, . . . , n − 1}, hence there are
mf(n − 1, m) ways to construct partitions like this. We conclude that f(n,m) =
f(n− 1, m− 1) +mf(n− 1, m), and f(n,m) = { n

m
} by induction.

65. See AMM 99 (1992), 410Ű422.

66. Let X =

x
n

, X =

x

n−1

= n

x−n+1
X, X =

x
n+1

= x−n

n+1
X, with similar notations

for Y and Z. We may assume that y > n− 1 is Ąxed, so that x is a function of z.
Let F (z) = X − Y − Z, and suppose that F (z) = 0 for some z > n − 2. We will

prove that F ′(z) < 0; therefore z = y must be the only root > n−2, proving the second
inequality. Since F (z) = x−n

n+1
(Y + Z)− y−n

n+1
Y − z−n+1

n
Z = 0 and x > y and Y,Z > 0,

we must have x−n
n+1

< z−n+1
n

. Setting X ′ = dX/dx and Z′ = dZ/dz = dX/dz, we have

X ′

X
=

1
x

+
1

x− 1
+ · · ·+ 1

x− n+ 1
>

n

n+ 1

1
z

+ · · ·+ 1
z − n+ 2

=

n

n+ 1
Z′

Z
,

since x−n+1
n+1

< z−n+2
n

, . . . , x−1
n+1

< z
n

. Thus dx/dz = Z′/X ′ < n+1
n

(Z/X), and

F ′(z) =
X

n+ 1
dx

dz
+
x− n
n+ 1

Z′ − Z

n
− z − n+ 1

n
Z′ <

x− n
n+ 1

− z − n+ 1
n

Z′ < 0.

To prove the Ąrst inequality, we may assume that n > 2. Then if X = Y + Z for
some z > n− 2, the second inequality tells us that z = y.

References: L. Lovász, Combinatorial Problems and Exercises (1993), Problem
13.31(a); R. M. Redheffer, AMM 103 (1996), 62Ű64.

67. If k > 0, exercise 1.2.5Ű24 gives the slightly sharper (but less memorable) upper
bounds

n
k

= nk/k! ≤ nk/k! ≤ 1

e
(ne
k

)k ≤ (ne
k+1

)k. The corresponding lower bound is

n
k

≥ ((n−k+1)e

k
)k 1
ek

, which is less memorable (but often sharper) than

n
k

≥ (n

k
)k.

68. Let tk = k

n
k

pk(1 − p)n+1−k; then tk − tk+1 =

n
k

pk(1 − p)n−k(k − np). So the

stated sum is

k<⌈np⌉
(tk+1 − tk) +

k≥⌈np⌉
(tk − tk+1) = 2t⌈np⌉.

[De Moivre stated this identity in Miscellanea Analytica (1730), 101, in the case that
np is an integer; H. Poincaré proved the general case in his Calcul des Probabilités
(1896), 56Ű60. See P. Diaconis and S. Zabell, Statistical Science 6 (1991), 284Ű302, for
the interesting history of this identity and for a variety of similar formulas.]

492 ANSWERS TO EXERCISES 1.2.7

SECTION 1.2.7

1. 0, 1, and 3/2.

2. Replace each term 1/(2m + k) by the upper bound 1/2m.

3. H
(r)
2m−1 ≤

0≤k<m 2k/2kr; 2r−1/(2r−1 − 1) is an upper bound.

4. (b) and (c).

5. 9.78760 60360 44382 . . .

6. Induction and Eq. 1.2.6Ű(46).

7. T (m+ 1, n)−T (m,n) = 1/(m+ 1)−1/(mn+ 1)−· · ·−1/(mn+n) ≤ 1/(m+ 1)−
(1/(mn + n) + · · · + 1/(mn + n)) = 1/(m + 1) − n/(mn + n) = 0. The maximum
value occurs at m = n = 1, and the minimum is approached when m and n get very
large. By Eq. (3) the greatest lower bound is γ, which is never actually attained. A
generalization of this result appears in AMM 70 (1963), 575Ű577.

8. By StirlingŠs approximation, lnn! is approximately (n+ 1
2
) lnn− n+ ln

√
2π; alson

k=1 Hk is approximately (n+1) lnn−n(1−γ)+(γ+ 1
2
); the difference is approximately

γn+ 1
2

lnn+ .158.

9. −1/n.

10. Break the left side into two sums; change k to k + 1 in the second sum.

11. 2−Hn/n− 1/n, for n > 0.

12. 1.000 . . . is correct to more than three hundred decimal places.

13. Use induction as in the proof of Theorem A. Or use calculus: Differentiate with
respect to x, also evaluate at x = 1.

14. See Section 1.2.3, Example 2. The second sum is 1
2
(H2

n+1 −H(2)
n+1).

15.
n
j=1(1/j)

n
k=j Hk can be summed by formulas in the text; the answer comes to

(n+ 1)H2
n − (2n+ 1)Hn + 2n.

16. H2n−1 − 1
2
Hn−1.

17. First solution (elementary): Taking the denominator to be (p − 1)!, which is a
multiple of the true denominator but not a multiple of p, we must show only that the
corresponding numerator, (p− 1)!/1 + (p− 1)!/2 + · · ·+ (p− 1)!/(p− 1), is a multiple
of p. Modulo p, (p − 1)!/k ≡ (p − 1)! k′, where k′ can be determined by the relation
kk′ mod p = 1. The set {1′, 2′, . . . , (p − 1)′} is just the set {1, 2, . . . , p − 1}; so the
numerator is congruent to (p− 1)! (1 + 2 + · · ·+ p− 1) ≡ 0.

Second solution (advanced): By exercise 4.6.2Ű6, we have xp ≡ xp−x (modulo p);
hence

p
k

≡ δkp − δk1, by exercise 1.2.6Ű32. Now apply exercise 6.

The numerator of Hp−1 is in fact known to be a multiple of p2 when p > 3; see
Hardy and Wright, An Introduction to the Theory of Numbers, Section 7.8.

18. If n = 2km where m is odd, the sum equals 22km1/m2 where m1 and m2 are both
odd. [AMM 67 (1960), 924Ű925.]

19. Only n = 0, n = 1. For n ≥ 2, let k = ⌊lgn⌋. There is precisely one term whose
denominator is 2k, so 2k−1Hn − 1

2
is a sum of terms involving only odd primes in the

denominator. If Hn were an integer, 2k−1Hn− 1
2

would have a denominator equal to 2.

20. Expand the integrand term by term. See also AMM 69 (1962), 239, and an article
by H. W. Gould, Mathematics Magazine 34 (1961), 317Ű321.

21. H2
n+1 −H(2)

n+1.

22. (n+ 1)(H2
n −H(2)

n)− 2n(Hn − 1).

1.2.8 ANSWERS TO EXERCISES 493

23. Γ ′(n + 1)/Γ (n + 1) = 1/n + Γ ′(n)/Γ (n), since Γ (x + 1) = xΓ (x). Hence Hn =
γ + Γ ′(n+ 1)/Γ (n+ 1). The function ψ(x) = Γ ′(x)/Γ (x) = Hx−1 − γ is called the psi

function or the digamma function. Some values for rational x appear in Appendix A.

24. It is

x lim
n→∞

e(Hn−lnn)x
n

k=1

1 +

x

k

e−x/k

= lim
n→∞

x(x+ 1) . . . (x+ n)
nxn!

.

Note: The generalization of Hn considered in the previous exercise is therefore equal
to H(r)

x =

k≥0(1/(k + 1)r − 1/(k + 1 + x)r), when r = 1; the same idea can be used

for larger values of r. The inĄnite product converges for all complex x.

25. H
(0,v)
n =

n
k=1 H

(v)
n and H

(u,0)
n = H

(u−1)
n ; so the identity generalizes (8). [See

L. Euler, Novi Comment. Acad. Sci. Pet. 20 (1775), 140Ű186, §2.]

SECTION 1.2.8

1. After k months there are Fk+2 pairs, so the answer is F14 = 377 pairs.

2. ln(ϕ1000/
√

5) = 1000 lnϕ − 1
2

ln 5 = 480.40711; log10 F1000 is 1/(ln 10) times this,
or 208.64; F1000 is therefore a 209-digit number whose leading digit is 4.

4. 0, 1, 5; afterwards Fn increases too fast.

5. 0, 1, 12.

6. Induction. (The equation holds for negative n also; see exercise 8.)

7. If d is a proper divisor of n, Fd divides Fn. Now Fd is greater than one and less
than Fn provided d is greater than 2. The only nonprime number that has no proper
factor greater than 2 is n = 4; F4 = 3 is the only exception.

8. F−1 = 1; F−2 = −1; F−n = (−1)n+1Fn by induction on n.

9. Not (15). The others are valid, by an inductive argument that proves something
true for n− 1 assuming it true for n and greater.

10. When n is even, it is greater; when n is odd, it is less. (See Eq. (14).)
11. Induction; see exercise 9. This is a special case of exercise 13(a).

12. If G(z) =
Fnzn, (1− z − z2)G(z) = z + F0z

2 + F1z
3 + · · · = z + z2G(z). Hence

G(z) = G(z) + zG(z)2; from Eq. (17) we Ąnd Fn = ((3n+ 3)/5)Fn − (n/5)Fn+1.

13. (a) an = rFn−1 + sFn. (b) Since (bn+2 + c) = (bn+1 + c) + (bn + c), we may
consider the new sequence b′n = bn + c. Applying part (a) to b′n, we obtain the answer
cFn−1 + (c+ 1)Fn − c.
14. an = Fm+n+1 + Fn −

n

m

−

n+ 1
m− 1

− · · · −

n+m

0

.

15. cn = xan + ybn + (1− x− y)Fn.

16. Fn+1. Induction, and

n+ 1− k

k

=

n− k
k

+

(n− 1)− (k − 1)

k − 1

.

17. In general, the quantity (xn+k − yn+k)(xm−k − ym−k) − (xn − yn)(xm − ym) is
equal to (xy)n(xm−n−k − ym−n−k)(xk − yk). Set x = ϕ, y = ϕ , and divide by (

√
5)2.

18. It is F2n+1.

19. Let u = cos 72◦, v = cos 36◦. We have u = 2v2 − 1; v = 1 − 2 sin218◦ = 1 − 2u2.
Hence u + v = 2(v2 − u2), i.e., 1 = 2(v − u) = 2v − 4v2 + 2. We conclude that
v = 1

2
ϕ. (Also u = 1

2
ϕ−1, sin 36◦ = 1

2
51/4ϕ−1/2, sin 72◦ = 1

2
51/4ϕ1/2. Another

interesting angle is α = arctanϕ = π
4

+ 1
2

arctan 1
2
, for which we have sinα = 5−1/4ϕ1/2,

cosα = 5−1/4ϕ−1/2.)

494 ANSWERS TO EXERCISES 1.2.8

20. Fn+2 − 1.

21. Multiply by x2 +x−1; the solution is (xn+1Fn+1 +xn+2Fn−x)/(x2 +x−1). If the
denominator is zero, x is 1/ϕ or 1/ ϕ ; then the solution is (n+ 1− xnFn+1)/(2x+ 1).

22. Fm+2n; set t = 2 in the next exercise.

23.
1√
5

k

n

k

(ϕkF kt F

n−k
t−1 ϕ

m − ϕ kF kt Fn−kt−1 ϕm)

=
1√
5

(ϕm(ϕFt + Ft−1)n − ϕm(ϕFt + Ft−1)n) = Fm+tn.

24. Fn+1 (expand by cofactors in the Ąrst row).

25. 2n
√

5Fn = (1 +
√

5)n − (1−
√

5)n.

26. By FermatŠs theorem, 2p−1 ≡ 1; now apply the previous exercise and exercise
1.2.6Ű10(b).

27. The statement is true if p = 2. Otherwise Fp−1Fp+1 − F 2
p = −1; hence, from the

previous exercise and FermatŠs theorem, Fp−1Fp+1 ≡ 0 (modulo p). Only one of these
factors can be a multiple of p, since Fp+1 = Fp + Fp−1.

28. ϕ n. Note: The solution to the recurrence an+1 = Aan +Bn, a0 = 0, is

an = (An −Bn)/(A−B) if A ̸= B, an = nAn−1 if A = B.

29. (a)

n
0

F

n
1

F

n
2

F

n
3

F

n
4

F

n
5

F

n
6

F

1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 1 1 0 0 0 0
1 2 2 1 0 0 0
1 3 6 3 1 0 0
1 5 15 15 5 1 0
1 8 40 60 40 8 1

(b) follows from (6). [É. Lucas, Amer. J. Math. 1 (1878), 201Ű204.]

30. We argue by induction on m, the statement being obvious when m = 1:

(a)

k

m

k

F

(−1)⌈(m−k)/2⌉Fm−2
n+k Fk = Fm

k

m− 1
k − 1

F

(−1)⌈(m−k)/2⌉Fm−2
n+k = 0.

(b)

k

m

k

F

(−1)⌈(m−k)/2⌉Fm−2
n+k (−1)kFm−k

= (−1)mFm

k

m− 1
k

F

(−1)⌈(m−1−k)/2⌉Fm−2
n+k = 0.

(c) Since (−1)kFm−k = Fk−1Fm − FkFm−1 and Fm ̸= 0, we conclude from (a)
and (b) that

k

m
k

F (−1)⌈(m−k)/2⌉Fm−2

n+k Fk−1 = 0.
(d) Since Fn+k = Fk−1Fn + FkFn+1 the result follows from (a) and (c). This

result may also be proved in slightly more general form by using the q-nomial theorem
of exercise 1.2.6Ű58. References: Dov Jarden, Recurring Sequences, 2nd ed. (Jerusalem,
1966), 30Ű33; J. Riordan, Duke Math. J. 29 (1962), 5Ű12.

31. Use exercises 8 and 11.

32. Modulo Fn the Fibonacci sequence is 0, 1, . . . , Fn−1, 0, Fn−1,−Fn−2,

33. Note that cos z = 1
2
(eiz + e−iz) = −i/2, for this particular z; then use the fact

that sin(n+ 1)z + sin(n− 1)z = 2 sinnz cos z, for all z.

1.2.8 ANSWERS TO EXERCISES 495

34. Prove that the only possible value for Fk1
is the largest Fibonacci number less

than or equal to n; hence n−Fk1
is less than Fk1−1, and by induction there is a unique

representation of n− Fk1
. The outline of this proof is quite similar to the proof of the

unique factorization theorem. The Fibonacci number system is due to E. Zeckendorf
[see Simon Stevin 29 (1952), 190Ű195; Bull. Soc. Royale des Sciences de Liège 41 (1972),
179Ű182]; but Section 7.2.1.7 points out that it was implicitly known in 14th-century
India. Generalizations are discussed in exercise 5.4.2Ű10 and in Section 7.1.3.

35. See G. M. Bergman, Mathematics Magazine 31 (1957), 98Ű110. To represent x>0,
Ąnd the largest k with ϕk ≤ x and represent x as ϕk plus the representation of x− ϕk.

The representation of nonnegative integers can also be obtained from the following
all-integer recursive rules, starting with the trivial representations of 0 and 1: Let
Ln = ϕn + ϕ n = Fn+1 +Fn−1. The representation of L2n +m for 0 ≤ m ≤ L2n−1 and
n ≥ 1 is ϕ2n +ϕ−2n plus the representation of m. The representation of L2n+1 +m for
0 < m < L2n and n ≥ 0 is ϕ2n+1 + ϕ−2n−2 plus the representation of m− ϕ−2n, where
the latter is obtained by applying the rule ϕk − ϕk−2j = ϕk−1 + ϕk−3 + · · ·+ ϕk−2j+1.
It turns out that all strings α of 0s and 1s, such that α begins with 1 and has no
adjacent 1s, occur to the left of the radix point in the representation of exactly one
positive integer, except for the strings that end with 102k1; the latter strings never
occur in such representations.

36. We may consider the inĄnite string S∞, since Sn for n > 1 consists of the Ąrst Fn
letters of S∞. There are no double aŠs, no triple bŠs. The string Sn contains Fn−2 aŠs
and Fn−1 bŠs. If we express m − 1 in the Fibonacci number system as in exercise 34,
the mth letter of S∞ is a if and only if kr = 2. The kth letter of S∞ is b if and
only if ⌊(k + 1)ϕ−1⌋ − ⌊kϕ−1⌋ = 1; the number of bŠs in the Ąrst k letters is therefore
⌊(k + 1)ϕ−1⌋. Also, the kth letter is b if and only if k = ⌊mϕ⌋ for some positive
integer m. This sequence was studied by John Bernoulli III in the 18th century, by
A. A. Markov in the 19th, and by many other mathematicians since then; see K. B.
Stolarsky, Canadian Math. Bull. 19 (1976), 473Ű482.

37. [Fibonacci Quarterly 1 (December 1963), 9Ű12.] Consider the Fibonacci number
system of exercise 34; if n = Fk1

+ · · ·+ Fkr > 0 in that system, let µ(n) = Fkr . Also
let µ(0) =∞. We Ąnd that: (A) If n > 0, µ(n− µ(n)) > 2µ(n). Proof: µ(n− µ(n)) =
Fkr−1

≥ Fkr+2 > 2Fkr since kr ≥ 2. (B) If 0 < m < Fk, µ(m) ≤ 2(Fk−m). Proof: Let
µ(m) = Fj ; m ≤ Fk−1 + Fk−3 + · · · + Fj+(k−1−j) mod 2 = −Fj−1+(k−1−j) mod 2 + Fk ≤
− 1

2
Fj +Fk. (C) If 0 < m < µ(n), µ(n−µ(n) +m) ≤ 2(µ(n)−m). Proof: This follows

from (B). (D) If 0 < m < µ(n), µ(n−m) ≤ 2m. Proof: Set m = µ(n)−m in (C).
Now we will prove that if there are n chips, and if at most q may be taken in the

next turn, there is a winning move if and only if µ(n) ≤ q. Proof: (a) If µ(n) > q all
moves leave a position n′, q′ with µ(n′) ≤ q′. [This follows from (D), above.] (b) If
µ(n) ≤ q, we can either win on this move (if q ≥ n) or we can make a move that leaves
a position n′, q′ with µ(n′) > q′. [This follows from (A) above: Our move is to take
µ(n) chips.] It can be seen that the set of all winning moves, if n = Fk1

+ · · · + Fkr ,
is to remove Fkj + · · · + Fkr , for some j with 1 ≤ j ≤ r, provided that j = 1 or
Fkj−1

> 2(Fkj + · · ·+ Fkr).
The Fibonacci representation of 1000 is 987+13; the only lucky move to force a vic-

tory is to take 13 chips. The Ąrst player can always win unless n is a Fibonacci number.
The solution to considerably more general games of this type has been obtained

by A. Schwenk [Fibonacci Quarterly 8 (1970), 225Ű234].

39. (3n − (−2)n)/5.

496 ANSWERS TO EXERCISES 1.2.8

40. We prove, by induction on m, that f(n) = m for Fm < n ≤ Fm+1: First, f(n) ≤
max(1 + f(Fm), 2 + f(n − Fm)) = m. Second, if f(n) < m there is some k < n with
1 + f(k) < m (hence k ≤ Fm−1) and 2 + f(n−k) < m (hence n−k ≤ Fm−2); but then
n ≤ Fm−1 + Fm−2. [Thus the Fibonacci trees deĄned in Section 6.2.1 minimize the
maximum root-to-leaf cost when a right branch costs twice as much as a left branch.]

41. Fk1+1 + · · ·+Fkr+1 = ϕn+ (ϕ k1 + · · ·+ ϕ kr) is an integer, and the parenthesized
quantity lies between ϕ 3 + ϕ 5 + · · · = ϕ−1 − 1 and ϕ 2 + ϕ 4 + · · · = ϕ−1. Similarly,
Fk1−1 + · · ·+Fkr−1 = ϕ−1n+ (ϕ k1 + · · ·+ ϕ kr) = f(ϕ−1n). [Such Fibonacci shifting is
a convenient way to convert mentally between miles and kilometers; see CMath, §6.6.]

42. [Fibonacci Quarterly 6 (1968), 235Ű244.] If such a representation exists, we have

mFN−1 + nFN = Fk1+N + Fk2+N + · · ·+ Fkr+N (∗)

for all integers N ; hence two different representations would contradict exercise 34.
Conversely, we can prove the existence of such joint representations for all non-

negative m and n by induction. But it is more interesting to use the previous exercise,
and to prove that such joint representations exist for possibly negative integers m and n
if and only if m + ϕn ≥ 0: Let N be large enough so that |m ϕN−1 + n ϕN | < ϕ−2,
and represent mFN−1 + nFN as in (∗). Then mFN + nFN+1 = ϕ(mFN−1 + nFN) +
(m ϕN−1 + n ϕN) = f(ϕ(mFN−1 + nFN)) = Fk1+N+1 + · · ·+ Fkr+N+1, and it follows
that (∗) holds for all N. Now set N = 0 and N = 1.

SECTION 1.2.9

1. 1/(1− 2z) + 1/(1− 3z).

2. It follows from (6), since

n
k

= n!/k!(n− k)!.

3. G′(z) = ln(1/(1 − z))/(1 − z)2 + 1/(1 − z)2. From this and the signiĄcance of
G(z)/(1− z), we have

n−1
k=1 Hk = nHn − n; this agrees with Eq. 1.2.7Ű(8).

4. Put t = 0.

5. The coefficient of zk is, by (11) and (22),

(n− 1)!
k!

0≤j<k

j

n− 1

k

j

.

Now apply Eqs. 1.2.6Ű(46) and 1.2.6Ű(52). (Or, differentiate and use 1.2.6Ű(46).)

6. (ln(1/(1 − z)))2; the derivative is twice the generating function for the harmonic
numbers; the sum is therefore 2Hn−1/n.

8. 1/((1 − z)(1 − z2)(1 − z3) . . .). [This is historically one of the Ąrst applications
of generating functions. For an interesting account of L. EulerŠs eighteenth-century
researches concerning this generating function, see G. Pólya, Induction and Analogy in
Mathematics (Princeton: Princeton University Press, 1954), Chapter 6.]

9. 1
24
S4

1 + 1
4
S2

1S2 + 1
8
S2

2 + 1
3
S1S3 + 1

4
S4.

10. G(z) = (1 + x1z) . . . (1 + xnz). Taking logarithms as in the derivation of Eq. (38),
we have the same formulas except that (24) replaces (17), and the answer is exactly the
same except that S2, S4, S6, . . . are replaced by −S2, −S4, −S6, We have e1 = S1,
e2 = 1

2
S2

1 − 1
2
S2, e3 = 1

6
S3

1 − 1
2
S1S2 + 1

3
S3, e4 = 1

24
S4

1 − 1
4
S2

1S2 + 1
8
S2

2 + 1
3
S1S3 − 1

4
S4.

(See exercise 9.) The recurrence analogous to (39) is nen = S1en−1 − S2en−2 + · · · .

1.2.9 ANSWERS TO EXERCISES 497

Note: The equations in this recurrence are called NewtonŠs identities, since they were
Ąrst published in Isaac NewtonŠs Arithmetica Universalis (1707); see D. J. StruikŠs
Source Book in Mathematics (Harvard University Press, 1969), 94Ű95.

11. Since

m≥1 Smz

m/m = lnG(z) =

k≥1(−1)k−1(h1z+h2z

2 + · · ·)k/k, the desired
coefficient is (−1)k1+k2+···+km−1m(k1 +k2 + · · ·+km− 1)!/k1! k2! . . . km!. [Multiply by
(−1)m−1 to get the coefficient of ek1

1 ek2

2 . . . ekmm when Sm is expressed in terms of the
eŠs of exercise 10. Albert Girard stated the formulas for S1, S2, S3, and S4 in terms
of e1, e2, e3, and e4 near the end of his Invention Nouvelle en Algébre (Amsterdam:
1629); this was the birth of the theory of symmetric functions.]

12.

m,n≥0

amnw
mzn =

m,n≥0

n

m

wmzn =

n≥0

(1 + w)nzn = 1/(1− z − wz).

13.
 n+1

n
e−stf(t) dt = (a0 + · · · + an)(e−sn − e−s(n+1))/s. Adding these expressions

together for all n, we Ąnd Lf(s) = G(e−s)/s.

14. See exercise 1.2.6Ű38.

15. Gn(z) = Gn−1(z) + zGn−2(z) + δn0, so we Ąnd H(w) = 1/(1− w − zw2). Hence,
ultimately, we Ąnd

Gn(z) =
1 +

√
1 + 4z
2

n+1

−
1−

√
1 + 4z
2

n+1
√

1 + 4z when z ̸= − 1
4
;

Gn(− 1
4
) = (n+ 1)/2n for n ≥ 0.

16. Gnr(z) = (1 + z + · · ·+ zr)n =
1− zr+1

1− z
n

. [Note the case r =∞.]

17.

k

−w
k

(−z)k =

k

w(w + 1) . . . (w + k − 1)
k(k − 1) . . . 1

zk =

n,k

k

n

zkwn/k!.

(Alternatively, write it as ew ln(1/(1−z)) and expand Ąrst by powers of w.)

18. (a) For Ąxed n and varying r, the generating function is

Gn(z) = (1 + z)(1 + 2z) . . . (1 + nz) = zn+1
1
z

1
z

+ 1
1

z
+ 2

. . .
1
z

+ n

=

k

n+ 1
k

zn+1−k

by Eq. (27). Hence the answer is

n+1
n+1−r

. (b) Similarly, the generating function is

1
1− z ·

1
1− 2z

· . . . · 1
1− nz =

k

k

n

zk−n

by Eq. (28), so the answer is

n+r
n

.

19.

n≥1(1/n− 1/(n+ p/q))xp+nq =

q−1
k=0 ω

−kp ln(1−ωkx)− xp ln(1− xq) + q
p
xp =

f(x) + g(x), where ω = e2πi/q and

f(x) =
q−1

k=1

ω−kp ln(1− ωkx), g(x) = (1− xp) ln(1− x) +
q

p
xp − xp ln

1− xq
1− x .

498 ANSWERS TO EXERCISES 1.2.9

Now limx→1− g(x) = q/p− ln q. From the identity

ln(1− eiθ) = ln

2ei(θ−π)/2 e
iθ/2 − e−iθ/2

2i

= ln 2 + 1

2
i(θ − π) + ln sin

θ

2
,

we may write limx→1− f(x) = f(1) = A+B where

A =
q−1

k=1

ω−kp

ln 2− iπ

2
+
ikπ

q

= − ln 2 +

iπ

2
+

iπ

(ω−p − 1)
;

B =
q−1

k=1

ω−kp ln sin
k

q
π =

0<k<q/2

(ω−kp + ω−(q−k)p) ln sin
k

q
π

= 2

0<k<q/2

cos
2pk
q
π · ln sin

k

q
π.

Finally,

i

2
+

i

(ω−p − 1)
=
i

2

1 + ωp

1− ωp

= − i
2

ωp/2 + ω−p/2

ωp/2 − ω−p/2

= −1

2
cot

p

q
π.

[Gauss derived these results in §33 of his monograph on hypergeometric series, Eq. [75],
but with insufficient proof; Abel provided a justiĄcation in Crelle 1 (1826), 314Ű315.]

20. cmk = k!

m
k

, by Eq. 1.2.6Ű(45).

21. We Ąnd z2G′(z) + zG(z) = G(z)− 1. The solution to this differential equation is
G(z) = (−1/z)e−1/z(E1(−1/z) + C), where E1(z) =

∞
z
e−t dt/t and C is a constant.

This function is very ill-behaved in the neighborhood of z = 0, and G(z) has no power
series expansion. Indeed, since

n√
n! ≈ n/e is not bounded, the generating function

does not converge in this case; it is, however, an asymptotic expansion for the stated
function, when z < 0. [See K. Knopp, InĄnite Sequences and Series (Dover, 1956),
Section 66.]

22. G(z) = (1 + z)r(1 + z2)r(1 + z4)r(1 + z8)r . . . = (1 − z)−r. It follows that the
stated sum is

r+n−1
n

.

23. (a) When m = 1 this is the binomial theorem, with f1(z) = z and g1(z) = 1 + z.
When m ≥ 1 we can increase m by 1 if we replace zm by zm(1 + z−1

m+1) and let
fm+1(z1, . . . , zm+1) = zm+1fm(z1, . . . , zm−1, zm(1 + z−1

m+1)), gm+1(z1, . . . , zm+1) =
zm+1gm(z1, . . . , zm−1, zm(1 + z−1

m+1)). Thus g2(z1, z2) = z1 + z2 + z1z2 and

gm(z1, . . . , zm)
fm(z1, . . . , zm)

= 1 +
z−1

1

1 +
z−1

2

1 +
. . .

1 + z−1
m

.

Both polynomials fm and gm satisfy the same recurrence fm = zmfm−1 + zm−1fm−2,
gm = zmgm−1+zm−1gm−2, with the initial conditions f−1 = 0, f0 = g−1 = g0 = z0 = 1.
It follows that gm is the sum of all terms obtainable by starting with z1 . . . zm and
striking out zero or more nonadjacent factors; there are Fm+2 ways to do this. A
similar interpretation applies to fm, except that z1 must remain. In part (b) we will
encounter the polynomial hm = zmgm−1 + zm−1fm−2; this is the sum of all terms

1.2.9 ANSWERS TO EXERCISES 499

obtained from z1 . . . zm by striking out factors that are not cyclically adjacent. For
example, h3 = z1z2z3 + z1z2 + z1z3 + z2z3.

(b) By part (a), Sn(z1, . . . , zm−1, z) = [znm]
n
r=0 z

rzn−rm fn−rm grm; hence

Sn(z1, . . . , zm) =

0≤s≤r≤n

r

s

n− r
s

ar−s bs cs dn−r−s,

where a = zmgm−1, b = zm−1gm−2, c = zmfm−1, d = zm−1fm−2. Multiplying this
equation by zn and summing Ąrst on n, then on r, then on s, yields the closed form

Sn(z1, . . . , zm) = [zn]
1

(1− az)(1− dz)− bcz2
=
ρn+1 − σn+1

ρ− σ ,

where 1 − (a + d)z + (ad − bc)z2 = (1 − ρz)(1 − σz). Here a + d = hm, and ad − bc
simpliĄes to (−1)mz1 . . . zm. [We have, incidentally, established the recurrence Sn =
hmSn−1 − (−1)mz1 . . . zmSn−2, a relation that is not easy to derive without the help
of generating functions.]

(c) Let ρ1 = (z +
√
z2 + 4z)/2 and σ1 = (z −

√
z2 + 4z)/2 be the roots when

m = 1; then ρm = ρm1 and σm = σm1 .
Carlitz used this result to deduce a surprising fact: The characteristic polynomial

det(xI −A) of the n× n matrix

A =

0 0 . . . 0

0
0

0 0 . . .

1
0

1
1

...
...

. . .
...

...
n−1

0

n−1

1

. . .

n−1
n−2

n−1
n−1

of Şright justiĄed binomial coefficientsŤ is

k

n
k

F (−1)⌈(n−k)/2⌉xk, with Fibonomial

coefficients (see exercise 1.2.8Ű30). He also showed, using similar methods, that

k1,...,km≥0

k1 + k2

k1

k2 + k3

k2

. . .

km + k1

km

zk1

1 . . . zkmm

=
1

z2

1 . . . z
2
m hm(−z−1

1 , . . . ,−z−1
m)2 − 4z1 . . . zm

.

[Collectanea Math. 27 (1965), 281Ű296.]

24. Both sides are equal to

k

m
k

[zn](zG(z))k. When G(z) = 1/(1−z), the identity

becomes

k

m
k

n−1
n−k

=

m+n−1

n

, a case of 1.2.6Ű(21). When G(z) = (ez − 1)/z, it

becomes

km

k

n
k

= mn, Eq. 1.2.6Ű(45).

25.

k[wk](1−2w)n [zn] zk(1+z)2n−2k = [zn] (1+z)2n

k[wk] (1−2w)n(z/(1+z)2)k,
which equals [zn] (1 + z)2n(1 − 2z/(1 + z)2)n = [zn] (1 + z2)n =

n
n/2

[n even]. Sim-

ilarly, we Ąnd

k

n
k

2n−2k
n−k

(−4)k = (−1)n

2n
n

. Many examples of this summation

technique can be found in G. P. EgorychevŠs book Integral Representation and the
Computation of Combinatorial Sums (Amer. Math. Soc., 1984), translated from the
Russian edition of 1977.

26. [F (z)]G(z) denotes the constant term of F (z−1)G(z). See the discussion by D. E.
Knuth in A Classical Mind (PrenticeŰHall, 1994), 247Ű258.

500 ANSWERS TO EXERCISES 1.2.10

SECTION 1.2.10

1. Gn(0) = 1/n; this is the probability that X[n] is the largest.

2. G′′(1) =

k k(k − 1)pk, G′(1) =

k kpk.

3. (min 0, ave 6.49, max 999, dev 2.42). Note that H(2)
n is approximately π2/6; see

Eq. 1.2.7Ű(7).

4.

n
k

pkqn−k.

5. The mean is 36/5 = 7.2; the standard deviation is 6
√

2/5 ≈ 1.697.

6. For (18), the formula

ln(q+ pet) = ln

1 + pt+
pt2

2
+
pt3

6
+ · · ·

= pt+ p(1− p) t

2

2
+ p(1− p)(1− 2p)

t3

6
+ · · ·

tells us that κ3/n = p(1− p)(1− 2p) = pq(q− p). (This nice pattern does not continue
to the coefficient of t4.) Setting p = k−1 gives us κ3 =

n
k=2 k

−1(1− k−1)(1− 2k−1) =
Hn − 3H(2)

n + 2H(3)
n in the case of distribution (8). And for (20), we have lnG(et) =

t+H(nt)−H(t) where H(t) = ln((et − 1)/t). Since H ′(t) = et/(et − 1)− 1/t, we have
κr = (nr − 1)Br/r for all r ≥ 2 in this case; in particular, κ3 = 0.

7. The probability that A = k is pmk. For we may consider the values to be
1, 2, . . . ,m. Given any partitioning of the n positions into m disjoint sets, there are m!
ways to assign the numbers 1, . . . ,m to these sets. Algorithm M treats these values as
if only the rightmost element of each set were present; so pmk is the average for any
Ąxed partitioning. For example, if n = 5, m = 3, one partition is

{X[1], X[4]} {X[2], X[5]} {X[3]};
the arrangements possible are 12312, 13213, 21321, 23123, 31231, 32132. In every
partition we get the same percentage of arrangements with A = k.

On the other hand, the probability distribution does change if more information
is given. If n = 3 and m = 2, for example, our argument in the previous paragraph
considers the six possibilities 122, 212, 221, 211, 121, 112; if we know that there are
two 2s and one 1, then only the Ąrst three of these possibilities should be considered.
But this interpretation is not consistent with the statement of the exercise.

8. Mn/Mn. The larger M is, the closer this probability gets to one.

9. Let qnm be the probability that exactly m distinct values occur; then from the
recurrence

qnm =
M −m+ 1

M
q(n−1)(m−1) +

m

M
q(n−1)m

we deduce that
qnm = M !

n

m

(M −m)!Mn.

See also exercise 1.2.6Ű64.

10. This is qnmpmk summed over all m, namely M−n
m

M
m

n
m

m
k+1

. There does

not appear to be a simple formula for the average, which is one less than

HM −
M

m=1

1− m

M

n
m−1 = Hn +

n

k=1

n

k

− 1

BkM

−kk−1.

11. Since this is a product, we add the semi-invariants of each term. If H(z) = zn,
H(et) = ent, so we Ąnd κ1 = n and all others are zero. Therefore, mean(F) = n +

1.2.10 ANSWERS TO EXERCISES 501

mean(G), and all other semi-invariants are unchanged. (This accounts for the name
Şsemi-invariant.Ť)

12. The Ąrst identity is obvious by writing out the power series for ekt. For the second,
let u = 1 + M1t + M2t

2/2! + · · · ; when t = 0 we have u = 1 and Dk
t u = Mk. Also,

Dj
u(lnu) = (−1)j−1(j − 1)!/uj . By exercise 11, the same formula applies for central

moments except that we leave out all terms with k1 > 0; thus κ2 = m2, κ3 = m3,
κ4 = m4 − 3m2

2.

13. Gn(z) =
Γ (n+z)
Γ (z+1)n!

=
e−z(n+z)z−1

Γ (z+1)

1+

z

n

n
(1+O(n−1)) =

nz−1

Γ (z+1)
(1+O(n−1)).

Let zn = eit/σn. When n → ∞ and t is Ąxed, we have zn → 1; hence Γ (zn + 1) → 1,
and

lim
n→∞

z−µn
n Gn(zn) = lim

n→∞
exp

−itµn
σn

+ (eit/σn − 1) lnn

= lim
n→∞

exp
−t2 lnn

2σ2
n

+O

1√

logn

= e−t

2/2.

Notes: This is a theorem of Goncharov [Izv. Akad. Nauk SSSR Ser. Math. 8 (1944),
3Ű48]. P. Flajolet and M. Soria [Disc. Math. 114 (1993), 159Ű180] have extended the
analysis to show that Gn(z) and a large family of related distributions not only are
approximately normal near their mean values, they also have uniformly exponential
tails, in the sense that

Pr
Xn − µn

σn

> x

< e−ax

for some positive constant a and for all n and x.

14. e−itpn/
√
pqn(q + peit/

√
pqn)n = (qe−itp/

√
pqn + peitq/

√
pqn)n. Expand the exponen-

tials in power series, to get (1−t2/2n+O(n−3/2))n = exp(n ln(1−t2/2n+O(n−3/2))) =
exp(−t2/2 +O(n−1/2))→ exp(−t2/2).

15. (a)

k≥0 e

−µ(µz)k/k! = eµ(z−1). (b) ln eµ(et−1) = µ(et − 1), so all semi-invariants

equal µ. (c) exp(−itnp/√np) exp(np(it/
√
np− t2/(2np) + O(n−3/2))) = exp(−t2/2 +

O(n−1/2)).

16. g(z) =

k pkgk(z); mean(g) =

k pk mean(gk); and var(g) =

k pk var(gk) +

j<k pjpk(mean(gj)−mean(gk))2.

17. (a) The coefficients of f(z) and g(z) are nonnegative, and f(1) = g(1) = 1. Clearly
h(z) shares these same characteristics, since h(1) = g(f(1)), and the coefficients of h
are polynomials in those of f and g, with nonnegative coefficients.

(b) Let f(z) =

pkz

k where pk is the probability that some event yields a ŞscoreŤ
of k. Let g(z) =

qkz

k where qk is the probability that the event described by f
happens exactly k times (each occurrence of the event being independent of the others).
Then h(z) =

rkz

k, where rk is the probability that the sum of the scores of the events
that occurred is equal to k. (This is easy to see if we observe that f(z)k =

stz

t,
where st is the probability that a total score t is obtained in k independent occurrences
of the event.) Example: If f gives the probabilities that a woman has k female offspring,
and if g gives the probabilities that there are k females in the nth generation, then h
gives the probabilities that there are k females in the (n + 1)st generation, assuming
independence.

(c) mean(h) = mean(g) mean(f); var(h) = var(g) mean2(f) + mean(g) var(f).

502 ANSWERS TO EXERCISES 1.2.10

18. Consider the choice of X[1], . . . , X[n] as a process in which we Ąrst place all the
nŠs, then place all the (n − 1)Šs among these nŠs, . . . , Ąnally place the ones among
the rest. As we place the rŠs among the numbers {r + 1, . . . , n}, the number of local
maxima from right to left increases by one if and only if we put an r at the extreme
right. This happens with probability kr/(kr + kr+1 + · · ·+ kn).

19. Let ak = l. Then ak is a left-to-right maximum of a1 . . . an⇐⇒ j < k implies aj < l
⇐⇒ aj > l implies j > k ⇐⇒ j > l implies bj > k ⇐⇒ k is a right-to-left minimum of
b1 . . . bn.

20. We have mL = max{a1 − b1, . . . , an − bn}. Proof: If not, let k be the smallest
subscript such that ak − bk > mL. Then ak is not a left-to-right maximum, so there is
a j < k with aj ≥ ak. But then aj − bj ≥ ak − bk > mL, contradicting the minimality
of k. Similarly, mR = max{b1−a1, . . . , bn−an}.
21. The result is trivial when ϵ ≥ q, so we may assume that ϵ < q. Setting x = p+ϵ

p
q
q−ϵ

in (25) gives Pr(X ≥ n(p + ϵ)) ≤ ((p
p+ϵ)

p+ϵ(q
q−ϵ)

q−ϵ)n. Now (p
p+ϵ)

p+ϵ ≤ e−ϵ since
t ≤ et−1 for all real t. And (q − ϵ) ln q

q−ϵ = ϵ − 1
2·1 ϵ

2q−1 − 1
3·2 ϵ

3q−2 − · · · ≤ ϵ − 1
2q
ϵ2.

(A more detailed analysis yields the slightly stronger estimate exp(−ϵ2n/(2pq)) when
p ≥ 1

2
; still further work yields the upper bound exp(−2ϵ2n) for all p.)

By reversing the roles of heads and tails we Ąnd

Pr(X ≤ n(p− ϵ)) = Pr(n−X ≥ n(q + ϵ)) ≤ e−ϵ2n/(2p).

(One should not confuse ŞtailsŤ with the tail of a probability distribution.)

22. (a) Set x = r in (24) and (25), and note that qk + pkr = 1 + (r − 1)pk ≤ e(r−1)pk.
[See H. Chernoff, Annals of Math. Stat. 23 (1952), 493Ű507.]

(b) Let r = 1 + δ where |δ| ≤ 1. Then r−rer−1 = exp(− 1
2·1δ

2 + 1
3·2δ

3−· · ·), which
is ≤ e−δ2/2 when δ ≤ 0 and ≤ e−δ2/3 when δ ≥ 0.

(c) The function r−1e1−1/r decreases from 1 to 0 as r increases from 1 to ∞. If
r ≥ 2 it is ≤ e1/2/2 < .825; if r ≥ 4.32 it is 1/2.

Incidentally, the tail inequalities with x = r give precisely the same estimate
(r−rer−1)µ when X has the Poisson distribution of exercise 15.

23. Setting x = p−ϵ
p

q
q−ϵ in (24) gives Pr(X ≤ n(p − ϵ)) ≤ ((p

p−ϵ)
p−ϵ(q−ϵq)q−ϵ)n ≤

e−ϵ
2n/(2pq). Similarly, x = p+ϵ

p
q
q+ϵ yields Pr(X ≥ n(p + ϵ)) ≤ ((p

p+ϵ)
p+ϵ(q+ϵ

q)q+ϵ)n.
Let f(ϵ) = (q+ϵ) ln(1+ ϵ

q)−(p+ϵ) ln(1+ ϵ
p), and note that f ′(ϵ) = ln(1+ ϵ

q)− ln(1+ ϵ
p).

It follows that f(ϵ) ≤ −ϵ2/(6pq) if 0 ≤ ϵ ≤ p.

SECTION 1.2.11.1

1. Zero.

2. Each O-symbol represents a different approximate quantity; since the left-hand
side might be f(n) − (−f(n)) = 2f(n), the best we can say is O(f(n)) − O(f(n)) =
O(f(n)), which follows from (6) and (7). To prove (7), note that if |xn| ≤M |f(n)| for
n ≥ n0 and |x′n| ≤M ′|f(n)| for n ≥ n′

0, then |xn ± x′n| ≤ |xn|+ |x′n| ≤ (M +M ′)|f(n)|
for n ≥ max(n0, n

′
0). (Signed, J. H. Quick, student.)

3. n(lnn) + γn+O(
√
n lnn).

4. ln a+ (ln a)2/2n+ (ln a)3/6n2 +O(n−3).

5. If f(n) = n2 and g(n) = 1, then n belongs to the set O(f(n) + g(n)) but not to
the set f(n) +O(g(n)). So the statement is false.

1.2.11.2 ANSWERS TO EXERCISES 503

6. A variable number, n, of O-symbols has been replaced by a single O-symbol, falsely
implying that a single value of M will suffice for each term |kn| ≤Mn. The given sum is
actually Θ(n3), as we know. The last equality,

n
k=1 O(n) = O(n2), is perfectly valid.

7. If x is positive, the power series 1.2.9Ű(22) tells us that ex > xm+1/(m+ 1)!; hence
the ratio of ex/xm is unbounded by any M.

8. Replace n by en and apply the method of the previous exercise.

9. If |f(z)| ≤ M |z|m for |z| ≤ r, then |ef(z)| ≤ eM|z|m = 1 + |z|m(M + M2|z|m/2! +
M3|z|2m/3! + · · ·) ≤ 1 + |z|m(M +M2rm/2! +M3r2m/3! + · · ·).
10. ln(1 + O(zm)) = O(zm), if m is a positive integer. Proof: If f(z) = O(zm), there
exist positive numbers r < 1, r′ < 1, and a constant M such that |f(z)| ≤M |z|m ≤ r′
when |z| ≤ r. Then |ln(1 + f(z))| ≤ |f(z)|+ 1

2
|f(z)|2 + · · · ≤ |z|mM(1 + 1

2
r′ + · · ·).

11. We can apply Eq. (12) withm = 1 and z = lnn/n. This is justiĄed since lnn/n ≤ r
for any given r > 0, when n is sufficiently large.

12. Let f(z) = (zez/(ez−1))1/2. If

1/2
1/2−k

were O(nk), the stated identity would show

that [zk] f(z) = O(nk/(k−1)!), so f(z) would converge when z = 2πi. But f(2πi) =∞.

13. Proof: We may take L = 1/M in the deĄnitions of O and Ω.

SECTION 1.2.11.2

1. (B0 +B1z+B2z
2/2!+ · · ·)ez=(B0 +B1z+B2z

2/2!+ · · ·)+z; apply Eq. 1.2.9Ű(11).

2. The function Bm+1({x}) must be continuous, for the integration by parts.

3. |Rmn| ≤ |Bm/(m)!| n
1
|f (m)(x)| dx. [Notes: We have Bm(x) = (−1)mBm(1 − x),

and Bm(x) is m! times the coefficient of zm in zexz/(ez − 1). In particular, since
ez/2/(ez − 1) = 1/(ez/2 − 1) − 1/(ez − 1) we have Bm(1

2
) = (21−m − 1)Bm. It is not

difficult to prove that the maximum of |Bm−Bm(x)| for 0 ≤ x ≤ 1 occurs at x = 1
2

when
m is even. Now when m = 2k ≥ 4, let us write simply Rm and Cm for the quantities
Rmn and Cmn. We have Rm−2 = Cm + Rm =

 n
1

(Bm − Bm({x}))f (m)(x) dx/m!,
and Bm − Bm({x}) is between 0 and (2 − 21−m)Bm; hence Rm−2 lies between 0 and
(2 − 21−m)Cm. It follows that Rm lies between −Cm and (1 − 21−m)Cm, a slightly
stronger result. According to this argument we see that if f (m+2)(x) f (m+4)(x) > 0
for 1 < x < n, the quantities Cm+2 and Cm+4 have opposite signs, while Rm has the
sign of Cm+2 and Rm+2 has the sign of Cm+4 and |Rm+2| ≤ |Cm+2|; this proves (13).
See J. F. Steffensen, Interpolation (Baltimore: 1927), §14.]

4.

0≤k<n
km =

nm+1

1 +m
+

m

k=1

Bk
k!

m!
(m− k + 1)!

nm−k+1 =
1

m+ 1
Bm+1(n)− 1

m+ 1
Bm+1.

5. It follows that

κ =
√

2 lim
n→∞

22n(n!)2

√
n (2n)!

;

κ2 = lim
n→∞

2
n

n2(n− 1)2 . . . (1)2

(n− 1
2
)2(n− 3

2
)2 . . . (1

2
)2

= 4
2 · 2 · 4 · 4 · · · ·
1 · 3 · 3 · 5 · · · · = 2π.

6. Assume that c > 0 and consider

0≤k<n ln(k + c). We Ąnd

ln(c(c+ 1) . . . (c+ n− 1)) = (n+ c) ln(n+ c)− c ln c− n− 1
2

ln(n+ c) + 1
2

ln c

+

1<k≤m

Bk(−1)k

k(k − 1)

1

(n+ c)k−1
− 1
ck−1

+Rmn.

504 ANSWERS TO EXERCISES 1.2.11.2

Also

ln (n− 1)! = (n− 1
2
) lnn− n+ σ +

1<k≤m

Bk(−1)k

k(k − 1)

1

nk−1

− 1
m

 ∞

n

Bm({x}) dx
xm

.

Now lnΓn−1(c) = c ln(n−1) + ln (n−1)!− ln(c . . . (c+n−1)); substituting and letting
n→∞, we get

lnΓ (c) = −c+ (c− 1
2
) ln c+ σ +

1<k≤m

Bk(−1)k

k(k − 1)ck−1
− 1
m

 ∞

0

Bm({x}) dx
(x+ c)m

.

This shows that Γ (c+ 1) = celnΓ (c) has the same expansion we derived for c!.

7. Ann
2/2+n/2+1/12e−n

2/4 where A is a constant. To obtain this result, apply EulerŠs
summation formula to

n−1
k=1 k ln k. A more accurate formula is obtained if we multiply

the answer above by

exp(−B4/(2 · 3 · 4n2)− · · · −B2t/((2t− 2)(2t− 1)(2t)n2t−2) +O(1/n2t)).

In these formulas, A is the ŞKinkelinŰGlaisher constantŤ 1.2824271 . . . [Crelle 57

(1860), 122Ű158; Messenger of Math. 7 (1877), 43Ű47], which can be shown to equal
e1/12−ζ′(−1) = (2πeγ−ζ

′(2)/ζ(2))1/12 [de Bruijn, Asymptotic Methods in Analysis, §3.7].

8. We have, for example, ln(an2 + bn) = 2 lnn + ln a + ln(1 + b/(an)). Thus the
answer to the Ąrst question is found to be 2an2 lnn+a(ln a−1)n2 +2bn lnn+bn ln a+
lnn+ b2/(2a) + 1

2
ln a+ σ + (3a− b2)b/(6a2n) +O(n−2). Massive cancellation occurs

when we compute the quantity ln (cn2)!− ln (cn2 − n)!− n ln c− lnn2! + ln (n2 − n)! =
(c− 1)/(2c)− (c− 1)(2c− 1)/(6c2n) +O(n−2). The answer is therefore

e(c−1)/(2c)

1− (c− 1)(2c− 1)
6c2n

(1 +O(n−2)).

Incidentally,

cn2

n

/(cn

n2

n

) can be written

n−1
j=1 (1 +αj/(n2 − j)) where α = 1− 1/c.

9. (a) We have ln (2n)! = (2n + 1
2
) ln 2n − 2n + σ + 1

24n
+ O(n−3), and ln (n!)2 =

(2n + 1) lnn − 2n + 2σ + 1
6n

+ O(n−3); hence

2n
n

= exp(2n ln 2 − 1

2
lnπn − 1

8n
+

O(n−3)) = 22n(πn)−1/2(1 − 1
8
n−1 + 1

128
n−2 + O(n−3)). (b) Since

2n
n

= 22n

n−1/2
n

and

n−1/2
n

= Γ (n + 1/2)/(nΓ (n)Γ (1/2)) = n−1n1/2/

√
π, we obtain the same result

from 1.2.11.1Ű(16) because
1/2

1/2

= 1,

 1/2
−1/2

=
1/2

2

= −1

8
,
 1/2
−3/2

=
1/2

4

+ 2
3/2

4

=

1
128

.

Method (b) explains why the denominators in
2n
n

=

22n

√
πn

1− n−1

8
+
n−2

128
+

5n−3

1024
− 21n−4

32768
− 399n−5

262144
+

869n−6

4194304
+O(n−7)

are all powers of 2 [Knuth and Vardi, AMM 97 (1990), 629Ű630].

SECTION 1.2.11.3

1. Integrate by parts.

2. Substitute the series for e−t in the integral.

3. See Eq. 1.2.9Ű(11) and exercise 1.2.6Ű48.

1.2.11.3 ANSWERS TO EXERCISES 505

4. 1 + 1/u is bounded as a function of v, since it goes to zero as v goes from r to
inĄnity. Replace it by M and the resulting integral is Me−rx.

5. f ′′(x) = f(x)((n + 1/2)(n − 1/2)/x2 − (2n + 1)/x + 1) changes sign at the point
r = n+ 1/2−

n+ 1/2, so |R| = O(

 n
0
|f ′′(x)| dx) = O(

 r
0
f ′′(x) dx−

 n
r
f ′′(x) dx) =

O(f ′(n)− 2f ′(r) + f ′(0)) = O(f(n)/
√
n).

6. It is nn+β exp((n+ β)(α/n− α2/2n2 +O(n−3))), etc.

7. The integrand as a power series in x−1 has the coefficient of x−n as O(u2n). After
integration, terms in x−3 are Cu7/x3 = O(x−5/4), etc. To get O(x−2) in the answer,
we can discard terms un/xm with 4m − n ≥ 9. Thus, an expansion of the product
exp(−u2/2x) exp(u3/3x2) . . . leads ultimately to the answer

yx1/4−y
3

6
x−1/4+

y5

40
x−3/4+

y4

12
x−1− y7

336
x−5/4− y

6

36
x−3/2+

y9

3456
− y

5

20

x−7/4+O(x−2).

8. (Solution by Miklós Simonovits.) We have |f(x)| < x if x is large enough. Let
R(x) =

 f(x)

0
(e−g(u,x) − e−h(u,x)) du be the difference between the two given integrals,

where g(u, x) = u−x ln(1+u/x) and h(u, x) = u2/2x−u3/3x2 + · · ·+(−1)mum/mxm−1.
Notice that g(u, x) ≥ 0 and h(u, x) ≥ 0 when |u| < x; also g(u, x) = h(u, x) +
O(um+1/xm).

According to the mean value theorem, ea − eb = (a − b) ec for some c between
a and b. Therefore |ea − eb| ≤ |a− b| when a, b ≤ 0. It follows that

|R(x)| ≤
 |f(x)|

−|f(x)|
|g(u, x)− h(u, x)| du = O

 Mxr

−Mxr

um+1du

xm

= O(x(m+2)r−m) = O(x−s).

9. We may assume that p ̸= 1, since p = 1 is given by Theorem A. We also assume
that p ̸= 0, since the case p = 0 is trivial.

Case 1: p < 1. Substitute t = px(1− u) and then v = − ln(1− u)− pu. We have
dv = ((1− p+ pu)/(1− u)) du, so the transformation is monotone for 0 ≤ u ≤ 1, and
we obtain an integral of the form

 ∞

0

xe−xvdv
 1− u

1− p+ pu

.

Since the parenthesized quantity is (1− p)−1(1− v(1− p)−2 + · · ·), the answer is

p

1− p (pe1−p)x
e−xxz

Γ (x+ 1)

1− 1

(p− 1)2x
+O(x−2)

.

Case 2: p > 1. This is 1−
∞
px

(). In the latter integral, substitute t = px(1 + u),
then v = pu − ln(1 + u), and proceed as in Case 1. The answer turns out to be the
same formula as Case 1, plus one. Notice that pe1−p < 1, so (pe1−p)x is very small.

The answer to exercise 11 gives another way to solve this problem.

10.
p

p− 1
(pe1−p)xe−xxx

1− e−y − e−y(ey − 1− y − y2/2)

x(p− 1)2
+O(x−2)

.

11. First, xQx(n) +R1/x(n) = n! (x/n)nen/x generalizes (4). Next, we have Rx(n) =
n! (ex/nx)nγ(n, nx)/(n− 1)!, generalizing (9). Since aγ(a, x) = γ(a+ 1, x) + e−xxa we
can also write Rx(n) = 1 + (ex/nx)nγ(n + 1, nx), relating this problem to exercise 9.

506 ANSWERS TO EXERCISES 1.2.11.3

Moreover, we can tackle Qx(n) and Rx(n) directly by using Eqs. 1.2.9Ű(27) and (28)
to derive series expansions involving Stirling numbers:

1 + xQx(n) =

k≥0

xknk/nk =

k,m≥0

(−1)m

nm

k

k −m

xk;

Rx(n) =

k≥0

xknk/(n+ 1)k =

k,m≥0

(−1)m

nm

k +m

k

xk.

The sums over k are convergent for Ąxed m when |x| < 1, and when |x| > 1 we can use
the relation between Qx(n) and R1/x(n); this leads to the formulas

Qx(n) =
1

1− x −
x

(1− x)3n
+ · · ·+ (−1)mqm(x)

(1− x)2m+1nm
+O(n−1−m),

Rx(n) =
1

1− x −
x

(1− x)3n
+ · · ·+ (−1)mrm(x)

(1− x)2m+1nm
+O(n−1−m), if x < 1;

Qx(n) =
n!xn−1en/x

nn
+

1
1− x −

x

(1− x)3n
+ · · ·+ (−1)mqm(x)

(1− x)2m+1nm
+O(n−1−m),

Rx(n) =
n! enx

nnxn
+

1
1− x −

x

(1− x)3n
+ · · ·+ (−1)mrm(x)

(1− x)2m+1nm
+O(n−1−m), if x > 1.

Here

qm(x) =

m

0

x2m−1 +

m

1

x2m−2 + · · ·

and

rm(x) =

m

0

x+

m

1

x2 + · · ·

are polynomials whose coefficients are Şsecond-order Eulerian numbersŤ [CMath §6.2;
see L. Carlitz, Proc. Amer. Math. Soc. 16 (1965), 248Ű252]. The case x = −1 is
somewhat delicate, but it can be handled by continuity, because the bound implied by
O(n−1−m) is independent of x when x < 0. It is interesting to note that R−1(n) −
Q−1(n) = (−1)nn!/(ennn) ≈ (−1)n

√
2πn/e2n is extremely small.

12. γ(1
2
, 1

2
x2)/
√

2.

13. See P. Flajolet, P. Grabner, P. Kirschenhofer, and H. Prodinger, J. Computational
and Applied Math. 58 (1995), 103Ű116.

15. Expanding the integrand by the binomial theorem, we obtain 1 +Q(n).

16. Write Q(k) as a sum, and interchange the order of summation using Eq. 1.2.6Ű(53).

17. S(n) =

πn/2 + 2

3
− 1

24

π/2n − 4

135
n−1 + 49

1152

π/2n3 + O(n−2). [Note that

S(n+ 1) + P (n) =

k≥0 k

n−kk!/n!, while Q(n) +R(n) =

k≥0 n!/k!nn−k.]

18. Let Sn(x, y) =

k

n
k

(x+ k)k(y + n− k)n−k. Then for n > 0 we have Sn(x, y) =

x

k

n
k

(x + k)k−1(y + n − k)n−k + n

k

n−1
k

(x + 1 + k)k(y + n − 1 − k)n−1−k =

(x+ y + n)n + nSn−1(x+ 1, y) by AbelŠs formula 1.2.6Ű(16); consequently Sn(x, y) =
k

n
k

k! (x + y + n)n−k. [This formula is due to Cauchy, who proved it using the

calculus of residues; see his Œuvres (2) 6, 62Ű73.] The stated sums are therefore equal
respectively to nn(1 +Q(n)) and (n+ 1)nQ(n+ 1).

1.3.1 ANSWERS TO EXERCISES 507

19. Suppose Cn exists for all n ≥ N and |f(x)| ≤ Mxα for 0 ≤ x ≤ r. Let F (x) = x
r
e−Ntf(t) dt. Then when n > N we have

|Cn| ≤
 r

0

e−nx|f(x)| dx +

 ∞

r

e−(n−N)xe−Nxf(x) dx

≤M
 r

0

e−nxxα dx + (n−N)

 ∞

r

e−(n−N)xF (x) dx

≤M
 ∞

0

e−nxxα dx + (n−N) sup
x≥r
|F (x)|

 ∞

r

e−(n−N)x dx

= MΓ (α + 1)n−1−α + sup
x≥r
|F (x)|e−(n−N)r = O(n−1−α).

[E. W. Barnes, Phil. Trans. A206 (1906), 249Ű297; G. N. Watson, Proc. London Math.
Soc. 17 (1918), 116Ű148.]

20. [C. C. Rousseau, Applied Math. Letters 2 (1989), 159Ű161.] We have Q(n) + 1 =
n
∞

0
e−nx(1 + x)n dx = n

∞
0
e−n(x−ln(1+x)) dx = n

∞
0
e−nug(u) du, by substituting

u = x− ln(1 +x) and letting g(u) = dx/du. Notice that x =
∞
k=1 ck(2u)k/2 when u is

sufficiently small. Hence g(u) =
m−1
k=1 kck(2u)k/2−1 + O(um/2−1), and we can apply

WatsonŠs lemma to Q(n) + 1− n
∞

0
e−nu

m−1
k=1 kck(2u)k/2−1 du.

SECTION 1.3.1

1. Four; each byte would then contain 34 = 81 different values.

2. Five, since Ąve bytes is always adequate but four is not.

3. (0 :2); (3 :3); (4 :4); (5 :5).

4. Presumably index register 4 contains a value greater than or equal to 2000, so that
a valid memory address results after indexing.

5. ŚDIV -80,3(0:5)Š or simply ŚDIV -80,3Š.

6. (a) rA ← - 5 1 200 15 . (b) rI2 ← −200. (c) rX ← + 0 0 5 1 ? .

(d) UndeĄned; we canŠt load such a big value into an index register. (e) rX ←
- 0 0 0 0 0 .

7. Let n = |rAX| be the magnitude of registers A and X before the operation, and
let d = |V| be the magnitude of the divisor. After the operation the magnitude of rA is
⌊n/d⌋, and the magnitude of rX is nmod d. The sign of rX afterwards is the previous
sign of rA; the sign of rA afterwards is + if the previous signs of rA and V were the
same, otherwise it is −.

Stating this another way: If the signs of rA and V are the same, rA ← ⌊rAX/V⌋
and rX← rAX mod V. Otherwise rA← ⌈rAX/V⌉ and rX← rAX mod−V.

8. rA← + 0 617 0 1 ; rX← - 0 0 0 1 1 .

9. ADD, SUB, DIV, NUM, JOV, JNOV, INCA, DECA, INCX, DECX.

10. CMPA, CMP1, CMP2, CMP3, CMP4, CMP5, CMP6, CMPX. (Also FCMP, for Ćoating point.)

11. MOVE, LD1, LD1N, INC1, DEC1, ENT1, ENN1.

12. INC3 0,3.

508 ANSWERS TO EXERCISES 1.3.1

13. ŚJOV 1000Š makes no difference except time. ŚJNOV 1001Š makes a different setting
of rJ in most cases. ŚJNOV 1000Š makes an extraordinary difference, since it may lock
the computer in an inĄnite loop.

14. NOP with anything; ADD, SUB with F = (0:0) or with address equal to * (the
location of the instruction) and F = (3:3); HLT (depending on how you interpret the
statement of the exercise); any shift with address and index zero; SLC or SRC with
index 0 and address a multiple of 10; MOVE with F = 0; STJ *(0:0), STZ *(0:0), and
STZ *(3:3); JSJ *+1; any of the INC or DEC instructions with address and index zero.
But ŚENT1 0,1Š is not always a no-op, because it might change rI1 from −0 to +0.

15. 70; 80; 120. (The block size times 5.)

16. (a) STZ 0; ENT1 1; MOVE 0(49); MOVE 0(50). If the byte size were known to equal
100, only one MOVE instruction would have been necessary, but we are not allowed to
make assumptions about the byte size. (b) Use 100 STZŠs.

17. (a) STZ 0,2; DEC2 1; J2NN 3000.

(b) STZ 0

ENT1 1

JMP 3004

(3003) MOVE 0(63)

(3004) DEC2 63

J2P 3003

INC2 63

ST2 3008(4:4)

(3008) MOVE 0

(A slightly faster, but quite preposterous, program uses 993 STZŠs: JMP 3995; STZ 1,2;
STZ 2,2; . . . ; STZ 993,2; J2N 3999; DEC2 993; J2NN 3001; ENN1 0,2; JMP 3000,1.)

18. (If you have correctly followed the instructions, an overĆow will occur on the ADD,
with minus zero in register A afterwards.) Answer: OverĆow is set on, comparison is

set EQUAL, rA is set to - 30 30 30 30 30 , rX is set to - 31 30 30 30 30 , rI1 is

set to +3, and memory locations 0001, 0002 are set to +0. (Unless the program itself
begins in location 0000.)

19. 42u = (2 + 1 + 2 + 2 + 1 + 1 + 1 + 2 + 2 + 1 + 2 + 2 + 3 + 10 + 10)u.

20. (Solution by H. Fukuoka.)

(3991) ENT1 0

MOVE 3995 (standard F for MOVE is 1)
(3993) MOVE 0(43) (3999 = 93 times 43)

JMP 3993

(3995) HLT 0

21. (a) Not unless it can be set to zero by external means (see the ŞGO buttonŤ,
exercise 26), since a program can set rJ← N only by jumping from location N − 1.

(b) LDA -1,4

LDX 3004

STX -1,4

JMP -1,4

(3004) JMP 3005

(3005) STA -1,4

1.3.1 ANSWERS TO EXERCISES 509

22. Minimum time: If b is the byte size, the assumption that
X13

 < b5 implies that
X2 < b, so X2 can be contained in one byte. The following ingenious solution due to
Y. N. Patt makes use of this fact. The sign of rA is the sign of X.

(3000) LDA 2000

MUL 2000(1:5)

STX 3500(1:1)
rA rX

SRC 1 X2 0 0 0 0 0 0 0 0 0

MUL 3500 X4 0 0 0 0 0 0 0 0

STA 3501 X4 0 0 0 0 0 0 0 0

ADD 2000 X4 0 0 X 0 0 0 0 0

MUL 3501(1:5) X8 0 X5 0 0 0

STX 3501 X8 0 X5 0 0 0

MUL 3501(1:5) 0 X13 0 0 0 0

SLAX 1 X13 0 0 0 0 0

HLT 0

(3500) NOP 0

(3501) NOP 0

space = 14; time = 54u, not counting the HLT.

At least Ąve multiplications are Şnecessary,Ť according to the theory developed in
Section 4.6.3, yet this program uses only four! And in fact there is an even better
solution below.

Minimum space: (3000) ENT4 12

LDA 2000

(3002) MUL 2000

SLAX 5

DEC4 1

J4P 3002

HLT 0

space = 7; time = 171u.
True minimum time: As R. W. Floyd points out, the conditions imply that |X| ≤ 5,
so the minimum execution time is achieved by referring to a table:

(3000) LD1 2000

LDA 3500,1

HLT 0

(3495) (−5)13 [This line needed only when b > 65.]
(3496) (−4)13

...

(3505) (+5)13 [This line needed only when b > 65.]

space = 14; time = 4u.

23. The following solution by R. D. Dixon appears to satisfy all the conditions:

(3000) ENT1 4

(3001) LDA 200

SRA 0,1

SRAX 1

DEC1 1

J1NN 3001

SLAX 5

HLT 0

24. (a) DIV 3500, where 3500 = + 1 0 0 0 0 .

(b) SRC 4; SRA 1; SLC 5.

510 ANSWERS TO EXERCISES 1.3.1

25. Some ideas: (a) Obvious things like faster memory, more input-output devices. (b)
The I Ąeld could be used for J-register indexing, and/or multiple indexing (to specify
two different index registers) and/or Şindirect addressingŤ (exercises 2.2.2Ű3, 4, 5).
(c) Index registers and J register could be extended to a full Ąve bytes; therefore
locations with higher addresses could be referred to only by indexing, but that would
not be so intolerable if multiple indexing were available as in (b). (d) An interrupt
capability could be added, using negative memory addresses as in exercise 1.4.4Ű18.
(e) A Şreal time clockŤ could be added, in a negative memory address. (f) Bitwise
operations, jumps on register even or odd, and binary shifts could be added to binary
versions of MIX (see, for example, exercises 2.5Ű28, 5.2.2Ű12, and 6.3Ű9; also Program
4.5.2B, 6.4Ű(24), and Section 7.1). (g) An ŞexecuteŤ command, meaning to perform
the instruction at location M, could be another variant of C = 5. (h) Another variant
of C = 48, . . . , 55 could set CI← register : M.

26. It is tempting to use a (2:5) Ąeld to get at columns 7Ű10 of the card, but this
cannot be done since 2 · 8 + 5 = 21. To make the program easier to follow, it is
presented here in symbolic language, anticipating Section 1.3.2.

characters
BUFF EQU 29 Buffer area is 0029Ű0044 punched on card:

ORIG 0

00 LOC IN 16(16) Read in second card. ␣O␣O6

01 READ IN BUFF(16) Read next card. ␣Z␣O6

02 LD1 0(0:0) rI1← 0. ␣␣␣␣I

03 JBUS *(16) Wait for read to Ąnish. ␣C␣O4

04 LDA BUFF+1 rA← columns 6Ű10. ␣0␣EH

05 =1= SLA 1 ␣A␣␣F

06 SRAX 6 rAX← columns 7Ű10. ␣F␣CF

07 =30= NUM 30 ␣0␣␣E

08 STA LOC LOC← starting location. ␣␣␣EU

09 LDA BUFF+1(1:1) ␣0␣IH

10 SUB =30=(0:2) ␣G␣BB

11 LOOP LD3 LOC rI3← LOC. ␣␣␣EJ

12 JAZ 0,3 Jump, if transfer card. ␣␣CA.

13 STA BUFF BUFF← count. ␣Z␣EU

14 LDA LOC ␣␣␣EH

15 ADD =1=(0:2) ␣E␣BA

16 STA LOC LOC← LOC + 1. ␣␣␣EU

17 LDA BUFF+3,1(5:5) ␣2A-H

18 SUB =25=(0:2) ␣S␣BB

19 STA 0,3(0:0) Store the sign. ␣␣C␣U

20 LDA BUFF+2,1 ␣1AEH

21 LDX BUFF+3,1 ␣2AEN

22 =25= NUM 25 ␣V␣␣E

23 STA 0,3(1:5) Store the magnitude. ␣␣CLU

24 MOVE 0,1(2) rI1← rI1 + 2. (!) ␣␣ABG

25 LDA BUFF ␣Z␣EH

26 SUB =1=(0:2) Decrease the count. ␣E␣BB

27 JAP LOOP Repeat until the count is zero. ␣J␣B.

28 JMP READ Now read a new card. ␣A␣␣9

1.3.2 ANSWERS TO EXERCISES 511

SECTION 1.3.2

1. ENTX 1000; STX X.

2. The STJ instruction in line 03 resets this address. (It is conventional to denote
the address of such instructions by Ś∗Š, both because it is simple to write, and because
it provides a recognizable test of an error condition in a program, in case a subroutine
has not been entered properly because of some oversight. Some people prefer Ś*-*Š.)

3. Read in 100 words from tape unit zero; exchange their maximum with the last of
them; exchange the maximum of the remaining 99 with the last of those; etc. Eventually
the 100 words will become completely sorted into nondecreasing order. The result is
then written onto tape unit one. (Compare with Algorithm 5.2.3S.)

4. Nonzero locations:

3000: + 0000 00 18 35 3021: + 0000 00 01 05

3001: + 2051 00 05 09 3022: + 0000 04 12 31

3002: + 2050 00 05 10 3023: + 0001 00 01 52

3003: + 0001 00 00 49 3024: + 0050 00 01 53

3004: + 0499 01 05 26 3025: + 3020 00 02 45

3005: + 3016 00 01 41 3026: + 0000 04 18 37

3006: + 0002 00 00 50 3027: + 0024 04 05 12

3007: + 0002 00 02 51 3028: + 3019 00 00 45

3008: + 0000 00 02 48 3029: + 0000 00 02 05

3009: + 0000 02 02 55 0000: + 2

3010: - 0001 03 05 04 1995: + 06 09 19 22 23

3011: + 3006 00 01 47 1996: + 00 06 09 25 05

3012: - 0001 03 05 56 1997: + 00 08 24 15 04

3013: + 0001 00 00 51 1998: + 19 05 04 00 17

3014: + 3008 00 06 39 1999: + 19 09 14 05 22

3015: + 3003 00 00 39 2024: + 2035

3016: + 1995 00 18 37 2049: + 2010

3017: + 2035 00 02 52 2050: + 3

3018: - 0050 00 02 53 2051: - 499

3019: + 0501 00 00 53

3020: - 0001 05 05 08

(the latter two may be interchanged, with
corresponding changes to 3001 and 3002)

5. Each OUT waits for the previous printer operation to Ąnish (from the other buffer).

6. (a) If n is not prime, by deĄnition n has a divisor d with 1 < d < n. If d >
√
n,

then n/d is a divisor with 1 < n/d <
√
n. (b) If N is not prime, N has a prime

divisor d with 1 < d ≤
√
N. The algorithm has veriĄed that N has no prime divisors ≤

p = PRIME[K]; also N = pQ + R < pQ + p ≤ p2 + p < (p+ 1)2. Any prime divisor of N is
therefore greater than p+ 1 >

√
N.

512 ANSWERS TO EXERCISES 1.3.2

We must also prove that there will be a sufficiently large prime less than N when N

is prime, namely that the (k + 1)st prime pk+1 is less than p2
k + pk; otherwise K would

exceed J and PRIME[K] would be zero when we needed it to be large. The necessary
proof follows from ŞBertrandŠs postulateŤ: If p is prime there is a larger prime less
than 2p.

7. (a) It refers to the location of line 29. (b) The program would then fail; line 14
would refer to line 15 instead of line 25; line 24 would refer to line 15 instead of line 12.

8. It prints 100 lines. If the 12000 characters on these lines were arranged end to
end, they would reach quite far and would consist of Ąve blanks followed by Ąve AŠs
followed by ten blanks followed by Ąve AŠs followed by Ąfteen blanks . . . followed by
5k blanks followed by Ąve AŠs followed by 5(k + 1) blanks . . . until 12000 characters
have been printed. The third-from-last line ends with AAAAA and 35 blanks; the Ąnal
two lines are entirely blank. The total effect is one of OP art.

9. The (4:4) Ąeld of each entry in the following table holds the maximum F setting;
the (1:2) Ąeld is the location of an appropriate validity-check routine.

B EQU 1(4:4) BEGIN LDA INST

BMAX EQU B-1 CMPA VALID(3:3)

UMAX EQU 20 JG BAD I Ąeld > 6?
TABLE NOP GOOD(BMAX) LD1 INST(5:5)

ADD FLOAT(5:5) DEC1 64

SUB FLOAT(5:5) J1NN BAD C Ąeld ≥ 64?
MUL FLOAT(5:5) CMPA TABLE+64,1(4:4)

DIV FLOAT(5:5) JG BAD F Ąeld > F max?
HLT GOOD LD1 TABLE+64,1(1:2) Jump to special
SRC GOOD JMP 0,1 routine.
MOVE MEMORY(BMAX) FLOAT CMPA VALID(4:4) F = 6 allowed on
LDA FIELD(5:5) JE MEMORY arithmetic op
· · · FIELD ENTA 0

STZ FIELD(5:5) LDX INST(4:4) This is a tricky
JBUS MEMORY(UMAX) DIV =9= way to check
IOC GOOD(UMAX) STX *+1(0:2) for a valid
IN MEMORY(UMAX) INCA 0 partial Ąeld.
OUT MEMORY(UMAX) DECA 5

JRED MEMORY(UMAX) JAP BAD

JLE MEMORY MEMORY LDX INST(3:3)

JANP MEMORY JXNZ GOOD If I = 0,
· · · LDX INST(0:2) ensure the
JXNP MEMORY JXN BAD address is a
ENNA GOOD DECX 3999 valid memory
· · · JXNP GOOD location.
ENNX GOOD JMP BAD

CMPA FLOAT(5:5) VALID CMPX 3999,6(6)

CMP1 FIELD(5:5)

· · ·
CMPX FIELD(5:5)

10. The catch to this problem is that there may be several places in a row or column
where the minimum or maximum occurs, and each is a potential saddle point.

1.3.2 ANSWERS TO EXERCISES 513

Solution 1: In this solution we run through each row in turn, making a list of all columns
in which the row minimum occurs and then checking each column on the list to see if
the row minimum is also a column maximum. rX ≡ current min; rI1 traces through the
matrix, going from 72 down to zero unless a saddle point is found; rI2 ≡ column index
of rI1; rI3 ≡ size of list of minima. Notice that in all cases the terminating condition
for a loop is that an index register is ≤ 0.

* SOLUTION 1

A10 EQU 1008 Location of a10

LIST EQU 1000

START ENT1 9*8 Begin at the lower right corner.
ROWMIN ENT2 8 Now rI1 is at column 8 of its row.
2H LDX A10,1 Candidate for row minimum

ENT3 0 List empty
4H INC3 1

ST2 LIST,3 Put column index in list.
1H DEC1 1 Go left one.

DEC2 1

J2Z COLMAX Done with row?
3H CMPX A10,1

JL 1B Is rX still minimum?
JG 2B New minimum?
JMP 4B Remember another minimum.

COLMAX LD2 LIST,3 Get column from list.
INC2 9*8-8

1H CMPX A10,2

JL NO Is row min < column element?
DEC2 8

J2P 1B Done with column?
YES INC1 A10+8,2 Yes; rI1← address of saddle.

HLT

NO DEC3 1 Is list empty?
J3P COLMAX No; try again.
J1P ROWMIN Have all rows been tried?
HLT Yes; rI1 = 0, no saddle.

Solution 2: An infusion of mathematics gives a different algorithm.

Theorem. Let R(i) = minj aij , C(j) = maxi aij . The element ai0j0
is a saddle point

if and only if R(i0) = maxiR(i) = C(j0) = minj C(j).

Proof. If ai0j0
is a saddle point, then for any Ąxed i, R(i0) = C(j0) ≥ aij0

≥ R(i); so
R(i0) = maxiR(i). Similarly C(j0) = minj C(j). Conversely, we have R(i) ≤ aij ≤
C(j) for all i and j; hence R(i0) = C(j0) implies that ai0j0

is a saddle point.

(This proof shows that we always have maxiR(i) ≤ minj C(j). So there is no
saddle point if and only if all the RŠs are less than all the CŠs.)

According to the theorem, it suffices to Ąnd the smallest column maximum, then
to search for an equal row minimum. During Phase 1, rI1 ≡ column index; rI2 runs
through the matrix. During Phase 2, rI1 ≡ possible answer; rI2 runs through the
matrix; rI3 ≡ row index times 8; rI4 ≡ column index.

514 ANSWERS TO EXERCISES 1.3.2

* SOLUTION 2

CMAX EQU 1000

A10 EQU CMAX+8

PHASE1 ENT1 8 Start at column 8.
3H ENT2 9*8-8,1 Start at row 9.

JMP 2F

1H CMPX A10,2 Is rX still maximum?
JGE *+2

2H LDX A10,2 New maximum in column
DEC2 8

J2P 1B

STX CMAX+8,2 Store column maximum.
J2Z 1F First time?
CMPA CMAX+8,2 rA still min max?
JLE *+2

1H LDA CMAX+8,2

DEC1 1 Move left a column.
J1P 3B

PHASE2 ENT3 9*8 At this point rA = minj C(j)
3H ENT2 0,3 Prepare to search a row.

ENT4 8

1H CMPA A10,2 Is minj C(j) > a[i, j]?
JG NO No saddle in this row
JL 2F

CMPA CMAX,4 Is a[i, j] = C(j)?
JNE 2F

ENT1 A10,2 Remember a possible saddle point.
2H DEC4 1 Move left in row.

DEC2 1

J4P 1B

HLT A saddle point was found.
NO DEC3 8

J3P 3B Try another row.
ENT1 0

HLT rI1 = 0; no saddle.

We leave it to the reader to invent a still better solution in which Phase 1 records
all possible rows that are candidates for the row search in Phase 2. It is not necessary
to search all rows, just those i0 for which C(j0) = minj C(j) implies ai0j0

= C(j0).
Usually there is at most one such row.

In some trial runs with elements selected at random from {0, 1, 2, 3, 4}, solution 1
required approximately 730u to run, while solution 2 took about 530u. Given a matrix
of all zeros, solution 1 found a saddle point in 137u, solution 2 in 524u.

If an m × n matrix has distinct elements, and m ≥ n, we can solve the problem
by looking at only O(m + n) of them and doing O(m logn) auxiliary operations. See
Bienstock, Chung, Fredman, Schäffer, Shor, and Suri, AMM 98 (1991), 418Ű419.

11. Assume an m × n matrix. (a) By the theorem in the answer to exercise 10, all
saddle points of a matrix have the same value, so (under our assumption of distinct
elements) there is at most one saddle point. By symmetry the desired probability is
mn times the probability that a11 is a saddle point. This latter is 1/(mn)! times the

1.3.2 ANSWERS TO EXERCISES 515

number of permutations with a12 > a11, . . . , a1n > a11, a11 > a21, . . . , a11 > am1; this
is 1/(m + n − 1)! times the number of permutations of m + n − 1 elements in which
the Ąrst is greater than the next (m− 1) and less than the remaining (n− 1), namely
(m− 1)! (n− 1)!. The answer is therefore

mn(m− 1)! (n− 1)!/(m+ n− 1)! = (m+ n)

m+ n

n

.

In our case this is 17/

17
8

, only one chance in 1430. (b) Under the second assumption,

an entirely different method must be used. The probability equals the probability that
there is a saddle point with value zero plus the probability that there is a saddle point
with value one. The former is the probability that there is at least one column of
zeros; the latter is the probability that there is at least one row of ones. The answer
is (1− (1− 2−m)n) + (1− (1− 2−n)m); in our case it comes to 924744796234036231/
18446744073709551616, about 1 in 19.9. An approximate answer is n2−m +m2−n.

12. M. Hofri and P. Jacquet [Algorithmica 22 (1998), 516Ű528] have analyzed the case
when the m×n matrix entries are distinct and in random order. The running times of
the two MIX programs are then respectively (6mn+5mHn+8m+6+5(m+1)/(n−1))u+
O((m+ n)2/

m+n
m

) and (5mn+ 2nHm + 7m+ 7n+ 9Hn)u+O(1/n) +O((logn)2/m),

as m→∞ and n→∞, assuming that (logn)/m→ 0.

13. * CRYPTANALYST PROBLEM (CLASSIFIED)

TAPE EQU 20 Input unit number
TYPE EQU 19 Output unit number
SIZE EQU 14 Input block size
OSIZE EQU 14 Output block size
TABLE EQU 1000 Table of counts

ORIG TABLE (initially zero
CON -1 except entries for
ORIG TABLE+46 blank space and
CON -1 asterisk)
ORIG 2000

BUF1 ORIG *+SIZE First buffer area
CON -1 ŞSentinelŤ at end of buffer
CON *+1 Reference to second buffer

BUF2 ORIG *+SIZE Second buffer
CON -1 ŞSentinelŤ
CON BUF1 Reference to Ąrst buffer

BEGIN IN BUF1(TAPE) Input Ąrst block.
ENT6 BUF2

1H IN 0,6(TAPE) Input next block.
LD6 SIZE+1,6 During this input, prepare
ENT5 0,6 to process the previous one.
JMP 4F

2H INCA 1

STA TABLE,1 Update table entry.
3H SLAX 1

STA *+1(2:2) rI1← next char.
ENT1 0

LDA TABLE,1

JANN 2B Normal character?

main
loop,
should
run as
fast as
possible

516 ANSWERS TO EXERCISES 1.3.2

J1NZ 3F Asterisk?
JXP 3B Skip over a blank.
INC5 1

4H LDX 0,5 rX← Ąve chars.
JXNN 3B Jump if not a sentinel.
JMP 1B Done with block.

3H ENT1 1 Begin the endgame: rI1← ŚAŠ.
2H LDA TABLE,1

JANP 1F Skip zero answers.
CHAR Convert to decimal.
JBUS *(TYPE) Wait till the typewriter is ready.
ST1 CHAR(1:1)

STA CHAR(4:5)

STX FREQ

OUT ANS(TYPE) Type one answer.
1H CMP1 =63=

INC1 1 Up to 63 character
JL 2B codes are counted
HLT

ANS ALF The output buffer
ALF

CHAR ALF C NN

FREQ ALF NNNNN

ORIG ANS+OSIZE Rest of buffer is blank
END BEGIN The literal constant =63= comes here.

For this problem, buffering of output is not desirable since it could save at most 7u of
time per line output.

14. To make the problem more challenging, the following solution due in part to
J. Petolino uses a lot of trickery in order to reduce execution time. Can the reader
squeeze out any more microseconds?

* DATE OF EASTER

EASTER STJ EASTX

STX Y

ENTA 0 E1.
DIV =19=

STX GMINUS1(0:2)

LDA Y E2.
MUL =1//100+1= (see
INCA 61 below)
STA CPLUS60(1:2)

MUL =3//4+1=

STA XPLUS57(1:2)

CPLUS60 ENTA *

MUL =8//25+1= rA← Z + 24.
GMINUS1 ENT2 * E5.

ENT1 1,2 rI1← G.
INC2 1,1

INC2 0,2

1.3.2 ANSWERS TO EXERCISES 517

INC2 0,1

INC2 0,2

INC2 773,1 rI2← 11G+ 773.
XPLUS57 INCA -*,2 rA← 11G+ Z −X + 20 + 24 · 30 (≥ 0).

SRAX 5

DIV =30= rX← E.
DECX 24

JXN 4F

DECX 1

JXP 2F

JXN 3F

DEC1 11

J1NP 2F

3H INCX 1

2H DECX 29 E6.
4H STX 20MINUSN(0:2)

LDA Y E4.
MUL =1//4+1=

ADD Y

SUB XPLUS57(1:2) rA← D − 47.
20MINUSN ENN1 *

INCA 67,1 E7.
SRAX 5 rX← D +N
DIV =7=

SLAX 5

DECA -4,1 rA← 31−N
JAN 1F E8.
DECA 31

CHAR

LDA MARCH

JMP 2F

1H CHAR

LDA APRIL

2H JBUS *(18)

STA MONTH

STX DAY(1:2)

LDA Y

CHAR

STX YEAR

OUT ANS(18) Print
EASTX JMP *

MARCH ALF MARCH

APRIL ALF APRIL

ANS ALF

DAY ALF DD

MONTH ALF MMMMM

ALF ,

YEAR ALF YYYYY

ORIG *+20

518 ANSWERS TO EXERCISES 1.3.2

BEGIN ENTX 1950 ŞdriverŤ
ENT6 1950-2000 routine,
JMP EASTER uses the
INC6 1 subroutine
ENTX 2000,6 above.
J6NP EASTER+1

HLT

END BEGIN

A rigorous justiĄcation for the change from division to multiplication in several places
can be based on the fact that the number in rA is not too large. The program works
with all byte sizes.

[To calculate Easter in years ≤ 1582, see CACM 5 (1962), 209Ű210. The Ąrst
systematic algorithm for calculating the date of Easter was the canon paschalis due to
Victorius of Aquitania (A.D. 457). There are many indications that the sole nontrivial
application of arithmetic in Europe during the Middle Ages was the calculation of
Easter date, hence such algorithms are historically signiĄcant. See Puzzles and Para-
doxes by T. H. OŠBeirne (London: Oxford University Press, 1965), Chapter 10, for
further commentary; and see the book Calendrical Calculations by E. M. Reingold and
N. Dershowitz (Cambridge Univ. Press, 2001) for date-oriented algorithms of all kinds.]

15. The Ąrst such year is A.D. 10317, although the error almost leads to failure in
A.D. 10108 + 19k for 0 ≤ k ≤ 10.

Incidentally, T. H. OŠBeirne pointed out that the date of Easter repeats with
a period of exactly 5,700,000 years. Calculations by Robert Hill show that the most
common date is April 19 (220400 times per period), while the earliest and least common
is March 22 (27550 times); the latest, and next-to-least common, is April 25 (42000
times). Hill found a nice explanation for the curious fact that the number of times any
particular day occurs in the period is always a multiple of 25.

16. Work with scaled numbers, Rn = 10nrn. Then Rn(1/m) = R if and only if
10n/(R+ 1

2
) < m ≤ 10n/(R− 1

2
); thus we Ąnd mh = ⌊2 · 10n/(2R− 1)⌋.

* SUM OF HARMONIC SERIES

BUF ORIG *+24

START ENT2 0

ENT1 3 5− n
ENTA 20

OUTER MUL =10=

STX CONST 2 · 10n

DIV =2=

ENTX 2

JMP 1F

INNER STA R

ADD R

DECA 1

STA TEMP 2R− 1
LDX CONST

ENTA 0

DIV TEMP

INCA 1

STA TEMP mh + 1

1.3.2 ANSWERS TO EXERCISES 519

SUB M

MUL R

SLAX 5

ADD S

LDX TEMP

1H STA S Partial sum
STX M m = me

LDA M

ADD M

STA TEMP

LDA CONST

ADD M Compute R = Rn(1/m) =
SRAX 5 ⌊(2 · 10n +m)/(2m)⌋.
DIV TEMP

JAP INNER R > 0?
LDA S 10nSn
CHAR

SLAX 0,1 Neat formatting
SLA 1

INCA 40 Decimal point
STA BUF,2

STX BUF+1,2

INC2 3

DEC1 1

LDA CONST

J1NN OUTER

OUT BUF(18)

HLT

END START

The output is

0006.16 0008.449 0010.7509 0013.05363

in 65595u plus output time. (It would be faster to calculate Rn(1/m) directly when
m < 10n/2

√
2, and then to apply the suggested procedure.)

17. Let N = ⌊2·10n/(2m+1)⌋. Then Sn = HN+O(N/10n)+
m
k=1(⌊2·10n/(2k−1)⌋−

⌊2 · 10n/(2k + 1)⌋)k/10n = HN + O(m−1) + O(m/10n)− 1 + 2H2m −Hm = n ln 10 +
2γ − 1 + 2 ln 2 +O(10−n/2) if we sum by parts and set m ≈ 10n/2.

Incidentally, the next several values are S6 = 15.356262, S7 = 17.6588276, S8 =
19.96140690, S9 = 22.263991779, and S10 = 24.5665766353; our approximation to S10

is ≈ 24.566576621, which is closer than predicted.

18. FAREY STJ 9F Assume that rI1 contains n, where n > 1.
STZ X x0 ← 0.
ENTX 1

STX Y y0 ← 1.
STX X+1 x1 ← 1.
ST1 Y+1 y1 ← n.
ENT2 0 k ← 0.

520 ANSWERS TO EXERCISES 1.3.2

1H LDX Y,2

INCX 0,1

ENTA 0

DIV Y+1,2

STA TEMP ⌊(yk + n)/yk+1⌋
MUL Y+1,2

SLAX 5

SUB Y,2

STA Y+2,2 yk+2

LDA TEMP

MUL X+1,2

SLAX 5

SUB X,2

STA X+2,2 xk+2

CMPA Y+2,2 Test if xk+2 < yk+2.
INC2 1 k ← k + 1.
JL 1B If so, continue.

9H JMP * Exit from subroutine.

19. (a) Induction. (b) Let k ≥ 0 and X = axk+1 − xk, Y = ayk+1 − yk, where
a = ⌊(yk + n)/yk+1⌋. By part (a) and the fact that 0 < Y ≤ n, we have X ⊥ Y and
X/Y > xk+1/yk+1. So if X/Y ̸= xk+2/yk+2 we have, by deĄnition, X/Y > xk+2/yk+2.
But this implies that

1
Y yk+1

=
Xyk+1 − Y xk+1

Y yk+1
=
X

Y
− xk+1

yk+1

=

X

Y
− xk+2

yk+2

+

xk+2

yk+2
− xk+1

yk+1

≥ 1
Y yk+2

+
1

yk+1yk+2
=

yk+1 + Y

Y yk+1yk+2
>

n

Y yk+1yk+2
≥ 1
Y yk+1

.

Historical notes: C. Haros gave a (more complicated) rule for constructing such
sequences, in J. de lŠÉcole Polytechnique 4, 11 (1802), 364Ű368; his method was correct,
but his proof was inadequate. Several years later, the geologist John Farey indepen-
dently conjectured that xk/yk is always equal to (xk−1 + xk+1)/(yk−1 + yk+1) [Philos.
Magazine and Journal 47 (1816), 385Ű386]; a proof was supplied shortly afterwards by
A. Cauchy [Bull. Société Philomathique de Paris (3) 3 (1816), 133Ű135], who attached
FareyŠs name to the series. For more of its interesting properties, see G. H. Hardy and
E. M. Wright, An Introduction to the Theory of Numbers, Chapter 3.

20. * TRAFFIC SIGNAL PROBLEM

BSIZE EQU 1(4:4) Bytesize
2BSIZE EQU 2(4:4) Twice bytesize
DELAY STJ 1F If rA contains n,

DECA 6 this subroutine
DECA 2 waits max(n, 7)u
JAP *-1 exactly, not including
JAN *+2 the jump to the subroutine
NOP

1H JMP *

1.3.2 ANSWERS TO EXERCISES 521

FLASH STJ 2F 4 This subroutine Ćashes the
ENT2 8 5 appropriate DONŠT WALK light

1H LDA =49991= 7
JMP DELAY 8
DECX 0,1 9 Turn light off.
LDA =49996= 2
JMP DELAY 3
INCX 0,1 4 ŞDONŠT WALKŤ
DEC2 1 1
J2Z 1F 2 Repeat eight times.
LDA * 4 Waste 2u of time.
JMP 1B 5 Get back in synch.

1H LDA =399992= 4 Set amber 2u after exit.
JMP DELAY 5

2H JMP * 6
WAIT JNOV * 5 Del Mar green until tripped
TRIP INCX BSIZE 6 DONŠT WALK on Del Mar

ENT1 2BSIZE 1
JMP FLASH 2 Flash Del Mar.
LDX BAMBER 8 Amber on boulevard
LDA =799995= 2
JMP DELAY 3 Wait 8 seconds.
LDX AGREEN 5 Green for avenue
LDA =799996= 2
JMP DELAY 3 Wait 8 seconds.
INCX 1 4 DONŠT WALK on Berkeley
ENT1 2 1
JMP FLASH 2 Flash Berkeley.
LDX AAMBER 8 Amber on avenue
JOV *+1 1 Cancel redundant trip.
LDA =499994= 3
JMP DELAY 4 Wait 5 seconds.

BEGIN LDX BGREEN 6 Green on boulevard
LDA =1799994= 2
JMP DELAY 3 Wait at least 18
JMP WAIT 4 seconds.

AGREEN ALF CABA Green for avenue
AAMBER ALF CBBB Amber for avenue
BGREEN ALF ACAB Green for boulevard
BAMBER ALF BCBB Amber for boulevard

END BEGIN

22. * JOSEPHUS PROBLEM

N EQU 24

M EQU 11

X ORIG *+N

0H ENT1 N-1 1 Set each cell to the
STZ X+N-1 1 number of the next man
ST1 X-1,1 N − 1 in the sequence.
DEC1 1 N − 1
J1P *-2 N − 1

522 ANSWERS TO EXERCISES 1.3.2

ENTA 1 1 (Now rI1 = 0)
1H ENT2 M-2 N − 1 (Assume M > 2)

LD1 X,1 (M − 2)(N − 1) Count around
DEC2 1 (M − 2)(N − 1) the circle.
J2P *-2 (M − 2)(N − 1)
LD2 X,1 N − 1 rI1 ≡ lucky man
LD3 X,2 N − 1 rI2 ≡ doomed man
CHAR N − 1 rI3 ≡ next man
STX X,2(4:5) N − 1 Store execution number.
NUM N − 1
INCA 1 N − 1
ST3 X,1 N − 1 Take man from circle.
ENT1 0,3 N − 1
CMPA =N= N − 1
JL 1B N − 1
CHAR 1 One man left;
STX X,1(4:5) 1 he is clobbered too.
OUT X(18) 1 Print the answer.
HLT 1
END 0B

The last man is in position 15. The total time before output is (4(N−1)(M+7.5)+16)u.
Several improvements are possible, such as D. IngallsŠs suggestion to have three-word
packets of code ŚDEC2 1; J2P NEXT; JMP OUTŠ, where OUT modiĄes the NEXT Ąeld so as to
delete a packet. An asymptotically faster method appears in exercise 5.1.1Ű5.

SECTION 1.3.3

1. (1 2 4)(3 6 5).

2. a↔ c, c↔ f ; b↔ d. The generalization to arbitrary permutations is clear.

3.

a b c d e f
d b f c a e

.

4. (a d c f e).

5. 12. (See exercise 20.)

6. The total time decreases by 8u for every blank word following a Ş(Ť, because lines
30Ű32 cost 4u while lines 26Ű28, 33Ű34, 36Ű38 cost 12u. It decreases by 2u for every
blank word following a name, because lines 68Ű71 cost 5u while 42Ű46 or 75Ű79 cost 7u.
Initial blanks and blanks between cycles do not affect the execution time. The position
of blanks has no effect whatever on Program B.

7. X = 2, Y = 29, M = 5, N = 7, U = 3, V = 1. Total, by Eq. (18), 2161u.

8. Yes; we would then keep the inverse of the permutation, so that xi goes to xj if
and only if T [j] = i. (The Ąnal cycle form would then be constructed from right to
left, using the T table.)

9. No. For example, given (6) as input, Program A will produce Ś(ADG)(CEB)Š as
output, while Program B produces Ś(CEB)(DGA)Š. The answers are equivalent but not
identical, due to the nonuniqueness of cycle notation. The Ąrst element chosen for a
cycle is the leftmost available name, in the case of Program A, and the last available
distinct name to be encountered from right to left, in Program B.

1.3.3 ANSWERS TO EXERCISES 523

10. (1) KirchhoffŠs law yields A = 1 + C −D; B = A+ J + P − 1; C = B − (P − L);
E = D − L; G = E; Q = Z; W = S. (2) Interpretations: B = number of words of
input = 16X − 1; C = number of nonblank words = Y ; D = C −M; E = D −M;
F = number of comparisons in names table search; H = N; K = M; Q = N; R = U;
S = R − V ; T = N − V since each of the other names gets tagged. (3) Summing up,
we have (4F + 16Y + 80X+ 21N − 19M + 9U − 16V)u, which is somewhat better than
Program A because F is certainly less than 16NX. The time in the stated case is 983u,
since F = 74.

11. ŞReĆectŤ it. For example, the inverse of (a c f)(b d) is (d b)(f c a).

12. (a) The value in cell L+mn−1 is Ąxed by the transposition, so we may omit it from
consideration. Otherwise if x = n(i− 1) + (j − 1) < mn− 1, the value in L+ x should
go to cell L+mxmodN = L+ (mn(i−1) +m(j−1)) modN = L+m(j−1) + (i−1),
since mn ≡ 1 (modulo N) and 0 ≤ m(j − 1) + (i − 1) < N. (b) If one bit in each
memory cell is available (for example, the sign), we can ŞtagŤ elements as we move
them, using an algorithm like Algorithm I. [See M. F. Berman, JACM 5 (1958), 383Ű
384.] If there is no room for a tag bit, tag bits can be kept in an auxiliary table, or
else a list of representatives of all non-singleton cycles can be used: For each divisor
d of N, we can transpose those elements that are multiples of d separately, since m is
prime to N. The length of the cycle containing x, when gcd(x,N) = d, is the smallest
integer r > 0 such that mr ≡ 1 (modulo N/d). For each d, we want to Ąnd φ(N/d)/r
representatives, one from each of these cycles. Some number-theoretic methods are
available for this purpose, but they are not simple enough to be really satisfactory.
An efficient but rather complicated algorithm can be obtained by combining number
theory with a small table of tag bits. [See N. Brenner, CACM 16 (1973), 692Ű694.]
Finally, there is a method analogous to Algorithm J; it is slower, but needs no auxiliary
memory, and it performs any desired permutation in situ. [See P. F. Windley, Comp. J.
2 (1959), 47Ű48; D. E. Knuth, Proc. IFIP Congress (1971), 1, 19Ű27; E. G. Cate and
D. W. Twigg, ACM Trans. Math. Software 3 (1977), 104Ű110; F. E. Fich, J. I. Munro,
and P. V. Poblete, SICOMP 24 (1995), 266Ű278.]

13. Show by induction that, at the beginning of step J2, X[i] = +j if and only if
j > m and j goes to i under π; X[i] = −j if and only if i goes to j under πk+1, where
k is the smallest nonnegative integer such that πk takes i into a number ≤ m.

14. Writing the inverse of the given permutation in canonical cycle form and dropping
parentheses, the quantity A − N is the sum of the number of consecutive elements
greater than a given element and immediately to its right. For example, if the original
permutation is (1 6 5)(3 7 8 4), the canonical form of the inverse is (3 4 8 7)(2)(1 5 6);
set up the array

3 4 8 7 2 1 5 6
• • • • • • • •

• • • • •
• • •

and the quantity A is the number of Şdots,Ť 16. The number of dots below the kth
element is the number of right-to-left minima in the Ąrst k elements (there are 3 dots
below 7 in the example above, since there are 3 right-to-left minima in 3487). Hence
the average is H1 +H2 + · · ·+Hn = (n+ 1)Hn − n.

15. If the Ąrst character of the linear representation is 1, the last character of the
canonical representation is 1. If the Ąrst character of the linear representation is m > 1,

524 ANSWERS TO EXERCISES 1.3.3

then Ş. . . 1m. . . Ť appears in the canonical representation. So the only solution is the
permutation of a single object. (Well, thereŠs also the permutation of no objects.)

16. 1324, 4231, 3214, 4213, 2143, 3412, 2413, 1243, 3421, 1324,

17. (a) The probability pm that the cycle is an m-cycle is n!/m divided by n!Hn, so
pm = 1/(mHn). The average length is p1 +2p2 +3p3 + · · · = n

m=1 m/(mHn) = n/Hn.
(b) Since the total number of m-cycles is n!/m, the total number of appearances of
elements in m-cycles is n!. Each element appears as often as any other, by symmetry,
so k appears n!/n times in m-cycles. In this case, therefore, pm = 1/n for all k and m;
the average is

n
m=1 m/n = (n+ 1)/2.

18. See exercise 22(e).

19. |Pn0 − n!/e| = n!/(n + 1)!− n!/(n + 2)! + · · · , an alternating series of decreasing
magnitudes, which is less than n!/(n+ 1)! ≤ 1

2
.

20. There are α1 + α2 + · · · cycles in all, which can be permuted among one another,
and each m-cycle can be independently written in m ways. So the answer is

(α1 + α2 + · · ·)! 1α1 2α2 3α3

21. 1/(α1! 1α1α2! 2α2 . . .) if n = α1 + 2α2 + · · · ; zero otherwise.

Proof. Write out α1 1-cycles, α2 2-cycles, etc., in a row, with empty positions; for
example if α1 = 1, α2 = 2, α3 = α4 = · · · = 0, we would have Ş(-)(--)(--)Ť. Fill
the empty positions in all n! possible ways; we obtain each permutation of the desired
form exactly α1! 1α1α2! 2α2 . . . times.

22. (a) If k1 +2k2 +· · · = n, the probability in (ii) is

j>0 f(w, j, kj), which is assumed

to equal (1− w)wn/(k1! 1k1 k2! 2k2 . . .); hence

f(w, m, km + 1)
f(w,m, km)

=

j>0

f(w, j, kj)

−1

j>0

f(w, j, kj + δjm) =
wm

m(km + 1)
.

Therefore by induction f(w,m, k) = (wm/m)kf(w,m, 0)/k!, and condition (i) implies
that f(w,m, k) = (wm/m)ke−w

m/m/k!. [In other words, αm is chosen with a Poisson
distribution; see exercise 1.2.10Ű15.]

(b)

k1+2k2+···=n
k1,k2,...≥0

j>0

f(w, j, kj)

= (1−w)wn

k1+2k2+···=n
k1,k2,...≥0

P (n; k1, k2, . . .) = (1−w)wn.

Hence the probability that α1 + 2α2 + · · · ≤ n is (1−w)(1 +w+ · · ·+wn) = 1−wn+1.
(c) The average of ϕ is

n≥0

k1+2k2+···=n
ϕ(k1, k2, . . .) Pr (α1 = k1, α2 = k2, . . .)

= (1− w)

n≥0

wn

k1+2k2+···=n
ϕ(k1, k2, . . .)/k1! 1k1k2! 2k2 . . .

.

(d) Let ϕ(α1, α2, . . .) = α2 + α4 + α6 + · · · . The average value of the linear
combination ϕ is the sum of the average values of α2, α4, α6, . . . ; and the average value
of αm is

k≥0

kf(w,m, k) =

k≥1

1
(k − 1)!

wm

m

k
e−w

m/m =
wm

m
.

1.3.3 ANSWERS TO EXERCISES 525

Therefore the average value of ϕ is

w2

2
+
w4

4
+
w6

6
+ · · · = 1− w

2
(H1w

2 +H1w
3 +H2w

4 +H2w
5 +H3w

6 + · · ·).

The desired answer is 1
2
H⌊n/2⌋.

(e) Set ϕ(α1, α2, . . .) = zαm , and observe that the average value of ϕ is

k≥0

f(w,m, k)zk =

k≥0

1
k!

wmz

m

k
e−w

m/m = ew
m(z−1)/m =

j≥0

wmj

j!

z − 1
m

j

= (1− w)

n≥0

wn

0≤j≤n/m

1
j!

z − 1
m

j
= (1−w)

n≥0

wnGnm(z).

Hence

Gnm(z) =

0≤j≤n/m

1
j!

z − 1
m

j
; pnkm =

1
mkk!

0≤j≤n/m−k

(−1/m)j

j!
;

the statistics are (min 0, ave 1/m, max ⌊n/m⌋, dev

1/m), when n ≥ 2m.

23. The constant λ is
∞

0
exp(−t − E1(t)) dt, where E1(x) =

∞
x
e−tdt/t. See Trans.

Amer. Math. Soc. 121 (1966), 340Ű357, where many other results are proved, in par-
ticular that the average length of the shortest cycle is approximately e−γ lnn. Further
terms of the asymptotic representation of ln have been found by Xavier Gourdon [Ph.D.
thesis, École Polytechnique (Paris, 1996)]; the series begins

λn+ 1
2
λ− 1

24
eγn−1 + (1

48
eγ − 1

8
(−1)n)n−2 + (17

3840
eγ + 1

8
(−1)n + 1

6
ω1−n + 1

6
ωn−1)n−3,

where ω = e2πi/3. William C. Mitchell has calculated a high-precision value of λ =
.62432 99885 43550 87099 29363 83100 83724 41796+ [Math. Comp. 22 (1968), 411Ű
415]; no relation between λ and classical mathematical constants is known. The same
constant had, however, been computed in another context by Karl Dickman in Arkiv
för Mat., Astron. och Fys. 22A, 10 (1930), 1Ű14; the coincidence wasnŠt noticed until
many years later [Theor. Comp. Sci. 3 (1976), 373].

24. See D. E. Knuth, Proc. IFIP Congress (1971), 1, 19Ű27.

25. One proof, by induction on N, is based on the fact that when the Nth element is
a member of s of the sets it contributes exactly

s
0

−

s
1

+

s
2

− · · · = (1− 1)s = δs0

to the sum. Another proof, by induction on M, is based on the fact that the number
of elements that are in SM but not in S1 ∪ · · · ∪ SM−1 is

|SM | −

1≤j<M
|Sj ∩ SM |+

1≤j<k<M
|Sj ∩ Sk ∩ SM | − · · · .

26. Let N0 = N and let Nk =

1≤j1<···<jk≤M |Sj1
∩ · · · ∩ Sjk |. Then

Nr −

r + 1
r

Nr+1 +

r + 2
r

Nr+2 − · · ·

is the desired formula. It can be proved from the principle of inclusion and exclusion
itself, or by using the method of exercise 25 together with the fact that

r

r

s

r

−

r + 1
r

s

r + 1

+ · · · =

s

r

s− r

0

−

s

r

s− r

1

+ · · · = δsr.

526 ANSWERS TO EXERCISES 1.3.3

27. Let Sj be the multiples of mj in the stated range and let N = am1 . . .mt. Then
|Sj ∩ Sk| = N/mjmk, etc., so the answer is

N −N

1≤j≤t

1
mj

+N

1≤j<k≤t

1
mjmk

− · · · = N

1− 1

m1

· · ·

1− 1

mt

.

This also solves exercise 1.2.4Ű30, if we let m1, . . . ,mt be the primes dividing N.

28. See I. N. Herstein and I. Kaplansky, Matters Mathematical (1974), §3.5.

29. When passing over a man, assign him a new number (starting with n+ 1). Then
the kth man executed is number 2k, and man number j for j > n was previously
number (2j) mod (2n+ 1). Incidentally, the original number of the kth man executed
is 2n+ 1− (2n+ 1− 2k)2⌊lg(2n/(2n+1−2k))⌋. [Armin Shams, Proc. Nat. Computer Conf.
2002, English papers section, 2 (Mashhad, Iran: Ferdowsi University, 2002), 29Ű33.]

31. See CMath, Section 3.3. Let x0 = jm and xi+1 = (m(xi−n)−di)/(m−1), where
1 ≤ di < m. Then xk = j if and only if akj = bkn+tk, where ak = mk+1−(m−1)k, bk =
m(mk−(m−1)k), and tk =

k−1
i=0 m

k−1−i(m−1)idi. Since ak ⊥ bk and the (m−1)k pos-
sibilities for tk are distinct, the average number of k-step Ąxed elements is (m−1)k/ak.

32. (a) In fact, k − 1 ≤ πk ≤ k + 2 when k is even; k − 2 ≤ πk ≤ k + 1 when k is odd.
(b) Choose the exponents from left to right, setting ek = 1 if and only if k and k+1 are
in different cycles of the permutation so far. [Steven Alpern, J. Combinatorial Theory
B25 (1978), 62Ű73.]

33. For l = 0, let (α01, α02;β01, β02) = (π, ρ; ϵ, ϵ) and (α11, α12;β11, β12) = (ϵ, ϵ;π, ρ),
where π = (1 4)(2 3), ρ = (1 5)(2 4), and ϵ = ().

Suppose we have made such a construction for some l ≥ 0, where α2
jk = β2

jk = ()
for 0 ≤ j < m and 1 ≤ k ≤ n. Then the permutations

(A(jm+j′)1, . . . , A(jm+j′)(4n);B(jm+j′)1, . . . , B(jm+j′)(4n)) =

(σ−αj1σ, . . . , σ
−αjnσ, τ

−αj′1τ, . . . , τ
−αj′nτ,

σ−βjnσ, . . . , σ
−βj1σ, τ

−βj′nτ, . . . , τ
−βj′1τ ;

σ−βj1σ, . . . , σ
−βjnσ, τ

−βj′1τ, . . . , τ
−βj′nτ,

σ−αjnσ, . . . , σ
−αj1σ, τ

−αj′nτ, . . . , τ
−αj′1τ)

have the property that

A(im+i′)1B(jm+j′)1 . . . A(im+i′)(4n)B(jm+j′)(4n) =

σ−(1 2 3 4 5)σ τ−(1 2 3 4 5)τ σ−(5 4 3 2 1)σ τ−(5 4 3 2 1)τ

if i = j and i′ = j′, otherwise the product is (). Choosing σ = (2 3)(4 5) and τ = (3 4 5)
will make the product (1 2 3 4 5) as desired, when im+ i′ = jm+ j′.

The construction that leads from l to l+1 is due to David A. Barrington [J. Comp.
Syst. Sci. 38 (1989), 150Ű164], who proved a general theorem by which any Boolean
function can be represented as a product of permutations of {1, 2, 3, 4, 5}. With a
similar construction we can, for example, Ąnd sequences of permutations (αj1, . . . , αjn;
βj1, . . . , βjn) such that

αi1βj1αi2βj2 . . . αinβjn =

(1 2 3 4 5), if i < j;
(), if i ≥ j;

for 0 ≤ i, j < m = 22l

when n = 6l+1 − 4l+1.

1.4.1 ANSWERS TO EXERCISES 527

34. Let N = m + n. If m ⊥ n there is only one cycle, because every element can be
written in the form ammodN for some integer a. And in general if d = gcd(m,n),
there are exactly d cycles C0, C1, . . . , Cd−1, where Cj contains the elements {j, j + d,
. . . , j +N − d} in some order. To carry out the permutation, we can therefore proceed
as follows for 0 ≤ j < d (in parallel, if convenient): Set t ← xj and k ← j; then
while (k + m) modN ̸= j, set xk ← x(k+m) mod N and k ← (k + m) modN ; Ąnally
set xk ← t. In this algorithm the relation (k + m) modN ̸= j will hold if and only if
(k + m) modN ≥ d, so we can use whichever test is more efficient. [W. Fletcher and
R. Silver, CACM 9 (1966), 326.]

35. Let M = l+m+n and N = l+ 2m+n. The cycles for the desired rearrangement
are obtained from the cycles of the permutation on {0, 1, . . . , N − 1} that takes k to
(k + l + m) modN , by simply striking out all elements of each cycle that are ≥ M .
(Compare this behavior with the similar situation in exercise 29.) Proof: When the
hinted interchange sets xk ← xk′ and xk′ ← xk′′ for some k with k′ = (k+l+m) modN
and k′′ = (k′ + l + m) modN and k′ ≥ M , we know that xk′ = xk′′ ; hence the
rearrangement αβγ → γβα replaces xk by xk′′ .

It follows that there are exactly d = gcd(l +m,m+ n) cycles, and we can use an
algorithm similar to the one in the previous exercise.

A slightly simpler way to reduce this problem to the special case in exercise 34 is
also noteworthy, although it makes a few more references to memory: Suppose γ = γ′γ′′

where |γ′′| = |α|. Then we can change αβγ′γ′′ to γ′′βγ′α, and interchange γ′′β with
γ′. A similar approach works if |α| > |γ|. [See J. L. Mohammed and C. S. Subi,
J. Algorithms 8 (1987), 113Ű121.]

37. The result is clear when n ≤ 2. Otherwise we can Ąnd a, b < n such that π takes
a to b. Then (na)π (b n) = (αa)(b β) for (n − 1)-cycles (αa) and (b β) if and only
if π = (nαa)(b β n). [See A. Jacques, C. Lenormand, A. Lentin, and J.-F. Perrot,
Comptes Rendus Acad. Sci. 266 (Paris, 1968), A446ŰA448.]

SECTION 1.4.1

1. Calling sequence: JMP MAXN; or, JMP MAX100 if n = 100.
Entry conditions: For the MAXN entrance, rI3 = n; assume n ≥ 1.
Exit conditions: Same as in (4).

2. MAX50 STJ EXIT

ENT3 50

JMP 2F

3. Entry conditions: rI1 = n.
Exit conditions: If n ≥ 1, rA, rI2, and rI3 are as in (4), with rI2 maximal ≤ n;

otherwise rA = CONTENTS(X+n), rI2 = n, and rI3 = n − 1;
rJ = EXIT+1; CI is unchanged if n ≤ 1; otherwise CI is greater,
equal, or less, according as the maximum is greater than X[1],
equal to X[1] with rI2 > 1, or equal to X[1] with rI2 = 1.

(The analogous exercise for (9) would of course be somewhat more complicated.)

4. SMAX1 ENT1 1 r = 1
SMAX STJ EXIT general r

JMP 2F continue as before

528 ANSWERS TO EXERCISES 1.4.1

· · ·
DEC3 0,1 decrease by r
J3P 1B

EXIT JMP * exit.

Calling sequence: JMP SMAX; or, JMP SMAX1 if r = 1.
Entry conditions: rI3 = n, assumed positive; for the SMAX entrance, rI1 = r, assumed

positive.
Exit conditions: rA = max0≤k<n/r CONTENTS(X + n− kr) = CONTENTS(X + rI2); and

rI3 = (n− 1) mod r + 1− r = −((−n) mod r).
5. Any other register can be used. For example,

Calling sequence: ENTA *+2

JMP MAX100

Entry conditions: None.
Exit conditions: Same as in (4).
The code is like (1), but the Ąrst instruction becomes ŚMAX100 STA EXIT(0:2)Š.

6. (Solution by Joel Goldberg and Roger M. Aarons.)

MOVE STJ 3F

STA 4F Save rA and rI2.
ST2 5F(0:2)

LD2 3F(0:2) rI2← address of ŚNOP A,I(F)Š.
LDA 0,2(0:3) rA← ŚA,IŠ.
STA *+2(0:3)

LD2 5F(0:2) Restore rI2, because I might be 2.
ENTA * rA← indexed address.
LD2 3F(0:2)

LD2N 0,2(4:4) rI2← −F.
J2Z 1F

DECA 0,2

STA 2F(0:2)

DEC1 0,2 rI1← rI1 + F.
ST1 6F(0:2)

2H LDA *,2

6H STA *,2

INC2 1 Increase rI2 until it becomes zero.
J2N 2B

1H LDA 4F Restore rA and rI2.
5H ENT2 *

3H JMP * Exit to the NOP instruction.
4H CON 0

7. (1) An operating system can allocate high-speed memory more efficiently if pro-
gram blocks are known to be Şread-only.Ť (2) An instruction cache in hardware will be
faster and less expensive if instructions cannot change. (3) Same as (2), with ŞpipelineŤ
in place of Şcache.Ť If an instruction is modiĄed after entering a pipeline, the pipeline
needs to be Ćushed; the circuitry needed to check this condition is complex and time-
consuming. (4) Self-modifying code cannot be used by more than one process at once.
(5) Self-modifying code can defeat a jump-trace routine (exercise 1.4.3.2Ű7), which is
an important diagnostic tool for ŞproĄlingŤ (that is, for computing the number of times
each instruction is executed).

1.4.2 ANSWERS TO EXERCISES 529

SECTION 1.4.2

1. If one coroutine calls the other only once, it is nothing but a subroutine; so we
need an application in which each coroutine calls the other in at least two distinct
places. Even then, it is often easy to set some sort of switch or to use some property
of the data, so that upon entry to a Ąxed place within one coroutine it is possible to
branch to one of two desired places; again, nothing more than a subroutine would be
required. Coroutines become correspondingly more useful as the number of references
between them grows larger.

2. The Ąrst character found by IN would be lost. [We started OUT Ąrst because lines
58Ű59 do the necessary initialization for IN. If we wanted to start IN Ąrst, weŠd have
to initialize OUT by saying ŚENT4 -16Š, and clearing the output buffer if it isnŠt known
to be blank. Then we could make line 62 jump Ąrst to line 39.]

3. Almost true, since ŚCMPA =10=Š within IN is then the only comparison instruction
of the program, and since the code for Ś.Š is 40. (!) But the comparison indicator isnŠt
initialized; and if the Ąnal period is preceded by a replication digit, it wonŠt be noticed.
[Note: The most nitpickingly efficient program would probably remove lines 40, 44, and
48, and would insert ŚCMPA PERIODŠ between lines 26 and 27, ŚCMPX PERIODŠ between
lines 59 and 60. The state of the comparison indicator should then become part of the
coroutine characteristics in the program documentation.]

4. Here are examples from three rather different computers of historic importance:
(i) On the IBM 650, using SOAP assembly language, we would have the calling se-
quences ŚLDD AŠ and ŚLDD BŠ, and linkage ŚA STD BX AXŠ and ŚB STD AX BXŠ (with
the two linkage instructions preferably in core). (ii) On the IBM 709, using common
assembly languages, the calling sequences would be ŚTSX A,4Š and ŚTSX B,4Š; the linkage
instructions would be as follows:

A SXA BX,4 B SXA AX,4

AX AXT 1-A1,4 BX AXT 1-B1,4

TRA 1,4 TRA 1,4

(iii) On the CDC 1604, the calling sequences would be Şreturn jumpŤ (SLJ 4) to A or B,
and the linkage would be, for example,

A: SLJ B1; ALS 0

B: SLJ A1; SLJ A

in two consecutive 48-bit words.

5. ŚSTA HOLDAIN; LDA HOLDAOUTŠ between OUT and OUTX, and ŚSTA HOLDAOUT; LDA

HOLDAINŠ between IN and INX.

6. Within A write ŚJMP ABŠ to activate B, ŚJMP ACŠ to activate C. Locations BA, BC, CA,
and CB would, similarly, be used within B and C. The linkage is:

AB STJ AX BC STJ BX CA STJ CX

BX JMP B1 CX JMP C1 AX JMP A1

CB STJ CX AC STJ AX BA STJ BX

JMP BX JMP CX JMP AX

[Note: With n coroutines, 2(n− 1)n cells would be required for this style of linkage. If
n is large, a ŞcentralizedŤ routine for linkage could of course be used; a method with
3n + 2 cells is not hard to invent. But in practice the faster method above requires
just 2m cells, where m is the number of pairs (i, j) such that coroutine i jumps to
coroutine j. When there are many coroutines each independently jumping to others,
the sequence of control is usually under external inĆuence, as discussed in Section 2.2.5.]

530 ANSWERS TO EXERCISES 1.4.3.1

SECTION 1.4.3.1

1. FCHECK is used only twice, both times immediately followed by a call on MEMORY.
So it would be slightly more efficient to make FCHECK a special entrance to the MEMORY

subroutine, and also to make it put −R in rI2.

2. SHIFT J5N ADDRERROR

DEC3 5

J3P FERROR

LDA AREG

LDX XREG

LD1 1F,3(4:5)

ST1 2F(4:5)

J5Z CYCLE

2H SLA 1

DEC5 1

J5P 2B

JMP STOREAX

SLA 1

SRA 1

SLAX 1

SRAX 1

SLC 1

1H SRC 1

3. MOVE J3Z CYCLE

JMP MEMORY

SRAX 5

LD1 I1REG

LDA SIGN1

JAP *+3

J1NZ MEMERROR

STZ SIGN1(0:0)

CMP1 =BEGIN=

JGE MEMERROR

STX 0,1

LDA CLOCK

INCA 2

STA CLOCK

INC1 1

ST1 I1REG

INC5 1

DEC3 1

JMP MOVE

4. Just insert ŚIN 0(16)Š and ŚJBUS *(16)Š between lines 003 and 004. (Of course on
another computer this would be considerably different since it would be necessary to
convert to MIX character code.)

5. Central control time is 34u, plus 15u if indexing is required; the GETV subroutine
takes 52u, plus 5u if L ̸= 0; extra time to do the actual loading is 11u for LDA or LDX,
13u for LDi, 21u for ENTA or ENTX, 23u for ENTi (add 2u to the latter two times if
M = 0). Summing up, we have a total time of 97u for LDA and 55u for ENTA, plus 15u
for indexing, and plus 5u or 2u in certain other circumstances. It would seem that
simulation in this case is causing roughly a 50:1 ratio in speeds. (Results of a test run
that involved 178u of simulated time required 8422u of actual time, a 47:1 ratio.)

7. Execution of IN or OUT sets a variable associated with the appropriate input device
to the time when transmission is desired. The ŚCYCLEŠ control routine interrogates these
variables on each cycle, to see if CLOCK has exceeded either (or both) of them; if so,
the transmission is carried out and the variable is set to ∞. (When more than two
I/O units must be handled in this way, there might be so many variables that it
would be preferable to keep them in a sorted list using linked memory techniques; see
Section 2.2.5.) We must be careful to complete the I/O when simulating HLT.

8. False; rI6 can equal BEGIN, if we Şfall throughŤ from the location BEGIN− 1. But
then a MEMERROR will occur, trying to STZ into TIME! On the other hand, we always do
have 0 ≤ rI6 ≤ BEGIN, because of line 254.

SECTION 1.4.3.2

1. Change lines 48 and 49 to the following sequence:

1.4.3.2 ANSWERS TO EXERCISES 531

XREG ORIG *+2

LEAVE STX XREG

ST1 XREG+1

LD1 JREG(0:2)

LDA -1,1

LDX 1F

STX -1,1

JMP -1,1

1H JMP *+1

STA -1,1

LD1 XREG+1

LDX XREG

LDA AREG

LEAVEX JSJ *

The operator ŚJSJŠ here is, of course, particularly crucial.

2. * TRACE ROUTINE

ORIG *+99

BUF CON 0

..............lines 02Ű04
ST1 I1REG

..............lines 05Ű07
PTR ENT1 -100

JBUS *(0)

STA BUF+1,1(0:2)

..............lines 08Ű11
STA BUF+2,1

..............lines 12Ű13
LDA AREG

STA BUF+3,1

LDA I1REG

STA BUF+4,1

ST2 BUF+5,1

ST3 BUF+6,1

ST4 BUF+7,1

ST5 BUF+8,1

ST6 BUF+9,1

STX BUF+10,1

LDA JREG(0:2)

STA BUF+1,1(4:5)

ENTA 8

JNOV 1F

ADD BIG

1H JL 1F

INCA 1

JE 1F

INCA 1

1H STA BUF+1,1(3:3)

INC1 10

J1N 1F

OUT BUF-99(0)

ENT1 -100

1H ST1 PTR(0:2)

LD1 I1REG

..............lines 14Ű35
ST1 I1REG

..............lines 36Ű48
LD1 I1REG

..............lines 49Ű50
B4 EQU 1(1:1)

BIG CON B4-8,B4-1(1:1)

A supplementary routine that writes out the Ąnal buffer and rewinds tape 0 should
be called after all tracing has been performed.

3. Tape is faster; and the editing of this information into characters while tracing
would consume far too much space. Furthermore the tape contents can be selectively
printed.

4. A true trace, as desired in exercise 6, would not be obtained, since restriction (a)
mentioned in the text is violated. The Ąrst attempt to trace CYCLE would cause a loop
back to tracing ENTER+1, because PREG is clobbered.

6. Suggestion: Keep a table of values of each memory location within the trace area
that has been changed by the outer program.

7. The routine should scan the program until Ąnding the Ąrst jump (or conditional
jump) instruction; after modifying that instruction and the one following, it should
restore registers and allow the program to execute all its instructions up to that point,
in one burst. [This technique can fail if the program modiĄes its own jump instructions,
or changes non-jumps into jumps. For practical purposes we can outlaw such practices,
except for STJ, which we probably ought to handle separately anyway.]

532 ANSWERS TO EXERCISES 1.4.4

SECTION 1.4.4

1. (a) No; the input operation might not yet be complete. (b) No; the input operation
might be going just a little faster than the MOVE. This proposal is much too risky.

2. ENT1 2000

JBUS *(6)

MOVE 1000(50)

MOVE 1050(50)

OUT 2000(6)

3. WORDOUT STJ 1F

STA 0,5

INC5 1

2H CMP5 BUFMAX

1H JNE *

OUT -100,5(V)

LD5 0,5

ST5 BUFMAX

DEC5 100

JMP 2B

* BUFFER AREAS

OUTBUF1 ORIG *+100

ENDBUF1 CON *+101 (ENDBUF2)
OUTBUF2 ORIG *+100

ENDBUF2 CON ENDBUF1

BUFMAX CON ENDBUF1

At the beginning of the program, give the instruction ŚENT5 OUTBUF1Š. At the end of
the program, say

LDA BUFMAX

DECA 100,5

JAZ *+6

STZ 0,5

INC5 1

CMP5 BUFMAX

JNE *-3

OUT -100,5(V)

4. If the calculation time exactly equals the I/O time (which is the most favorable
situation), both the computer and the peripheral device running simultaneously will
take half as long as if they ran separately. Formally, let C be the calculation time for
the entire program, and let T be the total I/O time required; then the best possible
running time with buffering is max(C, T), while the running time without buffering is
C + T ; and of course 1

2
(C + T) ≤ max(C, T) ≤ C + T .

However, some devices have a Şshutdown penaltyŤ that causes an extra amount
of time to be lost if too long an interval occurs between references to that unit; in such
a case, better than 2:1 ratios are possible. (See, for example, exercise 19.)

5. The best ratio is (n+ 1):1.

6.

IN INBUF1(U)

ENT6 INBUF2+99

or

IN INBUF2(U)

ENT6 INBUF1+99

(possibly preceded by IOC 0(U) to rewind the tape just in case it is necessary).

7. One way is to use coroutines:

INBUF1 ORIG *+100

INBUF2 ORIG *+100

1H LDA INBUF2+100,6

JMP MAIN

INC6 1

J6N 1B

WORDIN1 IN INBUF2(U)

ENN6 100

2H LDA INBUF1+100,6

JMP MAIN

INC6 1

J6N 2B

IN INBUF1(U)

ENN6 100

JMP 1B

WORDIN STJ MAINX

WORDINX JMP WORDIN1

MAIN STJ WORDINX

MAINX JMP *

1.4.4 ANSWERS TO EXERCISES 533

Adding a few more instructions to take advantage of special cases will actually make
this routine faster than (4).

8. At the time shown in Fig. 23, the two red buffers have been Ąlled with line images,
and the one indicated by NEXTR is being printed. At the same time, the program is
computing between RELEASE and ASSIGN. When the program ASSIGNs, the green buffer
indicated by NEXTG becomes yellow; NEXTG moves clockwise and the program begins to
Ąll the yellow buffer. When the output operation is complete, NEXTR moves clockwise,
the buffer that has just been printed turns green, and the remaining red buffer begins
to be printed. Finally, the program RELEASEs the yellow buffer and it too is ready for
subsequent printing.

9, 10, 11.

time action (N = 1) action (N = 2) action (N = 4)

0 ASSIGN(BUF1) ASSIGN(BUF1) ASSIGN(BUF1)

1000 RELEASE, OUT BUF1 RELEASE, OUT BUF1 RELEASE, OUT BUF1

2000 ASSIGN (wait) ASSIGN(BUF2) ASSIGN(BUF2)

3000 RELEASE RELEASE

4000 ASSIGN (wait) ASSIGN(BUF3)

5000 RELEASE

6000 ASSIGN(BUF4)

7000 RELEASE

8000 ASSIGN (wait)
8500 BUF1 assigned, output stops BUF1 assigned, OUT BUF2 BUF1 assigned, OUT BUF2
9500 RELEASE, OUT BUF1 RELEASE

10500 ASSIGN (wait) ASSIGN (wait)
15500 RELEASE

and so on. Total time when N = 1 is 110000u; when N = 2 it is 89000u; when N = 3
it is 81500u; and when N ≥ 4 it is 76000u.

12. Replace the last three lines of Program B by

STA 2F

LDA 3F

CMPA 15,5(5:5)

LDA 2F

LD5 -1,5

DEC6 1

JNE 1B

JMP COMPUTE

JMP *-1 (or JMP COMPUTEX)
2H CON 0

3H ALF ␣␣␣␣.

13. JRED CONTROL(U)

J6NZ *-1

14. If N = 1 the algorithm breaks down (possibly referring to the buffer while I/O is
in progress); otherwise the construction will have the effect that there are two yellow
buffers. This can be useful if the computational program wants to refer to two buffers at
once, although it ties up buffer space. In general, the excess of ASSIGNs over RELEASEs
should be nonnegative and not greater than N.

534 ANSWERS TO EXERCISES 1.4.4

15. U EQU 0

V EQU 1

BUF1 ORIG *+100

BUF2 ORIG *+100

BUF3 ORIG *+100

TAPECPY IN BUF1(U)

ENT1 99

1H IN BUF2(U)

OUT BUF1(V)

IN BUF3(U)

OUT BUF2(V)

IN BUF1(U)

OUT BUF3(V)

DEC1 3

J1P 1B

JBUS *(U)

OUT BUF1(V)

HLT

END TAPECPY

This is a special case of the algorithm indicated in Fig. 26.

18. Partial solution: In the algorithms below, t is a variable that equals 0 when the
I/O device is idle, and 1 when it is active.

Algorithm A′ (ASSIGN, a normal state subroutine).

This algorithm is unchanged from Algorithm 1.4.4A.

Algorithm R′ (RELEASE, a normal state subroutine).

R1′. Increase n by one.

R2′. If t = 0, force an interrupt, going to step B3′ (using the INT operator).

Algorithm B′ (Buffer control routine, which processes interrupts).

B1′. Restart the main program.

B2′. If n = 0, set t← 0 and go to B1′.

B3′. Set t← 1, and initiate I/O from the buffer area speciĄed by NEXTR.

B4′. Restart the main program; an ŞI/O completeŤ condition will interrupt it and
lead to step B5′.

B5′. Advance NEXTR to the next clockwise buffer.

B6′. Decrease n by one, and go to step B2′.

19. If C ≤ L we can have tk = (k − 1)L, uk = tk + T , and vk = uk + C if and only if
NL ≥ T +C. If C > L the situation is more complex; we can have uk = (k− 1)C + T
and vk = kC + T if and only if there are integers a1 ≤ a2 ≤ · · · ≤ an such that
tk = (k − 1)L + akP satisĄes uk − T ≥ tk ≥ vk−N for N < k ≤ n. An equivalent
condition is that NC ≥ bk for N < k ≤ n, where bk = C+T + ((k−1)(C−L)) mod P .
Let cl = max{bl+1, . . . , bn, 0}; then cl decreases as l increases, and the smallest value
of N that keeps the process going steadily is the minimum l such that cl/l ≤ C.
Since cl < C + T + P and cl ≤ L + T + n(C − L), this value of N never exceeds
⌈min{C + T + P,L+ T + n(C − L)}/C⌉. [See A. Itai and Y. Raz, CACM 31 (1988),
1338Ű1342.]

In the stated example we have therefore (a) N = 1; (b) N = 2; (c) N = 3,
cN = 2.5; (d) N = 35, cN = 51.5; (e) N = 51, cN = 101.5; (f) N = 41, cN = 102;
(g) N = 11, cN = 109.5; (h) N = 3, cN = 149.5; (i) N = 2, cN = 298.5.

SECTION 2.1

1. (a) SUIT(NEXT(TOP)) = SUIT(NEXT(242)) = SUIT(386) = 4. (b) Λ.

2. Whenever V is a link variable (else CONTENTS(V) makes no sense) whose value is
not Λ. It is wise to avoid using LOC in contexts like this.

2.1 ANSWERS TO EXERCISES 535

3. Set NEWCARD← TOP, and if TOP ̸= Λ set TOP← NEXT(TOP).

4. C1. Set X ← LOC(TOP). (For convenience we make the reasonable assumption
that TOP ≡ NEXT(LOC(TOP)), namely that the value of TOP appears in the
NEXT Ąeld of the location where it is stored. This assumption is compatible
with program (5), and it saves us the bother of writing a special routine for
the case of an empty pile.)

C2. If NEXT(X) ̸= Λ, set X← NEXT(X) and repeat this step.

C3. Set NEXT(X)← NEWCARD, NEXT(NEWCARD)← Λ, TAG(NEWCARD)← 1.

5. D1. Set X ← LOC(TOP), Y ← TOP. (See step C1 above. By hypothesis, Y ̸= Λ.
Throughout the algorithm that follows, X trails one step behind Y in the sense
that Y = NEXT(X).)

D2. If NEXT(Y) ̸= Λ, set X← Y, Y← NEXT(Y), and repeat this step.

D3. (Now NEXT(Y) = Λ, so Y points to the bottom card; also X points to the
next-to-last card.) Set NEXT(X)← Λ, NEWCARD← Y.

6. Notations (b) and (d). Not (a)! CARD is a node, not a link to a node.

7. Sequence (a) gives NEXT(LOC(TOP)), which in this case is identical to the value of
TOP; sequence (b) is correct. There is no need for confusion; consider the analogous
example when X is a numeric variable: To bring X into register A, we write LDA X, not
ENTA X, since the latter brings LOC(X) into the register.

8. Let rA ≡ N, rI1 ≡ X.

ENTA 0 B1. N← 0.
LD1 TOP X← TOP.
J1Z *+4 B2. Is X = Λ?

INCA 1 B3. N← N + 1.
LD1 0,1(NEXT) X← NEXT(X).
J1NZ *-2

9. Let rI2 ≡ X.

PRINTER EQU 18 Unit number for line printer
TAG EQU 1:1

NEXT EQU 4:5 DeĄnition of Ąelds
NAME EQU 0:5

PBUF ALF PILE Message printed in case
ALF EMPTY pile is empty
ORIG PBUF+24

BEGIN LD2 TOP Set X← TOP.
J2Z 2F Is the pile empty?

1H LDA 0,2(TAG) rA← TAG(X).
ENT1 PBUF Get ready for MOVE instruction.
JBUS *(PRINTER) Wait until printer is ready.
JAZ *+3 Is TAG = 0 (is card face up)?
MOVE PAREN(3) No: Copy parentheses.
JMP *+2

MOVE BLANKS(3) Yes: Copy blanks.
LDA 1,2(NAME) rA← NAME(X).
STA PBUF+1

LD2 0,2(NEXT) Set X← NEXT(X).
2H OUT PBUF(PRINTER) Print the line.

J2NZ 1B If X ̸= Λ, repeat the print loop.
DONE HLT

536 ANSWERS TO EXERCISES 2.1

PAREN ALF (

BLANKS ALF

ALF)

ALF

SECTION 2.2.1

1. Yes. (Consistently insert all items at one of the two ends.)

2. To obtain 325641, do SSSXXSSXSXXX (in the notation of the following exercise).
The order 154623 cannot be achieved, since 2 can precede 3 only if it is removed from
the stack before 3 has been inserted.

3. An admissible sequence is one in which the number of XŠs never exceeds the number
of SŠs if we read from the left to the right.

Two different admissible sequences must give a different result, since if the two
sequences agree up to a point where one has S and the other has X, the latter sequence
outputs a symbol that cannot possibly be output before the symbol just inserted by
the S of the former sequence.

4. This problem is equivalent to many other interesting problems, such as the enumer-
ation of binary trees, the number of ways to insert parentheses into a formula, and the
number of ways to divide a polygon into triangles, and it appeared as early as 1759 in
notes by Euler and von Segner (see Section 2.3.4.6).

The following elegant solution uses a ŞreĆection principleŤ due to J. Aebly and
D. Mirimanoff [LŠEnseignement Math. 23 (1923), 185Ű189]: There are obviously

2n
n

sequences of SŠs and XŠs that contain n of each. It remains to evaluate the number of
inadmissible sequences (those that contain the right number of SŠs and XŠs but violate
the other condition). In any inadmissible sequence, locate the Ąrst X for which the
XŠs outnumber the SŠs. Then in the partial sequence leading up to and including this
X, replace each X by S and each S by X. The result is a sequence with (n+ 1) SŠs
and (n− 1) XŠs. Conversely for every sequence of the latter type we can reverse the
process and Ąnd the inadmissible sequence of the former type that leads to it. For
example, the sequence XXSXSSSXXSSS must have come from SSXSXXXXXSSS. This
correspondence shows that the number of inadmissible sequences is

2n
n−1

. Hence an =

2n
n

−

2n
n−1

.

Using the same idea, we can solve the more general Şballot problemŤ of probability
theory, which essentially is the enumeration of all partial admissible sequences with a
given number of SŠs and XŠs. This problem was actually resolved as early as 1708
by Abraham de Moivre, who showed that the number of sequences containing l AŠs
and m BŠs, and containing at least one initial substring with n more AŠs than BŠs, is
f(l,m, n) =

l+m

min(m,l−n)

. In particular, an =

2n
n

− f(n, n, 1) as above. (De Moivre

stated this result without proof [Philos. Trans. 27 (1711), 262Ű263]; but it is clear from
other passages in his paper that he knew how to prove it, since the formula is obviously
true when l ≥ m + n, and since his generating-function approach to similar problems
yields the symmetry condition f(l,m, n) = f(m + n, l − n, n) by simple algebra.) For
the later history of the ballot problem and some generalizations, see the comprehensive
survey by D. E. Barton and C. L. Mallows, Annals of Math. Statistics 36 (1965),
236Ű260; see also exercise 2.3.4.4Ű32 and Section 5.1.4.

We present here a new method for solving the ballot problem with the use of
double generating functions, since this method lends itself to the solution of more
difficult problems such as the question in exercise 11.

2.2.1 ANSWERS TO EXERCISES 537

Let gnm be the number of sequences of SŠs and XŠs of length n, in which the
number of XŠs never exceeds the number of SŠs if we count from the left, and in which
there are m more SŠs than XŠs in all. Then an = g(2n)0. Obviously gnm is zero unless
m+ n is even. We see easily that these numbers can be deĄned by the recurrence
relations

g(n+1)m = gn(m−1) + gn(m+1), m ≥ 0, n ≥ 0; g0m = δ0m.

Consider the double generating function G(x, z) =

n,m gnmx

mzn, and let g(z) =
G(0, z). The recurrence above is equivalent to the equation

x+

1
x

G(x, z) =

1
x
g(z) +

1
z

(G(x, z)− 1), i.e., G(x, z) =
zg(z)− x

z(x2 + 1)− x .

This equation unfortunately tells us nothing if we set x = 0, but we can proceed by
factoring the denominator as z(1− r1(z)x)(1− r2(z)x) where

r1(z) =
1
2z

(1 +
√

1− 4z2), r2(z) =
1
2z

(1−
√

1− 4z2).

(Note that r1 + r2 = 1/z; r1r2 = 1.) We now proceed heuristically; the problem is to
Ąnd some value of g(z) such that G(x, z) as given by the formula above has an inĄnite
power series expansion in x and z. The function r2(z) has a power series, and r2(0) = 0;
moreover, for Ąxed z, the value x = r2(z) causes the denominator of G(x, z) to vanish.
This suggests that we should choose g(z) so that the numerator also vanishes when
x = r2(z); in other words, we probably ought to take zg(z) = r2(z). With this choice,
the equation for G(x, z) simpliĄes to

G(x, z) =
r2(z)

z(1− r2(z)x)
=

n≥0

(r2(z))n+1
xnz−1.

This is a power series expansion that satisĄes the original equation, so we must have
found the right function g(z).

The coefficients of g(z) are the solution to our problem. Actually we can go further
and derive a simple form for all the coefficients of G(x, z): By the binomial theorem,

r2(z) =

k≥0

z2k+1
2k + 1

k

 1
2k + 1

.

Let w = z2 and r2(z) = zf(w). Then f(w) =

k≥0 Ak(1,−2)wk in the notation of

exercise 1.2.6Ű25; hence

f(w)r =

k≥0

Ak(r,−2)wk.

We now have
G(x, z) =

n,m

Am(n+ 1,−2)xnz2m+n,

so the general solution is

g(2n)(2m) =
2n+ 1
n−m

 2m+ 1
2n+ 1

=
 2n
n−m

−
 2n
n−m− 1

;

g(2n+1)(2m+1) =
2n+ 2
n−m

 2m+ 2
2n+ 2

=
2n+ 1
n−m

−
 2n+ 1
n−m− 1

.

538 ANSWERS TO EXERCISES 2.2.1

5. If j < k and pj < pk, we must have taken pj off the stack before pk was put on; if
pj > pk, we must have left pk on the stack until after pj was put on. Combining these
two rules, the condition i < j < k and pj < pk < pi is impossible, since it means that
pj must go off before pk and after pi, yet pi appears after pk.

Conversely, the desired permutation can be obtained by using the following algo-
rithm: ŞFor j = 1, 2, . . . , n, input zero or more items (as many as necessary) until pj
Ąrst appears in the stack; then output pj .Ť This algorithm can fail only if we reach a
j for which pj is not at the top of the stack but it is covered by some element pk for
k > j. Since the values on the stack are always monotone increasing, we have pj < pk.
And the element pk must have gotten there because it was less than pi for some i < j.

P. V. Ramanan [SICOMP 13 (1984), 167Ű169] has shown how to characterize
the permutations obtainable when m auxiliary storage locations can be used freely in
addition to a stack. (This generalization of the problem is surprisingly difficult.)

6. Only the trivial one, 12 . . . n, by the nature of a queue.

7. An input-restricted deque that Ąrst outputs n must simply put the values 1, 2,
. . . , n on the deque in order as its Ąrst n operations. An output-restricted deque that
Ąrst outputs n must put the values p1 p2 . . . pn on its deque as its Ąrst n operations.
Therefore we Ąnd the unique answers (a) 4132, (b) 4213, (c) 4231.

8. When n ≤ 4, no; when n = 5, there are four (see exercise 13).

9. By operating backwards, we can get the reverse of the inverse of the reverse of
any input-restricted permutation with an output-restricted deque, and conversely. This
rule sets up a one-to-one correspondence between the two sets of permutations.

10. (i) There should be n XŠs and n combined SŠs and QŠs. (ii) The number of XŠs
must never exceed the combined number of SŠs and QŠs, if we read from the left. (iii)
Whenever the number of XŠs equals the combined number of SŠs and QŠs (reading from
the left), the next character must be a Q. (iv) The two operations XQ must never be
adjacent in this order.

Clearly rules (i) and (ii) are necessary. The extra rules (iii) and (iv) are added to
remove ambiguity, since S is the same as Q when the deque is empty, and since XQ can
always be replaced by QX. Thus, any obtainable permutation corresponds to at least
one admissible sequence.

To show that two admissible sequences give different permutations, consider se-
quences that are identical up to a point, and then one sequence has an S while the other
has an X or Q. Since by (iii) the deque is not empty, clearly different permutations
(relative to the order of the element inserted by S) are obtained by the two sequences.
The remaining case is where sequences A, B agree up to a point and then sequence A
has Q, sequence B has X. Sequence B may have further XŠs at this point, and by (iv)
they must be followed by an S, so again the permutations are different.

11. Proceeding as in exercise 4, we let gnm be the number of partial admissible
sequences of length n, leaving m elements on the deque, not ending in the symbol X;
hnm is deĄned analogously, for those sequences that do end with X. We have g(n+1)m =
2gn(m−1) + hn(m−1)[m> 1], and h(n+1)m = gn(m+1) + hn(m+1). DeĄne G(x, z) and
H(x, z) by analogy with the deĄnition in exercise 4; we have

G(x, z) = xz + 2x2z2 + 4x3z3 + (8x4 + 2x2)z4 + (16x5 + 8x3)z5 + · · · ;
H(x, z) = z2 + 2xz3 + (4x2 + 2)z4 + (8x3 + 6x)z5 + · · · .

2.2.1 ANSWERS TO EXERCISES 539

Setting h(z) = H(0, z), we Ąnd z−1G(x, z) = 2xG(x, z) + x(H(x, z) − h(z)) + x, and
z−1H(x, z) = x−1G(x, z) + x−1(H(x, z)− h(z)); consequently

G(x, z) =
xz(x− z − xh(z))
x− z − 2x2z + xz2

.

As in exercise 4, we try to choose h(z) so that the numerator cancels with a factor of
the denominator. We Ąnd G(x, z) = xz/(1− 2xr2(z)) where

r2(z) =
1
4z

(z2 + 1−

(z2 + 1)2 − 8z2).

Using the convention b0 = 1, the desired generating function comes to
1
2
(3− z −

√
1− 6z + z2) = 1 + z + 2z2 + 6z3 + 22z4 + 90z5 + · · · .

By differentiation we Ąnd a recurrence relation that is handy for calculation: nbn =
3(2n− 3)bn−1 − (n− 3)bn−2, n ≥ 2.

Another way to solve this problem, suggested by V. Pratt, is to use context-free
grammars for the set of strings (see Chapter 10). The inĄnite grammar with produc-
tions S → qn(Bx)n, B → sqn(Bx)n+1B, for all n ≥ 0, and B → ϵ, is unambiguous,
and it allows us to count the number of strings with n xŠs, as in exercise 2.3.4.4Ű31.

12. We have an = 4n/
√
πn3 + O(4nn−5/2) by StirlingŠs formula. To analyze bn, let

us Ąrst consider the general problem of estimating the coefficient of wn in the power
series for

√
1− w

√
1− αw when |α| < 1. We have, for sufficiently small α,

√
1−w

√
1−αw =

√
1−w

1−α+α(1−w) =

√
1−α

k

1/2
k

βk(1−w)k+1/2,

where β = α/(1− α); hence the desired coefficient is (−1)n
√

1− α
k

1/2
k

βk

k+1/2
n

.

Now

(−1)n

k+1/2
n

=

n−k−3/2

n

=

Γ (n−k−1/2)
Γ (n+1)Γ (−k−1/2)

=
(−1/2)k+1

√
πn

n−k−1/2,

and n−k−1/2 =
m
j=0

 −k−1/2
−k−1/2−j

n−k−1/2−j+O(n−k−3/2−m) by Eq. 1.2.11.1Ű(16). Thus

we obtain the asymptotic series [wn]
√

1− w
√

1− αw = c0n
−3/2 + c1n

−5/2 + · · · +
cmn

−m−3/2 +O(n−m−5/2) where

cj =

1− α
π

j

k=0

1/2
k

(−1/2)k+1

j + 1/2
k + 1/2

αk

(1− α)k
.

For bn, we write 1− 6z + z2 = (1− (3 +
√

8)z)(1− (3−
√

8)z) and let w = (3 +
√

8)z,
α = (3−

√
8)/(3 +

√
8), obtaining the asymptotic formula

bn =
(
√

2− 1)(3 +
√

8)n

23/4π1/2n3/2
(1 +O(n−1)) =

(
√

2 + 1)2n−1

23/4π1/2n3/2
(1 +O(n−1)) .

13. V. Pratt has found that a permutation is unobtainable if and only if it contains a
subsequence whose relative magnitudes are respectively

5, 2, 7, 4, . . . , 4k+1, 4k−2, 3, 4k, 1 or 5, 2, 7, 4, . . . , 4k+3, 4k, 1, 4k+2, 3

for some k ≥ 1, or the same with the last two elements interchanged, or with the 1
and 2 interchanged, or both. Thus the forbidden patterns for k = 1 are 52341, 52314,
51342, 51324, 5274163, 5274136, 5174263, 5174236. [STOC 5 (1973), 268Ű277.]

540 ANSWERS TO EXERCISES 2.2.1

14. (Solution by R. Melville, 1980.) Let R and S be stacks such that the queue runs
from top to bottom of R followed by bottom to top of S. When R is empty, pop the
elements of S onto R until S becomes empty. To delete from the front, pop the top
of R, which will not be empty unless the entire queue is empty. To insert at the rear,
push onto S (unless R is empty). Each element is pushed at most twice and popped
at most twice before leaving the queue.

SECTION 2.2.2

1. M− 1 (not M). If we allowed M items, as (6) and (7) do, it would be impossible to
distinguish an empty queue from a full one by examination of R and F, since only M

possibilities can be detected. It is better to give up one storage cell than to make the
program overly complicated.

2. Delete from rear: If R = F then UNDERFLOW; Y ← X[R]; if R = 1 then R← M,
otherwise R ← R − 1. Insert at front: Set X[F] ← Y; if F = 1 then F ← M, otherwise
F← F− 1; if F = R then OVERFLOW.

3. (a) LD1 I; LDA BASE,7:1. This takes 5 cycles instead of 4 or 8 as in (8).
(b) Solution 1: LDA BASE,2:7 where each base address is stored with I1 = 0,

I2 = 1. Solution 2: If it is desired to store the base addresses with I1 = I2 = 0, we
could write LDA X2,7:1 where location X2 contains NOP BASE,2:7. The second solution
takes one more cycle, but it allows the base table to be used with any index registers.

(c) This is equivalent to ŚLD4 X(0:2)Š, and takes the same execution time, except
that rI4 will be set to +0 when X(0:2) contains −0.

4. (a) NOP *,7. (b) LDA X,7:7(0:2). (c) This is impossible; the code LDA Y,7:7

where location Y contains NOP X,7:7 breaks the restriction on 7:7. (See exercise 5.)
(d) LDA X,7:1 with the auxiliary constants

X NOP *+1,7:2

NOP *+1,7:3

NOP *+1,7:4

NOP 0,5:6

The execution time is 6 units. (e) INC6 X,7:6 where X contains NOP 0,6:6.

5. (a) Consider the instruction ENTA 1000,7:7 with the memory conĄguration

location ADDRESS I1 I2

1000: 1001 7 7
1001: 1004 7 1
1002: 1002 2 2
1003: 1001 1 1
1004: 1005 1 7
1005: 1006 1 7
1006: 1008 7 7
1007: 1002 7 1
1008: 1003 7 2

and with rI1 = 1, rI2 = 2. We Ąnd that 1000,7,7 = 1001,7,7,7 = 1004,7,1,7,7 =
1005,1,7,1,7,7 = 1006,7,1,7,7 = 1008,7,7,1,7,7 = 1003,7,2,7,1,7,7 = 1001,1,1,2,7,1,7,7
= 1002,1,2,7,1,7,7 = 1003,2,7,1,7,7 = 1005,7,1,7,7 = 1006,1,7,1,7,7 = 1007,7,1,7,7 =
1002,7,1,1,7,7 = 1002,2,2,1,1,7,7 = 1004,2,1,1,7,7 = 1006,1,1,7,7 = 1007,1,7,7 = 1008,7,7
= 1003,7,2,7 = 1001,1,1,2,7 = 1002,1,2,7 = 1003,2,7 = 1005,7 = 1006,1,7 = 1007,7 =

2.2.2 ANSWERS TO EXERCISES 541

1002,7,1 = 1002,2,2,1 = 1004,2,1 = 1006,1 = 1007. (A faster way to do this derivation
by hand would be to evaluate successively the addresses speciĄed in locations 1002,
1003, 1007, 1008, 1005, 1006, 1004, 1001, 1000, in this order; but a computer evidently
needs to go about the evaluation essentially as shown.) The author tried out several
fancy schemes for changing the contents of memory while evaluating the address, with
everything to be restored again by the time the Ąnal address has been obtained. Similar
algorithms appear in Section 2.3.5. However, these attempts were unfruitful and it
appears that there is just not enough room to store the necessary information.

(b, c) Let H and C be auxiliary registers and let N be a counter. To get the effective
address M, for the instruction in location L, do the following:

A1. [Initialize.] Set H ← 0, C ← L, N ← 0. (In this algorithm, C is the ŞcurrentŤ
location, H is used to add together the contents of various index registers, and
N measures the depth of indirect addressing.)

A2. [Examine address.] Set M ← ADDRESS(C). If I1(C) = j, 1 ≤ j ≤ 6, set
M← M + rIj. If I2(C) = j, 1 ≤ j ≤ 6, set H← H + rIj. If I1(C) = I2(C) = 7,
set N← N + 1, H← 0.

A3. [Indirect?] If either I1(C) or I2(C) equals 7, set C ← M and go to A2.
Otherwise set M← M + H, H← 0.

A4. [Reduce depth.] If N > 0, set C← M, N← N− 1, and go to A2. Otherwise M is
the desired answer.

This algorithm will handle any situation correctly except those in which I1 = 7
and 1 ≤ I2 ≤ 6 and the evaluation of the address in ADDRESS involves a case with
I1 = I2 = 7. The effect is as if I2 were zero. To understand the operation of Algo-
rithm A, consider the notation of part (a); the state ŞL,7,1,2,5,2,7,7,7,7Ť is represented
by C or M = L, N = 4 (the number of trailing 7s), and H = rI1 + rI2 + rI5 + rI2 (the
post-indexing). In a solution to part (b) of this exercise, the counter N will always be
either 0 or 1.

6. (c) causes OVERFLOW. (e) causes UNDERFLOW, and if the program resumes it causes
OVERFLOW on the Ąnal I2.

7. No, since TOP[i] must be greater than OLDTOP[i].

8. With a stack, the useful information appears at one end with the vacant informa-
tion at the other:

A B C

where A = BASE[j], B = TOP[j], C = BASE[j + 1]. With a queue or deque, the useful
information appears at the ends with the vacant information somewhere in the middle:

A B C D

or in the middle with the vacant information at the ends:

A C B D

where A = BASE[j], B = REAR[j], C = FRONT[j], D = BASE[j + 1]. The two cases
are distinguished by the conditions B ≤ C and B > C, respectively, in a nonempty

542 ANSWERS TO EXERCISES 2.2.2

queue; or, if the queue is known not to have overĆowed, the distinguishing conditions
are respectively B < C and B ≥ C. The algorithms should therefore be modiĄed in an
obvious way so as to widen or narrow the gaps of vacant information. (Thus in case
of overĆow, when B = C, we make empty space between B and C by moving one part
and not the other.) In the calculation of SUM and D[j] in step G2, each queue should
be considered to occupy one more cell than it really does (see exercise 1).

9. Given any sequence speciĄcation a1, a2, . . . , am there is one move operation re-
quired for every pair (j, k) such that j < k and aj > ak. (Such a pair is called an
ŞinversionŤ; see Section 5.1.1.) The number of such pairs is therefore the number of
moves required. Now imagine all nm speciĄcations written out, and for each of the
m
2

pairs (j, k) with j < k count how many speciĄcations have aj > ak. Clearly this

equals

n
2

, the number of choices for aj and ak, times nm−2, the number of ways to Ąll

in the remaining places. Hence the total number of moves among all speciĄcations is
m
2

n
2

nm−2. Divide this by nm to get the average, Eq. (14).

10. As in exercise 9 we Ąnd that the expected value is

m

2

1≤j<k≤n
pjpk =

1
2

m

2

((p1 + · · ·+ pn)2 − (p2

1 + · · ·+ p2
n))

=
1
2

m

2

(1− (p2

1 + · · ·+ p2
n)).

For this model, it makes absolutely no difference what the relative order of the lists
is! (A momentŠs reĆection explains why; if we consider all possible permutations of a
given sequence a1, . . . , am, we Ąnd that the total number of moves summed over all
these permutations depends only on the number of pairs of distinct elements aj ̸= ak.)

11. Counting as before, we Ąnd that the expected number is

Emnt =
1
nm

n

2

 m

k=1

r≥t
(k − 1)

k − 2
r

(n− 1)k−2−rnm−k ;

here r is the number of entries in a1, a2, . . . , ak−1 that equal ak. This quantity can
also be expressed in the simpler form

Emnt =
1
nm

n

2

k>t

m

k

(n− 1)m−k

k

2

−

t+ 1

2

, for t ≥ 0.

Is there a simpler way yet to give the answer? Apparently not, since the generating
function for given n and t is

m

Emntz
m =

n− 1
2n

z

(1− z)3

z

n− (n− 1)z

t+1

(z + (1− z)n(t+ 1)).

12. If m = 2k, the average is 2−2k times
2k

0

2k +

2k
1

(2k − 1) + · · ·+

2k
k

k +

 2k
k + 1

(k + 1) + · · ·+

2k
2k

2k.

The latter sum is
2k
k

k + 2

2k − 1
k

2k + · · ·+

2k − 1
2k − 1

2k

=
2k
k

k + 4k · 1

2
· 22k−1.

2.2.2 ANSWERS TO EXERCISES 543

A similar argument may be used when m = 2k + 1. The answer is

m

2
+

m

2m

m− 1
⌊m/2⌋

.

13. A. C. Yao has proved that we have E max(k1, k2) = 1
2
m+ (2π(1− 2p))−1/2√

m+
O(m−1/2(logm)2) for large m, when p < 1

2
. [SICOMP 10 (1981), 398Ű403.] And

P. Flajolet has extended the analysis, showing in particular that the expected value is
asymptotically αm when p = 1

2
, where

α =
1
2

+ 8

n≥1

sin(nπ/2) cosh(nπ/2)
n2π2 sinhnπ

≈ 0.67531 44833.

Moreover, when p > 1
2

the Ąnal value of k1 tends to be uniformly distributed as m→∞,
so E max(k1, k2) ≈ 3

4
m. [See Lecture Notes in Comp. Sci. 233 (1986), 325Ű340.]

14. Let kj = m/n+
√
mxj . (This idea was suggested by N. G. de Bruijn.) StirlingŠs

approximation implies that

n−m m!
k1! . . . kn!

max(k1, . . . , kn)

= (
√

2πm)1−n
nn/2

 m
n

+
√
m max(x1, . . . , xn)

× exp

−n

2
(x2

1 + · · ·+ x2
n)

(
√
m)1−n

1 +O

 1√
m

,

when k1 + · · ·+kn = m and when the xŠs are uniformly bounded. The sum of the latter
quantity over all nonnegative k1, . . . , kn satisfying this condition is an approximation
to a Riemann integral; we may deduce that the asymptotic behavior of the sum is
an(m/n) + cn

√
m+O(1), where

an = (
√

2π)1−n
nn/2

x1+···+xn=0

exp

−n

2
(x2

1 + · · ·+x2
n)

dx2 . . . dxn,

cn = (
√

2π)1−n
nn/2

x1+···+xn=0

max(x1, . . . , xn) exp

−n

2
(x2

1 + · · ·+x2
n)

dx2 . . . dxn,

since it is possible to show that the corresponding sums come within ϵ of an and cn for
any ϵ.

We know that an = 1, since the corresponding sum can be evaluated explicitly.
The integral that appears in the expression for cn equals nI1, where

I1 =

x1+···+xn=0
x1≥x2,...,xn

x1 exp

−n

2
(x2

1 + · · ·+ x2
n)

dx2 . . . dxn.

We may make the substitution

x1 =
1
n

(y2 + · · ·+ yn), x2 = x1 − y2, x3 = x1 − y3, . . . , xn = x1 − yn;

then we Ąnd I1 = I2/n
2, where

I2 =

y2,...,yn≥0

(y2 + · · ·+ yn) exp

−Q

2

dy2 . . . dyn,

544 ANSWERS TO EXERCISES 2.2.2

and Q = n(y2
2 + · · ·+ y2

n)− (y2 + · · ·+ yn)2. Now by symmetry, I2 is (n− 1) times the
same integral with (y2 + · · ·+ yn) replaced by y2; hence I2 = (n− 1)I3, where

I3 =

y2,...,yn≥0

(ny2 − (y2 + · · ·+ yn)) exp

−Q

2

dy2 . . . dyn

=

y3,...,yn≥0

exp

−Q0

2

dy3 . . . dyn;

here Q0 is Q with y2 replaced by zero. [When n = 2, let I3 = 1.] Now let zj =√
n yj− (y3 + · · ·+yn)/(

√
2+
√
n), 3 ≤ j ≤ n. Then Q0 = z2

3 + · · ·+z2
n, and we deduce

that I3 = I4/n
(n−3)/2

√
2, where

I4 =

y3,...,yn≥0

exp

−z

2
3 + · · ·+ z2

n

2

dz3 . . . dzn

= αn

exp

−z

2
3 + · · ·+ z2

n

2

dz3 . . . dzn = αn(

√
2π)n−2,

where αn is the Şsolid angleŤ in (n − 2)-dimensional space spanned by the vectors
(n+
√

2n, 0, . . . , 0) − (1, 1, . . . , 1), . . . , (0, 0, . . . , n+
√

2n) − (1, 1, . . . , 1), divided by
the total solid angle of the whole space. Hence

cn =
(n− 1)

√
n

2
√
π

αn.

We have α2 = 1, α3 = 1
2
, α4 = π−1 arctan

√
2 ≈ .304, and

α5 =
1
8

+
3

4π
arctan

1√
8
≈ .206.

[The value of c3 was found by Robert M. Kozelka, Annals of Math. Stat. 27 (1956),
507Ű512, but the solution to this problem for higher values of n has apparently never
appeared in the literature.]

16. Not unless the queues meet the restrictions that apply to the primitive method of
(4) and (5).

17. First show that BASE[j]0 ≤ BASE[j]1 at all times. Then observe that each overĆow
for stack i in s0(σ) that does not also overĆow in s1(σ) occurs at a time when stack i
has gotten larger than ever before, yet its new size is not more than the original size
allocated to stack i in s1(σ).

18. Suppose the cost of an insertion is a, plus bN + cn if repacking is needed, where
N is the number of occupied cells; let the deletion cost be d. After a repacking that
leaves N cells occupied and S = M −N cells vacant, imagine that each insertion until
the next repacking costs a + b + 10c + 10(b + c)nN/S = O(1 + nα/(1 − α)), where
α = N/M . If p insertions and q deletions occur before that repacking, the imagined
cost is p(a+b+10c+10(b+c)nN/S)+qd, while the actual cost is pa+bN ′ +cn+qd ≤
pa+ pb+ bN + cn+ qd. The latter is less than the imagined cost, because p > .1S/n;
our assumption that M ≥ n2 implies that cS/n+ (b+ c)N ≥ bN + cn.

19. We could simply decrease all the subscripts by 1; the following solution is slightly
nicer. Initially T = F = R = 0.

Push Y onto stack X: If T = M then OVERFLOW; X[T]← Y; T← T + 1.
Pop Y from stack X: If T = 0 then UNDERFLOW; T← T− 1; Y← X[T].

2.2.3 ANSWERS TO EXERCISES 545

Insert Y into queue X: X[R]← Y; R← (R + 1) mod M; if R = F then OVERFLOW.
Delete Y from queue X: if F = R then UNDERFLOW; Y← X[F]; F← (F + 1) mod M.

As before, T is the number of elements on the stack, and (R− F) mod M is the number
of elements on the queue. But the top stack element is now X[T− 1], not X[T].

Even though it is almost always better for computer scientists to start counting
at 0, the rest of the world will probably never change to 0-origin indexing. Even Edsger
Dijkstra counts Ş1Ű2Ű3Ű4 | 1Ű2Ű3Ű4Ť when he plays the piano!

SECTION 2.2.3

1. OVERFLOW is implicit in the operation P⇐ AVAIL.

2. INSERT STJ 1F Store location of ŚNOP TŠ.
STJ 9F Store exit location.
LD1 AVAIL rI1⇐ AVAIL.
J1Z OVERFLOW

LD3 0,1(LINK)

ST3 AVAIL

STA 0,1(INFO) INFO(rI1)← Y.
1H LD3 *(0:2) rI3← LOC(T).

LD2 0,3 rI2← T.
ST2 0,1(LINK) LINK(rI1)← T.
ST1 0,3 T← rI1.

9H JMP *

3. DELETE STJ 1F Store location of ŚNOP TŠ.
STJ 9F Store exit location.

1H LD2 *(0:2) rI2← LOC(T).
LD3 0,2 rI3← T.
J3Z 9F Is T = Λ?
LD1 0,3(LINK) rI1← LINK(T).
ST1 0,2 T← rI1.
LDA 0,3(INFO) rA← INFO(rI1).
LD2 AVAIL AVAIL⇐ rI3.
ST2 0,3(LINK)

ST3 AVAIL

ENT3 2 Prepare for second exit.
9H JMP *,3

4. OVERFLOW STJ 9F Store setting of rJ.
ST1 8F(0:2) Save rI1 setting.
LD1 POOLMAX

ST1 AVAIL Set AVAIL to new location.
INC1 c
ST1 POOLMAX Increment POOLMAX.
CMP1 SEQMIN

JG TOOBAD Has storage been exceeded?
STZ -c,1(LINK) Set LINK(AVAIL)← Λ.

9H ENT1 * Take rJ setting.
DEC1 2 Subtract 2.
ST1 *+2(0:2) Store exit location.

8H ENT1 * Restore rI1.
JMP * Return.

546 ANSWERS TO EXERCISES 2.2.3

5. Inserting at the front is essentially like the basic insertion operation (8), with an
additional test for empty queue: P⇐ AVAIL, INFO(P)← Y, LINK(P)← F; if F = Λ then
R← P; F← P.

To delete from the rear, we would have to Ąnd which node links to NODE(R), and
that is necessarily inefficient since we have to search all the way from F. This could be
done, for example, as follows:

a) If F = Λ then UNDERFLOW, otherwise set P← LOC(F).
b) If LINK(P) ̸= R then set P← LINK(P) and repeat this step until LINK(P) = R.
c) Set Y← INFO(R), AVAIL⇐ R, R← P, LINK(P)← Λ.

6. We could remove the operation LINK(P)← Λ from (14), if we delete the commands
ŞF ← LINK(P)Ť and Şif F = Λ then set R ← LOC(F)Ť from (17); the latter are to be
replaced by Şif F = R then F← Λ and R← LOC(F), otherwise set F← LINK(P)Ť.

The effect of these changes is that the LINK Ąeld of the rear node in the queue will
contain spurious information that is never interrogated by the program. A trick like
this saves execution time and it is quite useful in practice, although it violates one of
the basic assumptions of garbage collection (see Section 2.3.5) so it cannot be used in
conjunction with such algorithms.

7. (Make sure that your solution works for empty lists.)

I1. Set P← FIRST, Q← Λ.

I2. If P ̸= Λ, set R← Q, Q← P, P← LINK(Q), LINK(Q)← R, and repeat this step.

I3. Set FIRST← Q.

In essence we are popping nodes off one stack and pushing them onto another.

8. LD1 FIRST 1 I1. P ≡ rI1← FIRST.
ENT2 0 1 Q ≡ rI2← Λ.
J1Z 2F 1 I2. If the list is empty, jump.

1H ENTA 0,2 n R ≡ rA← Q.
ENT2 0,1 n Q← P.
LD1 0,2(LINK) n P← LINK(Q).
STA 0,2(LINK) n LINK(Q)← R.
J1NZ 1B n Is P ̸= Λ?

2H ST2 FIRST 1 I3. FIRST← Q.

The time is (7n+ 6)u. Better speed (5n+ constant)u is attainable; see exercise 1.1Ű3.

9. (a) Yes. (b) Yes, if biological parenthood is considered; no, if legal parenthood
is considered (a manŠs daughter might marry his father, as in the song ŞIŠm My Own
GrampaŤ). (c) No (−1 ≺ 1 and 1 ≺ −1). (d) Let us hope so, or else there is a circular
argument. (e) 1 ≺ 3 and 3 ≺ 1. (f) The statement is ambiguous. If we take the
position that the subroutines called by y are dependent upon which subroutine calls y,
we would have to conclude that the transitive law does not necessarily hold. (For
example, a general input-output subroutine might call on different processing routines
for each I/O device present, but these processing subroutines are usually not all needed
in a single program. This is a problem that plagues many automatic programming
systems.)

10. For (i) there are three cases: x = y; x ⊂ y and y = z; x ⊂ y and y ⊂ z. For (ii)
there are two cases: x = y; x ̸= y. Each case is handled trivially, as is (iii).

11. ŞMultiply outŤ the following to get all 52 solutions: 13749(25 + 52)86 + (1379 +
1397 + 1937 + 9137)(4258 + 4528 + 2458 + 5428 + 2548 + 5248 + 2584 + 5284)6 + (1392 +
1932 + 1923 + 9123 + 9132 + 9213)7(458 + 548 + 584)6.

2.2.3 ANSWERS TO EXERCISES 547

12. For example: (a) List all sets with k elements (in any order) before all sets with
k + 1 elements, 0 ≤ k < n. (b) Represent a subset by a sequence of 0s and 1s showing
which elements are in the set. This gives a correspondence between all subsets and the
integers 0 through 2n− 1, via the binary number system. The order of correspondence
is a topological sequence.

13. Sha and Kleitman, Discrete Math. 63 (1987), 271Ű278, have proved that the

number is at most
n
k=0

n
k

(nk). This exceeds the obvious lower bound
n
k=0

n
k

! =

22n(n+O(logn)) by a factor of e2n+O(n); they conjecture that the lower bound is closer
to the truth.

14. If a1 a2 . . . an and b1 b2 . . . bn are two possible topological sorts, let j be minimal
such that aj ̸= bj ; then ak = bj and aj = bm for some k,m > j. Now bj ̸⪯ aj since
k > j, and aj ̸⪯ bj since m > j, hence (iv) fails. Conversely if there is only one
topological sort a1 a2 . . . an, we must have aj ⪯ aj+1 for 1 ≤ j < n, since otherwise aj
and aj+1 could be interchanged. This and transitivity imply (iv).

Note: The following alternative proofs work also for inĄnite sets. (a) Every partial
ordering can be embedded in a linear ordering. For if we have two elements with x0 ̸⪯ y0

and y0 ̸⪯ x0 we can generate another partial ordering by the rule Şx ⪯ y or (x ⪯ x0 and
y0 ⪯ y).ŤThe latter ordering ŞincludesŤ the former and has x0 ⪯ y0. Now apply ZornŠs
lemma or transĄnite induction in the usual way to complete the proof. (b) Obviously
a linear ordering cannot be embedded in any different linear ordering. (c) A partial
ordering that has incomparable elements x0 and y0 as in (a) can be extended to two
linear orderings in which x0 ⪯ y0 and y0 ⪯ x0, respectively, so at least two linear
orderings exist.

15. If S is Ąnite, we can list all relations a ≺ b that are true in the given partial
ordering. By successively removing, one at a time, any relations that are implied by
others, we arrive at an irredundant set. The problem is to show there is just one such
set, no matter in what order we go about removing redundant relations. If there were
two irredundant sets U and V , in which Şa ≺ bŤ appears in U but not in V , there are
k + 1 relations a ≺ c1 ≺ · · · ≺ ck ≺ b in V for some k ≥ 1. But it is possible to deduce
a ≺ c1 and c1 ≺ b from U , without using the relation a ≺ b (since b ̸⪯ c1 and c1 ̸⪯ a),
hence the relation a ≺ b is redundant in U .

The result is false for inĄnite sets S, when there is at most one irredundant set
of relations. For example if S denotes the integers plus the element ∞ and we deĄne
n ≺ n+ 1 and n ≺ ∞ for all n, there is no irredundant set of relations that characterizes
this partial ordering.

16. Let xp1
xp2

. . . xpn be a topological sorting of S; apply the permutation p1p2 . . . pn
to both rows and columns.

17. If k increases from 1 to n in step T4, the output is 1932745860. If k decreases
from n to 1 in step T4, as it does in Program T, the output is 9123745860.

18. They link together the items in sorted order: QLINK[0] Ąrst, QLINK[QLINK[0]]
second, and so on; QLINK[last] = 0.

19. This would fail in certain cases; when the queue contains only one element in
step T5, the modiĄed method would set F = 0 (thereby emptying the queue), but other
entries could be placed in the queue in step T6. The suggested modiĄcation would
therefore require an additional test of F = 0 in step T6.

20. Indeed, a stack could be used, in the following way. (Step T7 disappears.)

548 ANSWERS TO EXERCISES 2.2.3

T4. Set T ← 0. For 1 ≤ k ≤ n if COUNT[k] is zero do the following: Set
SLINK[k]← T, T← k. (SLINK[k] ≡ QLINK[k].)

T5. Output the value of T. If T=0, go to T8; otherwise, set N← N− 1, P← TOP[T],
T← SLINK[T].

T6. Same as before, except go to T5 instead of T7; and when COUNT[SUC(P)] goes
down to zero, set SLINK[SUC(P)]← T and T← SUC(P).

21. Repeated relations only make the algorithm a little slower and take up more space
in the storage pool. A relation Şj ≺ jŤ would be treated like a loop (an arrow from a
box to itself in the corresponding diagram), which violates partial order.

22. To make the program Şfail-safeŤ we should (a) check that 0 < n < some appropri-
ate maximum; (b) check each relation j ≺ k for the conditions 0 < j, k ≤ n; (c) make
sure that the number of relations doesnŠt overĆow the storage pool area.

23. At the end of step T5, add ŞTOP[F]← ΛŤ. (Then at all times TOP[1], . . . , TOP[n]
point to all the relations not yet canceled.) In step T8, if N > 0, print ŚLOOP DETECTED

IN INPUT:Š, and set QLINK[k]← 0 for 1 ≤ k ≤ n. Now add the following steps:

T9. For 1 ≤ k ≤ n set P ← TOP[k], TOP[k] ← 0, and perform step T10. (This
will set QLINK[j] to one of the predecessors of object j, for each j not yet
output.) Then go to T11.

T10. If P ̸= Λ, set QLINK[SUC(P)]← k, P← NEXT(P), and repeat this step.

T11. Find a k with QLINK[k] ̸= 0.

T12. Set TOP[k]← 1 and k ← QLINK[k]. Now if TOP[k] = 0, repeat this step.

T13. (We have found the start of a loop.) Print the value of k, set TOP[k]← 0,
k ← QLINK[k], and if TOP[k] = 1 repeat this step.

T14. Print the value of k (the beginning and end of the loop) and stop. (Note:

The loop has been printed backwards; if it is desired to print the loop in
forward order, an algorithm like that in exercise 7 should be used between
steps T12 and T13.)

24. Insert three lines in the program of the text:

08a PRINTER EQU 18

14a ST6 N0

59a STZ X,1(TOP) TOP[F]← Λ.

Replace lines 74Ű75 by the following:

74 J6Z DONE

75 OUT LINE1(PRINTER) Print indication of loop.
76 LD6 N0

77 STZ X,6(QLINK) QLINK[k]← 0.
78 DEC6 1

79 J6P *-2 n ≥ k ≥ 1.
80 LD6 N0

81 T9 LD2 X,6(TOP) P← TOP[k].
82 STZ X,6(TOP) TOP[k]← 0.
83 J2Z T9A Is P = Λ?
84 T10 LD1 0,2(SUC) rI1← SUC(P).
85 ST6 X,1(QLINK) QLINK[rI1]← k.
86 LD2 0,2(NEXT) P← NEXT(P).

2.2.3 ANSWERS TO EXERCISES 549

87 J2P T10 Is P ̸= Λ?
88 T9A DEC6 1

89 J6P T9 n ≥ k ≥ 1.
90 T11 INC6 1

91 LDA X,6(QLINK)

92 JAZ *-2 Find k with QLINK[k] ̸= 0.
93 T12 ST6 X,6(TOP) TOP[k]← k.
94 LD6 X,6(QLINK) k ← QLINK[k].
95 LD1 X,6(TOP)

96 J1Z T12 Is TOP[k] = 0?
97 T13 ENTA 0,6

98 CHAR Convert k to alphameric.
99 JBUS *(PRINTER)

100 STX VALUE Print.
101 OUT LINE2(PRINTER)

102 J1Z DONE Stop when TOP[k] = 0.
103 STZ X,6(TOP) TOP[k]← 0.
104 LD6 X,6(QLINK) k ← QLINK[k].
105 LD1 X,6(TOP)

106 JMP T13

107 LINE1 ALF LOOP Title line
108 ALF DETEC

109 ALF TED I

110 ALF N INP

111 ALF UT:

112 LINE2 ALF Succeeding lines
113 VALUE EQU LINE2+3

114 ORIG LINE2+24

115 DONE HLT End of computation
116 X END TOPSORT

Note: If the relations 9 ≺ 1 and 6 ≺ 9 are added to the data (18), this program
will print Ş9, 6, 8, 5, 9Ť as the loop.

26. One solution is to proceed in two phases as follows:

Phase 1. (We use the X table as a (sequential) stack as we mark B = 1 or 2 for each
subroutine that needs to be used.)

A0. For 1 ≤ J ≤ N set B(X[J])← B(X[J]) + 2, if B(X[J]) ≤ 0.

A1. If N = 0, go to phase 2; otherwise set P← X[N] and decrease N by 1.

A2. If |B(P)| = 1, go to A1, otherwise set P← P + 1.

A3. If B(SUB1(P)) ≤ 0, set N ← N + 1, B(SUB1(P)) ← B(SUB1(P)) + 2, X[N] ←
SUB1(P). If SUB2(P) ̸= 0 and B(SUB2(P)) ≤ 0, do a similar set of actions with
SUB2(P). Go to A2.

Phase 2. (We go through the table and allocate memory.)

B1. Set P← FIRST.

B2. If P = Λ, set N← N+1, BASE(LOC(X[N]))← MLOC, SUB(LOC(X[N]))← 0, and
terminate the algorithm.

550 ANSWERS TO EXERCISES 2.2.3

B3. If B(P) > 0, set N← N + 1, BASE(LOC(X[N]))← MLOC, SUB(LOC(X[N]))← P,
MLOC← MLOC + SPACE(P).

B4. Set P← LINK(P) and return to B2.

27. Comments on the following code are left to the reader.

B EQU 0:1

SPACE EQU 2:3

LINK EQU 4:5

SUB1 EQU 2:3

SUB2 EQU 4:5

BASE EQU 0:3

SUB EQU 4:5

A0 LD2 N

J2Z 2F

1H LD3 X,2

LDA 0,3(B)

JAP *+3

INCA 2

STA 0,3(B)

DEC2 1

J2P 1B

2H LD1 N

A1 J1Z B1

LD2 X,1

DEC1 1

A2 LDA 0,2(1:1)

DECA 1

JAZ A1

INC2 1

A3 LD3 0,2(SUB1)

LDA 0,3(B)

JAP 9F

INC1 1

INCA 2

STA 0,3(B)

ST3 X,1

9H LD3 0,2(SUB2)

J3Z A2

LDA 0,3(B)

JAP A2

INC1 1

INCA 2

STA 0,3(B)

ST3 X,1

JMP A2

B1 ENT2 FIRST

LDA MLOC

JMP 1F

B3 LDX 0,2(B)

JXNP B4

INC1 1

ST2 X,1(SUB)

ADD 0,2(SPACE)

1H STA X+1,1(BASE)

B4 LD2 0,2(LINK)

B2 J2NZ B3

STZ X+1,1(SUB)

28. We give here only a few comments related to the military game. Let A be the
player with three men whose pieces start on nodes A13; let B be the other player. In
this game, A must ŞtrapŤ B, and if B can cause a position to be repeated for a second
time we can consider B the winner. To avoid keeping the entire past history of the
game as an integral part of the positions, however, we should modify the algorithm in
the following way: Start by marking the positions 157Ű4, 789ŰB, 359Ű6 with B to move
as ŞlostŤ and apply the suggested algorithm. Now the idea is for player A to move
only to BŠs lost positions. But A must also take precautions against repeating prior
moves. A good computer game-playing program will use a random number generator
to select between several winning moves when more than one is present, so an obvious
technique would be to make the computer, playing A, just choose randomly among
those moves that lead to a lost position for B. But there are interesting situations
that make this plausible procedure fail! For example,
consider position 258Ű7 with A to move; this is a
won position. From position 258Ű7, player A might
try moving to 158Ű7 (which is a lost position for B,
according to the algorithm). But then B plays to
158ŰB, and this forcesA to play to 258ŰB, after which
B plays back to 258Ű7; B has won, since the former
position has been repeated! This example shows that
the algorithm must be re-invoked after every move
has been made, starting with each position that has
previously occurred marked ŞlostŤ (if A is to move) or
ŞwonŤ (if B is to move). The military game makes a
very satisfactory computer demonstration program.

1 2 3

4 5 6

7 8 9

A

B

Board for the Şmilitary game.Ť

2.2.4 ANSWERS TO EXERCISES 551

29. (a) If FIRST = Λ, do nothing; otherwise set P ← FIRST, and then repeatedly set
P← LINK(P) zero or more times until LINK(P) = Λ. Finally set LINK(P)← AVAIL and
AVAIL ← FIRST (and probably also FIRST ← Λ). (b) If F = Λ, do nothing; otherwise
set LINK(R)← AVAIL and AVAIL← F (and probably also F← Λ, R← LOC(F)).

30. To insert, set P ⇐ AVAIL, INFO(P) ← Y, LINK(P) ← Λ, if F = Λ then F ← P

else LINK(R) ← P, and R ← P. To delete, do (9) with F replacing T. (Although it
is convenient to let R be undeĄned for an empty queue, this lack of discipline might
confuse a garbage collection algorithm, as in exercise 6.)

SECTION 2.2.4

1. No, it does not help; it seems to hinder, if anything. (The stated convention is not

especially consistent with the circular list philosophy, unless we put NODE(LOC(PTR))

into the list as its list head.)

2. Before: PTR1 PTR2

After: PTR1 PTR2

3. If PTR1 = PTR2, the only effect is PTR2 ← Λ. If PTR1 ̸= PTR2, the exchange of links
breaks the list into two parts, as if a circle had been broken in two by cutting at two
points; the second part of the operation then makes PTR1 point to a circular list that
consists of the nodes that would have been traversed if, in the original list, we followed
the links from PTR1 to PTR2.

4. Let HEAD be the address of the list head. To push down Y onto the stack: Set
P⇐ AVAIL, INFO(P) ← Y, LINK(P) ← LINK(HEAD), LINK(HEAD) ← P. To pop up the
stack onto Y: If LINK(HEAD) = HEAD then UNDERFLOW; otherwise set P ← LINK(HEAD),
LINK(HEAD)← LINK(P), Y← INFO(P), AVAIL⇐ P.

5. (Compare with exercise 2.2.3Ű7.) Set Q ← Λ, P ← PTR, and then while P ̸= Λ
repeatedly set R← Q, Q← P, P← LINK(Q), LINK(Q)← R. (Afterwards Q = PTR.)

6.

(a)
+1

+ 1 0 1

-3

+ 0 0 0

0

- 0 0 1

(b)
0

- 0 0 1

7. Matching terms in the polynomial are located in one pass over the list, so repeated
random searches are avoided. Also, increasing order would be incompatible with the
Ş−1Ť sentinel.

8. We must know what node points to the current node of interest, if we are going to
delete that node or to insert another one ahead of it. There are alternatives, however:
We could delete NODE(Q) by setting Q2 ← LINK(Q) and then setting NODE(Q) ←
NODE(Q2), AVAIL ⇐ Q2; we could insert a NODE(Q2) in front of NODE(Q) by Ąrst
interchanging NODE(Q2) ↔ NODE(Q), then setting LINK(Q) ← Q2, Q ← Q2. These

552 ANSWERS TO EXERCISES 2.2.4

clever tricks allow the deletion and insertion without knowing which node links to
NODE(Q); they were used in early versions of IPL. But they have the disadvantage that
the sentinel node at the end of a polynomial will occasionally move, and other link
variables may be pointing to this node.

9. Algorithm A with P = Q simply doubles polynomial(Q), as it should Ů except
in the anomalous case that COEF = 0 for some term with ABC ≥ 0, when it fails
badly. Algorithm M with P = M also gives the expected result. Algorithm M with
P = Q sets polynomial(P) ← polynomial(P) times (1 + t1)(1 + t2) . . . (1 + tk) if
M = t1 + t2 + · · · + tk (although this is not immediately obvious). When M = Q,
Algorithm M surprisingly gives the expected result, polynomial(Q) ← polynomial(Q)
+ polynomial(Q) × polynomial(P), except that the computation blows up when the
constant term of polynomial(P) is −1.

10. None. (The only possible difference would be in step M2, removing error checks
that A, B, or C might individually overĆow; these error checks were not speciĄed because
we assumed that they were not necessary.) In other words, the algorithms in this section
may be regarded as operations on the polynomial f(xb

2

, xb, x) instead of on f(x, y, z).

11. COPY STJ 9F (comments
ENT3 9F are
LDA 1,1 left

1H LD6 AVAIL to
J6Z OVERFLOW the
LDX 1,6(LINK) reader)
STX AVAIL

STA 1,6

LDA 0,1

STA 0,6

ST6 1,3(LINK)

ENT3 0,6

LD1 1,1(LINK)

LDA 1,1

JANN 1B

LD2 8F(LINK)

ST2 1,3(LINK)

9H JMP *

8H CON 0

12. Let the polynomial copied have p terms. Program A takes (27p + 13)u, and to
make it a fair comparison we should add the time to create a zero polynomial, say 18u
with exercise 14. The program of exercise 11 takes (21p+ 31)u, about 78% as much.

13. ERASE STJ 9F

LDX AVAIL

LDA 1,1(LINK)

STA AVAIL

STX 1,1(LINK)

9H JMP *

14. ZERO STJ 9F

LD1 AVAIL

J1Z OVERFLOW

LDX 1,1(LINK)

STX AVAIL

ENT2 0,1

MOVE 1F(2)

ST2 1,2(LINK)

9H JMP *

1H CON 0

CON -1(ABC)

15. MULT STJ 9F Entrance to subroutine
LDA 5F Change settings of switches
STA SW1

LDA 6F

STA SW2

STA SW3

2.2.5 ANSWERS TO EXERCISES 553

JMP *+2

2H JMP ADD M2. Multiply cycle.
1H LD4 1,4(LINK) M1. Next multiplier. M← LINK(M).

LDA 1,4

JANN 2B To M2 if ABC(M) ≥ 0.
8H LDA 7F Restore settings of switches.

STA SW1

LDA 8F

STA SW2

STA SW3

9H JMP * Return.
5H JMP *+1 New setting of SW1

LDA 0,1

MUL 0,4 rX← COEF(P)× COEF(M).
LDA 1,1(ABC) ABC(P)

JAN *+2

ADD 1,4(ABC) + ABC(M), if ABC(P) ≥ 0.
SLA 2 Move into 0:3 Ąeld of rA.
STX 0F Save rX for use in SW2 and SW3.
JMP SW1+1

6H LDA 0F New setting of SW2 and SW3

7H LDA 1,1 Usual setting of SW1
8H LDA 0,1 Usual setting of SW2 and SW3

0H CON 0 Temp storage

16. Let r be the number of terms in polynomial(M). The subroutine requires 21pr +
38r+ 29 + 27

m′ + 18

m′′ + 27

p′ + 8

q′ units of time, where the summations

refer to the corresponding quantities during the r activations of Program A. The
number of terms in polynomial(Q) goes up by p′−m′ each activation of Program A. If
we make the not unreasonable assumption that m′ = 0 and p′ = αp where 0 < α < 1,
we get the respective sums equal to 0, (1−α)pr, αpr, and rq′0 + αp(r(r − 1)/2), where
q′0 is the value of q′ in the Ąrst iteration. The grand total is 4αpr2 + 40pr + 4αpr +
8q′0r + 38r + 29. This analysis indicates that the multiplier ought to have fewer terms
than the multiplicand, since we have to skip over unmatching terms in polynomial(Q)
more often. (See exercise 5.2.3Ű29 for a faster algorithm.)

17. There actually is very little advantage; addition and multiplication routines with
either type of list would be virtually the same. The efficiency of the ERASE subroutine
(see exercise 13) is apparently the only important difference.

18. Let the link Ąeld of node xi contain LOC(xi+1) ⊕ LOC(xi−1), where Ş⊕Ť denotes
Şexclusive or.Ť Other invertible operations, such as addition or subtraction modulo the
pointer Ąeld size, could also be used. It is convenient to include two adjacent list heads
in the circular list, to help get things started properly. (The origin of this ingenious
technique is unknown.)

SECTION 2.2.5

1. Insert Y at the left: P ⇐ AVAIL; INFO(P) ← Y; LLINK(P) ← Λ; RLINK(P) ← LEFT;
if LEFT ̸= Λ then LLINK(LEFT) ← P else RIGHT ← P; LEFT ← P. Set Y to leftmost and
delete: if LEFT = Λ then UNDERFLOW; P ← LEFT; LEFT ← RLINK(P); if LEFT = Λ then
RIGHT← Λ, else LLINK(LEFT)← Λ; Y← INFO(P); AVAIL⇐ P.

554 ANSWERS TO EXERCISES 2.2.5

2. Consider the case of several deletions (at the same end) in succession. After each
deletion we must know what to delete next, so the links in the list must point away
from that end of the list. Deletion at both ends therefore implies that the links must
go both ways. On the other hand, exercise 2.2.4Ű18 explains how to represent two links
in a single link Ąeld; in that way general deque operations are possible.

3. To show the independence of CALLUP from CALLDOWN, notice for example that in
Table 1 the elevator did not stop at Ćoors 2 or 3 at time 0393Ű0444 although there were
people waiting; these people had pushed CALLDOWN, but if they had pushed CALLUP the
elevator would have stopped.

To show the independence of CALLCAR from the others, notice that in Table 1, when
the doors start to open at time 1378, the elevator has already decided to be GOINGUP.
Its state would have been NEUTRAL at that point if CALLCAR[1] = CALLCAR[2] =
CALLCAR[3] = CALLCAR[4] = 0, according to step E2, but in fact CALLCAR[2] and
CALLCAR[3] have been set to 1 by users 7 and 9 in the elevator. (If we envision the
same situation with all Ćoor numbers increased by 1, the fact that STATE = NEUTRAL

or STATE = GOINGUP when the doors open would affect whether the elevator would
perhaps continue to go downward or would unconditionally go upward.)

4. If a dozen or more people were getting out at the same Ćoor, STATE might be
NEUTRAL all during this time, and when E9 calls the DECISION subroutine this may set
a new state before anyone has gotten in on the current Ćoor. It happens very rarely
indeed (and it certainly was the most puzzling phenomenon observed by the author
during his elevator experiments).

5. The state from the time the doors start to open at time 1063 until user 7 gets in
at time 1183 would have been NEUTRAL, since there would have been no calls to Ćoor 0
and nobody on board the elevator. Then user 7 would set CALLCAR[2] ← 1 and the
state would correspondingly change to GOINGUP.

6. Add the condition Şif OUT < IN then STATE ̸= GOINGUP; if OUT > IN then STATE ̸=
GOINGDOWNŤ to the condition ŞFLOOR = INŤ in steps U2 and U4. In step E4, accept
users from QUEUE[FLOOR] only if they are headed in the elevatorŠs direction, unless
STATE = NEUTRAL (when we accept all comers).

[StanfordŠs math department has just such an elevator, but its users donŠt actually
pay much attention to the indicator lights; people tend to get on as soon as they can,
regardless of direction. Why didnŠt the elevator designers realize this, and design the
logic accordingly by clearing both CALLUP and CALLDOWN? The whole process would be
faster, since the elevator wouldnŠt have to stop as often.]

7. In line 227 this user is assumed to be in the WAIT list. Jumping to U4A makes sure
that this assumption is valid. It is assumed that GIVEUPTIME is positive, and indeed
that it is probably 100 or more.

8. Comments are left to the reader.

277 E8 DEC4 1

278 ENTA 61

279 JMP HOLDC

280 LDA CALL,4(3:5)

281 JAP 1F

282 ENT1 -2,4

283 J1Z 2F

284 LDA CALL,4(1:1)

2.2.5 ANSWERS TO EXERCISES 555

285 JAZ E8

286 2H LDA CALL-1,4

287 ADD CALL-2,4

288 ADD CALL-3,4

289 ADD CALL-4,4

290 JANZ E8

291 1H ENTA 23

292 JMP E2A

9. 01 DECISION STJ 9F Store exit location.
02 J5NZ 9F D1. Decision necessary?
03 LDX ELEV1+2(NEXTINST)

04 DECX E1 D2. Should doors open?
05 JXNZ 1F Jump if elevator not at E1.
06 LDA CALL+2

07 ENT3 E3 Prepare to schedule E3,
08 JANZ 8F if there is a call on Ćoor 2.
09 1H ENT1 -4 D3. Any calls?
10 LDA CALL+4,1 Search for a nonzero call variable.
11 JANZ 2F

12 1H INC1 1 rI1 ≡ j − 4
13 J1NP *-3

14 LDA 9F(0:2) All CALL[j], j ̸= FLOOR, are zero.
15 DECA E6B Is exit location = line 250?
16 JANZ 9F

17 ENT1 -2 Set j ← 2.
18 2H ENT5 4,1 D4. Set STATE.
19 DEC5 0,4 STATE← j − FLOOR.
20 J5NZ *+2

21 JANZ 1B j = FLOOR not allowed in general.
22 JXNZ 9F D5. Elevator dormant?
23 J5Z 9F Jump if not at E1 or if j = 2.
24 ENT3 E6 Otherwise schedule E6.
25 8H ENTA 20 Wait 20 units of time.
26 ST6 8F(0:2) Save rI6.
27 ENT6 ELEV1

28 ST3 2,6(NEXTINST) Set NEXTINST to E3 or E6.
29 JMP HOLD Schedule the activity.
30 8H ENT6 * Restore rI6.
31 9H JMP * Exit from subroutine.

11. Initially let LINK[k] = 0, 1 ≤ k ≤ n, and HEAD = −1. During a simulation step that
changes V[k], give an error indication if LINK[k] ̸= 0; otherwise set LINK[k]← HEAD,
HEAD ← k and set NEWV[k] to the new value of V[k]. After each simulation step, set
k ← HEAD, HEAD ← −1, and do the following operation repeatedly zero or more times
until k < 0: set V[k]← NEWV[k], t← LINK[k], LINK[k]← 0, k ← t.

Clearly this method is readily adapted to the case of scattered variables, if we
include a NEWV and LINK Ąeld in each node associated with a variable Ąeld V.

12. The WAIT list has deletions from the left to the right, but insertions are sorted
in from the right to the left (since the search is likely to be shorter from that side).

556 ANSWERS TO EXERCISES 2.2.5

Also we delete nodes from all three lists in several places when we do not know the
predecessor or successor of the node being deleted. Only the ELEVATOR list could be
converted to a one-way list, without much loss of efficiency.

Note: It may be preferable to use a nonlinear list as the WAIT list in a discrete
simulator, to reduce the time for sorting in. Section 5.2.3 discusses the general problem
of maintaining priority queues, or Şsmallest in, Ąrst outŤ lists, such as this. Several
ways are known in which only O(logn) operations are needed to insert or delete when
there are n elements in the list, although there is of course no need for such a fancy
method when n is known to be small.

SECTION 2.2.6

1. (Here the indices run from 1 to n, not from 0 to n as in Eq. (6).) LOC(A[J,K]) =
LOC(A[0,0])+2nJ+2K, where A[0,0] is an assumed node that is actually nonexistent.
If we set J = K = 1, we get LOC(A[1,1]) = LOC(A[0,0]) + 2n + 2, so the answer can
be expressed in several ways. The fact that LOC(A[0,0]) might be negative has led to
many bugs in compilers and loading routines.

2. LOC(A[I1,. . .,Ik]) = LOC(A[0,. . .,0]) +

1≤r≤k arIr = LOC(A[l1,. . .,lk]) +

1≤r≤k arIr −

1≤r≤k arlr, where ar = c

r<s≤k(us − ls + 1).

Note: For a generalization to the structures occurring in programming languages
such as C, and a simple algorithm to compute the relevant constants, see P. Deuel,
CACM 9 (1966), 344Ű347.

3. 1 ≤ k ≤ j ≤ n if and only if 0 ≤ k − 1 ≤ j − 1 ≤ n − 1; so replace k, j, n
respectively by k − 1, j − 1, n− 1 in all formulas derived for lower bound zero.

4. LOC(A[J,K]) = LOC(A[0,0]) + nJ− J(J− 1)/2 + K.

5. Let A0 = LOC(A[0,0]). There are at least two solutions, assuming that J is in
rI1 and K is in rI2. (i) ŚLDA TA2,1:7Š, where location TA2+j is ŚNOP j+1*j/2+A0,2Š;
(ii) ŚLDA C1,7:2Š, where location C1 contains ŚNOP TA,1:7Š and location TA+j says
ŚNOP j+1*j/2+A0Š. The latter takes one more cycle but doesnŠt tie the table down
to index register 2.

6. (a) LOC(A[I,J,K]) = LOC(A[0,0,0]) +

I + 2

3

+

J + 1

2

+

K

1

.

(b) LOC(B[I,J,K]) = LOC(B[0,0,0])

+

n+ 3

3

−

n+ 3− I

3

+

n+ 2− I

2

−

n+ 2− J

2

+ K− J,

hence the stated form is possible in this case also.

7. LOC(A[I1, . . . ,Ik])= LOC(A[0,. . .,0])+

1≤r≤k

Ir+k−r
1+k−r

. See exercise 1.2.6Ű56.

8. (Solution by P. Nash.) Let X[I,J,K] be deĄned for 0 ≤ I ≤ n, 0 ≤ J ≤ n + 1,
0 ≤ K ≤ n + 2. We can let A[I,J,K] = X[I,J,K]; B[I,J,K] = X[J,I + 1,K];
C[I,J,K] = X[I,K,J + 1]; D[I,J,K] = X[J,K,I + 2]; E[I,J,K] = X[K,I + 1,J + 1];
F[I,J,K] = X[K,J + 1,I + 2]. This scheme is the best possible, since it packs the
(n+ 1)(n+ 2)(n+ 3) elements of the six tetrahedral arrays into consecutive locations
with no overlap. Proof: A and B exhaust all cells X[i,j,k] with k = min(i, j, k);
C and D exhaust all cells with j = min(i, j, k) ̸= k; E and F exhaust all cells with
i = min(i, j, k) ̸= j, k.

(The construction generalizes to m dimensions, if anybody ever wants to pack the
elements of m! generalized tetrahedral arrays into (n+1)(n+2) . . . (n+m) consecutive

2.2.6 ANSWERS TO EXERCISES 557

locations. Associate a permutation a1a2 . . . am with each array, and store its elements
in X[Ia1

+ B1,Ia2
+ B2, . . . ,Iam + Bm], where B1B2 . . . Bm is an inversion table for

a1a2 . . . am as deĄned in exercise 5.1.1Ű7.)

9. G1. Set pointer variables P1, P2, P3, P4, P5, P6 to the Ąrst locations of the lists
FEMALE, A21, A22, A23, BLOND, BLUE, respectively. Assume in what follows
that the end of each list is given by link Λ, and Λ is smaller than any other
link. If P6 = Λ, stop (the list, unfortunately, is empty).

G2. (Many possible orderings of the following actions could be done; we have
chosen to examine EYES Ąrst, then HAIR, then AGE, then SEX.) Set P5 ←
HAIR(P5) zero or more times until P5 ≤ P6. If now P5 < P6, go to step G5.

G3. Set P4 ← AGE(P4) repeatedly if necessary until P4 ≤ P6. Similarly do the
same to P3 and P2 until P3 ≤ P6 and P2 ≤ P6. If now P4, P3, P2 are all
smaller than P6, go to G5.

G4. Set P1← SEX(P1) until P1 ≤ P6. If P1 = P6, we have found one of the young
ladies desired, so output her address, P6. (Her age can be determined from
the settings of P2, P3, and P4.)

G5. Set P6← EYES(P6). Now stop if P6 = Λ; otherwise return to G2.

This algorithm is interesting but not the best way to organize a list for such a search.

10. See Section 6.5.

11. At most 200 + 200 + 3 · 4 · 200 = 2800 words.

12. VAL(Q0) = c, VAL(P0) = b/a, VAL(P1) = d.

13. It is convenient to have at the end of each list a sentinel that Şcompares lowŤ in
some Ąeld on which the list is ordered. A straight one-way list could have been used, for
example by retaining just the LEFT links in BASEROW[i] and the UP links in BASECOL[j],
by modifying Algorithm S thus: In S2, test if P0 = Λ before setting J ← COL(P0); if
so, set P0 ← LOC(BASEROW[I0]) and go to S3. In S3, test if Q0 = Λ; if so, terminate.
Step S4 should change by analogy with step S2. In S5, test if P1 = Λ; if so, act as if
COL(P1) < 0. In S6, test if UP(PTR[J]) = Λ; if so, act as if its ROW Ąeld were negative.

These modiĄcations make the algorithm more complicated and save no storage
space except a ROW or COL Ąeld in the list heads (which in the case of MIX is no saving
at all).

14. One could Ąrst link together those columns that have a nonzero element in the
pivot row, so that all other columns could be skipped as we pivot on each row. Rows
in which the pivot column is zero are skipped over immediately.

15. Let rI1 ≡ PIVOT, J; rI2 ≡ P0; rI3 ≡ Q0; rI4 ≡ P; rI5 ≡ P1, X; LOC(BASEROW[i]) ≡
BROW + i; LOC(BASECOL[j]) ≡ BCOL + j; PTR[j] ≡ BCOL + j(1 :3).

01 ROW EQU 0:3

02 UP EQU 4:5

03 COL EQU 0:3

04 LEFT EQU 4:5

05 PTR EQU 1:3

06 PIVOTSTEP STJ 9F Subroutine entrance, rI1 = PIVOT

07 S1 LD2 0,1(ROW) S1. Initialize.
08 ST2 I0 I0← ROW(PIVOT).
09 LD3 1,1(COL)

558 ANSWERS TO EXERCISES 2.2.6

10 ST3 J0 J0← COL(PIVOT).
11 LDA =1.0= Floating point constant 1
12 FDIV 2,1

13 STA ALPHA ALPHA← 1/VAL(PIVOT).
14 LDA =1.0=

15 STA 2,1 VAL(PIVOT)← 1.
16 ENT2 BROW,2 P0← LOC(BASEROW[I0]).
17 ENT3 BCOL,3 Q0← LOC(BASECOL[J0]).
18 JMP S2

19 2H ENTA BCOL,1

20 STA BCOL,1(PTR) PTR[J]← LOC(BASECOL[J]).
21 LDA 2,2

22 FMUL ALPHA

23 STA 2,2 VAL(P0)← ALPHA× VAL(P0).
24 S2 LD2 1,2(LEFT) S2. Process pivot row. P0← LEFT(P0).
25 LD1 1,2(COL) J← COL(P0).
26 J1NN 2B If J ≥ 0, process J.
27 S3 LD3 0,3(UP) S3. Find new row. Q0← UP(Q0).
28 LD4 0,3(ROW) rI4← ROW(Q0).
29 9H J4N * If rI4 < 0, exit.
30 CMP4 I0

31 JE S3 If rI4 = I0, repeat.
32 ST4 I(ROW) I← rI4.
33 ENT4 BROW,4 P← LOC(BASEROW[I]).
34 S4A LD5 1,4(LEFT) P1← LEFT(P).
35 S4 LD2 1,2(LEFT) S4. Find new column. P0← LEFT(P0).
36 LD1 1,2(COL) J← COL(P0).
37 CMP1 J0

38 JE S4 Repeat if J = J0.
39 ENTA 0,1

40 SLA 2 rA(0:3)← J.
41 J1NN S5

42 LDAN 2,3 If J < 0,
43 FMUL ALPHA set VAL(Q0)← −ALPHA× VAL(Q0).
44 STA 2,3

45 JMP S3

46 1H ENT4 0,5 P← P1.
47 LD5 1,4(LEFT) P1← LEFT(P).
48 S5 CMPA 1,5(COL) S5. Find I, J element.
49 JL 1B Loop until COL(P1) ≤ J.
50 JE S7 If =, go right to S7.
51 S6 LD5 BCOL,1(PTR) S6. Insert I, J element. rI5← PTR[J].
52 LDA I rA(0:3)← I.
53 2H ENT6 0,5 rI6← rI5.
54 LD5 0,6(UP) rI5← UP(rI6).
55 CMPA 0,5(ROW)

56 JL 2B Jump if ROW(rI5) > I.
57 LD5 AVAIL X⇐ AVAIL.
58 J5Z OVERFLOW

2.2.6 ANSWERS TO EXERCISES 559

59 LDA 0,5(UP)

60 STA AVAIL

61 LDA 0,6(UP)

62 STA 0,5(UP) UP(X)← UP(PTR[J]).
63 LDA 1,4(LEFT)

64 STA 1,5(LEFT) LEFT(X)← LEFT(P).
65 ST1 1,5(COL) COL(X)← J.
66 LDA I(ROW)

67 STA 0,5(ROW) ROW(X)← I.
68 STZ 2,5 VAL(X)← 0.
69 ST5 1,4(LEFT) LEFT(P)← X.
70 ST5 0,6(UP) UP(PTR[J])← X.
71 S7 LDAN 2,3 S7. Pivot. −VAL(Q0)
72 FMUL 2,2 × VAL(P0)

73 FADD 2,5 + VAL(P1).
74 JAZ S8 If signiĄcance lost, to S8.
75 STA 2,5 Otherwise store in VAL(P1).
76 ST5 BCOL,1(PTR) PTR[J]← P1.
77 ENT4 0,5 P← P1.
78 JMP S4A P1← LEFT(P), to S4.
79 S8 LD6 BCOL,1(PTR) S8. Delete I, J element. rI6← PTR[J].
80 JMP *+2

81 LD6 0,6(UP) rI6← UP(rI6).
82 LDA 0,6(UP)

83 DECA 0,5 Is UP(rI6) = P1?
84 JANZ *-3 Loop until equal.
85 LDA 0,5(UP)

86 STA 0,6(UP) UP(rI6)← UP(P1).
87 LDA 1,5(LEFT)

88 STA 1,4(LEFT) LEFT(P)← LEFT(P1).
89 LDA AVAIL AVAIL⇐ P1.
90 STA 0,5(UP)

91 ST5 AVAIL

92 JMP S4A P1← LEFT(P), to S4.

Note: Using the conventions of Chapter 4, lines 71Ű74 would actually be coded

LDA 2,3; FMUL 2,2; FCMP 2,5; JE S8; STA TEMP; LDA 2,5; FSUB TEMP;

with a suitable parameter EPSILON in location zero.

17. For each row i and each element A[i,k] ̸= 0, add A[i,k] times row k of B to row i
of C. Maintain only the COL links of C while doing this; the ROW links are easily Ąlled in
afterwards. [A. Schoor, Inf. Proc. Letters 15 (1982), 87Ű89.]

18. The three pivot steps, in respective columns 3, 1, 2, yield respectively

1
3

2
3

1
3

− 2
3
− 1

3
− 2

3

− 1
3
− 2

3
− 1

3

 ,

1
2

1
2

0

− 3
2

1
2

1

− 1
2
− 1

2
0

 ,

0 1 0

−2 1 1

1 −2 0

 ;

560 ANSWERS TO EXERCISES 2.2.6

after the Ąnal permutations, we have the answer

1 −2 1
0 1 −2
0 0 1

 .

20. a0 = LOC(A[1,1])− 3, a1 = 1 or 2, a2 = 3− a1.

21. For example, M ← max(I, J), LOC(A[I,J]) = LOC(A[1,1]) + M(M − 1) + I − J.
(Such formulas have been proposed independently by many people. A. L. Rosen-
berg and H. R. Strong have suggested the following k-dimensional generalization:
LOC(A[I1, . . . ,Ik]) = Lk where L1 = LOC(A[1, . . . ,1])+I1−1, Lr = Lr−1 +(Mr−1)r+
(Mr − Ir)(Mr−1

r − (Mr − 1)r−1), and Mr = max(I1, . . . , Ir) [IBM Technical Disclosure
Bulletin 14 (1972), 3026Ű3028]. See Current Trends in Programming Methodology 4

(PrenticeŰHall, 1978), 263Ű311, for further results of this kind.)

22. According to the combinatorial number system (exercise 1.2.6Ű56), we can let

p(i1, . . . , ik) =

i1
1

+

i1 + i2 + 1

2

+ · · ·+

i1 + i2 + · · ·+ ik + k − 1

k

.

[Det Kongelige Norske Videnskabers Selskabs Forhandlinger 34 (1961), 8Ű9.]

23. Let c[J] = LOC(A[0,J]) = LOC(A[0,0])+mJ, if there werem rows when the matrix
grew from J to J+ 1 columns; similarly, let r[I] = LOC(A[I,0]) = LOC(A[0,0])+nI, if
there were n columns when we created row I. Then we can use the allocation function

LOC(A[I,J]) =

I + c[J], if c[J] ≥ r[I];
J + r[I], otherwise.

It is not hard to prove that c[J] ≥ r[I] implies c[J] ≥ r[I] + J, and c[J] ≤ r[I] implies
c[J] + I ≤ r[I]; therefore the relation

LOC(A[I,J]) = max(I + LOC(A[0,J]), J + LOC(A[I,0]))

also holds. We need not restrict allocation to mn consecutive locations; the only
constraint is that, when the matrix grows, we allocate m or n consecutive new cells in
locations greater than those previously used. This construction is due to E. J. Otoo
and T. H. Merrett [Computing 31 (1983), 1Ű9], who also generalized it to k dimensions.

24. [Aho, Hopcroft, and Ullman, The Design and Analysis of Computer Algorithms
(AddisonŰWesley, 1974), exercise 2.12.] Besides the array A, maintain also a veriĄcation
array V of the same size, and a list L of the locations used. Let n be the number of
items in L; initially n = 0 and the contents of L, A, and V are arbitrary. Whenever you
want to access A[k] for a value of k that you might not have used before, Ąrst check
whether 0 ≤ V[k] < n and L[V[k]] = k. If not, set V[k] ← n, L[n] ← k, A[k] ← 0,
and n← n+ 1. Otherwise you can be sure that A[k] already contains legitimate data.
(By a slight extension of this method, it is possible to save and eventually restore the
contents of all entries of A and V that change during the computation.)

SECTION 2.3

1. There are three ways to choose the root. Once the root has been chosen, say A,
there are three ways to partition the other nodes into subtrees: {B}, {C}; {C}, {B};
{B,C}. In the latter case there are two ways to make {B,C} into a tree, depending

2.3 ANSWERS TO EXERCISES 561

on which is the root. Hence we get
the four trees shown when A is the
root, and 12 in all. This problem is
solved for any number n of nodes
in exercise 2.3.4.4Ű23.

A

B C

A

C B

A

B

C

A

C

B

2. The Ąrst two trees in the answer to exercise 1 are the same, as oriented trees, so
we get only 9 different possibilities in this case. For the general solution, see Section
2.3.4.4, where the formula nn−1 is proved.

3. Part 1: To show there is at least one such sequence. Let the tree have n nodes. The
result is clear when n = 1, since X must be the root. If n > 1, the deĄnition implies
there is a root X1 and subtrees T1, T2, . . . , Tm; either X = X1 or X is a member of a
unique Tj . In the latter case, there is by induction a path X2, . . . , X where X2 is the
root of Tj , and since X1 is the parent of X2 we have a path X1, X2, . . . , X.

Part 2: To show there is at most one such sequence. We will prove by induction
that if X is not the root of the tree, X has a unique parent (so that Xk determines Xk−1

determines Xk−2, etc.) If the tree has one node, there is nothing to prove; otherwise
X is in a unique Tj . Either X is the root of Tj , in which case X has a unique parent
by deĄnition; or X is not the root of Tj , in which case X has a unique parent in Tj by
induction, and no node outside of Tj can be XŠs parent.

4. True (unfortunately).

5. 4.

6. Let parent[0](X) denote X, and let parent[k+1](X) = parent(parent[k](X)), so
that parent[1](X) is XŠs parent, and parent[2](X) is XŠs grandparent; when k ≥ 2,
parent[k](X) is XŠs Ş(great-)k−2grandparent.Ť The requested cousinship condition is
that parent[m+1](X) = parent[m+n+1](Y) but parent[m](X) ̸= parent[m+n](Y). When
n > 0, this relation is not symmetrical with respect to X and Y , although people
usually treat it as symmetrical in everyday conversation.

7. Use the (unsymmetric) condition deĄned in exercise 6, with the convention that
parent[j](X) ̸= parent[k](Y) if either j or k (or both) is −1. To show that this relation
is always valid for some unique m and n, consider the Dewey decimal notation for X
and Y , namely 1.a1. · · · .ap.b1. · · · .bq and 1.a1. · · · .ap.c1. · · · .cr, where p ≥ 0, q ≥ 0,
r ≥ 0 and (if qr ̸= 0) b1 ̸= c1. The Dewey numbers of any pair of nodes can be written
in this form, and clearly we must take m = q − 1 and m+ n = r − 1.

8. No binary tree is really a tree; the concepts are quite separate, even though the
diagram of a nonempty binary tree may look treelike.

9. A is the root, since we conventionally put the root at the top.

10. Any Ąnite collection of nested sets corresponds to a forest as deĄned in the text, as
follows: Let A1, . . . , An be the sets of the collection that are contained in no other. For
Ąxed j, the sub-collection of all sets contained in Aj is nested; hence we may assume
that this sub-collection corresponds to a tree (unordered) with Aj as the root.

11. In a nested collection C let X ≡ Y if there is some Z ∈ C such that X ∪ Y ⊆ Z.
This relation is obviously reĆexive and symmetric, and it is in fact an equivalence
relation since W ≡ X and X ≡ Y implies that there are Z1 and Z2 in C with W ⊆ Z1,
X ⊆ Z1 ∩ Z2, and Y ⊆ Z2. Since Z1 ∩ Z2 ̸= ∅, either Z1 ⊆ Z2 or Z2 ⊆ Z1; hence
W ∪ Y ⊆ Z1 ∪ Z2 ∈ C. Now if C is a nested collection, deĄne an oriented forest

562 ANSWERS TO EXERCISES 2.3

corresponding to C by the rule ŞX is an ancestor of Y , and Y is a descendant of X
(that is, a proper ancestor or descendant), if and only if X ⊃ Y .Ť Each equivalence class
of C corresponds to an oriented tree, which is an oriented forest with X ≡ Y for all X,
Y . (We thereby have generalized the deĄnitions of forest and tree that were given for
Ąnite collections.) In these terms, we may deĄne the level of X as the cardinal number
of ancestors(X). Similarly, the degree of X is the cardinal number of equivalence classes
in the nested collection descendants(X). We say X is the parent of Y , and Y is a child

of X, if X is an ancestor of Y but there is no Z such that X ⊃ Z ⊃ Y . (It is possible for
X to have descendants but no children, ancestors but no parent.) To get ordered trees
and forests, order the equivalence classes mentioned above in some ad hoc manner, for
example by embedding the relation ⊆ into linear order as in exercise 2.2.3Ű14.

Example (a): Let Sαk = {x | x = .d1d2d3 . . . in decimal notation, where α =
.e1e2e3 . . . in decimal notation, and dj = ej if j mod 2k ̸= 0}. The collection C =
{Sαk | k ≥ 0, 0 < α < 1} is nested, and gives a tree with inĄnitely many levels and
uncountable degree for each node.

Example (b), (c): It is convenient to deĄne this set in the plane, instead of in terms
of real numbers, and this is sufficient since there is a one-to-one correspondence between
the plane and the real numbers. Let Sαmn = {(α, y) | m/2n ≤ y < (m + 1)/2n},
and let Tα = {(x, y) | x ≤ α}. The collection C = {Sαmn | 0 < α < 1, n ≥ 0,
0 ≤ m < 2n} ∪ {Tα | 0 < α < 1} is easily seen to be nested. The children of
Sαmn are Sα(2m)(n+1) and Sα(2m+1)(n+1), and Tα has the child Sα00 plus the subtree
{Sβmn | β < α} ∪ {Tβ | β < α}. So each node has degree 2, and each node has
uncountably many ancestors of the form Tα. This construction is due to R. Bigelow.

Note: If we take a suitable well-ordering of the real numbers, and if we deĄne
Tα = {(x, y) | x ≻ α}, we can improve this construction slightly, obtaining a nested
collection where each node has uncountable level, degree 2, and two children.

12. We impose an additional condition on the partial ordering (analogous to that of
Şnested setsŤ) to ensure that it corresponds to a forest: If x ⪯ y and x ⪯ z then either
y ⪯ z or z ⪯ y. In other words, the elements larger than any given element are linearly
ordered. To make a tree, also assert the existence of a largest element r such that x ⪯ r
for all x. A proof that this gives an unordered tree as deĄned in the text, when the
number of nodes is Ąnite, runs like the proof for nested sets in exercise 10.

13. a1.a2. · · · .ak, a1.a2. · · · .ak−1, . . . , a1.a2, a1.

14. Since S is nonempty, it contains an element 1.a1. · · · .ak where k is as small as
possible; if k > 0 we also take ak as small as possible in S, and we immediately see that
k must be 0. In other words, S must contain the element 1. Let 1 be the root. All other
elements have k > 0, and so the remaining elements of S can be partitioned into sets
Sj = {1.j.a2. · · · .ak}, 1 ≤ j ≤ m, for some m ≥ 0. If m ̸= 0 and Sm is nonempty, we
deduce by reasoning as above that 1.j is in Sj for each Sj ; hence each Sj is nonempty.
Then it is easy to see that the sets S′

j = {1.a2. · · · .ak | 1.j.a2. · · · .ak is in Sj} satisfy
the same condition as S did. By induction, each of the Sj forms a tree.

15. Let the root be 1, and let the roots of the left and right subtrees of α be α.0
and α.1, respectively, when such roots exist. For example, King Christian IX appears
in two positions of Fig. 18(a), namely 1.0.0.0.0 and 1.1.0.0.1.0. For brevity we may
drop the decimal points and write merely 10000 and 110010. Note: This notation is
due to Francis Galton; see Natural Inheritance (Macmillan, 1889), 249. For pedigrees,
it is more mnemonic to use F and M in place of 0 and 1 and to drop the initial 1;
thus Christian IX is CharlesŠs MFFMF, his motherŠs fatherŠs fatherŠs motherŠs father.

2.3 ANSWERS TO EXERCISES 563

The 0 and 1 convention is interesting for another reason: It gives us an important
correspondence between nodes in a binary tree and positive integers expressed in the
binary system (namely, memory addresses in a computer).

16. (a) ×

2 −

a /

b c

(b) +

+ ×

a b 5 c

or +

a b ×

5 c

or +

a +

b ×

5 c

.

17. parent(Z[1]) = A; parent(Z[1, 2]) = C; parent(Z[1, 2, 2]) = E.

18. L[5, 1, 1] = (2). L[3, 1] is nonsense, since L[3] is an empty List.

19. [L]∗

a ∗

[L]

L[2] = (L); L[2, 1, 1] = a.

20. (Intuitively, the correspondence between 0-2-trees and binary trees is obtained by
removing all terminal nodes of the 0-2-tree; see the important construction in Section
2.3.4.5.) Let a 0-2-tree with one node correspond to the empty binary tree; and let
a 0-2-tree with more than one node, consisting therefore of a root r and 0-2-trees T1

and T2, correspond to the binary tree with root r, left subtree T ′
1, and right subtree T ′

2,
where T1 and T2 correspond respectively to T ′

1 and T ′
2.

21. 1 + 0 · n1 + 1 · n2 + · · · + (m − 1) · nm. Proof: The number of nodes in the tree
is n0 + n1 + n2 + · · · + nm, and this also equals 1 + (number of children in the tree)
= 1 + 0 · n0 + 1 · n1 + 2 · n2 + · · ·+m · nm.

22. The basic idea is to proceed recursively, with the representation of a nonempty
binary tree deĄned to be the representation of its root plus half-size-and-rotated rep-
resentations of its left and right subtrees. Thus an arbitrarily large binary tree can be
represented on a single sheet of paper, if one has a sufficiently powerful magnifying glass.

Many variations on this theme are possible. For example, one idea is to represent
the root by a line from the center of a given landscape-oriented page to the top edge,
and to rotate the left-subtree representation by 90◦ clockwise in the left halfpage, the
right-subtree representation by 90◦ counterclockwise in the right halfpage. Each node
is then represented by a line. (When this method is applied to a complete binary tree
having 2k−1 nodes on k levels, it yields so-called ŞH-trees,Ť which are the most efficient
layouts of such binary trees on a VLSI chip; see R. P. Brent and H. T. Kung, Inf. Proc.
Letters 11 (1980), 46Ű48.)

A

B C

D

E

F

G

HJ

AB C

D E

F

G

H J

564 ANSWERS TO EXERCISES 2.3

Another idea is to represent an empty binary tree by some sort of box, and to rotate the
subtree representations of nonempty binary trees so that left subsubtrees are alternately
to the left of or below the corresponding right subsubtrees, depending on whether the
depth of recursion is even or odd. Then the boxes correspond to external nodes in
an extended binary tree (see Section 2.3.4.5). This representation, which is strongly
related to the 2-d trees and quadtrees discussed in Section 6.5, is especially appropriate
when the external nodes carry information but the internal nodes do not.

SECTION 2.3.1

1. INFO(T) = A, INFO(RLINK(T)) = C, etc.; the answer is H.

2. Preorder: 1245367; symmetric order: 4251637; postorder: 4526731.

3. The statement is true; notice, for example, that nodes 4, 5, 6, 7 always appear in
this order in exercise 2. The result is immediately proved by induction on the size of
the binary tree.

4. It is the reverse of postorder. (This is easily proved by induction.)

5. In the tree of exercise 2, for example, preorder is 1, 10, 100, 101, 11, 110, 111, using
binary notation (which is in this case equivalent to the Dewey system). The strings of
digits have been sorted, like words in a dictionary.

In general, the nodes will be listed in preorder if they are sorted lexicographically
from left to right, with ŞblankŤ < 0 < 1. The nodes will be listed in postorder if they
are sorted lexicographically with 0 < 1 < ŞblankŤ. For inorder, use 0 < ŞblankŤ < 1.

(Moreover, if we imagine the blanks at the left and treat the Dewey labels as
ordinary binary numbers, we get level order ; see 2.3.3Ű(8).)

6. The fact that p1p2 . . . pn is obtainable with a stack is readily proved by induction
on n, or in fact we may observe that Algorithm T does precisely what is required in
its stack actions. (The corresponding sequence of SŠs and XŠs, as in exercise 2.2.1Ű3, is
the same as the sequence of 1s and 2s as subscripts in double order; see exercise 18.)

Conversely, if p1 p2 . . . pn is obtainable with a stack and if pk = 1, then p1 . . . pk−1 is
a permutation of {2, . . . , k} and pk+1 . . . pn is a permutation of {k+ 1, . . . , n}; these are
the permutations corresponding to the left and right subtrees, and both are obtainable
with a stack. The proof now proceeds by induction.

7. From the preorder, the root is known; then from the inorder, we know the left
subtree and the right subtree; and in fact we know the preorder and inorder of the
nodes in the latter subtrees. Hence the tree is readily constructed (and indeed it
is quite amusing to construct a simple algorithm that links the tree together in the
normal fashion, starting with the nodes linked together in preorder in LLINK and in
inorder in RLINK). Similarly, postorder and inorder together characterize the structure.
But preorder and postorder do not; there are two binary trees having AB as preorder
and BA as postorder. If all nonterminal nodes of a binary tree have both branches
nonempty, its structure is characterized by preorder and postorder.

8. (a) Binary trees with all LLINKs null. (b) Binary trees with zero or one nodes.
(c) Binary trees with all RLINKs null.

9. T1 once, T2 2n+1 times, T3 n times, T4 n+1 times, T5 n times. These counts
can be derived by induction or by KirchhoffŠs law, or by examining Program T.

10. A binary tree with all RLINKs null will cause all n node addresses to be put in the
stack before any are removed.

2.3.1 ANSWERS TO EXERCISES 565

11. Let ank be the number of binary trees with n nodes for which the stack in
Algorithm T never contains more than k items. If gk(z) =

n ankz

n, we Ąnd g1(z) =
1/(1− z), g2(z) = 1/(1− z/(1− z)) = (1− z)/(1−2z), . . . , gk(z) = 1/(1− zgk−1(z)) =
qk−1(z)/qk(z) where q−1(z) = q0(z) = 1, qk+1(z) = qk(z) − zqk−1(z); hence gk(z) =
(f1(z)k+1 − f2(z)k+1)/(f1(z)k+2 − f2(z)k+2) where fj(z) = 1

2
(1 ±

√
1− 4z). It can

now be shown that ank = [un] (1 − u)(1 + u)2n(1 − uk+1)/(1 − uk+2); hence sn =
k≥1 k(ank − an(k−1)) is [un+1] (1 − u)2(1 + u)2n

j≥1 u
j/(1 − uj), minus ann. The

technique of exercise 5.2.2Ű52 now yields the asymptotic series

sn/ann =
√
πn− 3

2
− 13

24

π

n
+

1
2n

+O(n−3/2).

[N. G. de Bruijn, D. E. Knuth, and S. O. Rice, in Graph Theory and Computing, ed.
by R. C. Read (New York: Academic Press, 1972), 15Ű22.]

When the binary tree represents a forest as described in Section 2.3.2, the quantity
analyzed here is the height of that forest (the furthest distance between a node and a
root, plus one). Generalizations to many other varieties of trees have been obtained by
Flajolet and Odlyzko [J. Computer and System Sci. 25 (1982), 171Ű213]; the asymptotic
distribution of heights, both near the mean and far away, was subsequently analyzed
by Flajolet, Gao, Odlyzko, and Richmond [Combinatorics, Probability, and Computing
2 (1993), 145Ű156].

12. Visit NODE(P) between steps T2 and T3, instead of in step T5. For the proof,
demonstrate the validity of the statement ŞStarting at step T2 with . . . original value
A[1] . . . A[m],Ť essentially as in the text.

13. (Solution by S. Araújo, 1976.) Let steps T1 through T4 be unchanged, except that
a new variable Q is initialized to Λ in step T1′; Q will point to the last node visited, if
any. Step T5 becomes two steps:

T5′. [Right branch done?] If RLINK(P) = Λ or RLINK(P) = Q, go on to T6;
otherwise set A⇐ P, P← RLINK(P) and return to T2′.

T6′. [Visit P.] Visit NODE(P), set Q← P, and return to T4′.

A similar proof applies. (Steps T4′ and T5′ can be streamlined so that nodes are not
taken off the stack and immediately reinserted.)

14. By induction, there are always exactly n+ 1 Λ links (counting T when it is null).
There are n nonnull links, counting T, so the remark in the text about the majority of
null links is justiĄed.

15. There is a thread LLINK or RLINK pointing to a node if and only if it has a nonempty
right or left subtree, respectively. (See Fig. 24.)

16. If LTAG(Q) = 0, Q∗ is LLINK(Q); thus Q∗ is one step down and to the left. Otherwise
Q∗ is obtained by going upwards in the tree (if necessary) repeatedly until the Ąrst time
it is possible to go down to the right without retracing steps; typical examples are the
trips from P to P∗ and from Q to Q∗ in the following tree:

Q P*

Q*

P

566 ANSWERS TO EXERCISES 2.3.1

17. If LTAG(P) = 0, set Q ← LLINK(P) and terminate. Otherwise set Q ← P, then set
Q← RLINK(Q) zero or more times until Ąnding RTAG(Q) = 0; Ąnally set Q← RLINK(Q)

once more.

18. Modify Algorithm T by inserting a step T2.5, ŞVisit NODE(P) the Ąrst timeŤ; in
step T5, we are visiting NODE(P) the second time.

Given a threaded tree the traversal is extremely simple:

(P, 1)∆ = (LLINK(P), 1) if LTAG(P) = 0, otherwise (P, 2);

(P, 2)∆ = (RLINK(P), 1) if RTAG(P) = 0, otherwise (RLINK(P), 2).

In each case, we move at most one step in the tree; in practice, therefore, double order
and the values of d and e are embedded in a program and not explicitly mentioned.

Suppressing all the Ąrst visits gives us precisely Algorithms T and S; suppressing
all the second visits gives us the solutions to exercises 12 and 17.

19. The basic idea is to start by Ąnding the parent Q of P. Then if P ̸= LLINK(Q) we
have P♯ = Q; otherwise we can Ąnd P♯ by repeatedly setting Q← Q$ zero or more times
until RTAG(Q) = 1. (See, for example, P and P♯ in the tree shown.)

P

P♯

There is no efficient algorithm to Ąnd the parent of P in a general right-threaded
tree, since a degenerate right-threaded tree in which all left links are null is essentially a
circular list in which the links go the wrong way. Therefore we cannot traverse a right-
threaded tree in postorder with the same efficiency as the stack method of exercise 13,
if we keep no history of how we have reached the current node P.

But if the tree is threaded in both directions, we can Ąnd PŠs parent efficiently:

F1. Set Q← P and R← P.

F2. If LTAG(Q) = RTAG(R) = 0, set Q ← LLINK(Q) and R ← RLINK(R) and repeat
this step. Otherwise go to F4 if RTAG(R) = 1.

F3. Set Q ← LLINK(Q), and terminate if P = RLINK(Q). Otherwise set R ←
RLINK(R) zero or more times until RTAG(R) = 1, then set Q ← RLINK(R) and
terminate.

F4. Set R← RLINK(R), and terminate with Q← R if P = LLINK(R). Otherwise set
Q ← LLINK(Q) zero or more times until LTAG(Q) = 1, then set Q ← LLINK(Q)

and terminate.

The average running time of Algorithm F is O(1) when P is a random node of the tree.
For if we count only the steps Q← LLINK(Q) when P is a right child, or only the steps
R← RLINK(R) when P is a left child, each link is traversed for exactly one node P.

2.3.1 ANSWERS TO EXERCISES 567

20. Replace lines 06Ű09 by: Replace lines 12Ű13 by:

T3 ENT4 0,6 LD4 0,6(LINK)

LD6 AVAIL LD5 0,6(INFO)

J6Z OVERFLOW LDX AVAIL

LDX 0,6(LINK) STX 0,6(LINK)

STX AVAIL ST6 AVAIL

ST5 0,6(INFO) ENT6 0,4

ST4 0,6(LINK)

If two more lines of code are added at line 06

T3 LD3 0,5(LLINK)

J3Z T5 To T5 if LLINK(P) = Λ.

with appropriate changes in lines 10 and 11, the running time goes down from (30n+
a + 4)u to (27a + 6n − 22)u. (This same device would reduce the running time of
Program T to (12a+ 6n− 7)u, which is a slight improvement, if we set a = (n+ 1)/2.)
21. The following solution by Joseph M. Morris [Inf. Proc. Letters 9 (1979), 197Ű200]
traverses also in preorder (see exercise 18).

U1. [Initialize.] Set P← T and R← Λ.

U2. [Done?] If P = Λ, the algorithm terminates.

U3. [Look left.] Set Q ← LLINK(P). If Q = Λ, visit NODE(P) in preorder and go
to U6.

U4. [Search for thread.] Set Q ← RLINK(Q) zero or more times until either Q = R

or RLINK(Q) = Λ.

U5. [Insert or remove thread.] If Q ̸= R, set RLINK(Q)← P and go to U8. Otherwise
set RLINK(Q) ← Λ (it had been changed temporarily to P, but weŠve now
traversed PŠs left subtree).

U6. [Inorder visit.] Visit NODE(P) in inorder.

U7. [Go to right or up.] Set R← P, P← RLINK(P), and return to U2.

U8. [Preorder visit.] Visit NODE(P) in preorder.

U9. [Go to left.] Set P← LLINK(P) and return to step U3.

Morris also suggested a slightly more complicated way to traverse in postorder.
A completely different solution was found by J. M. Robson [Inf. Proc. Letters 2

(1973), 12Ű14]. LetŠs say that a node is ŞfullŤ if its LLINK and RLINK are nonnull,
ŞemptyŤ if its LLINK and RLINK are both empty. Robson found a way to maintain a
stack of pointers to the full nodes whose right subtrees are being visited, using the link
Ąelds in empty nodes!

Yet another way to avoid an auxiliary stack was discovered independently by G.
Lindstrom and B. Dwyer, Inf. Proc. Letters 2 (1973), 47Ű51, 143Ű145. Their algorithm
traverses in triple order Ů it visits every node exactly three times, once in each of
preorder, inorder, and postorder Ů but it does not know which of the three is currently
being done.

W1. [Initialize.] Set P ← T and Q ← S, where S is a sentinel value Ů any number
that is known to be different from any link in the tree (e.g., −1).

W2. [Bypass null.] If P = Λ, set P← Q and Q← Λ.

W3. [Done?] If P = S, terminate the algorithm. (We will have Q = T at termina-
tion.)

568 ANSWERS TO EXERCISES 2.3.1

W4. [Visit.] Visit NODE(P).

W5. [Rotate.] Set R ← LLINK(P), LLINK(P) ← RLINK(P), RLINK(P) ← Q, Q ← P,
P← R, and return to W2.

Correctness follows from the fact that if we start at W2 with P pointing to the root of
a binary tree T and Q pointing to X, where X is not a link in that tree, the algorithm
will traverse the tree in triple order and reach step W3 with P = X and Q = T.

If α(T) = x1x2 . . . x3n is the resulting sequence of nodes in triple order, we have
α(T) = T α(LLINK(T)) T α(RLINK(T)) T. Therefore, as Lindstrom observed, the three
subsequences x1x4 . . . x3n−2, x2x5 . . . x3n−1, x3x6 . . . x3n each include every tree node
just once. (Since xj+1 is either the parent or child of xj , these subsequences visit the
nodes in such a way that each is at most three links away from its predecessor. Section
7.2.1.6 describes a general traversal scheme called prepostorder that has this property
not only for binary trees but for trees in general.)

22. This program uses the conventions of Programs T and S, with Q in rI6 and/or rI4.
The old-fashioned MIX computer is not good at comparing index registers for equality,
so variable R is omitted and the test ŞQ = RŤ is changed to ŞRLINK(Q) = PŤ.

01 U1 LD5 HEAD(LLINK) 1 U1. Initialize. P← T.
02 U2A J5Z DONE 1 Stop if P = Λ.
03 U3 LD6 0,5(LLINK) n+a−1 U3. Look left. Q← LLINK(P).
04 J6Z U6 n+a−1 To U6 if Q = Λ.
05 U4 CMP5 1,6(RLINK) 2n−2b U4. Search for thread.
06 JE 5F 2n−2b Jump if RLINK(Q) = P.
07 ENT4 0,6 2n−2b−a+1 rI4← Q.
08 LD6 1,6(RLINK) 2n−2b−a+1
09 J6NZ U4 2n−2b−a+1 To U4 with Q← RLINK(Q) if itŠs ̸= 0.
10 U5 ST5 1,4(RLINK) a−1 U5a. Insert thread. RLINK(Q)← P.
11 U9 LD5 0,5(LLINK) a−1 U9. Go to left. P← LLINK(P).
12 JMP U3 a−1 To U3.
13 5H STZ 1,6(RLINK) a−1 U5b. Remove thread. RLINK(Q)← Λ.
14 U6 JMP VISIT n U6. Inorder visit.
15 U7 LD5 1,5(RLINK) n U7. Go to right or up. P← RLINK(P).
16 U2 J5NZ U3 n U2. Done? To U3 if P ̸= Λ.
17 DONE ...

The total running time is 21n + 6a − 3 − 14b, where n is the number of nodes, a is
the number of null RLINKs (hence a− 1 is the number of nonnull LLINKs), and b is the
number of nodes on the treeŠs Şright spineŤ T, RLINK(T), RLINK(RLINK(T)), etc.

23. Insertion to the right: RLINKT(Q) ← RLINKT(P), RLINK(P) ← Q, RTAG(P) ← 0,
LLINK(Q) ← Λ. Insertion to the left, assuming LLINK(P) = Λ: Set LLINK(P) ← Q,
LLINK(Q) ← Λ, RLINK(Q) ← P, RTAG(Q) ← 1. Insertion to the left, between P and
LLINK(P) ̸= Λ: Set R← LLINK(P), LLINK(Q)← R, and then set R← RLINK(R) zero or
more times until RTAG(R) = 1; Ąnally set RLINK(R)← Q, LLINK(P)← Q, RLINK(Q)← P,
RTAG(Q)← 1.

(A more efficient algorithm for the last case can be used if we know a node F

such that P = LLINK(F) or P = RLINK(F); assuming the latter, for example, we could
set INFO(P) ↔ INFO(Q), RLINK(F) ← Q, LLINK(Q) ← P, RLINKT(Q) ← RLINKT(P),
RLINK(P)← Q, RTAG(P)← 1. This takes a Ąxed amount of time, but it is generally not
recommended because it switches nodes around in memory.)

2.3.1 ANSWERS TO EXERCISES 569

24. No:

A

B

C

D

E A

B

C

D

E

25. We Ąrst prove (b), by induction on the number of nodes in T, and similarly (c).
Now (a) breaks into several cases; write T ⪯1 T

′ if (i) holds, T ⪯2 T
′ if (ii) holds, etc.

Then T ⪯1 T
′ and T ′ ⪯ T ′′ implies T ⪯1 T

′′; T ⪯2 T
′ and T ′ ⪯ T ′′ implies T ⪯2 T

′′;
and the remaining two cases are treated by proving (a) by induction on the number of
nodes in T.

26. If the double order of T is (u1, d1), (u2, d2), . . . , (u2n, d2n) where the uŠs are nodes
and the dŠs are 1 or 2, form the ŞtraceŤ of the tree (v1, s1), (v2, s2), . . . , (v2n, s2n), where
vj = info(uj), and sj = l(uj) or r(uj) according as dj = 1 or 2. Now T ⪯ T ′ if and only
if the trace of T (as deĄned here) lexicographically precedes or equals the trace of T ′.
Formally, this means that we have either n ≤ n′ and (vj , sj) = (v′j , s

′
j) for 1 ≤ j ≤ 2n,

or else there is a k for which (vj , sj) = (v′j , s
′
j) for 1 ≤ j < k and either vk ≺ v′k or

vk = v′k and sk < s′k.

27. R1. [Initialize.] Set P ← HEAD, P′ ← HEAD′; these are the respective list heads of
the given right-threaded binary trees. Go to R3.

R2. [Check INFO.] If INFO(P) ≺ INFO(P′), terminate (T ≺ T ′); if INFO(P) ≻
INFO(P′), terminate (T ≻ T ′).

R3. [Go to left.] If LLINK(P) = Λ = LLINK(P′), go to R4; if LLINK(P) = Λ ̸=
LLINK(P′), terminate (T ≺ T ′); if LLINK(P) ̸= Λ = LLINK(P′), terminate
(T ≻ T ′); otherwise set P← LLINK(P), P′ ← LLINK(P′), and go to R2.

R4. [End of tree?] If P = HEAD (or, equivalently, if P′ = HEAD′), terminate
(T is equivalent to T ′).

R5. [Go to right.] If RTAG(P) = 1 = RTAG(P′), set P← RLINK(P), P′ ← RLINK(P′),
and go to R4. If RTAG(P) = 1 ̸= RTAG(P′), terminate (T ≺ T ′). If RTAG(P) ̸=
1 = RTAG(P′), terminate (T ≻ T ′). Otherwise, set P ← RLINK(P), P′ ←
RLINK(P′), and go to R2.

To prove the validity of this algorithm (and therefore to understand how it works),
one may show by induction on the size of the tree T0 that the following statement is
valid: Starting at step R2 with P and P′ pointing to the roots of two nonempty right-
threaded binary trees T0 and T ′

0, the algorithm will terminate if T0 and T ′
0 are not

equivalent, indicating whether T0 ≺ T ′
0 or T0 ≻ T ′

0; the algorithm will reach step R4
if T0 and T ′

0 are equivalent, with P and P′ then pointing respectively to the successor
nodes of T0 and T ′

0 in symmetric order.

28. Equivalent and similar.

29. Prove by induction on the size of T that the following statement is valid: Starting
at step C2 with P pointing to the root of a nonempty binary tree T and with Q pointing
to a node that has empty left and right subtrees, the procedure will ultimately arrive
at step C6 after setting INFO(Q)← INFO(P) and attaching copies of the left and right
subtrees of NODE(P) to NODE(Q), and with P and Q pointing respectively to the preorder
successor nodes of the trees T and NODE(Q).

570 ANSWERS TO EXERCISES 2.3.1

30. Assume that the pointer T in (2) is LLINK(HEAD) in (10). Thus LOC(T) = HEAD,
and HEAD$ is the Ąrst node of the binary tree in symmetric order.

L1. [Initialize.] Set Q← HEAD, RLINK(Q)← Q.

L2. [Advance.] Set P← Q$. (See below.)

L3. [Thread.] If RLINK(Q) = Λ, set RLINK(Q) ← P, RTAG(Q) ← 1; otherwise set
RTAG(Q) ← 0. If LLINK(P) = Λ, set LLINK(P) ← Q, LTAG(P) ← 1; otherwise
set LTAG(P)← 0.

L4. [Done?] If P ̸= HEAD, set Q← P and return to L2.

Step L2 of this algorithm implies the activation of an inorder traversal coroutine
like Algorithm T, with the additional proviso that Algorithm T visits HEAD after it has
fully traversed the tree. This notation is a convenient simpliĄcation in the description of
tree algorithms, since we need not repeat the stack mechanisms of Algorithm T over and
over again. Of course Algorithm S cannot be used during step L2, since the tree hasnŠt
been threaded yet. But Algorithm U in answer 21 can be used in step L2; it provides
us with a very pretty method that threads a tree without using any auxiliary stack.

31. X1. Set P← HEAD.

X2. Set Q← P$ (using, say, Algorithm S, modiĄed for a right-threaded tree).

X3. If P ̸= HEAD, set AVAIL⇐ P.

X4. If Q ̸= HEAD, set P← Q and go back to X2.

X5. Set LLINK(HEAD)← Λ.

Other solutions that decrease the length of the inner loop are clearly possible, although
the order of the basic steps is somewhat critical. The stated procedure works because
we never return a node to available storage until after Algorithm S has looked at both
its LLINK and its RLINK; as observed in the text, each of these links is used precisely
once during a complete tree traversal.

32. RLINK(Q)← RLINK(P), SUC(Q)← SUC(P), SUC(P)← RLINK(P)← Q, PRED(Q)← P,
PRED(SUC(Q))← Q.

33. Inserting NODE(Q) just to the left and below NODE(P) is quite simple: Set LLINKT(Q)
← LLINKT(P), LLINK(P) ← Q, LTAG(P) ← 0, RLINK(Q) ← Λ. Insertion to the right is
considerably harder, since it essentially requires Ąnding ∗Q, which is of comparable
difficulty to Ąnding Q♯ (see exercise 19); the node-moving technique discussed in ex-
ercise 23 could perhaps be used. So general insertions are more difficult with this
type of threading. But the insertions required by Algorithm C are not as difficult as
insertions are in general, and in fact the copying process is slightly faster for this kind
of threading:

C1. Set P ← HEAD, Q ← U, go to C4. (The assumptions and philosophy of
Algorithm C in the text are being used throughout.)

C2. If RLINK(P) ̸= Λ, set R ⇐ AVAIL, LLINK(R) ← LLINK(Q), LTAG(R) ← 1,
RLINK(R)← Λ, RLINK(Q)← LLINK(Q)← R.

C3. Set INFO(Q)← INFO(P).

C4. If LTAG(P) = 0, set R ⇐ AVAIL, LLINK(R) ← LLINK(Q), LTAG(R) ← 1,
RLINK(R)← Λ, LLINK(Q)← R, LTAG(Q)← 0.

C5. Set P← LLINK(P), Q← LLINK(Q).

C6. If P ̸= HEAD, go to C2.

The algorithm now seems almost too simple to be correct!

2.3.2 ANSWERS TO EXERCISES 571

Algorithm C for threaded or right-threaded binary trees takes slightly longer due
to the extra time to calculate P∗, Q∗ in step C5.

It would be possible to thread RLINKs in the usual way or to put ♯P in RLINK(P), in
conjunction with this copying method, by appropriately setting the values of RLINK(R)
and RLINKT(Q) in steps C2 and C4.

34. A1. Set Q ← P, and then repeatedly set Q ← RLINK(Q) zero or more times until
RTAG(Q) = 1.

A2. Set R ← RLINK(Q). If LLINK(R) = P, set LLINK(R) ← Λ. Otherwise set
R ← LLINK(R), then repeatedly set R ← RLINK(R) zero or more times until
RLINK(R) = P; then Ąnally set RLINKT(R) ← RLINKT(Q). (This step has
removed NODE(P) and its subtrees from the original tree.)

A3. Set RLINK(Q)← HEAD, LLINK(HEAD)← P.

(The key to inventing and/or understanding this algorithm is the construction of good
Şbefore and afterŤ diagrams.)

36. No; see the answer to exercise 1.2.1Ű15(e).

37. If LLINK(P) = RLINK(P) = Λ in the representation (2), let LINK(P) = Λ; otherwise
let LINK(P) = Q where NODE(Q) corresponds to NODE(LLINK(P)) and NODE(Q + 1)
to NODE(RLINK(P)). The condition LLINK(P) or RLINK(P) = Λ is represented by a
sentinel in NODE(Q) or NODE(Q + 1) respectively. This representation uses between n
and 2n−1 memory positions; under the stated assumptions, (2) would require 18 words
of memory, compared to 11 in the present scheme. Insertion and deletion operations
are approximately of equal efficiency in either representation. But this representation
is not quite as versatile in combination with other structures.

SECTION 2.3.2

1. If B is empty, F (B) is an empty forest. Otherwise, F (B) consists of a tree T plus
the forest F (right(B)), where root(T) = root(B) and subtrees(T) = F (left(B)).

2. The number of zeros in the binary notation is the number of decimal points in the
decimal notation; the exact formula for the correspondence is

a1.a2. · · · .ak ↔ 1a1 01a2−10 . . . 01ak−1,

where 1a denotes a ones in a row.

3. Sort the Dewey decimal notations for the nodes lexicographically (from left to
right, as in a dictionary), placing a shorter sequence a1. · · · .ak in front of its extensions
a1. · · · .ak. · · · .ar for preorder, and behind its extensions for postorder. Thus, if we
were sorting words instead of sequences of numbers, we would place the words cat,
cataract in the usual dictionary order, to get preorder; we would reverse the order of
initial subwords (cataract, cat), to get postorder. These rules are readily proved by
induction on the size of the tree.

4. True, by induction on the number of nodes.

5. (a) Inorder. (b) Postorder. It is interesting to formulate rigorous induction proofs
of the equivalence of these traversal algorithms.

6. We have preorder(T) = preorder(T ′), and postorder(T) = inorder(T ′), even if T
has nodes with only one child. The remaining two orders are not in any simple relation;
for example, the root of T comes at the end in one case and about in the middle in the
other.

572 ANSWERS TO EXERCISES 2.3.2

7. (a) Yes; (b) no; (c) no; (d) yes. Note that reverse preorder of a forest equals
postorder of the left-right reversed forest (in the sense of mirror reĆection).

8. T ⪯ T ′ means that either info(root(T)) ≺ info(root(T ′)), or these infoŠs are equal
and the following condition holds: Suppose the subtrees of root(T) are T1, . . . , Tn and
the subtrees of root(T ′) are T ′

1, . . . , T
′
n′ , and let k ≥ 0 be as large as possible such that

Tj is equivalent to T ′
j for 1 ≤ j ≤ k. Then either k = n or k < n and Tk+1 ⪯ T ′

k+1.

9. The number of nonterminal nodes is one less than the number of right links that
are Λ, in a nonempty forest, because the null right links correspond to the rightmost
child of each nonterminal node, and also to the root of the rightmost tree in the forest.
(This fact gives another proof of exercise 2.3.1Ű14, since the number of null left links
is obviously equal to the number of terminal nodes.)

10. The forests are similar if and only if n = n′ and d(uj) = d(u′
j), for 1 ≤ j ≤ n; they

are equivalent if and only if in addition info(uj) = info(u′
j), 1 ≤ j ≤ n. The proof is

similar to the previous proof, by generalizing Lemma 2.3.1P; let f(u) = d(u)− 1.

11.

↑

e neg

↑

x 2

y

↑

e neg

↑

x 2

12. If INFO(Q1) ̸= 0: Set R ← COPY(P1); then if TYPE(P2) = 0 and INFO(P2) ̸= 2,
set R ← TREE(Ş↑Ť,R,TREE(INFO(P2)− 1)); if TYPE(P2) ̸= 0, set R ← TREE(Ş↑Ť,R,
TREE(Ş−Ť,COPY(P2),TREE(1))); then set Q1← MULT(Q1,MULT(COPY(P2),R)).

If INFO(Q) ̸= 0: Set Q ← TREE(Ş×Ť,MULT(TREE(ŞlnŤ,COPY(P1)),Q),TREE(Ş↑Ť,
COPY(P1),COPY(P2))).

Finally go to DIFF[4].

13. The following program implements Algorithm 2.3.1C with rI1 ≡ P, rI2 ≡ Q,
rI3 ≡ R, and with appropriate changes to the initialization and termination conditions:

064 ST3 6F(0:2) Save contents of rI3, rI2.
065 ST2 7F(0:2) C1. Initialize.
066 ENT2 8F Start by creating NODE(U) with
067 JMP 1F RLINK(U) = Λ.
068 8H CON 0 Zero constant for initialization
069 4H LD1 0,1(LLINK) Set P← LLINK(P) = P∗.
070 1H LD3 AVAIL R⇐ AVAIL.
071 J3Z OVERFLOW

072 LDA 0,3(LLINK)

073 STA AVAIL

074 ST3 0,2(LLINK) LLINK(Q)← R.
075 ENNA 0,2

076 STA 0,3(RLINKT) RLINK(R)← Q, RTAG(R)← 1.

2.3.2 ANSWERS TO EXERCISES 573

077 INCA 8B rA← LOC(init node)− Q.
078 ENT2 0,3 Set Q← R = Q∗.
079 JAZ C3 To C3, the Ąrst time.
080 C2 LDA 0,1 C2. Anything to right?
081 JAN C3 Jump if RTAG(P) = 1.
082 LD3 AVAIL R⇐ AVAIL.
083 J3Z OVERFLOW

084 LDA 0,3(LLINK)

085 STA AVAIL

086 LDA 0,2(RLINKT)

087 STA 0,3(RLINKT) Set RLINKT(R)← RLINKT(Q).
088 ST3 0,2(RLINKT) RLINK(Q)← R, RTAG(Q)← 0.
089 C3 LDA 1,1 C3. Copy INFO.
090 STA 1,2 INFO Ąeld copied.
091 LDA 0,1(TYPE)

092 STA 0,2(TYPE) TYPE Ąeld copied.
093 C4 LDA 0,1(LLINK) C4. Anything to left?
094 JANZ 4B Jump if LLINK(P) ̸= Λ.
095 STZ 0,2(LLINK) LLINK(Q)← Λ.
096 C5 LD2N 0,2(RLINKT) C5. Advance. Q← −RLINKT(Q).
097 LD1 0,1(RLINK) P← RLINK(P).
098 J2P C5 Jump if RTAG(Q) was 1.
099 ENN2 0,2 Q← −Q.
100 C6 J2NZ C2 C6. Test if complete.
101 LD1 8B(LLINK) rI1← location of Ąrst node created.
102 6H ENT3 * Restore index registers.
103 7H ENT2 *

14. Let a be the number of nonterminal (operator) nodes copied. The number of
executions of the various lines in the previous program is as follows: 064Ű067, 1; 069, a;
070Ű079, a + 1; 080Ű081, n − 1; 082Ű088, n − 1 − a; 089Ű094, n; 095, n − a; 096Ű098,
n+ 1; 099Ű100, n− a; 101Ű103, 1. The total time is (36n+ 22)u; we use about 20% of
the time to get available nodes, 40% to traverse, and 40% to copy the INFO and LINK

information.

15. Comments are left to the reader.

218 DIV LDA 1,6

219 JAZ 1F

220 JMP COPYP2

221 ENTA SLASH

222 ENTX 0,6

223 JMP TREE2

224 ENT6 0,1

225 1H LDA 1,5

226 JAZ SUB

227 JMP COPYP2

228 ST1 1F(0:2)

229 ENTA CON2

230 JMP TREE0

231 ENTA UPARROW

232 1H ENTX *

233 JMP TREE2

234 ST1 1F(0:2)

235 JMP COPYP1

236 ENTA 0,1

237 ENT1 0,5

238 JMP MULT

239 ENTX 0,1

240 1H ENT1 *

241 ENTA SLASH

242 JMP TREE2

243 ENT5 0,1

244 JMP SUB

574 ANSWERS TO EXERCISES 2.3.2

16. Comments are left to the reader.

245 PWR LDA 1,6

246 JAZ 4F

247 JMP COPYP1

248 ST1 R(0:2)

249 LDA 0,3(TYPE)

250 JANZ 2F

251 LDA 1,3

252 DECA 2

253 JAZ 3F

254 INCA 1

255 STA CON0+1

256 ENTA CON0

257 JMP TREE0

258 STZ CON0+1

259 JMP 5F

260 2H JMP COPYP2

261 ST1 1F(0:2)

262 ENTA CON1

263 JMP TREE0

264 1H ENTX *

265 ENTA MINUS

266 JMP TREE2

267 5H LDX R(0:2)

268 ENTA UPARROW

269 JMP TREE2

270 ST1 R(0:2)

271 3H JMP COPYP2

272 ENTA 0,1

273 R ENT1 *

274 JMP MULT

275 ENTA 0,6

276 JMP MULT

277 ENT6 0,1

278 4H LDA 1,5

279 JAZ ADD

280 JMP COPYP1

281 ENTA LOG

282 JMP TREE1

283 ENTA 0,1

284 ENT1 0,5

285 JMP MULT

286 ST1 1F(0:2)

287 JMP COPYP1

288 ST1 2F(0:2)

289 JMP COPYP2

290 2H ENTX *

291 ENTA UPARROW

292 JMP TREE2

293 1H ENTX *

294 ENTA TIMES

295 JMP TREE2

296 ENT5 0,1

297 JMP ADD

17. References to early work on such problems can be found in a survey article by
J. Sammet, CACM 9 (1966), 555Ű569.

18. First set LLINK[j] ← RLINK[j] ← j for all j, so that each node is in a circular
list of length 1. Then for j = n, n − 1, . . . , 1 (in this order), if PARENT[j] = 0 set
r ← j, otherwise insert the circular list starting with j into the circular list starting with
PARENT[j] as follows: k ← PARENT[j], l ← RLINK[k], i ← LLINK[j], LLINK[j] ← k,
RLINK[k] ← j, LLINK[l] ← i, RLINK[i] ← l. This works because (a) each nonroot
node is always preceded by its parent or by a descendant of its parent; (b) nodes of
each family appear in their parentŠs list, in order of location; (c) preorder is the unique
order satisfying (a) and (b).

20. If u is an ancestor of v, it is immediate by induction that u precedes v in preorder
and follows v in postorder. Conversely, suppose u precedes v in preorder and follows
v in postorder; we must show that u is an ancestor of v. This is clear if u is the root
of the Ąrst tree. If u is another node of the Ąrst tree, v must be also, since u follows v
in postorder; so induction applies. Similarly if u is not in the Ąrst tree, v must not be
either, since u precedes v in preorder. (This exercise also follows easily from the result
of exercise 3. It gives us a quick test for ancestorhood, if we know each nodeŠs position
in preorder and postorder.)

21. If NODE(P) is a binary operator, pointers to its two operands are P1 = LLINK(P)

and P2 = RLINK(P1) = $P. Algorithm D makes use of the fact that P2$ = P, so
that RLINK(P1) may be changed to Q1, a pointer to the derivative of NODE(P1); then
RLINK(P1) is reset later in step D3. For ternary operations, we would have, say,
P1 = LLINK(P), P2 = RLINK(P1), P3 = RLINK(P2) = $P, so it is difficult to generalize
the binary trick. After computing the derivative Q1, we could set RLINK(P1)← Q1 tem-
porarily, and then after computing the next derivative Q2 we could set RLINK(Q2)← Q1

and RLINK(P2)← Q2 and reset RLINK(P1)← P2. But this is certainly inelegant, and it
becomes progressively more so as the degree of the operator becomes higher. Therefore
the device of temporarily changing RLINK(P1) in Algorithm D is deĄnitely a trick,

2.3.3 ANSWERS TO EXERCISES 575

not a technique. A more aesthetic way to control a differentiation process, because it
generalizes to operators of higher degree and does not rely on isolated tricks, can be
based on Algorithm 2.3.3F; see exercise 2.3.3Ű3.

22. From the deĄnition it follows immediately that the relation is transitive; that is,
if T ⊆ T ′ and T ′ ⊆ T ′′ then T ⊆ T ′′. (In fact the relation is easily seen to be a partial
ordering.) If we let f be the function taking nodes into themselves, clearly l(T) ⊆ T
and r(T) ⊆ T. Therefore if T ⊆ l(T ′) or T ⊆ r(T ′) we must have T ⊆ T ′.

Suppose fl and fr are functions that respectively show l(T) ⊆ l(T ′) and r(T) ⊆
r(T ′). Let f(u) = fl(u) if u is in l(T), f(u) = root(T ′) if u is root(T), otherwise
f(u) = fr(u). Now it follows easily that f shows T ⊆ T ′; for example, if we let r′(T)
denote r(T) \ root(T) we have preorder(T) = root(T) preorder(l(T)) preorder(r′(T));
preorder(T ′) = f(root(T)) preorder(l(T ′)) preorder(r′(T ′)).

The converse does not hold: Consider the subtrees with roots b and b′ in Fig. 25.

SECTION 2.3.3

1. Yes, we can reconstruct them just as (3) is deduced from (4), but interchanging
LTAG and RTAG, LLINK and RLINK, and using a queue instead of a stack.

2. Make the following changes in Algorithm F: Step F1, change to Şlast node of the
forest in preorder.Ť Step F2, change Şf(xd), . . . , f(x1)Ť to Şf(x1), . . . , f(xd)Ť in two
places. Step F4, ŞIf P is the Ąrst node in preorder, terminate the algorithm. (Then the
stack contains f(root(T1)), . . . , f(root(Tm)), from top to bottom, where T1, . . . , Tm are
the trees of the given forest, from left to right.) Otherwise set P to its predecessor in
preorder (P← P− c in the given representation), and return to F2.Ť

3. In step D1, also set S ← Λ. (S is a link variable that links to the top of the
stack.) Step D2 becomes, for example, ŞIf NODE(P) denotes a unary operator, set
Q ← S, S ← RLINK(Q), P1 ← LLINK(P); if it denotes a binary operator, set Q ← S,
Q1 ← RLINK(Q), S ← RLINK(Q1), P1 ← LLINK(P), P2 ← RLINK(P1). Then perform
DIFF[TYPE(P)].Ť Step D3 becomes ŞSet RLINK(Q) ← S, S ← Q.Ť Step D4 becomes
ŞSet P← P$.Ť The operation LLINK(DY)← Q may be avoided in step D5 if we assume
that S ≡ LLINK(DY). This technique clearly generalizes to ternary and higher-order
operators.

4. A representation like (10) takes n − m LLINKs and n + (n − m) RLINKs. The
difference in total number of links is n− 2m between the two forms of representation.
Arrangement (10) is superior when the LLINK and INFO Ąelds require about the same
amount of space in a node and when m is rather large, namely when the nonterminal
nodes have rather large degrees.

5. It would certainly be silly to include threaded RLINKs, since an RLINK thread just
points to PARENT anyway. Threaded LLINKs as in 2.3.2Ű(4) would be useful if it is
necessary to move leftward in the tree, for example if we wanted to traverse a tree in
reverse postorder, or in family order; but these operations are not signiĄcantly harder
without threaded LLINKs unless the nodes tend to have very high degrees.

6. L1. Set P← FIRST, FIRST← Λ.

L2. If P = Λ, terminate. Otherwise set Q← RLINK(P).

L3. If PARENT(P) = Λ, set RLINK(P) ← FIRST, FIRST ← P; otherwise set R ←
PARENT(P), RLINK(P)← LCHILD(R), LCHILD(R)← P.

L4. Set P← Q and return to L2.

576 ANSWERS TO EXERCISES 2.3.3

7. {1, 5}{2, 3, 4, 7}{6, 8, 9}.
8. Perform step E3 of Algorithm E, then test if j = k.

9. PARENT[k]: 5 0 2 2 0 8 2 2 8
k : 1 2 3 4 5 6 7 8 9

1

2

3 4

5

6

7 8

9

10. One idea is to set PARENT of each root node to the negative of the number of
nodes in its tree (these values being easily kept up to date); then if |PARENT[j]| >
|PARENT[k]| in step E4, the roles of j and k are interchanged. This technique (due to
M. D. McIlroy) ensures that each operation takes O(logn) steps.

For still more speed, we can use the following suggestion due to Alan Tritter: In
step E4, set PARENT[x] ← k for all values x ̸= k that were encountered in step E3.
This makes an extra pass up the trees, but it collapses them so that future searches
are faster. (See Section 7.4.1.)

11. It suffices to deĄne the transformation that is done for each input (P, j, Q, k):

T1. If PARENT(P) ̸= Λ, set j ← j + DELTA(P), P ← PARENT(P), and repeat this
step.

T2. If PARENT(Q) ̸= Λ, set k ← k + DELTA(Q), Q ← PARENT(Q), and repeat this
step.

T3. If P = Q, check that j = k (otherwise the input erroneously contains con-
tradictory equivalences). If P ̸= Q, set DELTA(Q) ← j − k, PARENT(Q) ← P,
LBD(P) ← min(LBD(P), LBD(Q) + DELTA(Q)), and UBD(P) ← max(UBD(P),
UBD(Q) + DELTA(Q)).

Note: It is possible to allow the ARRAY X[l:u] declarations to occur intermixed with
equivalences, or to allow assignment of certain addresses of variables before others are
equivalenced to them, etc., under suitable conditions that are not difficult to under-
stand. For further development of this algorithm, see CACM 7 (1964), 301Ű303, 506.

12. (a) Yes. (If this condition is not required, it would be possible to avoid the loops
on S that appear in steps A2 and A9.) (b) Yes.

13. The crucial fact is that the UP chain leading upward from P always mentions the
same variables and the same exponents for these variables as the UP chain leading
upward from Q, except that the latter chain may include additional steps for variables
with exponent zero. (This condition holds throughout most of the algorithm, except
during the execution of steps A9 and A10.) Now we get to step A8 either from A3 or
from A10, and in each case it was veriĄed that EXP(Q) ̸= 0. Therefore EXP(P) ̸= 0,
and in particular it follows that P ̸= Λ, Q ̸= Λ, UP(P) ̸= Λ, UP(Q) ̸= Λ; the result
stated in the exercise now follows. Thus the proof depends on showing that the UP

chain condition stated above is preserved by the actions of the algorithm.

14, 15. See Martin Ward and Hussain Zedan, ŞProvably correct derivation of algo-
rithms using FermaT,Ť Formal Aspects of Computing 27 (2015), to appear.

2.3.3 ANSWERS TO EXERCISES 577

16. We prove (by induction on the number of nodes in a single tree T) that if P is
a pointer to T, and if the stack is initially empty, steps F2 through F4 will end with
the single value f(root(T)) on the stack. This is true for n = 1. If n > 1, there are
0 < d = DEGREE(root(T)) subtrees T1, . . . , Td; by induction and the nature of a stack,
and since postorder consists of T1, . . . , Td followed by root(T), the algorithm computes
f(T1), . . . , f(Td), and then f(root(T)), as desired. The validity of Algorithm F for
forests follows.
17. G1. Set the stack empty, and let P point to the root of the tree (the last node in

postorder). Evaluate f(NODE(P)).
G2. Push DEGREE(P) copies of f(NODE(P)) onto the stack.
G3. If P is the Ąrst node in postorder, terminate the algorithm. Otherwise set P

to its predecessor in postorder (this would be simply P← P− c in (9)).
G4. Evaluate f(NODE(P)) using the value at the top of the stack, which is equal

to f(NODE(PARENT(P))). Pop this value off the stack, and return to G2.
Note: An algorithm analogous to this one can be based on preorder instead of postorder
as in exercise 2. In fact, family order or level order could be used; in the latter case we
would use a queue instead of a stack.
18. The INFO1 and RLINK tables, together with the suggestion for computing LTAG in
the text, give us the equivalent of a binary tree represented in the usual manner. The
idea is to traverse this tree in postorder, counting degrees as we go:

P1. Let R, D, and I be stacks that are initially empty; then set R⇐ n+ 1, D⇐ 0,
j ← 0, k ← 0.

P2. If top(R) > j + 1, go to P5. (If an LTAG Ąeld were present, we could have
tested LTAG[j] = 0 instead of top(R) > j + 1.)

P3. If I is empty, terminate the algorithm; otherwise set i ⇐ I, k ← k + 1,
INFO2[k]← INFO1[i], DEGREE[k]⇐ D.

P4. If RLINK[i] = 0, go to P3; otherwise delete the top of R (which will equal
RLINK[i]).

P5. Set top(D) ← top(D) + 1, j ← j + 1, I ⇐ j, D ⇐ 0, and if RLINK[j] ̸= 0 set
R⇐ RLINK[j]. Go to P2.

19. (a) This property is equivalent to saying that SCOPE links do not cross each other.
(b) The Ąrst tree of the forest contains d1+1 elements, and we can proceed by induction.
(c) The condition of (a) is preserved when we take minima.

Notes: By exercise 2.3.2Ű20, it follows that d1d2 . . . dn can also be interpreted in
terms of inversions: If the kth node in postorder is the pkth node in preorder, then dk
is the number of elements > k that appear to the left of k in p1p2 . . . pn.

A similar scheme, in which we list the number of descendants of each node in
postorder of the forest, leads to sequences of numbers c1c2 . . . cn characterized by the
properties (i) 0 ≤ ck < k and (ii) k ≥ j ≥ k − ck implies j − cj ≥ k − ck. Algorithms
based on such sequences have been investigated by J. M. Pallo, Comp. J. 29 (1986),
171Ű175. Notice that ck is the size of the left subtree of the kth node in symmetric
order of the corresponding binary tree. We can also interpret dk as the size of the right

subtree of the kth node in symmetric order of a suitable binary tree, namely the binary
tree that corresponds to the given forest by the dual method of exercise 2.3.2Ű5.

The relation dk ≤ d′k for 1 ≤ k ≤ n deĄnes an interesting lattice ordering of forests
and binary trees, Ąrst introduced in another way by D. Tamari [Thèse (Paris, 1951)];
see exercise 6.2.3Ű32.

578 ANSWERS TO EXERCISES 2.3.4.1

SECTION 2.3.4.1

1. (B, A, C, D, B), (B, A, C, D, E, B), (B, D, C, A, B), (B, D, E, B), (B, E, D, B),
(B,E,D,C,A,B).

2. Let (V0, V1, . . . , Vn) be a walk of smallest possible length from V to V ′. If now
Vj = Vk for some j < k, then (V0, . . . , Vj , Vk+1, . . . , Vn) would be a shorter walk.

3. (The fundamental path traverses e3 and e4 once, but cycle C2 traverses them −1
times, giving a net total of zero.) Traverse the following edges: e1, e2, e6, e7, e9, e10,
e11, e12, e14.

4. If not, let G′′ be the subgraph of G′ obtained by deleting each edge ej for which
Ej = 0. Then G′′ is a Ąnite graph that has no cycles and at least one edge, so by
the proof of Theorem A there is at least one vertex, V , that is adjacent to exactly one
other vertex, V ′. Let ej be the edge joining V to V ′; then KirchhoffŠs equation (1) at
vertex V is Ej = 0, contradicting the deĄnition of G′′.

5. A = 1 +E8, B = 1 +E8 −E2, C = 1 +E8, D = 1 +E8 −E5, E = 1 +E17 −E21,
F = 1 + E′′

13 + E17 − E21, G = 1 + E′′
13, H = E17 − E21, J = E17, K = E′′

19 + E20,
L = E17 +E′′

19 +E20 −E21, P = E17 +E20 −E21, Q = E20, R = E17 −E21, S = E25.
Note: In this case it is also possible to solve for E2, E5, . . . , E25 in terms of A,B, . . . , S;
hence there are nine independent solutions, explaining why we eliminated six variables
in Eq. 1.3.3Ű(8).

6. (The following solution is based on the idea that we may print out each edge that
does not make a cycle with the preceding edges.) Use Algorithm 2.3.3E, with each pair
(ai, bi) representing ai ≡ bi in the notation of that algorithm. The only change is to
print (ai, bi) if j ̸= k in step E4.

To show that this algorithm is valid, we must prove that (a) the algorithm prints
out no edges that form a cycle, and (b) if G contains at least one free subtree, the
algorithm prints out n − 1 edges. DeĄne j ≡ k if there exists a path from Vj to Vk
or if j = k. This is clearly an equivalence relation, and moreover j ≡ k if and only
if this relation can be deduced from the equivalences a1 ≡ b1, . . . , am ≡ bm. Now
(a) holds because the algorithm prints out no edges that form a cycle with previously
printed edges; (b) is true because PARENT[k] = 0 for precisely one k if all vertices are
equivalent.

A more efficient algorithm can, however, be based on depth-Ąrst search; see
Algorithm 2.3.5A and Section 7.4.1.

7. Fundamental cycles: C0 = e0 + e1 + e4 + e9 (fundamental path is e1 + e4 + e9);
C5 = e5 + e3 + e2; C6 = e6 − e2 + e4; C7 = e7 − e4 − e3; C8 = e8 − e9 − e4 − e3.
Therefore we Ąnd E1 = 1, E2 = E5 −E6, E3 = E5 −E7 −E8, E4 = 1 +E6 −E7 −E8,
E9 = 1− E8.

8. Each step in the reduction process combines two arrows ei and ej that start at
the same box, and it suffices to prove that such steps can be reversed. Thus we are
given the value of ei + ej after combination, and we must assign consistent values to ei
and ej before the combination. There are three essentially different situations:

Case 1 Case 2 Case 3
Before

A B
α

β

ei

ej

α′

β′

A

B

C

α

β

ei

ej

α′

β′

α′′

β′′
A B

α

β

ei

ej

α′

β′

2.3.4.1 ANSWERS TO EXERCISES 579

After

A B
α

β

ei+ej α′

β′

A B,C
α

β

ei+ej
α′

α′′

β′

β′′
A,B

α

β

α′

β′

ei+ej

Here A, B, and C stand for vertices or supervertices, and the αŠs and βŠs stand for the
other given Ćows besides ei + ej ; these Ćows may each be distributed among several
edges, although only one is shown. In Case 1 (ei and ej lead to the same box), we may
choose ei arbitrarily, then ej ← (ei + ej) − ei. In Case 2 (ei and ej lead to different
boxes), we must set ei ← β′ − α′, ej ← β′′ − α′′. In Case 3 (ei is a loop but ej is
not), we must set ej ← β′ − α′, ei ← (ei + ej)− ej . In each case we have reversed the
combination step as desired.

The result of this exercise essentially proves that the number of fundamental cycles
in the reduced Ćow chart is the minimum number of vertex Ćows that must be measured
to determine all the others. In the given example, the reduced Ćow chart reveals that
only three vertex Ćows (e.g., a, c, d) need to be measured, while the original chart
of exercise 7 has four independent edge Ćows. We save one measurement every time
Case 1 occurs during the reduction.

A similar reduction procedure could be based on combining the arrows Ćowing into

a given box, instead of those Ćowing out. It can be shown that this would yield the
same reduced Ćow chart, except that the supervertices would contain different names.

The construction in this exercise is based on ideas due to Armen Nahapetian and
F. Stevenson. For further comments, see A. Nahapetian, Acta Informatica 3 (1973),
37Ű41; D. E. Knuth and F. Stevenson, BIT 13 (1973), 313Ű322.

9. Each edge from a vertex to itself becomes a Şfundamental cycleŤ all by itself. If
there are k + 1 edges e, e′, . . . , e(k) between vertices V and V ′, make k fundamental
cycles e′ ± e, . . . , e(k) ± e (choosing + or − according as the edges go in the opposite
or the same direction), and then proceed as if only edge e were present.

Actually this situation would be much simpler conceptually if we had deĄned a
graph in such a way that multiple edges are allowed between vertices, and edges are
allowed from a vertex to itself; paths and cycles would be deĄned in terms of edges
instead of vertices. Such a deĄnition is, in fact, made for directed graphs in Section
2.3.4.2.

10. If the terminals have all been connected together, the corresponding graph must
be connected in the technical sense. A minimum number of wires will involve no cycles,
so we must have a free tree. By Theorem A, a free tree contains n − 1 wires, and a
graph with n vertices and n− 1 edges is a free tree if and only if it is connected.

11. It is sufficient to prove that when n > 1 and c(n − 1, n) is the minimum of the
c(i, n), there exists at least one minimum cost tree in which Tn−1 is wired to Tn. (For,
any minimum cost tree with n > 1 terminals and with Tn−1 wired to Tn must also be a
minimum cost tree with n− 1 terminals if we regard Tn−1 and Tn as Şcommon,Ť using
the convention stated in the algorithm.)

To prove the statement above, suppose we have a minimum cost tree in which
Tn−1 is not wired to Tn. If we add the wire Tn−1 −−− Tn we obtain a cycle, and any
of the other wires in that cycle may be removed; removing the other wire touching Tn
gives us another tree, whose total cost is not greater than the original, and Tn−1−−−Tn
appears in that tree.

580 ANSWERS TO EXERCISES 2.3.4.1

12. Keep two auxiliary tables, a(i) and b(i), for 1 ≤ i < n, representing the fact that
the cheapest connection from Ti to a chosen terminal is to Tb(i), and its cost is a(i);
initially a(i) = c(i, n) and b(i) = n. Then do the following operation n− 1 times: Find
i such that a(i) = min1≤j<n a(j); connect Ti to Tb(i); for 1 ≤ j < n if c(i, j) < a(j) set
a(j)← c(i, j) and b(j)← i; and set a(i)←∞. Here c(i, j) means c(j, i) when j < i.

(It is somewhat more efficient to avoid the use of ∞, keeping instead a one-
way linked list of those j that have not yet been chosen. With or without this
straightforward improvement, the algorithm takes O(n2) operations.) See also E. W.
Dijkstra, Proc. Nederl. Akad. Wetensch. A63 (1960), 196Ű199; D. E. Knuth, The
Stanford GraphBase (New York: ACM Press, 1994), 460Ű497. SigniĄcantly better
algorithms to Ąnd a minimum-cost spanning tree are discussed in Section 7.5.4.

13. If there is no path from Vi to Vj , for some i ̸= j, then no product of the
transpositions will move i to j. So if all permutations are generated, the graph must be
connected. Conversely if it is connected, remove edges if necessary until we have a free
tree. Then renumber the vertices so that Vn is adjacent to only one other vertex, namely
Vn−1. (See the proof of Theorem A.) Now the transpositions other than (n−1 n) form
a free tree with n− 1 vertices; so by induction if π is any permutation of {1, 2, . . . , n}
that leaves n Ąxed, π can be written as a product of those transpositions. If π moves
n to j then π(j n−1)(n−1 n) = ρ Ąxes n; hence π = ρ(n−1 n)(j n−1) can be written
as a product of the given transpositions.

SECTION 2.3.4.2

1. Let (e1, . . . , en) be an oriented walk of smallest possible length from V to V ′. If
now init(ej) = init(ek) for j < k, (e1, . . . , ej−1, ek, . . . , en) would be a shorter walk; a
similar argument applies if Ąn(ej) = Ąn(ek) for j < k. Hence (e1, . . . , en) is simple.

2. Those cycles in which all signs are the same: C0, C8, C′′
13, C17, C′′

19, C20.

3. For example, use three vertices A, B, C, with arcs from A to B and A to C.

4. If there are no oriented cycles, Algorithm 2.2.3T topologically sorts G. If there
is an oriented cycle, topological sorting is clearly impossible. (Depending on how this
exercise is interpreted, oriented cycles of length 1 could be excluded from consideration.)

5. Let k be the smallest integer such that Ąn(ek) = init(ej) for some j ≤ k. Then
(ej , . . . , ek) is an oriented cycle.

6. False (on a technicality), just because there may be several different arcs from one
vertex to another.

7. True for Ąnite directed graphs: If we start at any vertex V and follow the only
possible oriented path, we never encounter any vertex twice, so we must eventually
reach the vertex R (the only vertex with no successor). For inĄnite directed graphs the
result is obviously false since we might have vertices R, V1, V2, V3, . . . and arcs from Vj
to Vj+1 for j ≥ 1.

9. All arcs point upward.

A B

C

DE

F

G

H

I

J

K

L

M

N

2.3.4.2 ANSWERS TO EXERCISES 581

10. G1. Set k ← P [j], P [j]← 0.

G2. If k = 0, stop; otherwise set m← P [k], P [k]← j, j ← k, k ← m, and repeat
step G2.

11. This algorithm combines Algorithm 2.3.3E with the method of the preceding
exercise, so that all oriented trees have arcs that correspond to actual arcs in the
directed graph; S[j] is an auxiliary table that tells whether an arc goes from j to P [j]
(S[j] = +1) or from P [j] to j (S[j] = −1). Initially P [1] = · · · = P [n] = 0. The
following steps may be used to process each arc (a, b):

C1. Set j ← a, k ← P [j], P [j]← 0, s← S[j].

C2. If k = 0, go to C3; otherwise set m ← P [k], t ← S[k], P [k] ← j, S[k] ← −s,
s← t, j ← k, k ← m, and repeat step C2.

C3. (Now a appears as the root of its tree.) Set j ← b, and then if P [j] ̸= 0
repeatedly set j ← P [j] until P [j] = 0.

C4. If j = a, go to C5; otherwise set P [a] ← b, S[a] ← +1, print (a, b) as an arc
belonging to the free subtree, and terminate.

C5. Print ŞCYCLEŤ followed by Ş(a, b)Ť.

C6. If P [b] = 0 terminate. Otherwise if S[b] = +1, print Ş+(b, P [b])Ť, else print
Ş−(P [b], b)Ť; set b← P [b] and repeat step C6.

Note: This algorithm will take at most O(m logn) steps if we incorporate the suggestion
of McIlroy in answer 2.3.3Ű10. But there is a much better solution that needs only O(m)
steps: Use depth-Ąrst search to construct a Şpalm tree,Ť with one fundamental cycle
for each ŞfrondŤ [R. E. Tarjan, SICOMP 1 (1972), 146Ű150].

12. It equals the in-degree; the out-degree of each vertex can be only 0 or 1.

13. DeĄne a sequence of oriented subtrees of G as follows: G0 is the vertex R alone.
Gk+1 is Gk, plus any vertex V of G that is not in Gk but for which there is an arc from
V to V ′ where V ′ is in Gk, plus one such arc e[V] for each such vertex. It is immediate
by induction that Gk is an oriented tree for all k ≥ 0, and that if there is an oriented
path of length k from V to R in G then V is in Gk. Therefore G∞, the set of all V
and e[V] in any of the Gk, is the desired oriented subtree of G.

14. (e12, e20, e00, e
′
01, e10, e01, e

′
12, e22, e21), (e12, e20, e00, e

′
01, e

′
12, e22, e21, e10, e01),

(e12, e20, e
′
01, e10, e00, e01, e

′
12, e22, e21), (e12, e20, e

′
01, e

′
12, e22, e21, e10, e00, e01),

(e12, e22, e20, e00, e
′
01, e10, e01, e

′
12, e21), (e12, e22, e20, e00, e

′
01, e

′
12, e21, e10, e01),

(e12, e22, e20, e
′
01, e10, e00, e01, e

′
12, e21), (e12, e22, e20, e

′
01, e

′
12, e21, e10, e00, e01),

in lexicographic order; the eight possibilities come from the independent choices of
which of e00 or e′01, e10 or e′12, e20 or e22, should precede the other.

15. True for Ąnite graphs: If it is connected and balanced and has more than one
vertex, it has an Eulerian trail that touches all the vertices. (But false in general.)

16. Consider the directed graph G with vertices V1, . . . , V13 and with an arc from Vj
to Vk for each k in pile j; this graph is balanced. Winning the game is equivalent to
tracing out an Eulerian trail in G, because the game ends when the fourth arc to V13

is encountered (namely, when the fourth king turns up). Now if the game is won, the
stated digraph is an oriented subtree by Lemma E. Conversely if the stated digraph is
an oriented tree, the game is won by Theorem D.

17. 1
13

. This answer can be obtained, as the author Ąrst obtained it, by laborious
enumeration of oriented trees of special types and the application of generating func-
tions, etc., based on the methods of Section 2.3.4.4. But such a simple answer deserves

582 ANSWERS TO EXERCISES 2.3.4.2

a simple, direct proof, and indeed there is one [see Tor B. Staver, Norsk Matematisk
Tidsskrift 28 (1946), 88Ű89]. DeĄne an order for turning up all cards of the deck, as
follows: Obey the rules of the game until getting stuck, then ŞcheatŤ by turning up the
Ąrst available card (Ąnd the Ąrst pile that is not empty, going clockwise from pile 1)
and continue as before, until eventually all cards have been turned up. The cards in

the order of turning up are in completely random order (since the value of a card need
not be speciĄed until after it is turned up). So the problem is just to calculate the
probability that in a randomly shuffled deck the last card is a king. More generally the
probability that k cards are still face down when the game is over is the probability that
the last king in a random shuffle is followed by k cards, namely 4!

51−k

3

48!
52!

. Hence a
person playing this game without cheating will turn up an average of exactly 42.4 cards
per game. Note: Similarly, it can be shown that the probability that the player will
have to ŞcheatŤ k times in the process described above is exactly given by the Stirling
number [13

k+1
]/13!. (See Eq. 1.2.10Ű(9) and exercise 1.2.10Ű7; the case of a more general

card deck is considered in exercise 1.2.10Ű18.)

18. (a) If there is a cycle (V0, V1, . . . , Vk), where necessarily 3 ≤ k ≤ n, the sum of the
k rows of A corresponding to the k edges of this cycle, with appropriate signs, is a row
of zeros; so if G is not a free tree the determinant of A0 is zero.

But if G is a free tree we may regard it as an ordered tree with root V0, and we
can rearrange the rows and columns of A0 so that columns are in preorder and so that
the kth row corresponds to the edge from the kth vertex (column) to its parent. Then
the matrix is triangular with ±1Šs on the diagonal, so the determinant is ±1.

(b) By the BinetŰCauchy formula (exercise 1.2.3Ű46) we have

detAT0A0 =

1≤i1<···<in≤m
(detAi1...in)2

where Ai1...in represents a matrix consisting of rows i1, . . . , in of A0 (thus corresponding
to a choice of n edges of G). The result now follows from (a).

[See S. Okada and R. Onodera, Bull. Yamagata Univ. 2 (1952), 89Ű117.]

19. (a) The conditions a00 = 0 and ajj = 1 are just conditions (a), (b) of the deĄnition
of oriented tree. If G is not an oriented tree there is an oriented cycle (by exercise 7),
and the rows of A0 corresponding to the vertices in this oriented cycle will sum to a
row of zeros; hence detA0 = 0. If G is an oriented tree, assign an arbitrary order to the
children of each family and regardG as an ordered tree. Now permute rows and columns
of A0 until they correspond to preorder of the vertices. Since the same permutation
has been applied to the rows as to the columns, the determinant is unchanged; and the
resulting matrix is triangular with +1 in every diagonal position.

(b) We may assume that a0j = 0 for all j, since no arc emanating from V0 can
participate in an oriented subtree. We may also assume that ajj > 0 for all j ≥ 1 since
otherwise the whole jth row is zero and there obviously are no oriented subtrees. Now
use induction on the number of arcs: If ajj > 1 let e be some arc leading from Vj ; let
B0 be a matrix like A0 but with arc e deleted, and let C0 be the matrix like A0 but
with all arcs except e that lead from Vj deleted. Example: If A0 = (3

−1
−2

2
), j = 1,

and e is an arc from V1 to V0, then B0 = (2
−1

−2
2
), C0 = (1

−1
0
2
). In general we have

detA0 = detB0 + detC0, since the matrices agree in all rows except row j, and A0 is
the sum of B0 and C0 in that row. Moreover, the number of oriented subtrees of G
is the number of subtrees that do not use e (namely, detB0, by induction) plus the
number that do use e (namely, detC0).

2.3.4.2 ANSWERS TO EXERCISES 583

Notes: The matrix A is often called the Laplacian of the graph, by analogy with a
similar concept in the theory of partial differential equations. If we delete any set S of
rows from the matrix A, and the same set of columns, the determinant of the resulting
matrix is the number of oriented forests whose roots are the vertices {Vk | k ∈ S} and
whose arcs belong to the given digraph. The matrix tree theorem for oriented trees
was stated without proof by J. J. Sylvester in 1857 (see exercise 28), then forgotten for
many years until it was independently rediscovered by W. T. Tutte [Proc. Cambridge
Phil. Soc. 44 (1948), 463Ű482, §3]. The Ąrst published proof in the special case of
undirected graphs, when the matrix A is symmetric, was given by C. W. Borchardt
[Crelle 57 (1860), 111Ű121]. Several authors have ascribed the theorem to Kirchhoff,
but Kirchhoff proved a quite different (though related) result.

20. Using exercise 18 we Ąnd B = AT0A0. Or, using exercise 19, B is the matrix A0 for
the directed graph G′ with two arcs (one in each direction) in place of each edge of G;
each free subtree of G corresponds uniquely to an oriented subtree of G′ with root V0,
since the directions of the arcs are determined by the choice of root.

21. Construct the matrices A and A∗ as in exercise 19. For the example graphs G
and G∗ in Figs. 36 and 37,

A =

2 −2 0
−1 3 −2
−1 −1 2

 , A∗ =

[00] [10] [20] [01] [01] [21] [12] [12] [22]
[00] 2 0 0 −1 −1 0 0 0 0
[10] −1 3 0 −1 −1 0 0 0 0
[20] −1 0 3 −1 −1 0 0 0 0
[01] 0 −1 0 3 0 0 −1 −1 0
[01] 0 −1 0 0 3 0 −1 −1 0
[21] 0 −1 0 0 0 3 −1 −1 0
[12] 0 0 −1 0 0 −1 3 0 −1
[12] 0 0 −1 0 0 −1 0 3 −1
[22] 0 0 −1 0 0 −1 0 0 2

.

Add the indeterminate λ to every diagonal element of A and A∗. If t(G) and t(G∗) are
the numbers of oriented subtrees of G and G∗, we then have detA = λt(G) + O(λ2),
detA∗ = λt(G∗) +O(λ2). (The number of oriented subtrees of a balanced graph is the
same for any given root, by exercise 22, but we do not need that fact.)

If we group vertices Vjk for equal k the matrix A∗ can be partitioned as shown
above. Let Bkk′ be the submatrix of A∗ consisting of the rows for Vjk and the columns
for Vj′k′ , for all j and j′ such that Vjk and Vj′k′ are in G∗. By adding the 2nd, . . . ,
mth columns of each submatrix to the Ąrst column and then subtracting the Ąrst row
of each submatrix from the 2nd, . . . , mth rows, the matrix A∗ is transformed so that

Bkk′ =

akk′ ∗ . . . ∗
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 for k ̸= k′, Bkk =

λ+akk ∗ . . . ∗
0 λ+m . . . 0
...

...
. . .

...
0 0 . . . λ+m

 .

The asterisks in the top rows of the transformed submatrices turn out to be irrelevant,
because the determinant of A∗ is now seen to be (λ+m)(m−1)n times

det

λ+ a00 a01 . . . a0(n−1)

a10 λ+ a11 . . . a1(n−1)

...
...

. . .
...

a(n−1)0 a(n−1)1 . . . λ+ a(n−1)(n−1)

= λt(G) +O(λ2).

584 ANSWERS TO EXERCISES 2.3.4.2

Notice that when n = 1 and there are m arcs from V0 to itself, we Ąnd in particular
that exactly mm−1 oriented trees are possible on m labeled nodes. This result will be
obtained by quite different methods in Section 2.3.4.4.

This derivation can be generalized to determine the number of oriented subtrees
of G∗ when G is an arbitrary directed graph; see R. Dawson and I. J. Good, Ann.
Math. Stat. 28 (1957), 946Ű956; D. E. Knuth, Journal of Combinatorial Theory 3

(1967), 309Ű314. An alternative, purely combinatorial proof has been given by J. B.
Orlin, Journal of Combinatorial Theory B25 (1978), 187Ű198.

22. The total number is (σ1 + · · · + σn) times the number of Eulerian trails starting
with a given edge e1, where init(e1) = V1. Each such trail determines an oriented
subtree with root V1 by Lemma E, and for each of the T oriented subtrees there aren
j=1(σj − 1)! walks satisfying the three conditions of Theorem D, corresponding to

the different order in which the arcs {e | init(e) = Vj , e ̸= e[Vj], e ̸= e1} are entered
into P . (Exercise 14 provides a simple example.)

23. Construct the directed graph Gk with mk−1 vertices as in the hint, and denote
by [x1, . . . , xk] the arc mentioned there. For each function that has maximum period
length, we can deĄne a unique corresponding Eulerian trail, by letting f(x1, . . . , xk) =
xk+1 if arc [x1, . . . , xk] is followed by [x2, . . . , xk+1]. (We regard Eulerian trails as
being the same if one is just a cyclic permutation of the other.) Now Gk = G∗

k−1 in

the sense of exercise 21, so Gk has mmk−1−mk−2

times as many oriented subtrees as
Gk−1; by induction Gk has mmk−1−1 oriented subtrees, and mmk−1−k with a given
root. Therefore by exercise 22 the number of functions with maximum period, namely
the number of Eulerian trails of Gk starting with a given arc, is m−k(m!)m

k−1

. [For
m = 2 this result is due to C. Flye Sainte-Marie, LŠIntermédiaire des Mathématiciens
1 (1894), 107Ű110.]

24. DeĄne a new directed graph having Ej copies of ej , for 0 ≤ j ≤ m. This graph
is balanced, hence it contains an Eulerian trail (e0, . . .) by Theorem G. The desired
oriented walk comes by deleting the edge e0 from this Eulerian trail.

25. Assign an arbitrary order to all arcs in the sets Ij = {e | init(e) = Vj} and
Fj = {e | Ąn(e) = Vj}. For each arc e in Ij , let ATAG(e) = 0 and ALINK(e) = e′ if
e′ follows e in the ordering of Ij ; also let ATAG(e) = 1 and ALINK(e) = e′ if e is last
in Ij and e′ is Ąrst in Fj . Let ALINK(e) = Λ in the latter case if Fj is empty. DeĄne
BLINK and BTAG by the same rules, reversing the roles of init and Ąn.

Examples (using alphabetic order in each set of arcs):

r

a c

d e f

b

H

R

ar
c

A
L
I
N
K

A
T
A
G

B
L
I
N
K

B
T
A
G

a d 1 b 0
b Λ 1 c 0
c f 1 r 1
d Λ 1 e 0
e Λ 1 a 1
f Λ 1 c 1
r a 1 Λ 1

b

h

d

j

f g
e

a

c

ar
c

A
L
I
N
K

A
T
A
G

B
L
I
N
K

B
T
A
G

a c 0 b 1
b a 1 d 0
c e 0 a 1
d h 0 f 0
e g 0 f 1
f j 0 d 1
g c 1 h 0
h b 1 j 0
j e 1 Λ 1

2.3.4.2 ANSWERS TO EXERCISES 585

Note: If in the oriented tree representation we add another arc from H to itself,
we get an interesting situation: Either we get the standard conventions 2.3.1Ű(8) with
LLINK, LTAG, RLINK, RTAG interchanged in the list head, or (if the new arc is placed
last in the ordering) we get the standard conventions except RTAG = 0 in the node
associated with the root of the tree.

This exercise is based on an idea communicated to the author by W. C. Lynch.
Can tree traversal algorithms like Algorithm 2.3.1S be generalized to classes of digraphs
that are not oriented trees, using such a representation?

27. Let aij be the sum of p(e) over all arcs e from Vi to Vj . We are to prove that
tj =

i aijti for all j. Since

i aji = 1, we must prove that

i ajitj =

i aijti.

But this is not difficult, because both sides of the equation represent the sum of all
products p(e1) . . . p(en) taken over subgraphs {e1, . . . , en} of G such that init(ei) = Vi
and such that there is a unique oriented cycle contained in {e1, . . . , en}, where this cycle
includes Vj . Removing any arc of the cycle yields an oriented tree; the left-hand side of
the equation is obtained by factoring out the arcs that leave Vj , while the right-hand
side corresponds to those that enter Vj .

In a sense, this exercise is a combination of exercises 19 and 26.

28. Every term in the expansion is a1p1
. . . ampmb1q1

. . . bnqn , where 0 ≤ pi ≤ n for
1 ≤ i ≤ m and 0 ≤ qj ≤ m for 1 ≤ j ≤ n, times some integer coefficient. Represent
this product as a directed graph on the vertices {0, u1, . . . , um, v1, . . . , vn}, with arcs
from ui to vpi and from vj to uqj , where u0 = v0 = 0.

If the digraph contains a cycle, the integer coefficient is zero. For each cycle
corresponds to a factor of the form

ai0j0
bj0i1 ai1j1

. . . aik−1jk−1
bjk−1i0 (∗)

where the indices (i0, i1, . . . , ik−1) are distinct and so are the indices (j0, j1, . . . , jk−1).
The sum of all terms containing (∗) as a factor is (∗) times the determinant obtained
by setting ailj ← [j= jl] for 0 ≤ j ≤ n and bjli ← [i= i(l+1) mod k] for 0 ≤ i ≤ m,
for 0 ≤ l < k, leaving the variables in the other m + n − 2k rows unchanged. This
determinant is identically zero, because the sum of rows i0, i1, . . . , ik−1 in the top
section equals the sum of rows j0, j1, . . . , jk−1 in the bottom section.

On the other hand, if the directed graph contains no cycles, the integer coefficient
is +1. This follows because each factor aipi and bjqj must have come from the diagonal
of the determinant: If any off-diagonal element ai0j0

is chosen in row i0 of the top
section, we must choose some off-diagonal bj0i1 from row j0 of the bottom section,
hence we must choose some off-diagonal ai1j1

from row i1 of the top section, etc.,
forcing a cycle.

Thus the coefficient is +1 if and only if the corresponding digraph is an oriented
tree with root 0. The number of such terms (hence the number of such oriented trees)
is obtained by setting each aij and bji to 1; for example,

det

4 0 1 1 1
0 4 1 1 1
1 1 3 0 0
1 1 0 3 0
1 1 0 0 3

= det

4 0 1 1 1
−4 4 0 0 0

1 1 3 0 0
0 0 −3 3 0
0 0 −3 0 3

= det

4 0 3 1 1
0 4 0 0 0
2 1 3 0 0
0 0 0 3 0
0 0 0 0 3

= det

4 3
2 3

· 4 · 3 · 3.

In general we obtain det(n+1
m

n
m+1

) · (n+ 1)m−1 · (m+ 1)n−1.

586 ANSWERS TO EXERCISES 2.3.4.2

Notes: J. J. Sylvester considered the special case m = n and a10 = a20 =
· · · = am0 = 0 in Quarterly J. of Pure and Applied Math. 1 (1857), 42Ű56, where
he conjectured (correctly) that the total number of terms is then nn(n + 1)n−1. He
also stated without proof that the (n + 1)n−1 nonzero terms present when aij = δij
correspond to all connected cycle-free graphs on {0, 1, . . . , n}. In that special case, he
reduced the determinant to the form in the matrix tree theorem of exercise 19, e.g.,

det

b10 + b12 + b13 −b12 −b13

−b21 b20 + b21 + b23 −b23

−b31 −b32 b30 + b31 + b32

 .

Cayley quoted this result in Crelle 52 (1856), 279, ascribing it to Sylvester; thus it is
ironic that the theorem about the number of such graphs is often attributed to Cayley.

By negating the Ąrst m rows of the given determinant, then negating the Ąrst m
columns, we can reduce this exercise to the matrix tree theorem.

[Matrices having the general form considered in this exercise are important in
iterative methods for the solution of partial differential equations, and they are said
to have ŞProperty A.Ť See, for example, Louis A. Hageman and David M. Young,
Applied Iterative Methods (Academic Press, 1981), Chapter 9.]

SECTION 2.3.4.3

1. The root is the empty sequence; arcs go from (x1, . . . , xn) to (x1, . . . , xn−1).

2. Take one tetrad type and rotate it 180◦ to get another tetrad type; these two types
clearly tile the plane (without further rotations), by repeating a 2× 2 pattern.

3. Consider the set of tetrad types

1

1

j j+1

for all positive integers j. The right half
plane can be tiled in uncountably many ways; but whatever square is placed in the
center of the plane puts a Ąnite limit on the distance it can be continued to the left.

4. Systematically enumerate all possible ways to tile an n×n block, for n = 1, 2, . . . ,
looking for toroidal solutions within these blocks. If there is no way to tile the plane, the
inĄnity lemma tells us there is an n with no n×n solutions. If there is a way to tile the
plane, the assumption tells us that there is an n with an n×n solution containing a rect-
angle that yields a toroidal solution. Hence in either case the algorithm will terminate.

[But the stated assumption is false, as shown in the next exercise; and in fact there
is no algorithm that will determine in a Ąnite number of steps whether or not there
exists a way to tile the plane with a given set of types. On the other hand, if such a
tiling does exist, there is always a tiling that is quasitoroidal, in the sense that each of
its n × n blocks occurs at least once in every f(n) × f(n) block, for some function f .
See B. Durand, Theoretical Computer Science 221 (1999), 61Ű75.]

5. Start by noticing that we need classes α
γ
β
δ

replicated in 2×2 groups in any solution.
Then, step 1: Considering just the α squares, show that the pattern a

c
b
d

must be
replicated in 2 × 2 groups of α squares. Step n > 1: Determine a pattern that must
appear in a cross-shaped region of height and width 2n − 1. The middle of the crosses
has the pattern Na

Nc
Nb
Nd

replicated throughout the plane.
For example, after step 3 we will know the contents of 7×7 blocks throughout the

plane, separated by unit length strips, every eight units. The 7× 7 blocks that are of

2.3.4.3 ANSWERS TO EXERCISES 587

class Na in the center have the form

αa βKQ αb βQP αa βBK αb

γPJ δNa γRB δQK γLJ δNb γPB

αc βDS αd βQTY αc βBS αd

γPQ δPJ γPXB δNa γRQ δRB γRB

αa βUK αb βDP αa βBK αb

γTJ δNc γSB δDS γSJ δNd γTB

αc βQS αd βDT αc βBS αd

The middle column and the middle row is the ŞcrossŤ just Ąlled in during step 3; the
other four 3 × 3 squares were Ąlled in after step 2; the squares just to the right and
below this 7× 7 square are part of a 15× 15 cross to be Ąlled in at step 4.

For a similar construction that leads to a set of only 35 tetrad types having nothing
but nontoroidal solutions, see R. M. Robinson, Inventiones Math. 12 (1971), 177Ű209.
Robinson also exhibits a set of six squarish shapes that tile the plane only nontoroidally,
even when rotations and reĆections are allowed. In 1974, Roger Penrose discovered a
set of only two polygons, based on the golden ratio instead of a square grid, that tile the
plane only aperiodically; this led to a set of only 16 tetrad types with only nontoroidal
solutions [see B. Grünbaum and G. C. Shephard, Tilings and Patterns (Freeman, 1987),
Chapters 10Ű11; Martin Gardner, Penrose Tiles to Trapdoor Ciphers (Freeman, 1989),
Chapters 1Ű2].

6. Let k and m be Ąxed. Consider an oriented tree whose vertices each represent,
for some n, one of the partitions of {1, . . . , n} into k parts, containing no arithmetic
progression of length m. A node that partitions {1, . . . , n + 1} is a child of one for
{1, . . . , n} if the two partitions agree on {1, . . . , n}. If there were an inĄnite path to
the root we would have a way to divide all integers into k sets with no arithmetic
progression of length m. Hence, by the inĄnity lemma and van der WaerdenŠs theorem,
this tree is Ąnite. (If k = 2, m = 3, the tree can be rapidly calculated by hand, and the
least value of N is 9. See Studies in Pure Mathematics, ed. by L. Mirsky (Academic
Press, 1971), 251Ű260, for van der WaerdenŠs interesting account of how the proof of
his theorem was discovered.)

7. The positive integers can be partitioned into two sets S0 and S1 such that neither
set contains any inĄnite computable sequence (see exercise 3.5Ű32). So in particular
there is no inĄnite arithmetic progression. Theorem K does not apply because there is
no way to put partial solutions into a tree with Ąnite degrees at each vertex.

8. Let a Şcounterexample sequenceŤ be an inĄnite sequence of trees that violates
KruskalŠs theorem, if such sequences exist. Assume that the theorem is false; then let
T1 be a tree with the smallest possible number of nodes such that T1 can be the Ąrst
tree in a counterexample sequence; if T1, . . . , Tj have been chosen, let Tj+1 be a tree
with the smallest possible number of nodes such that T1, . . . , Tj , Tj+1 is the beginning
of a counterexample sequence. This process deĄnes a counterexample sequence ⟨Tn⟩.
None of these T Šs is just a root. Now, we look at this sequence very carefully:

(a) Suppose there is a subsequence Tn1
, Tn2

, . . . for which l(Tn1
), l(Tn2

), . . .
is a counterexample sequence. This is impossible; otherwise T1, . . . , Tn1−1, l(Tn1

),
l(Tn2

), . . . would be a counterexample sequence, contradicting the deĄnition of Tn1
.

588 ANSWERS TO EXERCISES 2.3.4.3

(b) Because of (a), there are only Ąnitely many j for which l(Tj) cannot be
embedded in l(Tk) for any k > j. Therefore by taking n1 larger than any such j
we can Ąnd a subsequence for which l(Tn1

) ⊆ l(Tn2
) ⊆ l(Tn3

) ⊆ · · · .
(c) Now by the result of exercise 2.3.2Ű22, r(Tnj) cannot be embedded in r(Tnk)

for any k > j, else Tnj ⊆ Tnk . Therefore T1, . . . , Tn1−1, r(Tn1
), r(Tn2

), . . . is a
counterexample sequence. But this contradicts the deĄnition of Tn1

.
Notes: Kruskal, in Trans. Amer. Math. Soc. 95 (1960), 210Ű225, actually proved

a stronger result, using a weaker notion of embedding. His theorem does not follow
directly from the inĄnity lemma, although the results are vaguely similar. Indeed, Kőnig
himself proved a special case of KruskalŠs theorem, showing that there is no inĄnite
sequence of pairwise incomparable n-tuples of nonnegative integers, where comparabil-
ity means that all components of one n-tuple are ≤ the corresponding components of
the other [Matematikai és Fizikai Lapok 39 (1932), 27Ű29]. For further developments,
see J. Combinatorial Theory A13 (1972), 297Ű305. See also N. Dershowitz, Inf. Proc.
Letters 9 (1979), 212Ű215, for applications to termination of algorithms.

SECTION 2.3.4.4

1. lnA(z) = ln z +

k≥1

ak ln
 1

1− zk

= ln z +

k,t≥1

akz
kt

t
= ln z +

t≥1

A(zt)
t

.

2. By differentiation, and equating the coefficients of zn, we obtain the identity

nan+1 =

k≥1

d\k
dadan+1−k.

Now interchange the order of summation.

4. (a) A(z) certainly converges at least for |z| < 1
4
, since an is less than the number

of ordered trees bn−1. Since A(1) is inĄnite and all coefficients are positive, there is a
positive number α ≤ 1 such that A(z) converges for |z| < α, and there is a singularity
at z = α. Let ψ(z) = A(z)/z; since ψ(z) > ezψ(z), we see that ψ(z) = m implies
z < lnm/m, so ψ(z) is bounded and limz→α− ψ(z) exists. Thus α < 1, and by AbelŠs
limit theorem a = α · exp(a+ 1

2
A(α2) + 1

3
A(α3) + · · ·).

(b) A(z2), A(z3), . . . are analytic for |z| < √α, and 1
2
A(z2)+ 1

3
A(z3)+· · · converges

uniformly in a slightly smaller disk.
(c) If ∂F/∂w = a − 1 ̸= 0, the implicit function theorem implies that there is an

analytic function f(z) in a neighborhood of (α, a/α) such that F (z, f(z)) = 0. But this
implies f(z) = A(z)/z, contradicting the fact that A(z) is singular at α.

(d) Obvious.
(e) ∂F/∂w = A(z) − 1 and |A(z)| < A(α) = 1, since the coefficients of A(z) are

all positive. Hence, as in (c), A(z) is regular at all such points.
(f) Near (α, 1/α) we have the identity 0 = β(z − α) + (α/2)(w − 1/α)2 + higher

order terms, where w = A(z)/z; so w is an analytic function of
√
z − α here by the

implicit function theorem. Consequently there is a region |z| < α1 minus a cut [α, α1]
in which A(z) has the stated form. (The minus sign is chosen since a plus sign would
make the coefficients ultimately negative.)

(g) Any function of the stated form has coefficient asymptotically

√
2β
αn

1/2
n

.

Note that 3/2
n

= O

1
n

1/2
n

.

2.3.4.4 ANSWERS TO EXERCISES 589

For further details, and asymptotic values of the number of free trees, see R. Otter,
Ann. Math. (2) 49 (1948), 583Ű599.

5. cn =

j1+2j2+···=n

c1 + j1 − 1

j1

. . .

cn + jn − 1

jn

− cn, n > 1.

Therefore

2C(z) + 1− z = (1− z)−c1 (1− z2)−c2 (1− z3)−c3 . . . = exp(C(z) + 1
2
C(z2) + · · ·).

We Ąnd C(z) = z + z2 + 2z3 + 5z4 + 12z5 + 33z6 + 90z7 + 261z8 + 766z9 + · · · . When
n > 1, the number of series-parallel networks with n edges is 2cn [see P. A. MacMahon,
Proc. London Math. Soc. 22 (1891), 330Ű339].

6. zG(z)2 = 2G(z) − 2 − zG(z2); G(z) = 1 + z + z2 + 2z3 + 3z4 + 6z5 + 11z6 +
23z7 + 46z8 + 98z9 + · · · . The function F (z) = 1− zG(z) satisĄes the simpler relation
F (z2) = 2z + F (z)2. [J. H. M. Wedderburn, Annals of Math. (2) 24 (1922), 121Ű140.]

7. gn = cann−3/2(1 +O(1/n)), where c ≈ 0.7916031835775, a ≈ 2.483253536173.

8.

9. If there are two centroids, by considering a path from one to the other we Ąnd that
there canŠt be intermediate points, so any two centroids are adjacent. A tree cannot
contain three mutually adjacent vertices, so there are at most two.

10. If X and Y are adjacent, let s(X,Y) be the number of vertices in the Y subtree
of X. Then s(X,Y) + s(Y,X) = n. The argument in the text shows that if Y is a
centroid, weight(X) = s(X,Y). Therefore if both X and Y are centroids, weight(X) =
weight(Y) = n/2.

In terms of this notation, the argument in the text goes on to show that if
s(X,Y) ≥ s(Y,X), there is a centroid in the Y subtree of X. So if two free trees
with m vertices are joined by an edge between X and Y , we obtain a free tree in which
s(X,Y) = m = s(Y,X), and there must be two centroids (namely X and Y).

[It is a nice programming exercise to compute s(X,Y) for all adjacent X and Y
in O(n) steps; from this information we can quickly Ąnd the centroid(s). An efficient
algorithm for centroid location was Ąrst given by A. J. Goldman, Transportation Sci.
5 (1971), 212Ű221.]

11. zT (z)t = T (z) − 1; thus z + T (z)−t = T (z)1−t. By Eq. 1.2.9Ű(21), T (z) =
nAn(1,−t)zn, so the number of t-ary trees is

1 + tn

n

 1
1 + tn

=

tn

n

 1
(t− 1)n+ 1

.

12. Consider the directed graph that has one arc from Vi to Vj for all i ̸= j. The
matrix A0 of exercise 2.3.4.2Ű19 is a combinatorial (n− 1)× (n− 1) matrix with n− 1
on the diagonal and −1 off the diagonal. So its determinant is

(n+ (n− 1)(−1))nn−2 = nn−2,

the number of oriented trees with a given root. (Exercise 2.3.4.2Ű20 could also be used.)

590 ANSWERS TO EXERCISES 2.3.4.4

13.

1

3

5

7

24

6

8 9

10

14. True, since the root will not become a leaf until all other branches have been
removed.

15. In the canonical representation, V1, V2, . . . , Vn−1, f(Vn−1) is a topological sort of
the oriented tree considered as a directed graph, but this order would not in general be
output by Algorithm 2.2.3T. Algorithm 2.2.3T can be changed so that it determines
the values of V1, V2, . . . , Vn−1 if the Şinsert into queueŤ operation of step T6 is replaced
by a procedure that adjusts links so that the entries of the list appear in ascending
order from front to rear; then the queue becomes a priority queue.

(However, a general priority queue isnŠt needed to Ąnd the canonical represen-
tation; we only need to sweep through the vertices from 1 to n, looking for leaves,
while pruning off paths from new leaves less than the sweep pointer; see the following
exercise.)

16. D1. Set C[1]← · · · ← C[n]← 0, then set C[f(Vj)]← C[f(Vj)]+1 for 1 ≤ j < n.
(Thus vertex k is a leaf if and only if C[k] = 0.) Set k ← 0 and j ← 1.

D2. Increase k one or more times until C[k] = 0, then set l← k.

D3. Set PARENT[l]← f(Vj), l← f(Vj), C[l]← C[l]− 1, and j ← j + 1.

D4. If j = n, set PARENT[l]← 0 and terminate the algorithm.

D5. If C[l] = 0 and l < k, go to D3; otherwise go back to D2.

17. There must be exactly one cycle x1, x2, . . . , xk where f(xj) = xj+1 and f(xk) = x1.
We will enumerate all f having a cycle of length k such that the iterates of each
x ultimately come into this cycle. DeĄne the canonical representation f(V1), f(V2),
. . . , f(Vm−k) as in the text; now f(Vm−k) is in the cycle, so we continue to get a
Şcanonical representationŤ by writing down the rest
of the cycle f(f(Vm−k)), f(f(f(Vm−k))), etc. For
example, the function with m = 13 whose graph is
shown here leads to the representation 3, 1, 8, 8,
1, 12, 12, 2, 3, 4, 5, 1. We obtain a sequence of
m− 1 numbers in which the last k are distinct. Con-
versely, from any such sequence we can reverse the
construction (assuming that k is known); hence there
are precisely mkmm−k−1 such functions having a k-
cycle. (For related results, see exercise 3.1Ű14. The
formula mm−1Q(m) was Ąrst obtained by L. Katz,
Annals of Math. Statistics 26 (1955), 512Ű517.)

1

34

2

11 13

5

7 8

9 10

6

12

2.3.4.4 ANSWERS TO EXERCISES 591

18. To reconstruct the tree from a sequence s1, s2, . . . , sn−1, begin with s1 as the
root and successively attach arcs to the tree that point to s1, s2, . . . ; if vertex sk has
appeared earlier, leave the initial vertex of the arc leading to sk−1 nameless, otherwise
give this vertex the name sk. After all n − 1 arcs
have been placed, give names to all vertices that re-
main nameless by using the numbers that have not
yet appeared, assigning names in increasing order
to nameless vertices in the order of their creation.

For example, from 3, 1, 4, 1, 5, 9, 2, 6, 5 we
would construct the tree shown on the right. There
is no simple connection between this method and
the one in the text. Several more representations
are possible; see the article by E. H. Neville, Proc.
Cambridge Phil. Soc. 49 (1953), 381Ű385.

7

4

1

3

9

5 10

2 6 8

19. The canonical representation will have precisely n − k different values, so we
enumerate the sequences of n−1 numbers with this property. The answer is nn−k

n−1
n−k

.

20. Consider the canonical representation of such trees. We are asking how many
terms of (x1 + · · · + xn)n−1 have k0 exponents zero, k1 exponents one, etc. This is
plainly the coefficient of such a term times the number of such terms, namely

(n− 1)!
(0!)k0 (1!)k1 . . . (n!)kn

× n!
k0! k1! . . . kn!

.

21. There are none with 2m vertices; if there are n = 2m + 1 vertices, the answer is
obtained from exercise 20 with k0 = m+ 1, k2 = m, namely

2m+1
m

(2m)!/2m.

22. Exactly nn−2; for if X is a particular vertex, the free trees are in one-to-one
correspondence with oriented trees having root X.

23. It is possible to put the labels on every unlabeled, ordered tree in n! ways, and
each of these labeled, ordered trees is distinct. So the total number is n! bn−1 =
(2n− 2)!/(n− 1)!.

24. There are as many with one given root as with another, so the answer in general
is 1/n times the answer in exercise 23; and in this particular case the answer is 30.

25. For 0 ≤ q < n, r(n, q) = (n− q)nq−1. (The special case s = 1 in Eq. (24).)

26. (k = 7)

Red

Red

RedBlue

Blue

Blue

Blue

Yellow

Yellow

1 2

5

7

8 9

3

4 6

592 ANSWERS TO EXERCISES 2.3.4.4

27. Given a function g from {1, 2, . . . , r} to {1, 2, . . . , q} such that adding arcs from Vk
to Ug(k) introduces no oriented cycles, construct a sequence a1, . . . , ar as follows: Call
vertex Vk ŞfreeŤ if there is no oriented path from Vj to Vk for any j ̸= k. Since there
are no oriented cycles, there must be at least one free vertex. Let b1 be the smallest
integer for which Vb1

is free; and assuming that b1, . . . , bt have been chosen, let bt+1

be the smallest integer different from b1, . . . , bt for which Vbt+1
is free in the graph

obtained by deleting the arcs from Vbk to Ug(bk) for 1 ≤ k ≤ t. This rule deĄnes a
permutation b1b2 . . . br of the integers {1, 2, . . . , r}. Let ak = g(bk) for 1 ≤ k ≤ r; this
deĄnes a sequence such that 1 ≤ ak ≤ q for 1 ≤ k < r, and 1 ≤ ar ≤ p.

Conversely if such a sequence a1, . . . , ar is given, call a vertex Vk ŞfreeŤ if there
is no j for which aj > p and f(aj) = k. Since ar ≤ p there are at most r − 1 non-
free vertices. Let b1 be the smallest integer for which Vb1

is free; and assuming that
b1, . . . , bt have been chosen, let bt+1 be the smallest integer different from b1, . . . , bt
for which Vbt+1

is free with respect to the sequence at+1, . . . , ar. This rule deĄnes a
permutation b1b2 . . . br of the integers {1, 2, . . . , r}. Let g(bk) = ak for 1 ≤ k ≤ r; this
deĄnes a function such that adding arcs from Vk to Ug(k) introduces no oriented cycles.

28. Let f be any of the nm−1 functions from {2, . . . ,m} to {1, 2, . . . , n}, and consider
the directed graph with vertices U1, . . . , Um, V1, . . . , Vn and arcs from Uk to Vf(k) for
1 < k ≤ m. Apply exercise 27 with p = 1, q = m, r = n, to show that there are mn−1

ways to add further arcs from the V Šs to the U Šs to obtain an oriented tree with root
U1. Since there is a one-to-one correspondence between the desired set of free trees and
the set of oriented trees with root U1, the answer is nm−1mn−1. [This construction can
be extensively generalized; see D. E. Knuth, Canadian J. Math. 20 (1968), 1077Ű1086.]

29. If y = xt, then (tz)y = ln y, and we see that it is sufficient to prove the identity
for t = 1. Now if zx = lnx we know by exercise 25 that xm =

k Ek(m, 1)zk for

nonnegative integers m. Hence

xr = ezxr =

k

(zxr)k

k!
=

j,k

rkzk+jEj(k, 1)
k!

=

k

zk

k!

j

k

j

j!Ej(k− j, 1)rk−j

=

k

zk

k!

j

k − 1
j

kjrk−j =

k

zkEk(r, 1).

[Exercise 4.7Ű22 derives considerably more general results.]

30. Each graph described deĄnes a set Cx ⊆ {1, . . . , n}, where j is in Cx if and only
if there is a path from tj to ri for some i ≤ x. For a given Cx each graph described
is composed of two independent parts: one of the x(x + ϵ1z1 + · · · + ϵnzn)ϵ1+···+ϵn−1

graphs on the vertices ri, sjk, tj for i ≤ x and j ∈ Cx, where ϵj = [j ∈Cx], plus one of
the y(y+ (1− ϵ1)z1 + · · ·+ (1− ϵn)zn)(1−ϵ1)+···+(1−ϵn)−1 graphs on the other vertices.

31. G(z) = z + G(z)2 + G(z)3 + G(z)4 + · · · = z + G(z)2/(1 − G(z)). Hence G(z) =
1
4
(1 + z −

√
1− 6z + z2) = z + z2 + 3z3 + 11z4 + 45z5 + · · · . [Notes: Another

problem equivalent to this one was posed and solved by E. Schröder, Zeitschrift für
Mathematik und Physik 15 (1870), 361Ű376, who determined the number of ways to
insert nonoverlapping diagonals in a convex (n + 1)-gon. These numbers for n > 1
are just half the values obtained in exercise 2.2.1Ű11, since PrattŠs grammar allows
the root node of the associated parse tree to have degree one. The asymptotic value
is calculated in exercise 2.2.1Ű12. Curiously, the value [z10]G(z) = 103049 seems
to have been calculated already by Hipparchus in the second century B.C., as the

2.3.4.4 ANSWERS TO EXERCISES 593

number of Şaffirmative compound propositions that can be made from only ten simple
propositionsŤ; see R. P. Stanley, AMM 104 (1997), 344Ű350; F. Acerbi, Archive for
History of Exact Sciences 57 (2003), 465Ű502.]

32. Zero if n0 ̸= 1 + n2 + 2n3 + 3n4 + · · · (see exercise 2.3Ű21), otherwise

(n0 + n1 + · · ·+ nm − 1)!/n0!n1! . . . nm!.

To prove this result we recall that an unlabeled tree with n = n0 + n1 + · · ·+ nm
nodes is characterized by the sequence d1 d2 . . . dn of the degrees of the nodes in
postorder (Section 2.3.3). Furthermore such a sequence of degrees corresponds to a
tree if and only if

k
j=1(1− dj) > 0 for 0 < k ≤ n. (This important property of Polish

postĄx notation is readily proved by induction; see Algorithm 2.3.3F with f a function
that creates a tree, like the TREE function of Section 2.3.2.) In particular, d1 must
be 0. The answer to our problem is therefore the number of sequences d2 . . . dn with
nj occurrences of j for j > 0, namely the multinomial coefficient

n− 1

n0−1, n1, . . . , nm

,

minus the number of such sequences d2 . . . dn for which
k
j=2(1 − dj) < 0 for some

k ≥ 2.
We may enumerate the latter sequences as follows: Let t be minimal such thatt

j=2(1 − dj) < 0; then
t
j=2(1 − dj) = −s where 1 ≤ s < dt, and we may form the

subsequence d′2 . . . d
′
n = dt−1 . . . d20dt+1 . . . dn, which has nj occurrences of j for j ̸= dt,

nj − 1 occurrences of j for j = dt. Now
k
j=2(1− d′j) is equal to dt when k = n, and

equal to dt − s when k = t; when k < t, it is

2≤j<t
(1− dj)−

2≤j≤t−k
(1− dj) ≤

2≤j<t
(1− dj) = dt − s− 1.

It follows that, given s and any sequence d′2 . . . d
′
n, the construction can be reversed;

hence the number of sequences d2 . . . dn that have a given value of dt and s is the
multinomial coefficient

n− 1
n0, . . . , ndt−1, . . . , nm

.

The number of sequences d2 . . . dn that correspond to trees is therefore obtained by
summing over the possible values of dt and s:

m

j=0

(1− j)

n− 1
n0, . . . , nj−1, . . . , nm

=

(n− 1)!
n0!n1! . . . nm!

m

j=0

(1− j)nj

and the latter sum is 1.
An even simpler proof of this result has been given by G. N. Raney (Transactions of

the American Math. Society 94 (1960), 441Ű451). If d1 d2 . . . dn is any sequence with
nj appearances of j, there is precisely one cyclic rearrangement dk . . . dnd1 . . . dk−1

that corresponds to a tree, namely the rearrangement where k is maximal such thatk−1
j=1 (1 − dj) is minimal. [This argument in the case of binary trees was apparently

Ąrst discovered by C. S. Peirce in an unpublished manuscript; see his New Elements of
Mathematics 4 (The Hague: Mouton, 1976), 303Ű304. It was discovered in the case of
t-ary trees by Dvoretzky and Motzkin, Duke Math. J. 14 (1947), 305Ű313.]

Still another proof, by G. Bergman, inductively replaces dkdk+1 by (dk+dk+1−1)
if dk > 0 [Algebra Universalis 8 (1978), 129Ű130].

594 ANSWERS TO EXERCISES 2.3.4.4

The methods above can be generalized to show that the number of (ordered,
unlabeled) forests having f trees and nj nodes of degree j is (n− 1)! f/n0!n1! . . . nm!,
provided that the condition n0 = f + n2 + 2n3 + · · · is satisĄed.

33. Consider the number of trees with n1 nodes labeled 1, n2 nodes labeled 2, . . . , and
such that each node labeled j has degree ej . Let this number be c(n1, n2, . . .), with the
speciĄed degrees e1, e2, . . . regarded as Ąxed. The generating function G(z1, z2, . . .) =
c(n1, n2, . . .)z

n1

1 zn2

2 . . . satisĄes the identity G = z1G
e1 + · · · + zrG

er, since zjGej

enumerates the trees whose root is labeled j. And by the result of the previous exercise,

c(n1, n2, . . .) =

(n1 + n2 + · · · − 1)!
n1!n2! . . .

, if (1− e1)n1 + (1− e2)n2 + · · · = 1;

0, otherwise.

More generally, since Gf enumerates the number of ordered forests having such
labels, we have for integer f > 0

wf =

f=(1−e1)n1+(1−e2)n2+···

(n1 + n2 + · · · − 1)! f
n1!n2! . . .

zn1

1 zn2

2

These formulas are meaningful when r = ∞, and they are essentially equivalent to
LagrangeŠs inversion formula.

SECTION 2.3.4.5

1. There are

8
5

in all, since the nodes numbered 8, 9, 10, 11, 12 may be attached in

any of eight positions below 4, 5, 6, and 7.

2.
385

166 219

85 81 119 100

36 49 55 64

30 25

14 16

5 9

1 4

3. By induction on m, the condition is necessary. Conversely if
m
j=1 2−lj = 1, we

want to construct an extended binary tree with path lengths l1, . . . , lm. When m = 1,
we have l1 = 0 and the construction is trivial. Otherwise we may assume that the lŠs
are ordered so that l1 = l2 = · · · = lq > lq+1 ≥ lq+2 ≥ · · · ≥ lm > 0 for some q with
1 ≤ q ≤ m. Now 2l1−1 =

m
j=1 2l1−lj−1 = 1

2
q + integer, hence q is even. By induction

on m there is a tree with path lengths l1 − 1, l3, l4, . . . , lm; take such a tree and
replace one of the external nodes at level l1− 1 by an internal node whose children are
at level l1 = l2.

2.3.4.5 ANSWERS TO EXERCISES 595

4. First, Ąnd a tree by HuffmanŠs method. If wj < wj+1, then lj ≥ lj+1, since the
tree is optimal. The construction in the answer to exercise 3 now gives us another
tree with these same path lengths and with the weights in the proper sequence. For
example, the tree (11) becomes

13 17

19 23 29 31 37 41

3

5

7

11

2 Reference: CACM 7 (1964), 166Ű169.

5. (a) bnp =

k+l=n−1
r+s+n−1=p

bkrbls. Hence zB(w,wz)2 = B(w, z)− 1.

(b) Take the partial derivative with respect to w:

2zB(w,wz)(Bw(w,wz) + zBz(w,wz)) = Bw(w, z).

Therefore if H(z) = Bw(1, z) =

n hnz

n, we Ąnd H(z) = 2zB(z)(H(z) + zB′(z)); and
the known formula for B(z) implies

H(z) =
1

1− 4z
− 1
z

1− z√
1− 4z

− 1

, so hn = 4n − 3n+ 1

n+ 1

2n
n

.

The average value is hn/bn. (c) Asymptotically, this comes to n
√
πn− 3n+O(

√
n).

For the solution to similar problems, see John Riordan, IBM J. Res. and Devel. 4

(1960), 473Ű478; A. Rényi and G. Szekeres, J. Australian Math. Soc. 7 (1967), 497Ű507;
John Riordan and N. J. A. Sloane, J. Australian Math. Soc. 10 (1969), 278Ű282; and
exercise 2.3.1Ű11.

6. n+ s− 1 = tn.

7. E = (t− 1)I + tn.

8. Summation by parts gives
n
k=1⌊logt((t − 1)k)⌋ = nq −

k, where the sum on
the right is over values of k such that 0 ≤ k ≤ n and (t− 1)k+ 1 = tj for some j. The
latter sum may be rewritten

q
j=1(tj − 1)/(t− 1).

9. Induction on the size of the tree.

10. By adding extra zero weights, if neces-
sary, we may assume that mmod (t− 1) = 1.
To obtain a t-ary tree with minimum weighted
path length, combine the smallest t values at
each step and replace them by their sum. The
proof is essentially the same as the binary case.
The desired ternary tree is shown.

F. K. Hwang has observed [SIAM J. Appl.
Math. 37 (1979), 124Ű127] that a similar pro-
cedure is valid for minimum weighted path
length trees having any prescribed multiset of
degrees: Combine the smallest t weights at
each step, where t is as small as possible.

385

91 194 100

36 25 30 49 64 81

16 9 5

4 1 0

596 ANSWERS TO EXERCISES 2.3.4.5

11. The ŞDeweyŤ notation is the binary representation of the node number.

12. By exercise 9, it is the internal path length divided by n, plus 1. (This result holds
for general trees as well as binary trees.)

13. [See J. van Leeuwen, Proc. 3rd International Colloq. Automata, Languages and
Programming (Edinburgh University Press, 1976), 382Ű410.]

H1. [Initialize.] Set A[m − 1 + i] ← wi for 1 ≤ i ≤ m. Then set A[2m] ← ∞,
x← m, i← m+ 1, j ← m− 1, k ← m. (During this algorithm A[i] ≤ · · · ≤
A[2m − 1] is the queue of unused external weights; A[k] ≥ · · · ≥ A[j] is the
queue of unused internal weights, empty if j < k; the current left and right
pointers are x and y.)

H2. [Find right pointer.] If j < k or A[i] ≤ A[j], set y ← i and i← i+1; otherwise
set y ← j and j ← j − 1.

H3. [Create internal node.] Set k ← k−1, L[k]← x, R[k]← y, A[k]← A[x]+A[y].

H4. [Done?] Terminate the algorithm if k = 1.

H5. [Find left pointer.] (At this point j ≥ k and the queues contain a total of k
unused weights. If A[y] < 0 we have j = k, i = y + 1, and A[i] > A[j].) If
A[i] ≤ A[j], set x ← i and i ← i + 1; otherwise set x ← j and j ← j − 1.
Return to step H2.

14. The proof for k = m− 1 applies with little change. [See SIAM J. Appl. Math. 21

(1971), 518.]

15. Use the combined-weight functions (a) 1 + max(w1, w2) and (b) xw1 + xw2, re-
spectively, instead of w1 +w2 in (9). [Part (a) is due to M. C. Golumbic, IEEE Trans.
C-25 (1976), 1164Ű1167; part (b) to T. C. Hu, D. Kleitman, and J. K. Tamaki, SIAM
J. Appl. Math. 37 (1979), 246Ű256. HuffmanŠs problem is the limiting case of (b) as
x→ 1, since

(1 + ϵ)ljwj =

wj + ϵ

wj lj +O(ϵ2).]

D. Stott Parker, Jr., has pointed out that a Huffman-like algorithm will also Ąnd
the minimum of w1x

l1 + · · · + wmx
lm when 0 < x < 1, if the two maximum weights

are combined at each step as in part (b). In particular, the minimum of w12−l1 + · · ·+
wm2−lm , when w1 ≤ · · · ≤ wm, is w1/2 + · · · + wm−1/2m−1 + wm/2m−1. See D. E.
Knuth, J. Comb. Theory A32 (1982), 216Ű224, for further generalizations.

16. Let lm+1 = l′m+1 = 0. Then

m

j=1

wj lj ≤
m

j=1

wj l
′
j =

m

k=1

(l′k − l′k+1)
k

j=1

wj ≤
m

k=1

(l′k − l′k+1)
k

j=1

w′
j =

m

j=1

w′
j l

′
j ,

since l′j ≥ l′j+1 as in exercise 4. The same proof holds for many other kinds of optimum
trees, including those of exercise 10.

17. (a) This is exercise 14. (b) We can extend f(n) to a concave function f(x), so the
stated inequality holds. Now F (m) is the minimum of

m−1
j=1 f(sj), where the sj are

internal node weights of an extended binary tree on the weights 1, 1, . . . , 1. HuffmanŠs
algorithm, which constructs the complete binary tree with m− 1 internal nodes in this
case, yields the optimum tree. The choice k = 2⌈lg(n/3)⌉ deĄnes a binary tree with the
same internal weights, so it yields the minimum in the recurrence, for each n. [SIAM J.
Appl. Math. 31 (1976), 368Ű378.] We can evaluate F (n) in O(logn) steps; see exercises
5.2.3Ű20 and 5.2.3Ű21. If f(n) is convex instead of concave, so that ∆2f(n) ≥ 0, the
solution to the recurrence is obtained when k = ⌊n/2⌋.

2.3.4.6 ANSWERS TO EXERCISES 597

SECTION 2.3.4.6

1. Choose one edge of the polygon and call it the base. Given a triangulation, let the
triangle on the base correspond to the root of a binary tree, and let the other two sides
of that triangle deĄne bases of left and right subpolygons, which correspond to left
and right subtrees in the same way. We proceed recursively until reaching Ş2-sidedŤ
polygons, which correspond to empty binary trees.

Stating this correspondence another way, we can label the non-base edges of a
triangulated polygon with the integers 0, . . . , n; and when two adjacent sides of a
triangle are labeled α and β in clockwise order, we can label the third side (αβ). The
label of the base then characterizes the binary tree and the triangulation. For example,

0

1
2

3

4 5

6

7
8

9

(0
1)

((
0
1
)2
)

(45)

(3(45
))

(
6
7
)

(8
9
)

((
6
7
)(
8
9
))

((
3(
4
5))((

6
7)(
8
9)))

(((01)2)((3(45))((67)(89))))

corresponds to the binary tree shown in 2.3.1Ű(1). [See H. G. Forder, Mathematical
Gazette 45 (1961), 199Ű201.]

2. (a) Take a base edge as in exercise 1, and give it d descendants if that edge is part
of a (d+ 1)-gon in the dissected r-gon. The other d edges are then bases for subtrees.
This deĄnes a correspondence between KirkmanŠs problem and all ordered trees with
r − 1 leaves and k + 1 nonleaves, having no nodes of degree 1. (When k = r − 3 we
have the situation of exercise 1.)

(b) There are

r+k
k+1

r−3
k

sequences d1d2 . . . dr+k of nonnegative integers such that

r − 1 of the dŠs are 0, none of them are 1, and the sum is r + k − 1. Exactly one of
the cyclic permutations d1d2 . . . dr+k, d2 . . . dr+kd1, . . . , dr+kd1 . . . dr+k−1 satisĄes the
additional property that

q
j=1(1− dj) > 0 for 1 ≤ q ≤ r + k.

[Kirkman gave evidence for his conjecture in Philos. Trans. 147 (1857), 217Ű272,
§22. Cayley proved it in Proc. London Math. Soc. 22 (1891), 237Ű262, without noticing
the connection to trees.]

3. (a) Let the vertices be {1, 2, . . . , n}. Draw an RLINK from i to j if i and j are
consecutive elements of the same part and i < j; draw an LLINK from j to j + 1 if
j + 1 is the smallest of its part. Then there are k − 1 nonnull LLINKs, n − k nonnull
RLINKs, and we have a binary tree whose nodes are 12 . . . n in preorder. Using the
natural correspondence of Section 2.3.2, this rule deĄnes a one-to-one correspondence
between Şpartitions of an n-gonŠs vertices into k noncrossing partsŤ and Şforests with
n vertices and n − k + 1 leaves.Ť Interchanging LLINK with RLINK also gives Şforests
with n vertices and k leaves.Ť

(b) A forest with n vertices and k leaves also corresponds to a sequence of nested
parentheses, containing n left parentheses, n right parentheses, and k occurrences of
Ş()Ť. We can enumerate such sequences as follows:

598 ANSWERS TO EXERCISES 2.3.4.6

Say that a string of 0s and 1s is an (m,n, k) string if there are m 0s, n 1s, and
k occurrences of Ş01Ť. Then 0010101001110 is a (7, 6, 4) string. The number of (m,n, k)
strings is

m
k

n
k

, because we are free to choose which 0s and 1s will form the 01 pairs.

Let S(α) be the number of 0s in α minus the number of 1s. We say that a string σ
is good if S(α) ≥ 0 whenever α is a preĄx of σ (in other words, if σ = αβ implies that
S(α) ≥ 0); otherwise σ is bad. The following alternative to the ŞreĆection principleŤ of
exercise 2.2.1Ű4 establishes a one-to-one correspondence between bad (n, n, k) strings
and arbitrary (n− 1, n+ 1, k) strings:

Any bad (n, n, k) string σ can be written uniquely in the form σ = α0β, where
αR and β are good. (Here αR is the string obtained from α by reversing it and
complementing all the bits.) Then σ′ = α1β is an (n− 1, n+ 1, k) string. Conversely,
every (n− 1, n+ 1, k) string can be written uniquely in the form α1β where αR and β
are good, and α0β is then a bad (n, n, k) string.

Thus the number of forests with n vertices and k leaves is

n
k

n
k

−

n−1
k

n+1
k

=

n−1
k−1

n
k

−

n−1
k

n
k−1

= n! (n−1)!/(n−k+1)! (n−k)! k! (k−1)!, a so-called Narayana

number [T. V. Narayana, Comptes Rendus Acad. Sci. 240 (Paris, 1955), 1188Ű1189].
Notes: G. Kreweras, Discrete Math. 1 (1972), 333Ű350, enumerated noncrossing

partitions in a different way. The partial ordering of partitions by reĄnement leads to an
interesting partial ordering of forests, different from the one discussed in exercise 2.3.3Ű
19; see Y. Poupard, Cahiers du Bureau Univ. de Recherche Opér. 16 (1971), Chapter 8;
Discrete Math. 2 (1972), 279Ű288; P. Edelman, Discrete Math. 31 (1980), 171Ű180, 40

(1982), 171Ű179; N. Dershowitz and S. Zaks, Discrete Math. 64 (1986), 215Ű218.
A third way to deĄne a natural lattice ordering of forests was introduced by

R. Stanley in Fibonacci Quarterly 13 (1975), 215Ű232: Suppose we represent a forest
by a string σ of 0s and 1s representing left and right parentheses as above; then σ ≤ σ′

if and only if S(σk) ≤ S(σ′
k) for all k, where σk denotes the Ąrst k bits of σ. StanleyŠs

lattice is distributive, unlike the other two.

4. Let m = n + 2; by exercise 1, we want a correspondence between triangulated
m-gons and (m − 1)-rowed friezes. First letŠs look more closely at the previous cor-
respondence, by giving a Ştop-downŤ labeling to the edges of a triangulation instead
of the Şbottom-upŤ one considered earlier: Assign the empty label ϵ to the base, then
recursively give the labels αL and αR to the opposite edges of a triangle whose base is
labeled α. For example, the previous diagram becomes

ǫ

L
L
L

L
L
R

L
L

L
R

L

R
L
L

RL
RL

RLRR

RLR

RL

R
R
L
L

R
R
L
R

R
R
L

R
R
R
L

R
R
R
R

R
R
R

R
R

R

under these new conventions. If the base edge in this example is called 10, while the
other edges are 0 to 9 as before, we can write 0 = 10LLL, 1 = 10LLR, 2 = 10LR,

2.3.4.6 ANSWERS TO EXERCISES 599

3 = 10RLL, etc. Any of the other edges can also be chosen as the base; thus, if 0 is
chosen we have 1 = 0L, 2 = 0RL, 3 = 0RRLLL, etc. It is not difficult to verify that
if u = vα we have v = uαT , where αT is obtained by reading α from right to left and
interchanging L with R. For example, 10 = 0RRR = 1LRR = 2LR = 3RRL, etc. If
u, v, and w are edges of the polygon with w = uαLγ and w = vβRγ, then u = vβLαT

and v = uαRβT .
Given a triangulation of a polygon whose edges are numbered 0, 1, . . . , m− 1, we

deĄne (u, v) for any pair of distinct edges u and v as follows: Let u = vα, and interpret
α as a 2 × 2 matrix by letting L = (1

0
1
1
) and R = (1

1
0
1
). Then (u, v) is deĄned to

be the element in the upper left corner of α. Notice that αT is the transpose of the
matrix α, since R = LT ; hence we have (v, u) = (u, v). Notice also that (u, v) = 1 if
and only if u− and v− are joined by an edge of the triangulation, where u− denotes
the vertex between edges u and u− 1.

Let (u, u) = 0 for all polygon edges u. We can now prove that v = uα implies

α =

(u, v) (u, v + 1)
(u+ 1, v) (u+ 1, v + 1)

for all u ̸= v, (∗)

where u+1 and v+1 are the clockwise successors of u and v. The proof is by induction
on m: Eq. (∗) is trivial when m = 2, since the two parallel edges u and v are then
related by u = vϵ, and α = ϵ is the identity matrix. If any triangulation is augmented
by extending some edge v with a triangle v v′ v′′, then v = uα implies v′ = uαL and
v′′ = uαR; hence (u, v′) and (u, v′′) in the extended polygon are respectively equal to
(u, v) and (u, v) + (u, v + 1) in the original one. It follows that

αL =

(u, v′) (u, v′′)
(u+ 1, v′) (u+ 1, v′′)

and αR =

(u, v′′) (u, v′′ + 1)

(u+ 1, v′′) (u+ 1, v′′ + 1)

,

and (∗) remains true in the extended polygon.
The frieze pattern corresponding to the given triangulation is now deĄned to be

the periodic sequence

(0, 1) (1, 2) (2, 3) . . . (m−1, 0) (0, 1) (1, 2) . . .
(0, 2) (1, 3) (2, 4) . . . (m−1, 1) (0, 2) (1, 3) . . .

(m−1, 2) (0, 3) (1, 4) . . . (m−2, 1) (m−1, 2) (0, 3) . . .
(m−1, 3) (0, 4) (1, 5) . . . (m−2, 2) (m−1, 3) (0, 4) . . .

and so on until m − 1 rows have been deĄned; the Ąnal row begins with (⌈m/2⌉ + 1,
⌈m/2⌉) when m > 3. Condition (∗) proves that this pattern is a frieze, namely that

(u, v)(u+ 1, v + 1)− (u, v + 1)(u+ 1, v) = 1, (∗∗)

because detL = detR = 1 implies detα = 1. Our example triangulation yields

1 . . .
1 2 4 2 1 5 1 3 1 4 3 1 2 4 2 1 5 1 3 1 4 . . .

2 1 7 7 1 4 4 2 2 3 11 2 1 7 7 1 4 4 2 2 3 . . .
1 3 12 3 3 3 7 1 5 8 7 1 3 12 3 3 3 7 1 5 8 . . .

3 2 5 5 8 2 5 3 2 13 5 3 2 5 5 8 2 5 3 2 13 . . .
5 3 2 13 5 3 2 5 5 8 2 5 3 2 13 5 3 2 5 5 8 . . .

3 7 1 5 8 7 1 3 12 3 3 3 7 1 5 8 7 1 3 12 3 . . .
4 2 2 3 11 2 1 7 7 1 4 4 2 2 3 11 2 1 7 7 1 . . .

5 1 3 1 4 3 1 2 4 2 1 5 1 3 1 4 3 1 2 4 2 . . .
1 . . .

600 ANSWERS TO EXERCISES 2.3.4.6

The relation (u, v) = 1 deĄnes the edges of the triangulation, hence different triangu-
lations yield different friezes. To complete the proof of one-to-one correspondence, we
must show that every (m − 1)-rowed frieze pattern of positive integers is obtained in
this way from some triangulation.

Given any frieze of m − 1 rows, extend it by putting a new row 0 at the top and
a new row m at the bottom, both consisting entirely of zeros. Now let the elements of
row 0 be called (0, 0), (1, 1), (2, 2), etc., and for all nonnegative integers u < v ≤ u+m
let (u, v) be the element in the diagonal southeast of (u, u) and in the diagonal southwest
of (v, v). By assumption, condition (∗∗) holds for all u < v < u + m. We can in fact
extend (∗∗) to the considerably more general relation

(t, u)(v, w) + (t, w)(u, v) = (t, v)(u,w) for t ≤ u ≤ v ≤ w ≤ t+m. (∗∗∗)

For if (∗∗∗) is false, let (t, u, v, w) be a counterexample with the smallest value of
(w − t)m + u − t + w − v. Clearly t ̸= u and v ̸= w. Case 1: t + 1 < u. Then (∗∗∗)
holds for (t, t + 1, v, w), (t, t + 1, u, v), and (t + 1, u, v, w), so we Ąnd ((t, u)(v, w) +
(t, w)(u, v))(t+ 1, v) = (t, v)(u,w)(t+ 1, v); this implies (t+ 1, v) = 0, a contradiction.
Case 2: v+1 < w. Then (∗∗∗) holds for (t, u, w−1, w), (u, v, w−1, w), and (t, u, v, w−1);
we obtain a similar contradiction (u,w − 1) = 0. Case 3: u = t+ 1 and w = v + 1. In
this case (∗∗∗) reduces to (∗∗).

Now we set u = t + 1 and w = t + m in (∗∗∗), obtaining (t, v) = (v, t + m) for
t ≤ v ≤ t + m, because (t + 1, t + m) = 1 and (t, t + m) = 0. We conclude that the
entries of any (m− 1)-rowed frieze are periodic: (u, v) = (v, u+m) = (u+m, v+m) =
(v +m,u+ 2m) = · · · .

Every frieze pattern of positive integers contains a 1 in row 2. For if we set t = 0,
v = u + 1, and w = u + 2 in (∗∗∗) we get (0, u + 1)(u, u + 2) = (0, u) + (0, u + 2),
hence (0, u + 2) − (0, u + 1) ≥ (0, u + 1) − (0, u) if and only if (u, u + 2) ≥ 2. This
cannot hold for all u in the range 0 ≤ u ≤ m − 2, because (0, 1) − (0, 0) = 1 and
(0,m)− (0,m− 1) = −1.

Finally, if m > 3 we cannot have two consecutive 1s in row 2, because (u, u+ 2) =
(u+ 1, u+ 3) = 1 implies (u, u+ 3) = 0. Therefore we can reduce the frieze to another
one with m reduced by 1, as illustrated here for 7 rows reduced to 6:

1 1 1 1 1 1 1 1 . . .
a b c d+1 1 e+1 y z . . .
p q c+r d e u+y v w . . .
u q+v r s u q+v r s . . .
u+y v w p q c+r d e . . .

y z a b c d+1 1 e+1 . . .
1 1 1 1 1 1 1 1 . . .

1 1 1 1 1 1 1 . . .
a b c d e y z . . .
p q r s u v w . . .
u v w p q r s . . .
y z a b c d e . . .

1 1 1 1 1 1 1 . . .

The reduced frieze corresponds to a triangulation, by induction, and the unreduced
frieze corresponds to attaching one more triangle. [Math. Gazette 57 (1974), 87Ű94,
175Ű183; Conway and Guy, The Book of Numbers (New York: Copernicus, 1996),
74Ű76, 96Ű97, 101Ű102.]

Notes: This proof demonstrates that the function (u, v), which we deĄned on any
triangulation via 2 × 2 matrices, satisĄes (∗∗∗) whenever (t, u, v, w) are edges of the
polygon in clockwise order. We can express each (u, v) as a polynomial in the numbers
aj = (j − 1, j + 1); these polynomials are essentially identical to the ŞcontinuantsŤ
discussed in Section 4.5.3, except for the signs of individual terms. In fact, (j, k) =
i1−k+jKk−j−1(iaj+1, iaj+2, . . . , iak−1). Thus (∗∗∗) is equivalent to EulerŠs identity

2.3.5 ANSWERS TO EXERCISES 601

for continuants in the answer to exercise 4.5.3Ű32. The matrices L and R have the
interesting property that any 2× 2 matrix of nonnegative integers with determinant 1
can be expressed uniquely as a product of LŠs and RŠs.

Many other interesting relationships are present; for example, the numbers in
row 2 of an integer frieze count the number of triangles touching each vertex of the
corresponding triangulated polygon. The total number of occurrences of (u, v) = 1 in
the basic region 0 ≤ u < v − 1 < m − 1 and (u, v) ̸= (0,m − 1) is the number of
diagonals (chords) of the triangulation, namely m− 3 = n− 1. The total number of 2s
is also n − 1, because (u, v) = 2 if and only if u− and v− are opposing vertices of the
two triangles adjacent to a chord.

Another interpretation of (u, v) was found by D. Broline, D. W. Crowe, and I. M.
Isaacs [Geometriæ Dedicata 3 (1974), 171Ű176]: It is the number of ways to match the
v − u− 1 vertices between edges u and v − 1 with distinct triangles adjacent to those
vertices.

SECTION 2.3.5

1. A List structure is a directed graph in which the arcs leaving each vertex are
ordered, and where some of the vertices that have out-degree 0 are designated Şatoms.Ť
Furthermore there is a vertex S such that there is an oriented path from S to V for all
vertices V ̸= S. (With directions of arcs reversed, S would be a Şroot.Ť)

2. Not in the same way, since thread links in the usual representation lead back to
ŞPARENT,Ť which is not unique for sub-Lists. The representation discussed in exercise
2.3.4.2Ű25, or some similar method, could perhaps be used (but this idea has not yet
been exploited at the time of writing).

3. As mentioned in the text, we prove also that P = P0 upon termination. If only
P0 is to be marked, the algorithm certainly operates correctly. If n > 1 nodes are
to be marked, we must have ATOM(P0) = 0. Step E4 then sets ALINK(P0)← Λ and
executes the algorithm with P0 replaced by ALINK(P0) and T replaced by P0. By
induction (note that since MARK(P0) is now 1, all links to P0 are equivalent to Λ by
steps E4 and E5), we see that ultimately we will mark all nodes on paths that start with
ALINK(P0) and do not pass through P0; and we will then get to step E6 with T = P0 and
P = ALINK(P0). Now since ATOM(T) = 1, step E6 restores ALINK(P0) and ATOM(P0)

and we reach step E5. Step E5 sets BLINK(P0) ← Λ, etc., and a similar argument
shows that we will ultimately mark all nodes on paths that start with BLINK(P0) and
do not pass through P0 or nodes reachable from ALINK(P0). Then we will get to E6
with T = P0, P = BLINK(P0), and Ąnally we get to E6 with T = Λ, P = P0.

4. The program that follows incorporates the suggested improvements in the speed
of processing atoms that appear in the text after the statement of Algorithm E.

In steps E4 and E5 of the algorithm, we want to test if MARK(Q) = 0. If NODE(Q) =
+0, this is an unusual case that can be handled properly by setting it to −0 and treating
it as if it were originally −0, since it has ALINK and BLINK both Λ. This simpliĄcation
is not reĆected in the timing calculations below.

rI1 ≡ P, rI2 ≡ T, rI3 ≡ Q, and rX ≡ −1 (for setting MARKs).

01 MARK EQU 0:0

02 ATOM EQU 1:1

03 ALINK EQU 2:3

04 BLINK EQU 4:5

602 ANSWERS TO EXERCISES 2.3.5

05 E1 LD1 P0 1 E1. Initialize. P← P0.
06 ENT2 0 1 T← Λ.
07 ENTX -1 1 rX← −1.
08 E2 STX 0,1(MARK) 1 E2. Mark. MARK(P)← 1.
09 E3 LDA 0,1(ATOM) 1 E3. Atom?
10 JAZ E4 1 Jump if ATOM(P) = 0.
11 E6 J2Z DONE n E6. Up.
12 ENT3 0,2 n− 1 Q← T.
13 LDA 0,3(ATOM) n− 1
14 JANZ 1F n− 1 Jump if ATOM(T) = 1.
15 LD2 0,3(BLINK) t2 T← BLINK(Q).
16 ST1 0,3(BLINK) t2 BLINK(Q)← P.
17 ENT1 0,3 t2 P← Q.
18 JMP E6 t2
19 1H STZ 0,2(ATOM) t1 ATOM(T)← 0.
20 LD2 0,3(ALINK) t1 T← ALINK(Q).
21 ST1 0,3(ALINK) t1 ALINK(Q)← P.
22 ENT1 0,3 t1 P← Q.
23 E5 LD3 0,1(BLINK) n E5. Down BLINK. Q← BLINK(P).
24 J3Z E6 n Jump if Q = Λ.
25 LDA 0,3 n− b2

26 STX 0,3(MARK) n− b2 MARK(Q)← 1.
27 JANP E6 n− b2 Jump if NODE(Q) was already marked.
28 LDA 0,3(ATOM) t2 + a2

29 JANZ E6 t2 + a2 Jump if ATOM(Q) = 1.
30 ST2 0,1(BLINK) t2 BLINK(P)← T.
31 E4A ENT2 0,1 n− 1 T← P.
32 ENT1 0,3 n− 1 P← Q.
33 E4 LD3 0,1(ALINK) n E4. Down ALINK. Q← ALINK(P).
34 J3Z E5 n Jump if Q = Λ.
35 LDA 0,3 n− b1

36 STX 0,3(MARK) n− b1 MARK(Q)← 1.
37 JANP E5 n− b1 Jump if NODE(Q) was already marked.
38 LDA 0,3(ATOM) t1 + a1

39 JANZ E5 t1 + a1 Jump if ATOM(Q) = 1.
40 STX 0,1(ATOM) t1 ATOM(P)← 1.
41 ST2 0,1(ALINK) t1 ALINK(P)← T.
42 JMP E4A t1 T← P, P← Q, to E4.

By KirchhoffŠs law, t1 + t2 + 1 = n. The total time is (34n+ 4t1 + 3a− 5b− 8)u, where
n is the number of nonatomic nodes marked, a is the number of atoms marked, b is
the number of Λ links encountered in marked nonatomic nodes, and t1 is the number
of times we went down an ALINK (0 ≤ t1 < n).

5. (The following is the fastest known marking algorithm for a one-level memory.)

S1. Set MARK(P0) ← 1. If ATOM(P0) = 1, the algorithm terminates; otherwise set
S← 0, R← P0, T← Λ.

S2. Set P ← BLINK(R). If P = Λ or MARK(P) = 1, go to S3. Otherwise set
MARK(P)← 1. Now if ATOM(P) = 1, go to S3; otherwise if S < N set S← S+ 1,
STACK[S]← P, and go to S3; otherwise go to S5.

2.3.5 ANSWERS TO EXERCISES 603

S3. Set P ← ALINK(R). If P = Λ or MARK(P) = 1, go to S4. Otherwise set
MARK(P) ← 1. Now if ATOM(P) = 1, go to S4; otherwise set R ← P and return
to S2.

S4. If S = 0, terminate the algorithm; otherwise set R ← STACK[S], S ← S − 1,
and go to S2.

S5. Set Q ← ALINK(P). If Q = Λ or MARK(Q) = 1, go to S6. Otherwise set
MARK(Q) ← 1. Now if ATOM(Q) = 1, go to S6; otherwise set ATOM(P) ← 1,
ALINK(P)← T, T← P, P← Q, go to S5.

S6. Set Q ← BLINK(P). If Q = Λ or MARK(Q) = 1, go to S7; otherwise set
MARK(Q) ← 1. Now if ATOM(Q) = 1, go to S7; otherwise set BLINK(P) ← T,
T← P, P← Q, go to S5.

S7. If T = Λ, go to S3. Otherwise set Q ← T. If ATOM(Q) = 1, set ATOM(Q) ← 0,
T ← ALINK(Q), ALINK(Q) ← P, P ← Q, and return to S6. If ATOM(Q) = 0, set
T← BLINK(Q), BLINK(Q)← P, P← Q, and return to S7.

Reference: CACM 10 (1967), 501Ű506.

6. From the second phase of garbage collection (or perhaps also the initial phase,
if all mark bits are set to zero at that time).

7. Delete steps E2 and E3, and delete ŞATOM(P) ← 1Ť in E4. Set MARK(P) ← 1 in
step E5 and use ŞMARK(Q) = 0Ť, ŞMARK(Q) = 1Ť in step E6 in place of the present
ŞATOM(Q) = 1Ť, ŞATOM(Q) = 0Ť respectively. The idea is to set the MARK bit only after
the left subtree has been marked. This algorithm works even if the tree has overlapping
(shared) subtrees, but it does not work for all recursive List structures such as those
with NODE(ALINK(Q)) an ancestor of NODE(Q). (Note that ALINK of a marked node is
never changed.)

8. Solution 1: Analogous to Algorithm E, but simpler.

F1. Set T← Λ, P← P0.

F2. Set MARK(P)← 1, and set P← P + SIZE(P).

F3. If MARK(P) = 1, go to F5.

F4. Set Q← LINK(P). If Q ̸= Λ and MARK(Q) = 0, set LINK(P)← T, T← P, P← Q

and go to F2. Otherwise set P← P− 1 and return to F3.

F5. If T = Λ, stop. Otherwise set Q ← T, T ← LINK(Q), LINK(Q) ← P, P ← Q− 1,
and return to F3.

A similar algorithm, which sometimes decreases the storage overhead and which
avoids all pointers into the middle of nodes, has been suggested by Lars-Erik Thorelli,
BIT 12 (1972), 555Ű568.

Solution 2: Analogous to Algorithm D. For this solution, we assume that the SIZE

Ąeld is large enough to contain a link address. Such an assumption is probably not
justiĄed by the statement of the problem, but it lets us use a slightly faster method
than the Ąrst solution when it is applicable.

G1. Set T← Λ, MARK(P0)← 1, P← P0 + SIZE(P0).

G2. If MARK(P) = 1, go to G5.

G3. Set Q← LINK(P), P← P− 1.

G4. If Q ̸= Λ and MARK(Q) = 0, set MARK(Q) ← 1, S ← SIZE(Q), SIZE(Q) ← T,
T← Q + S. Go back to G2.

604 ANSWERS TO EXERCISES 2.3.5

G5. If T = Λ, stop. Otherwise set P ← T and Ąnd the Ąrst value of Q = P, P − 1,
P− 2, . . . for which MARK(Q) = 1; set T← SIZE(Q) and SIZE(Q)← P− Q. Go
back to G2.

9. H1. Set L← 0, K← M + 1, MARK(0)← 1, MARK(M + 1)← 0.

H2. Increase L by one, and if MARK(L) = 1 repeat this step.

H3. Decrease K by one, and if MARK(K) = 0 repeat this step.

H4. If L > K, go to step H5; otherwise set NODE(L) ← NODE(K), ALINK(K) ← L,
MARK(K)← 0, and return to H2.

H5. For L = 1, 2, . . . , K do the following: Set MARK(L) ← 0. If ATOM(L) = 0
and ALINK(L) > K, set ALINK(L) ← ALINK(ALINK(L)). If ATOM(L) = 0 and
BLINK(L) > K, set BLINK(L)← ALINK(BLINK(L)).

See also exercise 2.5Ű33.

10. Z1. [Initialize.] Set F ← P0, R ⇐ AVAIL, NODE(R) ← NODE(F), REF(F) ← R. (Here
F and R are pointers for a queue set up in the REF Ąelds of all header nodes
encountered.)

Z2. [Begin new List.] Set P← F, Q← REF(P).

Z3. [Advance to right.] Set P← RLINK(P). If P = Λ, go to Z6.

Z4. [Copy one node.] Set Q1 ⇐ AVAIL, RLINK(Q) ← Q1, Q ← Q1, NODE(Q) ←
NODE(P).

Z5. [Translate sub-List link.] If T(P) = 1, set P1← REF(P), and if REF(P1) = Λ set
REF(R) ← P1, R ⇐ AVAIL, REF(P1) ← R, NODE(R) ← NODE(P1), REF(Q) ← R.
If T(P) = 1 and REF(P1) ̸= Λ, set REF(Q)← REF(P1). Go to Z3.

Z6. [Move to next List.] Set RLINK(Q)← Λ. If REF(F) ̸= R, set F← REF(REF(F))

and return to Z2. Otherwise set REF(R)← Λ, P← P0.

Z7. [Final cleanup.] Set Q ← REF(P). If Q ̸= Λ, set REF(P) ← Λ and P ← Q and
repeat step Z7.

Of course, this use of the REF Ąelds makes it impossible to do garbage collection with
Algorithm D; moreover, Algorithm D is ruled out by the fact that the Lists arenŠt
well-formed during the copying.

Several elegant List-moving and List-copying algorithms that make substantially
weaker assumptions about List representation have been devised. See D. W. Clark,
CACM 19 (1976), 352Ű354; J. M. Robson, CACM 20 (1977), 431Ű433.

11. Here is a pencil-and-paper method that can be written out more formally to answer
the problem: First attach a unique name (e.g., a capital letter) to each List in the given
set; in the example we might have A = (a:C, b, a:F), F = (b:D), B = (a:F, b, a:E),
C = (b:G), G = (a:C), D = (a:F), E = (b:G). Now make a list of pairs of List
names that must be proved equal. Successively add pairs to this list until either a
contradiction is found because we have a pair that disagree on the Ąrst level (then the
originally given Lists are unequal), or until the list of pairs does not imply any further
pairs (then the originally given Lists are equal). In the example, this list of pairs would
originally contain only the given pair, AB; then it gets the further pairs CF, EF (by
matching A and B), DG (from CF); and then we have a self-consistent set.

To prove the validity of this method, observe that (i) if it returns the answer
ŞunequalŤ, the given Lists are unequal; (ii) if the given Lists are unequal, it returns
the answer ŞunequalŤ; (iii) it always terminates.

2.4 ANSWERS TO EXERCISES 605

12. When the AVAIL list contains N nodes, where N is a speciĄed constant to be
chosen as discussed below, initiate another coroutine that shares computer time with
the main routine and does the following: (a) Marks all N nodes on the AVAIL list; (b)
marks all other nodes that are accessible to the program; (c) links all unmarked nodes
together to prepare a new AVAIL list for use when the current AVAIL list is empty, and
(d) resets the mark bits in all nodes. One must choose N and the ratio of time sharing
so that operations (a), (b), (c), and (d) are guaranteed to be complete before N nodes
are taken from the AVAIL list, yet the main routine is running sufficiently fast. It is
necessary to use some care in step (b) to make sure that all nodes Şaccessible to the
programŤ are included, as the program continues to run; details are omitted here. If
the list formed in (c) has fewer than N nodes, it may be necessary to stop eventually
because memory space might become exhausted. [For further information, see Guy L.
Steele Jr., CACM 18 (1975), 495Ű508; P. Wadler, CACM 19 (1976), 491Ű500; E. W.
Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Steffens, CACM 21

(1978), 966Ű975; H. G. Baker, Jr., CACM 21 (1978), 280Ű294.]

SECTION 2.4

1. Preorder.

2. It is essentially proportional to the number of Data Table entries created.

3. Change step A5 to:

A5′. [Remove top level.] Remove the top stack entry; and if the new level number
at the top of the stack is ≥ L, let (L1, P1) be the new entry at the top of the
stack and repeat this step. Otherwise set SIB(P1)← Q and then let (L1, P1)
be the new entry at the top of the stack.

4. (Solution by David S. Wise.) Rule (c) is violated if and only if there is a data item
whose complete qualiĄcation A0 OF . . . OF An is also a COBOL reference to some other
data item. Since the parent A1 OF . . . OF An must also satisfy rule (c), we may assume
that this other data item is a descendant of the same parent. Therefore Algorithm A
would be extended to check, as each new data item is added to the Data Table, whether
its parent is an ancestor of any other item of the same name, or if the parent of any
other item of the same name is in the stack. (When the parent is Λ, it is everybodyŠs
ancestor and always on the stack.)

On the other hand, if we leave Algorithm A as it stands, the COBOL programmer
will get an error message from Algorithm B when trying to use an illegal item. Only
MOVE CORRESPONDING can make use of such items without error.

5. Make these changes: Step replace by

B1. P← LINK(P0) P← LINK(INFO(T))

B2. k ← 0 K← T

B3. k < n RLINK(K) ̸= Λ
B4. k ← k + 1 K← RLINK(K)

B6. NAME(S) = Pk NAME(S) = INFO(K)

6. A simple modiĄcation of Algorithm B makes it search only for complete references
(if k = n and PARENT(S) ̸= Λ in step B3, or if NAME(S) ̸= Pk in step B6, set P← PREV(P)

and go to B2). The idea is to run through this modiĄed Algorithm B Ąrst; then, if Q is
still Λ, to perform the unmodiĄed algorithm.

7. MOVE MONTH OF DATE OF SALES TO MONTH OF DATE OF PURCHASES. MOVE DAY OF DATE

OF SALES TO DAY OF DATE OF PURCHASES. MOVE YEAR OF DATE OF SALES TO YEAR OF

606 ANSWERS TO EXERCISES 2.4

DATE OF PURCHASES. MOVE ITEM OF TRANSACTION OF SALES TO ITEM OF TRANSACTION OF

PURCHASES. MOVE QUANTITY OF TRANSACTION OF SALES TO QUANTITY OF TRANSACTION

OF PURCHASES. MOVE PRICE OF TRANSACTION OF SALES TO PRICE OF TRANSACTION OF

PURCHASES. MOVE TAX OF TRANSACTION OF SALES TO TAX OF TRANSACTION OF PURCHASES.

8. If and only if α or β is an elementary item. (It may be of interest to note that
the author failed to handle this case properly in his Ąrst draft of Algorithm C, and it
actually made the algorithm more complicated.)

9. ŞMOVE CORRESPONDING α TO βŤ, if neither α nor β is elementary, is equivalent to
the set of statements ŞMOVE CORRESPONDING A OF α TO A OF βŤ taken over all names
A common to groups α and β. (This is a more elegant way to state the deĄnition
than the more traditional and more cumbersome deĄnition of ŞMOVE CORRESPONDINGŤ
given in the text.) We may verify that Algorithm C satisĄes this deĄnition, using an
inductive proof that steps C2 through C5 will ultimately terminate with P = P0 and
Q = Q0. Further details of the proof are Ąlled in as we have done many times before in
a Ştree inductionŤ (see, for example, the proof of Algorithm 2.3.1T).

10. (a) Set S1 ← LINK(Pk). Then repeatedly set S1 ← PREV(S1) zero or more times
until either S1 = Λ (NAME(S) ̸= Pk) or S1 = S (NAME(S) = Pk). (b) Set P1 ← P and
then set P1← PREV(P1) zero or more times until PREV(P1) = Λ; do a similar operation
with variables Q1 and Q; then test if P1 = Q1. Alternatively, if the Data Table entries
are ordered so that PREV(P) < P for all P, a faster test can be made in an obvious way
depending on whether P > Q or not, following the PREV links of the larger to see if the
smaller is encountered.

11. A minuscule improvement in the speed of step C4 would be achieved by adding a
new link Ąeld SIB1(P) ≡ CHILD(PARENT(P)). More signiĄcantly, we could modify the
CHILD and SIB links so that NAME(SIB(P)) > NAME(P); this would speed up the search
in step C3 considerably because it would require only one pass over each family to Ąnd
the matching members. This change would therefore remove the only ŞsearchŤ present
in Algorithm C. Algorithms A and C are readily modiĄed for this interpretation, and
the reader may Ąnd it an interesting exercise. (However, if we consider the relative
frequency of MOVE CORRESPONDING statements and the usual size of family groups, the
resulting speedup will not be terribly signiĄcant in the translation of actual COBOL
programs.)

12. Leave steps B1, B2, B3 unchanged; change the other steps thus:

B4′. Set k ← k + 1, R← LINK(Pk).

B5′. If R = Λ, set P ← PREV(P) and go to B2′ (we havenŠt found a match). If
R < S ≤ SCOPE(R), set S← R and go to B3′. Otherwise set R← PREV(R) and
repeat step B5′.

This algorithm does not adapt to the PL/I convention of exercise 6.

13. Use the same algorithm, minus the operations that set NAME, PARENT, CHILD,
and SIB. Whenever removing the top stack entry in step A5, set SCOPE(P1) ← Q − 1.
When the input is exhausted in step A2, simply set L← 0 and continue, then terminate
the algorithm if L = 0 in step A7.

14. The following algorithm, using an auxiliary stack, has steps numbered to show a
direct correspondence with the textŠs algorithm.

C1′. Set P← P0, Q← Q0, and set the stack contents empty.

2.5 ANSWERS TO EXERCISES 607

C2′. If SCOPE(P) = P or SCOPE(Q) = Q, output (P, Q) as one of the desired pairs
and go to C5′. Otherwise put (P, Q) on the stack and set P← P+1, Q← Q+1.

C3′. Determine if P and Q point to entries with the same name (see exercise 10(b)).
If so, go to C2′. If not, let (P1, Q1) be the entry at the top of the stack; if
SCOPE(Q) < SCOPE(Q1), set Q← SCOPE(Q) + 1 and repeat step C3′.

C4′. Let (P1, Q1) be the entry at the top of the stack. If SCOPE(P) < SCOPE(P1), set
P← SCOPE(P)+1, Q← Q1+1, and go back to C3′. If SCOPE(P) = SCOPE(P1),
set P← P1, Q← Q1 and remove the top entry of the stack.

C5′. If the stack is empty, the algorithm terminates. Otherwise go to C4′.

SECTION 2.5

1. In such fortuitous circumstances, a stack-like operation may be used as follows:
Let the memory pool area be locations 0 through M − 1, and let AVAIL point to the
lowest free location. To reserve N words, report failure if AVAIL + N ≥ M, otherwise set
AVAIL← AVAIL + N. To free these N words, just set AVAIL← AVAIL− N.

Similarly, cyclic queue-like operation is appropriate for a Ąrst-in-Ąrst-out discipline.

2. The amount of storage space for an item of length l is k⌈l/(k− b)⌉, which has the
average value kL/(k − b) + (1− α)k, where α is assumed to be 1/2, independent of k.
This expression is a minimum (for real values of k) when k = b+

√
2bL. So choose k to

be the integer just above or just below this value, whichever gives the lowest value of
kL/(k − b) + 1

2
k. For example, if b = 1 and L = 10, we would choose k ≈ 1 +

√
20 = 5

or 6; both are equally good. For much greater detail about this problem, see JACM
12 (1965), 53Ű70.

4. rI1 ≡ Q, rI2 ≡ P.

A1 LDA N rA← N.
ENT2 AVAIL P← LOC(AVAIL).

A2A ENT1 0,2 Q← P.
A2 LD2 0,1(LINK) P← LINK(Q).

J2N OVERFLOW If P = Λ, no room.
A3 CMPA 0,2(SIZE)

JG A2A Jump if N > SIZE(P).
A4 SUB 0,2(SIZE) rA← N− SIZE(P) ≡ K.

JANZ *+3 Jump if K ̸= 0.
LDX 0,2(LINK)

STX 0,1(LINK) LINK(Q)← LINK(P).
STA 0,2(SIZE) SIZE(P)← K.
LD1 0,2(SIZE) Optional ending,
INC1 0,2 sets rI1← P + K.

5. Probably not. The unavailable storage area just before location P will subsequently
become available, and its length will be increased by the amount K; an increase of 99
would not be negligible.

6. The idea is to try to search in different parts of the AVAIL list each time. We can
use a Şroving pointer,Ť called ROVER for example, which is treated as follows: In step
A1, set Q ← ROVER. After step A4, set ROVER ← LINK(Q) if LINK(Q) ̸= Λ, otherwise
set ROVER ← LOC(AVAIL). In step A2, when P = Λ the Ąrst time during a particular
execution of Algorithm A, set Q ← LOC(AVAIL) and repeat step A2. When P = Λ the
second time, the algorithm terminates unsuccessfully. In this way ROVER will tend to

608 ANSWERS TO EXERCISES 2.5

point to a random spot in the AVAIL list, and the sizes will be more balanced. At the
beginning of the program, set ROVER← LOC(AVAIL); it is also necessary to set ROVER to
LOC(AVAIL) everywhere else in the program where the block whose address equals the
current setting of ROVER is taken out of the AVAIL list. (Sometimes, however, it is useful
to have small blocks at the beginning, as in the strict Ąrst-Ąt method; for example, we
might want to keep a sequential stack at the high end of memory. In such cases we can
reduce the search time by using trees as suggested in exercise 6.2.3Ű30.)

7. 2000, 1000 with requests of sizes 800, 1300. [An example where worst-Ąt succeeds,
while best-Ąt fails, has been constructed by R. J. Weiland.]

8. In step A1′′, also set M ← ∞, R ← Λ. In step A2′′, if P = Λ go to A6′′. In step
A3′′, go to A5′′ instead of to A4′′. Add new steps as follows:

A5′′. [Better Ąt?] If M > SIZE(P), set R ← Q and M ← SIZE(P). Then set Q ← P

and return to A2′′.

A6′′. [Any found?] If R = Λ, the algorithm terminates unsuccessfully. Otherwise
set Q← R, P← LINK(Q), and go to A4′′.

9. Obviously if we are so lucky as to Ąnd SIZE(P) = N, we have a best Ąt and it is not
necessary to search farther. (When there are only very few different block sizes, this
occurs rather often.) If a Şboundary tagŤ method like Algorithm C is being used, it is
possible to maintain the AVAIL list in sorted order by size; so the length of search could
be cut down to half the length of the list or less, on the average. But the best solution
is to make the AVAIL list into a balanced tree structure as described in Section 6.2.3, if
it is expected to be long.

10. Make the following changes:
Step B2, for ŞP > P0Ť read ŞP ≥ P0Ť.
At the beginning of step B3, insert ŞIf P0 + N > P and P ̸= Λ, set N ← max(N,

P + SIZE(P)− P0), P← LINK(P), and repeat step B3.Ť
Step B4, for ŞQ + SIZE(Q) = P0Ť, read ŞQ + SIZE(Q) ≥ P0Ť; and for ŞSIZE(Q) ←

SIZE(Q) + NŤ read ŞSIZE(Q)← max(SIZE(Q), P0 + N− Q)Ť.

11. If P0 is greater than ROVER, we can set Q ← ROVER instead of Q ← LOC(AVAIL) in
step B1. If there are n entries in the AVAIL list, the average number of iterations of
step B2 is (2n+ 3)(n+ 2)/(6n+ 6) = 1

3
n+ 5

6
+O

1
n

. For example if n = 2 we get 9

equally probable situations, where P1 and P2 point to the two existing available blocks:

P0 < P1 P1 < P0 < P2 P2 < P0

ROVER = P1 1 1 2
ROVER = P2 1 2 1
ROVER = LOC(AVAIL) 1 2 3

This chart shows the number of iterations needed in each case. The average is

1
9

2
2

+
3

2

+
4

2

+
3

2

+
2

2

=

1
9

5
3

+
4

3

=

14
9
.

12. A1*. Set P← ROVER, F← 0.

A2*. If P = LOC(AVAIL) and F = 0, set P ← AVAIL, F ← 1, and repeat step A2*.
If P = LOC(AVAIL) and F ̸= 0, the algorithm terminates unsuccessfully.

A3*. If SIZE(P) ≥ N, go to A4*; otherwise set P← LINK(P) and return to A2*.

2.5 ANSWERS TO EXERCISES 609

A4*. Set ROVER← LINK(P), K← SIZE(P)−N. If K < c (where c is a constant ≥ 2),
set LINK(LINK(P + 1)) ← ROVER, LINK(ROVER + 1) ← LINK(P + 1), L ← P;
otherwise set L ← P + K, SIZE(P) ← SIZE(L − 1) ← K, TAG(L− 1) ← Ş−Ť,
SIZE(L)← N. Finally set TAG(L)← TAG(L + SIZE(L)− 1)← Ş+Ť.

13. rI1 ≡ P, rX ≡ F, rI2 ≡ L.

LINK EQU 4:5

SIZE EQU 1:2

TSIZE EQU 0:2

TAG EQU 0:0

A1 LDA N rA← N.
SLA 3 Shift into SIZE Ąeld.
ENTX 0 F← 0.
LD1 ROVER P← ROVER.
JMP A2

A3 CMPA 0,1(SIZE)

JLE A4 Jump if N ≤ SIZE(P).
LD1 0,1(LINK) P← LINK(P).

A2 ENT2 -AVAIL,1 rI2← P− LOC(AVAIL).
J2NZ A3

JXNZ OVERFLOW Is F ̸= 0?
ENTX 1 Set F← 1.
LD1 AVAIL(LINK) P← AVAIL.
JMP A2

A4 LD2 0,1(LINK)

ST2 ROVER ROVER← LINK(P).
LDA 0,1(SIZE) rA ≡ K← SIZE(P)− N.
SUB N

CMPA =c=
JGE 1F Jump if K ≥ c.
LD3 1,1(LINK) rI3← LINK(P + 1).
ST2 0,3(LINK) LINK(rI3)← ROVER.
ST3 1,2(LINK) LINK(ROVER + 1)← rI3.
ENT2 0,1 L← P.
LD3 0,1(SIZE) rI3← SIZE(P).
JMP 2F

1H STA 0,1(SIZE) SIZE(P)← K.
LD2 0,1(SIZE)

INC2 0,1 L← P + K.
LDAN 0,1(SIZE) rA← −K.
STA -1,2(TSIZE) SIZE(L− 1)← K, TAG(L− 1)← Ş−Ť.
LD3 N rI3← N.

2H ST3 0,2(TSIZE) TAG(L)← Ş+Ť, also set SIZE(L)← rI3.
INC3 0,2

STZ -1,3(TAG) TAG(L + SIZE(L)− 1)← Ş+Ť.

14. (a) This Ąeld is needed to locate the beginning of the block, in step C2. It could
be replaced (perhaps to advantage) by a link to the Ąrst word of the block. See also
exercise 19. (b) This Ąeld is needed because we sometimes need to reserve more than N

words (for example if K = 1), and the amount reserved must be known when the block
is subsequently freed.

610 ANSWERS TO EXERCISES 2.5

15, 16. rI1 ≡ P0, rI2 ≡ P1, rI3 ≡ F, rI4 ≡ B, rI6 ≡ −N.

C1 LD1 P0 C1.
LD2 0,1(SIZE)

ENN6 0,2 N← SIZE(P0).
INC2 0,1 P1← P0 + N.
LD5 0,2(TSIZE)

J5N C4 To C4 if TAG(P1) = Ş−Ť.
C2 LD5 -1,1(TSIZE) C2.

J5N C7 To C7 if TAG(P0− 1) = Ş−Ť.
C3 LD3 AVAIL(LINK) C3. Set F← AVAIL.

ENT4 AVAIL B← LOC(AVAIL).
JMP C5 To C5.

C4 INC6 0,5 C4. N← N + SIZE(P1).
LD3 0,2(LINK) F← LINK(P1).
LD4 1,2(LINK) B← LINK(P1 + 1).
CMP2 ROVER (New code, because of the ROVER

JNE *+3 feature of exercise 12:
ENTX AVAIL If P1 = ROVER,
STX ROVER set ROVER← LOC(AVAIL).)
DEC2 0,5 P1← P1 + SIZE(P1).
LD5 -1,1(TSIZE)

J5N C6 To C6 if TAG(P0− 1) = Ş−Ť.
C5 ST3 0,1(LINK) C5. LINK(P0)← F.

ST4 1,1(LINK) LINK(P0 + 1)← B.
ST1 1,3(LINK) LINK(F + 1)← P0.
ST1 0,4(LINK) LINK(B)← P0.
JMP C8 To C8.

C6 ST3 0,4(LINK) C6. LINK(B)← F.
ST4 1,3(LINK) LINK(F + 1)← B.

C7 INC6 0,5 C7. N← N + SIZE(P0− 1).
INC1 0,5 P0← P0− SIZE(P0− 1).

C8 ST6 0,1(TSIZE) C8. SIZE(P0)← N, TAG(P0)← Ş−Ť.
ST6 -1,2(TSIZE) SIZE(P1− 1)← N, TAG(P1− 1)← Ş−Ť.

17. Both LINK Ąelds equal to LOC(AVAIL).

18. Algorithm A reserves the upper end of a large block. When storage is completely
available, the Ąrst-Ąt method actually begins by reserving the high-order locations, but
once these become available again they are not re-reserved since a Ąt is usually found
already in the lower locations; thus the initial large block at the lower end of memory
quickly disappears with Ąrst-Ąt. A large block rarely is the best Ąt, however, so the
best-Ąt method leaves a large block at the beginning of memory.

19. Use the algorithm of exercise 12, except delete the references to SIZE(L − 1),
TAG(L−1), and TAG(L+SIZE(L)−1) from step A4*; also insert the following new step
between steps A2* and A3*:

A2.5*. Set P1← P + SIZE(P). If TAG(P1) = Ş+Ť, proceed to step A3. Otherwise
set P2← LINK(P1), LINK(P2+1)← LINK(P1+1), LINK(LINK(P1+1))←
P2, SIZE(P) ← SIZE(P) + SIZE(P1). If ROVER = P1, set ROVER ← P2.
Repeat step A2.5*.

2.5 ANSWERS TO EXERCISES 611

Clearly the situation of (2), (3), (4) canŠt occur here; the only real effect on
storage allocation is that the search here will tend to be longer than in exercise 12,
and sometimes K will be less than c although there is really another available block
preceding this one that we do not know about.

(An alternative is to take the collapsing out of the inner loop A3*, and to do the
collapsing only in step A4* before the Ąnal allocation or in the inner loop when the
algorithm would otherwise have terminated unsuccessfully. This alternative requires a
simulation study to see if it is an improvement or not.)

[This method, with a few reĄnements, has proved to be quite satisfactory in the
implementations of TEX and hijklmnj. See TEX: The Program (AddisonŰWesley,
1986), §125.]

20. When a buddy is found to be available, during the collapsing loop, we want to
remove that block from its AVAIL[k] list, but we do not know which links to update
unless (i) we do a possibly long search, or (ii) the list is doubly linked.

21. If n = 2kα, where 1 ≤ α ≤ 2, an is 22k+1(α− 2
3
) + 1

3
, and bn is 22k−1α2 + 2k−1α.

The ratio an/bn for large n is essentially 4(α− 2
3
)/α2, which takes its minimum value

4
3

when α = 1 and 2, and its maximum value 3
2

when α = 1 1
3
. So an/bn approaches no

limit; it oscillates between these two extremes. The averaging methods of Section 4.2.4
do, however, yield an average ratio of 4(ln 2)−1

 2

1
(α− 2

3
) dα/α3 = (ln 2)−1 ≈ 1.44.

22. This idea requires a TAG Ąeld in several words of the 11-word block, not only in
the Ąrst word. It is a workable idea, if those extra TAG bits can be spared, and it would
appear to be especially suitable for use in computer hardware.

23. 011011110100; 011011100000.

24. This would introduce a bug in the program; we may get to step S1 when TAG(0)= 1,
since S2 may return to S1. To make it work, add ŞTAG(L)← 0Ť after ŞL← PŤ in step S2.
(It is easier to assume instead that TAG(2m) = 0.)
25. The idea is absolutely correct. (Criticism need not be negative.) The list heads
AVAIL[k] may be eliminated for n < k ≤ m; the algorithms of the text may be used if
ŞmŤ is changed to ŞnŤ in steps R1, S1. The initial conditions (13) and (14) should be
changed to indicate 2m−n blocks of size 2n instead of one block of size 2m.

26. Using the binary representation of M, we can easily modify the initial conditions
(13), (14) so that all memory locations are divided into blocks whose size is a power of
two, with blocks in decreasing order of size. In Algorithm S, TAG(P) should be regarded
as 0 whenever P ≥ M− 2k.

27. rI1 ≡ k, rI2 ≡ j, rI3 ≡ j − k, rI4 ≡ L, LOC(AVAIL[j]) = AVAIL + j; as-
sume that there is an auxiliary table TWO[j] = 2j , stored in location TWO + j, for
0 ≤ j ≤ m. Assume further that Ş+Ť and Ş−Ť represent tags of 0 and 1, and that
TAG(LOC(AVAIL[j])) = Ş−Ť; but TAG(LOC(AVAIL[m+ 1])) = Ş+Ť is a sentinel.

00 KVAL EQU 5:5

01 TAG EQU 0:0

02 LINKF EQU 1:2

03 LINKB EQU 3:4

04 TLNKF EQU 0:2

05 R1 LD1 K 1 R1. Find block.
06 ENT2 0,1 1 j ← k.
07 ENT3 0 1
08 LD4 AVAIL,2(LINKF) 1

612 ANSWERS TO EXERCISES 2.5

09 1H ENT5 AVAIL,2 1 +R
10 DEC5 0,4 1 +R
11 J5NZ R2 1 +R Jump if AVAILF[j] ̸= LOC(AVAIL[j]).
12 INC2 1 R Increase j.
13 INC3 1 R
14 LD4N AVAIL,2(TLNKF) R
15 J4NN 1B R Is j ≤ m?
16 JMP OVERFLOW

17 R2 LD5 0,4(LINKB) 1 R2. Remove from list.
18 ST5 AVAIL,2(LINKB) 1 AVAILB[j]← LINKB(L).
19 ENTA AVAIL,2 1
20 STA 0,5(LINKF) 1 LINKF(L)← LOC(AVAIL[j]).
21 STZ 0,4(TAG) 1 TAG(L)← 0.
22 R3 J3Z DONE 1 R3. Split required?
23 R4 DEC3 1 R R4. Split.
24 DEC2 1 R Decrease j.
25 LD5 TWO,2 R rI5 ≡ P.
26 INC5 0,4 R P← L + 2j .
27 ENNA AVAIL,2 R
28 STA 0,5(TLNKF) R TAG(P)← 1, LINKF(P)← LOC(AVAIL[j]).
29 STA 0,5(LINKB) R LINKB(P)← LOC(AVAIL[j]).
30 ST5 AVAIL,2(LINKF) R AVAILF[j]← P.
31 ST5 AVAIL,2(LINKB) R AVAILB[j]← P.
32 ST2 0,5(KVAL) R KVAL(P)← j.
33 J3P R4 R Go to R3.
34 DONE ...

28. rI1 ≡ k, rI5 ≡ P, rI4 ≡ L; assume TAG(2m) = Ş+Ť.

01 S1 LD4 L 1 S1. Is buddy available?
02 LD1 K 1
03 1H ENTA 0,4 1 + S
04 XOR TWO,1 1 + S rA← buddyk(L).
05 STA TEMP 1 + S
06 LD5 TEMP 1 + S P← rA.
07 LDA 0,5 1 + S
08 JANN S3 1 + S Jump if TAG(P) = 0.
09 CMP1 0,5(KVAL) B + S
10 JNE S3 B + S Jump if KVAL(P) ̸= k.
11 S2 LD2 0,5(LINKB) S S2. Combine with buddy.
12 LD3 0,5(LINKF) S
13 ST3 0,2(LINKF) S LINKF(LINKB(P))← LINKF(P).
14 ST2 0,3(LINKB) S LINKB(LINKF(P))← LINKB(P).
15 INC1 1 S Increase k.
16 CMP4 TEMP S
17 JL 1B S
18 ENT4 0,5 A If L > P, set L← P.
19 JMP 1B A
20 S3 LD2 AVAIL,1(LINKF) 1 S3. Put on list.
21 ENNA AVAIL,1 1
22 STA 0,4(0:4) 1 TAG(L)← 1, LINKB(L)← LOC(AVAIL[k]).

2.5 ANSWERS TO EXERCISES 613

23 ST2 0,4(LINKF) 1 LINKF(L)← AVAILF[k].
24 ST1 0,4(KVAL) 1 KVAL(L)← k.
25 ST4 0,2(LINKB) 1 LINKB(AVAILF[k])← L.
26 ST4 AVAIL,1(LINKF) 1 AVAIL[k]← L.

29. Yes, but only at the expense of some searching, or (better) an additional table
of TAG bits packed somehow. (It is tempting to suggest that buddies not be joined
together during Algorithm S, but only in Algorithm R if there is no block large enough
to meet the request; but that would probably lead to a badly fragmented memory.)

31. See David L. Russell, SICOMP 6 (1977), 607Ű621.

32. Steven Crain points out that the method always frees all blocks and starts afresh
before 16667 units of time have elapsed; hence the stated limit certainly exists. Proof:

Let un = n+ tn, so that gn = ⌊ 5
4

min(10000, f(un−1−n), f(un−2−n), . . . , f(u0−n))⌋.
Let x0 = 0 and x1 = u0, and xk+1 = max(u0, . . . , uxk−1) for k ≥ 1. If xk > xk−1 then

un ≤ n+
5
4
f(xk − n) =

5
4
xk − 1

4
n ≤ 5

4
xk − 1

4
xk−1 for xk−1 ≤ n < xk;

therefore xk+1−xk ≤ 1
4
(xk−xk−1), and we must have xk = xk−1 before reaching time

12500 + ⌊12500/4⌋+ ⌊12500/42⌋+ · · · .
33. G1. [Clear LINKs.] Set P ← 1, and repeat the operation LINK(P) ← Λ, P ←

P + SIZE(P) until P = AVAIL. (This merely sets the LINK Ąeld in the Ąrst
word of each node to Λ; we may assume in most cases that this step is
unnecessary, since LINK(P) is set to Λ in step G9 below and it can be set to
Λ by the storage allocator.)

G2. [Initialize marking phase.] Set TOP← USE, LINK(TOP)← AVAIL, LINK(AVAIL)
← Λ. (TOP points to the top of a stack as in Algorithm 2.3.5D.)

G3. [Pop up stack.] Set P← TOP, TOP← LINK(TOP). If TOP = Λ, go to G5.

G4. [Put new links on stack.] For 1 ≤ k ≤ T(P), do the following operations:
Set Q ← LINK(P + k); then if Q ̸= Λ and LINK(Q) = Λ, set LINK(Q) ← TOP,
TOP← Q. Then go back to G3.

G5. [Initialize next phase.] (Now P = AVAIL, and the marking phase has been
completed so that the Ąrst word of each accessible node has a nonnull LINK.
Our next goal is to combine adjacent inaccessible nodes, for speed in later
steps, and to assign new addresses to the accessible nodes.) Set Q ← 1,
LINK(AVAIL) ← Q, SIZE(AVAIL) ← 0, P ← 1. (Location AVAIL is being used
as a sentinel to signify the end of a loop in subsequent phases.)

G6. [Assign new addresses.] If LINK(P) = Λ, go to G7. Otherwise if SIZE(P) = 0,
go to G8. Otherwise set LINK(P) ← Q, Q ← Q + SIZE(P), P ← P + SIZE(P),
and repeat this step.

G7. [Collapse available areas.] If LINK(P + SIZE(P)) = Λ, increase SIZE(P) by
SIZE(P + SIZE(P)) and repeat this step. Otherwise set P← P+ SIZE(P) and
return to G6.

G8. [Translate all links.] (Now the LINK Ąeld in the Ąrst word of each accessible
node contains the address to which the node will be moved.) Set USE ←
LINK(USE), and AVAIL ← Q. Then set P ← 1, and repeat the following
operation until SIZE(P) = 0: If LINK(P) ̸= Λ, set LINK(Q)← LINK(LINK(Q))

for all Q such that P < Q ≤ P + T(P) and LINK(Q) ̸= Λ; then regardless of the
value of LINK(P), set P← P + SIZE(P).

614 ANSWERS TO EXERCISES 2.5

G9. [Move.] Set P ← 1, and repeat the following operation until SIZE(P) = 0:
Set Q ← LINK(P), and if Q ̸= Λ set LINK(P) ← Λ and NODE(Q) ← NODE(P);
then whether Q = Λ or not, set P← P+ SIZE(P). (The operation NODE(Q)←
NODE(P) implies the movement of SIZE(P) words; we always have Q ≤ P, so it
is safe to move the words in order from smallest location to largest.)

[This method is called the ŞLISP 2 garbage collector.Ť An interesting alternative, which
does not require the LINK Ąeld at the beginning of a node, can be based on the idea
of linking together all pointers that point to each node Ů see Lars-Erik Thorelli, BIT
16 (1976), 426Ű441; R. B. K. Dewar and A. P. McCann, Software Practice & Exp.
7 (1977), 95Ű113; F. Lockwood Morris, CACM 21 (1978), 662Ű665, 22 (1979), 571;
H. B. M. Jonkers, Inf. Proc. Letters 9 (1979), 26Ű30; J. J. Martin, CACM 25 (1982),
571Ű581; F. Lockwood Morris, Inf. Proc. Letters 15 (1982), 139Ű142, 16 (1983), 215.
Other methods have been published by B. K. Haddon and W. M. Waite, Comp. J. 10

(1967), 162Ű165; B. Wegbreit, Comp. J. 15 (1972), 204Ű208; D. A. Zave, Inf. Proc.
Letters 3 (1975), 167Ű169. Cohen and Nicolau have analyzed four of these approaches
in ACM Trans. Prog. Languages and Systems 5 (1983), 532Ű553.]

34. Let TOP ≡ rI1, Q ≡ rI2, P ≡ rI3, k ≡ rI4, SIZE(P) ≡ rI5. Assume further that
Λ = 0, and LINK(0) ̸= 0 to simplify step G4. Step G1 is omitted.

01 LINK EQU 4:5

02 INFO EQU 0:3

03 SIZE EQU 1:2

04 T EQU 3:3

05 G2 LD1 USE 1 G2. Initialize marking phase. TOP← USE.
06 LD2 AVAIL 1
07 ST2 0,1(LINK) 1 LINK(TOP)← AVAIL.
08 STZ 0,2(LINK) 1 LINK(AVAIL)← Λ.
09 G3 ENT3 0,1 a+ 1 G3. Pop up stack. P← TOP.
10 LD1 0,1(LINK) a+ 1 TOP← LINK(TOP).
11 J1Z G5 a+ 1 To G5 if TOP = Λ.
12 G4 LD4 0,3(T) a G4. Put new links on stack. k ← T(P).
13 1H J4Z G3 a+ b k = 0?
14 INC3 1 b P← P + 1.
15 DEC4 1 b k ← k − 1.
16 LD2 0,3(LINK) b Q← LINK(P).
17 LDA 0,2(LINK) b
18 JANZ 1B b Jump if LINK(Q) ̸= Λ.
19 ST1 0,2(LINK) a− 1 Otherwise set LINK(Q)← TOP,
20 ENT1 0,2 a− 1 TOP← Q.
21 JMP 1B a− 1
22 G5 ENT2 1 1 G5. Initialize next phase. Q← 1.
23 ST2 0,3 1 LINK(AVAIL)← 1, SIZE(AVAIL)← 0.
24 ENT3 1 1 P← 1.
25 JMP G6 1
26 1H ST2 0,3(LINK) a LINK(P)← Q.
27 INC2 0,5 a Q← Q + SIZE(P).
28 INC3 0,5 a P← P + SIZE(P).
29 G6 LDA 0,3(LINK) a+ 1 G6. Assign new addresses.
30 G6A LD5 0,3(SIZE) a+ c+ 1

2.5 ANSWERS TO EXERCISES 615

31 JAZ G7 a+ c+ 1 Jump if LINK(P) = Λ.
32 J5NZ 1B a+ 1 Jump if SIZE(P) ̸= 0.
33 G8 LD1 USE 1 G8. Translate all links.
34 LDA 0,1(LINK) 1
35 STA USE 1 USE← LINK(USE).
36 ST2 AVAIL 1 AVAIL← Q.
37 ENT3 1 1 P← 1.
38 JMP G8P 1
39 1H LD6 0,6(SIZE) d
40 INC5 0,6 d rI5← rI5 + SIZE(P + SIZE(P)).
41 G7 ENT6 0,3 c+ d G7. Collapse available areas.
42 INC6 0,5 c+ d rI6← P + SIZE(P).
43 LDA 0,6(LINK) c+ d
44 JAZ 1B c+ d Jump if LINK(rI6) ≡ Λ.
45 ST5 0,3(SIZE) c SIZE(P)← rI5.
46 INC3 0,5 c P← P + SIZE(P).
47 JMP G6A c
48 2H DEC4 1 b k ← k − 1.
49 INC2 1 b Q← Q + 1.
50 LD6 0,2(LINK) b
51 LDA 0,6(LINK) b
52 STA 0,2(LINK) b LINK(Q)← LINK(LINK(Q)).
53 1H J4NZ 2B a+ b Jump if k ̸= 0.
54 3H INC3 0,5 a+ c P← P + SIZE(P).
55 G8P LDA 0,3(LINK) 1 + a+ c
56 LD5 0,3(SIZE) 1 + a+ c
57 JAZ 3B 1 + a+ c Is LINK(P) = Λ?
58 LD4 0,3(T) 1 + a k ← T(P).
59 ENT2 0,3 1 + a Q← P.
60 J5NZ 1B 1 + a Jump unless SIZE(P) = 0.
61 G9 ENT3 1 1 G9. Move. P← 1.
62 ENT1 1 1 Set rI1 for MOVE instructions.
63 JMP G9P 1
64 1H STZ 0,3(LINK) a LINK(P)← Λ.
65 ST5 *+1(4:4) a
66 MOVE 0,3(*) a NODE(rI1)← NODE(P), rI1← rI1 + SIZE(P).
67 3H INC3 0,5 a+ c P← P + SIZE(P).
68 G9P LDA 0,3(LINK) 1 + a+ c
69 LD5 0,3(SIZE) 1 + a+ c
70 JAZ 3B 1 + a+ c Jump if LINK(P) = Λ.
71 J5NZ 1B 1 + a Jump unless SIZE(P) = 0.

In line 66 we are assuming that the size of each node is sufficiently small that it can
be moved with a single MOVE instruction; this seems a fair assumption for most cases
when this kind of garbage collection is applicable.

The total running time for this program is (44a+17b+2w+25c+8d+47)u, where
a is the number of accessible nodes, b is the number of link Ąelds therein, c is the number
of inaccessible nodes that are not preceded by an inaccessible node, d is the number of
inaccessible nodes that are preceded by an inaccessible node, and w is the total number
of words in the accessible nodes. If the memory contains n nodes, with ρn of them

616 ANSWERS TO EXERCISES 2.5

inaccessible, then we may estimate a = (1 − ρ)n, c = (1 − ρ)ρn, d = ρ2n. Example:
Ąve-word nodes (on the average), with two link Ąelds per node (on the average), and a
memory of 1000 nodes. Then when ρ = 0.2, it takes 374u per available node recovered;
when ρ = 0.5, it takes 104u; and when ρ = 0.8, it takes only 33u.

36. A single customer will be able to sit in one of the sixteen seats 1, 3, 4, 6, . . . , 23.
If a pair enters, there must be room for them; otherwise there are at least two people
in seats (1, 2, 3), at least two in (4, 5, 6), . . . , at least two in (19, 20, 21), and at least
one in 22 or 23, so at least Ąfteen people are already seated.

37. First sixteen single males enter, and she seats them. There are 17 gaps of empty
seats between the occupied seats, counting one gap at each end, with a gap of length
zero assumed between adjacent occupied seats. The total number of empty seats,
namely the sum of all seventeen gaps, is 6. Suppose x of the gaps are of odd length;
then 6− x spaces are available to seat pairs. (Note that 6− x is even and ≥ 0.) Now
each of the customers 1, 3, 5, 7, 9, 11, 13, 15, from left to right, who has an even gap
on both sides, Ąnishes his lunch and walks out. Each odd gap prevents at most one of
these eight diners from leaving, hence at least 8− x people leave. There still are only
6− x spaces available to seat pairs. But now (8− x)/2 pairs enter.

38. The arguments generalize readily; N(n, 2) = ⌊(3n − 1)/2⌋ for n ≥ 1. [When the
hostess uses a Ąrst-Ąt strategy instead of an optimal one, Robson has proved that the
necessary and sufficient number of seats is ⌊(5n− 2)/3⌋.]
39. Divide memory into three independent regions of sizes N(n1,m), N(n2, m), and
N(2m− 2, m). To process a request for space, put each block into the Ąrst region for
which the stated capacity is not exceeded, using the relevant optimum strategy for that
region. This cannot fail, for if we were unable to Ąll a request for x locations we must
have at least (n1−x+ 1) + (n2−x+ 1) + (2m−x− 1) > n1 +n2−x locations already
occupied.

Now if f(n) = N(n,m)+N(2m−2, m), we have the subadditive law f(n1 +n2) ≤
f(n1) + f(n2). Hence lim f(n)/n exists. (Proof: f(a + bc) ≤ f(a) + bf(c); hence
lim supn→∞ f(n)/n = max0≤a<c lim supb→∞ f(a+bc)/(a+bc) ≤ f(c)/c for all c; hence
lim supn→∞ f(n)/n ≤ lim infn→∞ f(n)/n.) Therefore limN(n,m)/n exists.

[From exercise 38 we know that N(2) = 3
2
. The value N(m) is not known for any

m > 2. It is not difficult to show that the multiplicative factor for just two block sizes,
1 and b, is 2− 1/b; hence N(3) ≥ 1 2

3
. RobsonŠs methods imply that N(3) ≤ 1 11

12
, and

2 ≤ N(4) ≤ 2 1
6
.]

40. Robson has proved that N(2r) ≤ 1 + r, by using the following strategy: Allocate
to each block of size k, where 2m ≤ k < 2m+1, the Ąrst available block of k locations
starting at a multiple of 2m.

Let N({b1, b2, . . . , bn}) denote the multiplicative factor when all block sizes are
constrained to lie in the set {b1, b2, . . . , bn}, so that N(n) = N({1, 2, . . . , n}). Robson
and S. Krogdahl have discovered that N({b1, b2, . . . , bn}) = n− (b1/b2 + · · ·+ bn−1/bn)
whenever bi is a multiple of bi−1 for 1 < i ≤ n; indeed, Robson has established the
exact formula N(2rm, {1, 2, 4, . . . , 2r}) = 2rm(1 + 1

2
r) − 2r + 1. Thus in particular,

N(n) ≥ 1 + 1
2
⌊lgn⌋. He also has derived the upper bound N(n) ≤ 1.1825 lnn +

O(1), and he conjectures tentatively that N(n) = Hn. This conjecture would follow
if N({b1, b2, . . . , bn}) were equal to n − (b1/b2 + · · · + bn−1/bn) in general, but this is
unfortunately not the case since Robson has proved that N({3, 4}) ≥ 1 4

15
. (See Inf.

Proc. Letters 2 (1973), 96Ű97; JACM 21 (1974), 491Ű499.)

2.5 ANSWERS TO EXERCISES 617

41. Consider maintaining the blocks of size 2k: The requests for sizes 1, 2, 4, . . . , 2k−1

will periodically call for a new block of size 2k to be split, or a block of that size will
be returned. We can prove by induction on k that the total storage consumed by such
split blocks never exceeds kn; for after every request to split a block of size 2k+1, we are
using at most kn locations in split 2k-blocks and at most n locations in unsplit ones.

This argument can be strengthened to show that arn cells suffice, where a0 = 1
and ak = 1 + ak−1(1− 2−k); we have

k = 0 1 2 3 4 5
ak = 1 1 1

2
2 1

8
2 55

64
3 697

1024
4 18535

32768

Conversely for r ≤ 5 it can be shown that a buddy system sometimes requires as many
as arn cells, if the mechanism of steps R1 and R2 is modiĄed to choose the worst
possible available 2j-block to split instead of the Ąrst such block.

RobsonŠs proof that N(2r) ≤ 1 + r (see exercise 40) is easily modiĄed to show
that such a ŞleftmostŤ strategy will never need more than (1 + 1

2
r)n cells to allocate

space for blocks of sizes 1, 2, 4, . . . , 2r, since blocks of size 2k will never be placed in
locations ≥ (1+ 1

2
k)n. Although his algorithm seems very much like the buddy system,

it turns out that no buddy system will be this good, even if we modify steps R1 and
R2 to choose the best possible available 2j-block to split. For example, consider the
following sequence of ŞsnapshotsŤ of the memory, for n = 16 and r = 3:

11111111 11111111 00000000 00000000

10101010 10101010 2-2-2-2- 00000000

11110000 11110000 2-110000 00000000

11111111 11110000 11110000 00000000

10101010 10102-2- 10102-2- 00000000

10001000 10002-00 10002-00 4---4---

10000000 10000000 10000000 4---0000

Here 0 denotes an available location and k denotes the beginning of a k-block. In a
similar way there is a sequence of operations, whenever n is a multiple of 16, that forces
3

16
n blocks of size 8 to be 1

8
full, and another 1

16
n to be 1

2
full. If n is a multiple of

128, a subsequent request for 9
128

n blocks of size 8 will require more than 2.5n memory
cells. (The buddy system allows unwanted 1s to creep into 3

16
n of the 8-blocks, since

there are no other available 2s to be split at a crucial time; the ŞleftmostŤ algorithm
keeps all 1s conĄned.)

42. We can assume that m ≥ 6. The main idea is to establish the occupancy pattern
Rm−2(Fm−3R1)k at the beginning of the memory, for k = 0, 1, . . . , where Rj and Fj
denote reserved and free blocks of size j. The transition from k to k + 1 begins with

Rm−2(Fm−3R1)k → Rm−2(Fm−3R1)kRm−2Rm−2

→ Rm−2(Fm−3R1)k−1F2m−4Rm−2

→ Rm−2(Fm−3R1)k−1RmRm−5R1Rm−2

→ Rm−2(Fm−3R1)k−1FmRm−5R1 ;

then the commutation sequence Fm−3R1FmRm−5R1 → Fm−3R1Rm−2R2Rm−5R1 →
F2m−4R2Rm−5R1 → RmRm−5R1R2Rm−5R1 → FmRm−5R1Fm−3R1 is used k times
until we get FmRm−5R1(Fm−3R1)k → F2m−5R1(Fm−3R1)k → Rm−2(Fm−3R1)k+1.
Finally, when k gets large enough, there is an endgame that forces overĆow unless the
memory size is at least (n − 4m + 11)(m − 2); details appear in Comp. J. 20 (1977),

618 ANSWERS TO EXERCISES 2.5

242Ű244. [Notice that the worst conceivable worst case, which begins with the pattern
Fm−1R1Fm−1R1Fm−1R1 . . . , is only slightly worse than this; the next-Ąt strategy of
exercise 6 can produce this pessimal pattern.]

43. We will show that if D1, D2, . . . is any sequence of numbers such that D1/m +
D2/(m+ 1) + · · ·+Dm/(2m− 1) ≥ 1 for all m ≥ 1, and if Cm = D1/1 +D2/2 + · · ·+
Dm/m, then NFF(n,m) ≤ nCm. In particular, since

1
m

+
1

m+ 1
+ · · ·+ 1

2m+ 1
= 1− 1

2
+ · · ·+ 1

2m− 3
− 1

2m− 2
+

1
2m− 1

> ln 2,

the constant sequence Dm = 1/ln 2 satisĄes the necessary conditions. The proof is by
induction on m. Let Nj = nCj for j ≥ 1, and suppose that some request for a block
of size m cannot be allocated in the leftmost Nm cells of memory. Then m > 1. For
0 ≤ j < m, we let N ′

j denote the rightmost position allocated to blocks of sizes ≤ j,
or 0 if all reserved blocks are larger than j; by induction we have N ′

j ≤ Nj . Furthermore
we let N ′

m be the rightmost occupied position ≤ Nm, so that N ′
m ≥ Nm − m + 1.

Then the interval (N ′
j−1 . . N

′
j] contains at least ⌈j(N ′

j −N ′
j−1)/(m+ j − 1)⌉ occupied

cells, since its free blocks are of size < m and its reserved blocks are of size ≥ j. It
follows that n −m ≥ number of occupied cells ≥ m

j=1 j(N
′
j − N ′

j−1)/(m + j − 1) =
mN ′

m/(2m − 1) − (m − 1)
m−1
j=1 N ′

j/(m + j)(m + j − 1) > mNm/(2m − 1) − m −
(m− 1)

m−1
j=1 Nj(1/(m+ j − 1)− 1/(m+ j)) =

m
j=1 nDj/(m+ j − 1)−m ≥ n−m,

a contradiction.
[This proof establishes slightly more than was asked. If we deĄne the DŠs by

D1/m+ · · ·+Dm/(2m− 1) = 1, then the sequence C1, C2, . . . is 1, 7
4
, 161

72
, 7483

2880
, . . . ;

and the result can be improved further, even in the case m = 2, as in exercise 38.]

44. ⌈F−1(1/N)⌉, ⌈F−1(2/N)⌉, . . . , ⌈F−1(N/N)⌉.

APPENDIX A

TABLES OF NUMERICAL QUANTITIES

Table 1

QUANTITIES THAT ARE FREQUENTLY USED IN STANDARD SUBROUTINES
AND IN ANALYSIS OF COMPUTER PROGRAMS (40 DECIMAL PLACES)

√
2 = 1.41421 35623 73095 04880 16887 24209 69807 85697−√
3 = 1.73205 08075 68877 29352 74463 41505 87236 69428+√
5 = 2.23606 79774 99789 69640 91736 68731 27623 54406+√

10 = 3.16227 76601 68379 33199 88935 44432 71853 37196−
3
√

2 = 1.25992 10498 94873 16476 72106 07278 22835 05703−
3
√

3 = 1.44224 95703 07408 38232 16383 10780 10958 83919−
4
√

2 = 1.18920 71150 02721 06671 74999 70560 47591 52930−
ln 2 = 0.69314 71805 59945 30941 72321 21458 17656 80755+
ln 3 = 1.09861 22886 68109 69139 52452 36922 52570 46475−

ln 10 = 2.30258 50929 94045 68401 79914 54684 36420 76011+
1/ln 2 = 1.44269 50408 88963 40735 99246 81001 89213 74266+

1/ln 10 = 0.43429 44819 03251 82765 11289 18916 60508 22944−
π = 3.14159 26535 89793 23846 26433 83279 50288 41972−

1◦ = π/180 = 0.01745 32925 19943 29576 92369 07684 88612 71344+
1/π = 0.31830 98861 83790 67153 77675 26745 02872 40689+
π2 = 9.86960 44010 89358 61883 44909 99876 15113 53137−√

π = Γ (1/2) = 1.77245 38509 05516 02729 81674 83341 14518 27975+
Γ (1/3) = 2.67893 85347 07747 63365 56929 40974 67764 41287−
Γ (2/3) = 1.35411 79394 26400 41694 52880 28154 51378 55193+

e = 2.71828 18284 59045 23536 02874 71352 66249 77572+
1/e = 0.36787 94411 71442 32159 55237 70161 46086 74458+
e2 = 7.38905 60989 30650 22723 04274 60575 00781 31803+
γ = 0.57721 56649 01532 86060 65120 90082 40243 10422−

lnπ = 1.14472 98858 49400 17414 34273 51353 05871 16473−
ϕ = 1.61803 39887 49894 84820 45868 34365 63811 77203+
eγ = 1.78107 24179 90197 98523 65041 03107 17954 91696+

eπ/4 = 2.19328 00507 38015 45655 97696 59278 73822 34616+
sin 1 = 0.84147 09848 07896 50665 25023 21630 29899 96226−
cos 1 = 0.54030 23058 68139 71740 09366 07442 97660 37323+
−ζ′(2) = 0.93754 82543 15843 75370 25740 94567 86497 78979−
ζ(3) = 1.20205 69031 59594 28539 97381 61511 44999 07650−
lnϕ = 0.48121 18250 59603 44749 77589 13424 36842 31352−

1/lnϕ = 2.07808 69212 35027 53760 13226 06117 79576 77422−
−ln ln 2 = 0.36651 29205 81664 32701 24391 58232 66946 94543−

619

620 APPENDIX A

Table 2

QUANTITIES THAT ARE FREQUENTLY USED IN STANDARD SUBROUTINES
AND IN ANALYSIS OF COMPUTER PROGRAMS (45 OCTAL PLACES)

The names at the left of the Ş=Ť signs are given in decimal notation.

0.1 = 0.06314 63146 31463 14631 46314 63146 31463 14631 46315−
0.01 = 0.00507 53412 17270 24365 60507 53412 17270 24365 60510−

0.001 = 0.00040 61115 64570 65176 76355 44264 16254 02030 44672+
0.0001 = 0.00003 21556 13530 70414 54512 75170 33021 15002 35223−

0.00001 = 0.00000 24761 32610 70664 36041 06077 17401 56063 34417−
0.000001 = 0.00000 02061 57364 05536 66151 55323 07746 44470 26033+

0.0000001 = 0.00000 00153 27745 15274 53644 12741 72312 20354 02151+
0.00000001 = 0.00000 00012 57143 56106 04303 47374 77341 01512 63327+

0.000000001 = 0.00000 00001 04560 27640 46655 12262 71426 40124 21742+
0.0000000001 = 0.00000 00000 06676 33766 35367 55653 37265 34642 01627−√

2 = 1.32404 74631 77167 46220 42627 66115 46725 12575 17435+√
3 = 1.56663 65641 30231 25163 54453 50265 60361 34073 42223−√
5 = 2.17067 36334 57722 47602 57471 63003 00563 55620 32021−√

10 = 3.12305 40726 64555 22444 02242 57101 41466 33775 22532+
3
√

2 = 1.20505 05746 15345 05342 10756 65334 25574 22415 03024+
3
√

3 = 1.34233 50444 22175 73134 67363 76133 05334 31147 60121−
4
√

2 = 1.14067 74050 61556 12455 72152 64430 60271 02755 73136+
ln 2 = 0.54271 02775 75071 73632 57117 07316 30007 71366 53640+
ln 3 = 1.06237 24752 55006 05227 32440 63065 25012 35574 55337+

ln 10 = 2.23273 06735 52524 25405 56512 66542 56026 46050 50705+
1/ln 2 = 1.34252 16624 53405 77027 35750 37766 40644 35175 04353+

1/ln 10 = 0.33626 75425 11562 41614 52325 33525 27655 14756 06220−
π = 3.11037 55242 10264 30215 14230 63050 56006 70163 21122+

1◦ = π/180 = 0.01073 72152 11224 72344 25603 54276 63351 22056 11544+
1/π = 0.24276 30155 62344 20251 23760 47257 50765 15156 70067−
π2 = 11.67517 14467 62135 71322 25561 15466 30021 40654 34103−√

π = Γ (1/2) = 1.61337 61106 64736 65247 47035 40510 15273 34470 17762−
Γ (1/3) = 2.53347 35234 51013 61316 73106 47644 54653 00106 66046−
Γ (2/3) = 1.26523 57112 14154 74312 54572 37655 60126 23231 02452+

e = 2.55760 52130 50535 51246 52773 42542 00471 72363 61661+
1/e = 0.27426 53066 13167 46761 52726 75436 02440 52371 03355+
e2 = 7.30714 45615 23355 33460 63507 35040 32664 25356 50217+
γ = 0.44742 14770 67666 06172 23215 74376 01002 51313 25521−

lnπ = 1.11206 40443 47503 36413 65374 52661 52410 37511 46057+
ϕ = 1.47433 57156 27751 23701 27634 71401 40271 66710 15010+
eγ = 1.61772 13452 61152 65761 22477 36553 53327 17554 21260+

eπ/4 = 2.14275 31512 16162 52370 35530 11342 53525 44307 02171−
sin 1 = 0.65665 24436 04414 73402 03067 23644 11612 07474 14505−
cos 1 = 0.42450 50037 32406 42711 07022 14666 27320 70675 12321+
−ζ′(2) = 0.74001 45144 53253 42362 42107 23350 50074 46100 27706+
ζ(3) = 1.14735 00023 60014 20470 15613 42561 31715 10177 06614+
lnϕ = 0.36630 26256 61213 01145 13700 41004 52264 30700 40646+

1/lnϕ = 2.04776 60111 17144 41512 11436 16575 00355 43630 40651+
−ln ln 2 = 0.27351 71233 67265 63650 17401 56637 26334 31455 57005−

TABLES OF NUMERICAL QUANTITIES 621

Several of the 40-digit values in Table 1 were computed on a desk calculator
by John W. Wrench, Jr., for the Ąrst edition of this book. When computer
software for such calculations became available during the 1970s, all of his
contributions proved to be correct. See the answer to exercise 1.3.3Ű23 for the
40-digit value of another fundamental constant.

Table 3

VALUES OF HARMONIC NUMBERS, BERNOULLI NUMBERS,
AND FIBONACCI NUMBERS, FOR SMALL VALUES OF n

n Hn Bn Fn n

0 0 1 0 0
1 1 −1/2 1 1
2 3/2 1/6 1 2
3 11/6 0 2 3
4 25/12 −1/30 3 4
5 137/60 0 5 5
6 49/20 1/42 8 6
7 363/140 0 13 7
8 761/280 −1/30 21 8
9 7129/2520 0 34 9

10 7381/2520 5/66 55 10
11 83711/27720 0 89 11
12 86021/27720 −691/2730 144 12
13 1145993/360360 0 233 13
14 1171733/360360 7/6 377 14
15 1195757/360360 0 610 15
16 2436559/720720 −3617/510 987 16
17 42142223/12252240 0 1597 17
18 14274301/4084080 43867/798 2584 18
19 275295799/77597520 0 4181 19
20 55835135/15519504 −174611/330 6765 20
21 18858053/5173168 0 10946 21
22 19093197/5173168 854513/138 17711 22
23 444316699/118982864 0 28657 23
24 1347822955/356948592 −236364091/2730 46368 24
25 34052522467/8923714800 0 75025 25
26 34395742267/8923714800 8553103/6 121393 26
27 312536252003/80313433200 0 196418 27
28 315404588903/80313433200 −23749461029/870 317811 28
29 9227046511387/2329089562800 0 514229 29
30 9304682830147/2329089562800 8615841276005/14322 832040 30

622 APPENDIX A

For any x, let Hx =

n≥1

 1
n
− 1
n+ x

. Then

H1/2 = 2− 2 ln 2,

H1/3 = 3− 1
2π/
√

3− 3
2 ln 3,

H2/3 = 3
2 + 1

2π/
√

3− 3
2 ln 3,

H1/4 = 4− 1
2π − 3 ln 2,

H3/4 = 4
3 + 1

2π − 3 ln 2,

H1/5 = 5− 1
2πϕ

3/25−1/4 − 5
4 ln 5− 1

2

√
5 lnϕ,

H2/5 = 5
2 − 1

2πϕ
−3/25−1/4 − 5

4 ln 5 + 1
2

√
5 lnϕ,

H3/5 = 5
3 + 1

2πϕ
−3/25−1/4 − 5

4 ln 5 + 1
2

√
5 lnϕ,

H4/5 = 5
4 + 1

2πϕ
3/25−1/4 − 5

4 ln 5− 1
2

√
5 lnϕ,

H1/6 = 6− 1
2π
√

3− 2 ln 2− 3
2 ln 3,

H5/6 = 6
5 + 1

2π
√

3− 2 ln 2− 3
2 ln 3,

and, in general, when 0 < p < q (see exercise 1.2.9Ű19),

Hp/q =
q

p
− π

2
cot

p

q
π − ln 2q + 2

1≤n<q/2

cos
2pn
q
π · ln sin

n

q
π.

APPENDIX B

INDEX TO NOTATIONS

In the following formulas, letters that are not further qualiĄed have the following
signiĄcance:

j, k integer-valued arithmetic expression
m,n nonnegative integer-valued arithmetic expression
x, y real-valued arithmetic expression
f real-valued or complex-valued function
P pointer-valued expression (either Λ or a computer address)

S, T set or multiset
α string of symbols

Where

Formal symbolism Meaning deĄned

V ← E give variable V the value of expression E 1.1
U ↔ V interchange the values of variables U and V 1.1

An or A[n] the nth element of linear array A 1.1
Amn or A[m,n] the element in row m and column n of rect-

angular array A 1.1
NODE(P) the node (group of variables that are indi-

vidually distinguished by their Ąeld names)
whose address is P, assuming that P ̸= Λ 2.1

F(P) the variable in NODE(P) whose Ąeld name is F 2.1
CONTENTS(P) contents of computer word whose address is P 2.1

LOC(V) address of variable V within a computer 2.1
P⇐ AVAIL set the value of pointer variable P to the

address of a new node 2.2.3
AVAIL⇐ P return NODE(P) to free storage; all its Ąelds

lose their identity 2.2.3
top(S) node at the top of a nonempty stack S 2.2.1
X ⇐ S pop up S to X: set X ← top(S); then delete

top(S) from nonempty stack S 2.2.1
S⇐ X push down X onto S: insert the value X as

a new entry on top of stack S 2.2.1

623

624 APPENDIX B

Where

Formal symbolism Meaning deĄned

(R? a: b) conditional expression: denotes
a if relation R is true, b if R is false

[R] characteristic function of relation R:
(R? 1: 0) 1.2.3

δkj Kronecker delta: [j = k] 1.2.3

[zn] g(z) coefficient of zn in power series g(z) 1.2.9

R(k)

f(k) sum of all f(k) such that the variable k is an
integer and relation R(k) is true 1.2.3

R(k)

f(k) product of all f(k) such that the variable k
is an integer and relation R(k) is true 1.2.3

min
R(k)

f(k) minimum value of all f(k) such that the var-
iable k is an integer and relation R(k) is true 1.2.3

max
R(k)

f(k) maximum value of all f(k) such that the var-
iable k is an integer and relation R(k) is true 1.2.3

j\k j divides k: k mod j = 0 and j > 0 1.2.4

S \ T set difference: {a | a in S and a not in T}
gcd(j, k) greatest common divisor of j and k:

j=k=0? 0: max
d\j, d\k

d

1.1

j ⊥ k j is relatively prime to k: gcd(j, k) = 1 1.2.4

AT transpose of rectangular array A:
AT [j, k] = A[k, j]

αR left-right reversal of α

xy x to the y power (when x is positive) 1.2.2

xk x to the kth power:
k ≥ 0?

0≤j<k

x: 1/x−k

1.2.2

xk x to the k rising: Γ (x+ k)/Γ (x) =
k ≥ 0?

0≤j<k

(x+ j): 1/(x+ k)−k

1.2.5

xk x to the k falling: x!/(x− k)! =
k ≥ 0?

0≤j<k

(x− j): 1/(x− k)−k

1.2.5

INDEX TO NOTATIONS 625

Where

Formal symbolism Meaning deĄned

n! n factorial: Γ (n+ 1) = nn 1.2.5

x

k

binomial coefficient: (k < 0? 0: xk/k!) 1.2.6

n

n1, n2, . . . , nm

multinomial coefficient (deĄned only when
n = n1 + n2 + · · ·+ nm) 1.2.6

n

m

Stirling number of the Ąrst kind:

0<k1<k2<···<kn−m<n

k1k2 . . . kn−m 1.2.6

n

m

Stirling number of the second kind:

1≤k1≤k2≤···≤kn−m≤m

k1k2 . . . kn−m 1.2.6

{a | R(a)} set of all a such that the relation R(a) is true

{a1, . . . , an} the set or multiset {ak | 1 ≤ k ≤ n}
{x} fractional part (used in contexts where a

real value, not a set, is implied): x− ⌊x⌋ 1.2.11.2

a1 + a2 + · · ·+ an n-fold sum:
n

j=1 aj 1.2.3

[a . . b] closed interval: {x | a ≤ x ≤ b} 1.2.2

(a . . b) open interval: {x | a < x < b} 1.2.2

[a . . b) half-open interval: {x | a ≤ x < b} 1.2.2

(a . . b] half-closed interval: {x | a < x ≤ b} 1.2.2

|S| cardinality: the number of elements in set S

|x| absolute value of x: (x ≥ 0? x: − x)

|α| length of α

⌊x⌋ Ćoor of x, greatest integer function: maxk≤xk 1.2.4

⌈x⌉ ceiling of x, least integer function: mink≥x k 1.2.4

xmod y mod function:

y = 0? x: x− y⌊x/y⌋

1.2.4

x ≡ x′ (modulo y) relation of congruence: xmod y = x′ mod y 1.2.4

O

f(n)

big-oh of f(n), as the variable n→∞ 1.2.11.1

O

f(z)

big-oh of f(z), as the variable z → 0 1.2.11.1

Ω

f(n)

big-omega of f(n), as the variable n→∞ 1.2.11.1

Θ

f(n)

big-theta of f(n), as the variable n→∞ 1.2.11.1

626 APPENDIX B

Where

Formal symbolism Meaning deĄned

logb x logarithm, base b, of x (when x > 0,
b > 0, and b ̸= 1): the y such that x = by 1.2.2

ln x natural logarithm: loge x 1.2.2

lg x binary logarithm: log2 x 1.2.2

expx exponential of x: ex 1.2.9

⟨Xn⟩ the inĄnite sequence X0, X1, X2, . . .
(here the letter n is part of the symbolism) 1.2.9

f ′(x) derivative of f at x 1.2.9

f ′′(x) second derivative of f at x 1.2.10

f (n)(x) nth derivative:

n = 0? f(x): g′(x)

,

where g(x) = f (n−1)(x) 1.2.11.2

H(x)
n harmonic number of order x:

1≤k≤n

1/kx 1.2.7

Hn harmonic number: H(1)
n 1.2.7

Fn Fibonacci number:
(n ≤ 1? n: Fn−1 + Fn−2) 1.2.8

Bn Bernoulli number: n! [zn] z/(ez − 1) 1.2.11.2

det(A) determinant of square matrix A 1.2.3

sign(x) sign of x: [x> 0]− [x< 0]

ζ(x) zeta function: limn→∞H
(x)
n (when x > 1) 1.2.7

Γ (x) gamma function: (x− 1)! = γ(x,∞) 1.2.5

γ(x, y) incomplete gamma function:
 y

0
e−ttx−1dt 1.2.11.3

γ EulerŠs constant: limn→∞(Hn − lnn) 1.2.7

e base of natural logarithms:

n≥0 1/n! 1.2.2

π circle ratio: 4

n≥0(−1)n/(2n+ 1) 1.2.2

∞ inĄnity: larger than any number

Λ null link (pointer to no address) 2.1

ϵ empty string (string of length zero)

∅ empty set (set with no elements)

ϕ golden ratio: 1
2

1 +
√

5

1.2.8

φ(n) EulerŠs totient function:

0≤k<n

[k⊥n] 1.2.4

x ≈ y x is approximately equal to y 1.2.5

INDEX TO NOTATIONS 627

Where

Formal symbolism Meaning deĄned

Pr

S(X)

probability that statement S(X) is true, for
random values of X 1.2.10

EX expected value of X:

x xPr(X = x) 1.2.10

mean(g) mean value of the probability distribution
represented by generating function g: g′(1) 1.2.10

var(g) variance of the probability distribution
represented by generating function g:

g′′(1) + g′(1)− g′(1)2 1.2.10

(min x1, ave x2,
max x3, dev x4)

a random variable having minimum
value x1, average (expected) value x2,
maximum value x3, standard deviation x4 1.2.10

P* address of preorder successor of NODE(P) in
a binary tree or tree 2.3.1, 2.3.2

P$ address of inorder successor of NODE(P) in a
binary tree, postorder successor in a tree 2.3.1, 2.3.2

P♯ address of postorder successor of NODE(P) in
a binary tree 2.3.1

*P address of preorder predecessor of NODE(P)

in a binary tree or tree 2.3.1, 2.3.2

$P address of inorder predecessor of NODE(P) in
a binary tree, postorder predecessor in a tree 2.3.1, 2.3.2

♯P address of postorder predecessor of NODE(P)
in a binary tree 2.3.1

end of algorithm, program, or proof 1.1

␣ one blank space 1.3.1

rA register A (accumulator) of MIX 1.3.1

rX register X (extension) of MIX 1.3.1

rI1, . . . , rI6 (index) registers I1, . . . , I6 of MIX 1.3.1

rJ (jump) register J of MIX 1.3.1

(L:R) partial Ąeld of MIX word, 0 ≤ L ≤ R ≤ 5 1.3.1

OP ADDRESS,I(F) notation for MIX instruction 1.3.1, 1.3.2

u unit of time in MIX 1.3.1

* ŞselfŤ in MIXAL 1.3.2

0F, 1F, 2F, . . . , 9F ŞforwardŤ local symbol in MIXAL 1.3.2

0B, 1B, 2B, . . . , 9B ŞbackwardŤ local symbol in MIXAL 1.3.2

0H, 1H, 2H, . . . , 9H ŞhereŤ local symbol in MIXAL 1.3.2

APPENDIX C

INDEX TO ALGORITHMS AND THEOREMS

Algorithm 1.1E, 2, 4.
Algorithm 1.1F, 466.
Algorithm 1.2.1E, 13Ű14.
Algorithm 1.2.1I, 11Ű12.
Algorithm 1.2.2E, 470.
Algorithm 1.2.2L, 26.
Law 1.2.4A, 40.
Law 1.2.4B, 40.
Law 1.2.4C, 40.
Law 1.2.4D, 40.
Theorem 1.2.4F, 41.
Theorem 1.2.7A, 77.
Theorem 1.2.8A, 81Ű82.
Theorem 1.2.10A, 101.
Algorithm 1.2.10M, 96.
Program 1.2.10M, 145, 186.
Theorem 1.2.11.3A, 119.
Algorithm 1.3.2E, 160.
Program 1.3.2E, 516Ű518.
Program 1.3.2M, 145.
Algorithm 1.3.2P, 147.
Program 1.3.2P, 148Ű149.
Algorithm 1.3.3A, 166Ű167.
Program 1.3.3A, 168Ű169.
Algorithm 1.3.3B, 173.
Program 1.3.3B, 174Ű175.
Algorithm 1.3.3I, 176.
Program 1.3.3I, 177.
Algorithm 1.3.3J, 177.
Program 1.3.3J, 178.
Program 1.4.3.1M, 204Ű211, 530.
Algorithm 1.4.4A, 221Ű222.
Program 1.4.4A, 222.
Algorithm 1.4.4A′, 534.
Algorithm 1.4.4B, 222.
Program 1.4.4B, 223.
Algorithm 1.4.4B′, 534.
Algorithm 1.4.4R, 222.

Program 1.4.4R, 223.
Algorithm 1.4.4R′, 534.
Algorithm 2.1A, 235.
Program 2.1A, 236.
Algorithm 2.1B, 235.
Program 2.1B, 535.
Algorithm 2.1C, 535.
Algorithm 2.1D, 535.
Algorithm 2.2.2A, 541.
Algorithm 2.2.2G, 248Ű249.
Algorithm 2.2.2R, 249Ű250.
Algorithm 2.2.3A, 549.
Program 2.2.3A, 550.
Algorithm 2.2.3B, 549Ű550.
Program 2.2.3B, 550.
Algorithm 2.2.3I, 546.
Program 2.2.3I, 546.
Algorithm 2.2.3T, 265, 548.
Program 2.2.3T, 266Ű268,

548Ű549.
Algorithm 2.2.4A, 276.
Program 2.2.4A, 277Ű278.
Algorithm 2.2.4M, 277.
Program 2.2.4M, 552Ű553.
Program 2.2.5D, 555.
Subroutine 2.2.5D, 287.
Coroutine 2.2.5E, 284Ű285.
Program 2.2.5E, 293Ű295,

554Ű555.
Coroutine 2.2.5U, 283Ű284.
Program 2.2.5U, 292Ű293.
Algorithm 2.2.6G, 557.
Algorithm 2.2.6S, 304Ű305.
Program 2.2.6S, 557Ű559.
Algorithm 2.3.1A, 571.
Theorem 2.3.1A, 328Ű329.
Algorithm 2.3.1C, 329Ű330,

570.

Program 2.3.1C, 572Ű573.
Algorithm 2.3.1F, 566.
Algorithm 2.3.1I, 327.
Algorithm 2.3.1L, 570.
Lemma 2.3.1P, 329.
Algorithm 2.3.1R, 569.
Algorithm 2.3.1S, 323.
Program 2.3.1S, 325.
Algorithm 2.3.1T, 320.
Program 2.3.1T, 325, 567.
Algorithm 2.3.1T′, 565.
Algorithm 2.3.1U, 567.
Program 2.3.1U, 568.
Algorithm 2.3.1W, 567Ű568.
Algorithm 2.3.1X, 570.
Algorithm 2.3.2D, 340.
Program 2.3.2D, 342Ű345,

573Ű574.
Algorithm 2.3.3A, 357Ű359.
Algorithm 2.3.3E, 354Ű355.
Algorithm 2.3.3F, 351.
Algorithm 2.3.3G, 577.
Algorithm 2.3.3L, 575.
Algorithm 2.3.3P, 577.
Algorithm 2.3.3T, 576.
Theorem 2.3.4.1A, 363Ű364.
Theorem 2.3.4.1K, 368Ű369.
Algorithm 2.3.4.2C, 581.
Theorem 2.3.4.2D, 376.
Lemma 2.3.4.2E, 375.
Algorithm 2.3.4.2G, 581.
Theorem 2.3.4.2G, 375.
Theorem 2.3.4.3K, 382.
Algorithm 2.3.4.4D, 590.
Theorem 2.3.4.4R, 394Ű395.
Algorithm 2.3.4.5H, 596.
Algorithm 2.3.5A, 415.
Algorithm 2.3.5A′, 415.

628

INDEX TO ALGORITHMS AND THEOREMS 629

Algorithm 2.3.5B, 415Ű416.
Algorithm 2.3.5C, 416.
Algorithm 2.3.5D, 417.
Algorithm 2.3.5E, 418Ű419.
Program 2.3.5E, 601Ű602.
Algorithm 2.3.5F, 603.
Algorithm 2.3.5G, 603Ű604.
Algorithm 2.3.5H, 605.
Algorithm 2.3.5S, 602Ű603.
Algorithm 2.3.5Z, 605.
Algorithm 2.4A, 428Ű429.

Algorithm 2.4A′, 605.
Algorithm 2.4B, 429Ű430.
Algorithm 2.4B′, 605.
Algorithm 2.4B′′, 606.
Algorithm 2.4C, 431.
Algorithm 2.4C′, 606Ű607.
Algorithm 2.5A, 437.
Program 2.5A, 607.
Algorithm 2.5A′, 438.
Algorithm 2.5A′′, 608.
Algorithm 2.5A*, 608Ű610.

Program 2.5A*, 609.
Algorithm 2.5B, 440.
Algorithm 2.5C, 441Ű442.
Program 2.5C, 610.
Algorithm 2.5G, 613Ű614.
Program 2.5G, 614Ű615.
Algorithm 2.5P, 445.
Algorithm 2.5R, 443.
Program 2.5R, 611Ű612.
Algorithm 2.5S, 443Ű444.
Program 2.5S, 612Ű613.

Numerical experimentations are necessary

to fully understand the algorithms and theorems in this book.

— STÉPHANE MALLAT, A Wavelet Tour of Signal Processing (1998)

INDEX AND GLOSSARY

Some Men pretend to understand a Book

by scouting throŠ the Index:

as if a Traveller should go about to describe a Palace

when he had seen nothing but the Privy.

— JONATHAN SWIFT, Mechanical Operation of the Spirit (1704)

When an index entry refers to a page containing a relevant exercise, see also the answer to
that exercise for further information. An answer page is not indexed here unless it refers to a
topic not included in the statement of the exercise.

(), 164, see Identity permutation.
0-2-trees, 317.

oriented, 398.
0-origin indexing, 254, 282, 299Ű301,

305Ű306.
2-d trees, 564.
γ (EulerŠs constant), 75, 107, 114, 619Ű620.
π (circle ratio), 21, 619Ű620.

as ŞrandomŤ example, 397.
WallisŠs product for, 52, 116.

ϕ (golden ratio), 13, 18, 21, 80, 83Ű86,
619Ű620.

A-register of MIX, 125.
Aardenne-Ehrenfest, Tatyana van, 375, 379.
Aarons, Roger Michael, 528.
Abel, Niels Henrik, 58, 498.

binomial theorem, 58, 71Ű73, 398.
limit theorem, 95, 588.

Absolute error, 116.
Absolute value, 21.
Absolutely convergent series, 29.
ACE computer, 193, 229.

Pilot, 230.
Acerbi, Fabio, 593.
Adams, Charles William, 230.
ADD, 131Ű132, 208.
Add to list: see Insertion.
Addition of polynomials, 275Ű280, 357Ű359.
Address: A number used to identify a

position in memory.
Ąeld of MIXAL line, 145, 151Ű153.
of node, 233.
portion of MIX instruction, 127.

Address transfer operators of MIX,
133Ű134, 210.

Adjacent vertices of a graph, 363.
Adobe Systems, 202.
Aebly, Jakob, 536.
Agenda, 288, 291, 296, see Priority queue.
Aho, Alfred Vaino, 560.
Ahrens, Wilhelm Ernst Martin Georg, 162.
Alhazen, see Ibn al-Haytham.
al-Khwārizmı, Abū ŚAbd Allāh

Muh. ammad ibn Mūsā
(Þ❐➄➂♠Ø❼➾♠ Ü➇Ø❐ Ñ♣ ❿❒❸❐ ❄♠ ❿q➠ Ø♣❝),
1, 79.

ALF (alphabetic data), 151, 152, 155.
Algebraic formulas, 313.

differentiation, 90, 338Ű347, 459.
manipulation of, 459Ű462.
representation as trees, 337, 459.
simpliĄcation of, 339, 347.

ALGOL language, viii, 202, 229.
Algorithm, origin of word, 1Ű2.
Algorithms, 1Ű9.

analysis of, vi, 7, 96Ű107, 170Ű172, 179,
250, 253, 268, 278Ű280, 324Ű326, 331,
380Ű382, 444Ű445, 451.

communication of, 16.
effective, 6, 8, 9.
equivalence between, 467.
form of in this book, 2Ű4.
hardware-oriented, 26, 252, 611.
how to read, 4, 16.
proof of, 5Ű6, 13Ű17, 321, 361, 422, 434.
properties of, 4Ű6, 9.
random paths in, 380Ű381.
set-theoretic deĄnition, 7Ű9.
theory of, 7, 9.

Allocation of tables, see Dynamic storage
allocation, Linked allocation,
Representation, Sequential allocation.

Alpern, Steven Robert, 526.
Alphameric character: A letter, digit, or

special character symbol.
codes for MIX, 136, 138, 140Ű141.

AMM: American Mathematical Monthly,
published by the Mathematical
Association of America since 1894.

Amortized running time, 254.
Analysis of algorithms, vi, 7, 96Ű107,

170Ű172, 179, 250, 253, 268, 278Ű280,
324Ű326, 331, 380Ű382, 444Ű445, 451.

Analytical Engine, 1, 229.
Ancestor, in a tree structure, 311, 348, 562.
Anticipated input, 216, see Buffering.
Antisymmetric relation, 261.
Apostol, Tom Mike, 28.
Arabic mathematics, 1, 162.
Araújo, Saulo, 565.
Arbogast, Louis François Antoine, 52, 105.
Arborescences, 363, see Oriented trees.
Arc digraph, 379.
Arc in a directed graph, 372.

630

INDEX AND GLOSSARY 631

Area of memory, 435.
Arguments of subroutines, 187, 189.
Arithmetic: Addition, subtraction,

multiplication, and division, vi, ix.
fixed point, 158.
floating point, 131, 306.
operators of MIX, 131–133, 208.
polynomial, 275–280, 357–359, 361.
scaled decimal, 160–161.

Arithmetic expressions, see Algebraic
formulas.

Arithmetic progression, sum of, 11,
31–32, 56.

Array: A table that usually has a
k-dimensional rectangular structure,
4, 232, 298–307.

linked, 301–307.
one-dimensional, see Linear list.
represented as a tree, 315.
sequential allocation, 159, 299–301,

305–307.
tetrahedral, 300–301, 306.
two-dimensional, see Matrix.
uninitialized, 307.

Arrows, used to represent links in
diagrams, 234.

Assembly language: A language that is
intended to facilitate the construction
of programs in machine language by
making use of symbolic and mnemonic
conventions to denote machine
language instructions.

contrasted with high-level language,
236, 535.

for MIX, 144–157.
Assembly program, 145, 153.
Assertions, inductive, 15–20.
Assigning a bu�er, 219–223, 226–227.
Assignment operation (), 3.
Asterisk (“*”) in assembly language,

146, 149, 153.
Asymmetric relations, 261.
Asymptotic values: Functions that express

the limiting behavior approached by
numerical quantities.

derivation of, 107–123, 243, 396–397,
525, 565.

Atom (in a List), 315, 408–412, 418.
purpose of, 410.

Automata theory, 230, 240, 463–464.
Automaton: An abstract machine that is

defined formally, often intended to
be a model of some aspects of actual
computers (plural: Automata), 463–464.

AVAIL stack: Available space list, 256.
Available space list, 256–261, 266, 269,

278, 291, 413–414, 435–444.
history, 458.
variable-size blocks, 435–456.

Average value of a random variable,
97–98, 103.

from a generating function, 100–103.

Babbage, Charles, 1, 229.
Bachmann, Paul Gustav Heinrich, 107.
Backus, John Warner, 230.
Bailey, Michael John, 462.
Baker, Henry Givens, Jr., 605.
Balanced directed graph, 374–375.
Ball, Thomas Jaudon, 369.
Ball, Walter William Rouse, 162.
Ballot problem, 536–537.
Barnes, Ernest William, 507.
Barnett, Michael Peter, 462.
Barrington (= Mix Barrington), David

Arno, 526.
Barry, David McAlister, subtle reference

to, xi, 274.
Barton, David Elliott, 66, 536.
Base address, 244.
Bead, 233, see Node.
Before and after diagrams, 260–261,

278, 281, 571.
Beigel, Richard, 467.
Bell, Eric Temple, 87.
Bell Interpretive System, 230.
Bellman, Richard Ernest, xv.
Bendix G20, 124.
Bennett, John Makepeace, 230.
Berger, Robert, 385.
Bergeron, François, 395.
Bergman, George Mark, 495, 593.
Berlekamp, Elwyn Ralph, 273.
Berman, Martin Fredric, 523.
Berners-Lee, Mary Lee née Woods, 230.
Bernoulli, Daniel, 83.
Bernoulli, Jacques (= Jakob = James),

112, 115.
numbers Bn, 76, 91, 112–115.
numbers, table, 621.
polynomials, 44, 113–115, 503.

Bernoulli, Jean (= Johann = John), III, 495.
Bernstein, Sergei Natanovich (

), 104.
Bertrand, Joseph Louis François,

postulate, 512.
Berztiss, Alfs Teodors, 462.
Best-fit method of storage allocation,

436–437, 447, 453–456.
Beta function B(x, y), 72.
Bhāskara II, Ācārya, son of Maheúvara

(BA-krAcAy�, mh⇤òrp� /), 54.
Bienaymé, Irénée Jules, 98.
Bienstock, Daniel, 514.
Big-Oh notation, 107–111, 118.
Big-Omega notation, 110–111.
Big-Theta notation, 110.
Bigelow, Richard Henry, 562.
Binary computer: A computer that

manipulates numbers primarily in the
binary (radix 2) number system.

632 INDEX AND GLOSSARY

Binary logarithms, 23, 26.
Binary number system, 24Ű26.
Binary operator: A function of two

variables, 337.
Binary trees, 312, 317, 318Ű337, 363, 459.

complete, 401, 405, 563.
copying of, 329Ű330, 333, 347.
correspondence to trees and forests,

334Ű335, 346.
deĄnition of, 312.
ŞDeweyŤ notation for, 317, 331, 346, 405.
enumeration of, 388Ű389, 405.
equivalent, 328Ű329.
erasing of, 333.
extended, 399Ű406.
linked, 318.
oriented, 396Ű397.
path length of, 399Ű406.
representation of, 318, 322, 327, 333Ű334.
right-threaded, 327, 332Ű334.
sequential, 401.
similar, 327Ű329.
threaded, 322, 331Ű332, 460.
traversal of, 319Ű320, 323, 331Ű332,

459Ű460.
with shared subtrees, 326, 603.

Binet, Jacques Philippe Marie, 36, 39,
407, 475, 582.

Binomial coefficients, 52Ű74, 89.
asymptotic values, 72.
bounds on, 74.
combinatorial interpretation, 52Ű53, 73.
deĄned, 53.
generalized, 65, 72, 85.
generating functions, 90, 94.
history, 53Ű54.
inequalities involving, 74.
sums involving, 56Ű74, 76Ű78, 85, 96.
table, 54.

Binomial distribution, 101Ű102.
tail, 106.

Binomial number system, see Combinatorial
number system.

Binomial theorem, 57Ű58, 90.
AbelŠs generalization, 58, 71Ű73, 398.
generalizations of, 64, 70Ű73, 90,

398Ű399, 488.
HurwitzŠs generalization, 399, 488.

Binomial tree, xx.
Bipartite trees, 398.
Bit: ŞBinary digitŤ, either zero or unity.
BIT: Nordisk Tidskrift for Informations-

Behandling, an international journal
published in Scandinavia since 1961.

Bitwise operations, 442, 455, 510, 553.
Blaauw, Gerrit Anne, 458.
Blikle, Andrzej Jacek, 329.
Block of external data, 136Ű137.
Block of memory, 435.
Blocking of records, 218, 225.

Bobrow, Daniel Gureasko, 421, 460, 461.
Boles, David Alan, 452.
Bolzano, Bernard Placidus Johann

Nepomuk, 382.
Boncompagni, Prince Baldassarre, 79.
Boolean functions, 526Ű527.
Boothroyd, John, 177.
Bootstrapping, 143.
Borchardt, Carl Wilhelm, 406, 583.
Bottom of stack, 241.
Bottom-up process, 309, 351.
Boundary tag method of storage allocation,

440Ű442, 453Ű454, 461.
Bracket notation for coefficients, 92.
Bracket notation for logical statements,

32Ű33, 471, see IversonŠs convention.
Branch instruction: A conditional

ŞjumpŤ instruction.
Branch node of tree, 308.
Breadth-Ąrst search, 351.
Brenner, Norman Mitchell, 523.
Brent, Richard Peirce, 563.
Briggs, Henry, 26.
Broline, Duane Marvin, 601.
Brother, in a tree structure, 311.
Brouwer, Luitzen Egbertus Jan, 406.
Bruijn, Nicolaas Govert de, 121, 122, 375,

379, 380, 478, 504, 543, 565.
Buddy system for storage allocation,

442Ű444, 447Ű448, 454Ű456, 461.
Buffering of input-output, 158, 216Ű228.

history, 231.
swapping, 147, 159, 217Ű218, 225.

Bugs: Errors or defects; see Debugging.
Burke, John, 310.
Burks, Arthur Walter, 359.
Burleson, Peter Barrus, 462.
Burroughs B220, 124.
Burroughs B5000, 461.
Busche, Conrad Heinrich Edmund

Friedrich, 43.
Busy waiting, 216.
Byte: Basic unit of data, usually associated

with alphameric characters, 125.
in MIX, 124Ű125, 139.

Byte size in MIX: The number of distinct
values that might be stored in a byte.

C language, 233, 556.
Cache, 528.
CACM: Communications of the ACM,

a publication of the Association for
Computing Machinery since 1958.

Cajori, Florian, 24.
Calendar, 160.
California Institute of Technology, x, 282.
Call: To activate another routine in

a program.
Calling sequence, 187Ű190, 193, 196Ű197.
Campbell, John Arthur, 450.

INDEX AND GLOSSARY 633

Canonical cycle notation for permutations,
178–179.

Canonical representation of oriented trees,
390–394, 397–398, 590–591.

Capelli, Alfredo, 50.
Car: LISP terminology for the first

component of a List; analogous to
INFO and DLINK on page 411, or to
ALINK on page 415.

Cards, playing, 51, 69, 233–237, 238,
377–378.

Cards, punched, 136–137, 152, 229.
Carlitz, Leonard, 96, 499, 506.
Carlyle, Thomas, xiv.
Carpenter, Brian Edward, 229.
Carr, John Weber, III, 458.
Carroll, Lewis (= Dodgson, Charles

Lutwidge), 465.
Case Institute of Technology, i.
Cassini, Gian (= Giovanni = Jean)

Domenico (= Dominique), 81.
Catalan, Eugène Charles, 407.

numbers, 389, 407, 536.
Cate, Esko George, 523.
Cauchy, Augustin Louis, 39, 92, 475,

490, 506, 520, 582.
inequality: (

P
akbk)2 (

P
a2

k
)(
P

b2

k
),

36.
matrix, 37–38, 475.

Cayley, Arthur, 396, 406–407, 586, 597.
CDC 1604 computer, 124, 529.
Cdr: LISP terminology for the remainder of

a List with its first component deleted;
analogous to RLINK on page 411, or
to BLINK on page 415.

Ceiling function dxe, 39, 41.
Cell: A word of the computer memory, 127.
Cellar, 240.
Central moment of a probability

distribution, 105.
Centroid of a free tree, 387–388, 397, 589.
Chain: A word used by some authors to

denote a linked linear list, by others
to denote a linearly ordered set.

Chain rule for di�erentiation, 52.
Chaining: A word used by some authors

in place of “linking”.
Chakravarti, Gurugovinda (

), 53.
Change of summation variable, 28, 32–33.
Channel: A data-transmission device

connected to a computer, 224.
CHAR (convert to characters), 138.
Character codes of MIX, 136, 138, 140–141.
Characteristic function of a probability

distribution, 103.
Characteristic polynomial of a matrix, 499.
Charles Philip Arthur George of Edinburgh,

Prince of Wales, 310.
Cheam, Tat Ong, 450.

Cheating, 582.
Chebyshev (= Tschebysche�), Pafnutii

Lvovich (
=

), inequalities, 98, 104, 472.
Checkerboard, 435–436.
Checkerboarding, see Fragmentation.
Chen, Tien Chi (), 471.
Cheney, Christopher John, 421.
Cheney, Ednah Dow Littlehale, 377.
Cherno�, Herman, 502.
Chess, 6, 194, 272.
Chia Hsien (), 53.
Child link, 427–433.
Children in tree structures, 311, 317,

334–335, 352.
Chinese mathematics, 53, 59, 75, 407.
Chowla, Paromita (or

pAroEmtA cAvlA), 307.
Christian IX, King of Denmark, 310,

311, 562.
Christie Mallowan, Agatha Mary Clarissa

Miller, xvii.
Chu Shih-Chieh (= Zhū Shìjié, Zhū

Sōngtíng; ,), 53, 59, 70.
Chung Graham, Fan Rong King

(), 514.
Chung, Kai Lai (), 105.
CI: The comparison indicator of MIX, 126,

134, 142, 211, 213, 228.
Circle of bu�ers, 218–227, 231.
Circular definition, 263, 308, see

Definition, circular.
Circular linking, 273–280, 302, 355, 411, 459.
Circular store, 240.
Circulating shift, 135.
CITRUS subroutine library, 457.
Clark, Douglas Wells, 604.
Clavius, Christopher, 159.
Clock, for real time, 228.
Clock, simulated, 283, 288.
Clock, solitaire game, 377–378.
Closed subroutine, see Subroutine.
CMath: Concrete Mathematics, a book

by R. L. Graham, D. E. Knuth, and
O. Patashnik, 11.

CMP1 (compare rI1), 134, 210–211.
CMPA (compare rA), 134, 210–211.
CMPX (compare rX), 134, 210–211.
COBOL language, 424–434, 457, 458.
Codes for di�culty of exercises, xv–xvii.
Coding: Synonym for “programming”, but

with even less prestige.
Coe�cient extraction, 92.
Cofactor of element in square matrix:

Determinant of the matrix obtained
by replacing this element by unity and
replacing all other elements in the same
row or column by zero, 37, 381.

Co�man, Edward Grady, Jr., 450–451.
Cohen, Jacques, 421, 461, 614.

634 INDEX AND GLOSSARY

Coin tossing, 101Ű102.
tail of distribution, 106.

Collins, George Edwin, 461.
Combinations of n objects taken k at a

time, 52Ű53, 69, 94.
with repetitions permitted, 73, 92,

95, 386, 388.
with restricted repetitions, 95.

Combinatorial matrix, 37Ű38, 589.
Combinatorial number system, 73, 560.
Comfort, Webb T., 461.
COMIT language, 461.
Command: Synonym for ŞinstructionŤ.
Comments, 2Ű3.

in assembly language, 145, 149.
Commutative law, 165.
Comp. J.: The Computer Journal, a

publication of the British Computer
Society since 1958.

Compacting memory, 423, 439, 449,
452, 455.

Comparability, 270.
Comparison indicator of MIX, 126, 134,

142, 211, 213, 228.
Comparison operators of MIX, 134, 210Ű211.
Compiler: A program that translates

computer languages.
algorithms especially for use in, 360,

424Ű434, 556.
Complete binary tree, 401, 405, 563.
Complete t-ary tree, 401Ű402.
Complex conjugate, 21.
Complex number, 21.
Composition of permutations, see

Multiplication of permutations.
Compound interest, 23Ű24.
Compression of messages, 407.
Computational error, 24Ű26.
Computational method, 5, 7Ű8.
Compute: To process data.
Computer: A data processor.
Computer language, see Assembly language,

Machine language, Programming
language.

CON (constant), 149Ű150, 155.
Concatenation of strings, 274.
Concave function, 406.
Conditional expression, 460, 624.
Congruence, 40Ű42.
Connected directed graph, 372.

strongly, 372, 377.
Connected graph, 363.
Conservative law, 170, see KirchhoffŠs law.
Constants in assembly language,

149Ű150, 155.
Construction of trees, 340Ű341, 343,

428Ű429.
CONTENTS, 127, 235Ű236.
Context-free grammar, 539.
Continuants, 600Ű601.

Continued fractions, 498, 565.
Continuous simulation, 282, 298.
Convergence: An inĄnite sequence ⟨Xn⟩

converges if it approaches a limit as
n approaches inĄnity; an inĄnite sum
or product is said to ŞconvergeŤ or
to ŞexistŤ if it has a value according
to the conventions of mathematical
calculus; see Eq. 1.2.3Ű(3).

absolute, 29.
of power series, 87, 396.

Conversion operations of MIX, 138.
Convex function, 404, 596.
Convolution of probability distributions:

The distribution obtained by adding
two independent variables, 103.

Conway, Melvin Edward, 151, 229.
Conway, John Horton, 19, 80, 273, 408, 600.
Cook, Theodore Andrea, 81.
Copy a data structure: To duplicate a

structured object by producing another
distinct object that has the same data
values and structural relationships.

binary tree, 329Ű330, 333, 347.
linear list, 279.
List, 423.
two-dimensional linked list, 306.

Copying and compacting, 421.
Corless, Robert Malcolm, 395.
Coroutines, 193Ű200, 222Ű223, 283Ű296, 320.

history, 229.
linkage, 194, 200, 223, 291.

Correspondence between binary trees and
forests, 334Ű335, 346.

Cousins, 317.
Coxeter, Harold Scott MacDonald, 80,

162, 407, 408.
Crain, Steven Paul, 613.
Crelle: Journal für die reine und angewandte

Mathematik, an international journal
founded by A. L. Crelle in 1826.

Crelle, August Leopold, 58, 634.
Critical path time, 217.
Crossword puzzle, 163.
Crowe, Donald Warren, 601.
Cullen, Christopher, 75.
Cumulants of a probability distribution,

103Ű106.
Cycle: Path from a vertex to itself.

detection of, 271.
fundamental, 366Ű370, 377.
Hamiltonian, 374, 379.
in directed graph, 363.
in graph, 363.
in permutation, 164Ű167, 176Ű178,

182Ű184.
in random permutation, 179Ű184.
notation for permutations, 164Ű167,

172Ű175, 182.
oriented, in directed graph, 372.
singleton, in permutation, 164, 171,

180Ű181.
Cycle lemma, 593.
Cyclic shift, 185.

INDEX AND GLOSSARY 635

dŠImperio, Mary Evelyn, 462.
Dahl, Ole-Johan, 229, 230, 461, 462.
Dahm, David Michael, 433, 434.
Data (originally the plural of ŞdatumŤ,

but now used collectively as singular
or plural, like ŞinformationŤ):
Representation in a precise, formalized
language of some facts or concepts,
often numeric or alphabetic values,
to facilitate manipulation by a
computational method, 215.

packed, 128, 158.
Data organization: A way to represent

information in a data structure,
together with algorithms that access
and/or modify the structure.

Data structure: A table of data including
structural relationships, 232Ű465.

linear list structures, 238Ű298.
List structures, 408Ű423.
multilinked structures, 424Ű434.
orthogonal lists, 298Ű307, 424Ű434.
tree structures, 308Ű408.

Daughter, in a tree structure, 311.
David, Florence Nightingale, 66.
Davies, David Julian Meredith, 445.
Davis, Philip Jacob, 50.
Dawson, Reed, 584.
de Bruijn, Nicolaas Govert, 121, 122, 375,

379, 380, 478, 504, 543, 565.
de Moivre, Abraham, 74, 83, 87, 106,

182, 474, 536.
De Morgan, Augustus, 17.
Deallocation, see Liberation.
Debugging: Detecting and removing

bugs (errors), 192Ű193, 201, 257,
297, 413, 556.

DEC1 (decrease rI1), 134, 210.
DECA (decrease rA), 134, 210.
Decimal computer: A computer that

manipulates numbers primarily in the
decimal (radix ten) number system.

Decimal number system, 21, 619.
DECX (decrease rX), 134, 210.
DeĄned symbol, an assembly language, 153.
DeĄnition, circular, see Circular deĄnition.
Degree, of node in tree, 308, 317, 377.

of vertex in directed graph, 372.
Deletion of a node: Removing it from a

data structure and possibly returning
it to available storage.

from available space list, see Reservation.
from deque, 251, 297.
from doubly linked list, 281, 290Ű291, 297.
from doubly linked ring structure, 358.
from linear list, 239.
from linked list, 236, 255, 276, 305.
from queue, 242, 244Ű245, 254, 261,

265, 273Ű274.
from stack, 241, 242, 244Ű245, 247, 254,

259, 269, 273Ű274, 278, 458.
from tree, 358.
from two-dimensional list, 305.

Demuth, Howard B., 120.
Depth-Ąrst search, 578, 581.
Depth of node in a tree, see Level.
Deque: Double-ended queue, 239Ű243, 269.

deletion from, 251, 297.
input-restricted, 239Ű243, 416.
insertion into, 251, 297.
linked allocation, 280, 297.
output-restricted, 239Ű243, 269, 274.
sequential allocation, 251.

Derangements, 180, 183.
Derivative, 90, 338.
Dershowitz, Nachum (❯■❆❊❨❳❈ ▼❊●P),

518, 588, 598.
Descendant, in a tree structure, 311,

348, 562.
Determinant of a square matrix, 37Ű39,

81, 378Ű379, 382.
Deuel, Phillip DeVere, Jr., 556.
Deutsch, Laurence Peter, 418, 421, 422.
Dewar, Robert Berriedale Keith, 614.
Dewey, Melville (= Melvil) Louis Kossuth,

notation for binary trees (due to
Galton), 317, 331, 346, 405.

notation for trees, 313, 317, 382Ű383, 460.
Diaconis, Persi Warren, 491.
Diagonals of polygons, 408.
Diagrams of structural information,

234, 279.
before-and-after, 260Ű261, 278, 281, 571.
binary trees, 312, 318, 563.
List structures, 315Ű317, 408Ű409.
tree structures, 309Ű315, 337, 346,

349, 460, 465.
Dickman, Karl Daniel, 525.
Dickson, Leonard Eugene, 81, 484.
Dictionaries of English, 1Ű2, 215Ű216.
Differences of polynomials, 64.
Differentiation, 90, 338Ű347, 459.

chain rule for, 52.
Digamma function ψ(z), 44, 75, 493.
Digit: One of the symbols used in radix

notation; usually a decimal digit, one
of the symbols 0, 1, . . . , or 9.

Digraphs, 372, see Directed graphs.
Dijkstra, Edsger Wybe, 17, 191, 230, 231,

240, 459, 462, 545, 580, 605.
dŠImperio, Mary Evelyn, 462.
Directed graphs, 372Ű374, 422.

as Ćow charts, 364Ű365, 377.
balanced, 374Ű375.
connected, 363.
regular, 379.
strongly connected, 372, 377.

Discrete system simulation, 203, 282Ű298.
synchronous, 282, 298.

Disjoint sets: Sets with no common
elements.

636 INDEX AND GLOSSARY

Disk Ąles, 136Ű137, 435, 463.
Disk input, buffered, 228.
Disposal, see Garbage collection, Liberation.
Dissection of a polygon, 408.
Distributed-Ąt method of storage allocation,

450Ű451, 456.
Distribution: A speciĄcation of probabilities

that govern the value of a random
variable.

binomial, 101Ű102.
negative binomial, 107.
normal, 104Ű106, 122.
Poisson, 106, 502, 524.
tails of, 104, 106Ű107.
uniform, 102, 253, 446.

Distributive law, 28, 37, 42, 598.
DIV (divide), 131Ű133, 139, 208.
Divergent series, 28, 75.
Division converted to multiplication,

516Ű518.
Divisor: x is a divisor of y if y mod x = 0

and x > 0; it is a proper divisor if it is
a divisor such that 1 < x < y.

Dixon, Alfred Cardew, 490.
Dixon, Robert Dan, 509.
DLINK: Link downward, 409, 411.
Dodgson, Charles Lutwidge, see Carroll.
Doolittle, Myrick Hascall, 303.
Doran, Robert William, 229.
Double generating function: A generating

function of two variables, 94, 396,
405, 537Ű539.

Double order for traversing trees, 332,
333, 564.

Doubly linked lists, 280Ű281, 288Ű291,
297Ű298, 357, 411, 441, 443, 452, 459.

compared to singly linked, 281, 298.
Dougall, John, 490.
Doyle, Arthur Ignatius Conan, 465.
Drum memory, 136Ű137, 457.
Dull, Brutus Cyclops, 111.
Dummy variable, 27.
Dunlap, James Robert, 457.
Durand, Bruno, 586.
Dutka, Jacques, 50, 65.
Dvoretzky, Aryeh (■❲❱❳❊❆❈ ❉■❳❅), 593.
Dwyer, Barry, 567.
Dynamic storage allocation, 246Ű254,

256Ű259, 413Ű414, 435Ű456.
history, 457Ű458, 461Ű462.
running time estimates, 449.

Dynastic order, 336, see Preorder.
DYSEAC computer, 231.

e (base of natural logarithms), 23,
619Ű620, 626.

Earley, Jackson Clark, 462.
Easter date, 159Ű160.
Edelman, Paul Henry, 598.
Edge in graph, 363.

Edwards, Daniel James, 423.
Effective algorithm, 6, 8, 9.
Egorychev, Georgii Petrovich (❊❣♦r②q❡✈✱

●❡♦r❣✐✚ P❡tr♦✈✐q), 499.
Eisele, Peter, 480.
Eisenstein, Ferdinand Gotthold Max, 479.
Elementary symmetric functions, 38,

94, 497.
Elevator (lift) system, 282Ű298.
Ellen [Fich] Whyne, Faith, 523.
Ellipses (· · · or . . .), 27, 34, 46.
Embedding of partial order into linear order,

262, see Topological sorting.
Embedding of tree in another tree, 348, 386.
Empty list, 244Ű245, 247, 258, 260Ű261,

273Ű275, 278, 280, 540, 546.
Emulation, 202.
END (end of program), 151, 156, 296.
End of Ąle, 216, 227.
Endorder, see Postorder.
Engles, Robert William, 462.
English letter frequencies, 159.
ENN1 (enter negative into rI1), 133, 210.
ENNA (enter negative into rA), 133, 210.
ENNX (enter negative into rX), 133, 210.
ENT1 (enter into rI1), 133, 210.
ENTA (enter into rA), 133, 210.
Entity, 233, see Node.
Entrances to subroutines, 186Ű191.

multiple, 189.
ENTX (enter into rX), 133, 210.
Enumeration of subtrees, 378Ű379.
Enumeration of tree structures, 386Ű399.

history, 406Ű407.
Epictetus of Hierapolis (❃❊♣Ð❦t❤t♦❝

å ❁■❡r❛♣ì❧❡✇❝), 1.
EQU (equivalent to), 146, 149, 155.
Equivalence algorithm, 360Ű361, 578, 581.
Equivalence classes, 354.
Equivalence declarations, 360.
Equivalence relations, 353Ű355, 487.
Equivalent algorithms, 467.
Equivalent binary trees, 328Ű329.
Equivalent forests, 346.
Equivalent Lists, 423.
Equivalent of a MIXAL symbol, 156.
Equivalent trees, 346.
Erase a data structure: To return all of its

nodes to available storage.
linear list, 273, 274, 279.
List, 413Ű414.
right-threaded binary tree, 333.

Erdélyi, Artúr (= Arthur), 399.
Erdwinn, Joel Dyne, 229.
Errors, avoiding, 260Ű261, 556.

computational, 305.
detection of, 192Ű193, 201, 257, 297, 413.

Etherington, Ivor Malcolm Haddon, 399.
Ettingshausen, Andreas von, 54.
Etymology, 1Ű2.

INDEX AND GLOSSARY 637

Euclid (❊❰❦❧❡Ð❞❤❝), 2, 5.
algorithm for gcd, 2Ű9, 80.
algorithm for gcd, extended, 13Ű14, 42.

Euclidean domains, 468.
Euler, Leonhard (❊✚❧❡r⑧✱ ▲❡♦♥❛r❞⑧

= ✄✚❧❡r✱ ▲❡♦♥❛r❞), 49, 50, 52,
57, 75, 76, 87, 111, 374, 407, 472,
493, 496, 536, 600.

constant γ, 75, 107, 114, 619Ű620.
summation formula, 111Ű116, 120, 123.
theorem, 42.
totient function φ(n), 42, 184.

Eulerian trails in a directed graph,
374Ű376, 379, 584.

enumeration of, 380.
Eulerian numbers, second-order, 506.
Evaluation of powers, 509.
Evaluation of tree functions, 351, 361.
Evans, Arthur, Jr., 202.
Even permutations, 185.
Exchange operation (↔), 3, 182, 274.
Exclusive or, 442, 455, 553.
Execution time, methods for studying,

96, 170Ű172.
for MIX instructions, 138Ű141.

Exercises, notes on, xvŰxvii, 284.
Exit: The place where control leaves

a routine.
Exits from subroutines, 186Ű191.
Expected value of a random variable: The

average or ŞmeanŤ value, 98, 103.
from a generating function, 100Ű103.

Exponential generating function for ⟨an⟩:

anzn/n!, 89.
Exponential integral E1(x), 498.
Exponents, laws of, 22, 25, 52.
Extended binary trees, 399Ű406.
Extended Euclidean algorithm, 13Ű14, 42.
Extendible matrix, 307.
External nodes, 400Ű405.
External path length, 400, 405.
Extreme and mean ratio, 80.

Faà di Bruno, Francesco, 483.
Factorials, 46Ű52, 55.

related to gamma function, 49.
Factorial powers, 50, 52, 67, 71, 109Ű110.
FADD (Ćoating add), 306.
Fail-safe program, 270.
Fallacious reasoning, 18, 111, 465.
Falling powers, 50, 67, 69, 624.
Family order, 350, 577.

sequential representation of trees, 350.
Family trees, 310Ű311, 317, 406, 465.
Farber, David Jack, 461.
Farey, John, 520.

series, 161.
Father, in a tree structure, 311.
FCMP (Ćoating compare), 507, 559.
FDIV (Ćoating divide), 306.

Ferguson, David Elton, 231, 334.
Fermat, Pierre de, 17, 466.

theorem, 41.
Ferranti Mark I computer, 18.
Feynman, Richard Phillips, 26.
Fibonacci, Leonardo, of Pisa (= Leonardo

Ąlio Bonacii Pisano), 79Ű80, 84.
buddy system, 455.
generating function, 82Ű83.
number system, 86, 495.
numbers Fn: Elements of the Fibonacci

sequence, 13, 18, 79Ű86.
numbers, table of, 621.
sequence, 13, 18, 79Ű86, 621.
strings, 86.
trees, 496.

Fibonomial coefficients, 85, 484, 499.
Fich, Faith Ellen Whyne, 523.
Field: A designated portion of a set of

data, usually consisting of contiguous
(adjacent) symbols.

partial, of MIX word, 126Ű128, 139,
143, 207.

within a node, 233Ű237.
within a node, notations for, 235Ű237, 458.

FIFO, 240, 459, see Queue.
Fifty-percent rule, 444Ű445, 447, 448.
Figurate numbers, 54.
Filters, 198.
Final vertex of an arc, 372.
Fine, Nathan Jacob, 484.
First-Ąt method of storage allocation,

436Ű438, 453Ű456, 616.
First in, Ąrst out, 240, 351, 459, 607,

see Queue.
Fischer, Michael John, 353.
Fixed element of permutation, 164, 180Ű181.
Fixed point arithmetic, 158.
Flag, see Sentinel.
Flajolet, Philippe Patrick Michel, 501,

506, 543, 565.
Fletcher, William, 527.
Floating point arithmetic, 131, 306.

operators of MIX, 131, 557Ű559.
Floor function ⌊x⌋, 39Ű41.
Flow charts, viii, 2Ű3, 15Ű18, 364Ű365, 377.
Floyd, Robert W, x, 17, 20, 422, 467, 509.
FLPL subroutine library, 460Ű461.
Flye Sainte-Marie, Camille, 584.
FMUL (Ćoating multiply), 306.
FOCS: Proceedings of the IEEE Symposia

on Foundations of Computer Science
(1975Ű), formerly called the Symposia
on Switching Circuit Theory and
Logic Design (1960Ű1965), Symposia
on Switching and Automata Theory
(1966Ű1974).

Forder, Henry George, 597.
Forecasting, 224.

638 INDEX AND GLOSSARY

Forest: Zero or more trees, 309, 408,
see Trees.

correspondence to binary trees,
334–335, 346.

enumeration, 389, 594.
index notation for, 313, 315, 317.

Formulas, algebraic, see Algebraic formulas.
Förstemann, Wilhelm August, 490.
FORTRAN language, viii, 231, 233, 296,

360, 458, 460.
Foster, Frederic Gordon, 100.
Fourier, Jean Baptiste Joseph, 27.
Fractional part, 40.
Fraenkel, Aviezri S (), 251.
Fragmentation, 439, 449, 450, 456.
Fredman, Michael Lawrence, 514.
Free lattice, 347.
Free storage, see Available space.
Free subtrees, 365–370.

enumeration of, 378–379.
minimum cost, 371.

Free trees, 363–371.
definition of, 363.
enumeration of, 387–388, 398, 407.

Friedman, Daniel Paul, 421.
Frieze patterns, 407–408.
Front of queue, 241.
FSUB (floating subtract), 306.
Fuchs, David Raymond, 202.
Fukuoka, Hirobumi (), 508.
Full-word logical (bitwise) operations,

442, 455, 510, 553.
Fuller, John Edward, xi.
Fundamental cycles in a graph,

366–370, 377.
Fundamental path, 368.
Fundamental theorem of arithmetic, 42.
Furch, Robert, 121.
Future reference in MIXAL, 153, 156.

restrictions on, 156.

Galler, Bernard Aaron, 353.
Galton, Francis, 562, 635.
Games, solution of, 86, 272–273.
Gamma function Γ (z), 49–52, 72,

79, 116–119.
incomplete, 117–122.

Gao, Zhicheng (), 565.
Garbage collection, 257, 413–423, 438–439,

449, 455, 461, 546, 551.
e�ciency of, 420–421.

Gardner, Martin, 19, 80, 587.
Garwick, Jan Vaumund, 248, 457.
Gaskell, Robert Eugene, 86.
Gasper, George, Jr., 490.
Gates, William Henry, III, xi.
Gauß (= Gauss), Johann Friderich Carl (=

Carl Friedrich), 49, 58, 95, 490.
gcd: Greatest common divisor.
Gelernter, Herbert Leo, 460.

Generating functions, 82–84, 87–96, 243,
386–389, 391–392, 394–399, 539, 542.

double, 94, 396, 405, 537–539.
for discrete probability distributions,

99–107, 181.
Genuys, François, 231.
Geometric progression, sum of, 31, 88.
Gerberich, Carl Luther, 460.
Gill, Stanley, 229, 230, 457.
Girard, Albert, 497.
Glaisher, James Whitbread Lee, 504.
Glassey, Charles Roger, 406.
Gnedenko, Boris Vladimirovich (

), 105.
GO button of MIX, 126, 139, 143–144, 211.
Goldbach, Christian, 49, 407, 472.
Goldberg, Joel, 528.
Golden ratio, 13, 18, 21, 80, 83–86, 619–620.
Goldman, Alan Joseph, 589.
Goldstine, Herman Heine, 18, 229, 231.
Golomb, Solomon Wolf, 184.
Golumbic, Martin Charles

(), 596.
Goncharov, Vasilii Leonidovich (

), 501.
Gonnet Haas, Gaston Henry, 395.
Good, Irving John, 374, 395, 483, 584.
Gopāla (gopAl), 80.
Gordon, Peter Stuart, xi.
Gorn, Saul, 460.
Gosper, Ralph William, Jr., 65.
Gould, Henry Wadsworth, 58, 63,

121, 485, 492.
Gourdon, Xavier Richard, 525.
Gower, John Cli�ord, 459.
Grabner, Peter Johannes, 506.
Graham, Ronald Lewis, 11, 633.
Graphs, 363–372, 464.

directed, see Directed graphs.
Greatest common divisor, 2–9, 13–14,

40, 81–82.
Greatest integer function, see Floor function.
Greek mathematics, 2, 19, 54, 593.
Griswold, Ralph Edward, 461.
Grounded wire symbol, 234.
Grünbaum, Branko, 384, 587.
Gustavson, Fred Gehrung, 305.
Guy, Richard Kenneth, 19, 80, 273, 600.

H-trees, 563.
Haddon, Bruce Kenneth, 614.
Hadeler, Karl-Peter Fritz, 480.
Hageman, Louis Alfred, 586.
Halāyudha (hlAy� D), 53.
Hald, Anders, 103.
Hamel, Georg, 480.
Hamilton, William Rowan, cycles, 374, 379.
Hamlet, Prince of Denmark, 232.
Hamming, Richard Wesley, 26.
Hankel, Hermann, 49.
Hansen, James Rone, 460.

INDEX AND GLOSSARY 639

Hansen, Wilfred James, 421.
Haralambous, Yannis (

), 652.
Harary, Frank, 407.
Hardware-oriented algorithms, 26, 252, 611.
Hardy, Godfrey Harold, 12, 406, 492, 520.
Hare, David Edwin George, 395.
Hare and hounds, see Military game.
Harmonic numbers Hn, 75–79, 114.

generating function, 90.
table, 621–622.

Harmonic series, 75, 160–161.
Haros, Charles, 520.
Hartmanis, Juris, 464.
Hautus, Matheus Lodewijk Johannes, 489.
hcf, see gcd.
Head of list, see List head.
Heap, 435, see Pool of available nodes.
Height of tree or forest, 565.
Heine, Heinrich Eduard, 490.
Hellerman, Herbert, 459.
Hemacandra, Ācārya (aAcAy� h⇤mc⌃}d), 80.
Henkin, Léon Albert, 17.
Henrici, Peter Karl Eugen, 88.
Herbert, George, xiv.
Hermite, Charles, 49, 478.
Herstein, Israel Nathan, 526.
Hesse-Kassel, Louise Wilhelmine Friederike

Karoline Auguste Julia von, 310, 311.
Heyting, Arend, 406.
Hilbert, David, matrix, 38.
Hiles, John Owen, 421.
Hill, Robert, 518.
Hindu mathematics, 53–54, 80, 495.
Hipparchus of Nicæa (

), 592.
HLT (halt), 136, 143.
Hoare, Charles Antony Richard, 17,

230, 461, 462.
Hobbes, Thomas, 652.
Hobby, John Douglas, 652.
Hofri, Micha (), 515.
Holmes, Thomas Sherlock Scott, 465.
Holt Hopfenberg, Anatol Wolf, 460.
Honeywell H800, 124.
Hopcroft, John Edward, 560.
Hopper, Grace Brewster Murray, 229.
Horning, James Jay, 230.
Hu, Te Chiang (), 405, 596.
Huang Bing-Chao (), 176.
Hu�man, David Albert, 402, 407.

algorithm, 402–406.
Hurwitz, Adolf, 44.

binomial theorem, 399, 488.
Hwang, Frank Kwangming (),

405, 595.
Hwang, Hsien-Kuei (), 66.
Hypergeometric functions, 65.

basic, 490.
Hyperfactorial, 116.

I/O: Input or output, 215.
I1-register of MIX, 125, 142.
IBM 650 computer, i, 124, 230, 529.
IBM 701 computer, 230.
IBM 705 computer, 230.
IBM 709 computer, 124, 529.
IBM 7070 computer, 124.
Ibn al-Haytham, Abū ‘Alı al-H. asan (=

Alhazen,), 162.
Identity permutation, 164, 175.
Ili�e, John Kenneth, 462.
ILLIAC I computer, 230.
Imaginary part of complex number, 21.
d’Imperio, Mary Evelyn, 462.
IN (input), 137, 215–216.
In-degree of vertex, 372.
in situ permutation, 9, 165, 185, 523.
INC1 (increase rI1), 133, 210.
INCA (increase rA), 133, 210.
Incidence matrix, 270.
Inclusion and exclusion principle, 181, 184.
Inclusive ancestors and descendants, 311.
Incomplete gamma function γ(a, x), 117–122.
INCX (increase rX), 133, 210.
Indentation, 312.
Index: A number that indicates a particular

element of an array (often called a
“subscript”), 4, 299, 313, 315.

Index register, 125, 127, 158, 266.
modification of MIX instructions,

127, 251–252.
Index variable, 27.
Indian mathematics, 53–54, 80, 495.
Indirect addressing, 246, 251–252, 306.
Induction, mathematical, 11–21, 32,

316, 475.
generalized, 20.

Inductive assertions, 15–20.
Inductive closure, 475.
Infinite series: A sum over infinitely many

values, 27–29, 58, 87–96.
Infinite trees, 317, 382.
Infinity lemma, 382–386.
Information: The meaning associated with

data — the facts or concepts represented
by data; often used also in a narrower
sense as a synonym for “data”, or in a
broader sense to include any concepts
that can be deduced from data.

Information structure, see Data structure.
Ingalls, Daniel Henry Holmes, 522.
Initial vertex of an arc, 372.
Inorder for a binary tree, 319–323,

330–332, 346.
Input, 5, 215–228.

anticipated, 159, 216, 224.
bu�ering, 159, 216–228, 231.
operators of MIX, 136–138, 215–216.

Input-restricted deque, 239–243, 416.

640 INDEX AND GLOSSARY

Insertion of a node: Entering it into
a data structure.

into available space list, see Liberation.
into deque, 251, 297.
into doubly linked list, 281, 290, 297.
into doubly linked ring structure, 358.
into linear list, 239.
into linked list, 235, 255, 276, 305.

Insertion of a node (continued)
into quadruply linked binary tree, 333.
into queue, 242, 244Ű245, 254, 260,

265, 273Ű274.
into threaded binary tree, 327, 332.
into two-dimensional list, 305.
onto a stack, 241, 242, 244Ű245, 247, 254,

258, 269, 273Ű274, 278, 458.
Instruction, machine language: A code

that, when interpreted by the circuitry
of a computer, causes the computer
to perform some action.

in MIX, 127Ű144.
symbolic form, 128, 144.

INT (interrupt), 228.
Integers, 21.
Integration, 90.

by parts, 77, 112Ű113.
related to summation, 111Ű116.

Interchange operation (↔), 3, 182, 274.
Interchanging the order of summation,

29, 33, 35, 43.
Interest, compound, 23Ű24.
Interlock time: Delay of one part of a

system while another part is busy
completing some action.

Internal nodes, 400Ű406.
Internal path length, 400, 402, 405.
Internet, iv, xvi.
Interpreter (interpretive routine),

200Ű202, 230, 340.
Interrupt, 228.
Intervals, notation for, 21.
Invariants, 17.
Inverse modulo m, 42.
Inverse of a matrix, 37Ű38, 73, 307.
Inverse of a permutation, 106, 175Ű178, 182.
Inversion problem, 63Ű64.
Inversions of a permutation, 542, 557, 577.
Inverting a linked list, 269, 279.
I/O: Input or output, 215.
IOC (input-output control), 137.
IPL systems, 230, 458Ű459, 460Ű461, 552.
Irrational radix, 86.
IrreĆexive relation, 261.
Isaacs, Irving Martin, 601.
Islamic mathematics, 1, 162.
Isolated vertex, 374.
Itai, Alon (■❩■❅ ❖❊▲❅), 534.
Iverson, Kenneth Eugene, 33, 39, 459Ű460.

convention, 32Ű33, 61, 103, 471.

J-register of MIX, 125, 143, 186, 189,
212Ű214.

J1N (jump if rI1 negative), 135, 210.
J1NN (jump if rI1 nonnegative), 135, 210.
J1NP (jump if rI1 nonpositive), 135, 210.
J1NZ (jump if rI1 nonzero), 135, 210.
J1P (jump if rI1 positive), 135, 210.
J1Z (jump if rI1 zero), 135, 210.
JACM: Journal of the ACM, a publication

of the Association for Computing
Machinery since 1954.

Jacob, Simon, 81.
Jacobi, Carl Gustav Jacob, 490.
Jacquard, Joseph Marie, 229.
Jacques, Alain, 527.
Jacquet, Philippe Pierre, 515.
JAN (jump if rA negative), 135, 210.
JANN (jump if rA nonnegative), 135, 210.
JANP (jump if rA nonpositive), 135, 210.
JANZ (jump if rA nonzero), 135, 210.
JAP (jump if rA positive), 135, 210.
Japanese mathematics, 112, 115.
Jarden, Dov (❖❈❳■ ❆❈), 85, 494.
Java language, 233.
JAZ (jump if rA zero), 135, 210.
JBUS (jump if busy), 137, 157, 212, 216.
JE (jump if equal), 135, 209.
Jeffrey, David John, 395.
Jenkins, David Philip, 460.
JG (jump if greater), 135, 209.
JGE (jump if greater or equal), 135, 209.
JL (jump if less), 135, 209.
JLE (jump if less or equal), 135, 209.
JMP (jump), 134, 187, 209, 288.
JNE (jump if not equal), 135, 209.
JNOV (jump if no overĆow), 134, 142, 209.
Jodeit, Jane Griffin, 462.
Johnson, Lyle Robert, 459Ű460.
Johnstone, Mark Stuart, 452.
Jokes, 54, 200.
Jones, Clifford Bryn, 18.
Jones, Mary Whitmore, 378.
Jonkers, Henricus (= Hans) Bernardus

Maria, 614.
Jordan, Marie Ennemond Camille, 388, 406.
Josephus, Flavius, son of Matthias

(❉■❩❩◆ ❖❆ ❙◗❊■ = ❋❧❼❜✐♦❝ ❃■➳s❤♣♦❝
▼❛t❥Ð♦✉), problem, 162, 184.

JOV (jump if overĆow), 134, 142, 209.
Joyal, André, 395.
JRED (jump if ready), 137, 222Ű223.
JSJ (jump saving rJ), 134, 189, 210, 531.
Jump operators of MIX, 134Ű135, 209.
Jump trace, 214, 296, 528.
JXN (jump if rX negative), 135, 210.
JXNN (jump if rX nonnegative), 135, 210.
JXNP (jump if rX nonpositive), 135, 210.
JXNZ (jump if rX nonzero), 135, 210.
JXP (jump if rX positive), 135, 210.
JXZ (jump if rX zero), 135, 210.

INDEX AND GLOSSARY 641

Kahn, Arthur Bertram, 268.
Kahrimanian, Harry George, 459.
Kallick, Bruce, 404.
Kaplansky, Irving, 184, 526.
Karamata, Jovan, 66.
Karp, Richard Manning, 406.
Katz, Leo, 590.
Kaucký, Josef, 63.
Keller, Helen Adams, 123.
Kepler, Johannes, 80, 81.
Kilmer, Alfred Joyce, 232.
King, James Cornelius, 20.
Kinkelin, Hermann, 504.
Kirchhoff, Gustav Robert, 406, 583.

law of conservation of Ćow, 97, 170Ű171,
268, 278, 364Ű370, 380.

Kirkman, Thomas Penyngton, 408.
Kirschenhofer, Peter, 506.
Klarner, David Anthony, 86.
Kleitman, Daniel J (Isaiah Solomon),

547, 596.
Knopp, Konrad Hermann Theodor, 48, 498.
Knotted lists, 459.
Knowlton, Kenneth Charles, 462.
Knuth, Donald Ervin (), ii, iv, xi, 11,

33, 66, 120, 193, 201, 202, 296, 297, 395,
457, 461, 471, 484, 499, 504, 523, 525,
565, 579, 580, 584, 592, 596, 633, 652.

Knuth, Nancy Jill Carter (), x, xx.
Kolmogorov, Andrei Nikolaevich

(❑♦❧♠♦❣♦r♦✈✱ ❆♥❞r❡✚ ◆✐❦♦❧❛❡✈✐q),
104, 105, 464.

Kőnig, Dénes, 382, 406, 588.
Koster, Cornelis (= Kees) Hermanus

Antonius, 461.
Kozelka, Robert Marvin, 544.
Kramp, Christian, 49, 486.
Krattenthaler, Christian, 39.
Kreweras, Germain, 598.
Krogdahl, Stein, 616.
Kronecker, Leopold, delta notation,

33, 61, 624.
Kruskal, Joseph Bernard, Jr., 386, 588.
Kummer, Ernst Eduard, 70.
Kung, Hsiang Tsung (), 563.

Labeled trees, enumeration of, 389, 407.
Labelle, Gilbert, 395.
Lagrange (= de la Grange), Joseph

Louis, Comte,
inversion formula, 392, 594.

Lamé, Gabriel, 407.
Lamport, Leslie B., 605.
Language: A set of strings of symbols,

usually accompanied by conventions
that assign a ŞmeaningŤ to each string
in the set, 5, 241, 460Ű461.

machine, viiiŰx, 124.
Laplace (= de la Place), Pierre Simon,

Marquis de, 87.
transform, 94.

Laplacian matrix of a graph, 583.
Lapko, Olga Georgievna (▲❛♣❦♦✱ ❖❧⑦❣❛

●❡♦r❣✐❡✈♥❛), 652.
Large programs, writing, 191Ű193.
Larus, James Richard, 369.
Last in, Ąrst out, 240, 452, 459, see Stack.

almost, 446, 449, 455.
Latency, 228, 457.
Lattice: An algebraic system that

generalizes operations like ∪ and ∩.
deĄned on forests, 577, 598.
free, 347.

Laurent, Paul Mathieu Hermann, series, 473.
Lawson, Harold Wilbur, Jr., 433, 461.
LCHILD Ąeld, 352Ű353, 359Ű360.
LD1 (load rI1), 129, 208.
LD1N (load rI1 negative), 129, 208.
LDA (load rA), 129, 208.
LDAN (load rA negative), 129, 208.
LDX (load rX), 129, 208.
LDXN (load rX negative), 129, 208.
Leaf of tree, 308, see Terminal node.
Least-recently-used replacement, 452.
Leeuwen, Jan van, 596.
Left-child/right-sibling links, 335, 348.
Left-sibling/right-child links, 346.
Left subtree in binary tree, 312, 318.
Left-to-right maximum or minimum,

97Ű101, 104Ű106, 179.
Legendre (= Le Gendre), Adrien Marie,

48, 49, 51.
symbol, 45.

Léger, Émile, 80.
Lehmer, Derrick Henry, 465.
Leibniz, Gottfried Wilhelm, Freiherr

von, 2, 51.
Leighton, Frank Thomson, 450Ű451.
Leiner, Alan Lewine, 231.
Lenormande, Claude, 527.
Lentin, André, 527.
Leonardo of Pisa, 79Ű80, 84.
Leroux, Pierre, 395.
Letter frequencies in English, 159.
Level of node in a tree, 308, 316, 317.
Level order, 351, 564, 577.

sequential representation, 351, 359.
LeVeque, William Judson, 466.
Lévy, Paul, 105.
Levy, Silvio Vieira Ferreira, xi.
Lexicographic order, 20, 299Ű300, 306, 564.
Liberation of reserved storage, 256, 259,

291, 413Ű414, 420Ű421, 438Ű442,
443Ű444, 452Ű456.

LIFO, 240, 459, see Stack.
Lilius, Aloysius, 159.
Lindstrom, Gary Edward, 567Ű568.
Line printer, 136Ű137.
Lineal chart, 310Ű311, 465.
Linear extensions, see Topological sorting.
Linear lists, 232, 238Ű307.

642 INDEX AND GLOSSARY

Linear ordering, 20, 262, 270.
embedding a partial ordering into, 262,

see Topological sorting.
of binary trees, 333.
of trees, 346.

Linear probing, 451.
Linear recurrences, 83, 88.
Link, 233–237.

diagram, 234.
field, purpose, 432–433, 462.
manipulation, avoiding errors in, 260–261.
null, 234–235.

Link variable, 234.
Linked allocation of tables, 234, 254–256.

arrays, 301–307.
contrasted to sequential, 254–256,

296, 433.
history, 457–461.
linear lists, 234–237, 264–266, 269.
tree structures, 334, 352–357.

Linked memory philosophy, 255, 435.
Linking automaton, 463–464.
Linsky, Vladislav Sergeevich (

), 471.
LISP language, 233, 460–461.
LISP 2 garbage collector, 614.
List: Ordered sequence of zero or

more elements.
circular, 273–280, 302, 355, 411, 459.
doubly linked, 280–281, 288–291, 297–298,

357, 411, 441, 443, 452, 459.
linear, 232, 238–307.
of available space, see Available space list.

List (capital-List) structures, 315–316,
408–423, 460–462.

copying, 423.
diagrams of, 315–317, 408–409.
distinguished from lists, 233, 411.
equivalence between, 423.
notations for, 315–317, 408–409.
representation of, 409–412, 421.
sequential allocation, 421.

List head, in circular lists, 275, 302–303.
in doubly linked lists, 280–281,

288–289, 441, 443.
in Lists, 410, 414, 417.
in threaded binary tree, 324, 334.
in threaded trees, 337.

List processing systems, 233, 412, 460–462.
Listing, Johann Benedict, 406.
Literal constants in MIXAL, 150, 156.
Literate programming, 193.
Littlewood, John Edensor, 406.
LLINK: Link to the left, 280–281, 288–291.

in binary trees, 318, 322, 327, 333, 459.
in Lists, 411.
in trees, 338, 348, 359, 380.

LLINKT, 324.
Lloyd, Stuart Phinney, 183, 184.
Loading operators of MIX, 129, 139, 208.

Loading routine, 144, 271–272.
LOC, 235–236.
Local symbols of MIXAL, 150–151, 157.
Locally defined function in tree, 351, 361.
Location counter in MIXAL, 155.
Location field of MIXAL line, 145, 152.
Logan, Benjamin Franklin (= Tex), Jr., 74.
Logarithms, 22–26.

binary, 23, 26.
common, 23, 26.
natural, 23, 26.
power series, 91.

Loop in a directed graph: Arc from a
vertex to itself, 372.

Loopstra, Bram Jan, 231.
Louise Wilhelmine Friederike Karoline

Auguste Julia von Hesse-Kassel,
310, 311.

Lovász, László, 491.
Lovelace, Augusta Ada Byron King,

Countess of, 1.
LTAG, 322, 333, 349–350, 352, 359, 380.
Lucas, François Édouard Anatole, 69,

80, 81, 85, 273, 494.
numbers Ln, 495.

Luhn, Hans Peter, 457.
£ukasiewicz, Jan, 338.
Lunch counter problem, 456.
Luo, Jianjin (), 407.
Lushbaugh, Warren Arthur, 19.
Lynch, William Charles, 585.

Machine language: A language that directly
governs a computer’s actions, as
it is interpreted by the computer’s
circuitry, viii–x, 124.

symbolic, 144, see Assembly language.
MacMahon, Percy Alexander, 490, 589.
Macro instruction: Specification of a pattern

of instructions and/or pseudo-operators
that may be repeated frequently
within a program.

Madnick, Stuart Elliot, 461.
Magic square, 162.
Magnetic tape, 136–137, 463.
Mahāvıra, Ācārya (mhAvFrAcAy�), 54.
Mailloux, Barry James, 461.
Majorization, 406.
malloc, see Dynamic storage allocation.
Mallat, Stéphane Georges, 629.
Mallows, Colin Lingwood, 536.
Margolin, Barry Herbert, 450.
Mark I calculator (Harvard), 229.
Mark I computer (Manchester/Ferranti), 18.
Mark bits, 413–414.
Marking algorithms: Algorithms that

“mark” all of the nodes accessible from
some given node, 271–272, 415–423.

INDEX AND GLOSSARY 643

Markov (= Markoff), Andrei Andreevich
(▼❛r❦♦✈✱ ❆♥❞r❡✚ ❆♥❞r❡❡✈✐q),
the elder, 495.

chain: Path taken by a Markov process.
process, 253, 380Ű382.

Markov, Andrei Andreevich (▼❛r❦♦✈✱
❆♥❞r❡✚ ❆♥❞r❡❡✈✐q), the younger, 9.

Markowitz, Harry Max, 461.
Markowsky, George, 80, 404.
Martin, Alain Jean, 605.
Martin, Johannes Jakob, 614.
Math. Comp.: Mathematics of Computation

(1960Ű), a publication of the American
Mathematical Society since 1965;
founded by the National Research
Council of the National Academy
of Sciences under the original title
Mathematical Tables and Other Aids
to Computation (1943Ű1959).

Mathematical induction, 11Ű21, 32, 316, 475.
generalized, 20.

Matiyasevich, Yuri Vladimirovich
(▼❛t✐✤s❡✈✐q✱ ✏r✐✚ ❱❧❛❞✐♠✐r♦✈✐q),
86.

Matrix: A two-dimensional array,
298Ű299, 315.

Cauchy, 37Ű38, 475.
characteristic polynomial of, 499.
combinatorial, 37Ű38, 589.
determinant of, 37Ű39, 81, 378Ű379, 382.
extendible, 307.
Hilbert, 38.
incidence, 270.
inverse of, 37Ű38, 73, 307.
multiplication, 306.
permanent of, 51.
representation of, 158Ű159, 298Ű307.
singular, 307.
sparse, 302Ű306.
transpose of, 182.
triangular, 300, 305.
tridiagonal, 307.
unimodular, 601.
Vandermonde, 37Ű38, 475.

Matrix (Bush), Irving Joshua, 35, 36.
Matrix tree theorem, 378Ű379, 586.
Mauchly, John William, 230.
Maurolico, Francesco, 17.
Maximum, algorithm to Ąnd, 96Ű101,

145, 186.
Maximum norm, 106.
McCallŠs, v.
McCann, Anthony Paul, 614.
McCarthy, John, 460Ű461.
McEliece, Robert James, 477.
McIlroy, Malcolm Douglas, 576, 581.
McKeeman, William Marshall, 230.
Mealy, George, 462.
Mean value, see Expected value.
Meek, Homer Vergil, 230.

Meggitt, John Edward, 471.
Melville, Robert Christian, 540.
Memory: Part of a computer system

used to store data, 126.
cell of, 127.
hierarchy, 199, 421, 435, 463.
map, 435Ű436.
types of, 238.

Merner, Jack Newton Forsythe, 229.
Merrett, Timothy Howard, 560.
Merrington, Maxine, 66.
Meton of Athens (▼èt✇♥ å ❃❆❥❤♥❛Ø♦❝),

cycle, 160.
opqrstuq, iv, xi, 611, 652.
METAPOST, xi, 652.
Military game, 273, 550.
Miller, Kenneth William, 123.
Ming, An-TŠu (), 407.
Minimum path length, 399Ű406.
Minimum spanning tree, 371.
Minimum wire length, 371.
Minsky, Marvin Lee, 423.
Mirimanoff, Dmitri (▼✐r✐♠❛♥♦✈✱ ❉♠✐tr✐✚

❙❡♠✛♥♦✈✐q), 536.
Mirsky, Leon, 587.
Mitchell, William Charles, 525.
MIX computer, viiiŰx, 124Ű144.

assembly language for, 144Ű157.
extensions to, 143, 228, 251Ű252, 455.
instructions, summary, 140Ű141.
simulator of, 203Ű212.

Mix Barrington, David Arno, 526.
MIXAL: MIX Assembly Language, 144Ű157,

235Ű236.
Mixed-radix number system, 300.
Mixture of probability distributions, 106.
MMIX computer, 124, 187, 215, 325.
Mock, Owen Russell, 231.
mod, 39Ű40.
modulo, 40.
Mohammed, John Llewelyn, 527.
Moivre, Abraham de, 74, 83, 87, 106,

182, 474, 536.
Moments of probability distributions, 105.
Monitor routine, 212, see Trace routine.
Monte Carlo method: Experiments with

random data, 254, 445Ű447.
Moon, John Wesley, 407.
Moore School of Electrical Engineering, 230.
Mordell, Louis Joel, 479.
Morris, Francis Lockwood, 18, 614.
Morris, Joseph Martin, 567.
Morrison, Emily Kramer, 229.
Morrison, Philip, 229.
Moser, Leo, 66.
Mother, in a tree structure, 311.
Motzkin, Theodor (= Theodore) Samuel

(❖■❲❱❊◆ ▲❅❊◆❨ ❳❊❈❊❅■❩), 85, 593.
MOVE, 135, 142, 193, 211.
MOVE CORRESPONDING, 426, 430Ű431, 434.
MUG: MIX UserŠs Group, 643.

644 INDEX AND GLOSSARY

MUL (multiply), 131Ű132, 208.
Multilinked structures, 232, 288Ű289,

357, 424Ű434, 458.
Multilist representation, 301.
Multinomial coefficients, 65, 394.
Multinomial theorem, 65.
Multipass algorithms, 198Ű200, 201Ű202.
Multiple: x is a multiple of y if x = ky

for some integer k.
Multiple entrances to subroutines, 189.
Multiple exits from subroutines, 190, 269.
Multiple summation, 33Ű36.
Multiple-precision arithmetic, 202.
Multiple-precision constants, 525, 619Ű621.
Multiplication of permutations, 165Ű167,

172Ű173, 371.
Multiplication of polynomials, 277, 280, 361.
Multiplication of sparse matrices, 306.
Multiplicative function, 42Ű43.
Multiset: Analogous to a set, but elements

may appear more than once.
Multiway decisions, 158.
Munro, James Ian, 523.

Nagorny, Nikolai Makarovich (◆❛❣♦r♥②✚✱
◆✐❦♦❧❛✚ ▼❛❦❛r♦✈✐q), 9.

Nahapetian, Armen, 579.
Napier, John, Laird of Merchiston, 23.
Narayana, Tadepalli Venkata

(⑩❱ ➂❙ ⑨❛ ➧Þ ➁❦✠⑨●◗ ⑩❩ ⑩❣ ⑨❢❯), 598.
Nash, Paul, 556.
National Science Foundation, x.
Natural correspondence between binary

trees and forests, 334Ű335, 346.
Natural logarithms, 23, 26.
Naur, Peter, 17.
Nearest common ancestors, 311.
Needham, Noel Joseph Terence Montgomery

(), 59.
Neely, Michael, 452.
Negative: Less than zero (not zero).
Negative binomial distribution, 107.
Nested parentheses, 312Ű313, 349, 597.
Nested sets, 312, 317.
Nesting store, 240.
Network: A graph together with additional

data, such as weights on the edges
or vertices.

Neumann, John von (= Margittai Neumann
János), 18, 229, 231, 457.

Neville, Eric Harold, 591.
Newell, Allen, 230, 457Ű458, 460.
Newton, Isaac, 22, 57, 497.

identities, 497.
Next-Ąt method of storage allocation,

448, 453, 618.
Nicolau, Alexandru, 614.
Nicomachus of Gerasa (◆✐❦ì♠❛q♦❝

å â❦ ●❡r❼s✇♥), 19.
Nielsen, Norman Russell, 450.

Nil link, see Null link.
Niven, Ivan Morton, 87.
Noah, son of Lamech (❏◆▲ ❖❆ ●P), 310.
Node: Basic component of data structures,

233, 462Ű464.
address of, 233.
diagram of, 234.
link to, 233.
notations for Ąelds, 235Ű237, 458.
size of, 257, 299, 435, 453.

NODE, 236.
Node variable, 236.
Noncrossing partitions of a polygon, 408.
Nonnegative: Zero or positive.
Nonnegative coefficients, 396, 501.
NOP (no operation), 136, 142.
Normal distribution, 104, 122.

approximately, 105Ű106.
Notations, index to, 623Ű627.
Null link (Λ), 234Ű235.

in binary trees, 322, 331.
in diagrams, 234.
in trees, 318.

NUM (convert to numeric), 138.
Number deĄnitions, 21.
Number system: A language for representing

numbers.
binary, 24Ű26.
combinatorial, 73, 560.
decimal, 21, 619.
Fibonacci, 86, 495.
mixed-radix, 300.
octal, 620.
phi, 86.

Number theory, elementary, 40Ű45.
Nygaard, Kristen, 229, 461.

O-notation, 107Ű111, 118.
OŠBeirne, Thomas Hay, 518.
Octal values of constants, 620.
Odlyzko, Andrew Michael, 121, 565.
Oettinger, Anthony Gervin, 460.
Office of Naval Research, x, 230.
Okada, Satio (, later),

582.
Oldenburg, Henry, 57.
Oldham, Jeffrey David, xi.
Omphaloskepsis, 214.
One-address computer, 127, 350.
One-way equalities, 108.
One-way linkage, see Circular linkage,

Straight linkage.
Onodera, Rikio (), 582.
Open subroutine, 229, see Macro instruction.
Operation code Ąeld, of MIX instruction, 127.

of MIXAL line, 145, 155.
Optimal search procedure, 402.
Order of succession to the throne, 336.
Ordered trees, 308Ű309, 374, see Trees.

enumeration of, 388Ű389, 398, 407.

INDEX AND GLOSSARY 645

Ordering: A transitive relation between
objects of a set.

lexicographic, 20, 299–300, 306.
linear, 20, 262, 270.
linear, of tree structures, 333, 346.
partial, 261–262, 269–270, 346, 562, 575.
well-, 20, 334.

Oresme, Nicole, 22.
Oriented binary trees, 396–397.
Oriented cycle in a directed graph, 372.
Oriented forests, 353–355.
Oriented path in a directed graph, 372.
Oriented subtrees, enumerated, 378.
Oriented trees, 308–309, 312, 372–382.
Oriented walk in a directed graph, 372.

canonically represented, 390–394,
397–398, 590–591.

converted to ordered trees, 347.
defined, 373.
enumerated, 386–387, 389–395, 406.
represented in computer, 347, 353, 377.
with root changed, 377.

ORIG (origin), 146, 151, 155.
Orlin, James Berger, 584.
Orthogonal lists, 298–307.
Orthogonal vectors of permutations, 184.
Otoo, Ekow Joseph, 560.
Otter, Richard Robert, 395, 589.
OUT (output), 137, 225.
Out-degree of a vertex, 372.
Output, 5, 215–228.

bu�ering, 147, 216–228, 231.
operators of MIX, 136–138.

Output-restricted deque, 239–243, 269, 274.
OVERFLOW, 245–251, 256–258, 268–269.
Overflow toggle of MIX, 126, 131, 134,

142, 144, 208, 214, 228.
Overlapping subtrees, 326, 603.

Packed data: Data that has been
compressed into a small space, as when
two or more elements are placed into
the same cell of memory, 128, 158.

Paging, 452.
Pallo, Jean Marcel, 577.
Palm tree, 581.
Paper sizes, 318.
Paper tape, 136–137, 229, 231.
Parallelism, 296.
Parameters of subroutines, 187, 189, 229.
Parent, in a tree structure, 311, 317,

334–335.
in a threaded tree, 566.

Parent links, 347, 353–355, 359–361,
373, 377, 427–433.

Parentheses, 312–313, 349, 597.
Parker, Douglass Stott, Jr., 596.
Parmelee, Richard Paine, 450.
Parsing Machine, 201.

Partial field designations in MIX, 126–128,
139, 143, 207.

Partial fractions, 62–63, 72, 83.
Partial ordering, 261–262, 269–270,

346, 562, 575.
Partitions of a set, 74, 482.
Partitions of an integer, 12, 34, 93.

generating function, 87, 94.
Pascal, Blaise, 17, 53.

triangle, 53–54, 69, 71, 73, 85, 499, see

Binomial coe�cients.
Pass, in a program, 198–200.
Patashnik, Oren, 11, 633.
Path, in a graph or directed graph, 363.

oriented, 372.
simple, 363, 369, 372, 376.

Path compression, 576.
Path length of a tree structure, 399–406.

average, 405.
Patience (solitaire), 377–378.
Patt, Yale Nance, 509.
Pattern matching, 8.
Patterns in permutations, 243.
Pawlak, Zdzis≥aw, 460.
PDP-4 computer, 124.
Peck, John Edward Lancelot, 461.
Pedigree, 310–312, 465.
Peirce, Charles Santiago Sanders, 593.
Penrose, Roger, 587.
Perfect shu�e, 184.
Peripheral device: An I/O component of

a computer system, 136.
Perlis, Alan Jay, 322, 459–460.
Permanent of a square matrix, 51.
Permutations, 45–46, 51, 97–98, 164–185,

242–243.
in place, 9, 165, 185, 523.
inverse of, 106, 175–178, 182.
multiplication of, 165–167, 172–173, 371.
notations for, 164.
orthogonal vectors of, 184.

Perrot, Jean-François, 527.
Persian mathematics, 1.
PERT network, 261–262.
Petkovöek, Marko, 65.
Petolino, Joseph Anthony, Jr., 516.
Pfa�, Johann Friedrich, 486.
Pflug, Georg Christian, 445.
Phi (φ), 81, see Golden ratio.

number system, 86.
Phidias, son of Charmides (

), 81.
Philco S2000 computer, 124.
Phyllotaxis, 80.
Pi (π), 21, 619–620.

as “random” example, 397.
Wallis’s product for, 52, 116.

Piṅgala, Ācārya (aAcAy� EpΩl), 53.
Pile, 240.
Pilot ACE computer, 230.
Pipe, 198.
Pipeline, 528.

646 INDEX AND GLOSSARY

Pisano, Leonardo, 79Ű80, 84.
Pivot step, 302Ű305, 307.
PL/I language, 433Ű434.
PL/MIX language, 156.
Plane trees, 308, see Ordered trees.
Plex, 458.
Poblete Olivares, Patricio Vicente, 523.
Poincaré, Jules Henri, 491.
Pointer, see Link.
Pointer machines, 464.
Poirot, Hercule, xvii.
Poisson, Siméon Denis, distribution,

106, 524.
tail of, 502.

Polish notation, 338, see PreĄx notation,
PostĄx notation.

Polonsky, Ivan Paul, 461.
Pólya, György (= George), 17, 93, 395,

396, 406, 407, 496.
Polynomials, 55, 57, 64, 67, 68, 70, 108.

addition of, 275Ű280, 357Ű359.
Bernoulli, 44, 113Ű115, 503.
differences of, 64.
multiplication of, 277, 280, 361.
representation of, 275Ű276, 280, 356Ű357.

Pool of available nodes, 257, see Available
space list.

Pooled buffers, 224, 227.
Pop up a stack: Delete its top element,

241, 242, 244Ű245, 247, 254, 259,
269, 273Ű274, 278, 458.

Positive: Greater than zero (not zero).
PostĄx notation, 338, 352, 593.
Posting a new item, see Insertion.
Postorder for a binary tree, 319, 321,

330Ű332, 346.
Postorder for a tree, 336Ű340, 346, 348, 460.
Postorder with degrees, representation

of trees, 351, 361Ű362.
PostScript language, 202.
Poupard, Yves, 598.
Power of a number, 22.

evaluation, 509.
Power series: A sum of the form

k≥0 akz
k,

see Generating function.
convergence of, 87, 396.
manipulation of, 118.

Pratt, Vaughan Ronald, 45, 539, 592.
PreĄx notation, 338.
Preorder for a binary tree, 319, 321,

330Ű332, 346.
Preorder for a tree, 336Ű338, 346, 348, 460.
Preorder sequential representation of

trees, 349, 362.
with degrees, 359, 460.

Prepostorder, 568.
Prim, Robert Clay, 371.
Prime numbers, 19, 41, 45, 47Ű48, 51,

69Ű70, 84Ű85.
algorithm to compute, 147Ű149.
factorization into, 42.

Prinz, Dietrich Günter, 230.
Priority queue, 435, 556, 590.
Probability distribution: A speciĄcation of

probabilities that govern the value of
a random variable, 98Ű107.

average (ŞexpectedŤ) value of, 98Ű103.
variance of, 98Ű103.

Probability generating function, 103.
Procedure, see Subroutine.
Procedure for reading this set of books,

xiiŰxiv, 9.
Prodinger, Helmut, 506.
ProĄle of a program: The number of

times each instruction is performed,
145, 170, 214, 296, 528.

Program: Representation of a computational
method in some precise, formalized
language, 5.

Programming language: A precise,
formalized language in which programs
are written.

Programs, hints for construction of,
191Ű193, 296.

Progression, arithmetic, sum of, 11,
31Ű32, 56.

Progression, geometric, sum of, 31, 88.
Proof of algorithms, 5Ű6, 13Ű17, 321,

361, 422, 434.
Proof of termination, 16Ű17, 19Ű21, 386.
Proper ancestors and descendants, 311, 562.
Proper divisors, see Divisor.
Property A, 586.
Prosody, 53, 80.
Prüfer, Ernst Paul Heinz, 407.
Pseudo-operator: A construction in a

programming language that is used to
control the translation of that language
into machine language, 146.

Psi function ψ(z), 44, 75, 493.
Purdom, Paul Walton, Jr., 448, 450.
Push down list, 240, see Stack.
Push down a stack: Insert a new top

element, 241, 242, 244Ű245, 247, 254,
258, 269, 273Ű274, 278, 458.

q-nomial coefficients, 65, 73, 484, 491.
q-nomial theorem, 73, 494.
Quadratic Euclidean domains, 468.
Quadratic reciprocity law, 45.
Quadruply linked binary tree, 333.
Quadruply linked trees, 357.
Quadtrees, 564.
QualiĄcation of names, 424Ű434.
Quasiparallel processing, 296.
Quasitoroidal tiling, 586.
Queue, 239Ű243, 264Ű266, 459, 577, 607.

deletion from the front, 242, 244Ű245,
254, 261, 265, 273Ű274.

insertion at the rear, 242, 244Ű245,
254, 260, 265, 273Ű274.

linked allocation, 259Ű261, 269,
273Ű274, 288.

sequential allocation, 244Ű245, 251,
252, 254.

INDEX AND GLOSSARY 647

Quick, Jonathan Horatio, 502.
Quotient, 40.

Rabbits, 79, 84.
Rahman, Mizan (♠■❥❀♥ r❤♠❀♥), 490.
Railway network, 240.
Ramanan, Prakash Viriyur (➎❹①❲q

➔➑ì♠ ❹❷⑦❤), 538.
Ramanujan Iyengar, Srinivasa (ÿ➌❼❲❾

❹❲❷❲➮④❤ ■❸❛①❲♠), 12, 121, 122.
Ramshaw, Lyle Harold, 487.
Ramus, Christian, 71.
Randell, Brian, 202, 450.
Random walk, 380Ű381.
Raney, George Neal, 392, 394, 593.
Raphael, Bertram, 460.
Rational number, 21, 25, 161.
Raz, Yoav (❋❳ ❆❅❊■), 534.
RCA 601 computer, 124.
Reactive process, 5.
Read, Ronald Cedric, 565.
Reading: Doing input, 215.
Real number, 21.
Real part of complex number, 21.
Real-time garbage collection, 423.
Reallocation of memory, 247Ű251, 452, 457,

see also Compacting memory.
Rear of queue, 241.
Recently used bit, 452.
Recipe, 6.
Reciprocity formulas, 44Ű45.
Recomp II computer, 124.
Record: A set of contiguous data; see

also Node, 233.
Records, blocking of, 218, 225.
Rectangular arrays, 298Ű307.
Recurrence relation: A rule that deĄnes each

element of a sequence in terms of the
preceding elements, 87Ű89.

Recursion induction, 321, 565, 569.
Recursive deĄnition, 308, 312, 315, 318,

319, 335, 346, 357.
Recursive Lists, 316.
Recursive use of subroutines, 191.
Redheffer, Raymond Moos, 491.
Reeves, Colin Morrison, 445.
Reference, 233, see Link.
Reference counters, 413Ű414, 421, 461.
ReĆection principle, 536, 593, 598.
ReĆective laws, 55, 489.
ReĆexive relation, 261, 353.
Registers: Portions of a computerŠs

internal circuitry in which data is
most accessible.

of MIX, 125.
saving and restoring contents of, 188,

198, 213, 228.
Regular directed graph, 379.
Reingold, Edward Martin (❈▲❊❇P■■❳,

▼■■● ❖❆ ❉❨◆ ❲●❱■), 23, 518.

Relation: A property that holds for certain
sets (usually ordered pairs) of elements;
for example, Ş<Ť is a relation deĄned
on ordered pairs (x, y) of integers,
and the property Şx < yŤ holds if and
only if x is less than y.

antisymmetric, 261.
asymmetric, 261.
equivalence, 353Ű355, 487.
irreĆexive, 261.
reĆexive, 261, 353.
symmetric, 353.
transitive, 108, 261, 353, see Ordering.

Relative error, 116.
Relatively prime integers, 40.
Releasing a buffer, 219Ű223, 226Ű227.
Remainder, 40, 160.
Remove from a structure, see Deletion.
Rényi, Alfréd, 595.
Replacement operation (←), 3.
Replicative function, 43Ű44.
Representation (inside a computer),

methods for choosing, 238, 424Ű433.
of algebraic formulas, 337, 459.
of binary trees, 318, 322, 327, 333Ű334.
of deques, 251, 280, 297.
of forests, 334.
of Lists, 409Ű412, 421.
of oriented trees, 347, 353, 377.
of polynomials, 275Ű276, 280, 356Ű357.
of queues, 244Ű245, 251Ű254, 259Ű261,

269, 273Ű274, 288.
of stacks, 244Ű254, 258, 269Ű270,

273Ű274, 332, 417.
of trees, 348Ű357, 359Ű362, 459Ű460.

Reprogramming, 203.
Reservation of free storage, 256Ű258, 291,

436Ű438, 443, 452Ű456.
Reversal of a string, 185.
Reversing a list, 269, 279.
Reversion storage, 240.
Ribenboim, Paulo, 466.
Rice, Stephan Oswald, 565.
Richmond, Lawrence Bruce, 565.
Riemann, Georg Friedrich Bernhard, zeta

function ζ(s), 76, 504.
Right-child/left-sibling links, 346.
Right-sibling/left-child links, 335, 348.
Right subtree of a binary tree, 312, 318.
Right-threaded binary trees, 327, 332Ű334.
Right-threaded trees, 338, 380.
Right-to-left maximum or minimum,

97Ű101, 104Ű106, 179.
Ring structure, 355Ű357.
Riordan, John, 397, 494, 595.
RISC: Reduced Instruction Set

Computer, 124.
Rising factorial powers, 50, 71, 624.
Ritchie, Dennis MacAlistair, 461.

648 INDEX AND GLOSSARY

RLINK: Link to the right, 280–281, 288–291.
in binary trees, 318, 322, 327, 333, 459.
in Lists, 409, 411.
in trees, 338, 348–353, 359, 380.

RLINKT, 324.
Robinson, Raphael Mitchel, 587.
Robson, John Michael, 448, 452, 456,

567, 604, 616.
Rodrigues, Benjamin Olinde, 407.
Roes, Piet Bernard Marie, 100.
Rogers, Leonard James, 490.
Rokicki, Tomas Gerhard, 202.
Roll, 240.
Root of a directed graph, 372.
Root of a number, 22, 25, 110.
Root of a tree, 308, 309, 317, 465.

changing, in an oriented tree, 377.
Rooting a free tree, 373.
Roots of unity, 89.
Rosenberg, Arnold Leonard, 560.
Rosenstiehl, Pierre, 243.
Ross, Douglas Taylor, 450, 458, 462.
Rotating memory devices, 228, 457.
Rothe, Heinrich August, 63, 71, 486.
Rounding, 41, 83, 160, 183.
Rousseau, Cecil Clyde, 507.
Roving pointer, 607.
Row major order, 159, 182, 299.
RTAG, 322, 332–334, 338, 349–351, 359, 380.
Running time, see Execution time.
Russell, David Lewis, 613.
Russell, Lawford John, 202.

Saddle point, 159.
Salton, Gerard Anton, 351, 459.
Sammet, Jean Elaine, 462, 574.
Satterthwaite, Edwin Hallowell, Jr., 231.
Saving and restoring registers, 188,

198, 213, 228.
Schä�er, Alejandro Alberto, 514.
Schatzo�, Martin, 450.
Scherk, Heinrich Ferdinand, 490.
Schlatter, Charles Fordemwalt, 459.
Schlatter, William Joseph, 459.
Schlesvig-Holstein-Sønderborg-Glücksborg,

Christian von, see Christian IX.
Scholten, Carel Steven, 231, 605.
Schoor, Amir (), 559.
Schorr, Herbert, 418, 422.
Schreiber, Peter, 81.
Schreier, Otto, 385.
Schröder, Friedrich Wilhelm Karl Ernst, 592.
Schwartz, Eugene Sidney, 404.
Schwarz, Karl Hermann Amandus,

inequality, 36.
Schweins, Franz Ferdinand, 489.
Schwenk, Allen John, 495.
Schweppe, Earl Justin, 459.
SCOPE link, 350, 362, 434.
Scroll, 240.

Segner, Johann Andreas von, 407, 536.
Seki, Takakazu (), 112, 115.
Self-modifying code, 187, 193.
Selfridge, John Lewis, 78.
Semaphores, 231.
Semi-invariants of a probability distribution,

103–106.
Sentinel: A special value placed in a table,

designed to be easily recognizable
by the accompanying program,
217–218, 276, 567.

Sequential (consecutive) allocation of
tables, 244.

arrays, 158–159, 299–301, 305–307.
contrasted to linked, 254–256, 296, 433.
history, 457.
linear lists, 244–254, 264–266, 325.
tree structures, 348–352, 359–362, 433.

Series, infinite: An infinite sum.
Series-parallel networks, 589.
Sets, partition of, 74, 482.
Sha, Jichang (), 547.
Shakespeare (= Shakspere), William,

232, 466.
Shams Baragh, Armin (), 526.
Shared subtrees, 326, 603.
Shaw, John Cli�ord, 230, 457–458.
Shelf, 240.
Shephard, Geo�rey Colin, 384, 587.
Shepp, Lawrence Alan, 183, 184.
Shift operators of MIX, 135, 211.
Shor, Peter Williston, 514.
Shore, John Edward, 445, 450.
Shylock, 466.
Sibling, in a tree structure, 311.
Sibling link, 334, 336, 427–433; see also

RLINK in trees.
SICOMP: SIAM Journal on Computing,

published by the Society for Industrial
and Applied Mathematics since 1972.

Sideways addition, 131, 480.
Sign function (sign x), 475.
Silver, Roland Lazarus, 527.
Similar binary trees, 327–329.
Similar forests, 346.
Simon, Herbert Alexander, 230, 457–458.
Simonovits, Miklós, 505.
Simple oriented path, 372, 376.
Simple path, 363, 369.
SIMSCRIPT language, 461.
SIMULA I language, 229.
Simulated time, 283, 288.
Simulation: Imitiation of some process, 445.

continuous, 282, 298.
discrete, 203, 282–298.
of one computer on another, 9, 202–203.
of one computer on itself, 212–214.

Singh, Parmanand (prmAn⌃d Es�h), 80.
Singleton cycle of a permutation, 164,

171, 180–181.
Singular matrix, 307.

INDEX AND GLOSSARY 649

Singularity of a function, 396.
Sister, in a tree structure, 311.
SLA (shift left rA), 135, 530.
SLAX (shift left rAX), 135, 530.
SLC (shift left rAX circularly), 135, 530.
SLIP system, 460Ű461.
Sloane, Neil James Alexander, 595.
Smallest in, Ąrst out, 556.
SNOBOL language, 461.
SODA: Proceedings of the ACMŰSIAM

Symposia on Discrete Algorithms,
inaugurated in 1990.

Software: General-purpose programs
that extend the capabilities of
computer hardware.

Solitaire (patience), 377Ű378.
Son, in a tree structure, 311.
Soria, Michèle, 501.
Spanning subtrees, 365Ű370, 378Ű379.

minimum cost, 371.
Sparse array trick, 307.
Sparse matrices, 302Ű306.
Sparse-update memory, 298.
Speedcoding, 230.
Spieß, Jürgen, 91.
Spine of a binary tree, 568.
SRA (shift right rA), 135, 530.
SRAX (shift right rAX), 135, 530.
SRC (shift right rAX circularly), 135, 530.
ST1 (store rI1), 130, 209.
STA (store rA), 130, 209.
Stack, 239Ű243, 320Ű321, 323, 325Ű326, 351,

361, 415Ű416, 422, 428Ű429, 458Ű459.
deletion (ŞpoppingŤ), 241, 242, 244Ű245,

247, 254, 259, 269, 273Ű274, 278, 458.
insertion (ŞpushingŤ), 241, 242, 244Ű245,

247, 254, 258, 269, 273Ű274, 278, 458.
linked allocation, 258, 269, 270,

273Ű274, 332, 417.
pointer to, 244, 258.
sequential allocation, 244Ű254, 325.

Stack permutations, 242Ű243, 331.
Standard deviation of a probability

distribution: The square root of the
variance, an indication of how much
a random quantity tends to deviate
from its expected value, 98.

Stanford University, ii, x, 296, 554.
Stanley, Richard Peter, 407, 593, 598.
Staudt, Karl Georg Christian von, 406.
Staver, Tor Bøhm, 582.
Steady state, 381Ű382.
Stearns, Richard Edwin, 464.
Steele, Guy Lewis, Jr., 605.
Steffens, Elisabeth Francisca Maria, 605.
Steffensen, Johan Frederik, 503.
Stevenson, Francis Robert, 579.
Stickelberger, Ludwig, 51.
Stigler, Stephen Mack, 448, 450.

Stirling, James, 47Ű49, 67, 69, 73,
87, 115, 181.

approximation, 47, 51, 115Ű116.
Stirling numbers, 66Ű69, 71Ű74, 78,

99Ű100, 506, 582, 591.
asymptotic behavior, 66.
combinatorial interpretations, 66, 74, 179.
duality law, 68.
generating functions, 91.
modulo p, 492.
table, 66.

STJ (store rJ), 130, 187, 209.
STOC: Proceedings of the ACM

Symposia on Theory of Computing,
inaugurated in 1969.

Stolarsky, Kenneth Barry, 495.
Storage allocation: Choosing memory cells

in which to store data, see Available
space list, Dynamic storage allocation,
Linked allocation, Sequential allocation.

Storage mapping function: The function
whose value is the location of an
array node, given the indices of that
node, 299Ű301, 305Ű307.

Store: British word for ŞmemoryŤ.
Storing operators of MIX, 130, 209.
Straight linkage, 254, 258Ű259, 411.
String: A Ąnite sequence of zero or more

symbols from a given alphabet, 8, 86,
185, 274, 495, see Linear lists.

binary, 598Ű599.
concatenation, 274.
manipulation, 461, 462.

Strong, Hovey Raymond, Jr., 560.
Strongly connected directed graph, 372, 377.
Structure, how to represent, 238,

424Ű433, 462.
Struik, Dirk Jan, 57, 481, 497.
Stuart, Alan, 100.
STX (store rX), 130, 209.
STZ (store zero), 130, 209.
SUB (subtract), 131Ű132, 208.
Subadditive law, 616.
Subi, Carlos Samuel, 527.
Subroutines, 158, 186Ű197, 202, 206Ű207,

211, 269, 279Ű280, 290Ű291, 343.
allocation of, 271Ű272.
history, 229Ű230.
linkage of, 186, 229.

Subscript, 3Ű4, see Index.
Substitution operation (←), 3.
Subtrees, 308.

average size of, 405.
free, enumeration of, 378Ű379.

Summation, 27Ű39.
by parts, 44, 76Ű78.
EulerŠs formula, 111Ű116, 120, 123.
interchange of order, 29, 33, 35, 43.
multiple, 33Ű36.
of arithmetic progression, 11, 31Ű32, 56.

650 INDEX AND GLOSSARY

Summation (continued):
of binomial coe�cients 56–74,

76–78, 85, 96.
of geometric progression, 31, 88.
of powers, 115.
related to integration, 111–116.

Sun SPARCstation, 652.
Supremum: Least upper bound, 37.
Suri, Subhash (s� BAq s�rF), 514.
Sutherland, Ivan Edward, 459.
Swainson, William, 330.
Swapping bu�ers, 147, 159, 217–218, 225.
Swift, Charles James, 231.
Swift, Jonathan, 628.
Switching table, 158, 205–206, 209, 210, 530.
Sylvester, James Joseph, 407, 473, 583, 586.
Symbol manipulation: A general term

for data processing, usually applied
to nonnumeric processes such as
the manipulation of strings or
algebraic formulas.

Symbol table algorithms, 175, 426.
Symbolic machine language, see Assembly

language.
Symmetric functions, 92–94, 472–473, 497.

elementary, 38, 94, 497.
Symmetric order for a binary tree,

319–323, 330–332, 346.
Symmetric relation, 353.
Synchronous discrete simulation, 282, 298.
System: A set of objects or processes

that are connected to or interacting
with each other.

System/360 computers, 124, 189, 230.
Szekeres, György (= George), 595.
Szpilrajn, Edward, 268.

t-ary trees, 334, 405.
enumeration of, 397, 593.
sequential allocation, 401.

Table-driven program, see Interpreter,
Switching table.

Tables, arrangement of, inside a computer,
see Representation.

Tables of numerical quantities, 54,
66, 619–621.

Tag field in tree node, 322, see LTAG, RTAG.
Tail inequalities, 104, 106–107.
Tamaki, Jeanne Keiko (), 596.
Tamari, Dov (), born Bernhard

Teitler, 577.
lattice, 577, 598.

Tape, magnetic, 136–137, 463.
paper, 136–137, 229, 231.

Tarjan, Robert Endre, 243, 581.
Taylor, Brook, series, 83, 102.

with remainder, 117.
Temme, Nicolaas Maria, 66, 121.
Temporary storage: Part of memory used

to hold a value for a comparatively

short time while other values occupy
the registers, 191.

Termial function, 48, 51.
Terminal node of a tree, 308, 318,

352, 397, 597.
Terminology, viii, 45, 240, 311, 362, 435.
Ternary trees, 334, 401.
Tetrad tiling, 383–385.
Tetrahedral arrays, 300–301, 306.
TEX, iv, xi, 193, 202, 611, 652.
Theory of algorithms, 7, 9.
Theory of automata, 230, 240, 463–464.
Thiele, Thorvald Nicolai, 103.
Thorelli, Lars-Erik, 603, 614.
Thornton, Charles, 322, 459–460.
Thread an unthreaded tree, 333.
Thread links, 422.
Threaded binary trees, 322, 331–332, 460.

compared to unthreaded, 326.
insertion into, 327, 332.
list head in, 324, 334.

Threaded trees, 335–336, 459.
Three-address code, 337, 459.
Three-dots notation (· · · or . . .), 27, 34, 46.
Tiling the plane, 383.
Time taken by a program, see Execution

time.
Todd, John, 475.
Todhunter, Isaac, 182.
Tonge, Frederic McLanahan, Jr., 460.
Top-down process, 309, 361.
Top of stack, 241–242.
Topological sorting, 261–271, 346, 376, 397.
Torelli, Gabriele, 71, 488.
Toscano, Letterio, 50.
Toroidal tiling, 384.
Total ordering, 270, see Linear ordering.
Totient function ϕ(n), 42, 184.
Trace routine, 192, 212–214, 230–231, 296.
Tra�c signals, 161–162.
Trails, Eulerian, in a directed graph,

374–376, 379–380, 584.
Transfer instruction: A “jump” instruction.
Transitive relation, 108, 261, 353, see

Ordering.
Transposing a rectangular matrix, 182.
Transposing blocks of data, 184–185.
Transpositions: Permutations that

interchange two elements, 3, 182,
274, 371.

Traversal of binary trees, 319, 459–460.
inorder, 320, 323.
postorder, 331–332.
preorder, 331–332.

Traversal of trees, 336, 459–460.
prepostorder, 568.

Tree function T (z), 395.
Tree mappings, 390.

INDEX AND GLOSSARY 651

Trees, 232, 308Ű423.
binary, see Binary trees.
comparison of different types,

308Ű309, 374.
complete, 401Ű402, 405, 563.
construction of, 340Ű341, 343, 428Ű429.
copying of, 329Ű330, 333, 347.
deĄnition of, 308, 317, 363, 373.
deletion from, 358.
Dewey notation for, 313, 317,

382Ű383, 460.
diagrams of, 309Ű315, 337, 346,

349, 460, 465.
disjoint, see Forest.
embedding of, 348, 386.
enumeration of, 386Ű399, 408.
equivalent, 346.
erasing of, 333.
free, see Free trees.
history, 406Ű407, 459Ű460.
inĄnite, 317, 382.
insertion into, 327, 332.
labeled, enumeration of, 389, 407.
linear ordering of, 346.
linked allocation for, 334, 352Ű357.
mathematical theory of, 362Ű408.
ordered, 308, 374, 388Ű389, see Trees.
oriented, see Oriented trees.
quadruply linked, 357.
representation of, 348Ű357, 359Ű362,

459Ű460.
right-threaded, 338, 380.
sequential allocation for, 348Ű352,

359Ű362, 433.
similar, 346.
t-ary, 334, 397, 401Ű402, 405, 593.
ternary, 334, 401.
threaded, 335Ű336, 459.
traversal of, 336, 459Ű460.
triply linked, 353, 359Ű360, 427Ű433.
unordered, see Oriented trees.
unrooted, 363, see Free trees.

Triangular matrix, 300, 305.
Triangulations of polygons, 407, 598Ű601.
Tricomi, Francesco Giacomo Filippo,

121, 122.
Tricks versus techniques, 574Ű575.
Tridiagonal matrix, 307.
Trigonometric functions, 44, 229, 471.
Trilling, Laurent, 461.
Triple order for a binary tree, 567Ű568.
Triply linked tree, 353, 359Ű360, 427Ű433.
Trit, 139.
Tritter, Alan Levi, 576.
Tucker, Alan Curtiss, 405.
Turing, Alan Mathison, 18, 193, 229,

230, 459.
machines, 8, 230, 464.

Tutte, William Thomas, 583.
Twain, Mark (= Clemens, Samuel

Langhorne), 54.

Twigg, David William, 523.
Two-line notation for permutations,

164, 182.
Two stacks, 246, 251, 253Ű254.
Two-way linkage, 280Ű281, 411.
Typewriter, 136Ű137, 231.

Uhler, Horace Scudder, 480.
Ullman, Jeffrey David, 560.
Unary operator: A function of one

variable, 337.
UNDERFLOW, 245, 247, 259, 268Ű269, 274.
Uniform distribution: A probability

distribution in which every value is
equally likely, 102, 253, 446.

Unimodular matrices, 601.
Uninitialized arrays, 307.
Union-Ąnd algorithm, 354, 360.
UNIVAC I computer, 151, 229, 231, 480.
UNIVAC III computer, 124.
UNIVAC SS80 computer, 124.
UNIVAC 1107 computer, 124.
UNIX operating system, 198.
Unrooted trees, 363, see Free trees.
Unusual correspondence between

permutations, 178Ű179.
Updates to memory, synchronous, 298.
Uspensky, Vladimir Andreevich (❯s♣❡♥s❦✐✚✱

❱❧❛❞✐♠✐r ❆♥❞r❡❡✈✐q), 464.

van Aardenne-Ehrenfest, Tatyana, 375, 379.
van der Waerden, Bartel Leendert,

385Ű386, 587.
van Leeuwen, Jan, 596.
van Wijngaarden, Adriaan, 461.
Vandermonde, Alexandre Théophile,

59, 70, 71.
matrix, 37Ű38, 475.

Vardi, Ilan, 504.
Variable: A quantity that may possess

different values as a program is being
executed, 3Ű4, 235.

link or pointer, 235.
node, 236.

Variable-size nodes, 435Ű456.
Variance of a probability distribution, 98.

deduced from the generating function,
100Ű103.

Vauvenargues, Luc de Clapiers, Marquis
de, xiv.

Vectors, see Linear lists.
Velthuis, Frans Jozef, 652.
Vertex in a graph, 363, 372.

isolated, 374.
Victorius of Aquitania, 518.
Virtual machine, 201.
Visiting a node, 320.
VLSI chips, 563.
von Ettingshausen, Andreas, 54.
von Neumann, John (= Margittai Neumann

János), 18, 229, 231, 457.
von Segner, Johann Andreas, 407, 536.
von Staudt, Karl Georg Christian, 406.

652 INDEX AND GLOSSARY

W-value in MIXAL, 154Ű155.
Wadler, Philip Lee, 605.
Waerden, Bartel Leendert van der,

385Ű386, 587.
Wait list, see Agenda.
Waite, William McCastline, 418, 422, 614.
Walk, in a graph, 363.

oriented, 372.
random, 380Ű381.

Wall, Hubert Stanley, 481.
Wallis, John, 22, 52.

product for π, 52, 116.
Wang, Hao (), 383Ű384.
Ward, Martin, 576.
Waring, Edward, 78, 472.
Warren, Don Wyman, 359.
Watanabe, Masatoshi (), 652.
Watson, Dan Caldwell, 251.
Watson, George Neville, 507.

lemma, 123.
Watson, Henry William, 383.
Weakest precondition, 17.
Weber, Helmut, 461.
Webster, Noah, dictionary, 1, 216.
Wedderburn, Joseph Henry Maclagan, 589.
Wegbreit, Eliot Ben, 614.
Wegner, Peter (= Weiden, Puttilo Leonovich

= ❱❡✚❞❡♥✱ P✉tt✐❧♦ ▲❡♦♥♦✈✐q), 306.
Weierstrass (= Weierstraß), Karl Theodor

Wilhelm, 382.
Weighted path length, 402Ű405.
Weiland, Richard Joel, 608.
Weizenbaum, Joseph, 414, 459Ű461.
Well-ordering, 20, 334.
Wheeler, David John, 229, 230, 457.
Whinihan, Michael James, 86.
Whirlwind I computer, 230.
Whitworth, William Allen, 182.
Wijngaarden, Adriaan van, 461.
Wilde, Oscar Fingal OŠFlahertie Wills, 422.
Wiles, Andrew John, 466.
Wilf, Herbert Saul, 65, 66, 93, 94, 484.
Wilkes, Maurice Vincent, 229, 230, 457.
Wilson, John, theorem, 51.
Wilson, Paul Robinson, 452.
Windley, Peter F., 523.
Windsor, House of, 310.
Winkler, Phyllis Astrid Benson, xi.

Wirth, Niklaus Emil, 191, 461.
Wise, David Stephen, 251, 421, 434, 605.
Wiseman, Neil Ernest, 421.
Wolman, Eric, 453.
Wolontis, Vidar Michael, 230.
Woods Berners-Lee, Mary Lee, 230.
Woodward, Philip Mayne, 460.
Word: An addressable unit of computer

memory, 125Ű127.
Word size, for MIX: The number of

different values that might be stored
in Ąve bytes.

Wordsworth, William, 139.
Worst-Ąt method of storage allocation,

453, 608.
Wortman, David Barkley, 230.
Wrench, John William, Jr., 480, 621.
Wright, Edward Maitland, 492, 520.
Wright, Jesse Bowdle, 359.
Writing: Doing output, 215.
Writing large programs, 191Ű193.
Wyman, Max, 66.
Wythoff (= Wijthoff), Willem Abraham, 80.

X-register of MIX, 125.
X1 computer, 231.
XDS 920 computer, 124.
XOR (bitwise exclusive-or), 442, 455, 553.

Yang Hui (), 53.
Yao, Andrew Chi-Chih (), 543.
Yngve, Victor Huse, 461.
Yo-yo list, 240.
Yoder, Michael Franz, 479.
Young, David Monaghan, Jr., 586.

z, for complex numbers, 21, 108.
Zabell, Sandy Lew, 491.
Zaks, Shmuel (◗❲❋ ▲❅❊◆❨), 598.
Zave, Derek Alan, 91, 614.
Zeckendorf, Edouard, 495.
Zedan, Hussein, 576.
Zeilberger, Doron (❳❇❳❆▲■■❱ ❖❊❳❊❈), 65.
Zemanek (= Zemánek), Heinz, 1.
Zeta function ζ(s, x), 44, 76, 504.
Zhang, Linbo (), 652.
Zimmerman, Seth, 407.
Zorn, Max, lemma, 547.
Zuse, Konrad, 457.

We must not . . . think that computation,

that is ratiocination, has place only in numbers.

— THOMAS HOBBES, Elementary Philosophy (1656)

THIS BOOK was composed on a Sun SPARCstation with Computer Modern typefaces, using
the TEX and opqrstuq software as described in the authorŠs books Computers & Typesetting
(Reading, Mass.: AddisonŰWesley, 1986), Volumes AŰE. The illustrations were produced with
John HobbyŠs METAPOST system. Some names in the index were typeset with additional
fonts developed by Yannis Haralambous (Greek, Hebrew, Arabic), Olga G. Lapko (Cyrillic),
Frans J. Velthuis (Devanagari), Masatoshi Watanabe (Japanese), and Linbo Zhang (Chinese).

This page intentionally left blank

Character code: 00

␣

01

A

02

B

03

C

04

D

05

E

06

F

07

G

08

H

09

I

10

´

11

J

12

K

13

L

14

M

15

N

16

O

17

P

18

Q

19

R

20

˚

21

˝

22

S

23

T

24

U

00 1

No operation

NOP(0)

01 2

rA← rA + V

ADD(0:5)

FADD(6)

02 2

rA← rA−V

SUB(0:5)

FSUB(6)

03 10

rAX← rA×V

MUL(0:5)

FMUL(6)

08 2

rA← V

LDA(0:5)

09 2

rI1← V

LD1(0:5)

10 2

rI2← V

LD2(0:5)

11 2

rI3← V

LD3(0:5)

16 2

rA← −V

LDAN(0:5)

17 2

rI1← −V

LD1N(0:5)

18 2

rI2← −V

LD2N(0:5)

19 2

rI3← −V

LD3N(0:5)

24 2

M(F)← rA

STA(0:5)

25 2

M(F)← rI1

ST1(0:5)

26 2

M(F)← rI2

ST2(0:5)

27 2

M(F)← rI3

ST3(0:5)

32 2

M(F)← rJ

STJ(0:2)

33 2

M(F)← 0

STZ(0:5)

34 1

Unit F busy?

JBUS(0)

35 1 + T

Control, unit F

IOC(0)

40 1

rA : 0, jump

JA[+]

41 1

rI1 : 0, jump

J1[+]

42 1

rI2 : 0, jump

J2[+]

43 1

rI3 : 0, jump

J3[+]

48 1

rA← [rA]?±M

INCA(0) DECA(1)

ENTA(2) ENNA(3)

49 1

rI1← [rI1]?±M

INC1(0) DEC1(1)

ENT1(2) ENN1(3)

50 1

rI2← [rI2]?±M

INC2(0) DEC2(1)

ENT2(2) ENN2(3)

51 1

rI3← [rI3]?±M

INC3(0) DEC3(1)

ENT3(2) ENN3(3)

56 2

CI← rA(F) : V

CMPA(0:5)

FCMP(6)

57 2

CI← rI1(F) : V

CMP1(0:5)

58 2

CI← rI2(F) : V

CMP2(0:5)

59 2

CI← rI3(F) : V

CMP3(0:5)

General form:

C t

Description

OP(F)

C = operation code, (5 : 5) Ąeld of instruction
F = op variant, (4 : 4) Ąeld of instruction
M = address of instruction after indexing
V = M(F) = contents of F Ąeld of location M
OP = symbolic name for operation

(F) = normal F setting
t = execution time; T = interlock time

25

V

26

W

27

X

28

Y

29

Z

30

0

31

1

32

2

33

3

34

4

35

5

36

6

37

7

38

8

39

9

40

.

41

,

42

(

43

)

44

+

45

-

46

*

47

/

48

=

49

$

50

<

51

>

52

@

53

;

54

:

55

‚

04 12

rA← rAX/V
rX← remainder

DIV(0:5)

FDIV(6)

05 10

Special
NUM(0)

CHAR(1)

HLT(2)

06 2

Shift M bytes
SLA(0) SRA(1)

SLAX(2) SRAX(3)

SLC(4) SRC(5)

07 1 + 2F

Move F words
from M to rI1

MOVE(1)

12 2

rI4← V

LD4(0:5)

13 2

rI5← V

LD5(0:5)

14 2

rI6← V

LD6(0:5)

15 2

rX← V

LDX(0:5)

20 2

rI4← −V

LD4N(0:5)

21 2

rI5← −V

LD5N(0:5)

22 2

rI6← −V

LD6N(0:5)

23 2

rX← −V

LDXN(0:5)

28 2

M(F)← rI4

ST4(0:5)

29 2

M(F)← rI5

ST5(0:5)

30 2

M(F)← rI6

ST6(0:5)

31 2

M(F)← rX

STX(0:5)

36 1 + T

Input, unit F

IN(0)

37 1 + T

Output, unit F

OUT(0)

38 1

Unit F ready?

JRED(0)

39 1

Jumps
JMP(0) JSJ(1)

JOV(2) JNOV(3)

also [*] below

44 1

rI4 : 0, jump

J4[+]

45 1

rI5 : 0, jump

J5[+]

46 1

rI6 : 0, jump

J6[+]

47 1

rX : 0, jump

JX[+]

52 1

rI4← [rI4]?±M

INC4(0) DEC4(1)

ENT4(2) ENN4(3)

53 1

rI5← [rI5]?±M

INC5(0) DEC5(1)

ENT5(2) ENN5(3)

54 1

rI6← [rI6]?±M

INC6(0) DEC6(1)

ENT6(2) ENN6(3)

55 1

rX← [rX]?±M

INCX(0) DECX(1)

ENTX(2) ENNX(3)

60 2

CI← rI4(F) : V

CMP4(0:5)

61 2

CI← rI5(F) : V

CMP5(0:5)

62 2

CI← rI6(F) : V

CMP6(0:5)

63 2

CI← rX(F) : V

CMPX(0:5)

rA = register A
rX = register X

rAX = registers A and X as one
rIi = index register i, 1 ≤ i ≤ 6
rJ = register J
CI = comparison indicator

[*]: [+]:

JL(4) < N(0)

JE(5) = Z(1)

JG(6) > P(2)

JGE(7) ≥ NN(3)

JNE(8) ̸= NZ(4)

JLE(9) ≤ NP(5)

THE ART OF

COMPUTER PROGRAMMING

THIRD EDITION

DONALD E. KNUTH Stanford University

6
77 ADDISONŰWESLEY

Volume 2 / Seminumerical Algorithms

THE ART OF

COMPUTER PROGRAMMING

THIRD EDITION

Upper Saddle River, NJ · Boston · Indianapolis · San Francisco
New York · Toronto · Montréal · London · Munich · Paris · Madrid
Capetown · Sydney · Tokyo · Singapore · Mexico City

TEX is a trademark of the American Mathematical Society
hijklmnj is a trademark of AddisonŰWesley
The quotation on page 61 is reprinted by permission of Grove Press, Inc.
The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.
The publisher offers excellent discounts on this book when ordered in quantity for bulk
purposes or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

U.S. Corporate and Government Sales (800) 382Ű3419
corpsales@pearsontechgroup.com

For sales outside the U.S., please contact:
International Sales international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Knuth, Donald Ervin, 1938-
The art of computer programming / Donald Ervin Knuth.
xiv,764 p. 24 cm.
Includes bibliographical references and index.
Contents: v. 1. Fundamental algorithms. -- v. 2. Seminumerical

algorithms. -- v. 3. Sorting and searching. -- v. 4a. Combinatorial
algorithms, part 1.
Contents: v. 2. Seminumerical algorithms. -- 3rd ed.
ISBN 978-0-201-89683-1 (v. 1, 3rd ed.)
ISBN 978-0-201-89684-8 (v. 2, 3rd ed.)
ISBN 978-0-201-89685-5 (v. 3, 2nd ed.)
ISBN 978-0-201-03804-0 (v. 4a)
1. Electronic digital computers--Programming. 2. Computer

algorithms. I. Title.
QA76.6.K64 1997
005.1--DC21 97-2147

Internet page http://www-cs-faculty.stanford.edu/~knuth/taocp.html contains
current information about this book and related books.

Electronic version by Mathematical Sciences Publishers (MSP), http://msp.org

Copyright c⃝ 1998 by AddisonŰWesley
All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or transmission in any form
or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116 Fax: (617) 671-3447

ISBN-13 978-0-201-89684-8
ISBN-10 0-201-89684-2
First digital release, March 2014

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsoned.com
http://informit.com/aw
http://www-cs-faculty.stanford.edu/~knuth/taocp.html
http://msp.org
http://www-cs-faculty.stanford.edu/~knuth/taocp.html
http://msp.org

PREFACE

O dear Ophelia!

I am ill at these numbers:

I have not art to reckon my groans.

Ů HAMLET (Act II, Scene 2, Line 120)

The algorithms discussed in this book deal directly with numbers; yet I
believe they are properly called seminumerical, because they lie on the borderline
between numeric and symbolic calculation. Each algorithm not only computes
the desired answers to a numerical problem, it also is intended to blend well
with the internal operations of a digital computer. In many cases people are
not able to appreciate the full beauty of such an algorithm unless they also
have some knowledge of a computer’s machine language; the efficiency of the
corresponding machine program is a vital factor that cannot be divorced from
the algorithm itself. The problem is to Ąnd the best ways to make computers
deal with numbers, and this involves tactical as well as numerical considerations.
Therefore the subject matter of this book is unmistakably a part of computer
science, as well as of numerical mathematics.

Some people working in “higher levelsŤ of numerical analysis will regard the
topics treated here as the domain of system programmers. Other people working
in “higher levelsŤ of system programming will regard the topics treated here as
the domain of numerical analysts. But I hope that there are a few people left who
will want to look carefully at these basic methods. Although the methods reside
perhaps on a low level, they underlie all of the more grandiose applications of
computers to numerical problems, so it is important to know them well. We are
concerned here with the interface between numerical mathematics and computer
programming, and it is the mating of both types of skills that makes the subject
so interesting.

There is a noticeably higher percentage of mathematical material in this
book than in other volumes of this series, because of the nature of the subjects
treated. In most cases the necessary mathematical topics are developed here
starting almost from scratch (or from results proved in Volume 1), but in several
easily recognizable sections a knowledge of calculus has been assumed.

This volume comprises Chapters 3 and 4 of the complete series. Chapter 3
is concerned with “random numbersŤ: It is not only a study of various ways to
generate random sequences, it also investigates statistical tests for randomness,

v

vi PREFACE

as well as the transformation of uniform random numbers into other types of
random quantities; the latter subject illustrates how random numbers are used
in practice. I have also included a section about the nature of randomness
itself. Chapter 4 is my attempt to tell the fascinating story of what people
have discovered about the processes of arithmetic, after centuries of progress. It
discusses various systems for representing numbers, and how to convert between
them; and it treats arithmetic on Ćoating point numbers, high-precision integers,
rational fractions, polynomials, and power series, including the questions of
factoring and Ąnding greatest common divisors.

Each of Chapters 3 and 4 can be used as the basis of a one-semester college
course at the junior to graduate level. Although courses on “Random NumbersŤ
and on “ArithmeticŤ are not presently a part of many college curricula, I be-
lieve the reader will Ąnd that the subject matter of these chapters lends itself
nicely to a uniĄed treatment of material that has real educational value. My
own experience has been that these courses are a good means of introducing
elementary probability theory and number theory to college students. Nearly
all of the topics usually treated in such introductory courses arise naturally
in connection with applications, and the presence of these applications can be
an important motivation that helps the student to learn and to appreciate the
theory. Furthermore, each chapter gives a few hints of more advanced topics
that will whet the appetite of many students for further mathematical study.

For the most part this book is self-contained, except for occasional discus-
sions relating to the MIX computer explained in Volume 1. Appendix B contains a
summary of the mathematical notations used, some of which are a little different
from those found in traditional mathematics books.

Preface to the Third Edition

When the second edition of this book was completed in 1980, it represented the
Ąrst major test case for prototype systems of electronic publishing called TEX
and METAFONT. I am now pleased to celebrate the full development of those
systems by returning to the book that inspired and shaped them. At last I am
able to have all volumes of The Art of Computer Programming in a consistent
format that will make them readily adaptable to future changes in printing and
display technology. The new setup has allowed me to make many thousands of
improvements that I have been wanting to incorporate for a long time.

In this new edition I have gone over every word of the text, trying to retain
the youthful exuberance of my original sentences while perhaps adding some
more mature judgment. Dozens of new exercises have been added; dozens of
old exercises have been given new and improved answers. Changes appear ev-
erywhere, but most signiĄcantly in Sections 3.5 (about theoretical guarantees of
randomness), 3.6 (about portable random-number generators), 4.5.2 (about the
binary gcd algorithm), and 4.7 (about composition and iteration of power series).

PREFACE vii

The Art of Computer Programming is, however, still a work in progress.
Research on seminumerical algorithms continues to grow at a phenomenal

rate. Therefore some parts of this book are headed by an “under constructionŤ
icon, to apologize for the fact that the material is not up-to-date. My Ąles are
bursting with important material that I plan to include in the Ąnal, glorious,
fourth edition of Volume 2, perhaps 16 years from now; but I must Ąnish
Volumes 4 and 5 Ąrst, and I do not want to delay their publication any more
than absolutely necessary.

I am enormously grateful to the many hundreds of people who have helped
me to gather and reĄne this material during the past 35 years. Most of the hard
work of preparing the new edition was accomplished by Silvio Levy, who expertly
edited the electronic text, and by Jeffrey Oldham, who converted nearly all of
the original illustrations to METAPOST format. I have corrected every error that
alert readers detected in the second edition (as well as some mistakes that, alas,
nobody noticed); and I have tried to avoid introducing new errors in the new
material. However, I suppose some defects still remain, and I want to Ąx them
as soon as possible. Therefore I will cheerfully award $2.56 to the Ąrst Ąnder of
each technical, typographical, or historical error. The webpage cited on page iv
contains a current listing of all corrections that have been reported to me.

Stanford, California D. E. K.
July 1997

When a book has been eight years in the making,

there are too many colleagues, typists, students,

teachers, and friends to thank.

Besides, I have no intention of giving such people

the usual exoneration from responsibility for errors which remain.

They should have corrected me!

And sometimes they are even responsible for ideas

which may turn out in the long run to be wrong.

Anyway, to such fellow explorers, my thanks.

Ů EDWARD F. CAMPBELL, JR. (1975)

ŚDefendit numerus,’ [there is safety in numbers]

is the maxim of the foolish;

ŚDeperdit numerus,’ [there is ruin in numbers]

of the wise.

Ů C. C. COLTON (1820)

This page intentionally left blank

NOTES ON THE EXERCISES

The exercises in this set of books have been designed for self-study as well as
for classroom study. It is difficult, if not impossible, for anyone to learn a subject
purely by reading about it, without applying the information to speciĄc problems
and thereby being encouraged to think about what has been read. Furthermore,
we all learn best the things that we have discovered for ourselves. Therefore the
exercises form a major part of this work; a deĄnite attempt has been made to
keep them as informative as possible and to select problems that are enjoyable
as well as instructive.

In many books, easy exercises are found mixed randomly among extremely
difficult ones. A motley mixture is, however, often unfortunate because readers
like to know in advance how long a problem ought to take Ů otherwise they
may just skip over all the problems. A classic example of such a situation is
the book Dynamic Programming by Richard Bellman; this is an important,
pioneering work in which a group of problems is collected together at the end
of some chapters under the heading “Exercises and Research Problems,Ť with
extremely trivial questions appearing in the midst of deep, unsolved problems.
It is rumored that someone once asked Dr. Bellman how to tell the exercises
apart from the research problems, and he replied, “If you can solve it, it is an
exercise; otherwise it’s a research problem.Ť

Good arguments can be made for including both research problems and
very easy exercises in a book of this kind; therefore, to save the reader from
the possible dilemma of determining which are which, rating numbers have been
provided to indicate the level of difficulty. These numbers have the following
general signiĄcance:

Rating Interpretation

00 An extremely easy exercise that can be answered immediately if the
material of the text has been understood; such an exercise can almost
always be worked “in your head.Ť

10 A simple problem that makes you think over the material just read, but
is by no means difficult. You should be able to do this in one minute at
most; pencil and paper may be useful in obtaining the solution.

20 An average problem that tests basic understanding of the text mate-
rial, but you may need about Ąfteen or twenty minutes to answer it
completely.

ix

x NOTES ON THE EXERCISES

30 A problem of moderate difficulty and/or complexity; this one may
involve more than two hours’ work to solve satisfactorily, or even more
if the TV is on.

40 Quite a difficult or lengthy problem that would be suitable for a term
project in classroom situations. A student should be able to solve the
problem in a reasonable amount of time, but the solution is not trivial.

50 A research problem that has not yet been solved satisfactorily, as far
as the author knew at the time of writing, although many people have
tried. If you have found an answer to such a problem, you ought to
write it up for publication; furthermore, the author of this book would
appreciate hearing about the solution as soon as possible (provided that
it is correct).

By interpolation in this “logarithmicŤ scale, the signiĄcance of other rating
numbers becomes clear. For example, a rating of 17 would indicate an exercise
that is a bit simpler than average. Problems with a rating of 50 that are
subsequently solved by some reader may appear with a 40 rating in later editions
of the book, and in the errata posted on the Internet (see page iv).

The remainder of the rating number divided by 5 indicates the amount of
detailed work required. Thus, an exercise rated 24 may take longer to solve
than an exercise that is rated 25, but the latter will require more creativity. All
exercises with ratings of 46 or more are open problems for future research, rated
according to the number of different attacks that they’ve resisted so far.

The author has tried earnestly to assign accurate rating numbers, but it is
difficult for the person who makes up a problem to know just how formidable it
will be for someone else to Ąnd a solution; and everyone has more aptitude for
certain types of problems than for others. It is hoped that the rating numbers
represent a good guess at the level of difficulty, but they should be taken as
general guidelines, not as absolute indicators.

This book has been written for readers with varying degrees of mathematical
training and sophistication; as a result, some of the exercises are intended only for
the use of more mathematically inclined readers. The rating is preceded by an M

if the exercise involves mathematical concepts or motivation to a greater extent
than necessary for someone who is primarily interested only in programming
the algorithms themselves. An exercise is marked with the letters “HMŤ if its
solution necessarily involves a knowledge of calculus or other higher mathematics
not developed in this book. An “HMŤ designation does not necessarily imply
difficulty.

Some exercises are preceded by an arrowhead, “xŤ; this designates prob-
lems that are especially instructive and especially recommended. Of course, no
reader/student is expected to work all of the exercises, so those that seem to
be the most valuable have been singled out. (This distinction is not meant to
detract from the other exercises!) Each reader should at least make an attempt
to solve all of the problems whose rating is 10 or less; and the arrows may help
to indicate which of the problems with a higher rating should be given priority.

NOTES ON THE EXERCISES xi

Solutions to most of the exercises appear in the answer section. Please use
them wisely; do not turn to the answer until you have made a genuine effort to
solve the problem by yourself, or unless you absolutely do not have time to work
this particular problem. After getting your own solution or giving the problem a
decent try, you may Ąnd the answer instructive and helpful. The solution given
will often be quite short, and it will sketch the details under the assumption
that you have earnestly tried to solve it by your own means Ąrst. Sometimes the
solution gives less information than was asked; often it gives more. It is quite
possible that you may have a better answer than the one published here, or you
may have found an error in the published solution; in such a case, the author
will be pleased to know the details. Later printings of this book will give the
improved solutions together with the solver’s name where appropriate.

When working an exercise you may generally use the answers to previous
exercises, unless speciĄcally forbidden from doing so. The rating numbers have
been assigned with this in mind; thus it is possible for exercise n + 1 to have a
lower rating than exercise n, even though it includes the result of exercise n as
a special case.

Summary of codes:

x Recommended
M Mathematically oriented
HM Requiring “higher mathŤ

00 Immediate
10 Simple (one minute)
20 Medium (quarter hour)
30 Moderately hard
40 Term project
50 Research problem

EXERCISES

x 1. [00] What does the rating “M20 Ť mean?

2. [10] Of what value can the exercises in a textbook be to the reader?

3. [M34] Leonhard Euler conjectured in 1772 that the equation w4 + x4 + y4 = z4

has no solution in positive integers, but Noam Elkies proved in 1987 that inĄnitely
many solutions exist [see Math. Comp. 51 (1988), 825Ű835]. Find all integer solutions
such that 0 ≤ w ≤ x ≤ y < z < 106.

4. [M50] Prove that when n is an integer, n > 4, the equation wn + xn + yn = zn

has no solution in positive integers w, x, y, z.

Exercise is the beste instrument in learnyng.

Ů ROBERT RECORDE, The Whetstone of Witte (1557)

CONTENTS

Chapter 3 Ů Random Numbers 1

3.1. Introduction . 1
3.2. Generating Uniform Random Numbers 10

3.2.1. The Linear Congruential Method 10
3.2.1.1. Choice of modulus 12
3.2.1.2. Choice of multiplier 16
3.2.1.3. Potency . 23

3.2.2. Other Methods . 26
3.3. Statistical Tests . 41

3.3.1. General Test Procedures for Studying Random Data 42
3.3.2. Empirical Tests . 61

*3.3.3. Theoretical Tests . 80
3.3.4. The Spectral Test . 93

3.4. Other Types of Random Quantities 119
3.4.1. Numerical Distributions 119
3.4.2. Random Sampling and Shuffling 142

*3.5. What Is a Random Sequence? 149
3.6. Summary . 184

Chapter 4 Ů Arithmetic . 194

4.1. Positional Number Systems . 195
4.2. Floating Point Arithmetic . 214

4.2.1. Single-Precision Calculations 214
4.2.2. Accuracy of Floating Point Arithmetic 229

*4.2.3. Double-Precision Calculations 246
4.2.4. Distribution of Floating Point Numbers 253

4.3. Multiple-Precision Arithmetic 265
4.3.1. The Classical Algorithms 265

*4.3.2. Modular Arithmetic . 284
*4.3.3. How Fast Can We Multiply? 294

4.4. Radix Conversion . 319
4.5. Rational Arithmetic . 330

4.5.1. Fractions . 330
4.5.2. The Greatest Common Divisor 333

*4.5.3. Analysis of Euclid’s Algorithm 356
4.5.4. Factoring into Primes . 379

xii

CONTENTS xiii

4.6. Polynomial Arithmetic . 418
4.6.1. Division of Polynomials 420

*4.6.2. Factorization of Polynomials 439
4.6.3. Evaluation of Powers . 461
4.6.4. Evaluation of Polynomials 485

*4.7. Manipulation of Power Series 525

Answers to Exercises . 538

Appendix A Ů Tables of Numerical Quantities 726

1. Fundamental Constants (decimal) 726
2. Fundamental Constants (octal) 727
3. Harmonic Numbers, Bernoulli Numbers, Fibonacci Numbers . . . 728

Appendix B Ů Index to Notations 730

Appendix C Ů Index to Algorithms and Theorems 735

Index and Glossary . 737

CHAPTER THREE

RANDOM NUMBERS

Any one who considers arithmetical

methods of producing random digits

is, of course, in a state of sin.

Ů JOHN VON NEUMANN (1951)

Lest men suspect your tale untrue,

Keep probability in view.

Ů JOHN GAY (1727)

There wanted not some beams of light

to guide men in the exercise of their Stocastick faculty.

Ů JOHN OWEN (1662)

3.1. INTRODUCTION

Numbers that are “chosen at randomŤ are useful in many different kinds of
applications. For example:

a) Simulation. When a computer is being used to simulate natural phenomena,
random numbers are required to make things realistic. Simulation covers many
Ąelds, from the study of nuclear physics (where particles are subject to random
collisions) to operations research (where people come into, say, an airport at
random intervals).

b) Sampling. It is often impractical to examine all possible cases, but a random
sample will provide insight into what constitutes “typicalŤ behavior.

c) Numerical analysis. Ingenious techniques for solving complicated numerical
problems have been devised using random numbers. Several books have been
written on this subject.

d) Computer programming. Random values make a good source of data for
testing the effectiveness of computer algorithms. More importantly, they are
crucial to the operation of randomized algorithms, which are often far superior
to their deterministic counterparts. This use of random numbers is the primary
application of interest to us in this series of books; it accounts for the fact that
random numbers are already being considered here in Chapter 3, before most of
the other computer algorithms have appeared.

1

2 RANDOM NUMBERS 3.1

e) Decision making. There are reports that many executives make their deci-
sions by Ćipping a coin or by throwing darts, etc. It is also rumored that some
college professors prepare their grades on such a basis. Sometimes it is important
to make a completely “unbiasedŤ decision. Randomness is also an essential part
of optimal strategies in the theory of matrix games.

f) Cryptography. A source of unbiased bits is crucial for many types of secure
communications, when data needs to be concealed.

g) Aesthetics. A little bit of randomness makes computer-generated graphics
and music seem more lively. For example, a pattern like

tends to look
more appealing than

in certain contexts. [See D. E. Knuth, Bull. Amer. Math. Soc. 1 (1979), 369.]

h) Recreation. Rolling dice, shuffling decks of cards, spinning roulette wheels,
etc., are fascinating pastimes for just about everybody. These traditional uses
of random numbers have suggested the name “Monte Carlo method,Ť a general
term used to describe any algorithm that employs random numbers.

People who think about this topic almost invariably get into philosophical
discussions about what the word “randomŤ means. In a sense, there is no such
thing as a random number; for example, is 2 a random number? Rather, we speak
of a sequence of independent random numbers with a speciĄed distribution, and
this means loosely that each number was obtained merely by chance, having
nothing to do with other numbers of the sequence, and that each number has a
speciĄed probability of falling in any given range of values.

A uniform distribution on a Ąnite set of numbers is one in which each possible
number is equally probable. A distribution is generally understood to be uniform
unless some other distribution is speciĄcally mentioned.

Each of the ten digits 0 through 9 will occur about 1
10 of the time in a

(uniform) sequence of random digits. Each pair of two successive digits should
occur about 1

100 of the time, and so on. Yet if we take a truly random sequence
of a million digits, it will not always have exactly 100,000 zeros, 100,000 ones,
etc. In fact, chances of this are quite slim; a sequence of such sequences will have
this character on the average.

Any speciĄed sequence of a million digits is as probable as any other. Thus,
if we are choosing a million digits at random and if the Ąrst 999,999 of them
happen to come out to be zero, the chance that the Ąnal digit is zero is still
exactly 1

10 , in a truly random situation. These statements seem paradoxical to
many people, yet no contradiction is really involved.

There are several ways to formulate decent abstract deĄnitions of random-
ness, and we will return to this interesting subject in Section 3.5; but for the
moment, let us content ourselves with an intuitive understanding of the concept.

Many years ago, people who needed random numbers in their scientiĄc work
would draw balls out of a “well-stirred urn,Ť or they would roll dice or deal out

3.1 INTRODUCTION 3

cards. A table of over 40,000 random digits, “taken at random from census
reports,Ť was published in 1927 by L. H. C. Tippett. Since then, a number of
devices have been built to generate random numbers mechanically. The Ąrst such
machine was used in 1939 by M. G. Kendall and B. Babington-Smith to produce
a table of 100,000 random digits. The Ferranti Mark I computer, Ąrst installed
in 1951, had a built-in instruction that put 20 random bits into the accumulator
using a resistance noise generator; this feature had been recommended by A. M.
Turing. In 1955, the RAND Corporation published a widely used table of a
million random digits obtained with the help of another special device. A famous
random-number machine called ERNIE has been used for many years to pick the
winning numbers in the British Premium Savings Bonds lottery. [F. N. David de-
scribes the early history in Games, Gods, and Gambling (1962). See also Kendall
and Babington-Smith, J. Royal Stat. Soc. A101 (1938), 147Ű166; B6 (1939), 51Ű
61; S. H. Lavington’s discussion of the Mark I in CACM 21 (1978), 4Ű12; the
review of the RAND table in Math. Comp. 10 (1956), 39Ű43; and the discussion
of ERNIE by W. E. Thomson, J. Royal Stat. Soc. A122 (1959), 301Ű333.]

Shortly after computers were introduced, people began to search for efficient
ways to obtain random numbers within computer programs. A table could be
used, but this method is of limited utility because of the memory space and
input time requirement, because the table may be too short, and because it
is a bit of a nuisance to prepare and maintain the table. A machine such as
ERNIE might be attached to the computer, as in the Ferranti Mark I, but this
has proved to be unsatisfactory since it is impossible to reproduce calculations
exactly a second time when checking out a program; moreover, such machines
have tended to suffer from malfunctions that are extremely difficult to detect.
Advances in technology made tables useful again during the 1990s, because
a billion well-tested random bytes could easily be made accessible. George
Marsaglia helped resuscitate random tables in 1995 by preparing a demonstration
disk that contained 650 random megabytes, generated by combining the output
of a noise-diode circuit with deterministically scrambled rap music. (He called
it “white and black noise.Ť)

The inadequacy of mechanical methods in the early days led to an interest
in the production of random numbers using a computer’s ordinary arithmetic
operations. John von Neumann Ąrst suggested this approach in about 1946;
his idea was to take the square of the previous random number and to extract
the middle digits. For example, if we are generating 10-digit numbers and the
previous value was 5772156649, we square it to get

33317792380594909201;

the next number is therefore 7923805949.
There is a fairly obvious objection to this technique: How can a sequence

generated in such a way be random, since each number is completely determined
by its predecessor? (See von Neumann’s comment at the beginning of this
chapter.) The answer is that the sequence isn’t random, but it appears to
be. In typical applications the actual relationship between one number and

4 RANDOM NUMBERS 3.1

its successor has no physical signiĄcance; hence the nonrandom character is
not really undesirable. Intuitively, the middle square seems to be a fairly good
scrambling of the previous number.

Sequences generated in a deterministic way such as this are often called
pseudorandom or quasirandom sequences in the highbrow technical literature,
but in most places of this book we shall simply call them random sequences,
with the understanding that they only appear to be random. Being “apparently
randomŤ is perhaps all that can be said about any random sequence anyway.
Random numbers generated deterministically on computers have worked quite
well in nearly every application, provided that a suitable method has been
carefully selected. Of course, deterministic sequences aren’t always the answer;
they certainly shouldn’t replace ERNIE for the lotteries.

Von Neumann’s original “middle-square methodŤ has actually proved to be a
comparatively poor source of random numbers. The danger is that the sequence
tends to get into a rut, a short cycle of repeating elements. For example, if zero
ever appears as a number of the sequence, it will continually perpetuate itself.

Several people experimented with the middle-square method in the early
1950s. Working with numbers that have four digits instead of ten, G. E. Forsythe
tried 16 different starting values and found that 12 of them led to sequences
ending with the cycle 6100, 2100, 4100, 8100, 6100, . . . , while two of them
degenerated to zero. More extensive tests were carried out by N. Metropolis,
mostly in the binary number system. He showed that when 20-bit numbers are
being used, there are 13 different cycles into which the middle-square sequence
might degenerate, the longest of which has a period of length 142.

It is fairly easy to restart the middle-square method on a new value when
zero has been detected, but long cycles are somewhat harder to avoid. Exercises 6
and 7 discuss some interesting ways to determine the cycles of periodic sequences,
using very little memory space.

A theoretical disadvantage of the middle-square method is given in exercises
9 and 10. On the other hand, working with 38-bit numbers, Metropolis obtained
a sequence of about 750,000 numbers before degeneracy occurred, and the re-
sulting 750,000 × 38 bits satisfactorily passed statistical tests for randomness.
[Symp. on Monte Carlo Methods (Wiley, 1956), 29Ű36.] This experience showed
that the middle-square method can give usable results, but it is rather dangerous
to put much faith in it until after elaborate computations have been performed.

Many random number generators in use when this chapter was Ąrst written
were not very good. People have traditionally tended to avoid learning about
such subroutines; old methods that were comparatively unsatisfactory have been
passed down blindly from one programmer to another, until the users have no
understanding of the original limitations. We shall see in this chapter that the
most important facts about random number generators are not difficult to learn,
although prudence is necessary to avoid common pitfalls.

It is not easy to invent a foolproof source of random numbers. This fact was
convincingly impressed upon the author in 1959, when he attempted to create a
fantastically good generator using the following peculiar approach:

3.1 INTRODUCTION 5

Algorithm K (“Super-randomŤ number generator). Given a 10-digit decimal
number X, this algorithm may be used to change X to the number that should
come next in a supposedly random sequence. Although the algorithm might be
expected to yield quite a random sequence, reasons given below show that it
is not, in fact, very good at all. (The reader need not study this algorithm in
great detail except to observe how complicated it is; note, in particular, steps
K1 and K2.)

K1. [Choose number of iterations.] Set Y ← ⌊X/109⌋, the most signiĄcant
digit of X. (We will execute steps K2 through K13 exactly Y + 1 times;
that is, we will apply randomizing transformations a random number of
times.)

K2. [Choose random step.] Set Z ← ⌊X/108⌋mod 10, the second most signiĄ-
cant digit of X. Go to step K(3 +Z). (That is, we now jump to a random

step in the program.)

K3. [Ensure ≥ 5× 109.] If X < 5000000000, set X ← X + 5000000000.

K4. [Middle square.] Replace X by ⌊X2/105⌋mod 1010, that is, by the middle
of the square of X.

K5. [Multiply.] Replace X by (1001001001X) mod 1010.

K6. [Pseudo-complement.] If X < 100000000, then set X ← X + 9814055677;
otherwise set X ← 1010 −X.

K7. [Interchange halves.] Interchange the low-order Ąve digits of X with the
high-order Ąve digits; that is, set X ← 105(X mod 105) + ⌊X/105⌋, the
middle 10 digits of (1010 + 1)X.

K8. [Multiply.] Same as step K5.

K9. [Decrease digits.] Decrease each nonzero digit of the decimal representation
of X by one.

K10. [99999 modify.] If X < 105, set X ← X2 + 99999; otherwise set X ←
X − 99999.

K11. [Normalize.] (At this point X cannot be zero.) If X < 109, set X ← 10X
and repeat this step.

K12. [ModiĄed middle square.] Replace X by ⌊X(X − 1)/105⌋mod 1010, that
is, by the middle 10 digits of X(X − 1).

K13. [Repeat?] If Y > 0, decrease Y by 1 and return to step K2. If Y = 0, the
algorithm terminates with X as the desired “randomŤ value.

(The machine-language program corresponding to this algorithm was intended
to be so complicated that a person reading a listing of it without explanatory
comments wouldn’t know what the program was doing.)

Considering all the contortions of Algorithm K, doesn’t it seem plausible that
it should produce almost an inĄnite supply of unbelievably random numbers?
No! In fact, when this algorithm was Ąrst put onto a computer, it almost im-
mediately converged to the 10-digit value 6065038420, which Ů by extraordinary

6 RANDOM NUMBERS 3.1

Table 1

A COLOSSAL COINCIDENCE: THE NUMBER 6065038420
IS TRANSFORMED INTO ITSELF BY ALGORITHM K.

Step X (after)

K1 6065038420
K3 6065038420
K4 6910360760
K5 8031120760
K6 1968879240
K7 7924019688
K8 9631707688
K9 8520606577
K10 8520506578
K11 8520506578
K12 0323372207 Y = 6
K6 9676627793
K7 2779396766
K8 4942162766
K9 3831051655
K10 3830951656
K11 3830951656
K12 1905867781 Y = 5
K12 3319967479 Y = 4
K6 6680032521
K7 3252166800
K8 2218966800

Step X (after)

K9 1107855700
K10 1107755701
K11 1107755701
K12 1226919902 Y = 3
K5 0048821902
K6 9862877579
K7 7757998628
K8 2384626628
K9 1273515517
K10 1273415518
K11 1273415518
K12 5870802097 Y = 2
K11 5870802097
K12 3172562687 Y = 1
K4 1540029446
K5 7015475446
K6 2984524554
K7 2455429845
K8 2730274845
K9 1620163734
K10 1620063735
K11 1620063735
K12 6065038420 Y = 0

coincidence Ů is transformed into itself by the algorithm (see Table 1). With
another starting number, the sequence began to repeat after 7401 values, in a
cyclic period of length 3178.

The moral of this story is that random numbers should not be generated
with a method chosen at random. Some theory should be used.

In the following sections we shall consider random number generators that
are superior to the middle-square method and to Algorithm K. The correspond-
ing sequences are guaranteed to have certain desirable random properties, and
no degeneracy will occur. We shall explore the reasons for this random-like
behavior in some detail, and we shall also consider techniques for manipulating
random numbers. For example, one of our investigations will be the shuffling of
a simulated deck of cards within a computer program.

Section 3.6 summarizes this chapter and lists several bibliographic sources.

EXERCISES

x 1. [20] Suppose that you wish to obtain a decimal digit at random, not using a
computer. Which of the following methods would be suitable?

3.1 INTRODUCTION 7

a) Open a telephone directory to a random place by sticking your Ąnger in it some-
where, and use the units digit of the Ąrst number found on the selected page.

b) Same as (a), but use the units digit of the page number.
c) Roll a die that is in the shape of a regular icosahedron, whose twenty faces have

been labeled with the digits 0, 0, 1, 1, . . . , 9, 9. Use the digit that appears on
top, when the die comes to rest. (A felt-covered table with a hard surface is
recommended for rolling dice.)

d) Expose a geiger counter to a source of radioactivity for one minute (shielding
yourself) and use the units digit of the resulting count. Assume that the geiger
counter displays the number of counts in decimal notation, and that the count is
initially zero.

e) Glance at your wristwatch; and if the position of the second-hand is between 6n
and 6(n+ 1) seconds, choose the digit n.

f) Ask a friend to think of a random digit, and use the digit he names.
g) Ask an enemy to think of a random digit, and use the digit he names.
h) Assume that 10 horses are entered in a race and that you know nothing whatever

about their qualiĄcations. Assign to these horses the digits 0 to 9, in arbitrary
fashion, and after the race use the winner’s digit.

2. [M22] In a random sequence of a million decimal digits, what is the probability
that there are exactly 100,000 of each possible digit?

3. [10] What number follows 1010101010 in the middle-square method?

4. [20] (a) Why can’t the value of X be zero when step K11 of Algorithm K is
performed? What would be wrong with the algorithm if X could be zero? (b) Use
Table 1 to deduce what happens when Algorithm K is applied repeatedly with the
starting value X = 3830951656.

5. [15] Explain why, in any case, Algorithm K should not be expected to provide
inĄnitely many random numbers, in the sense that (even if the coincidence given in
Table 1 had not occurred) one knows in advance that any sequence generated by
Algorithm K will eventually be periodic.

x 6. [M21] Suppose that we want to generate a sequence of integers X0, X1, X2, . . . ,
in the range 0 ≤ Xn < m. Let f(x) be any function such that 0 ≤ x < m implies
0 ≤ f(x) < m. Consider a sequence formed by the rule Xn+1 = f(Xn). (Examples are
the middle-square method and Algorithm K.)

a) Show that the sequence is ultimately periodic, in the sense that there exist numbers
λ and µ for which the values

X0, X1, . . . , Xµ, . . . , Xµ+λ−1

are distinct, but Xn+λ = Xn when n ≥ µ. Find the maximum and minimum
possible values of µ and λ.

b) (R. W. Floyd.) Show that there exists an n > 0 such that Xn = X2n; and the
smallest such value of n lies in the range µ ≤ n ≤ µ+λ. Furthermore the value of
Xn is unique in the sense that if Xn = X2n and Xr = X2r, then Xr = Xn.

c) Use the idea of part (b) to design an algorithm that calculates µ and λ for any
given function f and any given X0, using only O(µ+λ) steps and only a bounded
number of memory locations.

8 RANDOM NUMBERS 3.1

x 7. [M21] (R. P. Brent, 1977.) Let ℓ(n) be the greatest power of 2 that is less than
or equal to n; thus, for example, ℓ(15) = 8 and ℓ(ℓ(n)) = ℓ(n).

a) Show that, in terms of the notation in exercise 6, there exists an n > 0 such that
Xn = Xℓ(n)−1. Find a formula that expresses the least such n in terms of the
periodicity numbers µ and λ.

b) Apply this result to design an algorithm that can be used in conjunction with any
random number generator of the type Xn+1 = f(Xn), to prevent it from cycling
indeĄnitely. Your algorithm should calculate the period length λ, and it should
use only a small amount of memory space Ů you must not simply store all of the
computed sequence values!

8. [23] Make a complete examination of the middle-square method in the case of
two-digit decimal numbers.

a) We might start the process out with any of the 100 possible values 00, 01, . . . ,
99. How many of these values lead ultimately to the repeating cycle 00, 00, . . . ?
[Example: Starting with 43, we obtain the sequence 43, 84, 05, 02, 00, 00, 00,]

b) How many possible Ąnal cycles are there? How long is the longest cycle?
c) What starting value or values will give the largest number of distinct elements

before the sequence repeats?

9. [M14] Prove that the middle-square method using 2n-digit numbers to the base b
has the following disadvantage: If the sequence includes any number whose most
signiĄcant n digits are zero, the succeeding numbers will get smaller and smaller until
zero occurs repeatedly.

10. [M16] Under the assumptions of the preceding exercise, what can you say about
the sequence of numbers following X if the least signiĄcant n digits of X are zero?
What if the least signiĄcant n+ 1 digits are zero?

x 11. [M26] Consider sequences of random number generators having the form de-
scribed in exercise 6. If we choose f(x) and X0 at random Ů in other words, if we
assume that each of the mm possible functions f(x) is equally probable and that
each of the m possible values of X0 is equally probable Ů what is the probability
that the sequence will eventually degenerate into a cycle of length λ = 1? [Note:

The assumptions of this problem give a natural way to think of a “randomŤ random
number generator of this type. A method such as Algorithm K may be expected to
behave somewhat like the generator considered here; the answer to this problem gives
a measure of how colossal the coincidence of Table 1 really is.]

x 12. [M31] Under the assumptions of the preceding exercise, what is the average length
of the Ąnal cycle? What is the average length of the sequence before it begins to cycle?
(In the notation of exercise 6, we wish to examine the average values of λ and of µ+λ.)

13. [M42] If f(x) is chosen at random in the sense of exercise 11, what is the average
length of the longest cycle obtainable by varying the starting value X0? [Note: We
have already considered the analogous problem in the case that f(x) is a random
permutation; see exercise 1.3.3Ű23.]

14. [M38] If f(x) is chosen at random in the sense of exercise 11, what is the av-
erage number of distinct Ąnal cycles obtainable by varying the starting value? [See
exercise 8(b).]

15. [M15] If f(x) is chosen at random in the sense of exercise 11, what is the proba-
bility that none of the Ąnal cycles has length 1, regardless of the choice of X0?

3.1 INTRODUCTION 9

16. [15] A sequence generated as in exercise 6 must begin to repeat after at most m
values have been generated. Suppose we generalize the method so that Xn+1 depends
on Xn−1 as well as on Xn; formally, let f(x, y) be a function such that 0 ≤ x, y < m
implies 0 ≤ f(x, y) < m. The sequence is constructed by selecting X0 and X1

arbitrarily, and then letting

Xn+1 = f(Xn, Xn−1), for n > 0.

What is the maximum period conceivably attainable in this case?

17. [10] Generalize the situation in the previous exercise so that Xn+1 depends on
the preceding k values of the sequence.

18. [M20] Invent a method analogous to that of exercise 7 for Ąnding cycles in the
general form of random number generator discussed in exercise 17.

19. [HM47] Solve the problems of exercises 11 through 15 asymptotically for the more
general case that Xn+1 depends on the preceding k values of the sequence; each of the
mmk functions f(x1, . . . , xk) is to be considered equally probable. [Note: The number
of functions that yield the maximum period is analyzed in exercise 2.3.4.2Ű23.]

20. [30] Find all nonnegative X < 1010 that lead ultimately via Algorithm K to the
self-reproducing number in Table 1.

21. [40] Prove or disprove: The mapping X →→ f(X) deĄned by Algorithm K has
exactly Ąve cycles, of lengths 3178, 1606, 1024, 943, and 1.

22. [21] (H. Rolletschek.) Would it be a good idea to generate random numbers by
using the sequence f(0), f(1), f(2), . . . , where f is a random function, instead of using
x0, f(x0), f(f(x0)), etc.?

x 23. [M26] (D. Foata and A. Fuchs, 1970.) Show that each of the mm functions f(x)
considered in exercise 6 can be represented as a sequence (x0, x1, . . . , xm−1) having the
following properties:

i) (x0, x1, . . . , xm−1) is a permutation of (f(0), f(1), . . . , f(m− 1)).
ii) (f(0), . . . , f(m− 1)) can be uniquely reconstructed from (x0, x1, . . . , xm−1).

iii) The elements that appear in cycles of f are {x0, x1, . . . , xk−1}, where k is the
largest subscript such that these k elements are distinct.

iv) xj /∈ {x0, x1, . . . , xj−1} implies xj−1 = f(xj), unless xj is the smallest element in
a cycle of f .

v) (f(0), f(1), . . . , f(m − 1)) is a permutation of (0, 1, . . . ,m − 1) if and only if
(x0, x1, . . . , xm−1) represents the inverse of that permutation by the “unusual
correspondenceŤ of Section 1.3.3.

vi) x0 = x1 if and only if (x1, . . . , xm−1) represents an oriented tree by the construction
of exercise 2.3.4.4Ű18, with f(x) the parent of x.

10 RANDOM NUMBERS 3.2

3.2. GENERATING UNIFORM RANDOM NUMBERS

In this section we shall consider methods for generating a sequence of random
fractions Ů random real numbers Un, uniformly distributed between zero and one.

Since a computer can represent a real number with only Ąnite accuracy, we
shall actually be generating integers Xn between zero and some number m; the
fraction

Un = Xn/m

will then lie between zero and one. Usually m is the word size of the computer,
so Xn may be regarded (conservatively) as the integer contents of a computer
word with the radix point assumed at the extreme right, and Un may be regarded
(liberally) as the contents of the same word with the radix point assumed at the
extreme left.

3.2.1. The Linear Congruential Method

By far the most popular random number generators in use today are special
cases of the following scheme, introduced by D. H. Lehmer in 1949. [See Proc.
2nd Symp. on Large-Scale Digital Calculating Machinery (Cambridge, Mass.:
Harvard University Press, 1951), 141Ű146.] We choose four magic integers:

m, the modulus; 0 < m.
a, the multiplier; 0 ≤ a < m.
c, the increment; 0 ≤ c < m.

X0, the starting value; 0 ≤ X0 < m.

(1)

The desired sequence of random numbers ⟨Xn⟩ is then obtained by setting

Xn+1 = (aXn + c) modm, n ≥ 0. (2)

This is called a linear congruential sequence. Taking the remainder mod m is
somewhat like determining where a ball will land in a spinning roulette wheel.

For example, the sequence obtained when m = 10 and X0 = a = c = 7 is

7, 6, 9, 0, 7, 6, 9, 0, (3)

As this example shows, the sequence is not always “randomŤ for all choices of
m, a, c, and X0; the principles of choosing the magic numbers appropriately will
be investigated carefully in later parts of this chapter.

Example (3) illustrates the fact that the congruential sequences always get
into a loop: There is ultimately a cycle of numbers that is repeated endlessly.
This property is common to all sequences having the general form Xn+1 =
f(Xn), when f transforms a Ąnite set into itself; see exercise 3.1Ű6. The repeating
cycle is called the period; sequence (3) has a period of length 4. A useful sequence
will of course have a relatively long period.

The special case c = 0 deserves explicit mention, since the number generation
process is a little faster when c = 0 than it is when c ̸= 0. We shall see later
that the restriction c = 0 cuts down the length of the period of the sequence,
but it is still possible to make the period reasonably long. Lehmer’s original

3.2.1 THE LINEAR CONGRUENTIAL METHOD 11

generation method had c = 0, although he mentioned c ̸= 0 as a possibility; the
fact that c ̸= 0 can lead to longer periods is due to Thomson [Comp. J. 1 (1958),
83, 86] and, independently, to Rotenberg [JACM 7 (1960), 75Ű77]. The terms
multiplicative congruential method and mixed congruential method are used by
many authors to denote linear congruential sequences with c = 0 and c ̸= 0,
respectively.

The letters m, a, c, and X0 will be used throughout this chapter in the sense
described above. Furthermore, we will Ąnd it useful to deĄne

b = a− 1, (4)

in order to simplify many of our formulas.
We can immediately reject the case a = 1, for this would mean that Xn =

(X0 + nc) modm, and the sequence would certainly not behave as a random
sequence. The case a = 0 is even worse. Hence for practical purposes we may
assume that

a ≥ 2, b ≥ 1. (5)

Now we can prove a generalization of Eq. (2),

Xn+k =

akXn + (ak − 1)c/b

modm, k ≥ 0, n ≥ 0, (6)

which expresses the (n+k)th term directly in terms of the nth term. (The special
case n = 0 in this equation is worthy of note.) It follows that the subsequence
consisting of every kth term of ⟨Xn⟩ is another linear congruential sequence,
having the multiplier ak modm and the increment

(ak − 1)c/b

modm.

An important corollary of (6) is that the general sequence deĄned by m, a,
c, and X0 can be expressed very simply in terms of the special case where c = 1
and X0 = 0. Let

Y0 = 0, Yn+1 = (aYn + 1) modm. (7)

According to Eq. (6) we will have Yk ≡ (ak−1)/b (modulo m), hence the general
sequence deĄned in (2) satisĄes

Xn = (AYn +X0) modm, where A = (X0b+ c) modm. (8)

EXERCISES

1. [10] Example (3) shows a situation in which X4 = X0, so the sequence begins
again from the beginning. Give an example of a linear congruential sequence with
m = 10 for which X0 never appears again in the sequence.

x 2. [M20] Show that if a and m are relatively prime, the number X0 will always
appear in the period.

3. [M10] If a and m are not relatively prime, explain why the sequence will be
somewhat handicapped and probably not very random; hence we will generally want
the multiplier a to be relatively prime to the modulus m.

4. [11] Prove Eq. (6).

5. [M20] Equation (6) holds for k ≥ 0. If possible, give a formula that expresses
Xn+k in terms of Xn for negative values of k.

12 RANDOM NUMBERS 3.2.1.1

3.2.1.1. Choice of modulus. Our current goal is to Ąnd good values for the
parameters that deĄne a linear congruential sequence. Let us Ąrst consider the
proper choice of the number m. We want m to be rather large, since the period
cannot have more than m elements. (Even if we intend to generate only random
zeros and ones, we should not take m = 2, for then the sequence would at best
have the form . . . , 0, 1, 0, 1, 0, 1, . . . ! Methods for getting random zeros and ones
from linear congruential sequences are discussed in Section 3.4.)

Another factor that inĆuences our choice of m is speed of generation: We
want to pick a value so that the computation of (aXn + c) modm is fast.

Consider MIX as an example. We can compute y modm by putting y in
registers A and X and dividing by m; assuming that y and m are positive, we
see that y modm will then appear in register X. But division is a comparatively
slow operation, and it can be avoided if we take m to be a value that is especially
convenient, such as the word size of our computer.

Let w be the computer’s word size, namely 2e on an e-bit binary computer or
10e on an e-digit decimal machine. (In this book we shall often use the letter e to
denote an arbitrary integer exponent, instead of the base of natural logarithms,
hoping that the context will make our notation unambiguous. Physicists have a
similar problem when they use e for the charge on an electron.) The result of
an addition operation is usually given modulo w, except on ones’-complement
machines; and multiplication mod w is also quite simple, since the desired result
is the lower half of the product. Thus, the following program computes the
quantity (aX + c) mod w efficiently:

LDA A rA← a.
MUL X rAX← (rA) ·X.
SLAX 5 rA← rAX mod w.
ADD C rA← (rA + c) mod w.

(1)

The result appears in register A. The overĆow toggle might be on at the conclu-
sion of these instructions; if that is undesirable, the code should be followed by,
say, ŚJOV *+1’ to turn it off.

A clever technique that is less commonly known can be used to perform
computations modulo w+ 1. For reasons to be explained later, we will generally
want c = 0 when m = w + 1, so we merely need to compute (aX) mod (w + 1).
The following program does this:

01 LDAN X rA← −X.
02 MUL A rAX← (rA) · a.
03 STX TEMP
04 SUB TEMP rA← rA− rX.
05 JANN *+3 Exit if rA ≥ 0.
06 INCA 2 rA← rA + 2.
07 ADD =w − 1= rA← rA + w − 1.

(2)

Register A now contains the value (aX) mod (w+1). Of course, this value might
lie anywhere between 0 and w, inclusive, so the reader may legitimately wonder
how we can represent so many values in the A-register! (The register obviously

3.2.1.1 CHOICE OF MODULUS 13

cannot hold a number larger than w−1.) The answer is that the result equals w
if and only if program (2) turns overĆow on, assuming that overĆow was initially
off. We could represent w by 0, since (2) will not normally be used when X =
0; but it is most convenient simply to reject the value w if it appears in the
congruential sequence modulo w + 1. Then we can also avoid overĆow, simply
by changing lines 05 and 06 of (2) to ŚJANN *+4; INCA 2; JAP *-5’.

To prove that code (2) actually does determine (aX) mod (w+ 1), note that
in line 04 we are subtracting the lower half of the product from the upper half.
No overĆow can occur at this step; and if aX = qw+ r, with 0 ≤ r < w, we will
have the quantity r − q in register A after line 04. Now

aX = q(w + 1) + (r − q),
and we have −w < r− q < w since q < w; hence (aX) mod (w+ 1) equals either
r − q or r − q + (w + 1), depending on whether r − q ≥ 0 or r − q < 0.

A similar technique can be used to get the product of two numbers modulo
(w − 1); see exercise 8.

In later sections we shall require a knowledge of the prime factors of m in
order to choose the multiplier a correctly. Table 1 lists the complete factorization
of w± 1 into primes for nearly every known computer word size; the methods of
Section 4.5.4 can be used to extend this table if desired.

The reader may well ask why we bother to consider using m = w± 1, when
the choice m = w is so manifestly convenient. The reason is that when m = w,
the right-hand digits of Xn are much less random than the left-hand digits. If
d is a divisor of m, and if

Yn = Xn mod d, (3)

we can easily show that

Yn+1 = (aYn + c) mod d. (4)

(For Xn+1 = aXn + c − qm for some integer q, and taking both sides mod d
causes the quantity qm to drop out when d is a factor of m.)

To illustrate the signiĄcance of Eq. (4), let us suppose, for example, that
we have a binary computer. If m = w = 2e, the low-order four bits of Xn are
the numbers Yn = Xn mod 24. The gist of Eq. (4) is that the low-order four
bits of ⟨Xn⟩ form a congruential sequence that has a period of length 16 or less.
Similarly, the low-order Ąve bits are periodic with a period of at most 32; and
the least signiĄcant bit of Xn is either constant or strictly alternating.

This situation does not occur when m = w±1; in such a case, the low-order
bits of Xn will behave just as randomly as the high-order bits do. If, for example,
w = 235 and m = 235−1, the numbers of the sequence will not be very random if
we consider only their remainders mod 31, 71, 127, or 122921 (see Table 1); but
the low-order bit, which represents the numbers of the sequence taken mod 2,
should be satisfactorily random.

Another alternative is to let m be the largest prime number less than w.
This prime may be found by using the techniques of Section 4.5.4, and a table
of suitably large primes appears in that section.

14 RANDOM NUMBERS 3.2.1.1

Table 1

PRIME FACTORIZATIONS OF w ± 1

2e − 1 e 2e + 1

7 · 31 · 151 15 32 · 11 · 331
3 · 5 · 17 · 257 16 65537

131071 17 3 · 43691
33 · 7 · 19 · 73 18 5 · 13 · 37 · 109

524287 19 3 · 174763
3 · 52 · 11 · 31 · 41 20 17 · 61681

72 · 127 · 337 21 32 · 43 · 5419
3 · 23 · 89 · 683 22 5 · 397 · 2113

47 · 178481 23 3 · 2796203
32 · 5 · 7 · 13 · 17 · 241 24 97 · 257 · 673

31 · 601 · 1801 25 3 · 11 · 251 · 4051
3 · 2731 · 8191 26 5 · 53 · 157 · 1613
7 · 73 · 262657 27 34 · 19 · 87211

3 · 5 · 29 · 43 · 113 · 127 28 17 · 15790321
233 · 1103 · 2089 29 3 · 59 · 3033169

32 · 7 · 11 · 31 · 151 · 331 30 52 · 13 · 41 · 61 · 1321
2147483647 31 3 · 715827883

3 · 5 · 17 · 257 · 65537 32 641 · 6700417
7 · 23 · 89 · 599479 33 32 · 67 · 683 · 20857
3 · 43691 · 131071 34 5 · 137 · 953 · 26317

31 · 71 · 127 · 122921 35 3 · 11 · 43 · 281 · 86171
33 · 5 · 7 · 13 · 19 · 37 · 73 · 109 36 17 · 241 · 433 · 38737

223 · 616318177 37 3 · 1777 · 25781083
3 · 174763 · 524287 38 5 · 229 · 457 · 525313

7 · 79 · 8191 · 121369 39 32 · 2731 · 22366891
3 · 52 · 11 · 17 · 31 · 41 · 61681 40 257 · 4278255361

13367 · 164511353 41 3 · 83 · 8831418697
32 · 72 · 43 · 127 · 337 · 5419 42 5 · 13 · 29 · 113 · 1429 · 14449

431 · 9719 · 2099863 43 3 · 2932031007403
3 · 5 · 23 · 89 · 397 · 683 · 2113 44 17 · 353 · 2931542417

7 · 31 · 73 · 151 · 631 · 23311 45 33 · 11 · 19 · 331 · 18837001
3 · 47 · 178481 · 2796203 46 5 · 277 · 1013 · 1657 · 30269

2351 · 4513 · 13264529 47 3 · 283 · 165768537521
32 · 5 · 7 · 13 · 17 · 97 · 241 · 257 · 673 48 193 · 65537 · 22253377

179951 · 3203431780337 59 3 · 2833 · 37171 · 1824726041
32 · 52 · 7 · 11 · 13 · 31 · 41 · 61 · 151 · 331 · 1321 60 17 · 241 · 61681 · 4562284561

72 · 73 · 127 · 337 · 92737 · 649657 63 33 · 19 · 43 · 5419 · 77158673929
3 · 5 · 17 · 257 · 641 · 65537 · 6700417 64 274177 · 67280421310721

10e − 1 e 10e + 1

33 · 7 · 11 · 13 · 37 6 101 · 9901
32 · 239 · 4649 7 11 · 909091

32 · 11 · 73 · 101 · 137 8 17 · 5882353
34 · 37 · 333667 9 7 · 11 · 13 · 19 · 52579

32 · 11 · 41 · 271 · 9091 10 101 · 3541 · 27961
32 · 21649 · 513239 11 112 · 23 · 4093 · 8779

33 · 7 · 11 · 13 · 37 · 101 · 9901 12 73 · 137 · 99990001
32 · 11 · 17 · 73 · 101 · 137 · 5882353 16 353 · 449 · 641 · 1409 · 69857

3.2.1.1 CHOICE OF MODULUS 15

In most applications, the low-order bits are insigniĄcant, and the choice
m = w is quite satisfactory Ů provided that the programmer using the random
numbers does so wisely.

Our discussion so far has been based on a “signed magnitudeŤ computer like
MIX. Similar ideas apply to machines that use complement notations, although
there are some instructive variations. For example, a DECsystem 20 computer
has 36 bits with two’s complement arithmetic; when it computes the product of
two nonnegative integers, the lower half contains the least signiĄcant 35 bits with
a plus sign. On this machine we should therefore take w = 235, not 236. The
32-bit two’s complement arithmetic on IBM System/370 computers is different:
The lower half of a product contains a full 32 bits. Some programmers have
felt that this is a disadvantage, since the lower half can be negative when the
operands are positive, and it is a nuisance to correct this; but actually it is a
distinct advantage from the standpoint of random number generation, since we
can take m = 232 instead of 231 (see exercise 4).

EXERCISES

1. [M12] In exercise 3.2.1Ű3 we concluded that the best congruential generators will
have the multiplier a relatively prime to m. Show that when m = w in this case it is
possible to compute (aX+c) mod w in just three MIX instructions, rather than the four
in (1), with the result appearing in register X.

2. [16] Write a MIX subroutine having the following characteristics:

Calling sequence: JMP RANDM

Entry conditions: Location XRAND contains an integer X.

Exit conditions: X ← rA← (aX + c) mod w, rX← 0, overĆow off.

(Thus a call on this subroutine will produce the next random number of a linear
congruential sequence.)

x 3. [M25] Many computers do not provide the ability to divide a two-word number
by a one-word number; they provide only operations on single-word numbers, such as
himult(x, y) = ⌊xy/w⌋ and lomult(x, y) = xy mod w, when x and y are nonnegative
integers less than the word size w. Explain how to evaluate axmodm in terms of
himult and lomult, assuming that 0 ≤ a, x < m < w and that m ⊥ w. You may use
precomputed constants that depend on a, m, and w.

x 4. [21] Discuss the calculation of linear congruential sequences with m = 232 on
two’s-complement machines such as the System/370 series.

5. [20] Given that m is less than the word size, and that x and y are nonnegative
integers less than m, show that the difference (x− y) modm may be computed in just
four MIX instructions, without requiring any division. What is the best code for the
sum (x+ y) modm?

x 6. [20] The previous exercise suggests that subtraction mod m is easier to perform
than addition mod m. Discuss sequences generated by the rule

Xn+1 = (aXn − c) modm.

Are these sequences essentially different from linear congruential sequences as deĄned
in the text? Are they more suited to efficient computer calculation?

16 RANDOM NUMBERS 3.2.1.1

7. [M24] What patterns can you spot in Table 1?

x 8. [20] Write a MIX program analogous to (2) that computes (aX) mod (w−1). The
values 0 and w − 1 are to be treated as equivalent in the input and output of your
program.

x 9. [M25] Most high-level programming languages do not provide a good way to
divide a two-word integer by a one-word integer, nor do they provide the himult
operation of exercise 3. The purpose of this exercise is to Ąnd a reasonable way to
cope with such limitations when we wish to evaluate axmodm for variable x and for
constants 0 < a < m.

a) Prove that if q = ⌊m/a⌋, we have a(x− (xmod q)) = ⌊x/q⌋(m− (mmod a)).
b) Use the identity of (a) to evaluate axmodm without computing any numbers that

exceed m in absolute value, assuming that a2 ≤ m.

10. [M26] The solution to exercise 9(b) sometimes works also when a2 > m. Exactly
how many multipliers a are there for which the intermediate results in that method
never exceed m, for all x between 0 and m?

11. [M30] Continuing exercise 9, show that it is possible to evaluate axmodm using
only the following basic operations:

i) u× v, where u ≥ 0, v ≥ 0, and uv < m;
ii) ⌊u/v⌋, where 0 < v ≤ u < m;

iii) (u− v) modm, where 0 ≤ u, v < m.

In fact, it is always possible to do this with at most 12 operations of types (i) and (ii),
and with a bounded number of operations of type (iii), not counting the precomputation
of constants that depend on a and m. For example, explain how to proceed when a is
62089911 and m is 231 − 1. (These constants appear in Table 3.3.4Ű1.)

x 12. [M28] Consider computations by pencil and paper or an abacus.
a) What’s a good way to multiply a given 10-digit number by 10, modulo 9999998999?
b) Same question, but multiply instead by 999999900 (modulo 9999998999).
c) Explain how to compute the powers 999999900n mod 9999998999, for n = 1, 2,

3,
d) Relate such computations to the decimal expansion of 1/9999998999.
e) Show that these ideas make it possible to implement certain kinds of linear con-

gruential generators that have extremely large moduli, using only a few operations
per generated number.

13. [M24] Repeat the previous exercise, but with modulus 9999999001 and with
multipliers 10 and 8999999101.

14. [M25] Generalize the ideas of the previous two exercises, obtaining a large family
of linear congruential generators with extremely large moduli.

3.2.1.2. Choice of multiplier. In this section we shall consider how to choose
the multiplier a so as to produce a period of maximum length. A long period
is essential for any sequence that is to be used as a source of random numbers;
indeed, we would hope that the period contains considerably more numbers than
will ever be used in a single application. Therefore we shall concern ourselves in
this section with the question of period length. The reader should keep in mind,
however, that a long period is only one desirable criterion for the randomness of

3.2.1.2 CHOICE OF MULTIPLIER 17

a linear congruential sequence. For example, when a = c = 1, the sequence is
simply Xn+1 = (Xn + 1) modm, and this obviously has a period of length m,
yet it is anything but random. Other considerations affecting the choice of a
multiplier will be given later in this chapter.

Since only m different values are possible, the period surely cannot be longer
thanm. Can we achieve the maximum length, m? The example above shows that
it is always possible, although the choice a = c = 1 does not yield a desirable
sequence. Let us investigate all possible choices of a, c, and X0 that give a
period of length m. It turns out that all such values of the parameters can be
characterized very simply; when m is the product of distinct primes, only a = 1
will produce the full period, but when m is divisible by a high power of some
prime there is considerable latitude in the choice of a. The following theorem
makes it easy to tell if the maximum period is achieved.

Theorem A. The linear congruential sequence deĄned by m, a, c, and X0 has
period length m if and only if

i) c is relatively prime to m;

ii) b = a− 1 is a multiple of p, for every prime p dividing m;

iii) b is a multiple of 4, if m is a multiple of 4.

The ideas used in the proof of this theorem go back at least a hundred
years. But the Ąrst proof of the theorem in this particular form was given by
M. Greenberger in the special case m = 2e [see JACM 8 (1961), 163Ű167], and
the sufficiency of conditions (i), (ii), and (iii) in the general case was shown by
Hull and Dobell [see SIAM Review 4 (1962), 230Ű254]. To prove the theorem
we will Ąrst consider some auxiliary number-theoretic results that are of interest
in themselves.

Lemma P. Let p be a prime number, and let e be a positive integer, where
pe > 2. If

x ≡ 1 (modulo pe), x ̸≡ 1 (modulo pe+1), (1)
then

xp ≡ 1 (modulo pe+1), xp ̸≡ 1 (modulo pe+2). (2)

Proof. We have x = 1 + qpe for some integer q that is not a multiple of p. By
the binomial formula

xp = 1 +

p

1

qpe + · · ·+

p

p− 1

qp−1p(p−1)e + qpppe

= 1 + qpe+1

1 +
1
p

p

2

qpe +
1
p

p

3

q2p2e + · · ·+ 1
p

p

p

qp−1p(p−1)e

.

The quantity in parentheses is an integer, and, in fact, every term inside the
parentheses is a multiple of p except the Ąrst term. For if 1 < k < p, the
binomial coefficient

p
k

is divisible by p (see exercise 1.2.6Ű10); hence

1
p

p

k

qk−1p(k−1)e

18 RANDOM NUMBERS 3.2.1.2

is divisible by p(k−1)e. And the last term is qp−1p(p−1)e−1, which is divisible by p
since (p − 1)e > 1 when pe > 2. So xp ≡ 1 + qpe+1 (modulo pe+2), and this
completes the proof.

Note: A generalization of this result appears in exercise

3.2.2Ű11(a).

Lemma Q. Let the decomposition of m into prime factors be

m = pe1
1 . . . pett . (3)

The length λ of the period of the linear congruential sequence determined by
(X0, a, c,m) is the least common multiple of the lengths λj of the periods of the
linear congruential sequences (X0 mod pejj , amod pejj , cmod pejj , p

ej
j), 1 ≤ j ≤ t.

Proof. By induction on t, it suffices to prove that if m1 and m2 are relatively
prime, the length λ of the period of the linear congruential sequence determined
by the parameters (X0, a, c,m1m2) is the least common multiple of the lengths
λ1 and λ2 of the periods of the sequences determined by (X0 modm1, amodm1,
cmodm1, m1) and (X0 modm2, amodm2, cmodm2, m2). We observed in the
previous section, Eq. (4), that if the elements of these three sequences are
respectively denoted by Xn, Yn, and Zn, we will have

Yn = Xn modm1 and Zn = Xn modm2, for all n ≥ 0.

Therefore, by Law D of Section 1.2.4, we Ąnd that

Xn = Xk if and only if Yn = Yk and Zn = Zk. (4)

Let λ′ be the least common multiple of λ1 and λ2; we wish to prove that
λ′ = λ. Since Xn = Xn+λ for all suitably large n, we have Yn = Yn+λ (hence
λ is a multiple of λ1) and Zn = Zn+λ (hence λ is a multiple of λ2), so we must
have λ ≥ λ′. Furthermore, we know that Yn = Yn+λ′ and Zn = Zn+λ′ for all
suitably large n; therefore, by (4), Xn = Xn+λ′ . This proves λ ≤ λ′.

Now we are ready to prove Theorem A. Lemma Q tells us that it suffices to
prove the theorem when m is a power of a prime number, because

pe1
1 . . . pett = λ = lcm(λ1, . . . , λt) ≤ λ1 . . . λt ≤ pe1

1 . . . pett

will be true if and only if λj = p
ej
j for 1 ≤ j ≤ t.

Assume therefore that m = pe, where p is prime and e is a positive integer.
The theorem is obviously true when a = 1, so we may take a > 1. The period
can be of length m if and only if each possible integer 0 ≤ x < m occurs in
the period, since no value occurs in the period more than once. Therefore the
period is of length m if and only if the period of the sequence with X0 = 0 is of
length m, and we are justiĄed in supposing that X0 = 0. By formula 3.2.1Ű(6)
we have

Xn =

an − 1
a− 1

c modm. (5)

If c is not relatively prime to m, this value Xn could never be equal to 1, so
condition (i) of the theorem is necessary. The period has length m if and only

3.2.1.2 CHOICE OF MULTIPLIER 19

if the smallest positive value of n for which Xn = X0 = 0 is n = m. By (5) and
condition (i), our theorem now reduces to proving the following fact:

Lemma R. Assume that 1 < a < pe, where p is prime. If λ is the smallest
positive integer for which (aλ − 1)/(a− 1) ≡ 0 (modulo pe), then

λ = pe if and only if

a ≡ 1 (modulo p) when p > 2,
a ≡ 1 (modulo 4) when p = 2.

Proof. Assume that λ = pe. If a ̸≡ 1 (modulo p), then (an − 1)/(a − 1) ≡ 0
(modulo pe) if and only if an − 1 ≡ 0 (modulo pe). The condition ap

e − 1 ≡ 0
(modulo pe) then implies that ape ≡ 1 (modulo p); but by Theorem 1.2.4F we
have ape ≡ a (modulo p), hence a ̸≡ 1 (modulo p) leads to a contradiction. And
if p = 2 and a ≡ 3 (modulo 4), we have

(a2e−1− 1)/(a− 1) ≡ 0 (modulo 2e)

by exercise 8. These arguments show that it is necessary in general to have
a = 1 + qpf , where pf > 2 and q is not a multiple of p, whenever λ = pe.

It remains to be shown that this condition is sufficient to make λ = pe. By
repeated application of Lemma P, we Ąnd that

ap
g ≡ 1 (modulo pf+g), ap

g ̸≡ 1 (modulo pf+g+1),

for all g ≥ 0, and therefore

(ap
g − 1)/(a− 1) ≡ 0 (modulo pg),

(ap
g − 1)/(a− 1) ̸≡ 0 (modulo pg+1).

(6)

In particular, (ap
e− 1)/(a− 1) ≡ 0 (modulo pe). Now the congruential sequence

(0, a, 1, pe) has Xn = (an−1)/(a−1) mod pe; therefore it has a period of length λ,
that is, Xn = 0 if and only if n is a multiple of λ. Hence pe is a multiple of λ.
This can happen only if λ = pg for some g, and the relations in (6) imply that
λ = pe, completing the proof.

The proof of Theorem A is now complete.

We will conclude this section by considering the special case of pure mul-
tiplicative generators, when c = 0. Although the random number generation
process is slightly faster in this case, Theorem A shows us that the maximum
period length cannot be achieved. In fact, this is quite obvious, since the sequence
now satisĄes the relation

Xn+1 = aXn modm, (7)

and the value Xn = 0 should never appear, lest the sequence degenerate to zero.
In general, if d is any divisor of m and if Xn is a multiple of d, all succeeding
elements Xn+1, Xn+2, . . . of the multiplicative sequence will be multiples of d.
So when c = 0, we will want Xn to be relatively prime to m for all n, and this
limits the length of the period to at most φ(m), the number of integers between
0 and m that are relatively prime to m.

20 RANDOM NUMBERS 3.2.1.2

It may be possible to achieve an acceptably long period even if we stipulate
that c = 0. Let us now try to Ąnd conditions on the multiplier so that the period
is as long as possible in this special case.

According to Lemma Q, the period of the sequence depends entirely on the
periods of the sequences when m = pe, so let us consider that situation. We
have Xn = anX0 mod pe, and it is clear that the period will be of length 1 if a is
a multiple of p, so we take a to be relatively prime to p. Then the period is the
smallest integer λ such that X0 = aλX0 mod pe. If the greatest common divisor
of X0 and pe is pf , this condition is equivalent to

aλ ≡ 1 (modulo pe−f). (8)

By Euler’s theorem (exercise 1.2.4Ű28), aφ(pe−f) ≡ 1 (modulo pe−f); hence λ is
a divisor of

φ(pe−f) = pe−f−1(p− 1).

When a is relatively prime to m, the smallest integer λ for which aλ ≡ 1
(modulo m) is conventionally called the order of a modulo m. Any such value
of a that has the maximum possible order modulo m is called a primitive element

modulo m.
Let λ(m) denote the order of a primitive element, namely the maximum

possible order, modulo m. The remarks above show that λ(pe) is a divisor of
pe−1(p − 1); with a little care (see exercises 11 through 16 below) we can give
the precise value of λ(m) in all cases as follows:

λ(2) = 1, λ(4) = 2, λ(2e) = 2e−2 if e ≥ 3;

λ(pe) = pe−1(p− 1), if p > 2;

λ(pe1
1 . . . pett) = lcm

λ(pe1

1), . . . , λ(pett)

.

(9)

Our remarks may be summarized in the following theorem:

Theorem B. [C. F. Gauss, Disquisitiones Arithmeticæ (1801), §90Ű92.] The
maximum period possible when c = 0 is λ(m), where λ(m) is deĄned in (9).
This period is achieved if

i) X0 is relatively prime to m;

ii) a is a primitive element modulo m.

Notice that we can obtain a period of length m− 1 if m is prime; this is just one
less than the maximum length, so for all practical purposes such a period is as
long as we want.

The question now is, how can we Ąnd primitive elements modulo m? The
exercises at the close of this section tell us that there is a fairly simple answer
when m is prime or a power of a prime, namely the results stated in our next
theorem.

Theorem C. The number a is a primitive element modulo pe if and only if one
of the following cases applies:

i) p = 2, e = 1, and a is odd;

3.2.1.2 CHOICE OF MULTIPLIER 21

ii) p = 2, e = 2, and amod 4 = 3;

iii) p = 2, e = 3, and amod 8 = 3, 5, or 7;

iv) p = 2, e ≥ 4, and amod 8 = 3 or 5;

v) p is odd, e = 1, a ̸≡ 0 (modulo p), and a(p−1)/q ̸≡ 1 (modulo p) for any
prime divisor q of p− 1;

vi) p is odd, e > 1, a satisĄes the conditions of (v), and ap−1 ̸≡ 1 (modulo p2).

Conditions (v) and (vi) of this theorem are readily tested on a computer for
large values of p, by using the efficient methods for evaluating powers discussed
in Section 4.6.3, if we know the factors of p− 1.

Theorem C applies to powers of primes only. But if we are given values aj
that are primitive modulo p

ej
j , it is possible to Ąnd a single value a such that

a ≡ aj (modulo pejj), for 1 ≤ j ≤ t, using the Chinese remainder algorithm
discussed in Section 4.3.2; this number a will be a primitive element modulo
pe1

1 . . . pett . Hence there is a reasonably efficient way to construct multipliers
satisfying the condition of Theorem B, for any modulus m of moderate size,
although the calculations can be somewhat lengthy in the general case.

In the common case m = 2e, with e ≥ 4, the conditions above simplify to
the single requirement that a ≡ 3 or 5 (modulo 8). In this case, one-fourth of all
possible multipliers will make the period length equal to m/4, and m/4 is the
maximum possible when c = 0.

The second most common case is when m = 10e. Using Lemmas P and Q, it
is not difficult to obtain necessary and sufficient conditions for the achievement
of the maximum period in the case of a decimal computer (see exercise 18):

Theorem D. If m = 10e, e ≥ 5, c = 0, and X0 is not a multiple of 2 or 5, the
period of the linear congruential sequence is 5× 10e−2 if and only if amod 200
equals one of the following 32 values:

3, 11, 13, 19, 21, 27, 29, 37, 53, 59, 61, 67, 69, 77, 83, 91, 109, 117,
123, 131, 133, 139, 141, 147, 163, 171, 173, 179, 181, 187, 189, 197. (10)

EXERCISES

1. [10] What is the length of the period of the linear congruential sequence with
X0 = 5772156648, a = 3141592621, c = 2718281829, and m = 10000000000?

2. [10] Are the following two conditions sufficient to guarantee the maximum length
period, when m is a power of 2? “(i) c is odd; (ii) amod 4 = 1.Ť

3. [13] Suppose that m = 10e, where e ≥ 2, and suppose further that c is odd and
not a multiple of 5. Show that the linear congruential sequence will have the maximum
length period if and only if amod 20 = 1.

4. [M20] Assume that m = 2e and X0 = 0. If the numbers a and c satisfy the
conditions of Theorem A, what is the value of X2e−1 ?

5. [14] Find all multipliers a that satisfy the conditions of Theorem A when m =
235 + 1. (The prime factors of m may be found in Table 3.2.1.1Ű1.)

22 RANDOM NUMBERS 3.2.1.2

x 6. [20] Find all multipliers a that satisfy the conditions of Theorem A when m =
106 − 1. (See Table 3.2.1.1Ű1.)

x 7. [M23] The period of a congruential sequence need not start with X0, but we can
always Ąnd indices µ ≥ 0 and λ > 0 such that Xn+λ = Xn whenever n ≥ µ, and for
which µ and λ are the smallest possible values with this property. (See exercises 3.1Ű6
and 3.2.1Ű1.) If µj and λj are the indices corresponding to the sequences

(X0 mod p
ej
j , amod p

ej
j , cmod p

ej
j , p

ej
j),

and if µ and λ correspond to the composite sequence (X0, a, c, p
e1
1 . . . pet

t), Lemma Q
states that λ is the least common multiple of λ1, . . . , λt. What is the value of µ in
terms of the values of µ1, . . . , µt? What is the maximum possible value of µ obtainable
by varying X0, a, and c, when m = pe1

1 . . . pet
t is Ąxed?

8. [M20] Show that if amod 4 = 3, we have (a2e−1− 1)/(a − 1) ≡ 0 (modulo 2e)
when e > 1. (Use Lemma P.)

x 9. [M22] (W. E. Thomson.) When c = 0 and m = 2e ≥ 16, Theorems B and C say
that the period has length 2e−2 if and only if the multiplier a satisĄes amod 8 = 3
or amod 8 = 5. Show that every such sequence is essentially a linear congruential
sequence with m = 2e−2, having full period, in the following sense:

a) If Xn+1 = (4c+ 1)Xn mod 2e, and Xn = 4Yn + 1, then

Yn+1 = ((4c+ 1)Yn + c) mod 2e−2.

b) If Xn+1 = (4c− 1)Xn mod 2e, and Xn = ((−1)n(4Yn + 1)) mod 2e, then

Yn+1 = ((1− 4c)Yn − c) mod 2e−2.

[Note: In these formulas, c is an odd integer. The literature contains several
statements to the effect that sequences with c = 0 satisfying Theorem B are somehow
more random than sequences satisfying Theorem A, in spite of the fact that the period is
only one-fourth as long in the case of Theorem B. This exercise refutes such statements;
in essence, we must give up two bits of the word length in order to save the addition
of c, when m is a power of 2.]

10. [M21] For what values of m is λ(m) = φ(m)?

x 11. [M28] Let x be an odd integer greater than 1. (a) Show that there exists a unique
integer f > 1 such that x ≡ 2f ± 1 (modulo 2f+1). (b) Given that 1 < x < 2e − 1 and
that f is the corresponding integer from part (a), show that the order of x modulo 2e

is 2e−f. (c) In particular, this proves parts (i)Ű(iv) of Theorem C.

12. [M26] Let p be an odd prime. If e > 1, prove that a is a primitive element
modulo pe if and only if a is a primitive element modulo p and ap−1 ̸≡ 1 (modulo p2).
(For the purposes of this exercise, assume that λ(pe) = pe−1(p−1). This fact is proved
in exercises 14 and 16 below.)

13. [M22] Let p be prime. Given that a is not a primitive element modulo p, show
that either a is a multiple of p or a(p−1)/q ≡ 1 (modulo p) for some prime number q
that divides p− 1.

14. [M18] If e > 1 and p is an odd prime, and if a is a primitive element modulo p,
prove that either a or a+ p is a primitive element modulo pe. [Hint: See exercise 12.]

3.2.1.3 POTENCY 23

15. [M29] (a) Let a1 and a2 be relatively prime to m, and let their orders modulo m
be λ1 and λ2, respectively. If λ is the least common multiple of λ1 and λ2, prove that
aκ1

1 aκ2
2 has order λ modulo m, for suitable integers κ1 and κ2. [Hint: Consider Ąrst

the case that λ1 is relatively prime to λ2.] (b) Let λ(m) be the maximum order of
any element modulo m. Prove that λ(m) is a multiple of the order of each element
modulo m; that is, prove that aλ(m) ≡ 1 (modulo m) whenever a is relatively prime
to m. (Do not use Theorem B.)

x 16. [M24] (Existence of primitive roots.) Let p be a prime number.
a) Consider the polynomial f(x) = xn + c1x

n−1 + · · ·+ cn, where the c’s are integers.
Given that a is an integer for which f(a) ≡ 0 (modulo p), show that there exists
a polynomial

q(x) = xn−1 + q1x
n−2 + · · ·+ qn−1

with integer coefficients such that f(x) ≡ (x−a)q(x) (modulo p) for all integers x.
b) Let f(x) be a polynomial as in (a). Show that f(x) has at most n distinct “rootsŤ

modulo p; that is, there are at most n integers a, with 0 ≤ a < p, such that
f(a) ≡ 0 (modulo p).

c) Because of exercise 15(b), the polynomial f(x) = xλ(p)−1 has p−1 distinct roots;
hence there is an integer a with order p− 1.

17. [M26] Not all of the values listed in Theorem D would be found by the text’s
construction; for example, 11 is not primitive modulo 5e. How can this be possible,
when 11 is primitive modulo 10e, according to Theorem D? Which of the values listed
in Theorem D are primitive elements modulo both 2e and 5e?

18. [M25] Prove Theorem D. (See the previous exercise.)

19. [40] Make a table of some suitable multipliers, a, for each of the values of m listed
in Table 3.2.1.1Ű1, assuming that c = 0.

x 20. [M24] (G. Marsaglia.) The purpose of this exercise is to study the period length
of an arbitrary linear congruential sequence. Let Yn = 1 + a + · · · + an−1, so that
Xn = (AYn +X0) modm for some constant A by Eq. 3.2.1Ű(8).

a) Prove that the period length of ⟨Xn⟩ is the period length of ⟨Yn modm′⟩, where
m′ = m/gcd(A,m).

b) Prove that the period length of ⟨Yn mod pe⟩ satisĄes the following when p is prime:
(i) If amod p = 0, it is 1. (ii) If amod p = 1, it is pe, except when p = 2 and
e ≥ 2 and amod 4 = 3. (iii) If p = 2, e ≥ 2, and amod 4 = 3, it is twice the order
of a modulo pe (see exercise 11), unless a ≡ −1 (modulo 2e) when it is 2. (iv) If
amod p > 1, it is the order of a modulo pe.

21. [M25] In a linear congruential sequence of maximum period, let X0 = 0 and let s
be the least positive integer such that as ≡ 1 (modulo m). Prove that gcd(Xs,m) = s.

x 22. [M25] Discuss the problem of Ąnding moduli m = bk±bl±1 so that the subtract-
with-borrow and add-with-carry generators of exercise 3.2.1.1Ű14 will have very long
periods.

3.2.1.3. Potency. In the preceding section, we showed that the maximum
period can be obtained when b = a − 1 is a multiple of each prime dividing m;
and b must also be a multiple of 4 if m is a multiple of 4. If z is the radix of
the machine being used Ů so that z = 2 for a binary computer, and z = 10 for a

24 RANDOM NUMBERS 3.2.1.3

decimal computer Ů and if m is the word size ze, the multiplier

a = zk + 1, 2 ≤ k < e (1)

satisĄes these conditions. Theorem 3.2.1.2A also says that we may take c = 1.
The recurrence relation now has the form

Xn+1 =

(zk + 1)Xn + 1

mod ze, (2)

and this equation suggests that we can avoid the multiplication; merely shifting
and adding will suffice.

For example, suppose we choose a = B2 +1, where B is the byte size of MIX.
The code

LDA X; SLA 2; ADD X; INCA 1 (3)

can be used in place of the instructions given in Section 3.2.1.1, and the execution
time decreases from 16u to 7u.

For this reason, multipliers having form (1) have been widely discussed in the
literature, and indeed they have been recommended by many authors. However,
the early years of experimentation with this method showed conclusively that
multipliers having the simple form in (1) should be avoided. The generated
numbers just aren’t random enough.

Later in this chapter we shall be discussing some rather sophisticated theory
that accounts for the badness of all the linear congruential random number gen-
erators known to be bad. However, some generators

such as (2)

are sufficiently

awful that a comparatively simple theory can be used to rule them out. This
simple theory is related to the concept of “potency,Ť which we shall now discuss.

The potency of a linear congruential sequence with maximum period is
deĄned to be the least integer s such that

bs ≡ 0 (modulo m). (4)

(Such an integer s will always exist when the multiplier satisĄes the conditions
of Theorem 3.2.1.2A, since b is a multiple of every prime dividing m.)

We may analyze the randomness of the sequence by taking X0 = 0, since 0
occurs somewhere in the period. With this assumption, Eq. 3.2.1Ű(6) reduces to

Xn =

(an − 1)c/b

modm;

and if we expand an − 1 = (b+ 1)n − 1 by the binomial theorem, we Ąnd that

Xn = c

n+

n

2

b+ · · ·+

n

s

bs−1

modm. (5)

All terms in bs, bs+1, etc., may be ignored, since they are multiples of m.
Equation (5) can be instructive, so we shall consider some special cases.

If a = 1, the potency is 1; and Xn ≡ cn (modulo m), as we have already
observed, so the sequence is surely not random. If the potency is 2, we have
Xn ≡ cn+ cb

n
2

, and again the sequence is not very random; indeed,

Xn+1 −Xn ≡ c+ cbn

3.2.1.3 POTENCY 25

in this case, so the differences between consecutively generated numbers change
in a simple way from one value of n to the next. The point (Xn, Xn+1, Xn+2)
always lies on one of the four planes

x− 2y + z = d+m,

x− 2y + z = d,

x− 2y + z = d−m,
x− 2y + z = d− 2m,

in three-dimensional space, where d = cbmodm.
If the potency is 3, the sequence begins to look somewhat more random,

but there is a high degree of dependency between Xn, Xn+1, and Xn+2; tests
show that sequences with potency 3 are still not sufficiently good. Reasonable
results have been reported when the potency is 4 or more, but they have been
disputed by other people. A potency of at least 5 would seem to be required for
sufficiently random values.

Suppose, for example, that m = 235 and a = 2k + 1. Then b = 2k, so
we Ąnd that the value b2 = 22k is a multiple of m when k ≥ 18: The potency
is 2. If k = 17, 16, . . . , 12, the potency is 3, and a potency of 4 is achieved for
k = 11, 10, 9. The only acceptable multipliers, from the standpoint of potency,
therefore have k ≤ 8. This means a ≤ 257, and we shall see later that small

multipliers are also to be avoided. We have now eliminated all multipliers of the
form 2k + 1 when m = 235.

When m is equal to w ± 1, where w is the word size, m is generally not
divisible by high powers of primes, and a high potency is impossible (see exer-
cise 6). So in this case, the maximum-period method should not be used; the
pure-multiplication method with c = 0 should be applied instead.

It must be emphasized that high potency is necessary but not sufficient
for randomness; we use the concept of potency only to reject impotent genera-
tors, not to accept the potent ones. Linear congruential sequences should pass
the “spectral testŤ discussed in Section 3.3.4 before they are considered to be
acceptably random.

EXERCISES

1. [M10] Show that, no matter what the byte size B of MIX happens to be, the code
(3) yields a random number generator of maximum period.

2. [10] What is the potency of the generator represented by the MIX code (3)?

3. [11] When m = 235, what is the potency of the linear congruential sequence with
a = 3141592621? What is the potency if the multiplier is a = 223 + 213 + 22 + 1?

4. [15] Show that if m = 2e ≥ 8, maximum potency is achieved when amod 8 = 5.

5. [M20] Given that m = pe1
1 . . . pet

t and a = 1 + kpf1
1 . . . pft

t , where a satisĄes the
conditions of Theorem 3.2.1.2A and k is relatively prime to m, show that the potency
is max(⌈e1/f1⌉, . . . , ⌈et/ft⌉).

x 6. [20] Which of the values of m = w ± 1 in Table 3.2.1.1Ű1 can be used in a linear
congruential sequence of maximum period whose potency is 4 or more? (Use the result
of exercise 5.)

26 RANDOM NUMBERS 3.2.1.3

7. [M20] When a satisĄes the conditions of Theorem 3.2.1.2A, it is relatively prime
to m; hence there is a number a′ such that aa′ ≡ 1 (modulo m). Show that a′ can be
expressed simply in terms of b.

x 8. [M26] A random number generator deĄned by Xn+1 = (217 + 3)Xn mod 235 and
X0 = 1 was subjected to the following test: Let Yn = ⌊20Xn/235⌋; then Yn should be a
random integer between 0 and 19, and the triples (Y3n, Y3n+1, Y3n+2) should take on
each of the 8000 possible values from (0, 0, 0) to (19, 19, 19) with nearly equal frequency.
But with 1,000,000 values of n tested, many triples never occurred, and others occurred
much more often than they should have. Can you account for this failure?

3.2.2. Other Methods

Of course, linear congruential sequences are not the only sources of random num-
bers that have been proposed for computer use. In this section we shall review
the most signiĄcant alternatives. Some of these methods are quite important,
while others are interesting chieĆy because they are not as good as a person
might expect.

One of the common fallacies encountered in connection with random number
generation is the idea that we can take a good generator and modify it a little, in
order to get an “even more randomŤ sequence. This is often false. For example,
we know that

Xn+1 = (aXn + c) modm (1)

leads to reasonably good random numbers; wouldn’t the sequence produced by

Xn+1 =

(aXn) mod (m+ 1) + c

modm (2)

be even more random? The answer is, the new sequence is probably a great deal
less random. For the whole theory breaks down, and in the absence of any theory
about the behavior of the sequence (2), we come into the area of generators of
the type Xn+1 = f(Xn) with the function f chosen at random; exercises 3.1Ű11
through 3.1Ű15 show that these sequences probably behave much more poorly
than the sequences obtained from the more disciplined function (1).

Let us consider another approach, in an attempt to obtain a genuine im-
provement of sequence (1). The linear congruential method can be generalized
to, say, a quadratic congruential method:

Xn+1 = (dX2
n + aXn + c) modm. (3)

Exercise 8 generalizes Theorem 3.2.1.2A to obtain necessary and sufficient con-
ditions on a, c, and d such that the sequence deĄned by (3) has a period of the
maximum length m; the restrictions are not much more severe than in the linear
method.

An interesting quadratic method has been proposed by R. R. Coveyou when
m is a power of two: Let

X0 mod 4 = 2, Xn+1 = Xn(Xn + 1) mod 2e, n ≥ 0. (4)

This sequence can be computed with about the same efficiency as (1), without
any worries of overĆow. It has an interesting connection with von Neumann’s

3.2.2 OTHER METHODS 27

original middle-square method: If we let Yn be 2eXn, so that Yn is a double-
precision number obtained by placing e zeros to the right of the binary represen-
tation of Xn, then Yn+1 consists of precisely the middle 2e digits of Y 2

n + 2eYn!
In other words, Coveyou’s method is almost identical to a somewhat degenerate
double-precision middle-square method, yet it is guaranteed to have a long
period; further evidence of its randomness is proved in Coveyou’s paper cited
in the answer to exercise 8.

Other generalizations of Eq. (1) also suggest themselves; for example, we
might try to extend the period length of the sequence. The period of a linear
congruential sequence is fairly long; when m is approximately the word size of
the computer, we usually get periods on the order of 109 or more, and typical
calculations will use only a very small portion of the sequence. On the other hand,
when we discuss the idea of “accuracyŤ in Section 3.3.4 we will see that the period
length inĆuences the degree of randomness achievable in a sequence. Therefore it
can be desirable to seek a longer period, and several methods are available for this
purpose. One technique is to make Xn+1 depend on both Xn and Xn−1, instead
of just on Xn; then the period length can be as high as m2, since the sequence will
not begin to repeat until we have (Xn+λ, Xn+λ+1) = (Xn, Xn+1). John Mauchly,
in an unpublished paper presented to a statistics conference in 1949, extended
the middle square method by using the recurrence Xn = middle (Xn−1 ·Xn−6).

The simplest sequence in which Xn+1 depends on more than one of the
preceding values is the Fibonacci sequence,

Xn+1 = (Xn +Xn−1) modm. (5)

This generator was considered in the early 1950s, and it usually gives a period
length greater than m. But tests have shown that the numbers produced by
the Fibonacci recurrence are deĄnitely not satisfactorily random, and so our
main interest in (5) as a source of random numbers is that it makes a nice “bad
example.Ť We may also consider generators of the form

Xn+1 = (Xn +Xn−k) modm, (6)

when k is a comparatively large value. This recurrence was introduced by Green,
Smith, and Klem [JACM 6 (1959), 527Ű537], who reported that, when k ≤ 15,
the sequence fails to pass the “gap testŤ described in Section 3.3.2, although
when k = 16 the test was satisfactory.

A much better type of additive generator was devised in 1958 by G. J.
Mitchell and D. P. Moore [unpublished], who suggested the somewhat unusual
sequence deĄned by

Xn = (Xn−24 +Xn−55) modm, n ≥ 55, (7)

where m is even, and where X0, . . . , X54 are arbitrary integers not all even. The
constants 24 and 55 in this deĄnition were not chosen at random; they are special
values that happen to deĄne a sequence whose least signiĄcant bits, ⟨Xn mod 2⟩,
will have a period of length 255 − 1. Therefore the sequence ⟨Xn⟩ must have

28 RANDOM NUMBERS 3.2.2

a period at least this long. Exercise 30 proves that (7) has a period of length
exactly 2e−1(255 − 1) when m = 2e.

At Ąrst glance Eq. (7) may not seem to be extremely well suited to machine
implementation, but in fact there is a very efficient way to generate the sequence
using a cyclic list:

Algorithm A (Additive number generator). Memory cells Y [1], Y [2], . . . , Y [55]
are initially set to the values X54, X53, . . . , X0, respectively; j is initially equal
to 24 and k is 55. Successive performances of this algorithm will produce the
numbers X55, X56, . . . as output.

A1. [Add.] (If we are about to output Xn at this point, Y [j] now equals Xn−24

and Y [k] equals Xn−55.) Set Y [k]← (Y [k]+Y [j]) mod 2e, and output Y [k].

A2. [Advance.] Decrease j and k by 1. If now j = 0, set j ← 55; otherwise if
k = 0, set k ← 55. (We cannot have both j = 0 and k = 0.)

This algorithm in MIX is simply the following:

Program A (Additive number generator). Assuming that index registers 5
and 6, representing j and k, are not touched by the remainder of the program in
which this routine is embedded, the following code performs Algorithm A and
leaves the result in register A.

LDA Y,6 A1. Add.
ADD Y,5 Yk + Yj (overĆow possible)
STA Y,6 → Yk.
DEC5 1 A2. Advance. j ← j − 1.
DEC6 1 k ← k − 1.
J5P *+2
ENT5 55 If j = 0, set j ← 55.
J6P *+2
ENT6 55 If k = 0, set k ← 55.

This generator is usually faster than the other methods we have been dis-
cussing, since it does not require any multiplication. Besides its speed, it has
the longest period we have seen yet, except in exercise 3.2.1.2Ű22. Furthermore,
as Richard Brent has observed, it can be made to work correctly with Ćoating
point numbers, avoiding the need to convert between integers and fractions (see
exercise 23). Therefore it may well prove to be the very best source of random
numbers for practical purposes. The main reason why it is difficult to recommend
sequences like (7) wholeheartedly is that there is still very little theory to prove
that they do or do not have desirable randomness properties; essentially all we
know for sure is that the period is very long, and this is not enough. John Reiser
(Ph.D. thesis, Stanford University, 1977) has shown, however, that an additive
sequence like (7) will be well distributed in high dimensions, provided that a
certain plausible conjecture is true (see exercise 26).

The numbers 24 and 55 in (7) are commonly called lags, and the numbers
Xn deĄned by (7) are said to form a lagged Fibonacci sequence. Lags like
(24, 55) work well because of theoretical results developed in some of the exercises

3.2.2 OTHER METHODS 29

Table 1

LAGS THAT YIELD LONG PERIODS MOD 2

(24, 55) (37, 100) (83, 258) (273, 607) (576, 3217) (7083, 19937)
(38, 89) (30, 127) (107, 378) (1029, 2281) (4187, 9689) (9739, 23209)

For extensions of this table, see N. Zierler and J. Brillhart, Information and Control 13 (1968),
541Ű554, 14 (1969), 566Ű569, 15 (1969), 67Ű69; Y. Kurita and M. Matsumoto, Math. Comp.
56 (1991), 817Ű821; Heringa, Blöte, and Compagner, Int. J. Mod. Phys. C3 (1992), 561Ű564.

below. It is of course better to use somewhat larger lags when an application
happens to use, say, groups of 55 values at a time; the numbers generated by (7)
will never have Xn lying strictly between Xn−24 and Xn−55 (see exercise 2).
J.-M. Normand, H. J. Herrmann, and M. Hajjar detected slight biases in the
numbers generated by (7) when they did extensive high-precision Monte Carlo
studies requiring 1011 random numbers [J. Statistical Physics 52 (1988), 441Ű
446]; but larger values of k decreased the bad effects. Table 1 lists several useful
pairs (l, k) for which the sequence Xn = (Xn−l + Xn−k) mod 2e has period
length 2e−1(2k − 1). The case (l, k) = (30, 127) should be large enough for
most applications, especially in combination with other randomness-enhancing
techniques that we will discuss later.

George Marsaglia [Comp. Sci. and Statistics: Symposium on the Interface
16 (1984), 3Ű10] has suggested replacing (7) by

Xn = (Xn−24 ·Xn−55) modm, n ≥ 55, (7′)

where m is a multiple of 4 and where X0 through X54 are odd, not all congruent
to 1 (modulo 4). Then the second-least signiĄcant bits have a period of 255 − 1,
while the most signiĄcant bits are more thoroughly mixed than before since they
depend on all bits of Xn−24 and Xn−55 in an essential way. Exercise 31 shows
that the period length of sequence (7′) is only slightly less than that of (7).

Lagged Fibonacci generators have been used successfully in many situations
since 1958, so it came as a shock to discover in the 1990s that they actually fail
an extremely simple, non-contrived test for randomness (see exercise 3.3.2Ű31).
A workaround that avoids such problems by discarding appropriate elements of
the sequence is described near the end of this section.

Instead of considering purely additive or purely multiplicative sequences,
we can construct useful random number generators by taking general linear
combinations of Xn−1, . . . , Xn−k for small k. In this case the best results
occur when the modulus m is a large prime; for example, m can be chosen to be
the largest prime number that Ąts in a single computer word (see Table 4.5.4Ű2).
When m = p is prime, the theory of Ąnite Ąelds tells us that it is possible to Ąnd
multipliers a1, . . . , ak such that the sequence deĄned by

Xn = (a1Xn−1 + · · ·+ akXn−k) mod p (8)

has period length pk − 1; here X0, . . . , Xk−1 may be chosen arbitrarily but not
all zero. (The special case k = 1 corresponds to a multiplicative congruential se-
quence with prime modulus, with which we are already familiar.) The constants

30 RANDOM NUMBERS 3.2.2

a1, . . . , ak in (8) have the desired property if and only if the polynomial

f(x) = xk − a1x
k−1 − · · · − ak (9)

is a “primitive polynomial modulo p,Ť that is, if and only if this polynomial
has a root that is a primitive element of the Ąeld with pk elements (see exercise
4.6.2Ű16).

Of course, the mere fact that suitable constants a1, . . . , ak exist giving a
period of length pk − 1 is not enough for practical purposes; we must be able to
Ąnd them, and we can’t simply try all pk possibilities, since p is on the order
of the computer’s word size. Fortunately there are exactly φ(pk − 1)/k suitable
choices of (a1, . . . , ak), so there is a fairly good chance of hitting one after making
a few random tries. But we also need a way to tell quickly whether or not (9)
is a primitive polynomial modulo p; it is certainly unthinkable to generate up
to pk − 1 elements of the sequence and wait for a repetition! Methods of testing
for primitivity modulo p are discussed by Alanen and Knuth in Sankhyā A26
(1964), 305Ű328. The following criteria can be used: Let r = (pk − 1)/(p− 1).

i) (−1)k−1ak must be a primitive root modulo p. (See Section 3.2.1.2.)
ii) The polynomial xr must be congruent to (−1)k−1ak, modulo f(x) and p.
iii) The degree of xr/q mod f(x), using polynomial arithmetic modulo p, must

be positive, for each prime divisor q of r.

Efficient ways to compute the polynomial xn mod f(x), using polynomial
arithmetic modulo a given prime p, are discussed in Section 4.6.2.

In order to carry out this test, we need to know the prime factorization of
r = (pk − 1)/(p − 1), and this is the limiting factor in the calculation; r can
be factored in a reasonable amount of time when k = 2, 3, and perhaps 4, but
higher values of k are difficult to handle when p is large. Even k = 2 essentially
doubles the number of “signiĄcant random digitsŤ over what is achievable with
k = 1, so larger values of k will rarely be necessary.

An adaptation of the spectral test (Section 3.3.4) can be used to rate the
sequence of numbers generated by (8); see exercise 3.3.4Ű24. The considerations
of that section show that we should not make the obvious choice of a1 = +1 or
−1 when a primitive polynomial of that form exists; it is better to pick large,
essentially “randomŤ values of a1, . . . , ak that satisfy the conditions, and to verify
the choice by applying the spectral test. A signiĄcant amount of computation
is involved in Ąnding a1, . . . , ak, but all known evidence indicates that the result
will be a very satisfactory source of random numbers. We essentially achieve the
randomness of a linear congruential generator with k-tuple precision, using only
single precision operations.

The special case p = 2 is of independent interest. Sometimes a random
number generator is desired that merely produces a random sequence of bits Ů
zeros and ones Ů instead of fractions between zero and one. There is a simple way
to generate a highly random bit sequence on a binary computer, manipulating
k-bit words: Start with an arbitrary nonzero binary word X. To get the next
random bit of the sequence, do the following operations, shown in MIX’s language

3.2.2 OTHER METHODS 31

(see exercise 16):

LDA X (Assume that overĆow is now “off.Ť)
ADD X Shift left one bit.
JNOV *+2 Jump if the high bit was originally zero.
XOR A Otherwise adjust the number with “exclusive or.Ť
STA X

(10)

The fourth instruction here is the “exclusive orŤ operation found on nearly all
binary computers (see exercise 2.5Ű28 and Section 7.1.3); it changes each bit
position of rA in which location A has a “1Ť bit. The value in location A is
the binary constant (a1 . . . ak)2, where xk − a1x

k−1 − · · · − ak is a primitive
polynomial modulo 2 as above. After the code (10) has been executed, the next
bit of the generated sequence may be taken as the least signiĄcant bit of word X.
Alternatively, we could consistently use the most signiĄcant bit of X, if the most
signiĄcant bit is more convenient.

1011
0101
1010
0111
1110
1111
1101
1001
0001
0010
0100
1000
0011
0110
1100
1011

Fig. 1. Successive contents of the computer word X in the binary
method, assuming that k = 4 and CONTENTS(A) = (0011)2.

For example, consider Fig. 1, which illustrates the sequence generated for
k = 4 and CONTENTS(A) = (0011)2. This is, of course, an unusually small value
for k. The right-hand column shows the sequence of bits of the sequence, namely
1101011110001001 . . . , repeating in a period of length 2k−1 = 15. This sequence
is quite random, considering that it was generated with only four bits of memory;
to see this, consider the adjacent sets of four bits occurring in the period, namely
1101, 1010, 0101, 1011, 0111, 1111, 1110, 1100, 1000, 0001, 0010, 0100, 1001,
0011, 0110. In general, every possible adjacent set of k bits occurs exactly once
in the period, except the set of all zeros, since the period length is 2k − 1; thus,
adjacent sets of k bits are essentially independent. We shall see in Section 3.5
that this is a very strong criterion for randomness when k is, say, 30 or more.
Theoretical results illustrating the randomness of this sequence are given in an
article by R. C. Tausworthe, Math. Comp. 19 (1965), 201Ű209.

Primitive polynomials modulo 2 of degree ≤ 168 have been tabulated by
W. Stahnke, Math. Comp. 27 (1973), 977Ű980. When k = 35, we may take

CONTENTS(A) = (00000000000000000000000000000000101)2,

but the considerations of exercises 18 and 3.3.4Ű24 imply that it would be better
to Ąnd “randomŤ constants that deĄne primitive polynomials modulo 2.

32 RANDOM NUMBERS 3.2.2

Caution: Several people have been trapped into believing that this random
bit-generation technique can be used to generate random whole-word fractions
(.X0X1 . . . Xk−1)2, (.XkXk+1 . . . X2k−1)2, . . . ; but it is actually a poor source
of random fractions, even though the bits are individually quite random. Exer-
cise 18 explains why.

Mitchell and Moore’s additive generator (7) is essentially based on the
concept of primitive polynomials: The polynomial x55 + x24 + 1 is primitive,
and Table 1 is essentially a listing of certain primitive trinomials modulo 2.
A generator almost identical to that of Mitchell and Moore was independently
discovered in 1971 by T. G. Lewis and W. H. Payne [JACM 20 (1973), 456Ű468],
but using “exclusive orŤ instead of addition; this makes the period length exactly
255 − 1. Each bit position in the sequence of Lewis and Payne runs through the
same periodic sequence, but has its own starting point. Experience has shown
that (7) gives better results.

We have now seen that sequences with 0 ≤ Xn < m and period mk − 1
can be constructed without great difficulty, when Xn is a suitable function of
Xn−1, . . . , Xn−k and when m is prime. The highest conceivable period for any

sequence deĄned by a relation of the form

Xn = f(Xn−1, . . . , Xn−k), 0 ≤ Xn < m, (11)

is easily seen to be mk. M. H. Martin [Bull. Amer. Math. Soc. 40 (1934), 859Ű
864] was the Ąrst person to show that functions achieving this maximum period
are possible for all m and k. His method is easy to state (exercise 17) and
reasonably efficient to program (exercise 29), but it is unsuitable for random
number generation because it changes the value of Xn−1 + · · · + Xn−k very
slowly: All k-tuples occur, but not in a very random order. A better class of
functions f that yield the maximum period mk is considered in exercise 21.
The corresponding programs are, in general, not as efficient for random number
generation as other methods we have described, but they do give demonstrable
randomness when the period as a whole is considered.

Many other schemes have been proposed for random number generation.
The most interesting of these alternative methods may well be the inversive

congruential sequences suggested by Eichenauer and Lehn [Statistische Hefte 27
(1986), 315Ű326]:

Xn+1 = (aX−1
n + c) mod p . (12)

Here p is prime, Xn ranges over the set {0, 1, . . . , p − 1,∞}, and inverses are
deĄned by 0−1 = ∞, ∞−1 = 0, otherwise X−1X ≡ 1 (modulo p). Since
0 is always followed by ∞ and then by c in this sequence, we could simply
deĄne 0−1 = 0 for purposes of implementation; but the theory is cleaner and
easier to develop when 0−1 = ∞. Efficient algorithms suitable for hardware
implementation are available for computing X−1 modulo p; see, for example,
exercise 4.5.2Ű39. Unfortunately, however, this operation is not in the repertoire
of most computers. Exercise 35 shows that many choices of a and c yield the
maximum period length p + 1. Exercise 37 demonstrates the most important

3.2.2 OTHER METHODS 33

property: Inversive congruential sequences are completely free of the lattice
structure that is characteristic of linear congruential sequences.

Another important class of techniques deals with the combination of random
number generators. There will always be people who feel that the linear con-
gruential methods, additive methods, etc., are all too simple to give sufficiently
random sequences; and it may never be possible to prove that their skepticism
is unjustiĄed Ů indeed, they may be right Ů so it is pretty useless to argue the
point. There are reasonably efficient ways to combine two sequences into a third
one that should be haphazard enough to satisfy all but the most hardened skeptic.

Suppose we have two sequencesX0, X1, . . . and Y0, Y1, . . . of random numbers
between 0 and m− 1, preferably generated by two unrelated methods. Then we
can, for example, use one random sequence to permute the elements of another,
as suggested by M. D. MacLaren and G. Marsaglia [JACM 12 (1965), 83Ű89;
see also Marsaglia and Bray, CACM 11 (1968), 757Ű759]:

Algorithm M (Randomizing by shuffling). Given methods for generating two
sequences ⟨Xn⟩ and ⟨Yn⟩, this algorithm will successively output the terms of
a “considerably more randomŤ sequence. We use an auxiliary table V [0], V [1],
. . . , V [k − 1], where k is some number chosen for convenience, usually in the
neighborhood of 100. Initially, the V -table is Ąlled with the Ąrst k values of the
X-sequence.

M1. [Generate X,Y .] Set X and Y equal to the next members of the sequences
⟨Xn⟩ and ⟨Yn⟩, respectively.

M2. [Extract j.] Set j ← ⌊kY/m⌋, where m is the modulus used in the sequence
⟨Yn⟩; that is, j is a random value, 0 ≤ j < k, determined by Y .

M3. [Exchange.] Output V [j] and then set V [j]← X.

As an example, assume that Algorithm M is applied to the following two
sequences, with k = 64:

X0 = 5772156649, Xn+1 = (3141592653Xn + 2718281829) mod 235;

Y0 = 1781072418, Yn+1 = (2718281829Yn + 3141592653) mod 235.
(13)

On intuitive grounds it appears safe to predict that the sequence obtained by
applying Algorithm M to (13) will satisfy virtually anyone’s requirements for
randomness in a computer-generated sequence, because the relationship between
nearby terms of the output has been almost entirely obliterated. Furthermore,
the time required to generate this sequence is only slightly more than twice as
long as it takes to generate the sequence ⟨Xn⟩ alone.

Exercise 15 proves that the period length of Algorithm M’s output will be the
least common multiple of the period lengths of ⟨Xn⟩ and ⟨Yn⟩, in most situations
of practical interest. In particular, if we reject the value 0 when it occurs in the
Y -sequence, so that ⟨Yn⟩ has period length 235 − 1, the numbers generated by
Algorithm M from (13) will have a period of length 270 − 235. [See J. Arthur
Greenwood, Computer Science and Statistics: Symposium on the Interface 9
(1976), 222Ű227.]

34 RANDOM NUMBERS 3.2.2

However, there is an even better way to shuffle the elements of a sequence,
discovered by Carter Bays and S. D. Durham [ACM Trans. Math. Software 2
(1976), 59Ű64]. Their approach, although it appears to be superĄcially similar to
Algorithm M, can give surprisingly better performance even though it requires
only one input sequence ⟨Xn⟩ instead of two:

Algorithm B (Randomizing by shuffling). Given a method for generating a
sequence ⟨Xn⟩, this algorithm will successively output the terms of a “consider-
ably more randomŤ sequence, using an auxiliary table V [0], V [1], . . . , V [k − 1]
as in Algorithm M. Initially the V -table is Ąlled with the Ąrst k values of the
X-sequence, and an auxiliary variable Y is set equal to the (k + 1)st value.

B1. [Extract j.] Set j ← ⌊kY/m⌋, where m is the modulus used in the sequence
⟨Xn⟩; that is, j is a random value, 0 ≤ j < k, determined by Y .

B2. [Exchange.] Set Y ← V [j], output Y , and then set V [j] to the next member
of the sequence ⟨Xn⟩.

The reader is urged to work exercises 3 and 5, in order to get a feeling for
the difference between Algorithms M and B.

On MIX we may implement Algorithm B by taking k equal to the byte size,
obtaining the following simple generation scheme once the initialization has been
done:

LD6 Y(1:1) j ← high-order byte of Y .
LDA X rA← Xn.
INCA 1 (see exercise 3.2.1.1Ű1)
MUL A rX← Xn+1.
STX X “n← n+ 1.Ť
LDA V,6
STA Y Y ← V [j].
STX V,6 V [j]← Xn.

(14)

The output appears in register A. Notice that Algorithm B requires only
four instructions of overhead per generated number.

F. Gebhardt [Math. Comp. 21 (1967), 708Ű709] found that satisfactory
random sequences were produced by Algorithm M even when it was applied
to a sequence as nonrandom as the Fibonacci sequence, with Xn = F2n modm
and Yn = F2n+1 modm. However, it is also possible for Algorithm M to produce
a sequence less random than the original sequences, if ⟨Xn⟩ and ⟨Yn⟩ are strongly
related, as shown in exercise 3. Such problems do not seem to arise with
Algorithm B. Since Algorithm B won’t make a sequence any less random,
and since it enhances the randomness with very little extra cost, it can be
recommended for use in combination with any other random number generator.

Shuffling methods have an inherent defect, however: They change only
the order of the generated numbers, not the numbers themselves. For most
purposes the order is the critical thing, but if a random number generator fails
the “birthday spacingsŤ test discussed in Section 3.3.2 or the random walk test of
exercise 3.3.2Ű31 it will not fare much better after it has been shuffled. Shuffling

3.2.2 OTHER METHODS 35

also has the comparative disadvantage that it does not allow us to start at a
given place in the period, or to skip quickly from Xn to Xn+k for large k.

Many people have therefore suggested combining two sequences ⟨Xn⟩ and
⟨Yn⟩ in a much simpler way, which avoids both of the defects of shuffling: We
can use a combination like

Zn = (Xn − Yn) modm (15)

when 0 ≤ Xn < m and 0 ≤ Yn < m′ ≤ m. Exercises 13 and 14 discuss the period
length of such sequences; exercise 3.3.2Ű23 shows that (15) tends to enhance the
randomness when the seeds X0 and Y0 are chosen independently.

An even simpler way to remove the structural biases of arithmetically gen-
erated numbers was proposed already in the early days of computing by J. Todd
and O. Taussky Todd [Symp. on Monte Carlo Methods (Wiley, 1956), 15Ű28]:
We can just throw away some numbers of the sequence. Their suggestion was of
little use with linear congruential generators, but it has become quite appropriate
nowadays in connection with generators like (7) that have extremely long periods,
because we have plenty of numbers to discard.

The simplest way to improve the randomness of (7) is to use only every jth
term, for some small j. But a better scheme, which may be even simpler, is to use
(7) to produce, say, 500 random numbers in an array and to use only the Ąrst 55 of
them. After those 55 have been consumed, we generate 500 more in the same way.
This idea was proposed by Martin Lüscher [Computer Physics Communications
79 (1994), 100Ű110], motivated by the theory of chaos in dynamical systems: We
can regard (7) as a process that maps 55 values (Xn−55, . . . , Xn−1) into another
vector of 55 values (Xn+t−55, . . . , Xn+t−1). Suppose we generate t ≥ 55 values
and use the Ąrst 55 of them. Then if t = 55 the new vector of values is rather close
to the old; but if t ≈ 500 there is almost no correlation between old and new (see
exercise 33). For the analogous case of add-with-carry or subtract-with-borrow
generators (exercise 3.2.1.1Ű14), the vectors are in fact known to be the radix-b
representation of numbers in a linear congruential generator, and the relevant
multiplier when we generate t numbers at a time is b−t. Lüscher’s theory for this
case can therefore be conĄrmed with the spectral test of Section 3.3.4. A portable
random number generator, based on a lagged Fibonacci sequence enhanced with
Lüscher’s approach, appears in Section 3.6, together with further commentary.

Random number generators typically do only a few multiplications and/or
additions to get from one element of the sequence to the next. When such
generators are combined as suggested above, common sense tells us that the
resulting sequences ought to be indistinguishable from truly random numbers.
But intuitive hunches are no substitute for rigorous mathematical proof. If we are
willing to do more work Ů say 1000 or 1000000 times as much Ů we can obtain
sequences for which substantially better theoretical guarantees of randomness
are available.

For example, consider the sequence of bits B1, B2, . . . generated by

Xn+1 = X2
n modM, Bn = Xn mod 2, (16)

36 RANDOM NUMBERS 3.2.2

[Blum, Blum, and Shub, SICOMP 15 (1986), 364Ű383], or the more elaborate
sequence generated by

Xn+1 = X2
n modM, Bn = Xn · Z mod 2, (17)

where the dot product of r-bit binary numbers (xr−1 . . . x0)2 and (zr−1 . . . z0)2

is xr−1zr−1 + · · ·+ x0z0; here Z is an r-bit “mask,Ť and r is the number of bits
in M. The modulus M should be the product of two large primes of the form
4k + 3, and the starting value X0 should be relatively prime to M. Rule (17),
suggested by Leonid Levin, is a take-off on von Neumann’s original middle-square
method; we will call it the muddle-square method, because it jumbles the bits of
the squares. Rule (16) is, of course, the special case Z = 1.

Section 3.5F contains a proof that, when X0, Z, and M are chosen at
random, the sequences generated by (16) and (17) pass all statistical tests for
randomness that require no more work than factoring large numbers. In other
words, the bits cannot be distinguished from truly random numbers by any
computation lasting less than 100 years on today’s fastest computers, when M
is suitably large, unless it is possible to Ąnd the factors of a nontrivial fraction of
such numbers much more rapidly than is presently known. Formula (16) is
simpler than (17), but the modulus M in (16) has to be somewhat larger than
it does in (17) if we want to achieve the same statistical guarantees.

EXERCISES

x 1. [12] In practice, we form random numbers using Xn+1 = (aXn +c) modm, where
the X’s are integers, afterwards treating them as the fractions Un = Xn/m. The
recurrence relation for Un is actually

Un+1 = (aUn + c/m) mod 1.

Discuss the generation of random sequences using this relation directly, by making use
of Ćoating point arithmetic on the computer.

x 2. [M20] A good source of random numbers will have Xn−1 < Xn+1 < Xn about
one-sixth of the time, since each of the six possible relative orders of Xn−1, Xn, and
Xn+1 should be equally probable. However, show that the ordering above never occurs
if the Fibonacci sequence (5) is used.

3. [23] (a) What sequence comes from Algorithm M if

X0 = 0, Xn+1 = (5Xn + 3) mod 8, Y0 = 0, Yn+1 = (5Yn + 1) mod 8,

and k = 4? (Note that the potency is two, so ⟨Xn⟩ and ⟨Yn⟩ aren’t extremely random
to start with.) (b) What happens if Algorithm B is applied to this same sequence ⟨Xn⟩
with k = 4?

4. [00] Why is the most signiĄcant byte used in the Ąrst line of program (14), instead
of some other byte?

x 5. [20] Discuss using Xn = Yn in Algorithm M, in order to improve the speed of
generation. Is the result analogous to Algorithm B?

6. [10] In the binary method (10), the text states that the low-order bit of X is
random, if the code is performed repeatedly. Why isn’t the entire word X random?

3.2.2 OTHER METHODS 37

7. [20] Show that a complete sequence of length 2e (that is, a sequence in which
each of the 2e possible sets of e adjacent bits occurs just once in the period) may be
obtained if program (10) is changed to the following:

LDA X

JANZ *+2

LDA A

ADD X

JNOV *+3

JAZ *+2

XOR A

STA X

8. [M39] Prove that the quadratic congruential sequence (3) has period length m if
and only if the following conditions are satisĄed:

i) c is relatively prime to m;
ii) d and a− 1 are both multiples of p, for all odd primes p dividing m;

iii) d is even, and d ≡ a− 1 (modulo 4), if m is a multiple of 4;
d ≡ a− 1 (modulo 2), if m is a multiple of 2;

iv) d ̸≡ 3c (modulo 9), if m is a multiple of 9.

[Hint: The sequence deĄned by X0 = 0, Xn+1 = dX2
n +aXn +c modulo m has a period

of length m only if the same sequence modulo any divisor r of m has period length r.]

x 9. [M24] (R. R. Coveyou.) Use the result of exercise 8 to prove that the modiĄed
middle-square method (4) has a period of length 2e−2.

10. [M29] Show that if X0 and X1 are not both even and if m = 2e, the period of
the Fibonacci sequence (5) is 3 · 2e−1.

11. [M36] The purpose of this exercise is to analyze certain properties of integer
sequences satisfying the recurrence relation

Xn = a1Xn−1 + · · ·+ akXn−k, n ≥ k.

If we can calculate the period length of this sequence modulo m = pe, when p is prime,
the period length with respect to an arbitrary modulus m is the least common multiple
of the period lengths for the prime power factors of m.

a) If f(z), a(z), b(z) are polynomials with integer coefficients, let us write a(z) ≡ b(z)
(modulo f(z) and m) if a(z) = b(z) +f(z)u(z) +mv(z) for some polynomials u(z)
and v(z) with integer coefficients. Prove that the following statement holds when
f(0) = 1 and pe > 2: If zλ ≡ 1 (modulo f(z) and pe) and zλ ̸≡ 1 (modulo
f(z) and pe+1), then zpλ ≡ 1 (modulo f(z) and pe+1) and zpλ ̸≡ 1 (modulo f(z)
and pe+2).

b) Let f(z) = 1− a1z − · · · − akz
k, and let

G(z) = 1/f(z) = A0 +A1z +A2z
2 + · · · .

Let λ(m) denote the period length of ⟨An modm⟩. Prove that λ(m) is the smallest
positive integer λ such that zλ ≡ 1 (modulo f(z) and m).

c) Given that p is prime, pe > 2, and λ(pe) ̸= λ(pe+1), prove that λ(pe+r) = prλ(pe)
for all r ≥ 0. (Thus, to Ąnd the period length of the sequence ⟨An mod 2e⟩, we
can compute λ(4), λ(8), λ(16), . . . until we Ąnd the smallest e ≥ 3 such that
λ(2e) ̸= λ(4); then the period length is determined mod 2e for all e. Exercise
4.6.3Ű26 explains how to calculate Xn for large n in O(logn) operations.)

d) Show that any sequence of integers satisfying the recurrence stated at the begin-
ning of this exercise has the generating function g(z)/f(z), for some polynomial
g(z) with integer coefficients.

e) Given that the polynomials f(z) and g(z) in part (d) are relatively prime modulo p
(see Section 4.6.1), prove that the sequence ⟨Xn mod pe⟩ has exactly the same

38 RANDOM NUMBERS 3.2.2

period length as the special sequence ⟨An mod pe⟩ in (b). (No longer period could
be obtained by any choice of X0, . . . , Xk−1, since the general sequence is a linear
combination of “shiftsŤ of the special sequence.) [Hint: By exercise 4.6.2Ű22
(Hensel’s lemma), there exist polynomials such that a(z)f(z) + b(z)g(z) ≡ 1
(modulo pe).]

x 12. [M28] Find integers X0, X1, a, b, and c such that the sequence

Xn+1 = (aXn + bXn−1 + c) mod 2e, n ≥ 1,

has the longest period length of all sequences of this type. [Hint: It follows that
Xn+2 = ((a+ 1)Xn+1 + (b− a)Xn − bXn−1) mod 2e; see exercise 11(c).]

13. [M20] Let ⟨Xn⟩ and ⟨Yn⟩ be sequences of integers mod m with periods of lengths
λ1 and λ2, and combine them by letting Zn = (Xn + Yn) modm. Show that if λ1

and λ2 are relatively prime, the sequence ⟨Zn⟩ has a period of length λ1λ2.

14. [M24] Let Xn, Yn, Zn, λ1, λ2 be as in the previous exercise. Suppose that the
prime factorization of λ1 is 2e2 3e3 5e5 . . . , and similarly suppose that λ2 = 2f2 3f3 5f5
Let gp = (max(ep, fp) if ep ̸= fp, otherwise 0), and let λ0 = 2g2 3g3 5g5 Show that
the period length λ′ of the sequence ⟨Zn⟩ is a multiple of λ0, and it is a divisor of
λ = lcm(λ1, λ2). In particular, λ′ = λ if (ep ̸= fp or ep = fp = 0) for each prime p.

15. [M27] Let the sequence ⟨Xn⟩ in Algorithm M have period length λ1, and assume
that all elements of its period are distinct. Let qn = min{r | r > 0 and ⌊kYn−r/m⌋ =
⌊kYn/m⌋}. Assume that qn < 1

2
λ1 for all n ≥ n0, and that the sequence ⟨qn⟩ has

period length λ2. Let λ be the least common multiple of λ1 and λ2. Prove that the
output sequence ⟨Zn⟩ produced by Algorithm M has a period of length λ.

x 16. [M28] Let CONTENTS(A) in method (10) be (a1a2 . . . ak)2 in binary notation. Show
that the generated sequence of low-order bits X0, X1, . . . satisĄes the relation

Xn = (a1Xn−1 + a2Xn−2 + · · ·+ akXn−k) mod 2.

[This may be regarded as another way to deĄne the sequence, although the connection
between this relation and the efficient code (10) is not apparent at Ąrst glance!]

17. [M33] (M. H. Martin, 1934.) Let m and k be positive integers, and let X1 =
X2 = · · · = Xk = 0. For all n > 0, set Xn+k equal to the largest nonnegative value
y < m such that the k-tuple (Xn+1, . . . , Xn+k−1, y) has not already occurred in the
sequence; in other words, (Xn+1, . . . , Xn+k−1, y) must differ from (Xr+1, . . . , Xr+k)
for 0 ≤ r < n. In this way, each possible k-tuple will occur at most once in the
sequence. Eventually the process will terminate, when we reach a value of n such that
(Xn+1, . . . , Xn+k−1, y) has already occurred in the sequence for all nonnegative y < m.
For example, if m = k = 3 the sequence is 00022212202112102012001110100, and the
process terminates at this point. (a) Prove that when the sequence terminates, we have
Xn+1 = · · · = Xn+k−1 = 0. (b) Prove that every k-tuple (a1, a2, . . . , ak) of elements
with 0 ≤ aj < m occurs in the sequence; hence the sequence terminates when n = mk.
[Hint: Prove that the k-tuple (a1, . . . , as, 0, . . . , 0) appears, when as ̸= 0, by induction
on s.] Note that if we now deĄne f(Xn, . . . , Xn+k−1) = Xn+k for 1 ≤ n ≤ mk, setting
Xmk+k = 0, we obtain a function of maximum possible period.

18. [M22] Let ⟨Xn⟩ be the sequence of bits generated by method (10), with k = 35
and CONTENTS(A) = (00000000000000000000000000000000101)2. Let Un be the binary
fraction (.XnkXnk+1 . . . Xnk+k−1)2; show that this sequence ⟨Un⟩ fails the serial test
on pairs (Section 3.3.2B) when d = 8.

3.2.2 OTHER METHODS 39

19. [M41] For each prime p speciĄed in the Ąrst column of Table 2 in Section 4.5.4,
Ąnd suitable constants a1 and a2 as suggested in the text, such that the period length
of (8), when k = 2, is p2 − 1. (See Eq. 3.3.4Ű(39) for an example.)

20. [M40] Calculate constants suitable for use as CONTENTS(A) in method (10), having
approximately the same number of zeros as ones, for 2 ≤ k ≤ 64.

21. [M35] (D. Rees.) The text explains how to Ąnd functions f such that the sequence
(11) has period length mk − 1, provided that m is prime and X0, . . . , Xk−1 are not all
zero. Show that such functions can be modiĄed to obtain sequences of type (11) with
period length mk, for all integers m. [Hints: Consider the results of exercises 7 and 13,
and sequences such as ⟨pX2n +X2n+1⟩.]

x 22. [M24] The text restricts discussion of the extended linear sequences (8) to the
case that m is prime. Prove that reasonably long periods can also be obtained when m
is “squarefree,Ť that is, the product of distinct primes. (Examination of Table 3.2.1.1Ű1
shows that m = w ± 1 often satisĄes this hypothesis; many of the results of the text
can therefore be carried over to that case, which is somewhat more convenient for
calculation.)

x 23. [20] Discuss the sequence deĄned by Xn = (Xn−55 −Xn−24) modm as an alter-
native to (7).

24. [M20] Let 0 < l < k. Prove that the sequence of bits deĄned by the recurrence
Xn = (Xn−k+l +Xn−k) mod 2 has period length 2k − 1 whenever the sequence deĄned
by Yn = (Yn−l + Yn−k) mod 2 does.

25. [26] Discuss the alternative to Program A that changes all 55 entries of the Y
table every 55th time a random number is required.

26. [M48] (J. F. Reiser.) Let p be prime and let k be a positive integer. Given integers
a1, . . . , ak and x1, . . . , xk, let λα be the period of the sequence ⟨Xn⟩ generated by the
recurrence

Xn = xn mod pα, 0 ≤ n < k; Xn = (a1Xn−1 + · · ·+ akXn−k) mod pα, n ≥ k;

and let Nα be the number of 0s that occur in the period (the number of indices j such
that µα ≤ j < µα + λα and Xj = 0). Prove or disprove the following conjecture:
There exists a constant c (depending possibly on p and k and a1, . . . , ak) such that
Nα ≤ cpα(k−2)/(k−1) for all α and all x1, . . . , xk.

[Notes: Reiser has proved that if the recurrence has maximum period length mod p
(that is, if λ1 = pk−1), and if the conjecture holds, then the k-dimensional discrepancy
of ⟨Xn⟩ will be O(αkp−α/(k−1)) as α → ∞; thus an additive generator like (7) would
be well distributed in 55 dimensions, when m = 2e and the entire period is considered.
(See Section 3.3.4 for the deĄnition of discrepancy in k dimensions.) The conjecture
is a very weak condition, for if ⟨Xn⟩ takes on each value about equally often and if
λα = pα−1(pk − 1), the quantity Nα ≈ (pk − 1)/p does not grow at all as α increases.
Reiser has veriĄed the conjecture for k = 3. On the other hand he has shown that it
is possible to Ąnd unusually bad starting values x1, . . . , xk (depending on α) so that
N2α ≥ pα, provided that λα = pα−1(pk − 1) and k ≥ 3 and α is sufficiently large.]

27. [M30] Suppose Algorithm B is being applied to a sequence ⟨Xn⟩ whose period
length is λ, where λ≫ k. Show that for Ąxed k and all sufficiently large λ, the output
of the sequence will eventually be periodic with the same period length λ, unless ⟨Xn⟩
isn’t very random to start with. [Hint: Find a pattern of consecutive values of ⌊kXn/m⌋
that causes Algorithm B to “synchronizeŤ its subsequent behavior.]

40 RANDOM NUMBERS 3.2.2

28. [40] (A. G. Waterman.) Experiment with linear congruential sequences with m
the square or cube of the computer word size, while a and c are single-precision numbers.

x 29. [40] Find a good way to compute the function f(x1, . . . , xk) deĄned by Martin’s
sequence in exercise 17, given only the k-tuple (x1, . . . , xk).

30. [M37] (R. P. Brent.) Let f(x) = xk−a1x
k−1−· · ·−ak be a primitive polynomial

modulo 2, and suppose that X0, . . . , Xk−1 are integers not all even.

a) Prove that the period of the recurrence Xn = (a1Xn−1 + · · · + akXn−k) mod 2e

is 2e−1(2k − 1) for all e ≥ 1 if and only if f(x)2 + f(−x)2 ̸≡ 2f(x2) and f(x)2 +
f(−x)2 ̸≡ 2(−1)kf(−x2) (modulo 8). [Hint: We have x2k ≡ −x (modulo 4 and
f(x)) if and only if f(x)2 + f(−x)2 ≡ 2f(x2) (modulo 8).]

b) Prove that this condition always holds when the polynomial f(x) = xk ± xl ± 1 is
primitive modulo 2 and k > 2.

31. [M30] (G. Marsaglia.) What is the period length of the sequence (7′) when m =
2e ≥ 8? Assume that X0, . . . , X54 are not all ≡ ±1 (modulo 8).

32. [M21] What recurrences are satisĄed by the elements of the subsequences ⟨X2n⟩
and ⟨X3n⟩, when Xn = (Xn−24 +Xn−55) modm?

x 33. [M23] (a) Let gn(z) = Xn+30 +Xn+29z+ · · ·+Xnz
30 +Xn+54z

31 + · · ·+Xn+31z
54,

where the X’s satisfy the lagged Fibonacci recurrence (7). Find a simple relation
between gn(z) and gn+t(z). (b) Express X500 in terms of X0, . . . , X54.

34. [M25] Prove that the inversive congruential sequence (12) has period p+ 1 if and
only if the polynomial f(x) = x2−cx−a has the following two properties: (i) xp+1 mod
f(x) is a nonzero constant, when computed with polynomial arithmetic modulo p;
(ii) x(p+1)/q mod f(x) has degree 1 for every prime q that divides p+1. [Hint: Consider
powers of the matrix (0

a
1
c
).]

35. [HM35] How many pairs (a, c) satisfy the conditions of exercise 34?

36. [M25] Prove that the inversive congruential sequence Xn+1 = (aX−1
n +c) mod 2e,

X0 = 1, e ≥ 3, has period length 2e−1 whenever amod 4 = 1 and cmod 4 = 2.

x 37. [HM32] Let p be prime and assume that Xn+1 = (aX−1
n + c) mod p deĄnes an

inversive congruential sequence of period p + 1. Also let 0 ≤ b1 < · · · < bd ≤ p, and
consider the set

V = {(Xn+b1 , Xn+b2 , . . . , Xn+bd) | 0 ≤ n ≤ p and Xn+bj ̸=∞ for 1 ≤ j ≤ d}.
This set contains p + 1 − d vectors, any d of which lie in some (d − 1)-dimensional
hyperplane H = {(v1, . . . , vd) | r1v1 + · · ·+rdvd ≡ r0 (modulo p)}, where (r1, . . . , rd) ̸≡
(0, . . . , 0). Prove that no d+ 1 vectors of V lie in the same hyperplane.

3.3 STATISTICAL TESTS 41

3.3. STATISTICAL TESTS

Our main purpose is to obtain sequences that behave as if they are random. So
far we have seen how to make the period of a sequence so long that for practical
purposes it never will repeat; this is an important criterion, but it by no means
guarantees that the sequence will be useful in applications. How then are we to
decide whether a sequence is sufficiently random?

If we were to give some randomly chosen man a pencil and paper and ask him
to write down 100 random decimal digits, chances are very slim that he would
produce a satisfactory result. People tend to avoid things that seem nonrandom,
such as pairs of equal adjacent digits (although about one out of every 10 digits
should equal its predecessor). And if we would show that same man a table of
truly random digits, he would quite probably tell us they are not random at all;
his eye would spot certain apparent regularities.

According to Dr. I. J. Matrix and Donald C. Rehkopf (as quoted by Martin
Gardner in ScientiĄc American, January, 1965), “Mathematicians consider the
decimal expansion of π a random series, but to a modern numerologist it is rich
with remarkable patterns.Ť Dr. Matrix has pointed out, for example, that the
Ąrst repeated two-digit number in π’s expansion is 26, and its second appearance
comes in the middle of a curious repetition pattern:

✞☎ ✞☎

3.14159265358979323846264338327950
✝✆✝✆✝✆ ✝✆✝✆✝✆

(1)

After listing a dozen or so further properties of these digits, he observed that π,
when correctly interpreted, conveys the entire history of the human race!

We all notice patterns in our telephone numbers, license numbers, etc., as
aids to memory. The point of these remarks is that we cannot be trusted to judge
by ourselves whether a sequence of numbers is random or not. Some unbiased
mechanical tests must be applied.

The theory of statistics provides us with some quantitative measures for
randomness. There is literally no end to the number of tests that can be
conceived; we will discuss the tests that have proved to be most useful, most
instructive, and most readily adapted to computer calculation.

If a sequence behaves randomly with respect to tests T1, T2, . . . , Tn, we
cannot be sure in general that it will not be a miserable failure when it is
subjected to a further test Tn+1. Yet each test gives us more and more conĄdence
in the randomness of the sequence. In practice, we apply about half a dozen
different kinds of statistical tests to a sequence, and if it passes them satisfactorily
we consider it to be random Ů it is then presumed innocent until proven guilty.

Every sequence that is to be used extensively should be tested carefully, so
the following sections explain how to administer the tests in an appropriate way.
Two kinds of tests are distinguished: empirical tests, for which the computer
manipulates groups of numbers of the sequence and evaluates certain statistics;
and theoretical tests, for which we establish characteristics of the sequence by

42 RANDOM NUMBERS 3.3

using number-theoretic methods based on the recurrence rule used to form the
sequence.

If the evidence doesn’t come out as desired, the reader may wish to try the
techniques in How to Lie With Statistics by Darrell Huff (Norton, 1954).

3.3.1. General Test Procedures for Studying Random Data

A. “Chi-squareŤ tests. The chi-square test (χ2 test) is perhaps the best
known of all statistical tests, and it is a basic method that is used in connection
with many other tests. Before considering the idea in general, let us consider a
particular example of the chi-square test as it might be applied to dice throwing.
Using two “trueŤ dice (each of which, independently, is assumed to yield the
values 1, 2, 3, 4, 5, or 6 with equal probability), the following table gives the
probability of obtaining a given total, s, on a single throw:

value of s = 2 3 4 5 6 7 8 9 10 11 12

probability, ps = 1
36

1
18

1
12

1
9

5
36

1
6

5
36

1
9

1
12

1
18

1
36

(1)

For example, a value of 4 can be thrown in three ways: 1 + 3, 2 + 2, 3 + 1; this
constitutes 3

36 = 1
12 = p4 of the 36 possible outcomes.

If we throw the dice n times, we should obtain the value s approximately
nps times on the average. For example, in 144 throws we should get the value 4
about 12 times. The following table shows what results were actually obtained
in a particular sequence of 144 throws of the dice:

value of s = 2 3 4 5 6 7 8 9 10 11 12

observed number, Ys = 2 4 10 12 22 29 21 15 14 9 6

expected number, nps = 4 8 12 16 20 24 20 16 12 8 4

(2)

Notice that the observed number was different from the expected number in all
cases; in fact, random throws of the dice will hardly ever come out with exactly

the right frequencies. There are 36144 possible sequences of 144 throws, all of
which are equally likely. One of these sequences consists of all 2s (“snake eyesŤ),
and anyone throwing 144 snake eyes in a row would be convinced that the dice
were loaded. Yet the sequence of all 2s is just as probable as any other particular
sequence if we specify the outcome of each throw of each die.

In view of this, how can we test whether or not a given pair of dice is loaded?
The answer is that we can’t make a deĄnite yes-no statement, but we can give
a probabilistic answer. We can say how probable or improbable certain types of
events are.

A fairly natural way to proceed in the example above is to consider the
squares of the differences between the observed numbers Ys and the expected
numbers nps. We can add these together, obtaining

V = (Y2 − np2)2 + (Y3 − np3)2 + · · ·+ (Y12 − np12)2. (3)

A bad set of dice should result in a relatively high value of V ; and for any given
value of V we can ask, “What is the probability that V is this high, using true

3.3.1 GENERAL TEST PROCEDURES 43

dice?Ť If this probability is very small, say 1
100 , we would know that only about

one time in 100 would true dice give results so far away from the expected num-
bers, and we would have deĄnite grounds for suspicion. (Remember, however,
that even good dice would give such a high value of V about one time in a
hundred, so a cautious person would repeat the experiment to see if the high
value of V is repeated.)

The statistic V in (3) gives equal weight to (Y7 − np7)2 and (Y2 − np2)2,
although (Y7− np7)2 is likely to be a good deal higher than (Y2− np2)2 since 7s
occur about six times as often as 2s. It turns out that the “rightŤ statistic, at
least one that has proved to be most important, will give (Y7 − np7)2 only 1

6 as
much weight as (Y2 − np2)2, and we should change (3) to the following formula:

V =
(Y2 − np2)2

np2
+

(Y3 − np3)2

np3
+ · · ·+ (Y12 − np12)2

np12
. (4)

This is called the “chi-squareŤ statistic of the observed quantities Y2, . . . , Y12 in
the dice-throwing experiment. For the data in (2), we Ąnd that

V =
(2− 4)2

4
+

(4− 8)2

8
+ · · ·+ (9− 8)2

8
+

(6− 4)2

4
= 7

7
48
. (5)

The important question now is, of course, “Does 7 7
48 constitute an improbably

high value for V to assume?Ť Before answering this question, let us consider the
general application of the chi-square method.

In general, suppose that every observation can fall into one of k categories.
We take n independent observations; this means that the outcome of one obser-
vation has absolutely no effect on the outcome of any of the others. Let ps be the
probability that each observation falls into category s, and let Ys be the number
of observations that actually do fall into category s. We form the statistic

V =
k

s=1

(Ys − nps)2

nps
. (6)

In our example above, there are eleven possible outcomes of each throw of the
dice, so k = 11.

Eq. (6) is a slight change of notation from Eq. (4), since we

are numbering the possibilities from 1 to k instead of from 2 to 12.

By expanding (Ys − nps)2 = Y 2
s − 2npsYs + n2p2

s in (6), and using the facts
that

Y1 + Y2 + · · ·+ Yk = n,

p1 + p2 + · · ·+ pk = 1,
(7)

we arrive at the formula

V =
1
n

k

s=1

Y 2
s

ps

− n, (8)

which often makes the computation of V somewhat easier.

44 RANDOM NUMBERS 3.3.1

Table 1

SELECTED PERCENTAGE POINTS OF THE CHI-SQUARE DISTRIBUTION

p = 1% p = 5% p = 25% p = 50% p = 75% p = 95% p = 99%

ν = 1 0.00016 0.00393 0.1015 0.4549 1.323 3.841 6.635

ν = 2 0.02010 0.1026 0.5754 1.386 2.773 5.991 9.210

ν = 3 0.1148 0.3518 1.213 2.366 4.108 7.815 11.34

ν = 4 0.2971 0.7107 1.923 3.357 5.385 9.488 13.28

ν = 5 0.5543 1.1455 2.675 4.351 6.626 11.07 15.09

ν = 6 0.8721 1.635 3.455 5.348 7.841 12.59 16.81

ν = 7 1.239 2.167 4.255 6.346 9.037 14.07 18.48

ν = 8 1.646 2.733 5.071 7.344 10.22 15.51 20.09

ν = 9 2.088 3.325 5.899 8.343 11.39 16.92 21.67

ν = 10 2.558 3.940 6.737 9.342 12.55 18.31 23.21

ν = 11 3.053 4.575 7.584 10.34 13.70 19.68 24.72

ν = 12 3.571 5.226 8.438 11.34 14.85 21.03 26.22

ν = 15 5.229 7.261 11.04 14.34 18.25 25.00 30.58

ν = 20 8.260 10.85 15.45 19.34 23.83 31.41 37.57

ν = 30 14.95 18.49 24.48 29.34 34.80 43.77 50.89

ν = 50 29.71 34.76 42.94 49.33 56.33 67.50 76.15

ν > 30 ν +
√

2νxp + 2
3
x2

p − 2
3

+O (1/
√
ν)

xp = −2.33 −1.64 −.674 0.00 0.674 1.64 2.33

(For further values, see Handbook of Mathematical Functions, edited by M. Abramowitz and
I. A. Stegun (Washington, D.C.: U.S. Government Printing Office, 1964), Table 26.8. See also
Eq. (22) and exercise 16.)

Now we turn to the important question, “What constitutes a reasonable
value of V ?Ť This is found by referring to a table such as Table 1, which gives val-
ues of “the chi-square distribution with ν degrees of freedomŤ for various values
of ν. The line of the table with ν = k−1 is to be used; the number of “degrees of
freedomŤ is k−1, one less than the number of categories.

Intuitively, this means

that Y1, Y2, . . . , Yk are not completely independent, since Eq. (7) shows that Yk
can be computed if Y1, . . . , Yk−1 are known; hence, k− 1 degrees of freedom are
present. This argument is not rigorous, but the theory below justiĄes it.

If the table entry in row ν under column p is x, it means, “The quantity V
in Eq. (8) will be less than or equal to x with approximate probability p, if n
is large enough.Ť For example, the 95 percent entry in row 10 is 18.31; we will
have V > 18.31 only about 5 percent of the time.

3.3.1 GENERAL TEST PROCEDURES 45

Let us assume that our dice-throwing experiment has been simulated on a
computer using some sequence of supposedly random numbers, with the following
results:

value of s = 2 3 4 5 6 7 8 9 10 11 12

Experiment 1, Ys = 4 10 10 13 20 18 18 11 13 14 13

Experiment 2, Ys = 3 7 11 15 19 24 21 17 13 9 5

(9)

We can compute the chi-square statistic in the Ąrst case, getting the value V1 =
29 59

120 , and in the second case we get V2 = 1 17
120 . Referring to the table entries

for 10 degrees of freedom, we see that V1 is much too high; V will be greater than
23.21 only about one percent of the time! (By using more extensive tables, we
Ąnd in fact that V will be as high as V1 only 0.1 percent of the time.) Therefore
Experiment 1 represents a signiĄcant departure from random behavior.

On the other hand, V2 is quite low, since the observed values Ys in Exper-
iment 2 are quite close to the expected values nps in (2). The chi-square table
tells us, in fact, that V2 is much too low: The observed values are so close to the
expected values, we cannot consider the result to be random! (Indeed, reference
to other tables shows that such a low value of V occurs only 0.03 percent of
the time when there are 10 degrees of freedom.) Finally, the value V = 7 7

48
computed in (5) can also be checked with Table 1. It falls between the entries
for 25 percent and 50 percent, so we cannot consider it to be signiĄcantly high
or signiĄcantly low; thus the observations in (2) are satisfactorily random with
respect to this test.

It is somewhat remarkable that the same table entries are used no matter
what the value of n is, and no matter what the probabilities ps are. Only the
number ν = k − 1 affects the results. In actual fact, however, the table entries
are not exactly correct: The chi-square distribution is an approximation that is
valid only for large enough values of n. How large should n be? A common rule
of thumb is to take n large enough so that each of the expected values nps is
Ąve or more; preferably, however, take n much larger than this, to get a more
powerful test. In our examples above we took n = 144, so np2 was only 4,
violating the stated rule of thumb. This was done only because the author
tired of throwing the dice; it makes the entries in Table 1 less accurate for our
application. Experiments run on a computer, with n = 1000, or 10000, or even
100000, would be much better than this. We could also combine the data for
s = 2 and s = 12; then the test would have only nine degrees of freedom but the
chi-square approximation would be more accurate.

We can get an idea of how crude an approximation is involved by considering
the case when there are only two categories, having probabilities p1 and p2.
Suppose p1 = 1

4 and p2 = 3
4 . According to the stated rule of thumb, we should

have n ≥ 20 to have a satisfactory approximation, so let’s check that out. When
n = 20, the possible values of V are (Y1 − 5)2/5 + (5 − Y1)2/15 = 4

15r
2 for

−5 ≤ r ≤ 15; we wish to know how well the row ν = 1 of Table 1 describes
the distribution of V . The chi-square distribution varies continuously, while the
actual distribution of V has rather big jumps, so we need some convention for

46 RANDOM NUMBERS 3.3.1

representing the exact distribution. If the distinct possible outcomes of the
experiment lead to the values V0 ≤ V1 ≤ · · · ≤ Vn with respective proba-
bilities π0, π1, . . . , πn, suppose that a given percentage p falls in the range
π0 + · · · + πj−1 < p < π0 + · · · + πj−1 + πj . We would like to represent p by a
“percentage pointŤ x such that V is less than x with probability ≤ p and V is
greater than x with probability ≤ 1−p. It is not difficult to see that the only such
number is x = Vj . In our example for n = 20 and ν = 1, it turns out that the
percentage points of the exact distribution, corresponding to the approximations
in Table 1 for p = 1%, 5%, 25%, 50%, 75%, 95%, and 99%, respectively, are

0, 0, .27, .27, 1.07, 4.27, 6.67

(to two decimal places). For example, the percentage point for p = 95% is 4.27,
while Table 1 gives the estimate 3.841. The latter value is too low; it tells us
(incorrectly) to reject the value V = 4.27 at the 95% level, while in fact the
probability that V ≥ 4.27 is more than 6.5%. When n = 21, the situation
changes slightly because the expected values np1 = 5.25 and np2 = 15.75 can
never be obtained exactly; the percentage points for n = 21 are

.02, .02, .14, .40, 1.29, 3.57, 5.73.

We would expect Table 1 to be a better approximation when n = 50, but
the corresponding tableau actually turns out to be further from Table 1 in some
respects than it was for n = 20:

.03, .03, .03, .67, 1.31, 3.23, 6.

Here are the values when n = 300:

0, 0, .07, .44, 1.44, 4, 6.42.

Even in this case, when nps is ≥ 75 in each category, the entries in Table 1 are
good to only about one signiĄcant digit.

The proper choice of n is somewhat obscure. If the dice are actually biased,
the fact will be detected as n gets larger and larger. (See exercise 12.) But large
values of n will tend to smooth out locally nonrandom behavior, when blocks of
numbers with a strong bias are followed by blocks of numbers with the opposite
bias. Locally nonrandom behavior is not an issue when actual dice are rolled,
since the same dice are used throughout the test, but a sequence of numbers
generated by computer might very well display such anomalies. Perhaps a chi-
square test should be made for several different values of n. At any rate, n should
always be rather large.

We can summarize the chi-square test as follows. A fairly large number, n, of
independent observations is made. (It is important to avoid using the chi-square
method unless the observations are independent. See, for example, exercise 10,
which considers the case when half of the observations depend on the other
half.) We count the number of observations falling into each of k categories and
compute the quantity V given in Eqs. (6) and (8). Then V is compared with the
numbers in Table 1, with ν = k − 1. If V is less than the 1% entry or greater
than the 99% entry, we reject the numbers as not sufficiently random. If V lies

3.3.1 GENERAL TEST PROCEDURES 47

A B C D E F

Range of V

0–1 percent, 99–100 percent

1–5 percent, 95–99 percent

5–10 percent, 90–95 percent

Indication

Reject

Suspect

Almost suspect

Code

Fig. 2. Indications of “signiĄcantŤ deviations in 90 chi-square tests (see also Fig. 5).

between the 1% and 5% entries or between the 95% and 99% entries, the numbers
are “suspectŤ; if (by interpolation in the table) V lies between the 5% and 10%
entries, or the 90% and 95% entries, the numbers might be “almost suspect.Ť
The chi-square test is often done at least three times on different sets of data,
and if at least two of the three results are suspect the numbers are regarded as
not sufficiently random.

For example, see Fig. 2, which shows schematically the results of apply-
ing Ąve different types of chi-square tests on each of six sequences of random
numbers. Each test in this illustration was applied to three different blocks
of numbers of the sequence. Generator A is the MacLarenŰMarsaglia method
(Algorithm 3.2.2M applied to the sequences in 3.2.2Ű(13)); Generator E is the
Fibonacci method, 3.2.2Ű(5); and the other generators are linear congruential
sequences with the following parameters:

Generator B: X0 = 0, a = 3141592653, c = 2718281829, m = 235.

Generator C: X0 = 0, a = 27 + 1, c = 1, m = 235.

Generator D: X0 = 47594118, a = 23, c = 0, m = 108 + 1.

Generator F: X0 = 314159265, a = 218 + 1, c = 1, m = 235.

From Fig. 2 we conclude that (so far as these tests are concerned) Generators A,
B, D are satisfactory, Generator C is on the borderline and should probably
be rejected, Generators E and F are deĄnitely unsatisfactory. Generator F
has, of course, low potency; Generators C and D have been discussed in the
literature, but their multipliers are too small. (Generator D is the original
multiplicative generator proposed by Lehmer in 1948; Generator C is the original
linear congruential generator with c ̸= 0 proposed by Rotenberg in 1960.)

Instead of using the “suspect,Ť “almost suspect,Ť etc., criteria for judging
the results of chi-square tests, one can employ a less ad hoc procedure discussed
later in this section.

48 RANDOM NUMBERS 3.3.1

x=
1

2
x=0 x=1

y=1

y=
1

2

(a)

x=
1

2
x=0 x=1

y=1

y=
1

2

(b)

y=
1

4

y=
1

2

y=
3

4

y=1

x=3.9

x=6.7

x=9.3

x=12.6

x=18.3

(c)

Fig. 3. Examples of distribution functions.

B. The KolmogorovŰSmirnov test. As we have seen, the chi-square test
applies to the situation when observations can fall into a Ąnite number of cate-
gories. It is not unusual, however, to consider random quantities that range over
inĄnitely many values, such as a random fraction (a random real number between
0 and 1). Even though only Ąnitely many real numbers can be represented in a
computer, we want our random values to behave essentially as if all real numbers
in [0 . . 1) were equally likely.

A general notation for specifying probability distributions, whether they
are Ąnite or inĄnite, is commonly used in the study of probability and statistics.
Suppose we want to specify the distribution of the values of a random quantity,X;
we do this in terms of the distribution function F (x), where

F (x) = Pr(X ≤ x) = probability that (X ≤ x).

Three examples are shown in Fig. 3. First we see the distribution function for a
random bit, namely for the case when X takes on only the two values 0 and 1,
each with probability 1

2 . Part (b) of the Ągure shows the distribution function
for a uniformly distributed random real number between zero and one; here the
probability that X ≤ x is simply equal to x when 0 ≤ x ≤ 1. For example,
the probability that X ≤ 2

3 is, naturally, 2
3 . And part (c) shows the limiting

distribution of the value V in the chi-square test (shown here with 10 degrees of
freedom); this is a distribution that we have already seen represented in another
way in Table 1. Notice that F (x) always increases from 0 to 1 as x increases
from −∞ to +∞.

3.3.1 GENERAL TEST PROCEDURES 49

If we make n independent observations of the random quantity X, thereby
obtaining the values X1, X2, . . . , Xn, we can form the empirical distribution

function Fn(x), where

Fn(x) =
number of X1, X2, . . . , Xn that are ≤ x

n
. (10)

Figure 4 illustrates three empirical distribution functions

shown as zigzag lines,

although strictly speaking the vertical lines are not part of the graph of Fn(x)

,

superimposed on a graph of the assumed actual distribution function F (x). As
n gets large, Fn(x) should be a better and better approximation to F (x).

Fig. 4. Examples of
empirical distributions.
The x value marked “5%Ť
is the percentage point
where F (x) = 0.05.

(a)

5% 25%50% 75% 95% 99%

(b)

5% 25%50% 75% 95% 99%

(c)

5% 25%50% 75% 95% 99%

The KolmogorovŰSmirnov test (KS test) may be used when F (x) has no
jumps. It is based on the difference between F (x) and Fn(x). A bad source of
random numbers will give empirical distribution functions that do not approxi-
mate F (x) sufficiently well. Figure 4(b) shows an example in which the Xi are
consistently too high, so the empirical distribution function is too low. Part (c)
of the Ągure shows an even worse example; it is plain that such great deviations
between Fn(x) and F (x) are extremely improbable, and the KS test is used to
tell us how improbable they are.

50 RANDOM NUMBERS 3.3.1

To make the KS test, we form the following statistics:

K+

n =
√
n sup

−∞<x<+∞

Fn(x)− F (x)

;

K−

n =
√
n sup

−∞<x<+∞

F (x)− Fn(x)

.

(11)

Here K+
n measures the greatest amount of deviation when Fn is greater than F,

and K−

n measures the maximum deviation when Fn is less than F. The statistics
for the examples of Fig. 4 are

Fig. 4(a) Fig. 4(b) Fig. 4(c)

K+

20 0.492 0.134 0.313

K−

20 0.536 1.027 2.101

(12)

(Note: The factor
√
n that appears in Eqs. (11) may seem puzzling at Ąrst.

Exercise 6 shows that, for Ąxed x, the standard deviation of Fn(x) is proportional
to 1/

√
n; hence the factor

√
n magniĄes the statistics K+

n and K−

n in such a way
that this standard deviation is independent of n.)

As in the chi-square test, we may now look up the values K+
n , K−

n in a
percentile table to determine if they are signiĄcantly high or low. Table 2 may
be used for this purpose, both for K+

n and K−

n . For example, the probability is
75 percent that K−

20 will be 0.7975 or less. Unlike the chi-square test, the table
entries are not merely approximations that hold for large values of n; Table 2
gives exact values (except, of course, for roundoff error), and the KS test may
be used reliably for any value of n.

As they stand, formulas (11) are not readily adapted to computer calcula-
tion, since we are asking for a least upper bound over inĄnitely many values of x.
But from the fact that F (x) is increasing and the fact that Fn(x) increases only
in Ąnite steps, we can derive a simple procedure for evaluating the statistics K+

n

and K−

n :
Step 1. Obtain independent observations X1, X2, . . . , Xn .
Step 2. Rearrange the observations so that they are sorted into ascending order,
X1 ≤ X2 ≤ · · · ≤ Xn. (Efficient sorting algorithms are the subject of Chapter 5.
But it is possible to avoid sorting in this case, as shown in exercise 23.)
Step 3. The desired statistics are now given by the formulas

K+

n =
√
n max

1≤j≤n

j

n
− F (Xj)

;

K−

n =
√
n max

1≤j≤n

F (Xj)−
j − 1
n

.

(13)

An appropriate choice of the number of observations, n, is slightly easier to
make for this test than it is for the χ2 test, although some of the considerations
are similar. If the random variables Xj actually belong to the probability
distribution G(x), while they were assumed to belong to the distribution given
by F (x), we want n to be comparatively large, in order to reject the hypothesis
that G(x) = F (x); for we need n large enough that the empirical distributions

3.3.1 GENERAL TEST PROCEDURES 51

Table 2

SELECTED PERCENTAGE POINTS OF THE DISTRIBUTIONS K+
n AND K−

n

p = 1% p = 5% p = 25% p = 50% p = 75% p = 95% p = 99%

n = 1 0.01000 0.05000 0.2500 0.5000 0.7500 0.9500 0.9900

n = 2 0.01400 0.06749 0.2929 0.5176 0.7071 1.0980 1.2728

n = 3 0.01699 0.07919 0.3112 0.5147 0.7539 1.1017 1.3589

n = 4 0.01943 0.08789 0.3202 0.5110 0.7642 1.1304 1.3777

n = 5 0.02152 0.09471 0.3249 0.5245 0.7674 1.1392 1.4024

n = 6 0.02336 0.1002 0.3272 0.5319 0.7703 1.1463 1.4144

n = 7 0.02501 0.1048 0.3280 0.5364 0.7755 1.1537 1.4246

n = 8 0.02650 0.1086 0.3280 0.5392 0.7797 1.1586 1.4327

n = 9 0.02786 0.1119 0.3274 0.5411 0.7825 1.1624 1.4388

n = 10 0.02912 0.1147 0.3297 0.5426 0.7845 1.1658 1.4440

n = 11 0.03028 0.1172 0.3330 0.5439 0.7863 1.1688 1.4484

n = 12 0.03137 0.1193 0.3357 0.5453 0.7880 1.1714 1.4521

n = 15 0.03424 0.1244 0.3412 0.5500 0.7926 1.1773 1.4606

n = 20 0.03807 0.1298 0.3461 0.5547 0.7975 1.1839 1.4698

n = 30 0.04354 0.1351 0.3509 0.5605 0.8036 1.1916 1.4801

n > 30 yp − 1
6
n−1/2 +O(1/n), where y2

p = 1
2

ln(1/(1− p))
yp = 0.07089 0.1601 0.3793 0.5887 0.8326 1.2239 1.5174

(To extend this table, see Eqs. (25) and (26), and the answer to exercise 20.)

Gn(x) and Fn(x) are expected to be observably different. On the other hand,
large values of n will tend to average out locally nonrandom behavior, and such
undesirable behavior is a signiĄcant danger in most computer applications of
random numbers; this makes a case for smaller values of n. A good compromise
would be to take n equal to, say, 1000, and to make a fairly large number of
calculations of K+

1000 on different parts of a random sequence, thereby obtaining
values

K+

1000(1), K+

1000(2), . . . , K+

1000(r). (14)

We can also apply the KS test again to these results: Let F (x) now be the
distribution function for K+

1000, and determine the empirical distribution Fr(x)
obtained from the observed values in (14). Fortunately, the function F (x) in this
case is very simple; for a large value of n like n = 1000, the distribution of K+

n

is closely approximated by

F∞(x) = 1− e−2x2

, x ≥ 0. (15)

52 RANDOM NUMBERS 3.3.1

The same remarks apply to K−

n , since K+
n and K−

n have the same expected
behavior. This method of using several tests for moderately large n, then
combining the observations later in another KS test, will tend to detect both
local and global nonrandom behavior.

For example, the author conducted the following simple experiment while
writing this chapter: The “maximum-of-5Ť test described in the next section was
applied to a set of 1000 uniform random numbers, yielding 200 observations X1,
X2, . . . , X200 that were supposed to belong to the distribution F (x) = x5 for
0 ≤ x ≤ 1. The observations were divided into 20 groups of 10 each, and the
statistic K+

10 was computed for each group. The 20 values of K+

10 thus obtained
led to the empirical distributions shown in Fig. 4. The smooth curve shown in
each of the diagrams in Fig. 4 is the actual distribution the statistic K+

10 should
have. Figure 4(a) shows the empirical distribution of K+

10 obtained from the
sequence

Yn+1 = (3141592653Yn + 2718281829) mod 235, Un = Yn/235,

and it is satisfactorily random. Part (b) of the Ągure came from the Fibonacci
method; this sequence has globally nonrandom behavior Ů that is, it can be
shown that the observations Xn in the maximum-of-5 test do not have the correct
distribution F (x) = x5. Part (c) came from the notorious and impotent linear
congruential sequence Yn+1 = ((218 + 1)Yn + 1) mod 235, Un = Yn/235.

The KS test applied to the data in Fig. 4 gives the results shown in (12).
Referring to Table 2 for n = 20, we see that the values of K+

20 and K−

20 for
Fig. 4(b) are almost suspect (they lie at about the 5 percent and 88 percent
levels), but they are not quite bad enough to be rejected outright. The value of
K−

20 for Fig. 4(c) is, of course, completely out of line, so the maximum-of-5 test
shows a deĄnite failure of that random number generator.

We would expect the KS test in this experiment to have more difficulty
locating global nonrandomness than local nonrandomness, since the basic obser-
vations in Fig. 4 were made on samples of only 10 numbers each. If we were
to take 20 groups of 1000 numbers each, part (b) would show a much more
signiĄcant deviation. To illustrate this point, a single KS test was applied to all
200 of the observations that led to Fig. 4, and the following results were obtained:

Fig. 4(a) Fig. 4(b) Fig. 4(c)

K+

200 0.477 1.537 2.819

K−

200 0.817 0.194 0.058

(16)

The global nonrandomness of the Fibonacci generator has deĄnitely been de-
tected here.

We may summarize the KolmogorovŰSmirnov test as follows. We are given
n independent observations X1, . . . , Xn taken from some distribution speciĄed
by a continuous function F (x). That is, F (x) must be like the functions shown
in Fig. 3(b) and 3(c), having no jumps like those in Fig. 3(a). The procedure
explained just before Eqs. (13) is carried out on these observations, and we obtain

3.3.1 GENERAL TEST PROCEDURES 53

the statistics K+
n and K−

n . These statistics should be distributed according to
Table 2.

Some comparisons between the KS test and the χ2 test can now be made.
In the Ąrst place, we should observe that the KS test may be used in conjunction
with the χ2 test, to give a better procedure than the ad hoc method we mentioned
when summarizing the χ2 test. (That is, there is a better way to proceed than
to make three tests and to consider how many of the results were “suspect.Ť)
Suppose we have made, say, 10 independent χ2 tests on different parts of a
random sequence, so that values V1, V2, . . . , V10 have been obtained. It is not a
good policy simply to count how many of the V ’s are suspiciously large or small.
This procedure will work in extreme cases, and very large or very small values
may mean that the sequence has too much local nonrandomness; but a better
general method would be to plot the empirical distribution of these 10 values and
to compare it to the correct distribution, which may be obtained from Table 1.
The empirical distribution gives a clearer picture of the results of the χ2 tests,
and in fact the statistics K+

10 and K−

10 could be determined from the empirical
χ2 values as an indication of success or failure. With only 10 values or even
as many as 100 this could all be done easily by hand, using graphical methods;
with a larger number of V ’s, a computer subroutine for calculating the chi-square
distribution would be necessary. Notice that all 20 of the observations in Fig. 4(c)
fall between the 5 and 95 percent levels, so we would not have regarded any of
them as suspicious, individually; yet collectively the empirical distribution shows
that these observations are not at all right.

An important difference between the KS test and the chi-square test is that
the KS test applies to distributions F (x) having no jumps, while the chi-square
test applies to distributions having nothing but jumps (since all observations
are divided into k categories). The two tests are thus intended for different
sorts of applications. Yet it is possible to apply the χ2 test even when F (x) is
continuous, if we divide the domain of F (x) into k parts and ignore all variations
within each part. For example, if we want to test whether or not U1, U2, . . . , Un

can be considered to come from the uniform distribution between zero and one,
we want to test if they have the distribution F (x) = x for 0 ≤ x ≤ 1. This is
a natural application for the KS test. But we might also divide up the interval
from 0 to 1 into k = 100 equal parts, count how many U ’s fall into each part,
and apply the chi-square test with 99 degrees of freedom. There are not many
theoretical results available at the present time to compare the effectiveness of
the KS test versus the chi-square test. The author has found some examples in
which the KS test pointed out nonrandomness more clearly than the χ2 test, and
others in which the χ2 test gave a more signiĄcant result. If, for example, the
100 categories mentioned above are numbered 0, 1, . . . , 99, and if the deviations
from the expected values are positive in compartments 0 to 49 but negative in
compartments 50 to 99, then the empirical distribution function will be much
further from F (x) than the χ2 value would indicate; but if the positive deviations
occur in compartments 0, 2, . . . , 98 and the negative ones occur in 1, 3, . . . , 99,
the empirical distribution function will tend to hug F (x) much more closely. The

54 RANDOM NUMBERS 3.3.1

Range of K+
n

A B C D E F

Range of K−
n

A B C D E F

Fig. 5. The KS tests applied to the same data as Fig. 2.

kinds of deviations measured are therefore somewhat different. A χ2 test was
applied to the 200 observations that led to Fig. 4, with k = 10, and the respective
values of V were 9.4, 17.7, and 39.3; so in this particular case the values were
quite comparable to the KS values given in (16). Since the χ2 test is intrinsically
less accurate, and since it requires comparatively large values of n, the KS test
has several advantages when a continuous distribution is to be tested.

A further example will also be of interest. The data that led to Fig. 2
were chi-square statistics based on n = 200 observations of the maximum-of-t
criterion for 1 ≤ t ≤ 5, with the range divided into 10 equally probable parts.
KS statistics K+

200 and K−

200 can be computed from exactly the same sets of 200
observations, and the results can be tabulated in just the same way as we did
in Fig. 2 (showing which KS values are beyond the 99-percent level, etc.); the
results in this case are shown in Fig. 5. Notice that Generator D (Lehmer’s
original method) shows up very badly in Fig. 5, while chi-square tests on the

very same data revealed no difficulty in Fig. 2; contrariwise, Generator E (the
Fibonacci method) does not look so bad in Fig. 5. The good generators, A
and B, passed all tests satisfactorily. The reasons for the discrepancies between
Fig. 2 and Fig. 5 are primarily that (a) the number of observations, 200, is really
not large enough for a powerful test, and (b) the “reject,Ť “suspect,Ť “almost
suspectŤ ranking criterion is itself suspect.

(Incidentally, it is not fair to blame Lehmer for using a “badŤ random
number generator in the 1940s, since his actual use of Generator D was quite
valid. The ENIAC computer was a highly parallel machine, programmed by
means of a plugboard; Lehmer set it up so that one of its accumulators was
repeatedly multiplying its own contents by 23 (modulo 108 + 1), yielding a
new value every few milliseconds. Since this multiplier 23 is too small, we

3.3.1 GENERAL TEST PROCEDURES 55

know that each value obtained by such a process is too strongly related to
the preceding value to be considered sufficiently random; but the durations
of time between actual uses of the values in the special accumulator by the
accompanying program were comparatively long and subject to some Ćuctuation.
So the effective multiplier was 23k for large, varying values of k.)

C. History, bibliography, and theory. The chi-square test was introduced by
Karl Pearson in 1900 [Philosophical Magazine, Series 5, 50, 157Ű175]. Pearson’s
important paper is regarded as one of the foundations of modern statistics, since
before that time people would simply plot experimental results graphically and
assert that they were correct. In his paper, Pearson gave several interesting
examples of the previous misuse of statistics; and he also proved that certain
runs at roulette (which he had experienced during two weeks at Monte Carlo in
1892) were so far from the expected frequencies that odds against the assumption
of an honest wheel were some 1029 to one! A general discussion of the chi-square
test and an extensive bibliography appear in the survey article by William G.
Cochran, Annals Math. Stat. 23 (1952), 315Ű345.

Let us now consider a brief derivation of the theory behind the chi-square
test. The exact probability that Y1 = y1, . . . , Yk = yk is easily seen to be

n!
y1! . . . yk!

py1

1 . . . pyk

k . (17)

If we assume that Ys has the value ys with the Poisson probability

e−nps(nps)ys

ys!
,

and that the Y ’s are independent, then (Y1, . . . , Yk) will equal (y1, . . . , yk) with
probability

k

s=1

e−nps(nps)ys

ys!
,

and Y1 + · · ·+ Yk will equal n with probability

y1+···+yk=n
y1,...,yk≥0

k

s=1

e−nps(nps)ys

ys!
=
e−nnn

n!
.

If we assume that they are independent except for the condition Y1+· · ·+Yk = n,
the probability that (Y1, . . . , Yk) = (y1, . . . , yk) is the quotient

 k

s=1

e−nps(nps)ys

ys!

e−nnn

n!

,

which equals (17). We may therefore regard the Y ’s as independently Poisson
distributed, except for the fact that they have a Ąxed sum.

56 RANDOM NUMBERS 3.3.1

It is convenient to make a change of variables,

Zs =
Ys − nps√

nps
, (18)

so that V = Z2
1 + · · · + Z2

k . The condition Y1 + · · · + Yk = n is equivalent to
requiring that √

p1 Z1 + · · ·+√pk Zk = 0. (19)

Let us consider the (k − 1)-dimensional space S of all vectors (Z1, . . . , Zk)
such that (19) holds. For large values of n, each Zs has approximately the
normal distribution (see exercise 1.2.10Ű15); therefore points in a differential
volume dz2 . . . dzk of S occur with probability approximately proportional to
exp (−(z2

1 + · · ·+ z2
k)/2). (It is at this point in the derivation that the chi-square

method becomes only an approximation for large n.) The probability that V ≤ v
is now

(z1,...,zk) in S and z2
1+···+z2

k
≤v

exp (−(z2
1 + · · ·+ z2

k)/2) dz2 . . . dzk

(z1,...,zk) in S
exp (−(z2

1 + · · ·+ z2
k)/2) dz2 . . . dzk

. (20)

Since the hyperplane (19) passes through the origin of k-dimensional space, the
numerator in (20) is an integration over the interior of a (k − 1)-dimensional
hypersphere centered at the origin. An appropriate transformation to generalized
polar coordinates with radius χ and angles ω1, . . . , ωk−2 transforms (20) into

χ2≤v
e−χ2/2χk−2f(ω1, . . . , ωk−2) dχ dω1 . . . dωk−2

e−χ2/2χk−2f(ω1, . . . , ωk−2) dχ dω1 . . . dωk−2

for some function f (see exercise 15); then integration over the angles ω1, . . . ,
ωk−2 gives a constant factor that cancels from numerator and denominator. We
Ąnally obtain the formula

√
v

0
e−χ2/2χk−2 dχ

∞
0
e−χ2/2χk−2 dχ

(21)

for the approximate probability that V ≤ v.
Our derivation of (21) uses the symbol χ to stand for the radial length,

just as Pearson did in his original paper; this is how the χ2 test got its name.
Substituting t = χ2/2, the integrals can be expressed in terms of the incomplete
gamma function, which we discussed in Section 1.2.11.3:

lim
n→∞

Pr(V ≤ v) = γ

k − 1

2
,
v

2

Γ

k − 1

2

. (22)

This is the deĄnition of the chi-square distribution with k−1 degrees of freedom.

We now turn to the KS test. In 1933, A. N. Kolmogorov proposed a test
based on the statistic

Kn =
√
n max

−∞<x<+∞

Fn(x)− F (x)

 = max(K+

n ,K
−

n). (23)

3.3.1 GENERAL TEST PROCEDURES 57

N. V. Smirnov discussed several modiĄcations of this test in 1939, including the
individual examination of K+

n and K−

n as we have suggested above. There is
a large family of similar tests, but the K+

n and K−

n statistics seem to be most
convenient for computer application. A comprehensive review of the literature
concerning KS tests and their generalizations, including an extensive bibliogra-
phy, appears in a monograph by J. Durbin, Regional Conf. Series on Applied
Math. 9 (SIAM, 1973).

To study the distribution of K+
n and K−

n , we begin with the following basic
fact: If X is a random variable with the continuous distribution F (x), then F (X)
is a uniformly distributed real number between 0 and 1. To prove this, we need
only verify that if 0 ≤ y ≤ 1 we have F (X) ≤ y with probability y. Since F is
continuous, F (x0) = y for some x0; thus the probability that F (X) ≤ y is the
probability that X ≤ x0. By deĄnition, the latter probability is F (x0), that is,
it is y.

Let Yj = nF (Xj), for 1 ≤ j ≤ n, where the X’s have been sorted as in
Step 2 preceding Eq. (13). Then the variables Yj are essentially the same as
independent, uniformly distributed random numbers between 0 and n that have
been sorted into nondecreasing order, Y1 ≤ Y2 ≤ · · · ≤ Yn; and the Ąrst equation
of (13) may be transformed into

K+

n =
1√
n

max(1− Y1, 2− Y2, . . . , n− Yn).

If 0 ≤ t ≤ n, the probability that K+
n ≤ t/

√
n is therefore the probability that

Yj ≥ j − t for 1 ≤ j ≤ n. This is not hard to express in terms of n-dimensional
integrals,
 n

αn
dyn

 yn

αn−1
dyn−1 . . .

 y2

α1
dy1

 n

0
dyn

 yn

0
dyn−1 . . .

 y2

0
dy1

, where αj = max(j − t, 0). (24)

The denominator here is immediately evaluated: It is found to be nn/n!, which
makes sense since the hypercube of all vectors (y1, y2, . . . , yn) with 0 ≤ yj < n
has volume nn, and it can be divided into n! equal parts corresponding to each
possible ordering of the y’s. The integral in the numerator is a little more
difficult, but it yields to the attack suggested in exercise 17, and we get the
general formulas

Pr

K+
n ≤

t√
n

=
t

nn

0≤k≤t

n

k

(k − t)k(t+ n− k)n−k−1 (25)

= 1− t

nn

t<k≤n

n

k

(k − t)k(t+ n− k)n−k−1. (26)

The distribution of K−
n is exactly the same. Equation (26) was Ąrst obtained

by N. V. Smirnov [Uspekhi Mat. Nauk 10 (1944), 176Ű206]; see also Z. W.
Birnbaum and Fred H. Tingey, Annals Math. Stat. 22 (1951), 592Ű596. Smirnov

58 RANDOM NUMBERS 3.3.1

derived the asymptotic formula

Pr(K+
n ≤ s) = 1− e−2s2

1− 2
3
s/
√
n+O(1/n)

(27)

for all Ąxed s ≥ 0; this yields the approximations for large n that appear in
Table 2.

Abel’s binomial theorem, Eq. 1.2.6Ű(16), shows the equivalence of (25) and
(26). We can extend Table 2 using either formula, but there is an interesting
tradeoff: Although the sum in (25) has only about s

√
n terms, when s = t/

√
n is

given, it must be evaluated with multiple-precision arithmetic, because the terms
are large and their leading digits cancel out. No such problem arises in (26), since
its terms are all positive; but (26) has n− s√n terms.

EXERCISES

1. [00] What line of the chi-square table should be used to check whether or not the
value V = 7 7

48
of Eq. (5) is improbably high?

2. [20] If two dice are “loadedŤ so that, on one die, the value 1 will turn up exactly
twice as often as any of the other values, and the other die is similarly biased towards 6,
compute the probability ps that a total of exactly s will appear on the two dice, for
2 ≤ s ≤ 12.

x 3. [23] Some dice that were loaded as described in the previous exercise were rolled
144 times, and the following values were observed:

value of s = 2 3 4 5 6 7 8 9 10 11 12
observed number, Ys = 2 6 10 16 18 32 20 13 16 9 2

Apply the chi-square test to these values, using the probabilities in (1), pretending that
the dice are not in fact known to be faulty. Does the chi-square test detect the bad
dice? If not, explain why not.

x 4. [23] The author actually obtained the data in experiment 1 of (9) by simulating
dice in which one was normal, the other was loaded so that it always turned up 1 or 6.
(The latter two possibilities were equally probable.) Compute the probabilities that
replace (1) in this case, and by using a chi-square test decide if the results of that
experiment are consistent with the dice being loaded in this way.

5. [22] Let F (x) be the uniform distribution, Fig. 3(b). Find K+
20 and K−

20 for the
following 20 observations:

0.414, 0.732, 0.236, 0.162, 0.259, 0.442, 0.189, 0.693, 0.098, 0.302,
0.442, 0.434, 0.141, 0.017, 0.318, 0.869, 0.772, 0.678, 0.354, 0.718,

and state whether these observations are signiĄcantly different from the expected
behavior with respect to either of these two tests.

6. [M20] Consider Fn(x), as given in Eq. (10), for Ąxed x. What is the probability
that Fn(x) = s/n, given an integer s? What is the mean value of Fn(x)? What is the
standard deviation?

7. [M15] Show that K+
n and K−

n can never be negative. What is the largest possible
value K+

n can have?

8. [00] The text describes an experiment in which 20 values of the statistic K+
10

were obtained in the study of a random sequence. These values were plotted, to obtain

3.3.1 GENERAL TEST PROCEDURES 59

Fig. 4, and a KS statistic was computed from the resulting graph. Why were the table
entries for n = 20 used to study the resulting statistic, instead of the table entries for
n = 10?

x 9. [20] The experiment described in the text consisted of plotting 20 values of K+
10,

computed from the maximum-of-5 test applied to different parts of a random sequence.
We could have computed also the corresponding 20 values of K−

10; since K−

10 has the
same distribution as K+

10, we could lump together the 40 values thus obtained (that is,
20 of the K+

10’s and 20 of the K−

10’s), and a KS test could be applied so that we would
get new values K+

40,K
−

40. Discuss the merits of this idea.

x 10. [20] Suppose a chi-square test is done by making n observations, and the value V
is obtained. Now we repeat the test on these same n observations over again (getting,
of course, the same results), and we put together the data from both tests, regarding
it as a single chi-square test with 2n observations. (This procedure violates the text’s
stipulation that all of the observations must be independent of one another.) How is
the second value of V related to the Ąrst one?

11. [10] Solve exercise 10 substituting the KS test for the chi-square test.

12. [M28] Suppose a chi-square test is made on a set of n observations, assuming that
ps is the probability that each observation falls into category s; but suppose that in
actual fact the observations have probability qs ̸= ps of falling into category s. (See
exercise 3.) We would, of course, like the chi-square test to detect the fact that the ps

assumption was incorrect. Show that this will happen, if n is large enough. Prove also
the analogous result for the KS test.

13. [M24] Prove that Eqs. (13) are equivalent to Eqs. (11).

x 14. [HM26] Let Zs be given by Eq. (18). Show directly by using Stirling’s approxi-
mation that the multinomial probability

n!pY1
1 . . . p

Yk
k /Y1! . . . Yk! = e−V/2/

(2nπ)k−1p1 . . . pk +O(n−k/2),

if Z1, Z2, . . . , Zk are bounded as n→∞. (This idea leads to a proof of the chi-square
test that is much closer to “Ąrst principles,Ť and requires less handwaving, than the
derivation in the text.)

15. [HM24] Polar coordinates in two dimensions are conventionally deĄned by the
equations x = r cos θ and y = r sin θ. For the purposes of integration, we have dx dy =
r dr dθ. More generally, in n-dimensional space we can let

xk = r sin θ1 . . . sin θk−1 cos θk, 1 ≤ k < n, and xn = r sin θ1 . . . sin θn−1.

Show that in this case

dx1 dx2 . . . dxn = |rn−1 sinn−2 θ1 . . . sin θn−2 dr dθ1 . . . dθn−1|.
x 16. [HM35] Generalize Theorem 1.2.11.3A to Ąnd the value of

γ(x+ 1, x+ z
√

2x+ y)/Γ (x+ 1),

for large x and Ąxed y, z. Disregard terms of the answer that are O(1/x). Use this
result to Ąnd the approximate solution, t, to the equation

γ

ν

2
,
t

2

Γ

ν

2

= p,

for large ν and Ąxed p, thereby accounting for the asymptotic formulas indicated in
Table 1. [Hint: See exercise 1.2.11.3Ű8.]

60 RANDOM NUMBERS 3.3.1

17. [HM26] Let t be a Ąxed real number. For 0 ≤ k ≤ n, let

Pnk(x) =
 x

n−t

dxn

 xn

n−1−t

dxn−1 . . .

 xk+2

k+1−t

dxk+1

 xk+1

0

dxk . . .

 x2

0

dx1;

by convention, let P00(x) = 1. Prove the following relations:

a) Pnk(x) =
 x+t

n

dxn

 xn

n−1

dxn−1 . . .

 xk+2

k+1

dxk+1

 xk+1

t

dxk . . .

 x2

t

dx1.

b) Pn0(x) = (x+ t)n/n!− (x+ t)n−1/(n− 1)!.

c) Pnk(x)− Pn(k−1)(x) =
(k − t)k

k!
P(n−k)0(x− k), if 1 ≤ k ≤ n.

d) Obtain a general formula for Pnk(x), and apply it to the evaluation of Eq. (24).

18. [M20] Give a “simpleŤ reason why K−
n has the same probability distribution

as K+
n .

19. [HM48] Develop tests, analogous to the KolmogorovŰSmirnov test, for use with
multivariate distributions F (x1, . . . , xr) = Pr(X1 ≤ x1, . . . , Xr ≤ xr). (Such proce-
dures could be used, for example, in place of the “serial testŤ in the next section.)

20. [HM41] Deduce further terms of the asymptotic behavior of the KS distribution,
extending (27).

21. [M40] Although the text states that the KS test should be applied only when
F (x) is a continuous distribution function, it is, of course, possible to try to compute
K+

n and K−
n even when the distribution has jumps. Analyze the probable behavior of

K+
n and K−

n for various discontinuous distributions F (x). Compare the effectiveness
of the resulting statistical test with the chi-square test on several samples of random
numbers.

22. [HM46] Investigate the “improvedŤ KS test suggested in the answer to exercise 6.

23. [M22] (T. Gonzalez, S. Sahni, and W. R. Franta.) (a) Suppose that the maxi-
mum value in formula (13) for the KS statistic K+

n occurs at a given index j where
⌊nF (Xj)⌋ = k. Prove that F (Xj) = max1≤i≤n{F (Xi) | ⌊nF (Xi)⌋ = k}. (b) Design
an algorithm that calculates K+

n and K−
n in O(n) steps (without sorting).

x 24. [40] Experiment with various probability distributions (p, q, r) on three categories,
where p+ q + r = 1, by computing the exact distribution of the chi-square statistic V
for various n, thereby determining how accurate an approximation the chi-square
distribution with two degrees of freedom really is.

25. [HM26] Suppose Yi =
n

j=1 aijXj + µi for 1 ≤ i ≤ m, where X1, . . . , Xn are
independent random variables with mean zero and unit variance, and the matrix A =
(aij) has rank n.

a) Express the covariance matrix C = (cij), where cij = E(Yi − µi)(Yj − µj), in
terms of the matrix A.

b) Prove that if C = (c̄ij) is any matrix such that CCC = C, the statistic

W =
m

i=1

m

j=1

(Yi − µi)(Yj − µj)c̄ij

is equal to X2
1 + · · ·+X2

n. [Consequently, if the Xj have the normal distribution,
W has the chi-square distribution with n degrees of freedom.]

3.3.2 EMPIRICAL TESTS 61

The equanimity of your average tosser of coins

depends upon a law . . . which ensures that

he will not upset himself by losing too much

nor upset his opponent by winning too often.

Ů TOM STOPPARD, Rosencrantz & Guildenstern are Dead (1966)

3.3.2. Empirical Tests

In this section we shall discuss eleven kinds of speciĄc tests that have traditionally
been applied to sequences in order to investigate their randomness. The discus-
sion of each test has two parts: (a) a “plug-inŤ description of how to perform the
test; and (b) a study of the theoretical basis for the test. (Readers who lack math-
ematical training may wish to skip over the theoretical discussions. Conversely,
mathematically inclined readers may Ąnd the associated theory quite interesting,
even if they never intend to test random number generators, since some instruc-
tive combinatorial questions are involved here. Indeed, this section introduces
several topics that will be important to us later in quite different contexts.)

Each test is applied to a sequence

⟨Un⟩ = U0, U1, U2, . . . (1)

of real numbers, which purports to be independently and uniformly distributed
between zero and one. Some of the tests are designed primarily for integer-valued
sequences, instead of the real-valued sequence (1). In this case, the auxiliary
sequence

⟨Yn⟩ = Y0, Y1, Y2, . . . (2)

deĄned by the rule
Yn = ⌊dUn⌋ (3)

is used instead. This is a sequence of integers that purports to be independently
and uniformly distributed between 0 and d − 1. The number d is chosen for
convenience; for example, we might have d = 64 = 26 on a binary computer,
so that Yn represents the six most signiĄcant bits of the binary representation
of Un. The value of d should be large enough so that the test is meaningful, but
not so large that the test becomes impracticably difficult to carry out.

The quantities Un, Yn, and d will have the signiĄcance stated above through-
out this section, although the value of d will probably be different in different
tests.

A. Equidistribution test (Frequency test). The Ąrst requirement that
sequence (1) must meet is that its numbers are, in fact, uniformly distributed
between zero and one. There are two ways to make this test: (a) Use the
KolmogorovŰSmirnov test, with F (x) = x for 0 ≤ x ≤ 1. (b) Let d be a
convenient number, such as 100 on a decimal computer, 64 or 128 on a binary
computer, and use the sequence (2) instead of (1). For each integer r, 0 ≤ r < d,
count the number of times that Yj = r for 0 ≤ j < n, and then apply the
chi-square test using k = d and probability ps = 1/d for each category.

The theory behind this test has been covered in Section 3.3.1.

62 RANDOM NUMBERS 3.3.2

B. Serial test. More generally, we want pairs of successive numbers to be
uniformly distributed in an independent manner. The sun comes up just about as
often as it goes down, in the long run, but that doesn’t make its motion random.

To carry out the serial test, we simply count the number of times that the
pair (Y2j , Y2j+1) = (q, r) occurs, for 0 ≤ j < n; these counts are to be made for
each pair of integers (q, r) with 0 ≤ q, r < d, and the chi-square test is applied
to these k = d2 categories with probability 1/d2 in each category. As with the
equidistribution test, d may be any convenient number, but it will be somewhat
smaller than the values suggested above since a valid chi-square test should have
n large compared to k (say n ≥ 5d2 at least).

Clearly we can generalize this test to triples, quadruples, etc., instead of
pairs (see exercise 2); however, the value of d must then be severely reduced in
order to avoid having too many categories. When quadruples and larger numbers
of adjacent elements are considered, we therefore make use of less exact tests such
as the poker test or the maximum test described below.

Notice that 2n numbers of the sequence (2) are used in this test in order
to make n observations. It would be a mistake to perform the serial test
on the pairs (Y0, Y1), (Y1, Y2), . . . , (Yn−1, Yn); can the reader see why? We
might perform another serial test on the pairs (Y2j+1, Y2j+2), and expect the
sequence to pass both tests, remembering that the tests aren’t independent of
each other. Alternatively, George Marsaglia has proved that, if the pairs (Y0, Y1),
(Y1, Y2), . . . , (Yn−1, Yn) are used, and if we use the usual chi-square method to
compute both the statistics V2 for the serial test and V1 for the frequency test on
Y0, . . . , Yn−1 with the same value of d, then V2 − V1 should have the chi-square
distribution with d(d− 1) degrees of freedom when n is large. (See exercise 24.)

C. Gap test. Another test is used to examine the length of “gapsŤ between
occurrences of Uj in a certain range. If α and β are two real numbers with
0 ≤ α < β ≤ 1, we want to consider the lengths of consecutive subsequences Uj ,
Uj+1, . . . , Uj+r in which Uj+r lies between α and β but the other U ’s do not.
(This subsequence of r + 1 numbers represents a gap of length r.)

Algorithm G (Data for gap test). The following algorithm, applied to the
sequence (1) for any given values of α and β, counts the number of gaps of
lengths 0, 1, . . . , t− 1 and the number of gaps of length ≥ t, until n gaps have
been tabulated.

G1. [Initialize.] Set j ← −1, s← 0, and set COUNT[r]← 0 for 0 ≤ r ≤ t.
G2. [Set r zero.] Set r ← 0.

G3. [α ≤ Uj < β?] Increase j by 1. If Uj ≥ α and Uj < β, go to step G5.

G4. [Increase r.] Increase r by one, and return to step G3.

G5. [Record the gap length.] (A gap of length r has now been found.) If r ≥ t,
increase COUNT[t] by one, otherwise increase COUNT[r] by one.

G6. [n gaps found?] Increase s by one. If s < n, return to step G2.

3.3.2 EMPIRICAL TESTS 63

G1. Initialize G2. Set r zero G3. α≤Uj <β? G4. Increase r

G5. Record the gap lengthG6. n gaps found?

No

Yes

No

Yes

Fig. 6. Gathering data for the gap test. (Algorithms for the “coupon-collector’s testŤ
and the “run testŤ are similar.)

After Algorithm G has been performed, the chi-square test is applied to
the k = t + 1 values of COUNT[0], COUNT[1], . . . , COUNT[t], using the following
probabilities:

pr = p(1− p)r, for 0 ≤ r ≤ t− 1; pt = (1− p)t. (4)

Here p = β −α is the probability that α ≤ Uj < β. The values of n and t are to
be chosen, as usual, so that each of the values of COUNT[r] is expected to be 5 or
more, preferably more.

The gap test is often applied with α = 0 or β = 1 in order to omit one of
the comparisons in step G3. The special cases (α, β) = (0, 1

2) or (1
2 , 1) give rise

to tests that are sometimes called “runs above the meanŤ and “runs below the
mean,Ť respectively.

The probabilities in Eq. (4) are easily deduced, so this derivation is left to
the reader. Notice that the gap test as described above observes the lengths of n
gaps; it does not observe the gap lengths among n numbers. If the sequence ⟨Un⟩
is sufficiently nonrandom, Algorithm G might not terminate. Other gap tests
that examine a Ąxed number of U ’s have also been proposed (see exercise 5).

D. Poker test (Partition test). The “classicalŤ poker test considers n groups
of Ąve successive integers, {Y5j , Y5j+1, . . . , Y5j+4} for 0 ≤ j < n, and observes
which of the following seven patterns is matched by each (orderless) quintuple:

All different: abcde

One pair: aabcd

Two pairs: aabbc

Three of a kind: aaabc

Full house: aaabb

Four of a kind: aaaab

Five of a kind: aaaaa

A chi-square test is based on the number of quintuples in each category.
It is reasonable to ask for a somewhat simpler version of this test, to facilitate

the programming involved. A good compromise would simply be to count the

64 RANDOM NUMBERS 3.3.2

number of distinct values in the set of Ąve. We would then have Ąve categories:

5 values = all different;

4 values = one pair;

3 values = two pairs, or three of a kind;

2 values = full house, or four of a kind;

1 value = Ąve of a kind.

This breakdown is easier to determine systematically, and the test is nearly
as good.

In general we can consider n groups of k successive numbers, and we can
count the number of k-tuples with r different values. A chi-square test is then
made, using the probability

pr =
d(d− 1) . . . (d− r + 1)

dk

k

r

(5)

that there are r different. (The Stirling numbers

k
r

are deĄned in Section 1.2.6,

and they can readily be computed using the formulas given there.) Since the
probability pr is very small when r = 1 or 2, we generally lump a few categories
of low probability together before the chi-square test is applied.

To derive the proper formula for pr, we must count how many of the dk

k-tuples of numbers between 0 and d− 1 have exactly r different elements, and
divide the total by dk. Since d(d − 1) . . . (d − r + 1) is the number of ordered
choices of r things from a set of d objects, we need only show that

k
r

is the

number of ways to partition a set of k elements into exactly r parts. Therefore
exercise 1.2.6Ű64 completes the derivation of Eq. (5).

E. Coupon collector’s test. The next test is related to the poker test some-
what as the gap test is related to the frequency test. We use the sequence Y0,
Y1, . . . , and we observe the lengths of segments Yj+1, Yj+2, . . . , Yj+r that are
required to get a “complete setŤ of integers from 0 to d−1. Algorithm C describes
this precisely:

Algorithm C (Data for coupon collector’s test). Given a sequence of integers
Y0, Y1, . . . , with 0 ≤ Yj < d, this algorithm counts the lengths of n consecutive
“coupon collectorŤ segments. At the conclusion of the algorithm, COUNT[r] is the
number of segments with length r, for d ≤ r < t, and COUNT[t] is the number of
segments with length ≥ t.
C1. [Initialize.] Set j ← −1, s← 0, and set COUNT[r]← 0 for d ≤ r ≤ t.
C2. [Set q, r zero.] Set q ← r ← 0, and set OCCURS[k]← 0 for 0 ≤ k < d.

C3. [Next observation.] Increase r and j by 1. If OCCURS[Yj] ̸= 0, repeat this
step.

C4. [Complete set?] Set OCCURS[Yj] ← 1 and q ← q + 1. (The subsequence
observed so far contains q distinct values; if q = d, we therefore have a
complete set.) If q < d, return to step C3.

3.3.2 EMPIRICAL TESTS 65

C5. [Record the length.] If r ≥ t, increase COUNT[t] by one, otherwise increase
COUNT[r] by one.

C6. [n found?] Increase s by one. If s < n, return to step C2.

For an example of this algorithm, see exercise 7. We may think of a boy col-
lecting d types of coupons, which are randomly distributed in his breakfast cereal
boxes; he must keep eating more cereal until he has one coupon of each type.

A chi-square test is to be applied to COUNT[d], COUNT[d + 1], . . . , COUNT[t],
with k = t− d+ 1, after Algorithm C has counted n lengths. The corresponding
probabilities are

pr =
d!
dr

r − 1
d− 1

, d ≤ r < t; pt = 1− d!
dt−1

t− 1
d

. (6)

To derive these probabilities, we simply note that if qr denotes the probability
that a subsequence of length r is incomplete, then

qr = 1− d!
dr

r

d

by Eq. (5); for this means we have an r-tuple of elements that do not have all d
different values. Then (6) follows from the relations pt = qt−1 and

pr = qr−1 − qr for d ≤ r < t.

For formulas that arise in connection with generalizations of the coupon
collector’s test, see exercises 9 and 10 and also the papers by George Pólya,
Zeitschrift für angewandte Math. und Mech. 10 (1930), 96Ű97; Hermann von
Schelling, AMM 61 (1954), 306Ű311.

F. Permutation test. Divide the input sequence into n groups of t elements
each, that is, (Ujt, Ujt+1, . . . , Ujt+t−1) for 0 ≤ j < n. The elements in each group
can have t! possible relative orderings; the number of times each ordering appears
is counted, and a chi-square test is applied with k = t! and with probability 1/t!
for each ordering.

For example, if t = 3 we would have six possible categories, according to
whether U3j < U3j+1 < U3j+2 or U3j < U3j+2 < U3j+1 or · · · or U3j+2 <
U3j+1 < U3j . We assume in this test that equality between U ’s does not occur;
such an assumption is justiĄed, for the probability that two U ’s are equal is zero.

A convenient way to perform the permutation test on a computer makes use
of the following algorithm, which is of interest in itself:

Algorithm P (Analyze a permutation). Given a sequence of distinct elements
(U1, . . . , Ut), we compute an integer f(U1, . . . , Ut) such that

0 ≤ f(U1, . . . , Ut) < t!,

and f(U1, . . . , Ut) = f(V1, . . . , Vt) if and only if (U1, . . . , Ut) and (V1, . . . , Vt)
have the same relative ordering.

66 RANDOM NUMBERS 3.3.2

P1. [Initialize.] Set r ← t, f ← 0. (During this algorithm we will have 0 ≤ f <
t!/r!.)

P2. [Find maximum.] Find the maximum of {U1, . . . , Ur}, and suppose that Us

is the maximum. Set f ← r · f + s− 1.

P3. [Exchange.] Exchange Ur ↔ Us.

P4. [Decrease r.] Decrease r by one. If r > 1, return to step P2.

The sequence (U1, . . . , Ut) will have been sorted into ascending order when
this algorithm stops. To prove that the result f uniquely characterizes the initial

order of (U1, . . . , Ut), we note that Algorithm P can be run backwards:

For r = 2, 3, . . . , t,
set s← f mod r, f ← ⌊f/r⌋,
and exchange Ur ↔ Us+1.

It is easy to see that this will undo the effects of steps P2ŰP4; hence no two
permutations can yield the same value of f , and Algorithm P performs as
advertised.

The essential idea that underlies Algorithm P is a mixed-radix representation
called the “factorial number systemŤ: Every integer in the range 0 ≤ f < t! can
be uniquely written in the form

f =

. . . (ct−1 × (t− 1) + ct−2)× (t− 2) + · · ·+ c2

× 2 + c1

= (t− 1)! ct−1 + (t− 2)! ct−2 + · · ·+ 2! c2 + 1! c1 (7)

where the “digitsŤ cj are integers satisfying

0 ≤ cj ≤ j, for 1 ≤ j < t. (8)

In Algorithm P, cr−1 = s− 1 when step P2 is performed for a given value of r.

G. Run test. A sequence may also be tested for “runs upŤ and “runs down.Ť
This means that we examine the length of monotone portions of the original
sequence (segments that are increasing or decreasing).

As an example of the precise deĄnition of a run, consider the sequence of ten
digits “1298536704Ť. Putting a vertical line at the left and right and between
Xj and Xj+1 whenever Xj > Xj+1, we obtain

1 2 9 8 5 3 6 7 0 4 , (9)

which displays the “runs upŤ: There is a run of length 3, followed by two runs
of length 1, followed by another run of length 3, followed by a run of length 2.
The algorithm of exercise 12 shows how to tabulate the length of “runs up.Ť

Unlike the gap test and the coupon collector’s test (which are in many other
respects similar to this test), we should not apply a chi-square test to the run
counts, since adjacent runs are not independent. A long run will tend to be
followed by a short run, and conversely. This lack of independence is enough to

3.3.2 EMPIRICAL TESTS 67

invalidate a straightforward chi-square test. Instead, the following statistic may
be computed, when the run lengths have been determined as in exercise 12:

V =
1

n− 6

1≤i,j≤6

(COUNT[i]− nbi)(COUNT[j]− nbj)aij , (10)

where n is the length of the sequence, and the matrices of coefficients A =
(aij)1≤i,j≤6 and B = (bi)1≤i≤6 are given by

A =

4529.4 9044.9 13568 18091 22615 27892

9044.9 18097 27139 36187 45234 55789

13568 27139 40721 54281 67852 83685

18091 36187 54281 72414 90470 111580

22615 45234 67852 90470 113262 139476

27892 55789 83685 111580 139476 172860

, B =

1
6
5

24
11

120
19

720
29

5040
1

840

.

(11)
(The values of aij shown here are approximate only; exact values can be obtained
from formulas derived below.) The statistic V in (10) should have the chi-square
distribution with six, not Ąve, degrees of freedom, when n is large. The value
of n should be, say, 4000 or more. The same test can be applied to “runs down.Ť

A vastly simpler and more practical run test appears in exercise 14, so
a reader who is interested only in testing random number generators should
skip the next few pages and go on to the “maximum-of-t testŤ after looking at
exercise 14. On the other hand it is instructive from a mathematical standpoint
to see how a complicated run test with interdependent runs can be treated, so
we shall now digress for a moment.

Given any permutation of n elements, let Zpi = 1 if position i is the
beginning of an ascending run of length p or more, and let Zpi = 0 otherwise.
For example, consider the permutation (9) with n = 10; we have

Z11 = Z21 = Z31 = Z14 = Z15 = Z16 = Z26 = Z36 = Z19 = Z29 = 1,

and all other Z’s are zero. With this notation,

R′
p = Zp1 + Zp2 + · · ·+ Zpn (12)

is the number of runs of length ≥ p, and

Rp = R′
p −R′

p+1 (13)

is the number of runs of length p exactly. Our goal is to compute the mean value
of Rp, and also the covariance

covar(Rp, Rq) = mean

Rp −mean(Rp)

Rq −mean(Rq)

,

which measures the interdependence of Rp and Rq. These mean values are to be
computed as the average over the set of all n! permutations.

68 RANDOM NUMBERS 3.3.2

Equations (12) and (13) show that the answers can be expressed in terms
of the mean values of Zpi and of ZpiZqj , so as the Ąrst step of the derivation we
obtain the following results (assuming that i < j):

1
n!

Zpi =

p+ δi1
(p+ 1)!

, if i ≤ n− p+ 1;

0, otherwise.

1
n!

ZpiZqj =

(p+ δi1)q
(p+ 1)! (q + 1)!

, if i+ p < j ≤ n− q + 1;

p+ δi1
(p+ 1)! q!

− p+ q + δi1
(p+ q + 1)!

, if i+ p = j ≤ n− q + 1;

0, otherwise.

(14)

The

-signs stand for summation over all possible permutations. To illustrate
the calculations involved here, we will work the most difficult case, when i+ p =
j ≤ n − q + 1, and when i > 1. The quantity ZpiZqj is either zero or one,
so the summation consists of counting all permutations U1U2 . . . Un for which
Zpi = Zqj = 1, that is, all permutations such that

Ui−1 > Ui < · · · < Ui+p−1 > Ui+p < · · · < Ui+p+q−1. (15)

The number of such permutations may be enumerated as follows: There are

n
p+q+1

ways to choose the elements for the positions indicated in (15); there

are
(p+ q + 1)

p+ q

p

−

p+ q + 1
p+ 1

−

p+ q + 1

1

+ 1 (16)

ways to arrange them in the order (15), as shown in exercise 13; and there
are (n − p − q − 1)! ways to arrange the remaining elements. Thus there are

n
p+q+1

(n − p − q − 1)! times (16) ways in all, and we divide by n! to get the

desired formula.
From relations (14) a rather lengthy calculation leads to

mean(R′
p) = (n+ 1)p/(p+ 1)!− (p− 1)/p!, 1 ≤ p ≤ n; (17)

covar(R′
p, R

′
q) = mean(R′

pR
′
q)−mean(R′

p) mean(R′
q)

=

1≤i,j≤n

1
n!

ZpiZqj −mean(R′
p) mean(R′

q)

=

mean(R′
t) + f(p, q, n), if p+ q ≤ n,

mean(R′
t)−mean(R′

p) mean(R′
q), if p+ q > n,

(18)

where t = max(p, q), s = p+ q, and

f(p, q, n) = (n+ 1)

s(1− pq) + pq

(p+ 1)! (q + 1)!
− 2s

(s+ 1)!

+ 2

s− 1
s!

+
(s2 − s− 2)pq − s2 − p2q2 + 1

(p+ 1)! (q + 1)!
. (19)

3.3.2 EMPIRICAL TESTS 69

This expression for the covariance is unfortunately quite complicated, but it is
necessary for a successful run test as described above. From these formulas it is
easy to compute

mean(Rp) = mean(R′
p)−mean(R′

p+1),

covar(Rp, R
′
q) = covar(R′

p, R
′
q)− covar(R′

p+1, R
′
q),

covar(Rp, Rq) = covar(Rp, R
′
q)− covar(Rp, R

′
q+1).

(20)

In Annals Math. Stat. 15 (1944), 163Ű165, J. Wolfowitz proved that the quan-
tities R1, R2, . . . , Rt−1, R′

t become normally distributed as n → ∞, subject to
the mean and covariance expressed above; this implies that the following test for
runs is valid: Given a sequence of n random numbers, compute the number of
runs Rp of length p for 1 ≤ p < t, and also the number of runs R′

t of length t or
more. Let

Q1 = R1 −mean(R1), . . . , Qt−1 = Rt−1 −mean(Rt−1),

Qt = R′
t −mean(R′

t).
(21)

Form the matrix C of the covariances of the R′s; for example, C13 =
covar(R1, R3), while C1t = covar(R1, R

′
t). When t = 6, we have

C = nC1 + C2, (22)

where

C1 =

23
180

−7
360

−5
336

−433
60480

−13
5670

−121
181440

−7
360

2843
20160

−989
20160

−7159
362880

−10019
1814400

−1303
907200

−5
336

−989
20160

54563
907200

−21311
1814400

−62369
19958400

−7783
9979200

−433
60480

−7159
362880

−21311
1814400

886657
39916800

−257699
239500800

−62611
239500800

−13
5670

−10019
1814400

−62369
19958400

−257699
239500800

29874811
5448643200

−1407179
21794572800

−121
181440

−1303
907200

−7783
9979200

−62611
239500800

−1407179
21794572800

2134697
1816214400

,

C2 =

83
180

−29
180

−11
210

−41
12096

91
25920

41
18144

−29
180

−305
4032

319
20160

2557
72576

10177
604800

413
64800

−11
210

319
20160

−58747
907200

19703
604800

239471
19958400

39517
9979200

−41
12096

2557
72576

19703
604800

−220837
4435200

1196401
239500800

360989
239500800

91
25920

10177
604800

239471
19958400

1196401
239500800

−139126639
7264857600

4577641
10897286400

41
18144

413
64800

39517
9979200

360989
239500800

4577641
10897286400

−122953057
21794572800

if n ≥ 12. Now form A = (aij), the inverse of the matrix C, and compute
t

i,j=1 QiQjaij . The result for large n should have approximately the chi-square
distribution with t degrees of freedom.

The matrix A given earlier in (11) is the inverse of C1 to Ąve signiĄcant Ąg-
ures. The true inverse, A, is n−1C−1

1 −n−2C−1
1 C2C

−1
1 +n−3C−1

1 C2C
−1
1 C2C

−1
1 −

· · · , and it turns out that C−1
1 C2C

−1
1 is very nearly equal to −6C−1

1 . Therefore
by (10), V ≈ QTC−1

1 Q/(n− 6), where Q = (Q1 . . . Qt)T .

70 RANDOM NUMBERS 3.3.2

H. Maximum-of-t test. For 0 ≤ j < n, let Vj = max(Utj , Utj+1, . . . , Utj+t−1).
Now apply the KolmogorovŰSmirnov test to the sequence V0, V1, . . . , Vn−1,
with the distribution function F (x) = xt, 0 ≤ x ≤ 1. Alternatively, apply the
equidistribution test to the sequence V t

0 , V t
1 , . . . , V t

n−1.
To verify this test, we must show that the distribution function for the Vj is

F (x) = xt. The probability that max(U1, U2, . . . , Ut) ≤ x is the probability that
U1 ≤ x and U2 ≤ x and . . . and Ut ≤ x, which is the product of the individual
probabilities, namely xx . . . x = xt.

I. Collision test. Chi-square tests can be made only when a nontrivial number
of items are expected in each category. But another kind of test can be used
when the number of categories is much larger than the number of observations;
this test is related to “hashing,Ť an important method for information retrieval
that we shall study in Section 6.4.

Suppose we have m urns and we throw n balls at random into those urns,
where m is much greater than n. Most of the balls will land in urns that were
previously empty, but if a ball falls into an urn that already contains at least one
ball we say that a “collisionŤ has occurred. The collision test counts the number
of collisions, and a generator passes this test if it doesn’t induce too many or too
few collisions.

To Ąx the ideas, suppose m = 220 and n = 214. Then each urn will receive
only one 64th of a ball, on the average. The probability that a given urn will
contain exactly k balls is pk =

n
k

m−k(1−m−1)n−k, so the expected number of

collisions per urn is

k≥1

(k − 1)pk =

k≥0

kpk −

k≥1

pk =
n

m
− 1 + p0.

Since p0 = (1 − m−1)n = 1 − nm−1 +

n
2

m−2 − smaller terms, we Ąnd that

the average total number of collisions taken over all m urns is slightly less than
n2/(2m) = 128. (The actual value is ≈ 127.33.)

We can use the collision test to rate a random number generator in a large
number of dimensions. For example, when m = 220 and n = 214 we can test the
20-dimensional randomness of a number generator by letting d = 2 and forming
20-dimensional vectors Vj = (Y20j , Y20j+1, . . . , Y20j+19) for 0 ≤ j < n. We keep
a table of m = 220 bits to determine collisions, one bit for each possible value of
the vector Vj ; on a computer with 32 bits per word, this amounts to 215 words.
Initially all 220 bits of this table are cleared to zero; then for each Vj , if the
corresponding bit is already 1 we record a collision, otherwise we set the bit to 1.
This test can also be used in 10 dimensions with d = 4, and so on.

To decide if the test is passed, we can use the following table of percentage
points when m = 220 and n = 214:

collisions ≤ 101 108 119 126 134 145 153

with probability .009 .043 .244 .476 .742 .946 .989

The theory underlying these probabilities is the same we used in the poker test,
Eq. (5); the probability that c collisions occur is the probability that n− c urns

3.3.2 EMPIRICAL TESTS 71

are occupied, namely

m(m− 1) . . . (m− n+ c+ 1)
mn

n

n− c

.

Although m and n are very large, it is not difficult to compute these probabilities
using the following method:

Algorithm S (Percentage points for collision test). Given m and n, this
algorithm determines the distribution of the number of collisions that occur
when n balls are scattered into m urns. An auxiliary array A[0], A[1], . . . ,
A[n] of Ćoating point numbers is used for the computation; actually A[j] will be
nonzero only for j0 ≤ j ≤ j1, and j1 − j0 will be at most of order logn, so it
would be possible to get by with considerably less storage.
S1. [Initialize.] Set A[j]← 0 for 0 ≤ j ≤ n; then set A[1]← 1 and j0 ← j1 ← 1.

Then do step S2 exactly n− 1 times and go on to step S3.
S2. [Update probabilities.] (Performing this step once corresponds to tossing a

ball into an urn; A[j] represents the probability that exactly j of the urns are
occupied.) Set j1 ← j1 + 1. Then for j ← j1, j1 − 1, . . . , j0 (in this order),
set A[j] ← (j/m)A[j] +

(1 + 1/m) − (j/m)

A[j − 1]. If A[j] has become

very small as a result of this calculation, say A[j] < 10−20, set A[j] ← 0;
and in such a case, decrease j1 by 1 if j = j1, or increase j0 by 1 if j = j0.

S3. [Compute the answers.] In this step we make use of an auxiliary table
(T1, T2, . . . , Ttmax) = (.01, .05, .25, .50, .75, .95, .99, 1.00) containing the
speciĄed percentage points of interest. Set p← 0, t← 1, and j ← j0−1. Do
the following iteration until t = tmax: Increase j by 1, and set p← p+A[j];
then if p > Tt, output n − j − 1 and 1 − p (meaning that with probability
1 − p there are at most n − j − 1 collisions) and repeatedly increase t by 1
until p ≤ Tt.

J. Birthday spacings test. George Marsaglia introduced a new kind of test in
1984: We throw n balls into m urns, as in the collision test, but now we think of
the urns as “days of a yearŤ and the balls as “birthdays.Ť Suppose the birthdays
are (Y1, . . . , Yn), where 0 ≤ Yk < m. Sort them into nondecreasing order Y(1) ≤
· · · ≤ Y(n); then deĄne n “spacingsŤ S1 = Y(2) − Y(1), . . . , Sn−1 = Y(n) − Y(n−1),
Sn = Y(1) +m− Y(n); Ąnally sort the spacings into order, S(1) ≤ · · · ≤ S(n). Let
R be the number of equal spacings, namely the number of indices j such that
1 < j ≤ n and S(j) = S(j−1). When m = 225 and n = 512, we should have

R = 0 1 2 3 or more

with probability .368801577 .369035243 .183471182 .078691997

(The average number of equal spacings for this choice of m and n should be
approximately 1.) Repeat the test 1000 times, say, and do a chi-square test with
3 degrees of freedom to compare the empirical R’s with the correct distribution;
this will tell whether or not the generator produces reasonably random birthday
spacings. Exercises 28Ű30 develop the theory behind this test and formulas for
other values of m and n.

72 RANDOM NUMBERS 3.3.2

Such a test of birthday spacings is important primarily because of the
remarkable fact that lagged Fibonacci generators consistently fail it, although
they pass the other traditional tests quite nicely. [Dramatic examples of such
failures were reported by Marsaglia, Zaman, and Tsang in Stat. and Prob. Letters
9 (1990), 35Ű39.] Consider, for example, the sequence

Xn = (Xn−24 +Xn−55) modm

of Eq. 3.2.2Ű(7). The numbers of this sequence satisfy

Xn +Xn−86 ≡ Xn−24 +Xn−31 (modulo m)

because both sides are congruent to Xn−24 + Xn−55 + Xn−86. Therefore two
pairs of differences are equal:

Xn −Xn−24 ≡ Xn−31 −Xn−86,

and
Xn −Xn−31 ≡ Xn−24 −Xn−86.

Whenever Xn is reasonably close to Xn−24 or Xn−31 (as it should be in a truly
random sequence), the difference has a good chance of showing up in two of
the spacings. So we get signiĄcantly more cases of equality Ů typically R ≈ 2
on the average, not 1. But if we discount from R any equal spacings that
arise from the stated congruence, the resulting statistic R′ usually does pass
the birthday test. (One way to avoid failure is to discard certain elements of
the sequence, using for example only X0, X2, X4, . . . as random numbers; then
we never get all four elements of the set {Xn, Xn−24, Xn−31, Xn−86}, and the
birthday spacings are no problem. An even better way to avoid the problem
is to discard consecutive batches of numbers, as suggested by Lüscher; see
Section 3.2.2.) Similar remarks apply to the subtract-with-borrow and add-
with-carry generators of exercise 3.2.1.1Ű14.

K. Serial correlation test. We may also compute the following statistic:

C =
n(U0U1+U1U2+· · ·+Un−2Un−1+Un−1U0)−(U0+U1+· · ·+Un−1)2

n(U2
0 + U2

1 + · · ·+ U2
n−1)− (U0 + U1 + · · ·+ Un−1)2

. (23)

This is the “serial correlation coefficient,Ť a measure of the extent to which Uj+1

depends on Uj .
Correlation coefficients appear frequently in statistical work. If we have n

quantities U0, U1, . . . , Un−1 and n others V0, V1, . . . , Vn−1, the correlation
coefficient between them is deĄned to be

C =
n

(UjVj)−

Uj

Vj

n

U2
j −

Uj

2
n

V 2
j −

Vj
2

. (24)

All summations in this formula are to be taken over the range 0 ≤ j < n;
Eq. (23) is the special case Vj = U(j+1) mod n. The denominator of (24) is zero
when U0 = U1 = · · · = Un−1 or V0 = V1 = · · · = Vn−1; we exclude that case
from discussion.

3.3.2 EMPIRICAL TESTS 73

A correlation coefficient always lies between −1 and +1. When it is zero or
very small, it indicates that the quantities Uj and Vj are (relatively speaking)
independent of each other, whereas a value of ±1 indicates total linear depen-
dence. In fact, Vj = α ± βUj for all j in the latter case, for some constants α
and β. (See exercise 17.)

Therefore it is desirable to have C in Eq. (23) close to zero. In actual
fact, since U0U1 is not completely independent of U1U2, the serial correlation
coefficient is not expected to be exactly zero. (See exercise 18.) A “goodŤ value
of C will be between µn − 2σn and µn + 2σn, where

µn =
−1
n− 1

, σ2
n =

n2

(n− 1)2(n− 2)
, n > 2. (25)

We expect C to be between these limits about 95 percent of the time.
The formula for σ2

n in (25) is an upper bound, valid for serial correlations
between independent random variables from an arbitrary distribution. When
the U ’s are uniformly distributed, the true variance is obtained by subtracting
24
5 n

−2 +O(n−7/3 logn). (See exercise 20.)
Instead of simply computing the correlation coefficient between the obser-

vations (U0, U1, . . . , Un−1) and their immediate successors (U1, . . . , Un−1, U0),
we can also compute it between (U0, U1, . . . , Un−1) and any cyclically shifted
sequence (Uq, . . . , Un−1, U0, . . . , Uq−1); the cyclic correlations should be small
for 0 < q < n. A straightforward computation of Eq. (24) for all q would
require about n2 multiplications, but it is actually possible to compute all the
correlations in only O(n logn) steps by using “fast Fourier transforms.Ť

See

Section 4.6.4; see also L. P. Schmid, CACM 8 (1965), 115.

L. Tests on subsequences. External programs often call for random numbers
in batches. For example, if a program works with three random variables X, Y,
and Z, it may consistently invoke the generation of three random numbers at a
time. In such applications it is important that the subsequences consisting of
every third term of the original sequence be random. If the program requires
q numbers at a time, the sequences

U0, Uq, U2q, . . . ; U1, Uq+1, U2q+1, . . . ; . . . ; Uq−1, U2q−1, U3q−1, . . .

can each be put through the tests described above for the original sequence U0,
U1, U2,

Experience with linear congruential sequences has shown that these derived
sequences rarely if ever behave less randomly than the original sequence, unless q
has a large factor in common with the period length. On a binary computer with
m equal to the word size, for example, a test of the subsequences for q = 8 will
tend to give the poorest randomness for all q < 16; and on a decimal computer,
q = 10 yields the subsequences most likely to be unsatisfactory. (This can be
explained somewhat on the grounds of potency, since such values of q will tend
to lower the potency. Exercise 3.2.1.2Ű20 provides a more detailed explanation.)

74 RANDOM NUMBERS 3.3.2

M. Historical remarks and further discussion. Statistical tests arose
naturally in the course of scientists’ efforts to “proveŤ or “disproveŤ hypotheses
about various observed data. The best-known early papers dealing with the
testing of artiĄcially generated numbers for randomness are two articles by M. G.
Kendall and B. Babington-Smith in the Journal of the Royal Statistical Society
101 (1938), 147Ű166, and in the supplement to that journal, 6 (1939), 51Ű61.
Those papers were concerned with the testing of random digits between 0 and 9,
rather than random real numbers; for this purpose, the authors discussed the
frequency test, serial test, gap test, and poker test, although they misapplied
the serial test. Kendall and Babington-Smith also used a variant of the coupon
collector’s test; the method described in this section was introduced by R. E.
Greenwood in Math. Comp. 9 (1955), 1Ű5.

The run test has a rather interesting history. Originally, tests were made
on runs up and down at once: A run up would be followed by a run down, then
another run up, and so on. Note that the run test and the permutation test
do not depend on the uniform distribution of the U ’s, but only on the fact that
Ui = Uj occurs with probability zero when i ̸= j; therefore these tests can be
applied to many types of random sequences. The run test in primitive form was
originated by J. Bienaymé [Comptes Rendus Acad. Sci. 81 (Paris, 1875), 417Ű
423]. Some sixty years later, W. O. Kermack and A. G. McKendrick published
two extensive papers on the subject [Proc. Royal Society Edinburgh 57 (1937),
228Ű240, 332Ű376]; as an example they stated that Edinburgh rainfall between
the years 1785 and 1930 was “entirely random in characterŤ with respect to the
run test (although they examined only the mean and standard deviation of the
run lengths). Several other people began using the test, but it was not until
1944 that the use of the chi-square method in connection with this test was
shown to be incorrect. A paper by H. Levene and J. Wolfowitz in Annals Math.
Stat. 15 (1944), 58Ű69, introduced the correct run test (for runs up and down,
alternately) and discussed the fallacies in earlier misuses of that test. Separate
tests for runs up and runs down, as proposed in the text above, are more suited
to computer application, so we have not given the more complex formulas for
the alternate-up-and-down case. See the survey paper by D. E. Barton and C. L.
Mallows, Annals Math. Stat. 36 (1965), 236Ű260.

Of all the tests we have discussed, the frequency test and the serial corre-
lation test seem to be the weakest, in the sense that nearly all random number
generators pass them. Theoretical grounds for the weakness of these tests are
discussed brieĆy in Section 3.5 (see exercise 3.5Ű26). The run test, on the other
hand, is rather strong: The results of exercises 3.3.3Ű23 and 24 suggest that
linear congruential generators tend to have runs somewhat longer than normal
if the multiplier is not large enough, so the run test of exercise 14 is deĄnitely
to be recommended.

The collision test is also highly recommended, since it has been specially
designed to detect the deĄciencies of many poor generators that have unfortu-
nately become widespread. Based on ideas of H. Delgas Christiansen [Inst. Math.
Stat. and Oper. Res., Tech. Univ. Denmark (October 1975), unpublished], this

3.3.2 EMPIRICAL TESTS 75

test was the Ąrst to be developed after the advent of computers; it is speciĄcally
intended for computer use, and unsuitable for hand calculation.

The reader probably wonders, “Why are there so many tests?Ť It has been
said that more computer time is spent testing random numbers than using them
in applications! This is untrue, although it is possible to go overboard in testing.

The need for making several tests has been amply documented. People have
found, for example, that some numbers generated by a variant of the middle-
square method have passed the frequency test, gap test, and poker test, yet
Ćunked the serial test. Linear congruential sequences with small multipliers have
been known to pass many tests, yet fail on the run test because there are too
few runs of length one. The maximum-of-t test has also been used to ferret out
some bad generators that otherwise seemed to perform respectably. A subtract-
with-borrow generator fails the gap test when the maximum gap length exceeds
the largest lag; see Vattulainen, Kankaala, Saarinen, and Ala-Nissila, Computer
Physics Communications 86 (1995), 209Ű226, where a variety of other tests are
also reported. Lagged Fibonacci generators, which are theoretically guaranteed
to have equally distributed least-signiĄcant bits, still fail some simple variants of
the 1-bit equidistribution test (see exercises 31 and 35, also 3.6Ű14).

Perhaps the main reason for doing extensive testing on random number
generators is that people misusing Mr. X’s random number generator will hardly
ever admit that their programs are at fault: They will blame the generator, until
Mr. X can prove to them that his numbers are sufficiently random. On the other
hand, if the source of random numbers is only for Mr. X’s personal use, he might
decide not to bother to test them, since the techniques recommended in this
chapter have a high probability of being satisfactory.

As computers become faster, more random numbers are consumed than ever
before, and random number generators that once were satisfactory are no longer
good enough for sophisticated applications in physics, combinatorics, stochastic
geometry, etc. George Marsaglia has therefore introduced a number of stringent

tests, which go well beyond classical methods like the gap and poker tests, in
order to meet the new challenges. For example, he found that the sequence
Xn+1 = (62605Xn + 113218009) mod 229 had a noticeable bias in the following
experiment: Generate 221 random numbers Xn and extract their 10 leading bits
Yn = ⌊Xn/219⌋. Count how many of the 220 possible pairs (y, y′) of 10-bit
numbers do not occur among (Y1, Y2), (Y2, Y3), . . . , (Y221−1, Y221). There ought
to be about 141909.33 missing pairs, with standard deviation ≈ 290.46 (see
exercise 34). But six consecutive trials, starting with X1 = 1234567, produced
counts that were all between 1.5 and 3.5 standard deviations too low. The
distribution was a bit too “ĆatŤ to be random Ů probably because 221 numbers
is a signiĄcant fraction, 1/256, of the entire period. A similar generator with
multiplier 69069 and modulus 230 proved to be better. Marsaglia and Zaman call
this procedure a “monkey test,Ť because it counts the number of two-character
combinations that a monkey will miss after typing randomly on a keyboard
with 1024 keys; see Computers and Math. 26, 9 (November 1993), 1Ű10, for the
analysis of several monkey tests.

76 RANDOM NUMBERS 3.3.2

EXERCISES

1. [10] Why should the serial test described in part B be applied to (Y0, Y1), (Y2, Y3),
. . . , (Y2n−2, Y2n−1) instead of to (Y0, Y1), (Y1, Y2), . . . , (Yn−1, Yn)?

2. [10] State an appropriate way to generalize the serial test to triples, quadruples,
etc., instead of pairs.

x 3. [M20] How many U ’s need to be examined in the gap test (Algorithm G) before
n gaps have been found, on the average, assuming that the sequence is random? What
is the standard deviation of this quantity?

4. [M12] Prove that the probabilities in (4) are correct for the gap test.

5. [M23] The “classicalŤ gap test used by Kendall and Babington-Smith considers
the numbers U0, U1, . . . , UN−1 to be a cyclic sequence with UN+j identiĄed with Uj .
Here N is a Ąxed number of U ’s that are to be subjected to the test. If n of the numbers
U0, . . . , UN−1 fall into the range α ≤ Uj < β, there are n gaps in the cyclic sequence.
Let Zr be the number of gaps of length r, for 0 ≤ r < t, and let Zt be the number of
gaps of length ≥ t; show that the quantity V =

0≤r≤t(Zr − npr)2/npr should have

the chi-square distribution with t degrees of freedom, in the limit as N goes to inĄnity,
where pr is given in Eq. (4).

6. [40] (H. Geiringer.) A frequency count of the Ąrst 2000 decimal digits in the
representation of e = 2.71828 . . . gave a χ2 value of 1.06, indicating that the actual
frequencies of the digits 0, 1, . . . , 9 are much too close to their expected values to be
considered randomly distributed. (In fact, χ2 ≥ 1.15 with probability 99.9 percent.)
The same test applied to the Ąrst 10,000 digits of e gives the reasonable value χ2 = 8.61;
but the fact that the Ąrst 2000 digits are so evenly distributed is still surprising. Does
the same phenomenon occur in the representation of e to other bases? [See AMM 72

(1965), 483Ű500.]

7. [08] Apply the coupon collector’s test procedure (Algorithm C), with d = 3 and
n = 7, to the sequence 1101221022120202001212201010201121. What lengths do the
seven subsequences have?

x 8. [M22] How many U ’s need to be examined in the coupon collector’s test, on the
average, before n complete sets have been found by Algorithm C, assuming that the
sequence is random? What is the standard deviation? [Hint: See Eq. 1.2.9Ű(28).]

9. [M21] Generalize the coupon collector’s test so that the search stops as soon as
w distinct values have been found, where w is a Ąxed positive integer less than or equal
to d. What probabilities should be used in place of (6)?

10. [M23] Solve exercise 8 for the more general coupon collector’s test described in
exercise 9.

11. [00] The “runs upŤ in a particular permutation are displayed in (9); what are the
“runs downŤ in that permutation?

12. [20] Let U0, U1, . . . , Un−1 be n distinct numbers. Write an algorithm that
determines the lengths of all ascending runs in the sequence. When your algorithm
terminates, COUNT[r] should be the number of runs of length r, for 1 ≤ r ≤ 5, and
COUNT[6] should be the number of runs of length 6 or more.

13. [M23] Show that (16) is the number of permutations of p+q+1 distinct elements
having the pattern (15).

3.3.2 EMPIRICAL TESTS 77

x 14. [M15] If we “throw awayŤ the element that immediately follows a run, so that
when Xj is greater than Xj+1 we start the next run with Xj+2, the run lengths are
independent, and a simple chi-square test may be used (instead of the horribly compli-
cated method derived in the text). What are the appropriate run-length probabilities
for this simple run test?

15. [M10] In the maximum-of-t test, why are V t
0, V t

1, . . . , V t
n−1 supposed to be uni-

formly distributed between zero and one?

x 16. [15] Mr. J. H. Quick (a student) wanted to perform the maximum-of-t test for
several different values of t.

a) Letting Zjt = max(Uj , Uj+1, . . . , Uj+t−1), he found a clever way to go from the
sequence Z0(t−1), Z1(t−1), . . . , to the sequence Z0t, Z1t, . . . , using very little time
and space. What was his bright idea?

b) He decided to modify the maximum-of-t method so that the jth observation would
be max(Uj , . . . , Uj+t−1); in other words, he took Vj = Zjt instead of Vj = Z(tj)t as
the text says. He reasoned that all of the Z’s should have the same distribution,
so the test is even stronger if each Zjt, 0 ≤ j < n, is used instead of just every tth
one. But when he tried a chi-square equidistribution test on the values of V t

j , he
got extremely high values of the statistic V , which got even higher as t increased.
Why did this happen?

17. [M25] Given any numbers U0, . . . , Un−1, V0, . . . , Vn−1, let their mean values be

ū =
1
n

0≤k<n

Uk, v̄ =
1
n

0≤k<n

Vk.

a) Let U ′
k = Uk − ū, V ′

k = Vk − v̄. Show that the correlation coefficient C given in
Eq. (24) is equal to

0≤k<n

U ′
kV

′
k

0≤k<n

U ′
k

2

0≤k<n

V ′
k

2.

b) Let C = N/D, where N and D denote the numerator and denominator of the
expression in part (a). Show that N2 ≤ D2, hence −1 ≤ C ≤ 1; and obtain a
formula for the difference D2 −N2. [Hint: See exercise 1.2.3Ű30.]

c) If C = ±1, show that αUk + βVk = τ , 0 ≤ k < n, for some constants α, β, and τ ,
not all zero.

18. [M20] (a) Show that if n = 2, the serial correlation coefficient (23) is always equal
to −1 (unless the denominator is zero). (b) Similarly, show that when n = 3, the serial
correlation coefficient always equals − 1

2
. (c) Show that the denominator in (23) is zero

if and only if U0 = U1 = · · · = Un−1.

19. [M30] (J. P. Butler.) Let U0, . . . , Un−1 be independent random variables having
the same distribution. Prove that the expected value of the serial correlation coeffi-
cient (23), averaged over all cases with nonzero denominator, is −1/(n− 1).

20. [HM41] Continuing the previous exercise, prove that the variance of (23) is equal
to n2/(n−1)2(n−2)−n3 E((U0−U1)4/D2)/2(n−2), where D is the denominator of (23)
and E denotes the expected value over all cases with D ̸= 0. What is the asymptotic
value of E((U0 − U1)4/D2) when each Uj is uniformly distributed?

21. [19] What value of f is computed by Algorithm P if it is presented with the
permutation (1, 2, 9, 8, 5, 3, 6, 7, 0, 4)?

78 RANDOM NUMBERS 3.3.2

22. [18] For what permutation of {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} will Algorithm P produce
the value f = 1024?

23. [M22] Let ⟨Yn⟩ and ⟨Y ′
n⟩ be integer sequences having period lengths λ and λ′,

respectively, with 0 ≤ Yn, Y
′

n < d; also let Zn = (Yn + Y ′
n+r) mod d, where r is chosen

at random between 0 and λ′−1. Show that ⟨Zn⟩ passes the t-dimensional serial test at
least as well as ⟨Yn⟩ does, in the following sense: Let P (x1, . . . , xt) and Q(x1, . . . , xt)
be the probabilities that the t-tuple (x1, . . . , xt) occurs in ⟨Yn⟩ and ⟨Zn⟩:

P (x1, . . . , xt) =
1
λ

λ−1

n=0

[(Yn, . . . , Yn+t−1) = (x1, . . . , xt)];

Q(x1, . . . , xt) =
1
λλ′

λ−1

n=0

λ′−1

r=0

[(Zn, . . . , Zn+t−1) = (x1, . . . , xt)].

Then

(x1,...,xt)

(Q(x1, . . . , xt)− d−t)2 ≤

(x1,...,xt)

(P (x1, . . . , xt)− d−t)2
.

24. [HM37] (G. Marsaglia.) Show that the serial test on n overlapping t-tuples
(Y1, Y2, . . . , Yt), (Y2, Y3, . . . , Yt+1), . . . , (Yn, Y1, . . . , Yt−1) can be carried out as follows:
For each string α = a1 . . . am with 0 ≤ ai < d, let N(α) be the number of times
α occurs as a substring of Y1Y2 . . . YnY1 . . . Ym−1, and let P (α) = P (a1) . . . P (am) be
the probability that α occurs at any given position; individual digits may occur with
differing probabilities P (0), P (1), . . . , P (d− 1). Compute the statistic

V =
1
n

|α|=t

N(α)2

P (α)
− 1

n

|α|=t−1

N(α)2

P (α)
.

Then V should have the chi-square distribution with dt−dt−1 degrees of freedom when
n is large. [Hint: Use exercise 3.3.1Ű25.]

25. [M46] Why is C−1
1 C2C

−1
1 ≈ −6C−1

1 , when C1 and C2 are the matrices deĄned
after (22)?

26. [HM30] Let U1, U2, . . . , Un be independent uniform deviates in [0 . . 1), and let
U(1) ≤ U(2) ≤ · · · ≤ U(n) be their values after sorting; also deĄne the spacings S1 =
U(2) − U(1), . . . , Sn−1 = U(n) − U(n−1), Sn = U(1) + 1 − U(n) and sorted spacings
S(1) ≤ · · · ≤ S(n) as in the birthday spacings test. It is convenient in the following
calculations to use the notation xn

+ as an abbreviation for the expression xn[x≥ 0].

a) Given any real numbers s1, s2, . . . , sn, prove that the simultaneous inequalities
S1 ≥ s1, S2 ≥ s2, . . . , Sn ≥ sn occur with probability (1− s1 − s2 − · · · − sn)n−1

+ .
b) Consequently the smallest spacing S(1) is ≤ s with probability 1− (1− ns)n−1

+ .
c) What are the distribution functions Fk(s) = Pr(S(k) ≤ s), for 1 ≤ k ≤ n?
d) Calculate the mean and variance of each S(k).

x 27. [HM26] (Iterated spacings.) In the notation of the previous exercise, show that
the numbers S′

1 = nS(1), S′
2 = (n − 1)(S(2) − S(1)), . . . , S′

n = 1(S(n) − S(n−1)) have
the same joint probability distribution as the original spacings S1, . . . , Sn of n uniform
deviates. Therefore we can sort them into order, S′

(1) ≤ · · · ≤ S′
(n), and repeat this

transformation to get yet another set of random spacings S′′
1 , . . . , S′′

n , etc. Each
successive set of spacings S (k)

1 , . . . , S (k)
n can be subjected to the KolmogorovŰSmirnov

3.3.2 EMPIRICAL TESTS 79

test, using

K+
n−1 =

√
n− 1 max

1≤j<n

j

n− 1
− S (k)

1 − · · · − S (k)
j

,

K−
n−1 =

√
n− 1 max

1≤j<n

S
(k)

1 + · · ·+ S
(k)

j − j − 1
n− 1

.

Examine the transformation from (S1, . . . , Sn) to (S′
1, . . . , S

′
n) in detail in the cases

n = 2 and n = 3; explain why continued repetition of this process will break down
eventually when it is applied to computer-generated numbers with Ąnite precision.
(One way to compare random number generators is to see how long they can continue
to survive such a torture test.)

28. [M26] Let bnrs(m) be the number of n-tuples (y1, . . . , yn) with 0 ≤ yj < m that
have exactly r equal spacings and s zero spacings. Thus, the probability that R = r
in the birthday spacings test is

r+1
s=0 bnrs(m)/mn. Also let pn(m) be the number of

partitions of m into at most n parts (exercise 5.1.1Ű15). (a) Express bn00(m) in terms
of partitions. [Hint: Consider cases with small m and n.] (b) Show that there is a
simple relation between bnrs(m) and b(n−s)(r+1−s)0(m) when s > 0. (c) Deduce an
explicit formula for the probability that no spacings are equal.

29. [M35] Continuing exercise 28, Ąnd simple expressions for the generating functions
bnr(z) =

m≥0 bnr0(m)zm/m, when r = 0, 1, and 2.

30. [HM41] Continuing the previous exercises, prove that if m = n3/α we have

pn(m) =
mn−1eα/4

n! (n− 1)!

1− 13α2

288n
+

169α4 + 2016α3 − 1728α2 − 41472α
165888n2

+O(n−3)

for Ąxed α as n→∞. Find a similar formula for qn(m), the number of partitions of m
into n distinct positive parts. Deduce the asymptotic probabilities that the birthday
spacings test Ąnds R equal to 0, 1, and 2, to within O(1/n).

x 31. [M21] The recurrence Yn = (Yn−24 + Yn−55) mod 2, which describes the least
signiĄcant bits of the lagged Fibonacci generator 3.2.2Ű(7) as well as the second-least
signiĄcant bits of 3.2.2Ű(7′), is known to have period length 255−1; hence every possible
nonzero pattern of bits (Yn, Yn+1, . . . , Yn+54) occurs equally often. Nevertheless, prove
that if we generate 79 consecutive random bits Yn, . . . , Yn+78 starting at a random point
in the period, the probability is more than 51% that there are more 1s than 0s. If we use
such bits to deĄne a “random walkŤ that moves to the right when the bit is 1 and to the
left when the bit is 0, we’ll Ąnish to the right of our starting point signiĄcantly more than
half of the time. [Hint: Find the generating function

79
k=0 Pr(Yn +· · ·+Yn+78 = k) zk.]

32. [M20] True or false: If X and Y are independent, identically distributed random
variables with mean 0, and if they are more likely to be positive than negative, then
X + Y is more likely to be positive than negative.

33. [HM32] Find the asymptotic value of the probability that k + l consecutive bits
generated by the recurrence Yn = (Yn−l + Yn−k) mod 2 have more 1s than 0s, when
k > 2l and the period length of this recurrence is 2k − 1, assuming that k is large.

34. [HM29] Explain how to estimate the mean and variance of the number of two-
letter combinations that do not occur consecutively in a random string of length n
on an m-letter alphabet. Assume that m is large and n ≈ 2m2.

x 35. [HM32] (J. H. Lindholm, 1968.) Suppose we generate random bits ⟨Yn⟩ using the
recurrence

Yn = (a1Yn−1 + a2Yn−2 + · · ·+ akYn−k) mod 2 ,

80 RANDOM NUMBERS 3.3.2

for some choice of a1, . . . , ak such that the period length is 2k − 1; start with Y0 = 1
and Y1 = · · · = Yk−1 = 0. Let Zn = (−1)Yn+1 = 2Yn − 1 be a random sign, and
consider the statistic Sm = Zn + Zn+1 + · · ·+ Zn+m−1, where n is a random point in
the period.

a) Prove that ESm = m/N , where N = 2k − 1.
b) What is ES2

m? Assume that m ≤ N . Hint: See exercise 3.2.2Ű16.
c) What would ESm and ES2

m be if the Z’s were truly random?
d) Assuming that m ≤ N , prove that ES3

m = m3/N − 6B(N + 1)/N , where

B =

0<i<j<m

[(Yi+1Yi+2 . . . Yi+k−1)2 = (Yj+1Yj+2 . . . Yj+k−1)2] (m− j) .

e) Evaluate B in the special case considered in exercise 31: m = 79 and Yn =
(Yn−24 + Yn−55) mod 2.

*3.3.3. Theoretical Tests

Although it is always possible to test a random number generator using the
methods in the previous section, it is far better to have a priori tests: theoretical
results that tell us in advance how well those tests will come out. Such theoretical
results give us much more understanding about the generation methods than
empirical, trial-and-error results do. In this section we shall study the linear
congruential sequences in more detail; if we know what the results of certain
tests will be before we actually generate the numbers, we have a better chance
of choosing a, m, and c properly.

The development of this kind of theory is quite difficult, although some
progress has been made. The results obtained so far are generally for statistical

tests made over the entire period. Not all statistical tests make sense when they
are applied over a full period Ů for example, the equidistribution test will give
results that are too perfect Ů but the serial test, gap test, permutation test,
maximum test, etc., can be fruitfully analyzed in this way. Such studies will
detect global nonrandomness of a sequence, that is, improper behavior in very
large samples.

The theory we shall discuss is quite illuminating, but it does not eliminate
the need for testing local nonrandomness by the methods of Section 3.3.2. Indeed,
the task of proving anything useful about short subsequences appears to be very
hard. Only a few theoretical results are known about the behavior of linear
congruential sequences over less than a full period; they will be discussed at the
end of Section 3.3.4. (See also exercise 18.)

Let us begin with a proof of a simple a priori law, for the least complicated
case of the permutation test. The gist of our Ąrst theorem is that we have
Xn+1 < Xn about half the time, provided that the sequence has high potency.

Theorem P. Let a, c, and m generate a linear congruential sequence with
maximum period; let b = a − 1 and let d be the greatest common divisor of m
and b. The probability that Xn+1 < Xn is equal to 1

2 + r, where

r =

2(cmod d)− d

/2m; (1)

hence |r| < d/2m.

3.3.3 THEORETICAL TESTS 81

Proof. The proof of this theorem involves some techniques that are of interest
in themselves. First we deĄne

s(x) = (ax+ c) modm. (2)

Thus, Xn+1 = s(Xn), and the theorem reduces to counting the number of
integers x such that 0 ≤ x < m and s(x) < x, since every such integer occurs
somewhere in the period. We want to show that this number is

1
2

m+ 2(cmod d)− d

. (3)

The function

x − s(x)

/m

is equal to 1 when x > s(x), and it is 0
otherwise; hence the count we wish to obtain can be written simply as

0≤x<m

x− s(x)

m

=

0≤x<m

x

m
−

ax+ c

m
−

ax+ c

m

=

0≤x<m

ax+ c

m

−

bx+ c

m

. (4)

(Recall that ⌈−y⌉ = −⌊y⌋ and b = a − 1.) Such sums can be evaluated by the
method of exercise 1.2.4Ű37, where we have proved that

0≤j<k

hj + c

k

=
(h− 1)(k − 1)

2
+
g − 1

2
+ g⌊c/g⌋, g = gcd(h, k), (5)

whenever h and k are integers and k > 0. Since a is relatively prime to m, this
formula yields

0≤x<m

ax+ c

m

=
(a− 1)(m− 1)

2
+ c,

0≤x<m

bx+ c

m

=
(b− 1)(m− 1)

2
+
d− 1

2
+ c− (cmod d),

and (3) follows immediately.

The proof of Theorem P indicates that a priori tests can indeed be carried
out, provided that we are able to deal satisfactorily with sums involving the ⌊ ⌋
and ⌈ ⌉ functions. In many cases the most powerful technique for dealing with
Ćoor and ceiling functions is to replace them by two somewhat more symmetrical
operations:

δ(x) = ⌊x⌋+ 1− ⌈x⌉ = [x is an integer]; (6)

((x)) = x− ⌊x⌋ − 1
2 + 1

2δ(x) = x− ⌈x⌉+ 1
2 − 1

2δ(x) = x− 1
2

⌊x⌋+ ⌈x⌉

. (7)

The latter function is a “sawtoothŤ function familiar in the study of Fourier
series; its graph is shown in Fig. 7. The reason for choosing to work with ((x))
rather than ⌊x⌋ or ⌈x⌉ is that ((x)) possesses several very useful properties:

((−x)) =−((x)); (8)

82 RANDOM NUMBERS 3.3.3

+
1

2

−

1

2

0

Fig. 7. The sawtooth function ((x)).

((x+n)) = ((x)), integer n; (9)

((nx)) = ((x))+

x+
1
n

+ · · ·+

x+
n−1
n

, integer n≥ 1. (10)

(See exercises 1.2.4Ű38 and 1.2.4Ű39(a,b,g).)
In order to get some practice working with these functions, let us prove

Theorem P again, this time without relying on exercise 1.2.4Ű37. With the help
of Eqs. (7), (8), (9), we can show that

x− s(x)

m

=
x− s(x)

m
−

x− s(x)
m

+
1
2
− 1

2
δ

x− s(x)

m

=
x− s(x)

m
−

x− (ax+ c)
m

+
1
2

=
x− s(x)

m
+

bx+ c

m

+
1
2

(11)

since

x− s(x)

/m is never an integer. Now

0≤x<m

x− s(x)
m

= 0

since both x and s(x) take on each value of {0, 1, . . . ,m− 1} exactly once; hence
(11) yields

0≤x<m

x− s(x)

m

=

0≤x<m

bx+ c

m

+
m

2
. (12)

Let b = b0d, m = m0d, where b0 and m0 are relatively prime. We know that
(b0x) modm0 takes on the values {0, 1, . . . , m0 − 1} in some order as x varies
from 0 to m0 − 1. By (9) and (10) and the fact that

b(x+m0) + c

m

=

bx+ c

m

we have

0≤x<m

bx+ c

m

= d

0≤x<m0

bx+ c

m

3.3.3 THEORETICAL TESTS 83

= d

0≤x<m0

c

m
+
b0x

m0

= d
 c

d

. (13)

Theorem P follows immediately from (12) and (13).
One consequence of Theorem P is that practically any choice of a and c will

give a reasonable probability that Xn+1 < Xn, at least over the entire period,
except those that have large d. A large value of d corresponds to low potency,
and we already know that generators of low potency are undesirable.

The next theorem gives us a more stringent condition for the choice of the
parameters a and c; we will consider the serial correlation test applied over the
entire period. The quantity C deĄned in Section 3.3.2, Eq. (23), is

C =

m

0≤x<m

xs(x)−

0≤x<m

x

2

m

0≤x<m

x2 −

0≤x<m

x

2

. (14)

Let x′ be the element such that s(x′) = 0. We have

s(x) = m

ax+ c

m

+
m

2
[x ̸=x′]. (15)

The formulas we are about to derive can be expressed most easily in terms of
the sum

σ(h, k, c) = 12

0≤j<k

j

k

hj + c

k

, (16)

an important function that arises in several mathematical problems. It is called
a generalized Dedekind sum, since Richard Dedekind introduced the function
σ(h, k, 0) in 1876 when commenting on one of Riemann’s incomplete manuscripts.
[See B. Riemann’s Gesammelte math. Werke, 2nd ed. (1892), 466Ű478.]

Using the well-known formulas

0≤x<m

x =
m(m− 1)

2
and

0≤x<m

x2 =
m(m− 1

2)(m− 1)

3
,

it is a straightforward matter to transform Eq. (14) into

C =
mσ(a,m, c)− 3 + 6(m− x′ − c)

m2 − 1
. (17)

(See exercise 5.) Since m is usually very large, we may discard terms of order
1/m, and we have the approximation

C ≈ σ(a,m, c)/m, (18)

with an error of less than 6/m in absolute value.
The serial correlation test now reduces to determining the value of the

Dedekind sum σ(a,m, c). Evaluating σ(a,m, c) directly from its deĄnition (16)
is hardly any easier than evaluating the correlation coefficient itself directly, but
fortunately there are simple methods available for computing Dedekind sums
quite rapidly.

84 RANDOM NUMBERS 3.3.3

Lemma B (“Reciprocity lawŤ for Dedekind sums). Let h, k, c be integers. If
0 ≤ c < k, 0 < h ≤ k, and if h is relatively prime to k, then

σ(h, k, c) + σ(k, h, c) =
h

k
+
k

h
+

1
hk

+
6c2

hk
− 6

c

h

− 3e(h, c), (19)

where
e(h, c) = [c= 0] + [cmod h ̸= 0]. (20)

Proof. We leave it to the reader to prove that, under these hypotheses,

σ(h, k, c) + σ(k, h, c) = σ(h, k, 0) + σ(k, h, 0) +
6c2

hk
− 6

c

h

− 3e(h, c) + 3. (21)

(See exercise 6.) The lemma now must be proved only in the case c = 0.
The proof we will give, based on complex roots of unity, is essentially due

to L. Carlitz. There is actually a simpler proof that uses only elementary
manipulations of sums (see exercise 7) Ů but the following method reveals more
of the mathematical tools that are available for problems of this kind and it is
therefore much more instructive.

Let f(x) and g(x) be polynomials deĄned as follows:

f(x) = 1 + x+ · · ·+ xk−1 = (xk − 1)/(x− 1)

g(x) = x+ 2x2 + · · ·+ (k − 1)xk−1

= xf ′(x) = kxk/(x− 1)− x(xk − 1)/(x− 1)2.

(22)

If ω is the complex kth root of unity e2πi/k, we have by Eq. 1.2.9Ű(13)

1
k

0≤j<k

ω−jrg(ωjx) = rxr, if 0 ≤ r < k. (23)

Set x = 1; then g(ωjx) = k/(ωj − 1) if j ̸= 0, otherwise it equals k(k − 1)/2.
Therefore

r mod k =

0<j<k

ω−jr

ωj − 1
+ 1

2 (k − 1), if r is an integer.

Eq. (23) shows that the right-hand side equals r when 0 ≤ r < k, and it is

unchanged when multiples of k are added to r.

Hence

r

k

=
1
k

0<j<k

ω−jr

ωj − 1
− 1

2k
+

1
2
δ

r

k

. (24)

This important formula, which holds whenever r is an integer, allows us to reduce
many calculations involving ((r/k)) to sums involving kth roots of unity, and it
brings a whole new range of techniques into the picture. In particular, we get
the following formula when h ⊥ k:

σ(h, k, 0) +
3(k − 1)
k2

=
12
k2

0<r<k

0<i<k

0<j<k

ω−ir

ωi − 1
ω−jhr

ωj − 1
. (25)

3.3.3 THEORETICAL TESTS 85

The right-hand side of this formula may be simpliĄed by carrying out the sum
on r; we have

0≤r<k ω
rs = f(ωs) = 0 if smod k ̸= 0. Equation (25) now

reduces to

σ(h, k, 0) +
3(k − 1)

k
=

12
k

0<j<k

1
(ω−jh − 1)(ωj − 1)

. (26)

A similar formula is obtained for σ(k, h, 0), with ζ = e2πi/h replacing ω.
It is not obvious what we can do with the sum in (26), but there is an elegant

way to proceed, based on the fact that each term of the sum is a function of ωj ,
where 0 < j < k; hence the sum is essentially taken over the kth roots of unity
other than 1. Whenever x1, x2, . . . , xn are distinct complex numbers, we have
the identity

n

j=1

1
(xj − x1) . . . (xj − xj−1)(x− xj)(xj − xj+1) . . . (xj − xn)

=
1

(x− x1) . . . (x− xn)
, (27)

which follows from the usual method of expanding the right-hand side into partial
fractions. Moreover, if q(x) = (x− y1)(x− y2) . . . (x− ym), we have

q′(yj) = (yj − y1) . . . (yj − yj−1)(yj − yj+1) . . . (yj − ym); (28)

this identity may often be used to simplify expressions like those in the left-
hand side of (27). When h and k are relatively prime, the numbers ω, ω2, . . . ,
ωk−1, ζ, ζ2, . . . , ζh−1 are all distinct; we can therefore consider formula (27) in
the special case of the polynomial (x− ω) . . . (x− ωk−1)(x− ζ) . . . (x− ζh−1) =
(xk − 1)(xh − 1)/(x− 1)2, obtaining the following identity in x:

1
h

0<j<h

ζj(ζj−1)2

(ζjk−1)(x−ζj) +
1
k

0<j<k

ωj(ωj−1)2

(ωjh−1)(x−ωj)
=

(x−1)2

(xh−1)(xk−1)
. (29)

This identity has many interesting consequences, and it leads to numerous reci-
procity formulas for sums of the type given in Eq. (26). For example, if we
differentiate (29) twice with respect to x and let x→ 1, we Ąnd that

2
h

0<j<h

ζj(ζj − 1)2

(ζjk − 1)(1− ζj)3
+

2
k

0<j<k

ωj(ωj − 1)2

(ωjh − 1)(1− ωj)3

=
1
6

h

k
+
k

h
+

1
hk

+
1
2
− 1

2h
− 1

2k
.

Replace j by h− j and by k − j in these sums and use (26) to get

1
6

σ(k, h, 0) +
3(h− 1)

h

+
1
6

σ(h, k, 0) +
3(k − 1)

k

=
1
6

h

k
+
k

h
+

1
hk

+
1
2
− 1

2h
− 1

2k
,

which is equivalent to the desired result.

86 RANDOM NUMBERS 3.3.3

Lemma B gives us an explicit function f(h, k, c) such that

σ(h, k, c) = f(h, k, c)− σ(k, h, c) (30)

whenever 0 < h ≤ k, 0 ≤ c < k, and h is relatively prime to k. From the
deĄnition (16) it is clear that

σ(k, h, c) = σ(k mod h, h, cmod h). (31)

Therefore we can use (30) iteratively to evaluate σ(h, k, c), using a process that
reduces the parameters as in Euclid’s algorithm.

Further simpliĄcations occur when we examine this iterative procedure more
closely. Let us set m1 = k, m2 = h, c1 = c, and form the following tableau:

m1 = a1m2 +m3 c1 = b1m2 + c2

m2 = a2m3 +m4 c2 = b2m3 + c3

m3 = a3m4 +m5 c3 = b3m4 + c4

m4 = a4m5 c4 = b4m5 + c5

(32)

Here
aj = ⌊mj/mj+1⌋, bj = ⌊cj/mj+1⌋,
mj+2 = mj modmj+1, cj+1 = cj modmj+1,

(33)

and it follows that

0 ≤ mj+1 < mj , 0 ≤ cj < mj . (34)

We have assumed for convenience that Euclid’s algorithm terminates in (32)
after four iterations; this assumption will reveal the pattern that holds in the
general case. Since h and k were relatively prime to start with, we must have
m5 = 1 and c5 = 0 in (32).

Let us assume also that c3 ̸= 0 but c4 = 0, in order to get a feeling for the
effect this has on the recurrence. Equations (30) and (31) yield

σ(h, k, c) = σ(m2,m1, c1)

= f(m2,m1, c1)− σ(m3,m2, c2)

= · · ·
= f(m2,m1, c1)− f(m3,m2, c2) + f(m4,m3, c3)− f(m5,m4, c4).

The Ąrst part, h/k + k/h, of the formula for f(h, k, c) in (19) contributes
m2

m1
+
m1

m2
− m3

m2
− m2

m3
+
m4

m3
+
m3

m4
− m5

m4
− m4

m5

to the total, and this simpliĄes to

h

k
+
m1 −m3

m2
− m2 −m4

m3
+
m3 −m5

m4
− m4

m5
=
h

k
+ a1 − a2 + a3 − a4.

The next part of (19), 1/hk, also leads to a simple contribution; according to
Eq. 4.5.3Ű(9) and other formulas in Section 4.5.3, we have

1
m1m2

− 1
m2m3

+
1

m3m4
− 1
m4m5

=
h′

k
− 1, (35)

3.3.3 THEORETICAL TESTS 87

where h′ is the unique integer satisfying

h′h ≡ 1 (modulo k), 0 < h′ ≤ k. (36)

Adding up all the contributions, and remembering our assumption that c4 = 0

so that e(m4, c3) = 0, see (20)

, we Ąnd that

σ(h, k, c) =
h+ h′

k
+ (a1 − a2 + a3 − a4)− 6(b1 − b2 + b3 − b4)

+ 6

c2
1

m1m2
− c2

2

m2m3
+

c2
3

m3m4
− c2

4

m4m5

+ 2,

in terms of the assumed tableau (32). Similar results hold in general:

Theorem D. Let h, k, c be integers with 0 < h ≤ k, 0 ≤ c < k, and h relatively
prime to k. Form the “Euclidean tableauŤ as deĄned in (33) above, and assume
that the process stops after t steps with mt+1 = 1. Let s be the smallest subscript
such that cs = 0, and let h′ be deĄned by (36). Then

σ(h, k, c) =
h+ h′

k
+

1≤j≤t

(−1)j+1

aj − 6bj + 6
c2
j

mjmj+1

+ 3

(−1)s + δs1

− 2 + (−1)t.

Euclid’s algorithm is analyzed carefully in Section 4.5.3; the quantities a1,
a2, . . . , at are called the partial quotients of h/k. Theorem 4.5.3F tells us that
the number of iterations, t, will never exceed logϕ k; hence Dedekind sums can
be evaluated rapidly. The terms c2

j/mjmj+1 can be simpliĄed further, and
an efficient algorithm for evaluating σ(h, k, c) appears in exercise 17.

Now that we have analyzed generalized Dedekind sums, let us apply our
knowledge to the determination of serial correlation coefficients.

Example 1. Find the serial correlation when m = 235, a = 234 + 1, c = 1.

Solution. We have

C =

235σ(234 + 1, 235, 1)− 3 + 6(235 − (234 − 1)− 1)

/(270 − 1),

by Eq. (17). To evaluate σ(234 + 1, 235, 1), we can form the tableau

m1 = 235 c1 = 1
m2 = 234 + 1 a1 = 1 c2 = 1 b1 = 0
m3 = 234 − 1 a2 = 1 c3 = 1 b2 = 0
m4 = 2 a3 = 233 − 1 c4 = 1 b3 = 0
m5 = 1 a4 = 2 c5 = 0 b4 = 1

Since h′ = 234 + 1, the value according to Theorem D comes to 233 − 3 + 2−32.
Thus

C = (268 + 5)/(270 − 1) = 1
4 + ϵ, |ϵ| < 2−67. (37)

Such a correlation is much, much too high for randomness. Of course, this
generator has very low potency, and we have already rejected it as nonrandom.

88 RANDOM NUMBERS 3.3.3

Example 2. Find the approximate serial correlation when m = 1010, a = 10001,
c = 2113248653.

Solution. We have C ≈ σ(a,m, c)/m, and the computation proceeds as follows:

m1 = 10000000000 c1 = 2113248653
m2 = 10001 a1 = 999900 c2 = 7350 b1 = 211303
m3 = 100 a2 = 100 c3 = 50 b2 = 73
m4 = 1 a3 = 100 c4 = 0 b3 = 50

σ(m2,m1, c1) = −31.6926653544; C ≈ −3 · 10−9. (38)

This is a very respectable value of C indeed. But the generator has a potency
of only 3, so it is not really a very good source of random numbers in spite of
the fact that it has low serial correlation. It is necessary to have a low serial
correlation, but not sufficient.

Example 3. Estimate the serial correlation for general a, m, and c.

Solution. If we consider just one application of (30), we have

σ(a,m, c) ≈ m

a
+ 6

c2

am
− 6

c

a
− σ(m, a, c).

Now |σ(m, a, c)| < a by exercise 12, and therefore

C ≈ σ(a,m, c)
m

≈ 1
a

1− 6
c

m
+ 6

c

m

2

. (39)

The error in this approximation is less than (a+ 6)/m in absolute value.
The estimate in (39) was the Ąrst theoretical result known about the random-

ness of congruential generators. R. R. Coveyou [JACM 7 (1960), 72Ű74] obtained
it by averaging over all real numbers x between 0 and m instead of considering
only the integer values (see exercise 21); then Martin Greenberger [Math. Comp.
15 (1961), 383Ű389] gave a rigorous derivation including an estimate of the
error term.

So began one of the saddest chapters in the history of computer science!
Although the approximation above is quite correct, it has been grievously mis-
applied in practice; people abandoned the perfectly good generators they had
been using and replaced them by terrible generators that looked good from the
standpoint of (39). For more than a decade, the most common random number
generators in daily use were seriously deĄcient, solely because of a theoretical
advance.

A little Learning is a dang’rous Thing.

Ů ALEXANDER POPE, An Essay on Criticism, 215 (1711)

If we are to learn by past mistakes, we had better look carefully at how (39)
has been misused. In the Ąrst place people assumed uncritically that a small
serial correlation over the whole period would be a pretty good guarantee of

3.3.3 THEORETICAL TESTS 89

randomness; but in fact it doesn’t even ensure a small serial correlation for 1000
consecutive elements of the sequence (see exercise 14).

Secondly, (39) and its error term will ensure a relatively small value of C only
when a ≈ √m; therefore people suggested choosing multipliers near

√
m. In fact,

we shall see that nearly all multipliers give a value of C that is substantially less
than 1/

√
m, hence (39) is not a very good approximation to the true behavior.

Minimizing a crude upper bound for C does not minimize C.
In the third place, people observed that (39) yields its best estimate when

c/m ≈ 1
2 ± 1

6

√
3, (40)

since these values are the roots of 1−6x+ 6x2 = 0. “In the absence of any other
criterion for choosing c, we might as well use this one.Ť The latter statement
is not incorrect, but it is misleading at best, since experience has shown that
the value of c has hardly any inĆuence on the true value of the serial correlation
when a is a good multiplier; the choice (40) reduces C substantially only in cases
like Example 2 above. And we are fooling ourselves in such cases, since the bad
multiplier will reveal its deĄciencies in other ways.

Clearly we need a better estimate than (39); and such an estimate is now
available thanks to Theorem D, which stems principally from the work of Ulrich
Dieter [Math. Comp. 25 (1971), 855Ű883]. Theorem D implies that σ(a,m, c)
will be small if the partial quotients of a/m are small. Indeed, by analyzing
generalized Dedekind sums still more closely, it is possible to obtain quite a
sharp estimate:

Theorem K. Under the assumptions of Theorem D, we always have

−1
2

1≤j≤t
j odd

aj −

1≤j≤t
j even

aj ≤ σ(h, k, c) ≤

1≤j≤t
j odd

aj +
1
2

1≤j≤t
j even

aj −
1
2
. (41)

Proof. See D. E. Knuth, Acta Arithmetica 33 (1977), 297Ű325, where it is
shown further that these bounds are essentially the best possible when large
partial quotients are present.

Example 4. Estimate the serial correlation for a = 3141592621, m = 235,
c odd.

Solution. The partial quotients of a/m are 10, 1, 14, 1, 7, 1, 1, 1, 3, 3, 3, 5, 2,
1, 8, 7, 1, 4, 1, 2, 4, 2; hence by Theorem K

−55 ≤ σ(a,m, c) ≤ 67.5,

and the serial correlation is guaranteed to be extremely low for all c.
Note that this bound is considerably better than we could obtain from (39),

since the error in (39) is of order a/m; our “randomŤ multiplier has turned out
to be much better than one speciĄcally chosen to look good on the basis of (39).
In fact, it is possible to show that the average value of

t
j=1 aj , taken over all

90 RANDOM NUMBERS 3.3.3

multipliers a relatively prime to m, is

6
π2

(lnm)2 +O

(logm)(log logm)4

(see exercise 4.5.3Ű35). Therefore the probability that a random multiplier has
large

t
j=1 aj , say larger than (logm)2+ϵ for some Ąxed ϵ > 0, approaches

zero as m → ∞. This substantiates the empirical evidence that almost all
linear congruential sequences have extremely low serial correlation over the entire
period.

The exercises below show that other a priori tests, such as the serial test over
the entire period, can also be expressed in terms of a few generalized Dedekind
sums. It follows from Theorem K that linear congruential sequences will pass
those tests provided that certain speciĄed fractions (depending on a and m but
not on c) have small partial quotients. In particular, the result of exercise 19
implies that the serial test on pairs will be passed satisfactorily if and only if
a/m has no large partial quotients.

The book Dedekind Sums by Hans Rademacher and Emil Grosswald (Math.
Assoc. of America, Carus Monograph No. 16, 1972) discusses the history and
properties of Dedekind sums and their generalizations. Further theoretical tests,
including the serial test in higher dimensions, are discussed in Section 3.3.4.

EXERCISES Ů First Set

1. [M10] Express xmod y in terms of the sawtooth and δ functions.

2. [HM22] What is the Fourier series expansion (in terms of sines and cosines) of
the function ((x))?

3. [M23] (N. J. Fine.) Prove that |n−1
k=0 ((2kx+ 1

2
))| < 1 for all real numbers x.

x 4. [M19] If m = 1010, what is the highest possible value of d (in the notation of
Theorem P), given that the potency of the generator is 10?

5. [M21] Carry out the derivation of Eq. (17).

6. [M27] Assume that hh′ + kk′ = 1.
a) Show, without using Lemma B, that

σ(h, k, c) = σ(h, k, 0) + 12

0<j<c

h′j

k

+ 6

h′c

k

for all integers c ≥ 0.

b) Show that

h′j

k

+

k′j

h

=
j

hk
− 1

2
δ

j

h

if 0 < j < k.

c) Under the assumptions of Lemma B, prove Eq. (21).

x 7. [M24] Give a proof of the reciprocity law (19), when c = 0, by using the general
reciprocity law of exercise 1.2.4Ű45.

x 8. [M34] (L. Carlitz.) Let

ρ(p, q, r) = 12

0≤j<r

jp

r

jq

r

.

3.3.3 THEORETICAL TESTS 91

By generalizing the method of proof used in Lemma B, prove the following beautiful
identity due to H. Rademacher: If each of p, q, r is relatively prime to the other two,

ρ(p, q, r) + ρ(q, r, p) + ρ(r, p, q) =
p

qr
+

q

rp
+

r

pq
− 3.

(The reciprocity law for Dedekind sums, with c = 0, is the special case r = 1.)

9. [M40] Is there a simple proof of Rademacher’s identity (exercise 8) along the lines
of the proof in exercise 7 of a special case?

10. [M20] Show that when 0 < h < k it is possible to express σ(k − h, k, c) and
σ(h, k,−c) easily in terms of σ(h, k, c).

11. [M30] The formulas given in the text show us how to evaluate σ(h, k, c) when h
and k are relatively prime and c is an integer. For the general case, prove that

a) σ(dh, dk, dc) = σ(h, k, c), for integer d > 0;

b) σ(h, k, c + θ) = σ(h, k, c) + 6((h′c/k)), for integer c, real 0 < θ < 1, h ⊥ k, and
hh′ ≡ 1 (modulo k).

12. [M24] Show that if h is relatively prime to k and c is an integer, |σ(h, k, c)| ≤
(k − 1)(k − 2)/k.

13. [M24] Generalize Eq. (26) so that it gives an expression for σ(h, k, c).

x 14. [M20] The linear congruential generator that has m = 235, a = 218 + 1, c = 1,
was given the serial correlation test on three batches of 1000 consecutive numbers, and
the result was a very high correlation, between 0.2 and 0.3, in each case. What is the
serial correlation of this generator, taken over all 235 numbers of the period?

15. [M21] Generalize Lemma B so that it applies to all real values of c, 0 ≤ c < k.

16. [M24] Given the Euclidean tableau deĄned in (33), let p0 = 1, p1 = a1, and
pj = ajpj−1 + pj−2 for 1 < j ≤ t. Show that the complicated portion of the sum
in Theorem D can be rewritten as follows, making it possible to avoid noninteger
computations:

1≤j≤t

(−1)j+1 c2
j

mjmj+1
=

1
m1

1≤j≤t

(−1)j+1bj(cj + cj+1)pj−1.

[Hint: Prove that

1≤j≤r(−1)j+1/mjmj+1 = (−1)r+1pr−1/m1mr+1 for 1 ≤ r ≤ t.]
17. [M22] Design an algorithm that evaluates σ(h, k, c) for integers h, k, c satisfying
the hypotheses of Theorem D. Your algorithm should use only integer arithmetic (of
unlimited precision), and it should produce the answer in the form A + B/k where A
and B are integers. (See exercise 16.) If possible, use only a Ąnite number of variables
for temporary storage, instead of maintaining arrays such as a1, a2, . . . , at.

x 18. [M23] (U. Dieter.) Given positive integers h, k, z, let

S(h, k, c, z) =

0≤j<z

hj + c

k

.

Show that this sum can be evaluated in closed form, in terms of generalized Dedekind
sums and the sawtooth function. [Hint: When z ≤ k, the quantity ⌊j/k⌋ − ⌊(j − z)/k⌋
equals 1 for 0 ≤ j < z, and it equals 0 for z ≤ j < k, so we can introduce this factor
and sum over 0 ≤ j < k.]

92 RANDOM NUMBERS 3.3.3

x 19. [M23] Show that the serial test can be analyzed over the full period, in terms of
generalized Dedekind sums, by Ąnding a formula for the probability that α ≤ Xn < β
and α′ ≤ Xn+1 < β′ when α, β, α′, β′ are given integers with 0 ≤ α < β ≤ m and
0 ≤ α′ < β′ ≤ m. [Hint: Consider the quantity ⌊(x− α)/m⌋ − ⌊(x− β)/m⌋.]
20. [M29] (U. Dieter.) Extend Theorem P by obtaining a formula for the probability
that Xn > Xn+1 > Xn+2, in terms of generalized Dedekind sums.

EXERCISES Ů Second Set

In many cases, exact computations with integers are quite difficult to carry out, but
we can attempt to study the probabilities that arise when we take the average over all
real values of x instead of restricting the calculation to integer values. Although these
results are only approximate, they shed some light on the subject.

It is convenient to deal with numbers Un between zero and one; for linear congru-
ential sequences, Un = Xn/m, and we have Un+1 = {aUn + θ}, where θ = c/m and
{x} denotes xmod 1. For example, the formula for serial correlation now becomes

C =

 1

0

x{ax+ θ} dx−
 1

0

x dx

2 1

0

x2 dx−
 1

0

x dx

2

.

x 21. [HM23] (R. R. Coveyou.) What is the value of C in the formula just given?

x 22. [M22] Let a be an integer, and let 0 ≤ θ < 1. If x is a random real number,
uniformly distributed between 0 and 1, and if s(x) = {ax+ θ}, what is the probability
that s(x) < x? (This is the “real numberŤ analog of Theorem P.)

23. [M28] The previous exercise gives the probability that Un+1 < Un. What is
the probability that Un+2 < Un+1 < Un, assuming that Un is a random real number
between zero and one?

24. [M29] Under the assumptions of the preceding problem, except with θ = 0, show
that Un > Un+1 > · · · > Un+t−1 occurs with probability

1
t!

1 +

1
a

. . .

1 +

t− 2
a

.

What is the average length of a descending run starting at Un, assuming that Un is
selected at random between zero and one?

x 25. [M25] Let α, β, α′, β′ be real numbers with 0 ≤ α < β ≤ 1, 0 ≤ α′ < β′ ≤ 1.
Under the assumptions of exercise 22, what is the probability that α ≤ x < β and
α′ ≤ s(x) < β′? (This is the “real numberŤ analog of exercise 19.)

26. [M21] Consider a “FibonacciŤ generator, where Un+1 = {Un +Un−1}. Assuming
that U1 and U2 are independently chosen at random between 0 and 1, Ąnd the proba-
bility that U1 < U2 < U3, U1 < U3 < U2, U2 < U1 < U3, etc. [Hint: Divide the unit
square {(x, y) | 0 ≤ x, y < 1} into six parts, depending on the relative order of x, y,
and {x+ y}, and determine the area of each part.]

27. [M32] In the Fibonacci generator of the preceding exercise, let U0 and U1 be cho-
sen independently in the unit square except that U0 > U1. Determine the probability
that U1 is the beginning of an upward run of length k, so that U0 > U1 < · · · < Uk >
Uk+1. Compare this with the corresponding probabilities for a random sequence.

28. [M35] According to Eq. 3.2.1.3Ű(5), a linear congruential generator with potency 2
satisĄes the condition Xn−1−2Xn+Xn+1 ≡ (a−1)c (modulo m). Consider a generator

3.3.4 THE SPECTRAL TEST 93

that abstracts this situation: Let Un+1 = {α+ 2Un − Un−1}. As in exercise 26, divide
the unit square into parts that show the relative order of U1, U2, and U3 for each pair
(U1, U2). Are there any values of α for which all six possible orders are achieved with
probability 1

6
, assuming that U1 and U2 are chosen at random in the unit square?

3.3.4. The Spectral Test

In this section we shall study an especially important way to check the quality of
linear congruential random number generators. Not only do all good generators
pass this test, all generators now known to be bad actually fail it. Thus it
is by far the most powerful test known, and it deserves particular attention.
Our discussion will also bring out some fundamental limitations on the degree
of randomness that we can expect from linear congruential sequences and their
generalizations.

The spectral test embodies aspects of both the empirical and theoretical
tests studied in previous sections: It is like the theoretical tests because it deals
with properties of the full period of the sequence, and it is like the empirical
tests because it requires a computer program to determine the results.

A. Ideas underlying the test. The most important randomness criteria seem
to rely on properties of the joint distribution of t consecutive elements of the
sequence, and the spectral test deals directly with this distribution. If we have
a sequence ⟨Un⟩ of period m, the basic idea is to analyze the set of all m points

{ (Un, Un+1, . . . , Un+t−1) | 0 ≤ n < m } (1)

in t-dimensional space.
For simplicity we shall assume that we have a linear congruential sequence

(X0, a, c,m) of maximum period length m (so that c ̸= 0), or that m is prime
and c = 0 and the period length is m − 1. In the latter case we shall add the
point (0, 0, . . . , 0) to the set (1), so that there are always m points in all; this
extra point has a negligible effect when m is large, and it makes the theory much
simpler. Under these assumptions, (1) can be rewritten as

 1
m

x, s(x), s(s(x)), . . . , s[t−1](x)

 0 ≤ x < m

, (2)

where
s(x) = (ax+ c) modm (3)

is the successor of x. We are considering only the set of all such points in t
dimensions, not the order in which those points are actually generated. But the
order of generation is reĆected in the dependence between components of the
vectors; and the spectral test studies such dependence for various dimensions t
by dealing with the totality of all points (2).

For example, Fig. 8 shows a typical small case in 2 and 3 dimensions, for
the generator with

s(x) = (137x+ 187) mod 256. (4)

94 RANDOM NUMBERS 3.3.4

x

s(x)

(a)

x s(x)

s(s(x))

(b)

Fig. 8. (a) The two-dimensional
grid formed by all pairs of suc-
cessive points (Xn, Xn+1), when
Xn+1 = (137Xn + 187) mod 256.
(b) The three-dimensional grid of triplets (Xn, Xn+1, Xn+2).

Of course a generator with period length 256 will hardly be random, but 256 is
small enough that we can draw the diagram and gain some understanding before
we turn to the larger m’s that are of practical interest.

Perhaps the most striking thing about the pattern of boxes in Fig. 8(a) is
that we can cover them all by a fairly small number of parallel lines; indeed,
there are many different families of parallel lines that will hit all the points. For
example, a set of 20 nearly vertical lines will do the job, as will a set of 21 lines
that tilt upward at roughly a 30◦ angle. We commonly observe similar patterns
when driving past farmlands that have been planted in a systematic manner.

If the same generator is considered in three dimensions, we obtain 256 points
in a cube, obtained by appending a “heightŤ component s(s(x)) to each of the
256 points

x, s(x)

in the plane of Fig. 8(a), as shown in Fig. 8(b). Let’s imagine

that this 3-D crystal structure has been made into a physical model, a cube that
we can turn in our hands; as we rotate it, we will notice various families of
parallel planes that encompass all of the points. In the words of Wallace Givens,
the random numbers stay “mainly in the planes.Ť

At Ąrst glance we might think that such systematic behavior is so nonrandom
as to make congruential generators quite worthless; but more careful reĆection,
remembering that m is quite large in practice, provides a better insight. The
regular structure in Fig. 8 is essentially the “grainŤ we see when examining
our random numbers under a high-power microscope. If we take truly random
numbers between 0 and 1, and round or truncate them to Ąnite accuracy so
that each is an integer multiple of 1/ν for some given number ν, then the t-
dimensional points (1) we obtain will have an extremely regular character when
viewed through a microscope.

Let 1/ν2 be the maximum distance between lines, taken over all families
of parallel straight lines that cover the points

x/m, s(x)/m

in two dimen-

sions. We shall call ν2 the two-dimensional accuracy of the random number

3.3.4 THE SPECTRAL TEST 95

generator, since the pairs of successive numbers have a Ąne structure that is
essentially good to one part in ν2. Similarly, let 1/ν3 be the maximum distance
between planes, taken over all families of parallel planes that cover all points

x/m, s(x)/m, s(s(x))/m

; we shall call ν3 the accuracy in three dimensions.

The t-dimensional accuracy νt is the reciprocal of the maximum distance between
hyperplanes, taken over all families of parallel (t − 1)-dimensional hyperplanes
that cover all points

x/m, s(x)/m, . . . , s[t−1](x)/m

.

The essential difference between periodic sequences and truly random se-
quences that have been truncated to multiples of 1/ν is that the accuracy of
truly random sequences is the same in all dimensions, while that of periodic
sequences decreases as t increases. Indeed, since there are only m points in the
t-dimensional cube when m is the period length, we can’t achieve a t-dimensional
accuracy of more than about m1/t.

When the independence of t consecutive values is considered, computer-
generated random numbers will behave essentially as if we took truly random
numbers and truncated them to lg νt bits, where νt decreases with increasing t.
In practice, such varying accuracy is usually all we need. We don’t insist that the
10-dimensional accuracy be 232, in the sense that all (232)10 possible 10-tuples
(Un, Un+1, . . . , Un+9) should be equally likely on a 32-bit machine; for such large
values of t we want only a few of the leading bits of (Un, Un+1, . . . , Un+t−1) to
behave as if they were independently random.

On the other hand when an application demands high resolution of the
random number sequence, simple linear congruential sequences will necessarily
be inadequate. A generator with longer period should be used instead, even
though only a small fraction of the period will actually be generated. Squaring
the period length will essentially square the accuracy in higher dimensions; that
is, it will double the effective number of bits of precision.

The spectral test is based on the values of νt for small t, say 2 ≤ t ≤ 6.
Dimensions 2, 3, and 4 seem to be adequate to detect important deĄciencies
in a sequence, but since we are considering the entire period it is wise to be
somewhat cautious and go up into another dimension or two; on the other hand
the values of νt for t ≥ 10 seem to be of no practical signiĄcance whatever. (This
is fortunate, because it appears to be rather difficult to calculate the accuracy νt
precisely when t ≥ 10.)

There is a vague relation between the spectral test and the serial test; for
example, a special case of the serial test, taken over the entire period as in exercise
3.3.3Ű19, counts the number of boxes in each of 64 subsquares of Fig. 8(a). The
main difference is that the spectral test rotates the dots so as to discover the
least favorable orientation. We shall return to the serial test later in this section.

It may appear at Ąrst that we should apply the spectral test only for one
suitably high value of t; if a generator passes the test in three dimensions, it seems
plausible that it should also pass the 2-D test, hence we might as well omit the
latter. The fallacy in this reasoning occurs because we apply more stringent
conditions in lower dimensions. A similar situation occurs with the serial test:

96 RANDOM NUMBERS 3.3.4

Consider a generator that (quite properly) has almost the same number of points
in each subcube of the unit cube, when the unit cube has been divided into 64
subcubes of size 1

4 × 1
4 × 1

4 ; this same generator might yield completely empty

subsquares of the unit square, when the unit square has been divided into 64
subsquares of size 1

8 × 1
8 . Since we increase our expectations in lower dimensions,

a separate test for each dimension is required.
It is not always true that νt ≤ m1/t, although this upper bound is valid when

the points form a rectangular grid. For example, it turns out that ν2 =
√

274 >√
256 in Fig. 8, because a nearly hexagonal structure brings the m points closer

together than would be possible in a strictly rectangular arrangement.
In order to develop an algorithm that computes νt efficiently, we must look

more deeply at the associated mathematical theory. Therefore a reader who is
not mathematically inclined is advised to skip to part D of this section, where
the spectral test is presented as a “plug-inŤ method accompanied by several
examples. But the mathematics behind the spectral test requires only some
elementary manipulations of vectors.

Some authors have suggested using the minimum number Nt of parallel
covering lines or hyperplanes as the criterion, instead of the maximum distance
1/νt between them. However, this number Nt does not appear to be as important
as the concept of accuracy deĄned above, because it is biased by how nearly
the slope of the lines or hyperplanes matches the coordinate axes of the cube.
For example, the 20 nearly vertical lines that cover all the points of Fig. 8(a)
are actually 1/

√
328 units apart, according to Eq. (14) below with (u1, u2) =

(18,−2); this might falsely imply an accuracy of one part in
√

328, or perhaps
even an accuracy of one part in 20. The true accuracy of only one part in

√
274 is

realized only for the larger family of 21 lines with a slope of 7/15; another family
of 24 lines, with a slope of −11/13, also has a greater inter-line distance than
the 20-line family, since 1/

√
290 > 1/

√
328. The precise way in which families

of lines act at the boundaries of the unit hypercube does not seem to be an
especially “cleanŤ or signiĄcant criterion. However, for those people who prefer
to count hyperplanes, it is possible to compute Nt using a method quite similar
to the way in which we shall calculate νt (see exercise 16).

*B. Theory behind the test. In order to analyze the basic set (2), we start
with the observation that

1
m
s[j](x) =

ajx+ (1 + a+ · · ·+ aj−1)c

m

mod 1. (5)

We can get rid of the “mod 1Ť operation by extending the set periodically, making
inĄnitely many copies of the original t-dimensional hypercube, proceeding in all
directions. This gives us the set

L =

x

m
+ k1,

s(x)
m

+ k2, . . . ,
s[t−1](x)

m
+ kt

 integer x, k1, k2, . . . , kt

=

V0 +

x

m
+ k1,

ax

m
+ k2, . . . ,

at−1x

m
+ kt

 integer x, k1, k2, . . . , kt

,

3.3.4 THE SPECTRAL TEST 97

where
V0 =

1
m

0, c, (1 + a)c, . . . , (1 + a+ · · ·+ at−2)c

(6)

is a constant vector. The variable k1 is redundant in this representation of L,
because we can change (x, k1, k2, . . . , kt) to (x+k1m, 0, k2−ak1, . . . , kt−at−1k1),
reducing k1 to zero without loss of generality. Therefore we obtain the compara-
tively simple formula

L = {V0 + y1V1 + y2V2 + · · ·+ ytVt | integer y1, y2, . . . , yt}, (7)

where

V1 =
1
m

(1, a, a2, . . . , at−1); (8)

V2 = (0, 1, 0, . . . , 0), V3 = (0, 0, 1, . . . , 0), . . . , Vt = (0, 0, 0, . . . , 1). (9)

The points (x1, x2, . . . , xt) of L that satisfy 0 ≤ xj < 1 for all j are precisely the
m points of our original set (2).

Notice that the increment c appears only in V0, and the effect of V0 is
merely to shift all elements of L without changing their relative distances; hence
c does not affect the spectral test in any way, and we might as well assume that
V0 = (0, 0, . . . , 0) when we are calculating νt. When V0 is the zero vector we
have a lattice of points

L0 = {y1V1 + y2V2 + · · ·+ ytVt | integer y1, y2, . . . , yt}, (10)

and our goal is to study the distances between adjacent (t − 1)-dimensional
hyperplanes, in families of parallel hyperplanes that cover all the points of L0.

A family of parallel (t − 1)-dimensional hyperplanes can be deĄned by a
nonzero vector U = (u1, . . . , ut) that is perpendicular to all of them; and the set
of points on a particular hyperplane is then

{(x1, . . . , xt) | x1u1 + · · ·+ xtut = q}, (11)

where q is a different constant for each hyperplane in the family. In other words,
each hyperplane is the set of all vectors X for which the dot product X ·U has a
given value q. In our case the hyperplanes are all separated by a Ąxed distance,
and one of them contains (0, 0, . . . , 0); hence we can adjust the magnitude of U
so that the set of all integer values q gives all the hyperplanes in the family.
Then the distance between neighboring hyperplanes is the minimum distance
from (0, 0, . . . , 0) to the hyperplane for q = 1, namely

min
real x1,...,xt

x2
1 + · · ·+ x2

t

 x1u1 + · · ·+ xtut = 1

. (12)

Cauchy’s inequality (see exercise 1.2.3Ű30) tells us that

(x1u1 + · · ·+ xtut)2 ≤ (x2
1 + · · ·+ x2

t) (u2
1 + · · ·+ u2

t), (13)

hence the minimum in (12) occurs when each xj = uj/(u2
1+· · ·+u2

t); the distance
between neighboring hyperplanes is

1

u2
1 + · · ·+ u2

t = 1/ length(U). (14)

98 RANDOM NUMBERS 3.3.4

In other words, the quantity νt that we seek is precisely the length of the shortest
vector U that deĄnes a family of hyperplanes {X ·U = q | integer q} containing
all the elements of L0.

Such a vector U = (u1, . . . , ut) must be nonzero, and it must satisfy V ·U =
integer for all V in L0. In particular, since the points (1, 0, . . . , 0), (0, 1, . . . , 0),
. . . , (0, 0, . . . , 1) are all in L0, all of the uj must be integers. Furthermore since
V1 is in L0, we must have 1

m (u1 + au2 + · · ·+ at−1ut) = integer, i.e.,

u1 + au2 + · · ·+ at−1ut ≡ 0 (modulo m). (15)

Conversely, any nonzero integer vector U = (u1, . . . , ut) satisfying (15) deĄnes a
family of hyperplanes with the required properties, since all of L0 will be covered:
The dot product (y1V1+· · ·+ytVt) ·U will be an integer for all integers y1, . . . , yt.
We have proved that

ν2
t = min

(u1,...,ut) ̸=(0,...,0)

u2

1+ · · ·+u2
t

 u1+au2+ · · ·+at−1ut ≡ 0 (modulo m)

= min
(x1,...,xt) ̸=(0,...,0)

(mx1−ax2−a2x3− · · · −at−1xt)2+x2

2+x2
3+ · · ·+x2

t

.

(16)

C. Deriving a computational method. We have now reduced the spectral
test to the problem of Ąnding the minimum value (16); but how on earth can we
determine that minimum value in a reasonable amount of time? A brute-force
search is out of the question, since m is very large in cases of practical interest.

It will be interesting and probably more useful if we develop a computational
method for solving an even more general problem: Find the minimum value of
the quantity

f(x1, . . . , xt) = (u11x1 + · · ·+ ut1xt)2 + · · ·+ (u1tx1 + · · ·+ uttxt)2 (17)

over all nonzero integer vectors (x1, . . . , xt), given any nonsingular matrix of
coefficients U = (uij). The expression (17) is called a “positive deĄnite quadratic
formŤ in t variables. Since U is nonsingular, (17) cannot be zero unless the xj
are all zero.

Let us write U1, . . . , Ut for the rows of U. Then (17) may be written

f(x1, . . . , xt) = (x1U1 + · · ·+ xtUt) · (x1U1 + · · ·+ xtUt), (18)

the square of the length of the vector x1U1 + · · ·+xtUt. The nonsingular matrix
U has an inverse, which means that we can Ąnd uniquely determined vectors
V1, . . . , Vt such that

Ui ·Vj = δij , 1 ≤ i, j ≤ t. (19)

3.3.4 THE SPECTRAL TEST 99

For example, in the special form (16) that arises in the spectral test, we have

U1 = (m, 0, 0, . . . , 0), V1 = 1
m (1, a, a2, . . . , at−1),

U2 = (−a, 1, 0, . . . , 0), V2 = (0, 1, 0, . . . , 0),

U3 = (−a2, 0, 1, . . . , 0), V3 = (0, 0, 1, . . . , 0),

.

Ut = (−at−1, 0, 0, . . . , 1), Vt = (0, 0, 0, . . . , 1).

(20)

These Vj are precisely the vectors (8), (9) that we used to deĄne our original
lattice L0. As the reader may well suspect, this is not a coincidence Ů indeed, if
we had begun with an arbitrary lattice L0, deĄned by any set of linearly inde-
pendent vectors V1, . . . , Vt, the argument we have used above can be generalized
to show that the maximum separation between hyperplanes in a covering family
is equivalent to minimizing (17), where the coefficients uij are deĄned by (19).
(See exercise 2.)

Our Ąrst step in minimizing (18) is to reduce it to a Ąnite problem, namely
to show that we won’t need to test inĄnitely many vectors (x1, . . . , xt) when
Ąnding the minimum. This is where the vectors V1, . . . , Vt come in handy; we
have

xk = (x1U1 + · · ·+ xtUt) ·Vk,
and Cauchy’s inequality tells us that

(x1U1 + · · ·+ xtUt) ·Vk

2 ≤ f(x1, . . . , xt)(Vk ·Vk).

Hence we have derived a useful upper bound on each coordinate xk:

Lemma A. Let (x1, . . . , xt) be a nonzero vector that minimizes (18) and let
(y1, . . . , yt) be any nonzero integer vector. Then

x2
k ≤ f(y1, . . . , yt)(Vk ·Vk), for 1 ≤ k ≤ t. (21)

In particular, letting yi = δij for all i,

x2
k ≤ (Uj ·Uj)(Vk ·Vk), for 1 ≤ j, k ≤ t. (22)

Lemma A reduces the problem to a Ąnite search, but the right-hand side of
(21) is usually much too large to make an exhaustive search feasible; we need at
least one more idea. On such occasions, an old maxim provides sound advice: “If
you can’t solve a problem as it is stated, change it into a simpler problem that
has the same answer.Ť For example, Euclid’s algorithm has this form; if we don’t
know the gcd of the input numbers, we change them into smaller numbers having
the same gcd. (In fact, a slightly more general approach probably underlies the
discovery of nearly all algorithms: “If you can’t solve a problem directly, change
it into one or more simpler problems, from whose solution you can solve the
original one.Ť)

In our case, a simpler problem is one that requires less searching because the
right-hand side of (22) is smaller. The key idea we shall use is that it is possible
to change one quadratic form into another one that is equivalent for all practical

100 RANDOM NUMBERS 3.3.4

purposes. Let j be any Ąxed subscript, 1 ≤ j ≤ t; let (q1, . . . , qj−1, qj+1, . . . , qt)
be any sequence of t − 1 integers; and consider the following transformation of
the vectors:

V ′
i = Vi − qiVj , x′i = xi − qixj , U ′

i = Ui, for i ̸= j;

V ′
j = Vj , x′j = xj , U ′

j = Uj +

i ̸=j qiUi.
(23)

It is easy to see that the new vectors U ′
1, . . . , U ′

t deĄne a quadratic form f ′

for which f ′(x′1, . . . , x
′
t) = f(x1, . . . , xt); furthermore the basic orthogonality

condition (19) remains valid, because it is easy to check that U ′
i ·V ′

j = δij . As
(x1, . . . , xt) runs through all nonzero integer vectors, so does (x′1, . . . , x

′
t); hence

the new form f ′ has the same minimum as f .
Our goal is to use transformation (23), replacing Ui by U ′

i and Vi by V ′
i for

all i, in order to make the right-hand side of (22) small; and the right-hand side
of (22) will be small when both Uj ·Uj and Vk ·Vk are small. Therefore it is
natural to ask the following two questions about the transformation (23):

a) What choice of qi makes V ′
i ·V ′

i as small as possible?

b) What choice of q1, . . . , qj−1, qj+1, . . . , qt makes U ′
j ·U ′

j as small as possible?

It is easiest to solve these questions Ąrst for real values of the qi. Question (a)
is quite simple, since

(Vi−qiVj) ·(Vi−qiVj) = Vi ·Vi−2qi Vi ·Vj +q2
i Vj ·Vj

= (Vj ·Vj)

qi−(Vi ·Vj/Vj ·Vj)

2
+Vi ·Vi−(Vi ·Vj)2/Vj ·Vj ,

and the minimum occurs when

qi = Vi ·Vj / Vj ·Vj . (24)

Geometrically, we are asking what multiple of Vj should be subtracted from Vi
so that the resulting vector V ′

i has minimum length, and the answer is to choose
qi so that V ′

i is perpendicular to Vj (that is, to make V ′
i ·Vj = 0); the following

diagram makes this plain.

Vj =V ′

j

V ′

i
Vi

−qiVj

(25)

Turning to question (b), we want to choose the qi so that Uj +

i ̸=j qiUi has
minimum length; geometrically, we want to start with Uj and add some vector
in the (t − 1)-dimensional hyperplane whose points are the sums of multiples
of {Ui | i ̸= j}. Again the best solution is to choose things so that U ′

j is
perpendicular to the hyperplane, making U ′

j ·Uk = 0 for all k ̸= j:

Uj ·Uk +

i ̸=j

qi(Ui ·Uk) = 0, 1 ≤ k ≤ t, k ̸= j. (26)

3.3.4 THE SPECTRAL TEST 101

(See exercise 12 for a rigorous proof that a solution to question (b) must satisfy
these t− 1 equations.)

Now that we have answered questions (a) and (b), we are in a bit of a
quandary; should we choose the qi according to (24), so that the V ′

i ·V ′
i are

minimized, or according to (26), so that U ′
j ·U ′

j is minimized? Either of these
alternatives makes an improvement in the right-hand side of (22), so it is not
immediately clear which choice should get priority. Fortunately, there is a very
simple answer to this dilemma: Conditions (24) and (26) are exactly the same!
(See exercise 7.) Therefore questions (a) and (b) have the same answer; we have
a happy state of affairs in which we can reduce the length of both the U ’s and
the V ’s simultaneously. Indeed, we have just rediscovered the GramŰSchmidt

orthogonalization process [see Crelle 94 (1883), 41Ű73].
Our joy must be tempered with the realization that we have dealt with

questions (a) and (b) only for real values of the qi. Our application restricts us
to integer values, so we cannot make V ′

i exactly perpendicular to Vj . The best
we can do for question (a) is to let qi be the nearest integer to Vi ·Vj / Vj ·Vj
see (25)

. It turns out that this is not always the best solution to question (b);

in fact U ′
j may at times be longer than Uj . However, the bound (21) is never

increased, since we can remember the smallest value of f(y1, . . . , yt) found so
far. Thus a choice of qi based solely on question (a) is quite satisfactory.

If we apply transformation (23) repeatedly in such a way that none of the
vectors Vi gets longer and at least one gets shorter, we can never get into a
loop; that is, we will never be considering the same quadratic form again after
a sequence of nontrivial transformations of this kind. But eventually we will
get stuck, in the sense that none of the transformations (23) for 1 ≤ j ≤ t
will be able to shorten any of the vectors V1, . . . , Vt. At that point we can
revert to an exhaustive search, using the bounds of Lemma A, which will now
be quite small in most cases. Occasionally these bounds (21) will be poor, and
another type of transformation will usually get the algorithm unstuck again and
reduce the bounds (see exercise 18). However, transformation (23) by itself has
proved to be quite adequate for the spectral test; in fact, it has proved to be
amazingly powerful when the computations are arranged as in the algorithm
discussed below.

*D. How to perform the spectral test. Here now is an efficient computational
procedure that follows from our considerations. R. W. Gosper and U. Dieter
have observed that it is possible to use the results of lower dimensions to make
the spectral test signiĄcantly faster in higher dimensions. This reĄnement has
been incorporated into the following algorithm, together with Gauss’s signiĄcant
simpliĄcation of the two-dimensional case (exercise 5).

Algorithm S (The spectral test). This algorithm determines the value of

νt = min

x2
1 + · · ·+ x2

t

 x1 + ax2 + · · ·+ at−1xt ≡ 0 (modulo m)

(27)

for 2 ≤ t ≤ T, given a, m, and T, where 0 < a < m and a is relatively prime to
m. (The minimum is taken over all nonzero integer vectors (x1, . . . , xt), and the

102 RANDOM NUMBERS 3.3.4

number νt measures the t-dimensional accuracy of random number generators,
as discussed in the text above.) All arithmetic within this algorithm is done on
integers whose magnitudes rarely if ever exceed m2, except in step S7; in fact,
nearly all of the integer variables will be less than m in absolute value during
the computation.

When νt is being calculated for t ≥ 3, the algorithm works with two t × t
matrices U and V , whose row vectors are denoted by Ui = (ui1, . . . , uit) and
Vi = (vi1, . . . , vit) for 1 ≤ i ≤ t. These vectors satisfy the conditions

ui1 + aui2 + · · ·+ at−1uit ≡ 0 (modulo m), 1 ≤ i ≤ t; (28)

Ui ·Vj = mδij , 1 ≤ i, j ≤ t. (29)

(Thus the Vj of our previous discussion have been multiplied by m, to ensure
that their components are integers.) There are three other auxiliary vectors,
X = (x1, . . . , xt), Y = (y1, . . . , yt), and Z = (z1, . . . , zt). During the entire
algorithm, r will denote at−1 modm and s will denote the smallest upper bound
for ν2

t that has been discovered so far.

S1. [Initialize.] Set t ← 2, h ← a, h′ ← m, p ← 1, p′ ← 0, r ← a, s ← 1 + a2.
(The Ąrst steps of this algorithm handle the case t = 2 by a special method,
very much like Euclid’s algorithm; we will have

h− ap ≡ h′ − ap′ ≡ 0 (modulo m) and hp′ − h′p = ±m (30)

during this phase of the calculation.)

S2. [Euclidean step.] Set q ← ⌊h′/h⌋, u← h′− qh, v ← p′− qp. If u2 + v2 < s,
set s← u2 + v2, h′ ← h, h← u, p′ ← p, p← v, and repeat step S2.

S3. [Compute ν2.] Set u← u−h, v ← v−p; and if u2 +v2 < s, set s← u2 +v2,
h′ ← u, p′ ← v. Then output

√
s = ν2. (The validity of this calculation for

the two-dimensional case is proved in exercise 5. Now we will set up the U
and V matrices satisfying (28) and (29), in preparation for calculations in
higher dimensions.) Set

U ←

−h p
−h′ p′

, V ← ±

p′ h′

−p −h

,

where the − sign is chosen for V if and only if p′ > 0.

S4. [Advance t.] If t = T, the algorithm terminates. (Otherwise we want to
increase t by 1. At this point U and V are t × t matrices satisfying (28)
and (29), and we must enlarge them by adding an appropriate new row
and column.) Set t ← t + 1 and r ← (ar) modm. Set Ut to the new row
(−r, 0, 0, . . . , 0, 1) of t elements, and set uit ← 0 for 1 ≤ i < t. Set Vt to the
new row (0, 0, 0, . . . , 0,m). Finally, for 1 ≤ i < t, set q ← round(vi1r/m),
vit ← vi1r−qm, and Ut ← Ut +qUi. (Here “round(x)Ť denotes the nearest
integer to x, e.g., ⌊x + 1/2⌋. We are essentially setting vit ← vi1r and
immediately applying transformation (23) with j = t, since the numbers
|vi1r| are so large they ought to be reduced at once.) Finally set s ←
min(s, Ut ·Ut), k ← t, and j ← 1. (In the following steps, j denotes the

3.3.4 THE SPECTRAL TEST 103

current row index for transformation (23), and k denotes the last such index
where the transformation shortened at least one of the Vi.)

S5. [Transform.] For 1 ≤ i ≤ t, do the following operations: If i ̸= j and
2 |Vi ·Vj | > Vj ·Vj , set q ← round(Vi ·Vj / Vj ·Vj), Vi ← Vi − qVj , Uj ←
Uj + qUi, s ← min(s, Uj ·Uj), and k ← j. (We omit the transformation
when 2 |Vi ·Vj | exactly equals Vj ·Vj ; exercise 19 shows that this precaution
keeps the algorithm from looping endlessly.)

S6. [Advance j.] If j = t, set j ← 1; otherwise set j ← j + 1. Now if j ̸= k,
return to step S5. (If j = k, we have gone through t− 1 consecutive cycles
of no transformation, so the transformation process is stuck.)

S7. [Prepare for search.] (Now the absolute minimum will be determined,
using an exhaustive search over all (x1, . . . , xt) satisfying condition (21)
of Lemma A.) Set X ← Y ← (0, . . . , 0), set k ← t, and set

zj ←

⌊(Vj ·Vj)s/m2⌋

, for 1 ≤ j ≤ t. (31)

(We will examine all X = (x1, . . . , xt) with |xj | ≤ zj for 1 ≤ j ≤ t. Usually
|zj | ≤ 1, but L. C. Killingbeck noticed in 1999 that larger values occur
for about 0.00001 of all multipliers when m = 264. During the exhaustive
search, the vector Y will always be equal to x1U1 + · · · + xtUt, so that
f(x1, . . . , xt) = Y ·Y . Since f(−x1, . . . ,−xt) = f(x1, . . . , xt), we shall ex-
amine only vectors whose Ąrst nonzero component is positive. The method
is essentially that of counting in steps of one, regarding (x1, . . . , xt) as the
digits in a balanced number system with mixed radices (2z1+1, . . . , 2zt+1);
see Section 4.1.)

S8. [Advance xk.] If xk = zk, go to S10. Otherwise increase xk by 1 and set
Y ← Y + Uk.

S9. [Advance k.] Set k ← k+ 1. Then if k ≤ t, set xk ← −zk, Y ← Y − 2zkUk,
and repeat step S9. But if k > t, set s← min(s, Y ·Y).

S10. [Decrease k.] Set k ← k − 1. If k ≥ 1, return to S8. Otherwise output
νt =

√
s (the exhaustive search is completed) and return to S4.

In practice Algorithm S is applied for T = 5 or 6, say; it usually works reasonably
well when T = 7 or 8, but it can be terribly slow when T ≥ 9 since the exhaustive
search tends to make the running time grow as 3T. (If the minimum value νt
occurs at many different points, the exhaustive search will hit them all; hence
we typically Ąnd that all zk = 1 for large t. As remarked above, the values of νt
are generally irrelevant for practical purposes when t is large.)

An example will help to make Algorithm S clear. Consider the linear
congruential sequence deĄned by

m = 1010, a = 3141592621, c = 1, X0 = 0. (32)

Six cycles of the Euclidean algorithm in steps S2 and S3 suffice to prove that the
minimum nonzero value of x2

1 + x2
2 with

x1 + 3141592621x2 ≡ 0 (modulo 1010)

104 RANDOM NUMBERS 3.3.4

occurs for x1 = 67654, x2 = 226; hence the two-dimensional accuracy of this
generator is

ν2 =

676542 + 2262 ≈ 67654.37748.

Passing to three dimensions, we seek the minimum nonzero value of x2
1 +x2

2 +x2
3

such that

x1 + 3141592621x2 + 31415926212x3 ≡ 0 (modulo 1010). (33)

Step S4 sets up the matrices

U =

 −67654 −226 0
−44190611 191 0

5793866 33 1

, V =

−191 −44190611 2564918569
−226 67654 1307181134

0 0 10000000000

.

The Ąrst iteration of step S5, with q = 1 for i = 2 and q = 4 for i = 3, changes
them to

U =

−21082801 97 4
−44190611 191 0

5793866 33 1

, V =

−191 −44190611 2564918569
−35 44258265 −1257737435
764 176762444 −259674276

.

(The Ąrst row U1 has actually gotten longer in this transformation, although
eventually the rows of U should get shorter.)

The next fourteen iterations of step S5 have (j, q1, q2, q3) = (2,−2, ∗, 0),
(3, 0, 3, ∗), (1, ∗,−10,−1), (2,−1, ∗,−6), (3,−1, 0, ∗), (1, ∗, 0, 2), (2, 0, ∗,−1),
(3, 3, 4, ∗), (1, ∗, 0, 0), (2,−5, ∗, 0), (3, 1, 0, ∗), (1, ∗,−3,−1), (2, 0, ∗, 0), (3, 0, 0, ∗).
Now the transformation process is stuck, but the rows of the matrices have
become signiĄcantly shorter:

U =

−1479 616 −2777
−3022 104 918
−227 −983 −130

, V =

 −888874 601246 −2994234
−2809871 438109 1593689
−854296 −9749816 −1707736

. (34)

The search limits (z1, z2, z3) in step S7 turn out to be (0, 0, 1), so U3 is the
shortest solution to (33); we have

ν3 =

2272 + 9832 + 1302 ≈ 1017.21089.

Only a few iterations were needed to Ąnd this value, although condition (33)
looks quite formidable at Ąrst glance. Our computation has proved that all
points (Un, Un+1, Un+2) produced by the random number generator (32) lie on a
family of parallel planes about 0.001 units apart, but not on any family of planes
that differ by more than 0.001 units.

The exhaustive search in steps S8ŰS10 reduces the value of s only rarely.
One such case, found in 1982 by R. Carling and K. Levine, occurs when a =
464680339, m = 229, and t = 5; another case arose when the author calculated
ν2

6 for line 21 of Table 1, later in this section.

E. Ratings for various generators. So far we haven’t really given a criterion
that tells us whether or not a particular random number generator passes or
Ćunks the spectral test. In fact, spectral success depends on the application,
since some applications demand higher resolution than others. It appears that

3.3.4 THE SPECTRAL TEST 105

νt ≥ 230/t for 2 ≤ t ≤ 6 will be quite adequate for most purposes (although
the author must admit choosing this criterion partly because 30 is conveniently
divisible by 2, 3, 5, and 6).

For some purposes we would like a criterion that is relatively independent
of m, so we can say that a particular multiplier is good or bad with respect to
the set of all other multipliers for the given m, without examining any others.
A reasonable Ągure of merit for rating the goodness of a particular multiplier
seems to be the volume of the ellipsoid in t-space deĄned by the relation

(x1m− x2a− · · · − xtat−1)2 + x2
2 + · · ·+ x2

t ≤ ν2
t ,

since this volume tends to indicate how likely it is that nonzero integer points
(x1, . . . , xt) Ů corresponding to solutions of (15) Ů are in the ellipsoid. We there-
fore propose to calculate this volume, namely

µt =
πt/2 νtt

(t/2)!m
, (35)

as an indication of the effectiveness of the multiplier a for the given m. In this
formula,

t

2

! =

t

2

t

2
− 1

. . .
1

2

√
π, for t odd. (36)

Thus, in six or fewer dimensions the merit is computed as follows:

µ2 = πν2
2/m, µ3 = 4

3πν
3
3/m, µ4 = 1

2π
2ν4

4/m,

µ5 = 8
15π

2ν5
5/m, µ6 = 1

6π
3ν6

6/m.

We might say that the multiplier a passes the spectral test if µt is 0.1 or more
for 2 ≤ t ≤ 6, and it “passes with Ćying colorsŤ if µt ≥ 1 for all these t. A low
value of µt means that we have probably picked a very unfortunate multiplier,
since very few lattices will have integer points so close to the origin. Conversely,
a high value of µt means that we have found an unusually good multiplier for
the given m; but it does not mean that the random numbers are necessarily very
good, since m might be too small. Only the values νt truly indicate the degree
of randomness.

Table 1 shows what sorts of values occur in typical sequences. Each line of
the table considers a particular generator, and lists ν2

t , µt, and the “number of
bits of accuracyŤ lg νt. Lines 1 through 4 show the generators that were the sub-
ject of Figs. 2 and 5 in Section 3.3.1. The generators in lines 1 and 2 suffer from
too small a multiplier; a diagram like Fig. 8 will have a nearly vertical “stripesŤ
when a is small. The terrible generator in line 3 has a good µ2 but very poor µ3

and µ4; like nearly all generators of potency 2, it has ν3 =
√

6 and ν4 = 2 (see
exercise 3). Line 4 shows a “randomŤ multiplier; this generator has satisfactorily
passed numerous empirical tests for randomness, but it does not have especially
high values of µ2, . . . , µ6. In fact, the value of µ5 Ćunks our criterion.

Line 5 shows the generator of Fig. 8. It passes the spectral test with very
high-Ćying colors, when µ2 through µ6 are considered, but of course m is so small
that the numbers can hardly be called random; the νt values are terribly low.

106 RANDOM NUMBERS 3.3.4

Table 1

SAMPLE RESULTS OF THE SPECTRAL TEST

Line a m ν2
2 ν2

3 ν2
4 ν2

5 ν2
6

1 23 108+1 530 530 530 530 447
2 27+1 235 16642 16642 16642 15602 252
3 218+1 235 34359738368 6 4 4 4
4 3141592653 235 2997222016 1026050 27822 1118 1118
5 137 256 274 30 14 6 4
6 3141592621 1010 4577114792 1034718 62454 1776 542
7 3141592221 1010 4293881050 276266 97450 3366 2382
8 4219755981 1010 10721093248 2595578 49362 5868 820
9 4160984121 1010 9183801602 4615650 16686 6840 1344

10 224+213+5 235 8364058 8364058 21476 16712 1496
11 513 235 33161885770 2925242 113374 13070 2256
12 216+3 229 536936458 118 116 116 116
13 1812433253 232 4326934538 1462856 15082 4866 906
14 1566083941 232 4659748970 2079590 44902 4652 662
15 69069 232 4243209856 2072544 52804 6990 242
16 2650845021 232 4938969760 2646962 68342 8778 1506
17 314159269 231−1 1432232969 899290 36985 3427 1144
18 62089911 231−1 1977289717 1662317 48191 6101 1462
19 16807 231−1 282475250 408197 21682 4439 895
20 48271 231−1 1990735345 1433881 47418 4404 1402
21 40692 231−249 1655838865 1403422 42475 6507 1438
22 44485709377909 246 5.6×1013 1180915002 1882426 279928 26230
23 31167285 248 3.2×1014 4111841446 17341510 306326 59278
24 see (38) 2.4×1018 4.7×1011 1.9×109 3194548 1611610
25 see (39) (231−1)2 1.4×1012 643578623 12930027 837632
26 see the text 264 8.8×1018 6.4×1012 4.1×109 45662836 1846368
27 see the text ≈ 278 262+1 4281084902 2.2×109 1.8×109 1862407
28 2−24·389 ≈ 2576 1.8×10173 3.5×10115 4.4×1086 2×1069 5×1057

29 (232−5)−400 ≈ 21376 1.6×10414 8.6×10275 1×10207 2×10165 8×10137

Line 6 is the generator discussed in (32) above. Line 7 is a similar example,
having an abnormally low value of µ3. Line 8 shows a nonrandom multiplier
for the same modulus m; all of its partial quotients are 1, 2, or 3. Such
multipliers have been suggested by I. Borosh and H. Niederreiter because the
Dedekind sums are likely to be especially small and because they produce best
results in the two-dimensional serial test (see Section 3.3.3 and exercise 30). The
particular example in line 8 has only one Ś3’ as a partial quotient; there is no
multiplier congruent to 1 modulo 20 whose partial quotients with respect to 1010

are only 1s and 2s. The generator in line 9 shows another multiplier chosen with
malice aforethought, following a suggestion by A. G. Waterman that guarantees
a reasonably high value of µ2 (see exercise 11). Line 10 is interesting because it
has high µ3 in spite of very low µ2 (see exercise 8).

Line 11 of Table 1 is a reminder of the good old days Ů it once was used ex-
tensively, following a suggestion of O. Taussky in the early 1950s. But computers
for which 235 was an appropriate modulus began to fade in importance during
the late 60s, and they disappeared almost completely in the 80s, as machines

3.3.4 THE SPECTRAL TEST 107

(ϵ = 1
10

)

lg ν2 lg ν3 lg ν4 lg ν5 lg ν6 µ2 µ3 µ4 µ5 µ6 Line

4.5 4.5 4.5 4.5 4.4 2ϵ5 5ϵ4 0.01 0.34 4.62 1
7.0 7.0 7.0 7.0 4.0 2ϵ6 3ϵ4 0.04 4.66 2ϵ3 2

17.5 1.3 1.0 1.0 1.0 3.14 2ϵ9 2ϵ9 5ϵ9 ϵ8 3
15.7 10.0 7.4 5.1 5.1 0.27 0.13 0.11 0.01 0.21 4
4.0 2.5 1.9 1.3 1.0 3.36 2.69 3.78 1.81 1.29 5

16.0 10.0 8.0 5.4 4.5 1.44 0.44 1.92 0.07 0.08 6
16.0 9.0 8.3 5.9 5.6 1.35 0.06 4.69 0.35 6.98 7
16.7 10.7 7.8 6.3 4.8 3.37 1.75 1.20 1.39 0.28 8
16.5 11.1 7.0 6.4 5.2 2.89 4.15 0.14 2.04 1.25 9
11.5 11.5 7.2 7.0 5.3 8ϵ4 2.95 0.07 5.53 0.50 10
17.5 10.7 8.4 6.8 5.6 3.03 0.61 1.85 2.99 1.73 11
14.5 3.4 3.4 3.4 3.4 3.14 ϵ5 ϵ4 ϵ3 0.02 12
16.0 10.2 6.9 6.1 4.9 3.16 1.73 0.26 2.02 0.89 13
16.1 10.5 7.7 6.1 4.7 3.41 2.92 2.32 1.81 0.35 14
16.0 10.5 7.8 6.4 4.0 3.10 2.91 3.20 5.01 0.02 15
16.1 10.7 8.0 6.6 5.3 3.61 4.20 5.37 8.85 4.11 16
15.2 9.9 7.6 5.9 5.1 2.10 1.66 3.14 1.69 3.60 17
15.4 10.3 7.8 6.3 5.3 2.89 4.18 5.34 7.13 7.52 18
14.0 9.3 7.2 6.1 4.9 0.41 0.51 1.08 3.22 1.73 19
15.4 10.2 7.8 6.1 5.2 2.91 3.35 5.17 3.15 6.63 20
15.3 10.2 7.7 6.3 5.2 2.42 3.24 4.15 8.37 7.16 21
22.8 15.1 10.4 9.0 7.3 2.48 2.42 0.25 3.10 1.33 22
24.1 16.0 12.0 9.1 7.9 3.60 3.92 5.27 0.97 3.82 23
30.5 19.4 15.4 10.8 10.3 1.65 0.29 3.88 0.02 4.69 24
31.0 20.2 14.6 11.8 9.8 3.14 1.49 0.44 0.69 0.66 25
31.5 21.3 16.0 12.7 10.4 1.50 3.68 4.52 4.02 1.76 26
31.0 16.0 15.5 15.4 10.4 5ϵ5 4ϵ9 8ϵ5 2.56 ϵ4 27
288. 192. 144. 115. 95.9 2.27 3.46 3.92 2.49 2.98 28
688. 458. 344. 275. 229. 3.10 2.04 2.85 1.15 1.33 29

upper bounds from (40): 3.63 5.92 9.87 14.89 23.87

with 32-bit arithmetic began to proliferate. This switch to a comparatively small
word size called for comparatively greater care. Line 12 was, alas, the generator
actually used on such machines in most of the world’s scientiĄc computing centers
for more than a decade; its very name RANDU is enough to bring dismay into the
eyes and stomachs of many computer scientists! The actual generator is deĄned
by

X0 odd, Xn+1 = (65539Xn) mod 231, (37)

and exercise 20 indicates that 229 is the appropriate modulus for the spectral
test. Since 9Xn − 6Xn+1 + Xn+2 ≡ 0 (modulo 231), the generator fails most
three-dimensional criteria for randomness, and it should never have been used.
Almost any multiplier ≡ 5 (modulo 8) would be better. (A curious fact about
RANDU, noticed by R. W. Gosper, is that ν4 = ν5 = ν6 = ν7 = ν8 = ν9 =

√
116,

hence µ9 is a spectacular 11.98.) Lines 13 and 14 are the BoroshŰNiederreiter and
Waterman multipliers for modulus 232. Line 16 was found by L. C. Killingbeck,
who carried out an exhaustive search of all multipliers a ≡ 1 mod 4 when
m = 232. Line 23, similarly, was found by M. Lavaux and F. Janssens in a

108 RANDOM NUMBERS 3.3.4

(nonexhaustive) computer search for spectrally good multipliers having a very
high µ2. Line 22 is for the multiplier used with c = 0 and m = 248 in the Cray X-
MP library; line 26 (whose excellent multiplier 6364136223846793005 is too big
to Ąt in the column) is due to C. E. Haynes. Line 15 was nominated by George
Marsaglia as “a candidate for the best of all multipliers,Ť after a computer search
for nearly cubical lattices in dimensions 2 through 5, partly because it is easy
to remember [Applications of Number Theory to Numerical Analysis, edited by
S. K. Zaremba (New York: Academic Press, 1972), 275].

Line 17 uses a random primitive root, modulo the prime 231−1, as multiplier.
Line 18 shows the spectrally best primitive root for 231−1, found in an exhaustive
search by G. S. Fishman and L. R. Moore III [SIAM J. Sci. Stat. Comput. 7
(1986), 24Ű45]. The adequate but less outstanding multiplier 16807 = 75 in
line 19 is actually used most often for that modulus, after being proposed by
Lewis, Goodman, and Miller in IBM Systems J. 8 (1969), 136Ű146; it has been
one of the main generators in the popular IMSL subroutine library since 1971.
The main reason for continued use of a = 16807 is that a2 is less than the
modulus m, hence axmodm can be implemented with reasonable efficiency in
high-level languages using the technique of exercise 3.2.1.1Ű9. However, such
small multipliers have known defects. S. K. Park and K. W. Miller noticed that
the same implementation technique applies also to certain multipliers greater
than

√
m, so they asked G. S. Fishman to Ąnd the best “efficiently portableŤ

multiplier in this wider class; the result appears in line 20 [CACM 31 (1988),
1192Ű1201]. Line 21 shows another good multiplier, due to P. L’Ecuyer [CACM
31 (1988), 742Ű749, 774]; this one uses a slightly smaller prime modulus.

When the generators of lines 20 and 21 are combined by subtraction as
suggested in Eq. 3.2.2Ű(15), so that the generated numbers ⟨Zn⟩ satisfy

Xn+1 = 48271Xn mod (231 − 1), Yn+1 = 40692Yn mod (231 − 249),

Zn = (Xn − Yn) mod (231 − 1),
(38)

exercise 32 shows that it is reasonable to rate ⟨Zn⟩ with the spectral test for
m = (231−1)(231−249) and a = 1431853894371298687. (This value of a satisĄes
amod (231− 1) = 48271 and amod (231− 249) = 40692.) The results appear on
line 24. We needn’t worry too much about the low value of µ5, since ν5 > 1000.
Generator (38) has a period of length (231 − 2)(231 − 250)/62 ≈ 7× 1016.

Line 25 of the table represents the sequence

Xn = (271828183Xn−1 − 314159269Xn−2) mod (231 − 1), (39)

which can be shown to have period length (231 − 1)2 − 1; it has been analyzed
with the generalized spectral test of exercise 24.

The last three lines of Table 1 are based on add-with-carry and subtract-
with-borrow methods, which simulate linear congruential sequences that have
extremely large moduli (see exercise 3.2.1.1Ű14). Line 27 is for the generator

Xn = (Xn−1 + 65430Xn−2 + Cn) mod 231,

Cn+1 =

(Xn−1 + 65430Xn−2 + Cn)/231

,

3.3.4 THE SPECTRAL TEST 109

which corresponds to Xn+1 = (65430 · 231 + 1)Xn mod (65430 · 262 + 231− 1); the
numbers in the table refer to the “super-valuesŤ

Xn = (65430 · 231 + 1)Xn−1 + 65430Xn−2 + Cn

rather than to the values Xn actually computed and used as random numbers.
Line 28 represents a more typical subtract-with-borrow generator

Xn = (Xn−10 −Xn−24 − Cn) mod 224, Cn+1 = [Xn−10 <Xn−24 + Cn],

but modiĄed by generating 389 elements of the sequence and then using only the
Ąrst (or last) 24. This generator, called RANLUX, was recommended by Martin
Lüscher after it passed many stringent tests that previous generators failed
[Computer Physics Communications 79 (1994), 100Ű110]. A similar sequence,

Xn = (Xn−22 −Xn−43 − Cn) mod (232 − 5), Cn+1 = [Xn−22 <Xn−43 + Cn],

with 43 elements used after 400 are generated, appears in line 29; this sequence is
discussed in the answer to exercise 3.2.1.2Ű22. In both cases the table entries refer
to the spectral test on multiprecision numbers Xn instead of to the individual
“digitsŤ Xn, but the high µ values indicate that the process of generating 389 or
400 numbers before selecting 24 or 43 is an excellent way to remove biases due
to the extreme simplicity of the generation scheme.

Theoretical upper bounds on µt, which can never be transcended for any m,
are shown just below Table 1; it is known that every lattice with m points per
unit volume has

νt ≤ γ1/2
t m1/t, (40)

where γt takes the respective values

(4/3)1/2, 21/3, 21/2, 23/5, (64/3)1/6, 43/7, 2 (41)

for t = 2, . . . , 8. [See exercise 9 and J. W. S. Cassels, Introduction to the
Geometry of Numbers (Berlin: Springer, 1959), 332; J. H. Conway and N. J. A.
Sloane, Sphere Packings, Lattices and Groups (New York: Springer, 1988),
20.] These bounds hold for lattices generated by vectors with arbitrary real
coordinates. For example, the optimum lattice for t = 2 is hexagonal, and it
is generated by vectors of length 2/

√
3m that form two sides of an equilateral

triangle. In three dimensions the optimum lattice is generated by vectors V1,
V2, V3 that can be rotated into the form (v, v,−v), (v,−v, v), (−v, v, v), where
v = 1/ 3

√
4m.

*F. Relation to the serial test. In a series of important papers published
during the 1970s, Harald Niederreiter showed how to analyze the distribution of
the t-dimensional vectors (1) by means of exponential sums. One of the main
consequences of his theory is that the serial test in several dimensions will be
passed by any generator that passes the spectral test, even when we consider
only a sufficiently large part of the period instead of the whole period. We
shall now turn brieĆy to a study of his interesting methods, in the case of linear
congruential sequences (X0, a, c,m) of period length m.

110 RANDOM NUMBERS 3.3.4

The Ąrst idea we need is the notion of discrepancy in t dimensions, a
quantity that we shall deĄne as the difference between the expected number
and the actual number of t-dimensional vectors (xn, xn+1, . . . , xn+t−1) falling
into a hyper-rectangular region, maximized over all such regions. To be precise,
let ⟨xn⟩ be a sequence of integers in the range 0 ≤ xn < m. We deĄne

D
(t)
N = max

R

number of (xn, . . . , xn+t−1) in R for 0 ≤ n < N

N
− volume of R

mt

(42)
where R ranges over all sets of points of the form

R = {(y1, . . . , yt) | α1 ≤ y1 < β1, . . . , αt ≤ yt < βt}; (43)

here αj and βj are integers in the range 0 ≤ αj < βj ≤ m, for 1 ≤ j ≤ t. The
volume of R is clearly (β1 − α1) . . . (βt − αt). To get the discrepancy D

(t)
N , we

imagine looking at all these sets R and Ąnding the one with the greatest excess
or deĄciency of points (xn, . . . , xn+t−1).

An upper bound for the discrepancy can be found by using exponential sums.
Let ω = e2πi/m be a primitive mth root of unity. If (x1, . . . , xt) and (y1, . . . , yt)
are two vectors with all components in the range 0 ≤ xj , yj < m, we have

0≤u1,...,ut<m

ω(x1−y1)u1+···+(xt−yt)ut =

mt if (x1, . . . , xt) = (y1, . . . , yt),
0 if (x1, . . . , xt) ̸= (y1, . . . , yt).

Therefore the number of vectors (xn, . . . , xn+t−1) in R for 0 ≤ n < N, when R
is deĄned by (43), can be expressed as

1
mt

0≤n<N

0≤u1,...,ut<m

ωxnu1+···+xn+t−1ut

α1≤y1<β1

. . .

αt≤yt<βt

ω−(y1u1+···+ytut).

When u1 = · · · = ut = 0 in this sum, we get N/mt times the volume of R; hence
we can express D(t)

N as the maximum over R of

1
Nmt

0≤n<N

0≤u1,...,ut<m
(u1,...,ut) ̸=(0,...,0)

ωxnu1+···+xn+t−1ut

α1≤y1<β1

. . .

αt≤yt<βt

ω−(y1u1+···+ytut)

.

Since complex numbers satisfy |w + z| ≤ |w| + |z| and |wz| = |w||z|, it follows
that

D
(t)
N ≤ max

R

1
mt

0≤u1,...,ut<m
(u1,...,ut) ̸=(0,...,0)

α1≤y1<β1

. . .

αt≤yt<βt

ω−(y1u1+···+ytut)

g(u1, . . . , ut)

≤ 1
mt

0≤u1,...,ut<m
(u1,...,ut) ̸=(0,...,0)

max
R

α1≤y1<β1

. . .

αt≤yt<βt

ω−(y1u1+···+ytut)

g(u1, . . . , ut)

3.3.4 THE SPECTRAL TEST 111

=

0≤u1,...,ut<m
(u1,...,ut) ̸=(0,...,0)

f(u1, . . . , ut) g(u1, . . . , ut), (44)

where

g(u1, . . . , ut) =

1
N

0≤n<N

ωxnu1+···+xn+t−1ut

;

f(u1, . . . , ut) = max
R

1
mt

α1≤y1<β1

. . .

αt≤yt<βt

ω−(y1u1+···+ytut)

= max
R

1
m

α1≤y1<β1

ω−u1y1

. . .

1
m

αt≤yt<βt

ω−utyt

.

Both f and g can be simpliĄed further in order to get a good upper bound on
D

(t)
N . We have

1
m

α≤y<β

ω−uy

=

1
m

ω−βu − ω−αu

ω−u − 1

≤ 2
m |ωu − 1| =

1
m sin(πu/m)

when u ̸= 0, and the sum is ≤ 1 when u = 0; hence

f(u1, . . . , ut) ≤ r(u1, . . . , ut), (45)

where
r(u1, . . . , ut) =

1≤k≤t
uk ̸=0

1
m sin(πuk/m)

. (46)

Furthermore, when ⟨xn⟩ is generated modulo m by a linear congruential se-
quence, we have

xnu1+ · · ·+xn+t−1ut = xnu1+(axn +c)u2+ · · ·+

at−1xn+c(at−2+ · · ·+1)

ut

= (u1+au2+ · · ·+at−1ut)xn+h(u1, . . . , ut)

where h(u1, . . . , ut) is independent of n; hence

g(u1, . . . , ut) =

1
N

0≤n<N

ωq(u1,...,ut)xn

, (47)

where
q(u1, . . . , ut) = u1 + au2 + · · ·+ at−1ut. (48)

Now here is where the connection to the spectral test comes in: We will show
that the sum g(u1, . . . , ut) is rather small unless q(u1, . . . , ut) ≡ 0 (modulo m);
in other words, the contributions to (44) arise mainly from the solutions to (15).
Furthermore exercise 27 shows that r(u1, . . . , ut) is rather small when (u1, . . . , ut)
is a “largeŤ solution to (15). Hence the discrepancy D

(t)
N will be rather small

112 RANDOM NUMBERS 3.3.4

when (15) has only “largeŤ solutions, namely when the spectral test is passed.
Our remaining task is to quantify these qualitative statements by making careful
calculations.

In the Ąrst place, let’s consider the size of g(u1, . . . , ut). When N = m,
so that the sum (47) is over an entire period, we have g(u1, . . . , ut) = 0 except
when (u1, . . . , ut) satisĄes (15), so the discrepancy is bounded above in this case
by the sum of r(u1, . . . , ut) taken over all the nonzero solutions of (15). But
let’s consider also what happens in a sum like (47) when N is less than m and
q(u1, . . . , ut) is not a multiple of m. We have

0≤n<N

ωxn =

0≤n<N

1
m

0≤k<m

ω−nk

0≤j<m

ωxj+jk

=

0≤k<m

1
m

0≤n<N

ω−nk

Sk0, (49)

where
Skl =

0≤j<m

ωxj+l+jk. (50)

Now Skl = ω−lkSk0, so |Skl| = |Sk0| for all l, and we can calculate this common
value by further exponential-summery:

|Sk0|2 =
1
m

0≤l<m

|Skl|2

=
1
m

0≤l<m

0≤j<m

ωxj+l+jk

0≤i<m

ω−xi+l−ik

=
1
m

0≤i,j<m

ω(j−i)k

0≤l<m

ωxj+l−xi+l

=
1
m

0≤i<m

i≤j<m+i

ω(j−i)k

0≤l<m

ω(aj−i−1)xi+l+(aj−i−1)c/(a−1).

Let s be minimum such that as ≡ 1 (modulo m), and let

s′ = (as − 1)c/(a− 1) modm.

Then s is a divisor of m (see Lemma 3.2.1.2P), and xn+js ≡ xn+js′ (modulo m).
The sum on l vanishes unless j − i is a multiple of s, so we Ąnd that

|Sk0|2 = m

0≤j<m/s

ωjsk+js′ .

We have s′ = q′s where q′ is relatively prime to m (see exercise 3.2.1.2Ű21), so
it turns out that

|Sk0| =

0 if k + q′ ̸≡ 0 (modulo m/s),
m/
√
s if k + q′ ≡ 0 (modulo m/s).

(51)

3.3.4 THE SPECTRAL TEST 113

Putting this information back into (49), and recalling the derivation of (45),
shows that

0≤n<N

ωxn

≤ m√

s

k

r(k), (52)

where the sum is over 0 ≤ k < m such that k+q′ ≡ 0 (modulo m/s). Exercise 25
can now be used to estimate the remaining sum, and we Ąnd that

0≤n<N

ωxn

≤ 2
π

√
s ln s+O

m√
s

. (53)

The same upper bound applies also to |0≤n<N ωqxn | for any q ̸≡ 0 (modulo m),
since the effect is to replace m in this derivation by a divisor of m. In fact, the
upper bound gets even smaller when q has a factor in common with m, since s
and m/

√
s generally become smaller. (See exercise 26.)

We have now proved that the g(u1, . . . , ut) part of our upper bound (44) on
the discrepancy is small, if N is large enough and if (u1, . . . , ut) does not satisfy
the spectral test congruence (15). Exercise 27 proves that the f(u1, . . . , ut)
part of our upper bound is small, when summed over all the nonzero vectors
(u1, . . . , ut) satisfying (15), provided that all such vectors are far away from
(0, . . . , 0). Putting these results together leads to the following theorem of
Niederreiter:

Theorem N. Let ⟨Xn⟩ be a linear congruential sequence (X0, a, c,m) of period
length m > 1, and let s be the least positive integer such that as ≡ 1 (modulo m).
Then the t-dimensional discrepancy D

(t)
N corresponding to the Ąrst N values

of ⟨Xn⟩, as deĄned in (42), satisĄes

D
(t)
N = O

√
s log s (logm)t

N

+O

m(logm)t

N
√
s

+O

(logm)t rmax

; (54)

D(t)
m = O

(logm)t rmax

. (55)

Here rmax is the maximum value of the quantity r(u1, . . . , ut) deĄned in (46),
taken over all nonzero integer vectors (u1, . . . , ut) satisfying (15).

Proof. The Ąrst two O-terms in (54) come from vectors (u1, . . . , ut) in (44)
that do not satisfy (15), since exercise 25 proves that f(u1, . . . , ut) summed over
all (u1, . . . , ut) is O

((2/π) lnm)t

and exercise 26 bounds each g(u1, . . . , ut).

These terms are missing from (55) since g(u1, . . . , ut) = 0 in that case.

The
remaining O-term in (54) and (55) comes from nonzero vectors (u1, . . . , ut) that
do satisfy (15), using the bound derived in exercise 27. (By examining this
proof carefully, we could replace each O in these formulas by an explicit function
of t.)

Eq. (55) relates to the serial test in t dimensions over the entire period,
while Eq. (54) gives us useful information about the distribution of the Ąrst N
generated values when N is less than m, provided that N is not too small.

114 RANDOM NUMBERS 3.3.4

Notice that (54) will guarantee low discrepancy only when s is sufficiently large,
otherwise the m/

√
s term will dominate. If m = pe1

1 . . . perr and gcd(a− 1, m) =
pf1

1 . . . pfrr , then s equals pe1−f1

1 . . . per−fr
r by Lemma 3.2.1.2P; thus, the largest

values of s correspond to high potency. In the common case m = 2e and a ≡ 5
(modulo 8), we have s = 1

4m, so D(t)
N is O

√
m (logm)t+1/N

+O

(logm)trmax

.

It is not difficult to prove that

rmax ≤
1
√

8 νt
(56)

(see exercise 29). Therefore Eq. (54) says in particular that the discrepancy will
be low in t dimensions if the spectral test is passed and if N is somewhat larger
than

√
m (logm)t+1.

In a sense Theorem N is almost too strong, for the result in exercise 30 shows
that linear congruential sequences like those in lines 8 and 13 of Table 1 have a
discrepancy of order (logm)2/m in two dimensions. The discrepancy in this case
is extremely small in spite of the fact that there are parallelogram-shaped regions
of area ≈ 1/

√
m containing no points (Un, Un+1). The fact that discrepancy can

change so drastically when the points are rotated warns us that the serial test
may not be as meaningful a measure of randomness as the rotation-invariant
spectral test.

G. Historical remarks. In 1959, while deriving upper bounds for the error
in the evaluation of t-dimensional integrals by the Monte Carlo method, N. M.
Korobov devised a way to rate the multiplier of a linear congruential sequence.
His rather complicated formula is related to the spectral test, since it is strongly
inĆuenced by “smallŤ solutions to (15); but it is not quite the same. Korobov’s
test has been the subject of an extensive literature, surveyed by Kuipers and
Niederreiter in Uniform Distribution of Sequences (New York: Wiley, 1974), §2.5.

The spectral test was originally formulated by R. R. Coveyou and R. D.
MacPherson [JACM 14 (1967), 100Ű119], who introduced it in an interesting
indirect way. Instead of working with the grid structure of successive points,
they considered random number generators as sources of t-dimensional “waves.Ť
The numbers

x2
1 + · · ·+ x2

t such that x1 + · · · + at−1xt ≡ 0 (modulo m) in
their original treatment were the wave “frequencies,Ť or points in the “spectrumŤ
deĄned by the random number generator, with low-frequency waves being the
most damaging to randomness; hence the name spectral test. Coveyou and
MacPherson introduced a procedure analogous to Algorithm S for performing
their test, based on the principle of Lemma A. However, their original procedure
(which used matrices UU T and V V T instead of U and V) dealt with extremely
large numbers; the idea of working directly with U and V was independently sug-
gested by F. Janssens and by U. Dieter. [See Math. Comp. 29 (1975), 827Ű833.]

Several other authors pointed out that the spectral test could be understood
in far more concrete terms; by introducing the study of the grid and lattice struc-
tures corresponding to linear congruential sequences, the fundamental limitations
on randomness became graphically clear. See G. Marsaglia, Proc. Nat. Acad. Sci.

3.3.4 THE SPECTRAL TEST 115

61 (1968), 25Ű28; W. W. Wood, J. Chem. Phys. 48 (1968), 427; R. R. Coveyou,
Studies in Applied Math. 3 (Philadelphia: SIAM, 1969), 70Ű111; W. A. Beyer,
R. B. Roof, and D. Williamson, Math. Comp. 25 (1971), 345Ű360; G. Marsaglia
and W. A. Beyer, Applications of Number Theory to Numerical Analysis, edited
by S. K. Zaremba (New York: Academic Press, 1972), 249Ű285, 361Ű370.

R. G. Stoneham showed, by using estimates of exponential sums, that p1/2+ϵ

or more elements of the sequence akX0 mod p have asymptotically small dis-
crepancy, when a is a primitive root modulo the prime p [Acta Arithmetica 22
(1973), 371Ű389]. This work was extended as explained above in a number of
papers by Harald Niederreiter [Math. Comp. 28 (1974), 1117Ű1132; 30 (1976),
571Ű597; Advances in Math. 26 (1977), 99Ű181; Bull. Amer. Math. Soc. 84
(1978), 957Ű1041]. See also Niederreiter’s book Random Number Generation
and Quasi-Monte Carlo Methods (Philadelphia: SIAM, 1992).

EXERCISES

1. [M10] To what does the spectral test reduce in one dimension? (In other words,
what happens when t = 1?)

2. [HM20] Let V1, . . . , Vt be linearly independent vectors in t-space, let L0 be the
lattice of points deĄned by (10), and let U1, . . . , Ut be deĄned by (19). Prove that the
maximum distance between (t−1)-dimensional hyperplanes, over all families of parallel
hyperplanes that cover L0, is 1/min{f(x1, . . . , xt)1/2 | (x1, . . . , xt) ̸= (0, . . . , 0)}, where
f is deĄned in (17).

3. [M24] Determine ν3 and ν4 for all linear congruential generators of potency 2 and
period length m.

x 4. [M23] Let u11, u12, u21, u22 be elements of a 2 × 2 integer matrix such that
u11 + au12 ≡ u21 + au22 ≡ 0 (modulo m) and u11u22 − u21u12 = m.

a) Prove that all integer solutions (y1, y2) to the congruence y1 +ay2 ≡ 0 (modulo m)
have the form (y1, y2) = (x1u11+x2u21, x1u12+x2u22) for integer x1, x2.

b) If, in addition, 2|u11u21 + u12u22| ≤ u2
11 + u2

12 ≤ u2
21 + u2

22, prove that (y1, y2) =
(u11, u12) minimizes y2

1 + y2
2 over all nonzero solutions to the congruence.

5. [M30] Prove that steps S1 through S3 of Algorithm S correctly perform the spec-
tral test in two dimensions. [Hint: See exercise 4, and prove that (h′ +h)2 +(p′ + p)2 ≥
h2 + p2 at the beginning of step S2.]

6. [M30] Let a0, a1, . . . , at−1 be the partial quotients of a/m as deĄned in Section
3.3.3, and let A = max0≤j<t aj . Prove that µ2 > 2π/(A+ 1 + 1/A).

7. [HM22] Prove that questions (a) and (b) following Eq. (23) have the same solution
for real values of q1, . . . , qj−1, qj+1, . . . , qt (see (24) and (26)).

8. [M18] Line 10 of Table 1 has a very low value of µ2, yet µ3 is quite satisfactory.
What is the highest possible value of µ3 when µ2 = 10−6 and m = 1010?

9. [HM32] (C. Hermite, 1846.) Let f(x1, . . . , xt) be a positive deĄnite quadratic
form, deĄned by the matrix U as in (17), and let θ be the minimum value of f at
nonzero integer points. Prove that θ ≤ (4

3
)(t−1)/2 |detU |2/t. [Hints: If W is any integer

matrix of determinant 1, the matrix WU deĄnes a form equivalent to f ; and if S is
any orthogonal matrix (that is, if S−1 = ST), the matrix US deĄnes a form identically
equal to f . Show that there is an equivalent form g whose minimum θ occurs at

116 RANDOM NUMBERS 3.3.4

(1, 0, . . . , 0). Then prove the general result by induction on t, writing g(x1, . . . , xt) =
θ(x1 + β2x2 + · · ·+ βtxt)2 + h(x2, . . . , xt) where h is a positive deĄnite quadratic form
in t− 1 variables.]

10. [M28] Let y1 and y2 be relatively prime integers such that y1+ay2≡ 0 (modulo m)
and y2

1 +y2
2 <

4/3m. Show that there exist integers u1 and u2 such that u1 +au2 ≡ 0

(modulo m), u1y2 − u2y1 = m, 2 |u1y1 + u2y2| ≤ min(u2
1+u2

2, y
2
1 +y2

2), and (u2
1 + u2

2)×
(y2

1 + y2
2) ≥ m2. (Hence ν2

2 = min(u2
1+u2

2, y
2
1 +y2

2) by exercise 4.)

x 11. [HM30] (Alan G. Waterman, 1974.) Invent a reasonably efficient procedure that
computes multipliers a ≡ 1 (modulo 4) for which there exists a relatively prime solution
to the congruence y1 + ay2 ≡ 0 (modulo m) with y2

1 + y2
2 =

4/3m− ϵ, where ϵ > 0 is

as small as possible, given m = 2e. (By exercise 10, this choice of a will guarantee that
ν2

2 ≥ m2/(y2
1 + y2

2) >

3/4m, and there is a chance that ν2
2 will be near its optimum

value

4/3m. In practice we will compute several such multipliers having small ϵ,
choosing the one with best spectral values ν2, ν3,)

12. [HM23] Prove, without geometrical handwaving, that any solution to question (b)
following Eq. (23) must also satisfy the set of equations (26).

13. [HM22] Lemma A uses the fact that U is nonsingular to prove that a positive
deĄnite quadratic form attains a deĄnite, nonzero minimum value at nonzero integer
points. Show that this hypothesis is necessary, by exhibiting a quadratic form (19)
whose matrix of coefficients is singular, and for which the values of f(x1, . . . , xt) get
arbitrarily near zero (but never reach it) at nonzero integer points (x1, . . . , xt).

14. [24] Perform Algorithm S by hand, for m = 100, a = 41, T = 3.

x 15. [M20] Let U be an integer vector satisfying (15). How many of the (t − 1)-
dimensional hyperplanes deĄned by U intersect the unit hypercube {(x1, . . . , xt) |
0 ≤ xj < 1 for 1 ≤ j ≤ t}? (This is approximately the number of hyperplanes in
the family that will suffice to cover L0.)

16. [M30] (U. Dieter.) Show how to modify Algorithm S in order to calculate the
minimum number Nt of parallel hyperplanes intersecting the unit hypercube as in
exercise 15, over all U satisfying (15). [Hint: What are appropriate analogs to positive
deĄnite quadratic forms and to Lemma A?]

17. [20] Modify Algorithm S so that, in addition to computing the quantities νt, it
outputs all integer vectors (u1, . . . , ut) satisfying (15) such that u2

1 + · · ·+ u2
t = ν2

t , for
2 ≤ t ≤ T.

18. [M30] This exercise is about the worst case of Algorithm S.
a) By considering “combinatorial matrices,Ť whose elements have the form y + xδij

(see exercise 1.2.3Ű39), Ąnd 3×3 matrices of integers U and V satisfying (29) such
that the transformation of step S5 does nothing for any j, but the corresponding
values of zk in (31) are so huge that exhaustive search is out of the question. (The
matrix U need not satisfy (28); we are interested here in arbitrary positive deĄnite
quadratic forms of determinant m.)

b) Although transformation (23) is of no use for the matrices constructed in (a), Ąnd
another transformation that does produce a substantial reduction.

x 19. [HM25] Suppose step S5 were changed slightly, so that a transformation with
q = 1 would be performed when 2Vi ·Vj = Vj ·Vj . (Thus, q = ⌊(Vi ·Vj / Vj ·Vj) + 1

2
⌋

whenever i ̸= j.) Would it be possible for Algorithm S to get into an inĄnite loop?

3.3.4 THE SPECTRAL TEST 117

20. [M23] Discuss how to carry out an appropriate spectral test for linear congruential
sequences having c = 0, X0 odd, m = 2e, amod 8 = 3 or 5. (See exercise 3.2.1.2Ű9.)

21. [M20] (R. W. Gosper.) A certain application uses random numbers in batches of
four, but “throws awayŤ the second of each set. How can we study the grid structure
of

1
m

(X4n, X4n+2, X4n+3)

, given a linear congruential generator of period m = 2e?

22. [M46] What is the best upper bound on µ3, given that µ2 is very near its
maximum value

4/3π? What is the best upper bound on µ2, given that µ3 is very

near its maximum value 4
3
π
√

2?

23. [M46] Let Ui, Vj be vectors of real numbers with Ui ·Vj = δij for 1 ≤ i, j ≤ t,
and such that Ui · Ui = 1, 2 |Ui · Uj | ≤ 1, 2 |Vi ·Vj | ≤ Vj ·Vj for i ̸= j. How large
can V1 ·V1 be? (This question relates to the bounds in step S7, if both (23) and the
transformation of exercise 18(b) fail to make any reductions. The maximum value
known to be achievable is (t + 2)/3, which occurs when U1 = I1, Uj = 1

2
I1 + 1

2

√
3 Ij ,

V1 = I1 − (I2 + · · · + It)/
√

3, Vj = 2Ij/
√

3, for 2 ≤ j ≤ t, where (I1, . . . , It) is the
identity matrix; this construction is due to B. V. Alexeev.)

x 24. [M28] Generalize the spectral test to second-order sequences of the form Xn =
(aXn−1 + bXn−2) mod p, having period length p2− 1. (See Eq. 3.2.2Ű(8).) How should
Algorithm S be modiĄed?

25. [HM24] Let d be a divisor of m and let 0 ≤ q < d. Prove that

r(k), summed

over all 0 ≤ k < m such that k mod d = q, is at most (2/dπ) ln(m/d) + O(1). (Here
r(k) is deĄned in Eq. (46) when t = 1.)

26. [M22] Explain why the derivation of (53) leads to a similar bound on

0≤n<N

ωqxn

for 0 < q < m.

27. [HM39] (E. Hlawka, H. Niederreiter.) Let r(u1, . . . , ut) be the function deĄned
in (46). Prove that

r(u1, . . . , ut), summed over all 0 ≤ u1, . . . , ut < m such that

(u1, . . . , ut) ̸= (0, . . . , 0) and (15) holds, is at most 2((π + 2π lgm)t rmax), where rmax

is the maximum term r(u1, . . . , ut) in the sum.

x 28. [M28] (H. Niederreiter.) Find an analog of Theorem N for the case m = prime,
c = 0, a = primitive root modulo m, X0 ̸≡ 0 (modulo m). [Hint: Your exponential
sums should involve ζ = e2πi/(m−1) as well as ω.] Prove that in this case the “averageŤ
primitive root has discrepancy D

(t)
m−1 = O

t(logm)t/φ(m− 1)

, hence good primitive

roots exist for all m.

29. [HM22] Prove that the quantity rmax of exercise 27 is never larger than 1/(
√

8 νt).

30. [M33] (S. K. Zaremba.) Prove that rmax = O(max(a1, . . . , as)/m) in two dimen-
sions, where a1, . . . , as are the partial quotients obtained when Euclid’s algorithm
is applied to m and a. [Hint: We have a/m = //a1, . . . , as//, in the notation of
Section 4.5.3; apply exercise 4.5.3Ű42.]

31. [HM48] (I. Borosh and H. Niederreiter.) Prove that for all sufficiently large m
there exists a number a relatively prime to m such that all partial quotients of a/m
are ≤ 3. Furthermore the set of all m satisfying this condition but with all partial
quotients ≤ 2 has positive density.

118 RANDOM NUMBERS 3.3.4

x 32. [M21] Let m1 = 231 − 1 and m2 = 231 − 249 be the moduli of generator (38).
a) Show that if Un = (Xn/m1 − Yn/m2) mod 1, we have Un ≈ Zn/m1.
b) Let W0 = (X0m2 − Y0m1) modm and Wn+1 = aWn modm, where a and m have

the values stated in the text following (38). Prove that there is a simple relation
between Wn and Un.

In the next edition of this book, I plan to introduce a new Section 3.3.5,
entitled “The L3 Algorithm.Ť It will be a digression from the general topic of

Random Numbers, but it will continue the discussion of lattice basis reduction in
Section 3.3.4. Its main topic will be the now-classic algorithm of A. K. Lenstra,
H. W. Lenstra, Jr., and L. Lovász [Math. Annalen 261 (1982), 515Ű534] for
Ąnding a near-optimum set of basis vectors, and improvements to that algorithm
made subsequently by other researchers. Examples of the latter can be found
in the following papers and their bibliographies: M. Seysen, Combinatorica 13
(1993), 363Ű375; C. P. Schnorr and H. H. Hörner, Lecture Notes in Comp. Sci.
921 (1995), 1Ű12.

3.4.1 NUMERICAL DISTRIBUTIONS 119

3.4. OTHER TYPES OF RANDOM QUANTITIES

We have now seen how to make a computer generate a sequence of numbers
U0, U1, U2, . . . that behaves as if each number were independently selected
at random between zero and one with the uniform distribution. Applications of
random numbers often call for other kinds of distributions, however; for example,
if we want to make a random choice from among k alternatives, we want a
random integer between 1 and k. If some simulation process calls for a random
waiting time between occurrences of independent events, a random number with
the exponential distribution is desired. Sometimes we don’t even want random
numbers Ů we want a random permutation (a random arrangement of n objects)
or a random combination (a random choice of k objects from a collection of n).

In principle, any of these other random quantities can be obtained from the
uniform deviates U0, U1, U2, . . . ; people have devised a number of important
“random tricksŤ for the efficient transformation of uniform deviates. A study of
these techniques also gives us insight into the proper use of random numbers in
any Monte Carlo application.

It is conceivable that someday somebody will invent a random number
generator that produces one of these other random quantities directly, instead of
getting it indirectly via the uniform distribution. But no direct methods have as
yet proved to be practical, except for the “random bitŤ generator described in
Section 3.2.2. (See also exercise 3.4.1Ű31, where the uniform distribution is used
primarily for initialization, after which the method is almost entirely direct.)

The discussion in the following section assumes the existence of a random
sequence of uniformly distributed real numbers between zero and one. A new
uniform deviate U is generated whenever we need it. These numbers are usually
represented in a computer word with the radix point assumed at the left.

3.4.1. Numerical Distributions

This section summarizes the best techniques known for producing numbers from
various important distributions. Many of the methods were originally suggested
by John von Neumann in the early 1950s, and they have gradually been improved
upon by other people, notably George Marsaglia, J. H. Ahrens, and U. Dieter.

A. Random choices from a Ąnite set. The simplest and most common type
of distribution required in practice is a random integer. An integer between 0
and 7 can be extracted from three bits of U on a binary computer; in such a
case, these bits should be extracted from the most signiĄcant (left-hand) part
of the computer word, since the least signiĄcant bits produced by many random
number generators are not sufficiently random. (See the discussion in Section
3.2.1.1.)

In general, to get a random integer X between 0 and k− 1, we can multiply

by k, and let X = ⌊kU⌋. On MIX, we would write

LDA U
MUL K

(1)

120 RANDOM NUMBERS 3.4.1

and after these two instructions have been executed the desired integer will
appear in register A. If a random integer between 1 and k is desired, we add one
to this result.

The instruction ŚINCA 1’ would follow (1).

This method gives each integer with nearly equal probability. There is a
slight error because the computer word size is Ąnite (see exercise 2); but the
error is quite negligible if k is small, for example if k/m < 1/10000.

In a more general situation we might want to give different weights to
different integers. Suppose that the value X = x1 is to be obtained with
probability p1, and X = x2 with probability p2, . . . , X = xk with probability pk.
We can generate a uniform number U and let

X =

x1, if 0 ≤ U < p1;
x2, if p1 ≤ U < p1 + p2;
...
xk, if p1 + p2 + · · ·+ pk−1 ≤ U < 1.

(2)

(Note that p1 + p2 + · · ·+ pk = 1.)
There is a “best possibleŤ way to do the comparisons of U against various

values of p1 + p2 + · · · + ps, as implied in (2); this situation is discussed in
Section 2.3.4.5. Special cases can be handled by more efficient methods; for
example, to obtain one of the eleven values 2, 3, . . . , 12 with the respective “diceŤ
probabilities 1

36 , 2
36 , . . . , 6

36 , . . . , 2
36 , 1

36 , we could compute two independent
random integers between 1 and 6 and add them together.

However, there is actually a faster way to select x1, . . . , xk with arbitrarily
given probabilities, based on an ingenious approach introduced by A. J. Walker
[Electronics Letters 10, 8 (1974), 127Ű128; ACM Trans. Math. Software 3 (1977),
253Ű256]. Suppose we form kU and consider the integer part K = ⌊kU⌋ and
fraction part V = (kU) mod 1 separately; for example, after the code (1) we will
have K in register A and V in register X. Then we can always obtain the desired
distribution by doing the operations

if V < PK then X ← xK+1 otherwise X ← YK , (3)

for some appropriate tables (P0, . . . , Pk−1) and (Y0, . . . , Yk−1). Exercise 7 shows
how such tables can be computed in general. Walker’s method is sometimes
called the method of “aliases.Ť

On a binary computer it is usually helpful to assume that k is a power of 2,
so that multiplication can be replaced by shifting; this can be done without loss
of generality by introducing additional x’s that occur with probability zero. For
example, let’s consider dice again; suppose we want X = j to occur with the
following 16 probabilities:

j = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

pj = 0 0 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36 0 0 0

3.4.1 NUMERICAL DISTRIBUTIONS 121

We can do this using (3), if k = 16 and xj+1 = j for 0 ≤ j < 16, and if the P
and Y tables are set up as follows:

j = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pj = 0 0 4
9

8
9 1 7

9 1 1 1 7
9

7
9

8
9

4
9 0 0 0

Yj = 5 9 7 4 ∗ 6 ∗ ∗ ∗ 8 4 7 10 6 7 8

(When Pj = 1, Yj is not used.) For example, the value 7 occurs with probability
1

16 ·

(1−P2) +P7 + (1−P11) + (1−P14)

= 6

36 as required. It is a peculiar way
to throw dice, but the results are indistinguishable from the real thing.

The probabilities pj can be represented implicitly by nonnegative weights
w1, w2, . . . , wk; if we denote the sum of the weights by W , then pj = wj/W .
In many applications the individual weights vary dynamically. Matias, Vitter,
and Ni [SODA 4 (1993), 361Ű370] have shown how to update a weight and
generate X in constant expected time.

B. General methods for continuous distributions. The most general real-
valued distribution can be expressed in terms of its “distribution functionŤ F (x),
which speciĄes the probability that a random quantity X will not exceed x:

F (x) = Pr(X ≤ x). (4)

This function always increases monotonically from zero to one; that is,

F (x1) ≤ F (x2), if x1 ≤ x2; F (−∞) = 0, F (+∞) = 1. (5)

Examples of distribution functions are given in Section 3.3.1, Fig. 3. If F (x)
is continuous and strictly increasing (so that F (x1) < F (x2) when x1 < x2),
it takes on all values between zero and one, and there is an inverse function

F [−1](y) such that, for 0 < y < 1,

y = F (x) if and only if x = F [−1](y). (6)

In general, when F (x) is continuous and strictly increasing, we can compute a
random quantity X with distribution F (x) by setting

X = F [−1](U), (7)

where U is uniform. This works because the probability that X ≤ x is the prob-
ability that F [−1](U) ≤ x, namely the probability that U ≤ F (x), namely F (x).

The problem now reduces to one of numerical analysis, namely to Ąnd good
methods for evaluating F [−1](U) to the desired accuracy. Numerical analysis
lies outside the scope of this seminumerical book; yet a number of important
shortcuts are available to speed up the general approach of (7), and we will
consider them here.

In the Ąrst place, if X1 is a random variable having the distribution F1(x)
and if X2 is an independent random variable with the distribution F2(x), then

max(X1, X2) has the distribution F1(x)F2(x),

min(X1, X2) has the distribution F1(x) + F2(x)− F1(x)F2(x).
(8)

122 RANDOM NUMBERS 3.4.1

(See exercise 4.) For example, a uniform deviate U has the distribution F (x) = x,
for 0 ≤ x ≤ 1; if U1, U2, . . . , Ut are independent uniform deviates, then
max(U1, U2, . . . , Ut) has the distribution function F (x) = xt, for 0 ≤ x ≤ 1.
This formula is the basis of the “maximum-of-t testŤ given in Section 3.3.2; the
inverse function is F [−1](y) = t

√
y. In the special case t = 2, we see therefore

that the two formulas

X =
√
U and X = max(U1, U2) (9)

will give equivalent distributions to the random variable X, although this is not
obvious at Ąrst glance. We need not take the square root of a uniform deviate.

The number of tricks like this is endless: Any algorithm that employs random
numbers as input will give a random quantity with some distribution as output.
The problem is to Ąnd general methods for constructing the algorithm, given the
distribution function of the output. Instead of discussing such methods in purely
abstract terms, we shall study how they can be applied in important cases.

C. The normal distribution. Perhaps the most important nonuniform, con-
tinuous distribution is the normal distribution with mean zero and standard

deviation one:

F (x) =
1√
2π

 x

−∞
e−t2/2 dt. (10)

The signiĄcance of this distribution was indicated in Section 1.2.10. In this case
the inverse function F [−1] is not especially easy to compute; but we shall see
that several other techniques are available.

1) The polar method, due to G. E. P. Box, M. E. Muller, and G. Marsaglia.

See Annals Math. Stat. 29 (1958), 610Ű611; and Boeing ScientiĄc Res. Lab.

report D1-82-0203 (1962).

Algorithm P (Polar method for normal deviates). This algorithm calculates
two independent normally distributed variables, X1 and X2.

P1. [Get uniform variables.] Generate two independent random variables, U1

and U2, uniformly distributed between zero and one. Set V1 ← 2U1 − 1,
V2 ← 2U2 − 1. (Now V1 and V2 are uniformly distributed between −1 and
+1. On most computers it will be preferable to have V1 and V2 represented
in Ćoating point form.)

P2. [Compute S.] Set S ← V 2
1 + V 2

2 .

P3. [Is S ≥ 1?] If S ≥ 1, return to step P1. (Steps P1 through P3 are executed
1.27 times on the average, with a standard deviation of 0.59; see exercise 6.)

P4. [Compute X1, X2.] If S = 0, set X1 ← X2 ← 0; otherwise set

X1 ← V1

−2 lnS
S

, X2 ← V2

−2 lnS
S

. (11)

These are the normally distributed variables desired.

3.4.1 NUMERICAL DISTRIBUTIONS 123

To prove the validity of this method, we use elementary analytic geometry
and calculus: If S < 1 in step P3, the point in the plane with Cartesian
coordinates (V1, V2) is a random point uniformly distributed inside the unit circle.
Transforming to polar coordinates V1 = R cosΘ, V2 = R sinΘ, we Ąnd

S = R2, X1 =
√
−2 lnS cosΘ, X2 =

√
−2 lnS sinΘ.

Using also the polar coordinates X1 = R′ cosΘ′, X2 = R′ sinΘ′, we Ąnd that
Θ′ = Θ and R′ =

√
−2 lnS. It is clear that R′ and Θ′ are independent, since

R and Θ are independent inside the unit circle. Also, Θ′ is uniformly distributed
between 0 and 2π; and the probability that R′ ≤ r is the probability that
−2 lnS ≤ r2, namely the probability that S ≥ e−r2/2. This equals 1 − e−r2/2,
since S = R2 is uniformly distributed between zero and one. The probability
that R′ lies between r and r + dr is therefore the differential of 1 − e−r2/2,
namely re−r2/2dr. Similarly, the probability that Θ′ lies between θ and θ + dθ
is (1/2π) dθ. The joint probability that X1 ≤ x1 and that X2 ≤ x2 now can be
computed; it is

{(r,θ) | r cos θ≤x1, r sin θ≤x2}

1
2π
e−r2/2 r dr dθ

=
1

2π

{(x,y) | x≤x1, y≤x2}
e−(x2+y2)/2 dx dy

=

1

2π

 x1

−∞
e−x2/2 dx

1

2π

 x2

−∞
e−y2/2 dy

.

This calculation proves that X1 and X2 are independent and normally distrib-
uted, as desired.

2) The rectangle-wedge-tail method, introduced by G. Marsaglia. Here we use
the function

F (x) = erf(x/
√

2) =

2
π

 x

0

e−t2/2 dt, x ≥ 0, (12)

which gives the distribution of the absolute value of a normal deviate. After X
has been computed according to distribution (12), we will attach a random sign
to its value, and this will make it a true normal deviate.

The rectangle-wedge-tail approach is based on several important general
techniques that we shall explore as we develop the algorithm. The Ąrst key idea
is to regard F (x) as a mixture of several other functions, namely to write

F (x) = p1F1(x) + p2F2(x) + · · ·+ pnFn(x), (13)

where F1, F2, . . . , Fn are appropriate distributions and p1, p2, . . . , pn are
nonnegative probabilities that sum to 1. If we generate a random variable X by
choosing distribution Fj with probability pj , it is easy to see that X will have
distribution F overall. Some of the distributions Fj(x) may be rather difficult to
handle, even harder than F itself, but we can usually arrange things so that the

124 RANDOM NUMBERS 3.4.1

0 1 2 3 4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

f1 f2 f3 f4 f5 f6 f7

f16
f17

f18

f19

f20

f21

f22

f23
f24

f25
f26

f27
f28

f29
f30

f31

Fig. 9. The density function divided into 31 parts. The area of each part represents
the average number of times a random number with that density is to be computed.

probability pj is very small in that case. Most of the distributions Fj(x) will be
quite easy to accommodate, since they will be trivial modiĄcations of the uniform
distribution. The resulting method yields an extremely efficient program, since
its average running time is very small.

It is easier to understand the method if we work with the derivatives of the
distributions instead of the distributions themselves. Let

f(x) = F ′(x), fj(x) = Fj
′(x)

be the density functions of the probability distributions. Equation (13) becomes

f(x) = p1f1(x) + p2f2(x) + · · ·+ pnfn(x). (14)

Each fj(x) is ≥ 0, and the total area under the graph of fj(x) is 1; so there is
a convenient graphical way to display the relation (14): The area under f(x)
is divided into n parts, with the part corresponding to fj(x) having area pj .
See Fig. 9, which illustrates the situation in the case of interest to us here, with
f(x) = F ′(x) =

2/π e−x2/2; the area under this curve has been divided into n =
31 parts. There are 15 rectangles, which represent p1f1(x), . . . , p15f15(x); there
are 15 wedge-shaped pieces, which represent p16f16(x), . . . , p30f30(x); and the
remaining part p31f31(x) is the “tail,Ť namely the entire graph of f(x) for x ≥ 3.

The rectangular parts f1(x), . . . , f15(x) represent uniform distributions.

For example, f3(x) represents a random variable uniformly distributed between
2
5 and 3

5 . The altitude of pjfj(x) is f(j/5), hence the area of the jth rectangle is

pj =
1
5
f(j/5) =

2
25π

e−j2/50, for 1 ≤ j ≤ 15. (15)

In order to generate such rectangular portions of the distribution, we simply
compute

X = 1
5U + S, (16)

3.4.1 NUMERICAL DISTRIBUTIONS 125

0

s s+h

aa

b

0

s s+h

aa

b

Fig. 10. Density functions for which Algorithm L may be used to generate random
numbers.

where U is uniform and S takes the value (j − 1)/5 with probability pj . Since
p1 + · · · + p15 = .9183, we can use simple uniform deviates like this about 92
percent of the time.

In the remaining 8 percent, we will usually have to generate one of the
wedge-shaped distributions F16, . . . , F30. Typical examples of what we need to
do are shown in Fig. 10. When x < 1, the curved part is concave, and when
x > 1 it is convex, but in each case the curved part is reasonably close to a
straight line, and it can be enclosed in two parallel lines as shown.

To handle these wedge-shaped distributions, we will rely on yet another
general technique, von Neumann’s rejection method for obtaining a complicated
density from another one that “enclosesŤ it. The polar method described above is
a simple example of such an approach: Steps P1ŰP3 obtain a random point inside
the unit circle by Ąrst generating a random point in a larger square, rejecting it
and starting over again if the point was outside the circle.

The general rejection method is even more powerful than this. To generate a
random variable X with density f , let g be another probability density function
such that

f(t) ≤ cg(t) (17)

for all t, where c is a constant. Now generate X according to density g, and also
generate an independent uniform deviate U. If U ≥ f(X)/cg(X), reject X and
start again with another X and U. When the condition U < f(X)/cg(X) Ąnally
occurs, the resulting X will have density f as desired.

Proof: X ≤ x will occur

with probability p(x) =
 x

−∞

g(t) dt · f(t)/cg(t)

+ qp(x), where the quantity

q =
∞
−∞

g(t) dt · (1−f(t)/cg(t))

= 1−1/c is the probability of rejection; hence

p(x) =
 x

−∞ f(t) dt.

The rejection technique is most efficient when c is small, since there will be
c iterations on the average before a value is accepted. (See exercise 6.) In some
cases f(x)/cg(x) is always 0 or 1; then U need not be generated. In other cases
if f(x)/cg(x) is hard to compute, we may be able to “squeezeŤ it between two
bounding functions

r(x) ≤ f(x)/cg(x) ≤ s(x) (18)

126 RANDOM NUMBERS 3.4.1

0 x

a/b

1

U

V

Fig. 11. Region of “acceptanceŤ in Algorithm L.

that are much simpler, and the exact value of f(x)/cg(x) need not be calculated
unless r(x) ≤ U < s(x). The following algorithm solves the wedge problem by
developing the rejection method still further.

Algorithm L (Nearly linear densities). This algorithm may be used to gen-
erate a random variable X for any distribution whose density f(x) satisĄes the
following conditions (see Fig. 10):

f(x) = 0, for x < s and for x > s+ h;

a− b(x− s)/h ≤ f(x) ≤ b− b(x− s)/h, for s ≤ x ≤ s+ h.
(19)

L1. [Get U ≤ V .] Generate two independent random variables U and V , uni-
formly distributed between zero and one. If U > V , exchange U ↔ V .

L2. [Easy case?] If V ≤ a/b, go to L4.

L3. [Try again?] If V > U + (1/b)f(s+ hU), go back to step L1. (If a/b is close
to 1, this step of the algorithm will not be necessary very often.)

L4. [Compute X.] Set X ← s+ hU.

When step L4 is reached, the point (U, V) is a random point in the area
shaded in Fig. 11, namely, 0 ≤ U ≤ V ≤ U + (1/b)f(s + hU). Conditions (19)
ensure that

a

b
≤ U +

1
b
f(s+ hU) ≤ 1.

Now the probability that X ≤ s+ hx, for 0 ≤ x ≤ 1, is the area that lies to the
left of the vertical line U = x in Fig. 11, divided by the total area, namely

 x

0

1
b
f(s+ hu) du

 1

0

1
b
f(s+ hu) du =

 s+hx

s

f(v) dv;

therefore X has the correct distribution.
With appropriate constants aj , bj , sj , Algorithm L will take care of the

wedge-shaped densities fj+15 of Fig. 9, for 1 ≤ j ≤ 15. The Ąnal distribution,
F31, needs to be treated only about one time in 370; it is used whenever a result
X ≥ 3 is to be computed. Exercise 11 shows that a standard rejection scheme
can be used for this “tail.Ť We are ready to consider the procedure in its entirety:

3.4.1 NUMERICAL DISTRIBUTIONS 127

M1. Get U

M2. Rectangle?

M3. Wedge or tail? M4. Get U ≤V

M5. Easy case?

M6. Another try?

M7. Get supertail deviate M8. Reject? M9. Attach sign

No

Yes

Wedge

Tail

Yes

No

No
Yes

No

Yes

Fig. 12. The “rectangle-wedge-tailŤ algorithm for generating normal deviates.

Algorithm M (Rectangle-wedge-tail method for normal deviates). For this
algorithm we use auxiliary tables (P0, . . . , P31), (Q1, . . . , Q15), (Y0, . . . , Y31),
(Z0, . . . , Z31), (S1, . . . , S16), (D16, . . . , D30), (E16, . . . , E30), constructed as ex-
plained in exercise 10; examples appear in Table 1. We assume that a binary
computer is being used; a similar procedure could be worked out for decimal
machines.

M1. [Get U.] Generate a uniform random number U = (.b0b1b2 . . . bt)2. (Here
the b’s are the bits in the binary representation of U. For reasonable
accuracy, t should be at least 24.) Set ψ ← b0. (Later, ψ will be used
to determine the sign of the result.)

M2. [Rectangle?] Set j ← (b1b2b3b4b5)2, a binary number determined by the
leading bits of U, and set f ← (.b6b7 . . . bt)2, the fraction determined by
the remaining bits. If f ≥ Pj , set X ← Yj + fZj and go to M9. Otherwise
if j ≤ 15 (that is, b1 = 0), set X ← Sj + fQj and go to M9.

This is an

adaptation of Walker’s alias method (3).

M3. [Wedge or tail?] (Now 16 ≤ j ≤ 31, and each particular value j occurs with
probability pj .) If j = 31, go to M7.

M4. [Get U ≤ V .] Generate two new uniform deviates, U and V ; if U > V ,
exchange U ↔ V . (We are now performing a special case of Algorithm L.)
Set X ← Sj−15 + 1

5U.

M5. [Easy case?] If V ≤ Dj , go to M9.

128 RANDOM NUMBERS 3.4.1

Table 1

EXAMPLE OF TABLES USED WITH ALGORITHM M*

j Pj Pj+16 Qj Yj Yj+16 Zj Zj+16 Sj+1 Dj+15 Ej+15

0 .000 .067 0.00 0.59 0.20 0.21 0.0
1 .849 .161 .236 − 0.92 0.96 1.32 0.24 0.2 .505 25.00
2 .970 .236 .206 − 5.86 −0.06 6.66 0.26 0.4 .773 12.50
3 .855 .285 .234 − 0.58 0.12 1.38 0.28 0.6 .876 8.33
4 .994 .308 .201 −33.16 1.31 34.96 0.29 0.8 .939 6.25
5 .995 .304 .201 −39.51 0.31 41.31 0.29 1.0 .986 5.00
6 .933 .280 .214 − 2.57 1.12 2.97 0.28 1.2 .995 4.06
7 .923 .241 .217 − 1.61 0.54 2.61 0.26 1.4 .987 3.37
8 .727 .197 .275 0.67 0.75 0.73 0.25 1.6 .979 2.86
9 1.000 .152 .200 0.56 0.24 1.8 .972 2.47

10 .691 .112 .289 0.35 0.17 0.65 0.23 2.0 .966 2.16
11 .454 .079 .440 − 0.17 0.38 0.37 0.22 2.2 .960 1.92
12 .287 .052 .698 0.92 −0.01 0.28 0.21 2.4 .954 1.71
13 .174 .033 1.150 0.36 0.39 0.24 0.21 2.6 .948 1.54
14 .101 .020 1.974 − 0.02 0.20 0.22 0.20 2.8 .942 1.40
15 .057 .086 3.526 0.19 0.78 0.21 0.22 3.0 .936 1.27

*In practice, this data would be given with much greater precision; the table shows only enough
Ągures so that interested readers will be able to test their own algorithms for computing the
values more accurately. The values of Q0, Y9, Z9, D15, and E15 are not used.

M6. [Another try?] If V > U + Ej(e(S2
j−14−X2)/2 − 1), go back to step M4;

otherwise go to M9. (This step is executed with low probability.)
M7. [Get supertail deviate.] Generate two new independent uniform deviates,

U and V , and set X ←
√

9− 2 lnV .
M8. [Reject?] If UX ≥ 3, go back to step M7. (This will occur only about

one-twelfth as often as we reach step M8.)
M9. [Attach sign.] If ψ = 1, set X ← −X.

This algorithm is a very pretty example of mathematical theory intimately
interwoven with programming ingenuity Ů a Ąne illustration of the art of com-
puter programming! Only steps M1, M2, and M9 need to be performed most
of the time, and the other steps aren’t terribly slow either. The Ąrst publica-
tions of the rectangle-wedge-tail method were by G. Marsaglia, Annals Math.
Stat. 32 (1961), 894Ű899; G. Marsaglia, M. D. MacLaren, and T. A. Bray,
CACM 7 (1964), 4Ű10. Further reĄnements of Algorithm M have been developed
by G. Marsaglia, K. Ananthanarayanan, and N. J. Paul, Inf. Proc. Letters 5
(1976), 27Ű30.

3) The odd-even method, due to G. E. Forsythe. An amazingly simple technique
for generating random deviates with a density of the general exponential form

f(x) = Ce−h(x) [a≤x< b], (20)

when
0 ≤ h(x) ≤ 1 for a ≤ x < b, (21)

was discovered by John von Neumann and G. E. Forsythe about 1950. The idea
is based on the rejection method described earlier, letting g(x) be the uniform
distribution on [a . . b): We set X ← a+ (b− a)U, where U is a uniform deviate,

3.4.1 NUMERICAL DISTRIBUTIONS 129

and then we want to accept X with probability e−h(X). The latter operation
could be done by comparing e−h(X) to V , or h(X) to − lnV , when V is another
uniform deviate, but the job can be done without applying any transcendental
functions in the following interesting way. Set V0 ← h(X), then generate uniform
deviates V1, V2, . . . until Ąnding someK ≥ 1 with VK−1 < VK . For ĄxedX and k,
the probability that h(X) ≥ V1 ≥ · · · ≥ Vk is 1/k! times the probability that
max(V1, . . . , Vk) ≤ h(X), namely h(X)k/k!; hence the probability that K = k is
h(X)k−1/(k − 1)!− h(X)k/k!, and the probability that K is odd is

k odd, k≥1

h(X)k−1

(k − 1)!
− h(X)k

k!

= e−h(X). (22)

Therefore we reject X and try again if K is even; we accept X as a random
variable with density (20) if K is odd. We usually won’t have to generate
many V ’s in order to determine K, since the average value of K (given X)
is

k≥0 Pr(K > k) =

k≥0 h(X)k/k! = eh(X) ≤ e.
Forsythe realized some years later that this approach leads to an efficient

method for calculating normal deviates, without the need for any auxiliary
routines to calculate square roots or logarithms as in Algorithms P and M. His
procedure, with an improved choice of intervals [a . . b) due to J. H. Ahrens and
U. Dieter, can be summarized as follows.

Algorithm F (Odd-even method for normal deviates). This algorithm generates
normal deviates on a binary computer, assuming approximately t + 1 bits of
accuracy. It requires a table of values dj = aj − aj−1, for 1 ≤ j ≤ t + 1, where
aj is deĄned by the relation

2
π

 ∞

aj

e−x2/2 dx =
1
2j
. (23)

F1. [Get U.] Generate a uniform random number U = (.b0b1 . . . bt)2, where b0,
b1, . . . , bt denote the bits in binary notation. Set ψ ← b0, j ← 1, and a← 0.

F2. [Find Ąrst zero bj .] If bj = 1, set a ← a + dj , j ← j + 1, and repeat this
step. (If j = t+ 1, treat bj as zero.)

F3. [Generate candidate.]

Now a = aj−1, and the current value of j occurs with

probability ≈ 2−j . We will generate X in the range [aj−1 . . aj), using the
rejection method above, with h(x) = x2/2−a2/2 = y2/2+ay where y = x−a.
Exercise 12 proves that h(x) ≤ 1 as required in (21).

Set Y ← dj times

(.bj+1 . . . bt)2 and V ← (1
2Y + a)Y . (Since the average value of j is 2, there

will usually be enough signiĄcant bits in (.bj+1 . . . bt)2 to provide decent
accuracy. The calculations are readily done in Ąxed point arithmetic.)

F4. [Reject?] Generate a uniform deviate U. If V < U, go on to step F5.
Otherwise set V to a new uniform deviate; and repeat step F4 if the new V
is ≤ U . Otherwise (that is, if K is even, in the discussion above), replace U
by a new uniform deviate (.b0b1 . . . bt)2 and go back to F3.

F5. [Return X.] Set X ← a+ Y . If ψ = 1, set X ← −X.

130 RANDOM NUMBERS 3.4.1

(0,−
√

2/e) (1,−
√

2/e)

(1,
√

2/e)(0,
√

2/e)

x=0

x=−1/3

x=−1x=−3

x=1/3

x=1x=3

Fig. 13. Region of “acceptanceŤ
in the ratio-of-uniforms method
for normal deviates. Lengths of
lines with coordinate ratio x have
the normal distribution.

Values of dj for 1 ≤ j ≤ 47 appear in a paper by Ahrens and Dieter, Math.
Comp. 27 (1973), 927Ű937; their paper discusses reĄnements of the algorithm
that improve its speed at the expense of more tables. Algorithm F is attractive
since it is almost as fast as Algorithm M and it is easier to implement. The
average number of uniform deviates per normal deviate is 2.53947; R. P. Brent
[CACM 17 (1974), 704Ű705] has shown how to reduce this number to 1.37446
at the expense of two subtractions and one division per uniform deviate saved.

4) Ratios of uniform deviates. There is yet another good way to generate
normal deviates, discovered by A. J. Kinderman and J. F. Monahan in 1976.
Their idea is to generate a random point (U, V) in the region deĄned by

0 < u ≤ 1, −2u

ln(1/u) ≤ v ≤ 2u

ln(1/u), (24)

and then to output the ratio X ← V/U. The shaded area of Fig. 13 is the magic
region (24) that makes this all work. Before we study the associated theory, let
us Ąrst state the algorithm so that its efficiency and simplicity are manifest:

Algorithm R (Ratio method for normal deviates). This algorithm generates
normal deviates X.

R1. [Get U, V .] Generate two independent uniform deviates U and V , where
U is nonzero, and set X ←

8/e

V − 1

2

/U. (Now X is the ratio of

the coordinates

U,

8/e

V − 1

2

of a random point in the rectangle that

encloses the shaded region in Fig. 13. We will accept X if the corresponding
point actually lies “in the shade,Ť otherwise we will try again.)

3.4.1 NUMERICAL DISTRIBUTIONS 131

R2. [Optional upper bound test.] If X2 ≤ 5− 4e1/4U, output X and terminate
the algorithm. (This step can be omitted if desired; it tests whether or not
the selected point is in the interior region of Fig. 13, making it unnecessary
to calculate a logarithm.)

R3. [Optional lower bound test.] If X2 ≥ 4e−1.35/U + 1.4, go back to R1. (This
step could also be omitted; it tests whether or not the selected point is
outside the exterior region of Fig. 13, making it unnecessary to calculate a
logarithm.)

R4. [Final test.] If X2 ≤ −4 lnU, output X and terminate the algorithm.
Otherwise go back to R1.

Exercises 20 and 21 work out the timing analysis; four different algorithms
are analyzed, since steps R2 and R3 can be included or omitted depending on
one’s preference. The following table shows how many times each step will be
performed, on the average, depending on which of the optional tests is applied:

Step Neither R2 only R3 only Both
R1 1.369 1.369 1.369 1.369
R2 0 1.369 0 1.369
R3 0 0 1.369 0.467
R4 1.369 0.467 1.134 0.232

(25)

Thus it pays to omit the optional tests if there is a very fast logarithm operation,
but if the log routine is rather slow it pays to include them.

But why does it work? One reason is that we can calculate the probability
that X ≤ x, and it turns out to be the correct value (10). But such a calculation
isn’t very easy unless one happens to hit on the right trick, and anyway it is
better to understand how the algorithm might have been discovered in the Ąrst
place. Kinderman and Monahan derived it by working out the following theory
that can be used with any well-behaved density function f(x) [see ACM Trans.
Math. Software 3 (1977), 257Ű260].

In general, suppose that a point (U, V) has been generated uniformly over
the region of the (u, v)-plane deĄned by

u > 0, u2 ≤ g(v/u) (26)

for some nonnegative integrable function g. If we set X ← V/U, the probability
that X ≤ x can be calculated by integrating du dv over the region deĄned by the
two relations in (26) plus the auxiliary condition v/u ≤ x, then dividing by the
same integral without this extra condition. Letting v = tu, so that dv = u dt,
the integral becomes

 x

−∞
dt

√

g(t)

0

u du =
1
2

 x

−∞
g(t) dt.

Hence the probability that X ≤ x is
 x

−∞
g(t) dt

 +∞

−∞
g(t) dt. (27)

132 RANDOM NUMBERS 3.4.1

The normal distribution comes out when g(t) = e−t2/2; and the condition
u2 ≤ g(v/u) simpliĄes in this case to (v/u)2 ≤ −4 ln u. It is easy to see that the
set of all such pairs (u, v) is entirely contained in the rectangle of Fig. 13.

The bounds in steps R2 and R3 deĄne interior and exterior regions with
simpler boundary equations. The well-known inequality

ex ≥ 1 + x,

which holds for all real numbers x, can be used to show that

1 + ln c− cu ≤ − ln u ≤ 1/(cu)− 1 + ln c (28)

for any constant c > 0. Exercise 21 proves that c = e1/4 is the best possible
constant to use in step R2. The situation is more complicated in step R3, and
there doesn’t seem to be a simple expression for the optimum c in that case,
but computational experiments show that the best value for R3 is ≈ e1.35. The
approximating curves (28) are tangent to the true boundary when u = 1/c.

With an improved approximation to the acceptance region [see J. L. Leva,
ACM Trans. Math. Software 18 (1992), 449Ű455] we can, in fact, reduce the
expected number of logarithm computations to only 0.012.

It is possible to obtain a faster method by partitioning the region into
subregions, most of which can be handled more quickly. Of course, this means
that auxiliary tables will be needed, as in Algorithms M and F. An interesting
alternative that requires fewer auxiliary table entries has been suggested by
Ahrens and Dieter in CACM 31 (1988), 1330Ű1337.

5) Normal deviates from normal deviates. Exercise 31 discusses an interesting
approach that saves time by working directly with normal deviates instead of
basing everything on uniform deviates. This method, introduced by C. S. Wallace
in 1996, has comparatively little theoretical support at the present time, but it
has successfully passed a number of empirical tests.

6) Variations of the normal distribution. So far we have considered the normal
distribution with mean zero and standard deviation one. If X has this distribu-
tion, then

Y = µ+ σX (29)

has the normal distribution with mean µ and standard deviation σ. Furthermore,
if X1 and X2 are independent normal deviates with mean zero and standard
deviation one, and if

Y1 = µ1 + σ1X1, Y2 = µ2 + σ2

ρX1 +

1− ρ2 X2

, (30)

then Y1 and Y2 are dependent random variables, normally distributed with means
µ1, µ2 and standard deviations σ1, σ2, and with correlation coefficient ρ. (For a
generalization to n variables, see exercise 13.)

D. The exponential distribution. After uniform deviates and normal de-
viates, the next most important random quantity is an exponential deviate.

Such numbers occur in “arrival timeŤ situations; for example, if a radioactive

3.4.1 NUMERICAL DISTRIBUTIONS 133

substance emits alpha particles at a rate such that one particle is emitted every
µ seconds on the average, then the time between two successive emissions has
the exponential distribution with mean µ. This distribution is deĄned by the
formula

F (x) = 1− e−x/µ, x ≥ 0. (31)

1) Logarithm method. Clearly, if y = F (x) = 1 − e−x/µ, then x = F [−1](y) =
−µ ln(1−y). Therefore −µ ln(1−U) has the exponential distribution by Eq. (7).
Since 1− U is uniformly distributed when U is, we conclude that

X = −µ lnU (32)

is exponentially distributed with mean µ. (The case U = 0 must be treated
specially; we can substitute any convenient value ϵ for 0, since the probability of
this case is extremely small.)

2) Random minimization method. We saw in Algorithm F that there are
simple and fast alternatives to calculating the logarithm of a uniform deviate.
The following especially efficient approach has been developed by G. Marsaglia,
M. Sibuya, and J. H. Ahrens [see CACM 15 (1972), 876Ű877]:

Algorithm S (Exponential distribution with mean µ). This algorithm produces
exponential deviates on a binary computer, using uniform deviates with (t+ 1)-
bit accuracy. The constants

Q[k] =
ln 2
1!

+
(ln 2)2

2!
+ · · ·+ (ln 2)k

k!
, k ≥ 1, (33)

should be precomputed, extending until Q[k] > 1− 2−t.

S1. [Get U and shift.] Generate a (t + 1)-bit uniform random binary fraction
U = (.b0b1b2 . . . bt)2; locate the Ąrst zero bit bj , and shift off the leading j+1
bits, setting U ← (.bj+1 . . . bt)2. (As in Algorithm F, the average number of
discarded bits is 2.)

S2. [Immediate acceptance?] If U < ln 2, set X ← µ(j ln 2 + U) and terminate
the algorithm. (Note that Q[1] = ln 2.)

S3. [Minimize.] Find the least k ≥ 2 such that U < Q[k]. Generate k new
uniform deviates U1, . . . , Uk and set V ← min(U1, . . . , Uk).

S4. [Deliver the answer.] Set X ← µ(j + V) ln 2.

Alternative ways to generate exponential deviates (for example, a ratio of
uniforms as in Algorithm R) might also be used.

E. Other continuous distributions. Let us now consider brieĆy how to
handle some other distributions that arise reasonably often in practice.

1) The gamma distribution of order a > 0 is deĄned by

F (x) =
1

Γ (a)

 x

0

ta−1e−t dt, x ≥ 0. (34)

134 RANDOM NUMBERS 3.4.1

When a = 1, this is the exponential distribution with mean 1; when a = 1
2 ,

it is the distribution of 1
2Z

2, where Z has the normal distribution (mean 0,
variance 1). If X and Y are independent gamma-distributed random variables,
of order a and b, respectively, then X + Y has the gamma distribution of order
a + b. Thus, for example, the sum of k independent exponential deviates with
mean 1 has the gamma distribution of order k. If the logarithm method (32)
is being used to generate these exponential deviates, we need compute only one
logarithm: X ← − ln(U1 . . . Uk), where U1, . . . , Uk are nonzero uniform deviates.
This technique handles all integer orders a; to complete the picture, a suitable
method for 0 < a < 1 appears in exercise 16.

The simple logarithm method is much too slow when a is large, since it
requires ⌊a⌋ uniform deviates. Moreover, there is a substantial risk that the
product U1 . . . U⌊a⌋ will cause Ćoating point underĆow. For large a, the following
algorithm due to J. H. Ahrens is reasonably efficient, and it is easy to write in
terms of standard subroutines. [See Ann. Inst. Stat. Math. 13 (1962), 231Ű237.]

Algorithm A (Gamma distribution of order a > 1).

A1. [Generate candidate.] Set Y ← tan(πU), where U is a uniform deviate, and
set X ←

√
2a− 1Y + a − 1.

In place of tan(πU) we could use a polar

method, calculating a ratio V2/V1 as in step P4 of Algorithm P.

A2. [Accept?] If X ≤ 0, return to A1. Otherwise generate a uniform deviate V ,
and return to A1 if V > (1 + Y 2) exp

(a− 1) ln

X/(a− 1)

−
√

2a− 1Y

.

Otherwise accept X.

The average number of times step A1 is performed is < 1.902 when a ≥ 3.
There is also an attractive approach for large a based on the remarkable

fact that gamma deviates are approximately equal to aX3, where X is normally
distributed with mean 1−1/(9a) and standard deviation 1/

√
9a; see E. B. Wilson

and M. M. Hilferty, Proc. Nat. Acad. Sci. 17 (1931), 684Ű688; G. Marsaglia,
Computers and Math. 3 (1977), 321Ű325.*

For a somewhat complicated but signiĄcantly faster algorithm, which gener-
ates a gamma deviate in about twice the time to generate a normal deviate, see
J. H. Ahrens and U. Dieter, CACM 25 (1982), 47Ű54. This article contains an
instructive discussion of the design principles used to construct the algorithm.

2) The beta distribution with positive parameters a and b is deĄned by

F (x) =
Γ (a+ b)
Γ (a)Γ (b)

 x

0

ta−1(1− t)b−1 dt, 0 ≤ x ≤ 1. (35)

Let X1 and X2 be independent gamma deviates of order a and b, respectively,
and set X ← X1/(X1 +X2). Another method, useful for small a and b, is to set

Y1 ← U
1/a
1 and Y2 ← U

1/b
2

repeatedly until Y1 + Y2 ≤ 1; then X ← Y1/(Y1 + Y2). [See M. D. Jöhnk,
Metrika 8 (1964), 5Ű15.] Still another approach, if a and b are integers and not

* Change “+(3a − 1)Ť to “−(3a − 1)Ť in Step 3 of the algorithm on page 323.

3.4.1 NUMERICAL DISTRIBUTIONS 135

too large, is to set X to the bth largest of a+ b−1 independent uniform deviates
(see exercise 9 at the beginning of Chapter 5). See also the more direct method
described by R. C. H. Cheng, CACM 21 (1978), 317Ű322.

3) The chi-square distribution with ν degrees of freedom (Eq. 3.3.1Ű(22)) is
obtained by setting X ← 2Y , where Y is a random variable having the gamma
distribution of order ν/2.

4) The F-distribution (variance-ratio distribution) with ν1 and ν2 degrees of
freedom is deĄned by

F (x) =
ν
ν1/2
1 ν

ν2/2
2 Γ

(ν1 + ν2)/2

Γ (ν1/2)Γ (ν2/2)

 x

0

tν1/2−1(ν2 + ν1t)−ν1/2−ν2/2 dt, (36)

where x ≥ 0. Let Y1 and Y2 be independent, having the chi-square distribution
with ν1 and ν2 degrees of freedom, respectively; set X ← Y1ν2/Y2ν1. Or set
X ← ν2Y/ν1(1− Y), where Y is a beta variate with parameters ν1/2 and ν2/2.

5) The t-distribution with ν degrees of freedom is deĄned by

F (x) =
Γ

(ν + 1)/2

√
πν Γ (ν/2)

 x

−∞
(1 + t2/ν)−(ν+1)/2 dt. (37)

Let Y1 be a normal deviate (mean 0, variance 1) and let Y2 be independent
of Y1, having the chi-square distribution with ν degrees of freedom; set X ←
Y1/

Y2/ν. Alternatively, when ν > 2, let Y1 be a normal deviate and let
Y2 independently have the exponential distribution with mean 2/(ν − 2); set
Z ← Y 2

1/(ν − 2) and reject (Y1, Y2) if e−Y2−Z ≥ 1− Z, otherwise set

X ← Y1/

(1− 2/ν)(1− Z).

The latter method is due to George Marsaglia, Math. Comp. 34 (1980), 235Ű236.
[See also A. J. Kinderman, J. F. Monahan, and J. G. Ramage, Math. Comp. 31
(1977), 1009Ű1018.]

6) Random point on an n-dimensional sphere with radius one. Let X1, X2,
. . . , Xn be independent normal deviates (mean 0, variance 1); the desired point
on the unit sphere is

(X1/r, X2/r, . . . , Xn/r), where r =

X2
1 +X2

2 + · · ·+X2
n. (38)

If the X’s are calculated using the polar method, Algorithm P, we compute two
independent X’s each time, and we have X2

1 + X2
2 = −2 lnS in the notation

of that algorithm; this saves a little of the time needed to evaluate r. The
validity of (38) comes from the fact that the distribution function for the point
(X1, . . . , Xn) has a density that depends only on its distance from the origin, so
when it is projected onto the unit sphere it has the uniform distribution. This
method was Ąrst suggested by G. W. Brown, in Modern Mathematics for the
Engineer, First series, edited by E. F. Beckenbach (New York: McGrawŰHill,

136 RANDOM NUMBERS 3.4.1

1956), 302. To get a random point inside the n-sphere, R. P. Brent suggests
taking a point on the surface and multiplying it by U1/n.

In three dimensions a signiĄcantly simpler method can be used, since each
individual coordinate is uniformly distributed between −1 and 1: Find V1, V2,
and S by steps P1ŰP3 of Algorithm P; then the desired random point on the
surface of a globe is (αV1, αV2, 2S − 1), where α = 2

√
1− S. [Robert E. Knop,

CACM 13 (1970), 326.]

F. Important integer-valued distributions. A probability distribution that
is nonzero only at integer values can essentially be handled by the techniques
described at the beginning of this section; but some of these distributions are so
important in practice, they deserve special mention here.

1) The geometric distribution. If some event occurs with probability p, the
number N of independent trials needed between occurrences of the event (or
until the event occurs for the Ąrst time) has the geometric distribution. We
have N = 1 with probability p, N = 2 with probability (1 − p)p, . . . , N = n
with probability (1 − p)n−1p. This is essentially the situation we have already
considered in the gap test of Section 3.3.2; it is also directly related to the number
of times certain loops in the algorithms of this section are executed, like steps
P1ŰP3 of the polar method.

A convenient way to generate a variable with this distribution is to set

N ←

lnU/ ln(1− p)

. (39)

To check this formula, we observe that

lnU/ ln(1 − p)

= n if and only if

n−1 < lnU/ ln(1−p) ≤ n, that is, (1−p)n−1 > U ≥ (1−p)n, and this happens
with probability (1 − p)n−1p as required. The quantity lnU can optionally be
replaced by −Y , where Y has the exponential distribution with mean 1.

The special case p = 1
2 is quite simple on a binary computer, since for-

mula (39) reduces to setting N ← ⌈− lgU⌉; that is, N is one more than the
number of leading zero bits in the binary representation of U.

2) The binomial distribution (t, p). If some event occurs with probability p, and
if we carry out t independent trials, the total number N of occurrences equals n
with probability

t
n

pn(1 − p)t−n. (See Section 1.2.10.) In other words if we

generate U1, . . . , Ut, we want to count how many of these are < p. For small t
we can obtain N in exactly this way.

For large t, we can generate a beta variate X with integer parameters a
and b where a+ b− 1 = t; this effectively gives us the bth largest of t elements,
without bothering to generate the other elements. Now if X ≥ p, we set N ← N1

where N1 has the binomial distribution (a−1, p/X), since this tells us how many
of a − 1 random numbers in the range [0 . . X) are < p; and if X < p, we set
N ← a+N1 where N1 has the binomial distribution

b− 1, (p−X)/(1−X)

,

since N1 tells us how many of b−1 random numbers in the range [X . . 1) are < p.
By choosing a = 1 + ⌊t/2⌋, the parameter t will be reduced to a reasonable size
after about lg t reductions of this kind. (This approach is due to J. H. Ahrens,
who has also suggested an alternative for medium-sized t; see exercise 27.)

3.4.1 NUMERICAL DISTRIBUTIONS 137

3) The Poisson distribution with mean µ. The Poisson distribution is related
to the exponential distribution as the binomial distribution is related to the
geometric: It represents the number of occurrences, per unit time, of an event
that can occur at any instant of time. For example, the number of alpha particles
emitted by a radioactive substance in a single second has a Poisson distribution.

According to this principle, we can produce a Poisson deviate N by gener-
ating independent exponential deviates X1, X2, . . . with mean 1/µ, stopping
as soon as X1 + · · · + Xm ≥ 1; then N ← m − 1. The probability that
X1 + · · · + Xm ≥ 1 is the probability that a gamma deviate of order m is ≥ µ,
and this comes to

∞
µ
tm−1e−t dt/(m− 1)!; hence the probability that N = n is

1
n!

 ∞

µ

tne−t dt− 1
(n− 1)!

 ∞

µ

tn−1e−t dt = e−µµ
n

n!
, n ≥ 0. (40)

If we generate exponential deviates by the logarithm method, the recipe above
tells us to stop when −(lnU1 + · · ·+ lnUm)/µ ≥ 1. Simplifying this expression,
we see that the desired Poisson deviate can be obtained by calculating e−µ,
converting it to a Ąxed point representation, then generating one or more uniform
deviates U1, U2, . . . until the product satisĄes U1 . . . Um ≤ e−µ, Ąnally setting
N ← m−1. On the average this requires the generation of µ+1 uniform deviates,
so it is a very useful approach when µ is not too large.

When µ is large, we can obtain a method of order logµ by using the fact that
we know how to handle the gamma and binomial distributions for large orders:
First generate X with the gamma distribution of order m = ⌊αµ⌋, where α is a
suitable constant. (Since X is equivalent to − ln(U1 . . . Um), we are essentially
bypassing m steps of the previous method.) If X < µ, set N ← m+N1, where
N1 is a Poisson deviate with mean µ − X; and if X ≥ µ, set N ← N1, where
N1 has the binomial distribution (m − 1, µ/X). This method is due to J. H.
Ahrens and U. Dieter, whose experiments suggest that 7

8 is a good choice for α.
The validity of the stated reduction when X ≥ µ is a consequence of the

following important principle: “Let X1, . . . , Xm be independent exponential
deviates with the same mean; let Sj = X1 + · · · + Xj and let Vj = Sj/Sm

for 1 ≤ j ≤ m. Then the distribution of V1, V2, . . . , Vm−1 is the same as
the distribution of m − 1 independent uniform deviates sorted into increasing
order.Ť To establish this principle formally, we compute the probability that
V1 ≤ v1, . . . , Vm−1 ≤ vm−1, given the value of Sm = s, for arbitrary values
0 ≤ v1 ≤ · · · ≤ vm−1 ≤ 1: Let f(v1, v2, . . . , vm−1) be the (m− 1)-fold integral
 v1s

0

µe−t1/µ dt1

 v2s−t1

0

µe−t2/µ dt2 . . .

×
 vm−1s−t1−···−tm−2

0

µe−tm−1/µ dtm−1 · µe−(s−t1−···−tm−1)/µ ;

then
f(v1, v2, . . . , vm−1)

f(1, 1, . . . , 1)
=

 v1

0
du1

 v2

u1
du2 . . .

 vm−1

um−2
dum−1

 1

0
du1

 1

u1
du2 . . .

 1

um−2
dum−1

,

138 RANDOM NUMBERS 3.4.1

by making the substitution t1 = su1, t1 + t2 = su2, . . . , t1 + · · · + tm−1 =
sum−1. The latter ratio is the corresponding probability that uniform deviates
U1, . . . , Um−1 satisfy U1 ≤ v1, . . . , Um−1 ≤ vm−1, given that they also satisfy
U1 ≤ · · · ≤ Um−1.

A more efficient but somewhat more complicated technique for binomial and
Poisson deviates is sketched in exercise 22.

G. For further reading. A facsimile of a letter from von Neumann dated May
21, 1947, in which the rejection method Ąrst saw the light of day, appears in
Stanislaw Ulam 1909Ű1984, a special issue of Los Alamos Science (Los Alamos
National Lab., 1987), 135Ű136. The book Non-Uniform Random Variate Gen-
eration by L. Devroye (Springer, 1986) discusses many more algorithms for the
generation of random variables with nonuniform distributions, together with a
careful consideration of the efficiency of each technique on typical computers.

W. Hörmann and G. DerĆinger [ACM Trans. Math. Software 19 (1993),
489Ű495] have pointed out that it can be dangerous to use the rejection method
in connection with linear congruential generators that have small multipliers
a ≈ √m.

From a theoretical point of view it is interesting to consider optimal ways to
generate random variables with a given distribution, in the sense that the method
produces the desired result from the minimum possible number of random bits.
For the beginnings of a theory dealing with such questions, see D. E. Knuth
and A. C. Yao, Algorithms and Complexity, edited by J. F. Traub (New York:
Academic Press, 1976), 357Ű428.

Exercise 16 is recommended as a review of many of the techniques in this
section.

EXERCISES

1. [10] If α and β are real numbers with α < β, how would you generate a random
real number uniformly distributed between α and β?

2. [M16] Assuming that mU is a random integer between 0 and m − 1, what is
the exact probability that ⌊kU⌋ = r, if 0 ≤ r < k? Compare this with the desired
probability 1/k.

x 3. [14] Discuss treating U as an integer and computing its remainder mod k to get
a random integer between 0 and k− 1, instead of multiplying as suggested in the text.
Thus (1) would be changed to

ENTA 0; LDX U; DIV K,

with the result appearing in register X. Is this a good method?

4. [M20] Prove the two relations in (8).

x 5. [21] Suggest an efficient way to compute a random variable with the distribution
F (x) = px+ qx2 + rx3, where p ≥ 0, q ≥ 0, r ≥ 0, and p+ q + r = 1.

6. [HM21] A quantity X is computed by the following method:

Step 1. Generate two independent uniform deviates U and V .

Step 2. If U2 + V 2 ≥ 1, return to step 1; otherwise set X ← U.

3.4.1 NUMERICAL DISTRIBUTIONS 139

What is the distribution function of X? How many times will step 1 be performed?
(Give the mean and standard deviation.)

x 7. [20] (A. J. Walker.) Suppose we have a bunch of cubes of k different colors, say
nj cubes of color Cj for 1 ≤ j ≤ k, and we also have k boxes {B1, . . . , Bk} each of
which can hold exactly n cubes. Furthermore n1 + · · · + nk = kn, so the cubes will
just Ąt in the boxes. Prove (constructively) that there is always a way to put the cubes
into the boxes so that each box contains at most two different colors of cubes; in fact,
there is a way to do it so that, whenever box Bj contains two colors, one of those colors
is Cj . Show how to use this principle to compute the P and Y tables required in (3),
given a probability distribution (p1, . . . , pk).

8. [M15] Show that operation (3) could be changed to

if U < PK then X ← xK+1 otherwise X ← YK

(thus using the original value of U instead of V) if this were more convenient, by
suitably modifying P0, P1, . . . , Pk−1.

9. [HM10] Why is the curve f(x) of Fig. 9 concave for x < 1, convex for x > 1?

x 10. [HM24] Explain how to calculate auxiliary constants Pj , Qj , Yj , Zj , Sj , Dj , Ej

so that Algorithm M delivers answers with the correct distribution.

x 11. [HM27] Prove that steps M7ŰM8 of Algorithm M generate a random variable
with the appropriate tail of the normal distribution; in other words, the probability
that X ≤ x should be exactly

 x

3

e−t2/2 dt

 ∞

3

e−t2/2 dt, x ≥ 3.

[Hint: Show that it is a special case of the rejection method, with g(t) = Cte−t2/2 for
some C.]

12. [HM23] (R. P. Brent.) Prove that the numbers aj deĄned in (23) satisfy the
relation

a2
j − a2

j−1 < 2 ln 2 for all j ≥ 1.

[Hint: If f(x) = ex2/2
∞

x
e−t2/2 dt, show that f(x) > f(y) for 0 ≤ x < y.]

13. [HM25] Given a set of n independent normal deviates, X1, X2, . . . , Xn, with
mean 0 and variance 1, show how to Ąnd constants bj and aij , 1 ≤ j ≤ i ≤ n, so that if

Y1 = b1 + a11X1, Y2 = b2 + a21X1 + a22X2, . . . , Yn = bn + an1X1 + · · ·+ annXn,

then Y1, Y2, . . . , Yn are dependent normally distributed variables, Yj has mean µj ,
and the Y ’s have a given covariance matrix (cij). (The covariance, cij , of Yi and Yj is
deĄned to be the average value of (Yi − µi)(Yj − µj). In particular, cjj is the variance
of Yj , the square of its standard deviation. Not all matrices (cij) can be covariance
matrices, and your construction is, of course, only supposed to work whenever a solution
to the given conditions is possible.)
14. [M21] If X is a random variable with the continuous distribution F (x), and if c
is a (possibly negative) constant, what is the distribution of cX?

15. [HM21] If X1 and X2 are independent random variables with the respective
distributions F1(x) and F2(x), and with densities f1(x) = F ′

1(x), f2(x) = F ′
2(x), what

are the distribution and density functions of the quantity X1 +X2?

140 RANDOM NUMBERS 3.4.1

x 16. [HM22] (J. H. Ahrens.) Develop an algorithm for gamma deviates of order a
when 0 < a ≤ 1, using the rejection method with cg(t) = ta−1/Γ (a) for 0 < t < 1, and
with cg(t) = e−t/Γ (a) for t ≥ 1.

x 17. [M24] What is the distribution function F (x) for the geometric distribution with
probability p? What is the generating function G(z)? What are the mean and standard
deviation of this distribution?

18. [M24] Suggest a method to compute a random integer N for which N takes the
value n with probability np2(1− p)n−1, n ≥ 0. (The case of particular interest is when
p is rather small.)

19. [22] The negative binomial distribution (t, p) has integer values N = n with
probability

t−1+n

n

pt(1 − p)n. (Unlike the ordinary binomial distribution, t need not

be an integer, since this quantity is nonnegative for all n whenever t > 0.) Generalizing
exercise 18, explain how to generate integers N with this distribution when t is a small
positive integer. What method would you suggest if t = p = 1

2
?

20. [M20] Let A be the area of the shaded region in Fig. 13, and let R be the area of
the enclosing rectangle. Let I be the area of the interior region recognized by step R2,
and let E be the area between the exterior region rejected in step R3 and the outer
rectangle. Determine the number of times each step of Algorithm R is performed, for
each of its four variants as in (25), in terms of A, R, I, and E.

21. [HM29] Derive formulas for the quantities A, R, I, and E deĄned in exercise 20.
(For I and especially E you may wish to use an interactive computer algebra system.)
Show that c = e1/4 is the best possible constant in step R2 for tests of the form
“X2 ≤ 4(1 + ln c)− 4cU.Ť

22. [HM40] Can the exact Poisson distribution for large µ be obtained by generating
an appropriate normal deviate, converting it to an integer in some convenient way, and
applying a (possibly complicated) correction a small percent of the time?

23. [HM23] (J. von Neumann.) Are the following two ways to generate a random
quantity X equivalent (that is, does the quantity X have the same distribution)?

Method 1: Set X ← sin((π/2)U), where U is uniform.

Method 2: Generate two uniform deviates, U and V ; if U2 + V 2 ≥ 1, repeat
until U2 + V 2 < 1. Then set X ← |U2 − V 2|/(U2 + V 2).

24. [HM40] (S. Ulam, J. von Neumann.) Let V0 be a randomly selected real number
between 0 and 1, and deĄne the sequence ⟨Vn⟩ by the rule Vn+1 = 4Vn(1− Vn). If this
computation is done with perfect accuracy, the result should be a sequence with the
distribution sin2 πU, where U is uniform, that is, with distribution function F (x) = x

0
dx/
√

2πx(1− x) . For if we write Vn = sin2 πUn, we Ąnd that Un+1 = (2Un) mod 1;
and by the fact that almost all real numbers have a random binary expansion (see
Section 3.5), this sequence Un is equidistributed. But if the computation of Vn is done
with only Ąnite accuracy, the argument breaks down because we soon are dealing with
noise from the roundoff error. [See von Neumann’s Collected Works 5, 768Ű770.]

Analyze the sequence ⟨Vn⟩ deĄned in the preceding paragraph, when only Ąnite ac-
curacy is present, both empirically (for various different choices of V0) and theoretically.
Does the sequence have a distribution resembling the expected distribution?

25. [M25] Let X1, X2, . . . , X5 be binary words each of whose bits is independently
0 or 1 with probability 1

2
. What is the probability that a given bit position of

X1 | (X2 & (X3 | (X4 &X5))) contains a 1? Generalize.

3.4.1 NUMERICAL DISTRIBUTIONS 141

26. [M18] Let N1 and N2 be independent Poisson deviates with means µ1 and µ2,
where µ1 > µ2 ≥ 0. Prove or disprove: (a) N1 +N2 has the Poisson distribution with
mean µ1 + µ2. (b) N1 −N2 has the Poisson distribution with mean µ1 − µ2.

27. [22] (J. H. Ahrens.) On most binary computers there is an efficient way to count
the number of 1s in a binary word (see Section 7.1.3). Hence there is a nice way to
obtain the binomial distribution (t, p) when p = 1

2
, simply by generating t random bits

and counting the number of 1s.
Design an algorithm that produces the binomial distribution (t, p) for arbitrary p,

using only a subroutine for the special case p = 1
2

as a source of random data. [Hint:

Simulate a process that Ąrst looks at the most signiĄcant bits of t uniform deviates,
then at the second bit of those deviates whose leading bit is not sufficient to determine
whether or not their value is < p, etc.]

28. [HM35] (R. P. Brent.) Develop a method to generate a random point on the
surface of the ellipsoid deĄned by

akx

2
k = 1, where a1 ≥ · · · ≥ an > 0.

29. [M20] (J. L. Bentley and J. B. Saxe.) Find a simple way to generate n numbers
X1, . . . , Xn that are uniform between 0 and 1 except for the fact that they are sorted:
X1 ≤ · · · ≤ Xn. Your algorithm should take only O(n) steps.

30. [M30] Explain how to generate a set of random points (Xj , Yj) such that, if R is
any rectangle of area α contained in the unit square, the number of (Xj , Yj) lying in R
has the Poisson distribution with mean αµ.

31. [HM39] (Direct generation of normal deviates.)
a) Prove that if a2

1 + · · ·+a2
k = 1 and if X1, . . . , Xk are independent normal deviates

with mean 0 and variance 1, then a1X1 + · · · + akXk is a normal deviate with
mean 0 and variance 1.

b) The result of (a) suggests that we can generate new normal deviates from old ones,
just as we obtain new uniform deviates from old ones. For example, we might use
the idea of 3.2.2Ű(7), but with a recurrence like

Xn = (Xn−24 +Xn−55)/
√

2 or Xn = 3
5
Xn−24 + 4

5
Xn−55,

after a set of normal deviates X0, . . . , X54 has been computed initially. Explain
why this is not a good idea.

c) Show, however, that there is a suitable way to generate normal deviates quickly
from other normal deviates, by using a reĄnement of the idea in (a) and (b). [Hint:

If X and Y are independent normal deviates, so are X ′ = X cos θ + Y sin θ and
Y ′ = −X sin θ + Y cos θ, for any angle θ.]

32. [HM30] (C. S. Wallace.) Let X and Y be independent exponential deviates with
mean 1. Show that X ′ and Y ′ are, likewise, independent exponential deviates with
mean 1, if we obtain them from X and Y in any of the following ways:

a) Given 0 < λ < 1,

X ′ = (1− λ)X − λY + (X + Y)[(1− λ)X < λY], Y ′ = X + Y −X ′.

b) (X ′, Y ′) =

(2X,Y −X), if X ≤ Y ;
(2Y,X − Y), if X > Y .

c) If X = (. . . x2x1x0.x−1x−2x−3 . . .)2 and Y = (. . . y2y1y0.y−1y−2y−3 . . .)2 in bi-
nary notation, then X ′ and Y ′ have the “shuffledŤ values

X ′ = (. . . x2y1x0.y−1x−2y−3 . . .)2, Y ′ = (. . . y2x1y0.x−1y−2x−3 . . .)2.

142 RANDOM NUMBERS 3.4.1

33. [20] Algorithms P, M, F, and R generate normal deviates by consuming an
unknown number of uniform random variables U1, U2, How can they be modiĄed
so that the output is a function of just one U?

3.4.2. Random Sampling and Shuffling

Many data processing applications call for an unbiased choice of n records at
random from a Ąle containing N records. This problem arises, for example, in
quality control or other statistical calculations where sampling is needed. Usually
N is very large, so that it is impossible to contain all the data in memory at once;
and the individual records themselves are often very large, so that we can’t even
hold n records in memory. Therefore we seek an efficient procedure for selecting
n records by deciding either to accept or to reject each record as it comes along,
writing the accepted records onto an output Ąle.

Several methods have been devised for this problem. The most obvious
approach is to select each record with probability n/N; this may sometimes
be appropriate, but it gives only an average of n records in the sample. The
standard deviation is

n(1− n/N), and the sample might turn out to be either
too large for the desired application or too small to give the necessary results.

Fortunately, a simple modiĄcation of the “obviousŤ procedure gives us what
we want: The (t+1)st record should be selected with probability (n−m)/(N−t),
if m items have already been selected. This is the appropriate probability, since
of all the possible ways to choose n things from N such that m values occur in
the Ąrst t, exactly

N − t− 1
n−m− 1

N − t
n−m

=
n−m
N − t (1)

of them select the (t+ 1)st element.
The idea developed in the preceding paragraph leads immediately to the

following algorithm:

Algorithm S (Selection sampling technique). To select n records at random
from a set of N, where 0 < n ≤ N.

S1. [Initialize.] Set t ← 0, m ← 0. (During this algorithm, m represents the
number of records selected so far, and t is the total number of input records
that we have dealt with.)

S2. [Generate U.] Generate a random number U, uniformly distributed between
zero and one.

S3. [Test.] If (N − t)U ≥ n−m, go to step S5.

S4. [Select.] Select the next record for the sample, and increase m and t by 1.
If m < n, go to step S2; otherwise the sample is complete and the algorithm
terminates.

S5. [Skip.] Skip the next record (do not include it in the sample), increase t
by 1, and go back to step S2.

3.4.2 RANDOM SAMPLING AND SHUFFLING 143

This algorithm may appear to be unreliable at Ąrst glance and, in fact, to
be incorrect; but a careful analysis (see the exercises below) shows that it is
completely trustworthy. It is not difficult to verify that

a) At most N records are input (we never run off the end of the Ąle before
choosing n items).

b) The sample is completely unbiased. In particular, the probability that any
given element is selected, such as the last element of the Ąle, is n/N.

Statement (b) is true in spite of the fact that we are not selecting the (t+1)st
item with probability n/N, but rather with the probability in Eq. (1)! This has
caused some confusion in the published literature. Can the reader explain this
seeming contradiction?

(Note: When using Algorithm S, one should be careful to use a different
source of random numbers U each time the program is run, to avoid connections
between the samples obtained on different days. This can be done, for example,
by choosing a different value of X0 for the linear congruential method each time.
The seed value X0 could be set to the current date, or to the last random
number X that was generated on the previous run of the program.)

We will usually not have to pass over all N records. In fact, since (b) above
says that the last record is selected with probability n/N, we will terminate the
algorithm before considering the last record exactly (1− n/N) of the time. The
average number of records considered when n = 2 is about 2

3N, and the general
formulas are given in exercises 5 and 6.

Algorithm S and a number of other sampling techniques are discussed in a
paper by C. T. Fan, Mervin E. Muller, and Ivan Rezucha, J. Amer. Stat. Assoc.
57 (1962), 387Ű402. The method was independently discovered by T. G. Jones,
CACM 5 (1962), 343.

A problem arises if we don’t know the value of N in advance, since the
precise value of N is crucial in Algorithm S. Suppose we want to select n items
at random from a Ąle, without knowing exactly how many are present in that
Ąle. We could Ąrst go through and count the records, then take a second pass
to select them; but it is generally better to sample m ≥ n of the original items
on the Ąrst pass, where m is much less than N, so that only m items must be
considered on the second pass. The trick, of course, is to do this in such a way
that the Ąnal result is a truly random sample of the original Ąle.

Since we don’t know when the input is going to end, we must keep track of
a random sample of the input records seen so far, thus always being prepared for
the end. As we read the input we will construct a “reservoirŤ that contains only
the records that have appeared among the previous samples. The Ąrst n records
always go into the reservoir. When the (t+ 1)st record is being input, for t ≥ n,
we will have in memory a table of n indices pointing to the records that we have
chosen from among the Ąrst t. The problem is to maintain this situation with
t increased by one, namely to Ąnd a new random sample from among the t + 1
records now known to be present. It is not hard to see that we should include

144 RANDOM NUMBERS 3.4.2

the new record in the new sample with probability n/(t+ 1), and in such a case
it should replace a random element of the previous sample.

Thus, the following procedure does the job:

Algorithm R (Reservoir sampling). To select n records at random from a Ąle of
unknown size ≥ n, given n > 0. An auxiliary Ąle called the “reservoirŤ contains
all records that are candidates for the Ąnal sample. The algorithm uses a table
of distinct indices I[j] for 1 ≤ j ≤ n, each of which points to one of the records
in the reservoir.

R1. [Initialize.] Input the Ąrst n records and copy them to the reservoir. Set
I[j] ← j for 1 ≤ j ≤ n, and set t ← m ← n. (If the Ąle being sampled has
fewer than n records, it will of course be necessary to abort the algorithm
and report failure. During this algorithm, indices I[1], . . . , I[n] point to the
records in the current sample; m is the size of the reservoir; and t is the
number of input records dealt with so far.)

R2. [End of Ąle?] If there are no more records to be input, go to step R6.

R3. [Generate and test.] Increase t by 1, then generate a random integer M
between 1 and t (inclusive). If M > n, go to R5.

R4. [Add to reservoir.] Copy the next record of the input Ąle to the reservoir,
increase m by 1, and set I[M] ← m. (The record previously pointed to by
I[M] is being replaced in the sample by the new record.) Go back to R2.

R5. [Skip.] Skip over the next record of the input Ąle (do not include it in the
reservoir), and return to step R2.

R6. [Second pass.] Sort the I table entries so that I[1] < · · · < I[n]; then go
through the reservoir, copying the records with these indices into the output
Ąle that is to hold the Ąnal sample.

Algorithm R is due to Alan G. Waterman. The reader may wish to work
out the example of its operation that appears in exercise 9.

If the records are sufficiently short, it is of course unnecessary to have a
reservoir at all; we can keep the n records of the current sample in memory at
all times, and the algorithm becomes much simpler (see exercise 10).

The natural question to ask about Algorithm R is, “What is the expected
size of the reservoir?Ť Exercise 11 shows that the average value of m is exactly
n(1 + HN −Hn); this is approximately n

1 + ln(N/n)

. So if N/n = 1000, the

reservoir will contain only about 1/125 as many items as the original Ąle.
Notice that Algorithms S and R can be used to obtain samples for several

independent categories simultaneously. For example, if we have a large Ąle of
names and addresses of U.S. residents, we could pick random samples of exactly
10 people from each of the 50 states without making 50 passes through the Ąle,
and without Ąrst sorting the Ąle by state.

SigniĄcant improvements to both Algorithms S and R are possible, when
n/N is small, if we generate a single random variable to tell us how many records
should be skipped instead of deciding whether or not to skip each record. (See
exercise 8.)

3.4.2 RANDOM SAMPLING AND SHUFFLING 145

The sampling problem can be regarded as the computation of a random
combination, according to the conventional deĄnition of combinations ofN things
taken n at a time (see Section 1.2.6). Now let us consider the problem of
computing a random permutation of t objects; we will call this the shuffling

problem, since shuffling a deck of cards is nothing more than subjecting the deck
to a random permutation.

A moment’s reĆection is enough to convince any card player that traditional
shuffling procedures are miserably inadequate. There is no hope of obtaining each
of the t! permutations with anywhere near equal probability by such methods.
Expert bridge players reportedly make use of this fact when deciding whether
or not to Ąnesse. At least seven “riffle shufflesŤ of a 52-card deck are needed to
reach a distribution within 10% of uniform, and 14 random riffles are guaranteed
to do so [see Aldous and Diaconis, AMM 93 (1986), 333Ű348].

If t is small, we can obtain a random permutation very quickly by generating
a random integer between 1 and t!. For example, when t = 4, a random number
between 1 and 24 suffices to select a random permutation from a table of all
possibilities. But for large t, it is necessary to be more careful if we want to
claim that each permutation is equally likely, since t! is much larger than the
accuracy of individual random numbers.

A suitable shuffling procedure can be obtained by recalling Algorithm 3.3.2P,
which gives a simple correspondence between each of the t! possible permutations
and a sequence of numbers (c1, c2, . . . , ct−1), with 0 ≤ cj ≤ j. It is easy to
compute such a set of numbers at random, and we can use the correspondence
to produce a random permutation.

Algorithm P (Shuffling). Let (X1, X2, . . . , Xt) be a sequence of t numbers to
be shuffled.

P1. [Initialize.] Set j ← t.

P2. [Generate U.] Generate a random number U, uniformly distributed between
zero and one.

P3. [Exchange.] Set k ← ⌊jU⌋ + 1. (Now k is a random integer, between 1
and j. Exercise 3.4.1Ű3 explains that k should not be computed by taking
a remainder modulo j.) Exchange Xk ↔ Xj .

P4. [Decrease j.] Decrease j by 1. If j > 1, return to step P2.

This algorithm was Ąrst published by R. A. Fisher and F. Yates [Statistical
Tables (London, 1938), Example 12], in ordinary language, and by R. Durstenfeld
[CACM 7 (1964), 420] in computer language. If we merely wish to generate a ran-
dom permutation of {1, . . . , t} instead of shuffling a given sequence (X1, . . . , Xt),
we can avoid the exchange operation Xk ↔ Xj by letting j increase from 1 to t
and setting Xj ← Xk, Xk ← j; see D. E. Knuth, The Stanford GraphBase (New
York: ACM Press, 1994), 104.

R. SalĄ [COMPSTAT 1974 (Vienna: 1974), 28Ű35] has pointed out that
Algorithm P cannot possibly generate more than m distinct permutations when
we obtain the uniform U ’s with a linear congruential sequence of modulus m,

146 RANDOM NUMBERS 3.4.2

or indeed whenever we use a recurrence Un+1 = f(Un) for which Un can take
only m different values, because the Ąnal permutation in such cases is entirely
determined by the value of the Ąrst U that is generated. Thus, for example,
if m = 232, certain permutations of 13 elements will never occur, since 13! ≈
1.45×232. In most applications we don’t really want to see all 13! permutations;
yet it is disconcerting to know that the excluded ones are determined by a fairly
simple mathematical rule such as a lattice structure (see Section 3.3.4).

This problem does not arise when we use a lagged Fibonacci generator like
3.2.2Ű(7) with a sufficiently long period. But even with such methods we cannot
get all permutations uniformly unless we are able to specify at least t! different
seed values to initialize the generator. In other words, we can’t get lg t! truly
random bits out unless we put lg t! truly random bits in. Section 3.5 shows that
we need not despair about this.

Algorithm P can easily be modiĄed to yield a random permutation of a
random combination (see exercise 15). For a discussion of random combinatorial
objects of other kinds (e.g., partitions), see Section 7.2 and/or the book Combi-
natorial Algorithms by Nijenhuis and Wilf (New York: Academic Press, 1975).

EXERCISES

1. [M12] Explain Eq. (1).

2. [20] Prove that Algorithm S never tries to read more than N records of its
input Ąle.

x 3. [22] The (t+1)st item in Algorithm S is selected with probability (n−m)/(N−t),
not n/N, yet the text claims that the sample is unbiased; thus each item should be
selected with the same probability. How can both of these statements be true?

4. [M23] Let p(m, t) be the probability that exactly m items are selected from among
the Ąrst t in the selection sampling technique. Show directly from Algorithm S that

p(m, t) =

t

m

N − t
n−m

N

n

, for 0 ≤ t ≤ N.

5. [M24] What is the average value of t when Algorithm S terminates? (In other
words, how many of the N records have been passed, on the average, before the sample
is complete?)

6. [M24] What is the standard deviation of the value computed in exercise 5?

7. [M25] Prove that any given choice of n records from the set of N is obtained by
Algorithm S with probability 1/

N
n

. Therefore the sample is completely unbiased.

x 8. [M39] (J. S. Vitter.) Algorithm S computes one uniform deviate for each input
record it handles. The purpose of this exercise is to consider a more efficient approach
in which we calculate more quickly the proper number X of input records to skip before
the Ąrst selection is made.

a) What is the probability that X ≥ k, given k?
b) Show that the result of (a) allows us to calculate X by generating only one

uniform U and then doing O(X) other calculations.
c) Show that we may also set X ← min(YN , YN−1, . . . , YN−n+1), where the Y ’s are

independent and each Yt is a random integer in the range 0 ≤ Yt < t.

3.4.2 RANDOM SAMPLING AND SHUFFLING 147

d) For maximum speed, show that X can also be calculated in O(1) steps, on the
average, using a “squeeze methodŤ like Eq. 3.4.1Ű(18).

9. [12] Let n = 3. If Algorithm R is applied to a Ąle containing 20 records numbered
1 thru 20, and if the random numbers generated in step R3 are respectively

4, 1, 6, 7, 5, 3, 5, 11, 11, 3, 7, 9, 3, 11, 4, 5, 4,

which records go into the reservoir? Which are in the Ąnal sample?

10. [15] Modify Algorithm R so that the reservoir is eliminated, assuming that the n
records of the current sample can be held in memory.

x 11. [M25] Let pm be the probability that exactly m elements are put into the reservoir
during the Ąrst pass of Algorithm R. Determine the generating function G(z) =

m pmz
m, and Ąnd the mean and standard deviation. (Use the ideas of Section 1.2.10.)

12. [M26] The gist of Algorithm P is that any permutation π can be uniquely written
as a product of transpositions in the form π = (att) . . . (a33)(a22), where 1 ≤ aj ≤ j
for t ≥ j > 1. Prove that there is also a unique representation of the form π =
(b22)(b33) . . . (btt), where 1 ≤ bj ≤ j for 1 < j ≤ t, and design an algorithm that
computes the b’s from the a’s in O(t) steps.

13. [M23] (S. W. Golomb.) One of the most common ways to shuffle cards is to divide
the deck into two parts as equal as possible, and to “riffleŤ them together. (According
to the discussion of card-playing etiquette in Hoyle’s rules of card games, “A shuffle of
this sort should be made about three times to mix the cards thoroughly.Ť) Consider
a deck of 2n− 1 cards X1, X2, . . . , X2n−1; a “perfect shuffleŤ s divides this deck into
X1, X2, . . . , Xn and Xn+1, . . . , X2n−1, then perfectly interleaves them to obtain X1,
Xn+1, X2, Xn+2, . . . , X2n−1, Xn. The “cutŤ operation cj changes X1, X2, . . . , X2n−1

into Xj+1, . . . , X2n−1, X1, . . . , Xj . Show that by combining perfect shuffles and cuts,
at most (2n− 1)(2n− 2) different arrangements of the deck are possible, if n > 1.

14. [22] A cut-and-riffle permutation of a0a1 . . . an−1 changes it to a sequence that
contains the subsequences

ax a(x+1) mod n . . . a(y−1) mod n and ay a(y+1) mod n . . . a(x−1) mod n

intermixed in some way, for some x and y. Thus, 3890145267 is a cut-and-riffle of
0123456789, with x = 3 and y = 8.

a) Beginning with 52 playing cards arranged in the standard order

2
♣

3
♣

4
♣

5
♣

6
♣

7
♣

8
♣

9
♣

10
♣

J
♣

Q
♣

K
♣

A
♣

2
♦

3
♦

4
♦

5
♦

6
♦

7
♦

8
♦

9
♦

10
♦

J
♦

Q
♦

K
♦

A
♦

2
♡

3
♡

4
♡

5
♡

6
♡

7
♡

8
♡

9
♡

10
♡

J
♡

Q
♡

K
♡

A
♡

2
♠

3
♠

4
♠

5
♠

6
♠

7
♠

8
♠

9
♠

10
♠

J
♠

Q
♠

K
♠

A
♠,

Mr. J. H. Quick (a student) did a random cut-and-riffle; then he removed the
leftmost card and inserted it in a random place, obtaining the sequence

9
♣

10
♣

K
♡

J
♣

Q
♣

A
♡

K
♣

A
♣

2
♦

Q
♡

3
♦

2
♠

3
♠

4
♠

5
♠

6
♠

7
♠

4
♦

8
♠

9
♠

5
♦

10
♠

6
♦

J
♠

7
♦

Q
♠

8
♦

K
♠

9
♦

10
♦

J
♦

Q
♦

A
♠

K
♦

2
♣

3
♣

A
♦

4
♣

2
♡

3
♡

4
♡

5
♣

6
♣

5
♡

6
♡

7
♡

8
♡

7
♣

9
♡

10
♡

J
♡

8
♣.

Which card did he move from the leftmost position?

b) Starting again with the deck in its original order, Quick now did three cut-and-
riffles before moving the leftmost card to a new place:

10
♦

J
♣

Q
♣

3
♠

4
♡

5
♡

6
♦

J
♠

J
♦

Q
♠

4
♠

6
♡

K
♣

A
♠

2
♣

3
♣

K
♡

4
♣

7
♡

5
♠

6
♠

Q
♦

A
♣

7
♦

5
♣

A
♡

8
♡

7
♠

6
♣

K
♦

K
♠

9
♡

A
♦

7
♣

8
♣

9
♣

10
♡

8
♠

10
♣

8
♦

2
♡

5
♦

J
♡

2
♦

3
♦

Q
♡

4
♦

9
♠

3
♡

2
♠

9
♦

10
♠.

Which card did he move this time?

148 RANDOM NUMBERS 3.4.2

x 15. [30] (Ole-Johan Dahl.) If Xk = k for 1 ≤ k ≤ t at the start of Algorithm P, and
if we terminate the algorithm when j reaches the value t − n, the sequence Xt−n+1,
. . . , Xt is a random permutation of a random combination of n elements. Show how
to simulate the effect of this procedure using only O(n) cells of memory.

x 16. [M25] Devise a way to compute a random sample of n records from N, given N
and n, based on the idea of hashing (Section 6.4). Your method should use O(n) storage
locations and an average of O(n) units of time, and it should present the sample as a
sorted set of integers 1 ≤ X1 < X2 < · · · < Xn ≤ N.

17. [M22] (R. W. Floyd.) Prove that the following algorithm generates a random
sample S of n integers from {1, . . . , N}: Set S ← ∅; then for j ← N −n+ 1, N −n+ 2,
. . . , N (in this order), set k ← ⌊jU⌋+ 1 and

S ←

S ∪ {k}, if k /∈ S;
S ∪ {j}, if k ∈ S.

x 18. [M32] People sometimes try to shuffle n items (X1, X2, . . . , Xn) by successively
interchanging

X1 ↔ Xk1 , X2 ↔ Xk2 , . . . , Xn ↔ Xkn ,

where the indices kj are independent and uniformly random between 1 and n.
Consider the directed graph with vertices {1, 2, . . . , n} and with arcs from j to

kj for 1 ≤ j ≤ n. Describe the digraphs of this type for which, if we start with
the elements (X1, X2, . . . , Xn) = (1, 2, . . . , n), the stated interchanges produce the
respective permutations (a) (n, 1, 2, . . .); (b) (1, 2, . . . , n); (c) (2, . . . , n, 1). Conclude
that these three permutations are obtained with wildly different probabilities.

x 19. [M28] (Priority sampling.) Consider a Ąle of N items in which the kth item
has a positive weight wk. Let qk = Uk/wk for 1 ≤ k ≤ N , where {U1, . . . , UN} are
independent uniform deviates in [0 . . 1). If r is any real number, deĄne

w(r)
k =

max(wk, 1/r), if qk < r;
0, if qk ≥ r; w(r+)

k =

max(wk, 1/r), if qk ≤ r;
0, if qk > r.

a) If r is the nth smallest element of {q1, . . . , qN}, prove that the expected value
E w(r)

1 w(r)
2 . . . w

(r)
k is w1w2 . . . wk, for 1 ≤ k < n ≤ N . Hint: Show that, if s is the

(n−k)th smallest element of {qk+1, . . . , qN}, we have w(r)
1 . . . w(r)

k = w(s+)
1 . . . w(s+)

k .
(Notice that the quantity s is independent of {U1, . . . , Uk}.)

b) Consequently E w(r)
j1
. . . w(r)

jk
= wj1 . . . wjk when j1 < · · · < jk.

c) Show that, if n > 2, the variance Var(w(r)
j1

+· · ·+ w(r)
jk

) is Var(w(r)
j1

)+· · ·+Var(w(r)
jk

).
d) Given n, explain how to modify the reservoir sampling method so that the value

of r and the n − 1 items with subscripts {j | qj < r} can be obtained with one
pass through a Ąle of unknown size N . Hint: Use a priority queue of size n.

By means of the thread one understands the ball of yarn,

so we’ll be satisĄed and assured by having this sample.

Ů MIGUEL DE CERVANTES, El Ingenioso Hidalgo

Don Quixote de la Mancha (1605)

3.5 WHAT IS A RANDOM SEQUENCE? 149

*3.5. WHAT IS A RANDOM SEQUENCE?

A. Introductory remarks. We have seen in this chapter how to generate
sequences

⟨Un⟩ = U0, U1, U2, . . . (1)

of real numbers in the range 0 ≤ Un < 1, and we have called them “randomŤ
sequences even though they are completely deterministic in character. To justify
this terminology, we claimed that the numbers “behave as if they are truly
random.Ť Such a statement may be satisfactory for practical purposes (at the
present time), but it sidesteps a very important philosophical and theoretical
question: Precisely what do we mean by “random behaviorŤ? A quantitative
deĄnition is needed. It is undesirable to talk about concepts that we do not
really understand, especially since many apparently paradoxical statements can
be made about random numbers.

The mathematical theory of probability and statistics scrupulously avoids
the issue. It refrains from making absolute statements, and instead expresses
everything in terms of how much probability is to be attached to statements
involving random sequences of events. The axioms of probability theory are
set up so that abstract probabilities can be computed readily, but nothing is
said about what probability really signiĄes, or how this concept can be applied
meaningfully to the actual world. In the book Probability, Statistics, and Truth
(New York: Macmillan, 1957), R. von Mises discusses this situation in detail, and
presents the view that a proper deĄnition of probability depends on obtaining a
proper deĄnition of a random sequence.

Let us paraphrase here some statements made by two of the many authors
who have commented on the subject.

D. H. Lehmer (1951): “A random sequence is a vague notion embodying
the idea of a sequence in which each term is unpredictable to the uninitiated
and whose digits pass a certain number of tests, traditional with statisticians
and depending somewhat on the uses to which the sequence is to be put.Ť

J. N. Franklin (1962): “The sequence (1) is random if it has every property
that is shared by all inĄnite sequences of independent samples of random
variables from the uniform distribution.Ť

Franklin’s statement essentially generalizes Lehmer’s to say that the se-
quence must satisfy all statistical tests. His deĄnition is not completely precise,
and we will see later that a reasonable interpretation of his statement leads us to
conclude that there is no such thing as a random sequence! So let us begin with
Lehmer’s less restrictive statement and attempt to make it precise. What we
really want is a relatively short list of mathematical properties, each of which is
satisĄed by our intuitive notion of a random sequence; furthermore, the list is to
be complete enough so that we are willing to agree that any sequence satisfying
these properties is “random.Ť In this section, we will develop what seems to be
an adequate deĄnition of randomness according to these criteria, although many
interesting questions remain to be answered.

150 RANDOM NUMBERS 3.5

Let u and v be real numbers, 0 ≤ u < v ≤ 1. If U is a random variable
that is uniformly distributed between 0 and 1, the probability that u ≤ U < v
is equal to v − u. For example, the probability that 1

5 ≤ U < 3
5 is 2

5 . How can
we translate this property of the single number U into a property of the inĄnite
sequence U0, U1, U2, . . . ? The obvious answer is to count how many times Un

lies between u and v, and the average number of times should equal v − u. Our
intuitive idea of probability is based in this way on the frequency of occurrence.

More precisely, let ν(n) be the number of values of j, 0 ≤ j < n, such that
u ≤ Uj < v; we want the ratio ν(n)/n to approach the value v−u as n approaches
inĄnity:

lim
n→∞

ν(n)
n

= v − u. (2)

If this condition holds for all choices of u and v, the sequence is said to be
equidistributed.

Let S(n) be a statement about the integer n and the sequence U0, U1, . . . ;
for example, S(n) might be the statement considered above, “u ≤ Un < v.Ť We
can generalize the idea used in the preceding paragraph to deĄne the probability
that S(n) is true with respect to a particular inĄnite sequence.

DeĄnition A. Let ν(n) be the number of values of j, 0 ≤ j < n, such that S(j) is
true. We say that S(n) is true with probability λ if the limit as n tends to inĄnity
of ν(n)/n equals λ. Symbolically: Pr

S(n)

= λ if limn→∞ ν(n)/n = λ.

In terms of this notation, the sequence U0, U1, . . . is equidistributed if and
only if Pr(u ≤ Un < v) = v − u, for all real numbers u, v with 0 ≤ u < v ≤ 1.

A sequence might be equidistributed without being random. For example,
if U0, U1, . . . and V0, V1, . . . are equidistributed sequences, it is not hard to show
that the sequence

W0,W1,W2,W3, . . . = 1
2U0,

1
2 + 1

2V0,
1
2U1,

1
2 + 1

2V1, . . . (3)

is also equidistributed, since the subsequence 1
2U0, 1

2U1, . . . is equidistributed
between 0 and 1

2 , while the alternate terms 1
2 + 1

2V0, 1
2 + 1

2V1, . . . , are equi-
distributed between 1

2 and 1. But in the sequence of W ’s, a value less than 1
2 is

always followed by a value greater than or equal to 1
2 , and conversely; hence the

sequence is not random by any reasonable deĄnition. A stronger property than
equidistribution is needed.

A natural generalization of the equidistribution property, which removes
the objection stated in the preceding paragraph, is to consider adjacent pairs of
numbers of our sequence. We can require the sequence to satisfy the condition

Pr(u1 ≤ Un < v1 and u2 ≤ Un+1 < v2) = (v1 − u1)(v2 − u2) (4)

for any four numbers u1, v1, u2, v2 with 0 ≤ u1 < v1 ≤ 1, 0 ≤ u2 < v2 ≤ 1.
And in general, for any positive integer k we can require our sequence to be
k-distributed in the following sense:

3.5 WHAT IS A RANDOM SEQUENCE? 151

DeĄnition B. The sequence (1) is said to be k-distributed if

Pr(u1 ≤ Un < v1, . . . , uk ≤ Un+k−1 < vk) = (v1 − u1) . . . (vk − uk) (5)

for all choices of real numbers uj , vj , with 0 ≤ uj < vj ≤ 1 for 1 ≤ j ≤ k.

An equidistributed sequence is a 1-distributed sequence. Notice that if k > 1,
a k-distributed sequence is always (k − 1)-distributed, since we may set uk = 0
and vk = 1 in Eq. (5). Thus, in particular, any sequence that is known to be
4-distributed must also be 3-distributed, 2-distributed, and equidistributed. We
can investigate the largest k for which a given sequence is k-distributed; and this
leads us to formulate a stronger property:

DeĄnition C. A sequence is said to be ∞-distributed if it is k-distributed for
all positive integers k.

So far we have considered “[0 . . 1) sequences,Ť that is, sequences of real
numbers lying between zero and one. The same ideas apply to integer-valued
sequences; let us say that the sequence ⟨Xn⟩ = X0, X1, X2, . . . is a b-ary sequence

if each Xn is one of the integers 0, 1, . . . , b− 1. Thus, a 2-ary (binary) sequence
is a sequence of zeros and ones.

We also deĄne a k-digit b-ary number as a string of k integers x1x2 . . . xk,
where 0 ≤ xj < b for 1 ≤ j ≤ k.

DeĄnition D. A b-ary sequence is said to be k-distributed if

Pr(XnXn+1 . . . Xn+k−1 = x1x2 . . . xk) = 1/bk (6)

for all b-ary numbers x1x2 . . . xk.

It is clear from this deĄnition that if U0, U1, . . . is a k-distributed [0 . . 1)
sequence, then the sequence ⌊bU0⌋, ⌊bU1⌋, . . . is a k-distributed b-ary sequence.

If we set uj = xj/b, vj = (xj + 1)/b, Xn = ⌊bUn⌋, Eq. (5) becomes Eq. (6).

Furthermore, every k-distributed b-ary sequence is also (k − 1)-distributed, if
k > 1: We add together the probabilities for the b-ary numbers x1 . . . xk−1 0,
x1 . . . xk−1 1, . . . , x1 . . . xk−1 (b− 1) to obtain

Pr(Xn . . . Xn+k−2 = x1 . . . xk−1) = 1/bk−1.

(Probabilities for disjoint events are additive; see exercise 5.) It therefore is
natural to speak of an ∞-distributed b-ary sequence, as in DeĄnition C above.

The representation of a positive real number in the radix-b number system
may be regarded as a b-ary sequence; for example, π corresponds to the 10-ary
sequence 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, People have conjectured that
this sequence is ∞-distributed, but nobody has yet been able to prove that it is
even 1-distributed.

Let us analyze these concepts a little more closely in the case when k equals
a million. A binary sequence that is 1000000-distributed is going to have runs of
a million zeros in a row! Similarly, a [0 . . 1) sequence that is 1000000-distributed
is going to have runs of a million consecutive values each of which is less than 1

2 .

152 RANDOM NUMBERS 3.5

It is true that this will happen only (1
2)1000000 of the time, on the average, but

the fact is that it does happen. Indeed, this phenomenon will occur in any truly
random sequence, using our intuitive notion of “truly random.Ť One can easily
imagine that such a situation will have a drastic effect if this set of a million
“truly randomŤ numbers is being used in a computer-simulation experiment;
there would be good reason to complain about the random number generator.
However, if we have a sequence of numbers that never has runs of a million
consecutive U ’s less than 1

2 , the sequence is not random, and it will not be a
suitable source of numbers for other conceivable applications that use extremely
long blocks of U ’s as input. In summary, a truly random sequence will exhibit
local nonrandomness. Local nonrandomness is necessary in some applications,
but it is disastrous in others. We are forced to conclude that no sequence of
“randomŤ numbers can be adequate for every application.

In a similar vein, one may argue that it is impossible to judge whether a
Ąnite sequence is random or not; any particular sequence is just as likely as any
other one. These facts are deĄnitely stumbling blocks if we are ever to have a
useful deĄnition of randomness, but they are not really cause for alarm. It is
still possible to give a deĄnition for the randomness of inĄnite sequences of real
numbers in such a way that the corresponding theory (viewed properly) will give
us a great deal of insight concerning the ordinary Ąnite sequences of rational
numbers that are actually generated on a computer. Furthermore, we shall see
later in this section that there are several plausible deĄnitions of randomness for
Ąnite sequences.

B. ∞-distributed sequences. Let us now make a brief study of the theory
of sequences that are ∞-distributed. To describe the theory adequately, we will
need to use a bit of higher mathematics, so we assume in the remainder of this
subsection that the reader knows the material ordinarily taught in an “advanced
calculusŤ course.

First it is convenient to generalize DeĄnition A, since the limit appearing
there does not exist for all sequences. We deĄne

Pr

S(n)

= lim sup

n→∞

ν(n)
n

, Pr

S(n)

= lim inf

n→∞
ν(n)
n

. (7)

Then Pr

S(n)

, if it exists, is the common value of Pr

S(n)

and Pr

S(n)

.

We have seen that a k-distributed [0 . . 1) sequence leads to a k-distributed
b-ary sequence, if U is replaced by ⌊bU⌋. Our Ąrst theorem shows that a converse
result is also true.

Theorem A. Let ⟨Un⟩ = U0, U1, U2, . . . be a [0 . . 1) sequence. If the sequence

⟨⌊bjUn⌋⟩ = ⌊bjU0⌋, ⌊bjU1⌋, ⌊bjU2⌋, . . .
is a k-distributed bj-ary sequence for all bj in an inĄnite sequence of integers
1 < b1 < b2 < b3 < · · · , then the original sequence ⟨Un⟩ is k-distributed.

As an example of this theorem, suppose that bj = 2j . The sequence
⌊2jU0⌋, ⌊2jU1⌋, . . . is essentially the sequence of the Ąrst j bits of the binary

3.5 WHAT IS A RANDOM SEQUENCE? 153

representations of U0, U1, If all these integer sequences are k-distributed,
in the sense of DeĄnition D, then the real-valued sequence U0, U1, . . . must also
be k-distributed in the sense of DeĄnition B.

Proof of Theorem A. If the sequence ⌊bU0⌋, ⌊bU1⌋, . . . is k-distributed, it follows
by the addition of probabilities that Eq. (5) holds whenever each uj and vj is a
rational number with denominator b. Now let uj , vj be any real numbers, and
let u′j , v

′
j be rational numbers with denominator b such that

u′j ≤ uj < u′j + 1/b, v′j ≤ vj < v′j + 1/b.

Let S(n) be the statement that u1 ≤ Un < v1, . . . , uk ≤ Un+k−1 < vk. We have

Pr

S(n)

≤ Pr

u′1 ≤ Un < v′1 +
1
b
, . . . , u′k ≤ Un+k−1 < v′k +

1
b

=

v′1 − u′1 +
1
b

. . .

v′k − u′k +
1
b

;

Pr

S(n)

≥ Pr

u′1 +
1
b
≤ Un < v′1, . . . , u

′
k +

1
b
≤ Un+k−1 < v′k

=

v′1 − u′1 −
1
b

. . .

v′k − u′k −
1
b

.

Now

(v′j−u′j±1/b)− (vj−uj)

 ≤ 2/b. Since our inequalities hold for all b = bj ,

and since bj →∞ as j →∞, we have

(v1 − u1) . . . (vk − uk) ≤ Pr

S(n)

≤ Pr

S(n)

≤ (v1 − u1) . . . (vk − uk).

The next theorem is our main tool for proving things about k-distributed
sequences.

Theorem B. Suppose that ⟨Un⟩ is a k-distributed [0 . . 1) sequence, and let
f(x1, x2, . . . , xk) be a Riemann-integrable function of k variables; then

lim
n→∞

1
n

0≤j<n

f(Uj , Uj+1, . . . , Uj+k−1) =
 1

0

· · ·
 1

0

f(x1, x2, . . . , xk) dx1 . . . dxk.
(8)

Proof. The deĄnition of a k-distributed sequence states that this result is true
in the special case that

f(x1, . . . , xk) = [u1≤x1 <v1, . . . , uk ≤xk <vk] (9)

for some constants u1, v1, . . . , uk, vk. Therefore Eq. (8) is true whenever f =
a1f1 + a2f2 + · · · + amfm and when each fj is a function of type (9); in other
words, Eq. (8) holds whenever f is a “step-functionŤ obtained by partitioning the
unit k-dimensional cube into subcells whose faces are parallel to the coordinate
axes, and assigning a constant value to f on each subcell.

Now let f be any Riemann-integrable function. If ϵ is any positive number,
we know (by the deĄnition of Riemann-integrability) that there exist step func-
tions f and f such that f(x1, . . . , xk) ≤ f(x1, . . . , xk) ≤ f(x1, . . . , xk), and such

154 RANDOM NUMBERS 3.5

that the difference of the integrals of f and f is less than ϵ. Since Eq. (8) holds
for f and f , and since

1
n

0≤j<n

f(Uj , . . . , Uj+k−1) ≤ 1
n

0≤j<n

f(Uj , . . . , Uj+k−1)

≤ 1
n

0≤j<n

f(Uj , . . . , Uj+k−1),

we conclude that Eq. (8) is true also for f .

Theorem B can be applied, for example, to the permutation test of Sec-
tion 3.3.2. Let (p1, p2, . . . , pk) be any permutation of the numbers {1, 2, . . . , k};
we want to show that

Pr(Un+p1−1 < Un+p2−1 < · · · < Un+pk−1) = 1/k !. (10)

To prove this, assume that the sequence ⟨Un⟩ is k-distributed, and let

f(x1, . . . , xk) = [xp1 <xp2 < · · ·<xpk
].

We have

Pr(Un+p1−1 < Un+p2−1 < · · · < Un+pk−1)

=
 1

0

· · ·
 1

0

f(x1, . . . , xk) dx1 . . . dxk

=
 1

0

dxpk

 xpk

0

· · ·
 xp3

0

dxp2

 xp2

0

dxp1
=

1
k !
.

Corollary P. If a [0 . . 1) sequence is k-distributed, it satisĄes the permutation
test of order k, in the sense of Eq. (10).

We can also show that the serial correlation test is satisĄed:

Corollary S. If a [0 . . 1) sequence is (k + 1)-distributed, the serial correlation
coefficient between Un and Un+k tends to zero:

lim
n→∞

1
n

UjUj+k −

1
n

Uj

1
n

Uj+k

1
n

U2
j −

1
n

Uj

2 1
n

U2
j+k −

1
n

Uj+k

2
= 0.

(All summations here are for 0 ≤ j < n.)

Proof. By Theorem B, the quantities

1
n

UjUj+k,

1
n

U2
j ,

1
n

U2
j+k,

1
n

Uj ,

1
n

Uj+k

tend to the respective limits 1
4 , 1

3 , 1
3 , 1

2 , 1
2 as n→∞.

3.5 WHAT IS A RANDOM SEQUENCE? 155

Let us now consider some slightly more general distribution properties of
sequences. We have deĄned the notion of k-distribution by considering all of
the adjacent k-tuples; for example, a sequence is 2-distributed if and only if the
points

(U0, U1), (U1, U2), (U2, U3), (U3, U4), (U4, U5), . . .

are equidistributed in the unit square. It is quite possible, however, that this can
happen while alternate pairs of points (U1, U2), (U3, U4), (U5, U6), . . . are not

equidistributed; if the density of points (U2n−1, U2n) is deĄcient in some area, the
other points (U2n, U2n+1) might compensate. For example, the periodic binary
sequence

⟨Xn⟩ = 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, . . . , (11)

with a period of length 16, is seen to be 3-distributed; yet the sequence of even-
numbered elements ⟨X2n⟩ = 0, 0, 0, 0, 1, 0, 1, 0, . . . has three times as many
zeros as ones, while the subsequence of odd-numbered elements ⟨X2n+1⟩ = 0, 1,
0, 1, 1, 1, 1, 1, . . . has three times as many ones as zeros.

Suppose the sequence ⟨Un⟩ is ∞-distributed. Example (11) shows that the
subsequence of alternate terms ⟨U2n⟩ = U0, U2, U4, U6, . . . is not obviously
guaranteed to be ∞-distributed or even 1-distributed. But we shall see that
⟨U2n⟩ is, in fact, ∞-distributed, and much more is true.

DeĄnition E. A [0 . . 1) sequence ⟨Un⟩ is said to be (m, k)-distributed if

Pr(u1 ≤ Umn+j < v1, u2 ≤ Umn+j+1 < v2, . . . , uk ≤ Umn+j+k−1 < vk)

= (v1 − u1) . . . (vk − uk)

for all choices of real numbers ur, vr with 0 ≤ ur < vr ≤ 1 for 1 ≤ r ≤ k, and
for all integers j with 0 ≤ j < m.

Thus a k-distributed sequence is the special case m = 1 in DeĄnition E; the case
m = 2 means that the k-tuples starting in even positions must have the same
density as the k-tuples starting in odd positions, etc.

The following properties of DeĄnition E are obvious:

An (m, k)-distributed sequence is (m,κ)-distributed for 1 ≤ κ ≤ k. (12)

An (m, k)-distributed sequence is (d, k)-distributed for all divisors d of m. (13)

(See exercise 8.) We can also deĄne the concept of an (m, k)-distributed b-ary
sequence, as in DeĄnition D; and the proof of Theorem A remains valid for
(m, k)-distributed sequences.

The next theorem, which is in many ways rather surprising, shows that the
property of being ∞-distributed is very strong indeed, much stronger than we
imagined it to be when we Ąrst considered the deĄnition of the concept.

Theorem C (Ivan Niven and H. S. Zuckerman). An ∞-distributed sequence is
(m, k)-distributed for all positive integers m and k.

156 RANDOM NUMBERS 3.5

Proof. It suffices to prove the theorem for b-ary sequences, by using the general-
ization of Theorem A just mentioned. Furthermore, we may assume that m = k,
because (12) and (13) tell us that the sequence will be (m, k)-distributed if it is
(mk,mk)-distributed.

So we will prove that any∞-distributed b-ary sequenceX0, X1, . . . is (m,m)-
distributed for all positive integers m. Our proof is a simpliĄed version of the
original one given by Niven and Zuckerman in PaciĄc J. Math. 1 (1951), 103Ű109.

The key idea we shall use is an important technique that applies to many
situations in mathematics: “If the sum of m quantities and the sum of their
squares are both consistent with the hypothesis that the m quantities are equal,
then that hypothesis is true.Ť In a strong form, this principle may be stated as
follows:

Lemma E. Given m sequences of numbers ⟨yjn⟩ = yj0, yj1, . . . for 1 ≤ j ≤ m,
suppose that

lim
n→∞

(y1n + y2n + · · ·+ ymn) = mα,

lim sup
n→∞

(y2
1n + y2

2n + · · ·+ y2
mn) ≤ mα2.

(14)

Then for each j, limn→∞ yjn exists and equals α.

An incredibly simple proof of this lemma is given in exercise 9.

Resuming our proof of Theorem C, let x = x1x2 . . . xm be a b-ary number,
and say that x occurs at position p if Xp−m+1Xp−m+2 . . . Xp = x. Let νj(n) be
the number of occurrences of x at position p when p < n and pmodm = j. Let
yjn = νj(n)/n; we wish to prove that

lim
n→∞

yjn =
1

mbm
. (15)

First we know that

lim
n→∞

(y0n + y1n + · · ·+ y(m−1)n) =
1
bm

, (16)

since the sequence is m-distributed. By Lemma E and Eq. (16), the theorem
will be proved if we can show that

lim sup
n→∞

(y2
0n + y2

1n + · · ·+ y2
(m−1)n) ≤ 1

mb2m
. (17)

This inequality is not obvious yet; some rather delicate maneuvering is
necessary before we can prove it. Let q be a multiple of m, and consider

C(n) =

0≤j<m

νj(n)− νj(n− q)

2

. (18)

This is the number of pairs of occurrences of x in positions p1 and p2 for which
n− q ≤ p1 < p2 < n and p2 − p1 is a multiple of m. Consider now the sum

SN =
N+q

n=1

C(n). (19)

3.5 WHAT IS A RANDOM SEQUENCE? 157

Each pair of occurrences of x in positions p1 and p2 with p1 < p2 < p1 +q, where
p2 − p1 is a multiple of m and p1 ≤ N, is counted exactly p1 + q − p2 times in
the total SN (namely, when p2 < n ≤ p1 + q); and the pairs of such occurrences
with N < p1 < p2 < N + q are counted exactly N + q − p2 times.

Let dt(n) be the number of pairs of occurrences of x in positions p1 and p2

with p1 + t = p2 < n. The analysis above shows that

0<t<q/m

(q −mt)dmt(N + q) ≥ SN ≥

0<t<q/m

(q −mt)dmt(N). (20)

Since the original sequence is q-distributed,

lim
N→∞

1
N
dmt(N) =

1
b2m

(21)

for all t, 0 < t < q/m, and therefore by (20) we have

lim
N→∞

SN

N
=

0<t<q/m

q −mt
b2m

=
q(q −m)
2mb2m

. (22)

This fact will prove the theorem, after some manipulation.

By deĄnition,

2SN =
N+q

n=1

0≤j<m

(νj(n)− νj(n− q))2 − (νj(n)− νj(n− q))

,

and we can remove the unsquared terms by applying (16) to get

lim
N→∞

TN
N

=
q(q −m)
mb2m

+
q

bm
, (23)

where

TN =
N+q

n=1

0≤j<m

νj(n)− νj(n− q)

2
.

Using the inequality

1
r

 r

j=1

aj

2

≤
r

j=1

a2
j

(see exercise 1.2.3Ű30), we Ąnd that

lim sup
N→∞

0≤j<m

1
N(N+q)

N+q

n=1

νj(n)−νj(n−q)

2

≤ q(q−m)
mb2m

+
q

bm
. (24)

We also have

q νj(N) ≤

N<n≤N+q

νj(n) =
N+q

n=1

νj(n)− νj(n− q)

≤ qνj(N + q),

158 RANDOM NUMBERS 3.5

and putting this into (24) gives

lim sup
N→∞

0≤j<m

νj(N)
N

2

≤ q −m
qmb2m

+
1
qbm

. (25)

This formula has been established whenever q is a multiple of m; and if we let
q →∞ we obtain (17), completing the proof.

For a possibly simpler proof, see J. W. S. Cassels, PaciĄc J. Math. 2 (1952),
555Ű557.

Exercises 29 and 30 illustrate the nontriviality of this theorem, and they
also demonstrate the fact that a q-distributed sequence will have probabilities
deviating from the true (m,m)-distribution probabilities by essentially 1/

√
q at

most.

See (25).

The full hypothesis of ∞-distribution is necessary for the

proof of the theorem.
As a result of Theorem C, we can prove that an ∞-distributed sequence

passes the serial test, the maximum-of-t test, the collision test, the birthday
spacings test, and the tests on subsequences mentioned in Section 3.3.2. It is not
hard to show that the gap test, the poker test, and the run test are also satisĄed
(see exercises 12 through 14). The coupon collector’s test is considerably more
difficult to deal with, but it too is passed (see exercises 15 and 16).

The existence of ∞-distributed sequences of a rather simple type is guaran-
teed by the next theorem.

Theorem F (J. N. Franklin). The [0 . . 1) sequence U0, U1, U2, . . . with

Un = θn mod 1 (26)

is ∞-distributed for almost all real numbers θ > 1. That is, the set

{θ | θ > 1 and (26) is not ∞-distributed}
is of measure zero.

The proofs of this theorem and some generalizations are given in Math. Comp.
17 (1963), 28Ű59.

Franklin has shown that θ must be a transcendental number for (26) to
be ∞-distributed. Early in the 1960s, the powers ⟨πn mod 1⟩ were laboriously
computed for n ≤ 10000 using multiple-precision arithmetic; and the most
signiĄcant 35 bits of each of these numbers, stored on a disk Ąle, were used
successfully as a source of uniform deviates. According to Theorem F, the
probability that the powers ⟨πn mod 1⟩ are∞-distributed is equal to 1; yet there
are uncountably many real numbers, so the theorem gives us no information
about whether the sequence for π is really ∞-distributed or not. It is a fairly
safe bet that nobody in our lifetimes will ever prove that this particular sequence
is not ∞-distributed; but it might not be. Because of these considerations, one
may legitimately wonder if there is any explicit sequence that is ∞-distributed:
Is there an algorithm to compute real numbers Un for all n ≥ 0, such that

3.5 WHAT IS A RANDOM SEQUENCE? 159

the sequence ⟨Un⟩ is ∞-distributed? The answer is yes, as shown for example
by D. E. Knuth in BIT 5 (1965), 246Ű250. The sequence constructed there
consists entirely of rational numbers; in fact, each number Un has a terminating
representation in the binary number system. Another construction of an explicit
∞-distributed sequence, somewhat more complicated than the sequence just
cited, follows from Theorem W below. See also N. M. Korobov, Izv. Akad. Nauk
SSSR 20 (1956), 649Ű660.

C. Does ∞-distributed = random? In view of all the theoretical results
about ∞-distributed sequences, we can be sure of one thing: The concept of
an ∞-distributed sequence is an important one in mathematics. There is also a
good deal of evidence that the following statement might be a valid formulation
of the intuitive idea of randomness:

DeĄnition R1. A [0 . . 1) sequence is deĄned to be “randomŤ if it is an ∞-
distributed sequence.

We have seen that sequences meeting this deĄnition will satisfy all the statistical
tests of Section 3.3.2 and many more.

Let us attempt to criticize this deĄnition objectively. First of all, is every
“truly randomŤ sequence∞-distributed? There are uncountably many sequences
U0, U1, . . . of real numbers between zero and one. If a truly random number
generator is sampled to give values U0, U1, . . . , any of the possible sequences may
be considered equally likely, and some of the sequences (indeed, uncountably
many of them) are not even equidistributed. On the other hand, using any
reasonable deĄnition of probability on this space of all possible sequences leads
us to conclude that a random sequence is ∞-distributed with probability one.
We are therefore led to formalize Franklin’s deĄnition of randomness (as given
at the beginning of this section) in the following way:

DeĄnition R2. A [0 . . 1) sequence ⟨Un⟩ is deĄned to be “randomŤ if, whenever
P is a property such that P (⟨Vn⟩) holds with probability one for a sequence ⟨Vn⟩
of independent samples of random variables from the uniform distribution, then
P (⟨Un⟩) is true.

Is it perhaps possible that DeĄnition R1 is equivalent to DeĄnition R2?
Let us try out some possible objections to DeĄnition R1, and see whether these
criticisms are valid.

In the Ąrst place, DeĄnition R1 deals only with limiting properties of the
sequence as n→∞. There are∞-distributed sequences in which the Ąrst million
elements are all zero; should such a sequence be considered random?

This objection is not very substantial. If ϵ is any positive number, there
is no reason why the Ąrst million elements of a sequence should not all be less
than ϵ. With probability one, a truly random sequence contains inĄnitely many
runs of a million consecutive elements less than ϵ, so why can’t this happen at
the beginning of the sequence?

160 RANDOM NUMBERS 3.5

On the other hand, consider DeĄnition R2 and let P be the property that
all elements of the sequence are distinct; P is true with probability one, so any
sequence with a million zeros is not random by this criterion.

Now let P be the property that no element of the sequence is equal to
zero; again, P is true with probability one, so by DeĄnition R2 any sequence
with a zero element is nonrandom. More generally, however, let x0 be any Ąxed
number between zero and one, and let P be the property that no element of
the sequence is equal to x0; DeĄnition R2 now says that no random sequence
may contain the element x0! We can now prove that no sequence satisĄes the
condition of DeĄnition R2. (For if U0, U1, . . . is such a sequence, take x0 = U0.)

Therefore if R1 is too weak a deĄnition, R2 is certainly too strong. The
“rightŤ deĄnition must be less strict than R2. We have not really shown that R1
is too weak, however, so let us continue to attack it some more. As mentioned
above, an ∞-distributed sequence of rational numbers has been constructed.
(Indeed, this is not so surprising; see exercise 18.) Almost all real numbers are
irrational; perhaps we should insist that

Pr(Un is rational) = 0

for a random sequence.
The deĄnition of equidistribution, Eq. (2), says that Pr(u ≤ Un < v) = v−u.

There is an obvious way to generalize this deĄnition, using measure theory: “If
S ⊆ [0 . . 1) is a set of measure µ, then

Pr(Un ∈ S) = µ, (27)

for all random sequences ⟨Un⟩.Ť In particular, if S is the set of rationals,
it has measure zero, so no sequence of rational numbers is equidistributed in
this generalized sense. It is reasonable to expect that Theorem B could be
extended to Lebesgue integration instead of Riemann integration, if property (27)
is stipulated. However, once again we Ąnd that deĄnition (27) is too strict,
for no sequence satisĄes that property. If U0, U1, . . . is any sequence, the set
S = {U0, U1, . . .} is of measure zero, yet Pr(Un ∈ S) = 1. Thus, by the force of
the same argument we used to exclude rationals from random sequences, we can
exclude all random sequences.

So far DeĄnition R1 has proved to be defensible. There are, however, some
quite valid objections to it. For example, if we have a random sequence in the
intuitive sense, the inĄnite subsequence

U0, U1, U4, U9, . . . , Un2 , . . . (28)

should also be a random sequence. This is not always true for an ∞-distributed
sequence. In fact, if we take any ∞-distributed sequence and set Un2 ← 0 for
all n, the counts νk(n) that appear in the test of k-distributivity are changed by
at most

√
n, so the limits of the ratios νk(n)/n remain unchanged. DeĄnition R1

unfortunately fails to satisfy this randomness criterion.
Perhaps we should strengthen R1 as follows:

3.5 WHAT IS A RANDOM SEQUENCE? 161

DeĄnition R3. A [0 . . 1) sequence is said to be “randomŤ if each of its inĄnite
subsequences is ∞-distributed.

Once again, however, the deĄnition turns out to be too strict; any equidistributed
sequence ⟨Un⟩ has a monotonic subsequence with Us0

< Us1
< Us2

< · · · .
The secret is to restrict the subsequences so that they could be deĄned by

a person who does not look at Un before deciding whether or not it is to be in
the subsequence. The following deĄnition now suggests itself:

DeĄnition R4. A [0 . . 1) sequence ⟨Un⟩ is said to be “randomŤ if, for every
effective algorithm that speciĄes an inĄnite sequence of distinct nonnegative
integers sn for n ≥ 0, the subsequence Us0 , Us1 , Us2 , . . . corresponding to this
algorithm is ∞-distributed.

The algorithms referred to in DeĄnition R4 are effective procedures that
compute sn, given n. (See the discussion in Section 1.1.) Thus, for example,
the sequence ⟨πn mod 1⟩ will not satisfy R4, since it is either not equidistributed
or there is an effective algorithm that determines an inĄnite subsequence sn
with (πs0 mod 1) < (πs1 mod 1) < (πs2 mod 1) < · · · . Similarly, no explicitly
deĄned sequence can satisfy DeĄnition R4; this is appropriate, if we agree
that no explicitly deĄned sequence can really be random. The explicit-looking
sequence ⟨θn mod 1⟩ actually does, however, satisfy DeĄnition R4, for almost
all real numbers θ > 1; this is no contradiction, since almost all θ are uncom-
putable by algorithms. J. F. Koksma proved that ⟨θsn mod 1⟩ is 1-distributed
for almost all θ > 1, if ⟨sn⟩ is any sequence of distinct positive integers [Com-
positio Math. 2 (1935), 250Ű258]; H. Niederreiter and R. F. Tichy strengthened
Koksma’s theorem, replacing “1-distributedŤ by “∞-distributedŤ [Mathematika
32 (1985), 26Ű32]. Only countably many sequences ⟨sn⟩ are effectively deĄnable,
so ⟨θn mod 1⟩ almost always satisĄes R4.

DeĄnition R4 is much stronger than DeĄnition R1; but it is still reasonable
to claim that DeĄnition R4 is too weak. For example, let ⟨Un⟩ be a truly random
sequence, and deĄne the subsequence ⟨Usn⟩ by the following rules: s0 = 0; and if
n > 0, sn is the smallest integer ≥ n for which Usn−1, Usn−2, . . . , Usn−n are all
less than 1

2 . Thus we are considering the subsequence of values following the Ąrst
consecutive run of n values less than 1

2 . Suppose that “Un <
1
2 Ť corresponds to

the value “headsŤ in the Ćipping of a coin. Gamblers tend to feel that a long run
of “headsŤ makes the opposite condition, “tails,Ť more probable, assuming that
a true coin is being used; and the subsequence ⟨Usn⟩ just deĄned corresponds to a
gambling system for a man who places his nth bet on the coin toss following the
Ąrst run of n consecutive “heads.Ť The gambler may think that Pr(Usn ≥ 1

2) is
more than 1

2 , but of course in a truly random sequence ⟨Usn⟩ will be completely
random. No gambling system will ever be able to beat the odds! DeĄnition R4
says nothing about subsequences formed according to such a gambling system,
so apparently we need something more.

Let us deĄne a “subsequence ruleŤ R as an inĄnite sequence of functions
⟨fn(x1, . . . , xn)⟩ where, for n ≥ 0, fn is a function of n variables, and the

162 RANDOM NUMBERS 3.5

value of fn(x1, . . . , xn) is either 0 or 1. Here x1, . . . , xn are elements of some
set S. (Thus, in particular, f0 is a constant function, either 0 or 1.) A sub-
sequence rule R deĄnes a subsequence of any inĄnite sequence ⟨Xn⟩ of elements
of S as follows: The nth term Xn is in the subsequence ⟨Xn⟩R if and only if
fn(X0, X1, . . . , Xn−1) = 1. Note that the subsequence ⟨Xn⟩R thus deĄned is
not necessarily inĄnite, and it may in fact contain no elements at all.

For example, the gambler’s subsequence just described corresponds to the
following subsequence rule: “f0 = 1; and for n > 0, fn(x1, . . . , xn) = 1 if and
only if there is some k in the range 0 < k ≤ n such that the k consecutive
parameters xm, xm−1, . . . , xm−k+1 are all < 1

2 when m = n but not when
k ≤ m < n.Ť

A subsequence rule R is said to be computable if there is an effective
algorithm that determines the value of fn(x1, . . . , xn), when n and x1, . . . , xn are
given as input. We had better restrict ourselves to computable subsequence rules
when trying to deĄne randomness, lest we obtain an overly restrictive deĄnition
like R3 above. But effective algorithms cannot deal nicely with arbitrary real
numbers as inputs; for example, if a real number x is speciĄed by an inĄnite
radix-10 expansion, there is no algorithm to determine if x is < 1

3 or not, since
all digits of the number 0.333 . . . have to be examined. Therefore computable
subsequence rules do not apply to all [0 . . 1) sequences, and it is convenient to
base our next deĄnition on b-ary sequences.

DeĄnition R5. A b-ary sequence is said to be “randomŤ if every inĄnite sub-
sequence deĄned by a computable subsequence rule is 1-distributed.

A [0 . . 1) sequence ⟨Un⟩ is said to be “randomŤ if the b-ary sequence ⟨⌊bUn⌋⟩
is “randomŤ for all integers b ≥ 2.

Note that DeĄnition R5 says only “1-distributed,Ť not “∞-distributed.Ť It
is interesting to verify that this may be done without loss of generality. For we
may deĄne an obviously computable subsequence rule R(a1 . . . ak) as follows,
given any b-ary number a1 . . . ak: Let fn(x1, . . . , xn) = 1 if and only if n ≥ k− 1
and xn−k+1 = a1, . . . , xn−1 = ak−1, xn = ak. Now if ⟨Xn⟩ is a k-distributed
b-ary sequence, this rule R(a1 . . . ak) Ů which selects the subsequence consisting
of those terms just following an occurrence of a1 . . . ak Ů deĄnes an inĄnite sub-
sequence; and if this subsequence is 1-distributed, each of the (k + 1)-tuples
a1 . . . akak+1 for 0 ≤ ak+1 < b occurs with probability 1/bk+1 in ⟨Xn⟩. Thus
we can prove that a sequence satisfying DeĄnition R5 is k-distributed for all k,
by induction on k. Similarly, by considering the “compositionŤ of subsequence
rules Ů ifR1 deĄnes an inĄnite subsequence ⟨Xn⟩R1, then we can deĄneR1R2 to
be the subsequence rule for which ⟨Xn⟩R1R2 = (⟨Xn⟩R1)R2 Ů we Ąnd that all
subsequences considered in DeĄnition R5 are ∞-distributed. (See exercise 32.)

The fact that ∞-distribution comes out of DeĄnition R5 as a very special
case is encouraging, and it is a good indication that we may at last have found the
deĄnition of randomness we have been seeking. But alas, there still is a problem.
It is not clear that sequences satisfying DeĄnition R5 must satisfy DeĄnition R4.
The “computable subsequence rulesŤ we have just speciĄed always enumerate

3.5 WHAT IS A RANDOM SEQUENCE? 163

subsequences ⟨Xsn⟩ for which s0 < s1 < · · · , but ⟨sn⟩ does not have to be
monotone in R4; it must only satisfy the condition sn ̸= sm for n ̸= m.

To meet this objection, we may combine DeĄnitions R4 and R5 as follows:

DeĄnition R6. A b-ary sequence ⟨Xn⟩ is said to be “randomŤ if, for every
effective algorithm that speciĄes an inĄnite sequence of distinct nonnegative
integers ⟨sn⟩ as a function of n and the values of Xs0

, . . . , Xsn−1
, the subsequence

⟨Xsn⟩ corresponding to this algorithm is “randomŤ in the sense of DeĄnition R5.
A [0 . . 1) sequence ⟨Un⟩ is said to be “randomŤ if the b-ary sequence ⟨⌊bUn⌋⟩

is “randomŤ for all integers b ≥ 2.

The author contends* that this deĄnition surely meets all reasonable philo-
sophical requirements for randomness, so it provides an answer to the principal
question posed in this section.

D. Existence of random sequences. We have seen that DeĄnition R3 is
too strong, in the sense that no sequence can satisfy that deĄnition; and the
formulation of DeĄnitions R4, R5, and R6 above was carried out in an attempt
to recapture the essential characteristics of DeĄnition R3. In order to show that
DeĄnition R6 is not overly restrictive, it is still necessary for us to prove that
sequences satisfying all these conditions exist. Intuitively, we feel quite sure that
there is no problem, because we believe that a truly random sequence exists
and satisĄes R6; but a proof is really necessary to show that the deĄnition is
consistent.

An interesting method for constructing sequences satisfying DeĄnition R5
has been found by A. Wald, starting with a very simple 1-distributed sequence.

Lemma T. Let the sequence of real numbers ⟨Vn⟩ be deĄned in terms of the
binary system as follows:

V0 = 0, V1 = .1, V2 = .01, V3 = .11, V4 = .001, . . .

Vn = .cr . . . c11 if n = 2r + c12r−1 + · · ·+ cr. (29)

Let Ib1...br denote the set of all real numbers in [0 . . 1) whose binary representa-
tion begins with 0.b1 . . . br; thus

Ib1...br =

(0.b1 . . . br)2 . . (0.b1 . . . br)2 + 2−r

. (30)

Then if ν(n) denotes the number of Vk in Ib1...br for 0 ≤ k < n, we have

ν(n)/n − 2−r

 ≤ 1/n. (31)

Proof. Since ν(n) is the number of k for which k mod 2r = (br . . . b1)2, we have
ν(n) = t or t+ 1 when ⌊n/2r⌋ = t. Hence

ν(n)− n/2r

 ≤ 1.

It follows from (31) that the sequence ⟨⌊2rVn⌋⟩ is an equidistributed 2r-ary
sequence; hence by Theorem A, ⟨Vn⟩ is an equidistributed [0 . . 1) sequence. In-
deed, it is pretty clear that ⟨Vn⟩ is about as equidistributed as a [0 . . 1) sequence
can be. (For further discussion of this and related sequences, see J. G. van der

* At least, he made such a contention when originally preparing this material in 1966.

164 RANDOM NUMBERS 3.5

Corput, Proc. Koninklijke Nederl. Akad. Wetenschappen 38 (1935), 813Ű821,
1058Ű1066; J. H. Halton, Numerische Math. 2 (1960), 84Ű90, 196; S. Haber, J.
Research National Bur. Standards B70 (1966), 127Ű136; R. Béjian and H. Faure,
Comptes Rendus Acad. Sci. A285 (Paris, 1977), 313Ű316; H. Faure, J. Number
Theory 22 (1986), 4Ű20; S. Tezuka, ACM Trans. Modeling and Comp. Simul.
3 (1993), 99Ű107. L. H. Ramshaw has shown that the sequence ⟨ϕnmod 1⟩ is
slightly more equally distributed than ⟨Vn⟩; see J. Number Theory 13 (1981),
138Ű175.)

Now letR1, R2, . . . be inĄnitely many subsequence rules; we seek a sequence
⟨Un⟩ for which all the inĄnite subsequences ⟨Un⟩Rj are equidistributed.

Algorithm W (Wald sequence). Given an inĄnite sequence of subsequence rules
R1,R2, . . . that deĄne subsequences of [0 . . 1) sequences of rational numbers, this
procedure deĄnes a [0 . . 1) sequence ⟨Un⟩. The computation involves inĄnitely
many auxiliary variables C[a1, . . . , ar], where r ≥ 1 and where aj = 0 or 1 for
1 ≤ j ≤ r. These variables are initially all zero.

W1. [Initialize n.] Set n← 0.

W2. [Initialize r.] Set r ← 1.

W3. [Test Rr.] If the element Un is to be in the subsequence deĄned by Rr,
based on the values of Uk for 0 ≤ k < n, set ar ← 1; otherwise set ar ← 0.

W4. [Is case [a1, . . . , ar] unĄnished?] If C[a1, . . . , ar] < 3 · 4r−1, go to W6.

W5. [Increase r.] Set r ← r + 1 and return to W3.

W6. [Set Un.] Increase the value of C[a1, . . . , ar] by 1 and let k be its new value.
Set Un ← Vk, where Vk is deĄned in Lemma T above.

W7. [Advance n.] Increase n by 1 and return to W2.

Strictly speaking, this is not an algorithm, since it doesn’t terminate; but
we could of course easily modify the procedure to make it stop when n reaches a
given value. In order to grasp the idea of the construction, the reader is advised
to try it out manually, replacing the number 3 · 4r−1 of step W4 by 2r during
this exercise.

Algorithm W is not meant to be a practical source of random numbers. It
is intended to serve only a theoretical purpose:

Theorem W. Let ⟨Un⟩ be the sequence of rational numbers deĄned by Algo-
rithm W, and let k be a positive integer. If the subsequence ⟨Un⟩Rk is inĄnite,
it is 1-distributed.

Proof. Let A[a1, . . . , ar] denote the (possibly empty) subsequence of ⟨Un⟩ con-
taining precisely those elements Un that, for all j ≤ r, belong to subsequence
⟨Un⟩Rj if aj = 1 and do not belong to subsequence ⟨Un⟩Rj if aj = 0.

It suffices to prove, for all r ≥ 1 and all pairs of binary numbers a1 . . . ar
and b1 . . . br, that Pr(Un ∈ Ib1...br) = 2−r with respect to the subsequence
A[a1, . . . , ar], whenever the latter is inĄnite.

See Eq. (30).

For if r ≥ k,

the inĄnite sequence ⟨Un⟩Rk is the Ąnite union of the disjoint subsequences

3.5 WHAT IS A RANDOM SEQUENCE? 165

A[a1, . . . , ar] for ak = 1 and aj = 0 or 1 for 1 ≤ j ≤ r, j ̸= k; and it follows
that Pr(Un ∈ Ib1...br) = 2−r with respect to ⟨Un⟩Rk. (See exercise 33.) This is
enough to show that the sequence is 1-distributed, by Theorem A.

Let B[a1, . . . , ar] denote the subsequence of ⟨Un⟩ that consists of the values
for those n in which C[a1, . . . , ar] is increased by one in step W6 of the algo-
rithm. By the algorithm, B[a1, . . . , ar] is a Ąnite sequence with at most 3 · 4r−1

elements. All but a Ąnite number of the members of A[a1, . . . , ar] come from the
subsequences B[a1, . . . , ar, . . . , at], where aj = 0 or 1 for r < j ≤ t.

Now assume that A[a1, . . . , ar] is inĄnite, and let A[a1, . . . , ar] = ⟨Usn⟩,
where s0 < s1 < s2 < · · · . If N is a large integer, with 4r ≤ 4q < N ≤ 4q+1, it
follows that the number of values of k < N for which Usk is in Ib1...br is (except
for Ąnitely many elements at the beginning of the subsequence)

ν(N) = ν(N1) + · · ·+ ν(Nm).

Here m is the number of subsequences B[a1, . . . , at] listed above in which Usk
appears for some k < N; Nj is the number of values of k with Usk in the
corresponding subsequence; and ν(Nj) is the number of such values that are also
in Ib1...br . Therefore by Lemma T,

ν(N)− 2−rN

 =

ν(N1)− 2−rN1 + · · ·+ ν(Nm)− 2−rNm

≤

ν(N1)− 2−rN1

+ · · ·+

ν(Nm)− 2−rNm

≤ m ≤ 1 + 2 + 4 + · · ·+ 2q−r+1 < 2q+1.

The inequality on m follows here from the fact that, by our choice of N, the
element UsN is in B[a1, . . . , at] for some t ≤ q + 1.

We have proved that |ν(N)/N − 2−r| ≤ 2q+1/N < 2/
√
N .

To show Ąnally that sequences satisfying DeĄnition R5 exist, we note Ąrst
that if ⟨Un⟩ is a [0 . . 1) sequence of rational numbers and ifR is a computable sub-
sequence rule for a b-ary sequence, we can makeR into a computable subsequence
rule R′ for ⟨Un⟩ by letting f ′n(x1, . . . , xn) in R′ equal fn(⌊bx1⌋, . . . , ⌊bxn⌋) in
R. If the [0 . . 1) sequence ⟨Un⟩R′ is equidistributed, so is the b-ary sequence
⟨⌊bUn⌋⟩R. Now the set of all computable subsequence rules for b-ary sequences,
for all values of b, is countable (since only countably many effective algorithms
are possible), so they may be listed in some sequence R1, R2, . . . ; therefore
Algorithm W deĄnes a [0 . . 1) sequence that is random in the sense of DeĄni-
tion R5.

This brings us to a somewhat paradoxical situation. As we mentioned earlier,
no effective algorithm can deĄne a sequence that satisĄes DeĄnition R4, and for
the same reason there is no effective algorithm that deĄnes a sequence satisfying
DeĄnition R5. A proof of the existence of such random sequences is necessarily
nonconstructive; how then can Algorithm W construct such a sequence?

There is no contradiction here; we have merely stumbled on the fact that the
set of all effective algorithms cannot be enumerated by an effective algorithm.
In other words, there is no effective algorithm to select the jth computable

166 RANDOM NUMBERS 3.5

subsequence rule Rj ; this happens because there is no effective algorithm to de-
termine if a computational method ever terminates. But important large classes
of algorithms can be systematically enumerated; thus, for example, Algorithm W
shows that it is possible to construct, with an effective algorithm, a sequence that
satisĄes DeĄnition R5 if we restrict consideration to subsequence rules that are
“primitive recursive.Ť

By modifying step W6 of Algorithm W, so that it sets Un ← Vk+t instead
of Vk, where t is any nonnegative integer depending on a1, . . . , ar, we can show
that there are uncountably many [0 . . 1) sequences satisfying DeĄnition R5.

The following theorem shows still another way to prove the existence of
uncountably many random sequences, using a less direct argument based on
measure theory, even if the strong deĄnition R6 is used:

Theorem M. Let the real number x, 0 ≤ x < 1, correspond to the binary
sequence ⟨Xn⟩ if the binary representation of x is (0.X0X1 . . .)2. Under this
correspondence, almost all x correspond to binary sequences that are random in
the sense of DeĄnition R6. (In other words, the set of all real x that correspond
to a binary sequence that is nonrandom by DeĄnition R6 has measure zero.)

Proof. Let S be an effective algorithm that determines an inĄnite sequence of
distinct nonnegative integers ⟨sn⟩, where the choice of sn depends only on n and
Xsk for 0 ≤ k < n; and let R be a computable subsequence rule. Then any
binary sequence ⟨Xn⟩ leads to a subsequence ⟨Xsn⟩R, and DeĄnition R6 says
this subsequence must either be Ąnite or 1-distributed. It suffices to prove that
for Ąxed R and S the set N(R,S) of all real x corresponding to ⟨Xn⟩, such
that ⟨Xsn⟩R is inĄnite and not 1-distributed, has measure zero. For x has a
nonrandom binary representation if and only if x is in

N(R,S), taken over

the countably many choices of R and S.
Therefore let R and S be Ąxed. Consider the set T (a1a2 . . . ar) deĄned for

all binary numbers a1a2 . . . ar as the set of all x corresponding to ⟨Xn⟩, such
that ⟨Xsn⟩R has ≥ r elements whose Ąrst r elements are respectively equal to
a1, a2, . . . , ar. Our Ąrst result is that

T (a1a2 . . . ar) has measure ≤ 2−r. (32)

To prove this, we start by observing that T (a1a2 . . . ar) is a measurable set: Each
element of T (a1a2 . . . ar) is a real number x = (0.X0X1 . . .)2 for which there
exists an integer m such that algorithm S determines distinct values s0, s1, . . . ,
sm, and rule R determines a subsequence of Xs0

, Xs1
, . . . , Xsm such that Xsm

is the rth element of this subsequence. The set of all real y = (0.Y0Y1 . . .)2 such
that Ysk = Xsk for 0 ≤ k ≤ m also belongs to T (a1a2 . . . ar), and this is a mea-
surable set consisting of the Ąnite union of dyadic subintervals Ib1...bt . Since there
are only countably many such dyadic intervals, we see that T (a1a2 . . . ar) is a
countable union of dyadic intervals, and it is therefore measurable. Furthermore,
this argument can be extended to show that the measure of T (a1 . . . ar−1 0) equals
the measure of T (a1 . . . ar−1 1), since the latter is a union of dyadic intervals

3.5 WHAT IS A RANDOM SEQUENCE? 167

obtained from the former by requiring that Ysk = Xsk for 0 ≤ k < m and
Ysm ̸= Xsm . Now since

T (a1 . . . ar−1 0) ∪ T (a1 . . . ar−1 1) ⊆ T (a1 . . . ar−1),

the measure of T (a1a2 . . . ar) is at most one-half the measure of T (a1 . . . ar−1).
The inequality (32) follows by induction on r.

Now that (32) has been established, the remainder of the proof is essentially
to show that the binary representations of almost all real numbers are equidis-
tributed. For 0 < ϵ < 1, let B(r, ϵ) be

T (a1 . . . ar), where the union is taken

over all binary strings a1 . . . ar for which the number ν(r) of ones among a1 . . . ar
satisĄes

ν(r)− 1

2r

 ≥ ϵr.

The number of such binary strings is C(r, ϵ) =

r
k

summed over all values of k

with |k − 1
2r| ≥ ϵr. Exercise 1.2.10Ű21 proves that C(r, ϵ) ≤ 2r+1e−ϵ2r; hence

by (32),
B(r, ϵ) has measure ≤ 2−rC(r, ϵ) ≤ 2e−ϵ2r. (33)

The next step is to deĄne

B∗(r, ϵ) = B(r, ϵ) ∪B(r + 1, ϵ) ∪B(r + 2, ϵ) ∪ · · · .

The measure of B∗(r, ϵ) is at most

k≥r 2e−ϵ2k, and this is the remainder of a
convergent series, so

lim
r→∞

measure of B∗(r, ϵ)

= 0. (34)

Now if x is a real number whose binary expansion (0.X0X1 . . .)2 leads to an
inĄnite sequence ⟨Xsn⟩R that is not 1-distributed, and if ν(r) denotes the number
of ones in the Ąrst r elements of the latter sequence, then

ν(r)/r − 1

2

 ≥ ϵ,

for some ϵ > 0 and inĄnitely many r. This means x is in B∗(r, ϵ) for all r. So
Ąnally we Ąnd that

N(R,S) =

t≥2

r≥1

B∗(r, 1/t);

and, by (34),

r≥1 B
∗(r, 1/t) has measure zero for all t. Hence N(R,S) has

measure zero.

From the existence of binary sequences satisfying DeĄnition R6, we can show
the existence of [0 . . 1) sequences that are random in this sense. For details, see
exercise 36. The consistency of DeĄnition R6 is thereby established.

E. Random Ąnite sequences. An argument was given above to indicate that
it is impossible to deĄne the concept of randomness for Ąnite sequences: Any
given Ąnite sequence is as likely as any other. Still, nearly everyone would agree
that the sequence 011101001 is “more randomŤ than 101010101, and even the
latter sequence is “more randomŤ than 000000000. Although it is true that truly

168 RANDOM NUMBERS 3.5

random sequences will exhibit locally nonrandom behavior, we would expect such
behavior only in a long Ąnite sequence, not in a short one.

Several ways to deĄne the randomness of a Ąnite sequence have been pro-
posed, and only a few of the ideas will be sketched here. For simplicity, we shall
restrict our consideration to the case of b-ary sequences.

Given a b-ary sequence X0, X1, . . . , XN−1, we can say that

Pr

S(n)

≈ p, if

ν(N)/N − p

 ≤ 1/

√
N, (35)

where ν(n) is the quantity appearing in DeĄnition A at the beginning of this
section. The sequence above can be called “k-distributedŤ if

Pr(XnXn+1 . . . Xn+k−1 = x1x2 . . . xk) ≈ 1/bk (36)

for all b-ary numbers x1x2 . . . xk.

Compare with DeĄnition D. Unfortunately

a sequence might turn out to be k-distributed by this new deĄnition when it is
not (k − 1)-distributed.

A deĄnition of randomness may now be given analogous to DeĄnition R1,
as follows:

DeĄnition Q1. A b-ary sequence of length N is “randomŤ if it is k-distributed
(in the sense above) for all positive integers k ≤ logbN.

According to this deĄnition, for example, there are 178 nonrandom binary
sequences of length 11:

00000001111 10000000111 11000000011 11100000001 11110000000
00000001110 10000000110 11000000010 11100000000 11010000000
00000001101 10000000101 11000000001 10100000001 10110000000
00000001011 10000000011 01000000011 01100000001 01110000000
00000000111

plus 01010101010 and all sequences with nine or more zeros, plus all sequences
obtained from the preceding sequences by interchanging ones and zeros.

Similarly, we can formulate a deĄnition for Ąnite sequences analogous to
DeĄnition R6. Let A be a set of algorithms, each of which is a selection-and-
choice procedure that gives a subsequence ⟨Xsn⟩R as in the proof of Theorem M.

DeĄnition Q2. The b-ary sequence X0, X1, . . . , XN−1 is (n, ϵ)-random with
respect to a set of algorithms A, if for every subsequence Xt1

, Xt2
, . . . , Xtm

determined by an algorithm of A we have either m < n or

1
m
νa(Xt1

, . . . , Xtm)− 1
b

≤ ϵ for 0 ≤ a < b.

Here νa(x1, . . . , xm) is the number of a’s in the sequence x1, . . . , xm.

(In other words, every sufficiently long subsequence determined by an algo-
rithm of A must be approximately equidistributed.) The basic idea in this case
is to let A be a set of “simpleŤ algorithms; the number (and the complexity) of
the algorithms in A can grow as N grows.

3.5 WHAT IS A RANDOM SEQUENCE? 169

As an example of DeĄnition Q2, let us consider binary sequences, and let A
be just the following four algorithms:

a) Take the whole sequence.
b) Take alternate terms of the sequence, starting with the Ąrst.
c) Take the terms of the sequence following a zero.
d) Take the terms of the sequence following a one.

Now a sequence X0, X1, . . . , X7 is (4, 1
8)-random with respect to A if:

by (a),

 1

8 (X0 +X1 + · · ·+X7)− 1
2

 ≤ 1

8 , that is, if there are 3, 4, or 5 ones;

by (b),

 1

4 (X0 +X2 +X4 +X6)− 1
2

 ≤ 1

8 , that is, if there are exactly 2 ones in
even-numbered positions;

by (c), there are three possibilities depending on how many zeros occupy posi-
tions X0, . . . , X6: If there are 2 or 3 zeros here, there is no condition
to test (since n = 4); if there are 4 zeros, they must respectively be
followed by two zeros and two ones; and if there are 5 zeros, they must
respectively be followed by two or three zeros;

by (d), we get conditions similar to those implied by (c).

It turns out that only the following binary sequences of length 8 are (4, 1
8)-

random with respect to these rules:

00001011 00101001 01001110 01101000
00011010 00101100 01011011 01101100
00011011 00110010 01011110 01101101
00100011 00110011 01100010 01110010
00100110 00110110 01100011 01110110
00100111 00111001 01100110

plus those obtained by interchanging 0 and 1 consistently.
It is clear that we could make the set of algorithms so large that no sequences

satisfy the deĄnition, when n and ϵ are reasonably small. A. N. Kolmogorov has
proved that an (n, ϵ)-random binary sequence will always exist, for any given N,
if the number of algorithms in A does not exceed

1
2e

2nϵ2(1−ϵ). (37)

This result is not nearly strong enough to show that sequences satisfying DeĄ-
nition Q1 will exist, but the latter can be constructed efficiently using the
procedure of Rees in exercise 3.2.2Ű21. A generalized spectral test, based on
discrete Fourier transforms, can be used to test how well a sequence measures
up to DeĄnition Q1 [see A. Compagner, Physical Rev. E52 (1995), 5634Ű5645].

Still another interesting approach to a deĄnition of randomness has been
taken by Per Martin-Löf [Information and Control 9 (1966), 602Ű619]. Given
a Ąnite b-ary sequence X1, . . . , XN, let l(X1, . . . , XN) be the length of the
shortest Turing machine program that generates this sequence. (Alternatively,
we could use other classes of effective algorithms, such as those discussed in
Section 1.1.) Then l(X1, . . . , XN) is a measure of the “patternlessnessŤ of

170 RANDOM NUMBERS 3.5

the sequence, and we may equate this idea with randomness. The sequences
of length N that maximize l(X1, . . . , XN) may be called random. (From the
standpoint of practical random number generation by computer, this is, of course,
the worst deĄnition of “randomnessŤ that can be imagined!)

Essentially the same deĄnition of randomness was given independently by
G. Chaitin at about the same time; see JACM 16 (1969), 145Ű159. It is interest-
ing to note that even though this deĄnition makes no reference to equidistribution
properties as our other deĄnitions have, Martin-Löf and Chaitin have proved that
random sequences of this type also have the expected equidistribution properties.
In fact, Martin-Löf has demonstrated that such sequences satisfy all computable
statistical tests for randomness, in an appropriate sense.

For further developments in the deĄnition of random Ąnite sequences, see
A. K. Zvonkin and L. A. Levin, Uspekhi Mat. Nauk 25, 6 (November 1970),
85Ű127 [English translation in Russian Math. Surveys 25, 6 (November 1970),
83Ű124]; L. A. Levin, Doklady Akad. Nauk SSSR 212 (1973), 548Ű550; L. A.
Levin, Information and Control 61 (1984), 15Ű37.

F. Pseudorandom numbers. It is comforting from a theoretical standpoint
to know that random Ąnite sequences of various Ćavors exist, but such theorems
don’t answer the questions faced by real-world programmers. More recent devel-
opments have led to a more relevant theory, based on the study of sets of Ąnite
sequences. More precisely, we consider multisets in which sequences may appear
more than once.

Let S be a multiset containing bit strings (binary sequences) of length N;
we call S an N -source. Let $N denote the special N -source that contains all 2N

possible N -bit strings. Each element of S represents a sequence that we might
use as a source of pseudorandom bits; choosing different “seedŤ values leads to
different elements of S. For example, S might be

{B1B2 . . . BN | Bj is the most signiĄcant bit of Xj} (38)

in the linear congruential sequence deĄned by Xj+1 = (aXj + c) mod 2e, where
there is one string B1B2 . . . BN for each of the 2e starting values X0.

The basic idea of pseudorandom sequences, as we have seen throughout this
chapter, is to get N bits that appear to be random, although we rely only on
a few “truly randomŤ bits when we choose the seed value. In the example just
considered, we need e truly random bits to select X0; in general, selecting a
member of S amounts to using lg |S| truly random bits, after which we proceed
deterministically. If N = 106 and |S| = 232, we are getting more than 30,000
“apparently randomŤ bits for each truly random bit expended. With $N instead
of S, we get no such ampliĄcation, because lg |$N | = N.

What does it mean to be “apparently randomŤ? A. C. Yao proposed a
good deĄnition in 1982: Consider any algorithm A that looks at a bit string
B = B1 . . . BN and outputs the value A(B) = 0 or 1. We may think of A as a
test for randomness; for example, A might compute the distribution of runs of
consecutive 0s and 1s, outputting 1 if the run lengths differ signiĄcantly from

3.5 WHAT IS A RANDOM SEQUENCE? 171

the expected distribution. Whatever A does, we can consider the probability
P (A,S) that A(B) = 1 when B is a randomly chosen element of S, and we
can compare it to the probability P (A, $N) that A(B) = 1 when B is a truly
random bit string of length N. If P (A,S) is extremely close to P (A, $N) for all
statistical tests A, we cannot tell the difference between the sequences of S and
truly random binary sequences.

DeĄnition P. We say that an N -source S passes statistical test A with toler-
ance ϵ if

P (A,S)−P (A, $N)

 < ϵ. It fails the test if

P (A,S)−P (A, $N)

 ≥ ϵ.

The algorithm A need not be designed by statisticians. Any algorithm can be
considered a statistical test for randomness, according to DeĄnition P. We allow
A to Ćip coins (that is, to use truly random bits) as it performs its calculations.
The only requirement is that A must output 0 or 1.

Well, actually there is another requirement: We insist that A must deliver
its output in a reasonable time, at least on the average. We’re not interested in
algorithms that will take many years to run, because we will never notice any
disparities between S and $N if our computers cannot detect them during our
lifetime. The sequences of S contain only lg |S| bits of information, so there
surely are algorithms that will eventually detect the redundancy; but we don’t
care, as long as S is able to pass all the tests that really matter.

These qualitative ideas can be quantiĄed, as we will now see. The theory
is rather subtle, but it is sufficiently beautiful and important that readers who
take the time to study the details carefully will be amply rewarded.

In the following discussion, the running time T (A) of an algorithm A on
N -bit strings is deĄned to be the maximum of the expected number of steps
needed to output A(B), maximized over all B ∈ $N; the expected number is
averaged over all coin Ćips made by the algorithm.

The Ąrst step in our quantitative analysis is to show that we may restrict
the tests to be of a very special kind. Let Ak be an algorithm that depends only
on the Ąrst k bits of the input string B = B1 . . . BN, where 0 ≤ k < N, and let
AP

k (B) =

Ak(B) +Bk+1 + 1

mod 2. Thus AP

k outputs 1 if and only if Ak has
successfully predicted Bk+1; we call AP

k a prediction test.

Lemma P1. Let S be an N -source. If S fails test A with tolerance ϵ, there is an
integer k ∈ {0, 1, . . . , N−1} and a prediction test AP

k with T (AP
k) ≤ T (A)+O(N)

such that S fails AP
k with tolerance ϵ/N.

Proof. By complementing the output of A, if necessary, we may assume that
P (A,S)−P (A, $N) ≥ ϵ. Consider the algorithms Fk that begin by Ćipping N−k
coins and replacing Bk+1 . . . BN by random bits B′

k+1 . . . B
′
N before executing A.

Algorithm FN is the same as A, while F0 acts on S as if A were acting on $N. Let
pk = P (Fk, S). Since

N−1
k=0 (pk+1 − pk) = pN − p0 = P (A,S) − P (A, $N) ≥ ϵ,

there is some k such that pk+1 − pk ≥ ϵ/N.
Let AP

k be the algorithm that performs the computations of Fk and predicts
the value (Fk(B) +B′

k+1 + 1) mod 2; in other words, it outputs

AP
k (B) =

Fk(B) +Bk+1 +B′

k+1

mod 2. (39)

172 RANDOM NUMBERS 3.5

A careful analysis of probabilities shows that P (AP
k , S)−P (AP

k , $N) = pk+1−pk.
(See exercise 40.)

Most N -sources S of practical interest are shift-symmetric in the sense that
every substring B1 . . . Bk, B2 . . . Bk+1, . . . , BN−k+1 . . . BN of length k has the
same probability distribution. This holds, for example, when S corresponds
to a linear congruential sequence as in (38). In such cases we can improve on
Lemma P1 by taking k = N − 1:

Lemma P2. If S is a shift-symmetric N -source that fails test A with tolerance ϵ,
there is an algorithm A′ with T (A′) ≤ T (A) + O(N) that predicts BN from
B1 . . . BN−1 with probability at least 1

2 + ϵ/N.

Proof. If P (A,S) > P (A, $N), let A′ be the AP
k in the proof of Lemma P1,

but applied to BN−k . . . BN−10 . . . 0 instead of B1 . . . BN. Then A′ has the same
average behavior, because of shift-symmetry. If P (A,S) < P (A, $N), let A′ be
1−AP

k in the same fashion. Clearly P (A′, $N) = 1
2 .

Now let’s specialize S even more, by supposing that each of the sequences
B1B2 . . . BN has the form f

g(X0)

f

g(g(X0))

. . . f

g[N](X0)

as X0 ranges

over some set X, where g is a permutation of X and f(x) is 0 or 1 for all
x ∈ X. Our linear congruential example satisĄes this restriction, with X =
{0, 1, . . . , 2e − 1}, g(x) = (ax+ c) mod 2e, and f(x) = most signiĄcant bit of x.
Such N -sources will be called iterative.

Lemma P3. If S is an iterative N -source that fails test A with tolerance ϵ, there
is an algorithm A′ with T (A′) ≤ T (A) +O(N) that predicts B1 from B2 . . . BN

with probability at least 1
2 + ϵ/N.

Proof. An iterative N -source is shift-symmetric, and so is its reĆection SR =
{BN . . . B1 | B1 . . . BN ∈ S}. Therefore Lemma P2 applies to SR.

The permutation g(x) = (ax+ c) mod 2e is easy to invert, in the sense that
we can determine x from g(x) whenever a is odd. But many easily computed
permutation functions are “one-wayŤ Ů hard to invert Ů and we will see that
this makes them provably good sources of pseudorandom numbers.

Lemma P4. Let S be an iterative N -source corresponding to f , g, and X. If S
fails test A with tolerance ϵ, there is an algorithm G that correctly guesses f(x),
given g(x), with probability ≥ 1

2 + ϵ/N, when x is a random element of X. The
running time T (G) is at most T (A) +O(N)

T (f) + T (g)

.

Proof. Given y = g(x), the desired algorithm G computes B2 = f

g(x)

, B3 =

f

g(g(x))

, . . . , BN = f

g[N−1](x)

and applies the algorithm A′ of Lemma P3.

It guesses f(x) = B1 with probability ≥ 1
2 + ϵ/N, because g is a permutation

of X, and B1 . . . BN is the element of S corresponding to the seed value X0 for
which we have g(X0) = x.

In order to use Lemma P4, we need to amplify the ability to guess a single
bit f(x) to an ability to guess x itself, given only the value of g(x). There is

3.5 WHAT IS A RANDOM SEQUENCE? 173

a nice general way to do this, using the properties of Boolean functions, if we
extend S so that many different functions f(x) need to be guessed. (However,
the method is somewhat technical, so the Ąrst-time reader may want to skip
down to Theorem G before looking closely at the details that follow.)

Suppose G(z1 . . . zR) is a binary-valued function on R-bit strings that is
good at guessing a function of the form f(z1 . . . zR) = (x1z1 + · · ·+xRzR) mod 2
for some Ąxed x = x1 . . . xR. It is convenient to measure the success of G by
computing the expected value

s = E

(−1)G(z1...zR)+x1z1+···+xRzR

, (40)

averaged over all possibilities for z1 . . . zR. This is the sum of correct guesses
minus incorrect guesses, divided by 2R; so if p is the probability that G is correct,
we have s = p− (1− p), or p = 1

2 + 1
2s.

For example, suppose R = 4 and G(z1z2z3z4) = [z1 ̸= z2][z3 + z4 < 2]. This
function has success rate s = 3

4 (and p = 7
8) if x = 1100, because it equals

x · z mod 2 = (z1 + z2) mod 2 for all 4-bit strings z except 0111 or 1011. It also
has success rate 1

4 when x = 0000, 0011, 1101, or 1110; so there are Ąve plausible
possibilities for x. The other eleven x’s make s ≤ 0.

The following algorithm magically discovers x in most cases when G is a
successful guesser in the sense just described. More precisely, the algorithm
constructs a short list that has a good chance of containing x.

Algorithm L (AmpliĄcation of linear guesses). Given a binary-valued function
G(z1 . . . zR) and a positive integer k, this algorithm outputs a list of 2k binary
sequences x = x1 . . . xR with the property that x is likely to be output when
G(z1 . . . zR) is a good approximation to the function (x1z1 + · · ·+ xRzR) mod 2.

L1. [Construct a random matrix.] Generate random bits Bij for 1 ≤ i ≤ k and
1 ≤ j ≤ R.

L2. [Compute signs.] For 1 ≤ i ≤ R, and for all bit strings b = b1 . . . bk, compute

hi(b) =

c ̸=0

(−1)b·c+G(cB+ei) (41)

where ei is the R-bit string 0 . . . 010 . . . 0 having 1 in position i, and where cB
is the string d1 . . . dR with dj = (B1jc1 + · · ·+Bkjck) mod 2. (In other words
the binary vector c1 . . . ck is multiplied by the k×R binary matrix B.) The
sum is taken over all 2k− 1 bit strings c1 . . . ck ̸= 0 . . . 0. It can be evaluated
for each i with k · 2k additions and subtractions, using Yates’s method for
the Hadamard transform; see the remarks following Eq. 4.6.4Ű(38).

L3. [Output the guesses.] For all 2k choices of b = b1 . . . bk, output the string
x(b) = [h1(b)< 0] . . . [hR(b)< 0].

To prove that Algorithm L works properly, we must show that a given
string x will probably be output whenever it deserves to be. Notice Ąrst that
if we change G to G′, where G′(z) = (G(z) + zj) mod 2, the original G(z) is
a good approximation to x · z mod 2 if and only if the new G′(z) is a good

174 RANDOM NUMBERS 3.5

approximation to (x+ ej) · z mod 2, where ej is the unit-vector string deĄned in
step L2. Moreover, if we apply the algorithm to G′ instead of G, we get

h′i(b) =

c ̸=0

(−1)b·c+G(cB+ei)+(cB+ei)·ej = (−1)δijhi

(b+Bj) mod 2

,

where Bj is column j of B. Therefore step L3 outputs the vectors x′(b) =
x

(b + Bj) mod 2

+ ej , modulo 2. As b runs through all k-bit strings, so does

(b+Bj) mod 2, and the effect is to complement bit j of every x in the output.
We need therefore prove only that the vector x = 0 . . . 0 is likely to be

output whenever G(z) is a good approximation to the constant function 0. We
will show, in fact, that x(0 . . . 0) equals 0 . . . 0 in step L3 with high probability,
whenever G(z) is a lot more likely to be 0 than 1 and k is sufficiently large. More
precisely, the condition

c ̸=0

(−1)G(cB+ei) > 0

holds for 1 ≤ i ≤ R with probability > 1
2 , if s = E

(−1)G(z)

is positive when

averaged over all 2R possibilities for z and if k is large enough.
The key observation is that, for each Ąxed c = c1 . . . ck ̸= 0 . . . 0, the string

d = cB is uniformly distributed: Every value of d occurs with probability 1/2R,
because the bits of B are random. Furthermore, when c ̸= c′ = c′1 . . . c

′
k,

the strings d = cB and d′ = c′B are independent: Every value of the pair
(d, d′) occurs with probability 1/22R. Therefore we can argue as in the proof
of Chebyshev’s inequality that, for any Ąxed i, the sum

c ̸=0(−1)G(cB+ei) is
negative with probability at most 1/((2k − 1)s2). (Exercise 42 contains the
details.) It follows that R/((2k − 1)s2) is an upper bound on the probability
that x(0) is nonzero in step L3.

Theorem G. If s = E

(−1)G(z)+x·z > 0 and 2k > ⌈2R/s2⌉, Algorithm L

outputs x with probability ≥ 1
2 . The running time is O(k2kR) plus the time to

make 2kR evaluations of G.

Now we are ready to prove that the muddle-square sequence of Eq. 3.2.2Ű(17)
is a good source of (pseudo)random numbers. Suppose 2R−1 < M = PQ < 2R,
where P and Q are prime numbers of the form 4k + 3 in the respective ranges
2(R−2)/2 < P < 2(R−1)/2, 2R/2 < Q < 2(R+1)/2. We will call M an R-bit
Blum integer, because the importance of such numbers for cryptography was Ąrst
pointed out by Manuel Blum [COMPCON 24 (Spring 1982), 133Ű137]. Blum
originally suggested that P and Q both have R/2 bits, but Algorithm 4.5.4D
shows that it is better to choose P andQ as stated here so thatQ−P > .29×2R/2.

Choose X0 at random in the range 0 < X0 < M, with X0 ⊥ M; also
let Z be a random R-bit mask. We can construct an iterative N -source S
by letting X be the set of all (x, z,m) that are possibilities for (X0, Z,M),
with the further restriction that x ≡ a2 (modulo m) for some a. The function
g(x, z,m) = (x2 modm, z,m) is easily shown to be a permutation of X (see, for
example, exercise 4.5.4Ű35). The function f(x, z,m) that extracts bits in this

3.5 WHAT IS A RANDOM SEQUENCE? 175

iterative source is x · z mod 2. Our starting value (X0, Z,M) isn’t necessarily
in X, but g(X0, Z,M) is uniformly distributed in X, because exactly four values
of X0 have a given square X2

0 modM.

Theorem P. Let S be the N -source deĄned by the muddle-square method on
R-bit moduli, and suppose S fails some statistical test A with tolerance ϵ ≥ 1/2N.
Then we can construct an algorithm F that Ąnds factors of random R-bit Blum
integers M = PQ having the form described above, with success probability at
least ϵ/(4N) and with running time T (F) = O(N2R2ϵ−2T (A) +N3R4ϵ−2).

Proof. Multiplication mod M can be done in O(R2) steps; hence T (f) +T (g) =
O(R2). Lemma P4 therefore asserts the existence of a guessing algorithm G
with success rate ϵ/N and T (G) ≤ T (A)+O(NR2). We can construct G from A
using the method of exercise 41. This algorithm G has the property that s =
E

(−1)G(y,z,m)+z·x ≥ (1

2 + ϵ/N)− (1
2 − ϵ/N) = 2ϵ/N, where the expected value

is taken over all (x, z,m) ∈ X, and where (y, z,m) = g(x, z,m).
The desired algorithm F proceeds as follows. Given a random M = PQ

with unknown P and Q, it computes a random X0 between 0 and M, and stops
immediately with a known factorization if gcd(X0,M) ̸= 1. Otherwise it applies
Algorithm L with G(z) = G(X2

0 modM, z,M) and k = ⌈lg(1 + 2N2R/ϵ2)⌉. If
one of the 2k values x output by that algorithm satisĄes x2 ≡ X2

0 (modulo M),
there is a 50:50 chance that x ̸≡ ±X0; then gcd(X0−x, M) and gcd(X0 +x, M)
are the prime factors of M. (See Rabin’s “SQRT boxŤ in Section 4.5.4.)

The running time of this algorithm is clearly O(N2R2ϵ−2T (A) +N3R4ϵ−2),
since ϵ ≥ 2−N . The probability that it succeeds in factoring M can be esti-
mated as follows. Let n = |X|/2R be the number of choices of (x,m), and
let sxm = 2−R

(−1)G(y,z,m)+z·x summed over all R-bit numbers z; thus s =

x,m sxm/n ≥ 2ϵ/N. Let t be the number of (x,m) such that sxm ≥ ϵ/N. The
probability that our algorithm deals with such a pair (x,m) is

t

n
≥

x,m

[sxm≥ ϵ/N]
sxm
n

=

x,m

1− [sxm<ϵ/N]

sxm
n

≥ 2ϵ
N
−

x,m

[sxm<ϵ/N]
sxm
n
≥ ϵ

N
.

And in such a case it Ąnds x with probability ≥ 1
2 , by Theorem G, since we have

2k > ⌈2R/s2
xm⌉; so it Ąnds a factor with probability ≥ 1

4 .

What does Theorem P imply, from a practical standpoint? Our proof shows
that the constant implied by the O is small; let us assume that the running
time for factoring is at most 10(N2R2ϵ−2T (A)+N3R4ϵ−2). Many of the world’s
greatest mathematicians have worked on the problem of factoring large numbers,
especially after factoring was shown to be highly relevant to cryptography in the
late 1970s. Since they haven’t found a good solution, we have excellent reason
to believe that factoring is hard; hence Theorem P will show that T (A) must be
large on all algorithms that detect nonrandomness of muddle-square bits.

176 RANDOM NUMBERS 3.5

Long computations are conveniently measured in MIP-years, the number of
instructions executed per Gregorian year by a machine that performs a million
instructions per Gregorian second Ů namely 31,556,952,000,000 ≈ 3.16×1013. In
1995, the time to factor a number of 120 decimal digits (400 bits), using the most
highly tuned algorithms, was more than 250 MIP-years. The most optimistic
researchers who have worked on factorization would be astonished if an algorithm
were discovered that requires only exp

R1/4(lnR)3/4

instructions as R → ∞.

But let us assume that such a breakthrough has been achieved, for at least a
not-too-small fraction of the R-bit Blum integers M. Then we could factor many
numbers of about 50000 bits (15000 digits) in 2×1025 MIP-years. If we generate
N = 1000 random bits by muddle-square with R = 50000, and if we assume that
all algorithms that are good enough to factor at least 1

400000 of the 50000-bit Blum
integers must run at least 2 × 1025 MIP-years, Theorem P tells us that every
such set of 1000 bits will pass all statistical tests for randomness whose running
time T (A) is less than 70000 MIP-years: No such algorithm A will be able to
distinguish such bits from a truly random sequence with probability ≥ ϵ = 1

100 .
Impressive? No. Such a result is hardly surprising, since we need to specify

about 150000 truly random bits just to start up the muddle-square method with
X0, Z, and M when R = 50000. Of course we should be able to get 1000 random
bits back from such an investment!

But in general, the formula becomes

T (A) ≥ 1
100000

N−2R−2 exp

R1/4(lnR)3/4

−NR2,

under our conservative assumptions, when ϵ = 1
100 ; the NR2 term is negligible

when R is large. So let’s set R = 200000 and N = 1010. Then we get ten billion
pseudorandom muddle-bits from ≈ 3R = 600000 truly random bits, passing all
statistical tests that require fewer than 7.486×1010 MIP-years = 74.86 gigaMIP-
years. With R = 333333 and N = 1013 the computation time needed to detect
any statistical bias increases to 535 teraMIP-years.

The simple pseudorandom generator 3.2.2Ű(16), which avoids the random
mask Z, can also be shown to pass all polynomial-time tests for randomness if fac-
toring is intractable. (See exercise 4.5.4Ű43.) But the known performance guar-
antees for the simpler method are somewhat weaker than for muddle-square; cur-
rently they are O

N4Rϵ−4 log(NRϵ−1)

versus the O(N2R2ϵ−2) of Theorem P.

Everyone believes that there is no factoring algorithm for R-bit numbers
whose running time is polynomial in R. If that conjecture is true in a stronger
form, so that we cannot even factor 1/Rk of the R-bit Blum integers in poly-
nomial time for any Ąxed k, Theorem P proves that the muddle-square method
generates pseudorandom numbers that pass all polynomial-time statistical tests
for randomness.

Stating this another way: If you generate random bits with the muddle-
square method for suitably chosen N and R, you either get numbers that pass
all reasonable statistical tests, or you get fame and fortune for discovering a new
factorization algorithm.

3.5 WHAT IS A RANDOM SEQUENCE? 177

G. Summary, history, and bibliography. We have deĄned several degrees
of randomness that a sequence might possess.

An inĄnite sequence that is ∞-distributed satisĄes a great many useful
properties that are expected of random sequences, and there is a rich theory con-
cerning∞-distributed sequences. (The exercises below develop several important
properties of such sequences that have not been mentioned in the text.) DeĄni-
tion R1 is therefore an appropriate basis for theoretical studies of randomness.

The concept of an ∞-distributed b-ary sequence was introduced in 1909 by
Emile Borel. He essentially deĄned the concept of an (m, k)-distributed sequence,
and showed that the b-ary representations of almost all real numbers are (m, k)-
distributed for all m and k. He called such numbers entirely normal to base b,
and he stated Theorem C informally without apparently realizing that it required
proof [Rendiconti Circ. Mat. Palermo 27 (1909), 247Ű271, §12.]

The notion of an ∞-distributed sequence of real numbers, also called a
completely equidistributed sequence, Ąrst appeared in a note by N. M. Korobov
in Doklady Akad. Nauk SSSR 62 (1948), 21Ű22. Korobov and several of his
colleagues developed the theory of such sequences quite extensively in a series
of papers during the 1950s. Completely equidistributed sequences were inde-
pendently studied by Joel N. Franklin, Math. Comp. 17 (1963), 28Ű59, in a
paper that is particularly noteworthy because it was inspired by the problem
of random number generation. The book Uniform Distribution of Sequences by
L. Kuipers and H. Niederreiter (New York: Wiley, 1974) is an extraordinarily
complete source of information about the rich mathematical literature concerning
k-distributed sequences of all kinds.

We have seen, however, that ∞-distributed sequences need not be suffi-
ciently haphazard to qualify completely as “random.Ť Three deĄnitions, R4,
R5, and R6, were formulated above to provide the additional conditions; and
DeĄnition R6, in particular, seems to be an appropriate way to deĄne the concept
of an inĄnite random sequence. It is a precise, quantitative statement that may
well coincide with the intuitive idea of true randomness.

Historically, the development of these deĄnitions was primarily inĆuenced
by the quest of R. von Mises for a good deĄnition of “probability.Ť In Math.
Zeitschrift 5 (1919), 52Ű99, von Mises proposed a deĄnition similar in spirit
to DeĄnition R5, although stated too strongly (like our DeĄnition R3) so that
no sequences satisfying the conditions could possibly exist. Many people no-
ticed this discrepancy, and A. H. Copeland [Amer. J. Math. 50 (1928), 535Ű
552] suggested weakening von Mises’s deĄnition by substituting what he called
“admissible numbersŤ (or Bernoulli sequences). These are equivalent to ∞-
distributed [0 . . 1) sequences in which all entries Un have been replaced by 1
if Un < p or by 0 if Un ≥ p, for a given probability p. Thus Copeland was
essentially suggesting a return to DeĄnition R1. Then Abraham Wald showed
that it is not necessary to weaken von Mises’s deĄnition so drastically, and he
proposed substituting a countable set of subsequence rules. In an important
paper [Ergebnisse eines math. Kolloquiums 8 (Vienna: 1937), 38Ű72], Wald
essentially proved Theorem W, although he made the erroneous assertion that

178 RANDOM NUMBERS 3.5

the sequence constructed by Algorithm W also satisĄes the stronger condition
that Pr(Un ∈ A) = measure of A, for all Lebesgue measurable A ⊆ [0 . . 1). We
have observed that no sequence can satisfy this property.

The concept of “computabilityŤ was still very much in its infancy when
Wald wrote his paper, and A. Church [Bull. Amer. Math. Soc. 46 (1940), 130Ű
135] showed how the precise notion of “effective algorithmŤ could be added to
Wald’s theory to make his deĄnitions completely rigorous. The extension to
DeĄnition R6 was due essentially to A. N. Kolmogorov [Sankhyā A25 (1963),
369Ű376], who proposed DeĄnition Q2 for Ąnite sequences at the same time.
Another deĄnition of randomness for Ąnite sequences, somewhere “betweenŤ Def-
initions Q1 and Q2, had been formulated many years earlier by A. S. Besicovitch
[Math. Zeitschrift 39 (1934), 146Ű156].

The publications of Church and Kolmogorov considered only binary se-
quences for which Pr(Xn = 1) = p for a given probability p. Our discussion
in this section has been slightly more general, since a [0 . . 1) sequence essentially
represents all p at once. The von MisesŰWaldŰChurch deĄnition has been reĄned
in yet another interesting way by J. V. Howard, Zeitschr. für math. Logik und
Grundlagen der Math. 21 (1975), 215Ű224.

Another important contribution was made by Donald W. Loveland [Zeitschr.
für math. Logik und Grundlagen der Math. 12 (1966), 279Ű294], who discussed
DeĄnitions R4, R5, R6, and several intermediate concepts. Loveland proved that
there are R5-random sequences that do not satisfy R4, thereby establishing the
need for a stronger deĄnition such as R6. In fact, he deĄned a rather simple
permutation ⟨f(n)⟩ of the nonnegative integers, and an Algorithm W′ analogous
to Algorithm W, such that

Pr(Uf(n) ≥ 1
2)− Pr(Uf(n) ≥ 1

2) ≥ 1
2

for every R5-random sequence ⟨Un⟩ produced by Algorithm W′ when it is given
an inĄnite set of subsequence rules Rk.

Although DeĄnition R6 is intuitively much stronger than R4, it is apparently
not a simple matter to prove this rigorously, and for several years it was an open
question whether or not R4 implies R6. Finally Thomas Herzog and James C.
Owings, Jr., discovered how to construct a large family of sequences that satisfy
R4 but not R6. [See Zeitschr. für math. Logik und Grundlagen der Math. 22
(1976), 385Ű389.]

Kolmogorov wrote another signiĄcant paper [Problemy Peredači Informatsii
1 (1965), 3Ű11] in which he considered the problem of deĄning the “information
contentŤ of a sequence, and this work led to Chaitin and Martin-Löf’s interesting
deĄnition of Ąnite random sequences via “patternlessness.Ť [See IEEE Trans.
IT-14 (1968), 662Ű664.] The ideas can also be traced to R. J. Solomonoff,
Information and Control 7 (1964), 1Ű22, 224Ű254; IEEE Trans. IT-24 (1978),
422Ű432; J. Computer and System Sciences 55 (1997), 73Ű88.

For a philosophical discussion of random sequences, see K. R. Popper, The
Logic of ScientiĄc Discovery (London, 1959), especially the interesting construc-
tion on pages 162Ű163, which he Ąrst published in 1934.

3.5 WHAT IS A RANDOM SEQUENCE? 179

Further connections between random sequences and recursive function the-
ory have been explored by D. W. Loveland, Trans. Amer. Math. Soc. 125
(1966), 497Ű510. See also C.-P. Schnorr [Zeitschr. Wahr. verw. Geb. 14 (1969),
27Ű35], who found strong relations between random sequences and the “species
of measure zeroŤ deĄned by L. E. J. Brouwer in 1919. Schnorr’s subsequent
book Zufälligkeit und Wahrscheinlichkeit [Lecture Notes in Math. 218 (Berlin:
Springer, 1971)] gives a detailed treatment of the entire subject of randomness
and makes an excellent introduction to the ever-growing advanced literature on
the topic. Important developments during the next two decades are surveyed
in An Introduction to Kolmogorov Complexity and Its Applications (Springer,
1993), by Ming Li and Paul M. B. Vitányi.

The foundations of the theory of pseudorandom sequences and effective
information were laid by Manuel Blum, Silvio Micali, and Andrew Yao [FOCS
23 (1982), 80Ű91, 112Ű117; SICOMP 13 (1984), 850Ű864], who constructed the
Ąrst explicit sequences that pass all feasible statistical tests. Blum and Micali
introduced the notion of a “hard-core bit,Ť a Boolean function f such that f(x)
and g(x) are easily computed although f

g [−1](x)

is not; their paper was the

origin of Lemma P4. Leonid Levin developed the theory further [Combinatorica
7 (1987), 357Ű363], then he and Oded Goldreich [STOC 21 (1989), 25Ű32]
analyzed algorithms such as the muddle-square method and showed that similar
use of a mask yields hard-core bits in many further cases. Finally Charles Rackoff
reĄned the methods of that paper by introducing and analyzing Algorithm L [see
L. Levin, J. Symbolic Logic 58 (1993), 1102Ű1103].

Many other authors have contributed to the theory Ů notably Impagliazzo,
Levin, Luby, and Håstad, who showed [SICOMP 28 (1999), 1364Ű1396] that
pseudorandom sequences can be constructed from any one-way function Ů but
such results are beyond the scope of this book. The practical implications of
theoretical work on pseudorandomness were Ąrst investigated empirically by
P. L’Ecuyer and R. Proulx, Proc. Winter Simulation Conf. 22 (1989), 467Ű476.

If the numbers are not random,

they are at least higgledy-piggledy.

Ů GEORGE MARSAGLIA (1984)

EXERCISES

1. [10] Can a periodic sequence be equidistributed?

2. [10] Consider the periodic binary sequence 0, 0, 1, 1, 0, 0, 1, 1, Is it
1-distributed? Is it 2-distributed? Is it 3-distributed?

3. [M22] Construct a periodic ternary sequence that is 3-distributed.

4. [HM14] Prove that Pr(S(n) andT (n))+Pr(S(n) orT (n)) = Pr(S(n))+Pr(T (n)),
for any two statements S(n) and T (n), provided that at least three of the limits exist.
For example, if a sequence is 2-distributed, we would Ąnd that

Pr(u1 ≤ Un < v1 or u2 ≤ Un+1 < v2) = v1 − u1 + v2 − u2 − (v1 − u1)(v2 − u2).

180 RANDOM NUMBERS 3.5

x 5. [HM22] Let Un = (2⌊lg(n+1)⌋/3) mod 1. What is Pr(Un <
1
2
)?

6. [HM23] Let S1(n), S2(n), . . . be an inĄnite sequence of statements about mutually
disjoint events; that is, Si(n) and Sj(n) cannot simultaneously be true if i ̸= j. Assume
that Pr(Sj(n)) exists for each j ≥ 1. Show that Pr(Sj(n) is true for some j ≥ 1) ≥

j≥1 Pr(Sj(n)), and give an example to show that equality need not hold.

7. [HM27] Let {Sij(n)} be a family of statements such that Pr(Sij(n)) exists for all
i, j ≥ 1. Assume that for all n > 0, Sij(n) is true for exactly one pair of integers i, j.
If

i,j≥1 Pr(Sij(n)) = 1, does it follow that “Pr(Sij(n) is true for some j ≥ 1)Ť exists
for all i ≥ 1, and that it equals

j≥1 Pr(Sij(n))?

8. [M15] Prove (13).

9. [HM20] Prove Lemma E. [Hint: Consider
m

j=1(yjn − α)2.]

x 10. [HM22] Where was the fact that m divides q used in the proof of Theorem C?

11. [M10] Use Theorem C to prove that if a sequence ⟨Un⟩ is∞-distributed, so is the
subsequence ⟨U2n⟩.
12. [HM20] Show that a k-distributed sequence passes the “maximum-of-k test,Ť in
the following sense: Pr(u ≤ max(Un, Un+1, . . . , Un+k−1) < v) = vk − uk.

x 13. [HM27] Show that an∞-distributed [0 . . 1) sequence passes the “gap testŤ in the
following sense: If 0 ≤ α < β ≤ 1 and p = β − α, let f(0) = 0, and for n ≥ 1 let f(n)
be the smallest integer m > f(n− 1) such that α ≤ Um < β; then

Pr(f(n)− f(n− 1) = k) = p(1− p)k−1.

14. [HM25] Show that an∞-distributed sequence passes the “run testŤ in the follow-
ing sense: If f(0) = 0 and if, for n ≥ 1, f(n) is the smallest integer m > f(n− 1) such
that Um−1 > Um, then

Pr(f(n)− f(n− 1) = k) = 2k/(k + 1)!− 2(k + 1)/(k + 2)!.

x 15. [HM30] Show that an∞-distributed sequence passes the “coupon-collector’s testŤ
when there are only two kinds of coupons, in the following sense: Let X1, X2, . . . be
an∞-distributed binary sequence. Let f(0) = 0, and for n ≥ 1 let f(n) be the smallest
integer m > f(n − 1) such that {Xf(n−1)+1, . . . , Xm} is the set {0, 1}. Prove that
Pr(f(n)− f(n− 1) = k) = 21−k, for k ≥ 2. (See exercise 7.)

16. [HM38] Does the coupon-collector’s test hold for ∞-distributed sequences when
there are more than two kinds of coupons? (See the previous exercise.)

17. [HM50] If r is any given rational number, Franklin has proved that the sequence
⟨rn mod 1⟩ is not 2-distributed. But is there any rational number r for which this
sequence is equidistributed? In particular, is the sequence equidistributed when r = 3

2
?

[See K. Mahler, Mathematika 4 (1957), 122Ű124.]

x 18. [HM22] Prove that if U0, U1, . . . is k-distributed, so is the sequence V0, V1, . . . ,
where Vn = ⌊nUn⌋/n.

19. [HM35] Consider a modiĄcation of DeĄnition R4 that requires the subsequences
to be only 1-distributed instead of ∞-distributed. Is there a sequence that satisĄes
this weaker deĄnition, but that is not ∞-distributed? (Is the weaker deĄnition really
weaker?)

3.5 WHAT IS A RANDOM SEQUENCE? 181

x 20. [HM36] (N. G. de Bruijn and P. Erdős.) The Ąrst n points of any [0 . . 1) sequence
⟨Un⟩ with U0 = 0 divide the interval [0 . . 1) into n subintervals; let those subintervals
have lengths l(1)

n ≥ l(2)
n ≥ · · · ≥ l(n)

n . Clearly l(1)
n ≥ 1

n
≥ l(n)

n , because l(1)
n +· · ·+l(n)

n = 1.
One way to measure the equitability of the distribution of ⟨Un⟩ is to consider

L = lim sup
n→∞

nl(1)
n and L = lim inf

n→∞
nl(n)

n .

a) What are L and L for van der Corput’s sequence (29)?
b) Show that l(1)

n+k−1 ≥ l
(k)
n for 1 ≤ k ≤ n. Use this result to prove that L ≥ 1/ ln 2.

c) Prove that L ≤ 1/ ln 4. [Hint: For each n there are numbers a1, . . . , a2n such that
l
(k)
2n ≥ l

(n+ak)
n+ak

for 1 ≤ k ≤ 2n. Moreover, each integer 2, . . . , n occurs at most
twice in {a1, . . . , a2n}.]

d) Show that the sequence ⟨Wn⟩ deĄned by Wn = lg(2n+ 1) mod 1 satisĄes 1/ ln 2 >
nl

(1)
n ≥ nl(n)

n > 1/ ln 4 for all n; hence it achieves the optimum L and L.

21. [HM40] (L. H. Ramshaw.)
a) Continuing the previous exercise, is the sequence ⟨Wn⟩ equidistributed?
b) Show that ⟨Wn⟩ is the only [0 . . 1) sequence for which we have

k
j=1 l

(j)
n ≤

lg(1 + k/n) whenever 1 ≤ k ≤ n.
c) Let ⟨fn(l1, . . . , ln)⟩ be any sequence of continuous functions on the sets of n-tuples
{(l1, . . . , ln) | l1 ≥ · · · ≥ ln and l1 + · · · + ln = 1}, satisfying the following two
properties:

fmn(1
m
l1, . . . ,

1
m
l1,

1
m
l2, . . . ,

1
m
l2, . . . ,

1
m
ln, . . . ,

1
m
ln) = fn(l1, . . . , ln);

if
k

j=1 lj ≥
k

j=1 l
′
j for 1 ≤ k ≤ n then fn(l1, . . . , ln) ≥ fn(l′1, . . . , l

′
n).

[Examples are: nl(1)
n ; −nl(n)

n ; l(1)
n /l

(n)
n ; n(l(1)2

n + · · ·+ l
(n)2
n).] Let

F = lim sup
n→∞

fn(l(1)
n , . . . , l(n)

n)

for the sequence ⟨Wn⟩. Show that fn(l(1)
n , . . . , l

(n)
n) ≤ F for all n, with respect to

⟨Wn⟩; also lim supn→∞ fn(l(1)
n , . . . , l

(n)
n) ≥ F with respect to every other [0 . . 1)

sequence.

x 22. [HM30] (Hermann Weyl.) Show that the [0 . . 1) sequence ⟨Un⟩ is k-distributed if
and only if

lim
N→∞

1
N

0≤n<N

exp(2πi(c1Un + · · ·+ ckUn+k−1)) = 0

for every set of integers c1, c2, . . . , ck not all zero.

23. [M32] (a) Show that a [0 . . 1) sequence ⟨Un⟩ is k-distributed if and only if all of
the sequences ⟨(c1Un +c2Un+1 + · · ·+ckUn+k−1) mod 1⟩ are 1-distributed, whenever c1,
c2, . . . , ck are integers not all zero. (b) Show that a b-ary sequence ⟨Xn⟩ is k-distributed
if and only if all of the sequences ⟨(c1Xn + c2Xn+1 + · · · + ckXn+k−1) mod b⟩ are 1-
distributed, whenever c1, c2, . . . , ck are integers with gcd(c1, . . . , ck) = 1.

x 24. [M35] (J. G. van der Corput.) (a) Prove that the [0 . . 1) sequence ⟨Un⟩ is equidis-
tributed whenever the sequences ⟨(Un+k−Un) mod 1⟩ are equidistributed for all k > 0.
(b) Consequently ⟨(αdn

d + · · ·+ α1n+ α0) mod 1⟩ is equidistributed, when d > 0 and
αd is irrational.

182 RANDOM NUMBERS 3.5

25. [HM20] A sequence is called a “white sequenceŤ if all serial correlations are zero;
that is, if the equation in Corollary S is true for all k ≥ 1. (By Corollary S, an ∞-
distributed sequence is white.) Show that if a [0 . . 1) sequence is equidistributed, it is
white if and only if

lim
n→∞

1
n

0≤j<n

(Uj − 1
2
)(Uj+k − 1

2
) = 0, for all k ≥ 1.

26. [HM34] (J. Franklin.) A white sequence, as deĄned in the previous exercise, can
deĄnitely fail to be random. Let U0, U1, . . . be an ∞-distributed sequence, and deĄne
the sequence V0, V1, . . . as follows:

(V2n−1, V2n) = (U2n−1, U2n) if (U2n−1, U2n) ∈ G,
(V2n−1, V2n) = (U2n, U2n−1) if (U2n−1, U2n) /∈ G,

where G is the set
{(x, y) | x− 1

2
≤ y ≤ x or x+ 1

2
≤ y}.

Show that (a) V0, V1, . . . is equidistributed and white; (b) Pr(Vn > Vn+1) = 5
8
. (This

points out the weakness of the serial correlation test.)

27. [HM48] What is the highest possible value for Pr(Vn > Vn+1) in an equidistrib-
uted, white sequence? (D. Coppersmith has constructed such a sequence achieving the
value 7

8
.)

x 28. [HM21] Use the sequence (11) to construct a [0 . . 1) sequence that is 3-distributed,
for which Pr(U2n ≥ 1

2
) = 3

4
.

29. [HM34] Let X0, X1, . . . be a (2k)-distributed binary sequence. Show that

Pr(X2n = 0) ≤ 1
2

+
2k − 1

k

22k.

x 30. [M39] Construct a binary sequence that is (2k)-distributed, and for which

Pr(X2n = 0) =
1
2

+
2k − 1

k

22k.

(Therefore the inequality in the previous exercise is the best possible.)

31. [M30] Show that [0 . . 1) sequences exist that satisfy DeĄnition R5, yet νn/n ≥ 1
2

for all n > 0, where νn is the number of j < n for which Uj <
1
2
. (This might be

considered a nonrandom property of the sequence.)

32. [M24] Given that ⟨Xn⟩ is a “randomŤ b-ary sequence according to DeĄnition R5,
and that R is a computable subsequence rule that speciĄes an inĄnite subsequence
⟨Xn⟩R, show that the latter subsequence is not only 1-distributed, it is “randomŤ by
DeĄnition R5.

33. [HM22] Let ⟨Urn⟩ and ⟨Usn⟩ be inĄnite disjoint subsequences of a sequence ⟨Un⟩.
(Thus, r0 < r1 < r2 < · · · and s0 < s1 < s2 < · · · are increasing sequences of integers
and rm ̸= sn for any m,n.) Let ⟨Utn⟩ be the combined subsequence, so that t0 < t1 <
t2 < · · · and the set {tn} = {rn}∪ {sn}. Show that if Pr(Urn ∈ A) = Pr(Usn ∈ A) = p,
then Pr(Utn ∈ A) = p.

x 34. [M25] DeĄne subsequence rules R1, R2, R3, . . . such that Algorithm W can be
used with these rules to give an effective algorithm to construct a [0 . . 1) sequence
satisfying DeĄnition R1.

3.5 WHAT IS A RANDOM SEQUENCE? 183

x 35. [HM35] (D. W. Loveland.) Show that if a binary sequence ⟨Xn⟩ is R5-random,
and if ⟨sn⟩ is any computable sequence as in DeĄnition R4, then Pr(Xsn = 1) ≥ 1

2
and

Pr(Xsn = 1) ≤ 1
2
.

36. [HM30] Let ⟨Xn⟩ be a binary sequence that is “randomŤ according to DeĄni-
tion R6. Show that the [0 . . 1) sequence ⟨Un⟩ deĄned in binary notation by the scheme

U0 = (0.X0)2, U1 = (0.X1X2)2, U2 = (0.X3X4X5)2, U3 = (0.X6X7X8X9)2, . . .

is random in the sense of DeĄnition R6.

37. [M37] (D. Coppersmith.) DeĄne a sequence that satisĄes DeĄnition R4 but not
DeĄnition R5. [Hint: Consider changing U0, U1, U4, U9, . . . in a truly random sequence.]

38. [M49] (A. N. Kolmogorov.) Given N, n, and ϵ, what is the smallest number of
algorithms in a set A such that no (n, ϵ)-random binary sequences of length N exist
with respect to A? (If exact formulas cannot be given, can asymptotic formulas be
found? The point of this problem is to discover how close the bound (37) comes to
being “best possible.Ť)

39. [HM45] (W. M. Schmidt.) Let Un be a [0 . . 1) sequence, and let νn(u) be the
number of nonnegative integers j ≤ n such that 0 ≤ Uj < u. Prove that there is a
positive constant c such that, for any N and for any [0 . . 1) sequence ⟨Un⟩, we have

|νn(u)− un| > c lnN

for some n and u with 0 ≤ n < N, 0 ≤ u < 1. (In other words, no [0 . . 1) sequence can
be too equidistributed.)
40. [M28] Complete the proof of Lemma P1.

41. [M21] Lemma P2 shows the existence of a prediction test, but its proof relies on
the existence of a suitable k without explaining how we could Ąnd k constructively
from A. Show that any algorithm A can be converted into an algorithm A′ with
T (A′) ≤ T (A) + O(N) that predicts BN from B1 . . . BN−1 with probability at least
1
2

+ (P (A,S)− P (A, $N))/N on any shift-symmetric N -source S.

x 42. [M28] (Pairwise independence.)
a) Let X1, . . . , Xn be random variables having mean value µ = EXj and variance

σ2 = EX2
j − (EXj)2 for 1 ≤ j ≤ n. Prove Chebyshev’s inequality

Pr((X1 + · · ·+Xn − nµ)2 ≥ tnσ2) ≤ 1/t,

under the additional assumption that E(XiXj) = (EXi)(EXj) whenever i ̸= j.
b) Let B be a random k ×R binary matrix. Prove that if c and c′ are Ąxed nonzero

k-bit vectors, with c ̸= c′, the vectors cB and c′B are independent random R-bit
vectors (modulo 2).

c) Apply (a) and (b) to the analysis of Algorithm L.

43. [20] It seems just as difficult to Ąnd the factors of any Ąxed R-bit Blum integer M
as to Ąnd the factors of a random R-bit integer. Why then is Theorem P stated for
random M instead of Ąxed M?

x 44. [16] (I. J. Good.) Can a valid table of random digits contain just one misprint?

184 RANDOM NUMBERS 3.6

3.6. SUMMARY

We have covered a fairly large number of topics in this chapter: How to
generate random numbers, how to test them, how to modify them in applications,
and how to derive theoretical facts about them. Perhaps the main question in
many readers’ minds will be, “What is the result of all this theory? What is
a simple, virtuous generator that I can use in my programs in order to have a
reliable source of random numbers?Ť

The detailed investigations in this chapter suggest that the following proce-
dure gives the simplest random number generator for the machine language of
most computers: At the beginning of the program, set an integer variable X to
some value X0. This variable X is to be used only for the purpose of random
number generation. Whenever a new random number is required by the program,
set

X ← (aX + c) modm (1)

and use the new value of X as the random value. It is necessary to choose X0,
a, c, and m properly, and to use the random numbers wisely, according to the
following principles:

i) The “seedŤ number X0 may be chosen arbitrarily. If the program is run
several times and a different source of random numbers is desired each
time, set X0 to the last value attained by X on the preceding run; or (if
more convenient) set X0 to the current date and time. If the program may
need to be rerun later with the same random numbers (for example, when
debugging), be sure to print out X0 if it isn’t otherwise known.

ii) The number m should be large, say at least 230. It may conveniently be
taken as the computer’s word size, since this makes the computation of
(aX + c) modm quite efficient. Section 3.2.1.1 discusses the choice of m
in more detail. The computation of (aX + c) modm must be done exactly,
with no roundoff error.

iii) If m is a power of 2 (that is, if a binary computer is being used), pick a
so that amod 8 = 5. If m is a power of 10 (that is, if a decimal computer
is being used), choose a so that amod 200 = 21. This choice of a together
with the choice of c given below ensures that the random number generator
will produce all m different possible values of X before it starts to repeat
(see Section 3.2.1.2) and ensures high “potencyŤ (see Section 3.2.1.3).

iv) The multiplier a should preferably be chosen between .01m and .99m, and
its binary or decimal digits should not have a simple, regular pattern. By
choosing some haphazard constant like a = 3141592621

which satisĄes

both of the conditions in (iii)

, one almost always obtains a reasonably good

multiplier. Further testing should of course be done if the random number
generator is to be used extensively; for example, there should be no large
quotients when Euclid’s algorithm is used to Ąnd the gcd of a and m (see
Section 3.3.3). The multiplier should pass the spectral test (Section 3.3.4)
and several tests of Section 3.3.2, before it is considered to have a truly clean
bill of health.

3.6 SUMMARY 185

v) The value of c is immaterial when a is a good multiplier, except that c must
have no factor in common with m when m is the computer’s word size. Thus
we may choose c = 1 or c = a. (People who use c = 0 together with m = 2e

are sacriĄcing two bits of accuracy and half of the seed values just to save a
few nanoseconds of running time; see exercise 3.2.1.2Ű9.)

vi) The least signiĄcant (right-hand) digits of X are not very random, so de-
cisions based on the number X should always be inĆuenced primarily by
the most signiĄcant digits. It is generally best to think of X as a random
fraction X/m between 0 and 1, that is, to visualize X with a radix point at
its left, rather than to regard X as a random integer between 0 and m− 1.
To compute a random integer between 0 and k−1, one should multiply by k
and truncate the result. (Don’t divide by k; see exercise 3.4.1Ű3.)

vii) An important limitation on the randomness of sequence (1) is discussed in
Section 3.3.4, where it is shown that the “accuracyŤ in t dimensions will
be only about one part in t

√
m. Monte Carlo applications requiring higher

resolution can improve the randomness by employing techniques discussed
in Section 3.2.2.

viii) At most about m/1000 numbers should be generated; otherwise the future
will behave more and more like the past. If m = 232, this means that a new
scheme (for example, a new multiplier a) should be adopted after every few
million random numbers are consumed.

The comments above apply primarily to machine-language coding. Some of
the ideas work Ąne also in higher-level languages for programming; for example,
(1) becomes just ŚX=a*X+c’ in the C language, if X is of type unsigned long and
if m is the modulus of unsigned long arithmetic (usually 232 or 264). But C
gives us no good way to regard X as a fraction, as required in (vi) above, unless
we convert to double-precision Ćoating point numbers.

Another variant of (1) is therefore often used in languages like C: We choose
m to be a prime number near the largest easily computed integer, and we let a
be a primitive root of m; the appropriate increment c for this case is zero. Then
(1) can be implemented entirely with simple arithmetic on numbers that remain
between −m and +m, using the technique of exercise 3.2.1.1Ű9. For example,
when a = 48271 and m = 231 − 1 (see line 20 of Table 3.3.4Ű1), we can compute
X ← aX modm with the C code

#define MM 2147483647 /* a Mersenne prime */

#define AA 48271 /* this does well in the spectral test */

#define QQ 44488 /* MM / AA */

#define RR 3399 /* MM % AA; it is important that RR<QQ */

X=AA*(X%QQ)-RR*(X/QQ);

if (X<0) X+=MM;

here X is type long, and X should be initialized to a nonzero seed value less
than MM. Since MM is prime, the least-signiĄcant bits of X are just as random as
the most-signiĄcant bits, so the precautions of (vi) no longer need to be taken.

186 RANDOM NUMBERS 3.6

If you need millions and millions of random numbers, you can combine that
routine with another, as in Eq. 3.3.4Ű(38), by writing some additional code:

#define MMM 2147483399 /* a non-Mersenne prime */

#define AAA 40692 /* another spectral success story */

#define QQQ 52774 /* MMM / AAA */

#define RRR 3791 /* MMM % AAA; again less than QQQ */

Y=AAA*(Y%QQQ)-RRR*(Y/QQQ);

if (Y<0) Y+=MMM;

Z=X-Y; if (Z<=0) Z+=MM-1;

Like X, the variable Y needs to be initially nonzero. This code deviates slightly
from 3.3.4Ű(38) so that the output, Z, always lies strictly between 0 and 231− 1,
as recommended by Liviu Lalescu. The period length of the Z sequence is about
74 quadrillion, and its numbers now have about twice as many bits of accuracy
as the X numbers do.

This method is portable and fairly simple, but not very fast. An alternative
scheme based on lagged Fibonacci sequences with subtraction (exercise 3.2.2Ű
23) is even more attractive, because it not only allows easy portability between
computers, it is considerably faster, and it delivers random numbers of better
quality because the t-dimensional accuracy is probably good for t ≤ 100. Here
is a C subroutine ran array(long aa [], int n) that generates n new random
numbers and places them into a given array aa , using the recurrence

Xj = (Xj−100 −Xj−37) mod 230. (2)

This recurrence is particularly well suited to modern computers. The value of n
must be at least 100; larger values like 1000 are recommended.

#define KK 100 /* the long lag */

#define LL 37 /* the short lag */

#define MM (1L<<30) /* the modulus */

#define mod_diff(x,y) (((x)-(y))&(MM-1)) /* (x-y) mod MM */

long ran_x[KK]; /* the generator state */

void ran_array(long aa[],int n) { /* put n new values in aa */

register int i,j;

for (j=0;j<KK;j++) aa[j]=ran_x[j];

for (;j<n;j++) aa[j]=mod_diff(aa[j-KK],aa[j-LL]);

for (i=0;i<LL;i++,j++) ran_x[i]=mod_diff(aa[j-KK],aa[j-LL]);

for (;i<KK;i++,j++) ran_x[i]=mod_diff(aa[j-KK],ran_x[i-LL]);

}

All information about numbers that will be generated by future calls to
ran array appears in ran x, so you can make a copy of that array in the midst
of a computation if you want to restart at the same point later without going
all the way back to the beginning of the sequence. The tricky thing about using
a recurrence like (2) is, of course, to get everything started properly in the Ąrst
place, by setting up suitable values of X0, . . . , X99. The following subroutine

3.6 SUMMARY 187

ran start (long seed) initializes the generator nicely when given any seed number
between 0 and 230 − 3 = 1,073,741,821 inclusive:

#define TT 70 /* guaranteed separation between streams */

#define is_odd(x) ((x)&1) /* the units bit of x */

void ran_start(long seed) { /* use this to set up ran_array */

register int t,j;

long x[KK+KK-1]; /* the preparation buffer */

register long ss=(seed+2)&(MM-2);

for (j=0;j<KK;j++) {

x[j]=ss; /* bootstrap the buffer */

ss<<=1; if (ss>=MM) ss-=MM-2; /* cyclic shift 29 bits */

}

x[1]++; /* make x[1] (and only x[1]) odd */

for (ss=seed&(MM-1),t=TT-1; t;) {

for (j=KK-1;j>0;j--)

x[j+j]=x[j], x[j+j-1]=0; /* "square" */

for (j=KK+KK-2;j>=KK;j--)

x[j-(KK-LL)]=mod_diff(x[j-(KK-LL)],x[j]),

x[j-KK]=mod_diff(x[j-KK],x[j]);

if (is_odd(ss)) { /* "multiply by z" */

for (j=KK;j>0;j--) x[j]=x[j-1];

x[0]=x[KK]; /* shift the buffer cyclically */

x[LL]=mod_diff(x[LL],x[KK]);

}

if (ss) ss>>=1; else t--;

}

for (j=0;j<LL;j++) ran_x[j+KK-LL]=x[j];

for (;j<KK;j++) ran_x[j-LL]=x[j];

for (j=0;j<10;j++) ran_array(x,KK+KK-1); /* warm it up */

}

(This program incorporates improvements to the author’s original ran start rou-
tine, recommended by Richard Brent and Pedro Gimeno in November 2001.)

The somewhat curious maneuverings of ran start are explained in exercise 9,
which proves that the sequences of numbers generated from different starting
seeds are independent of each other: Every block of 100 consecutive values Xn,
Xn+1, . . . , Xn+99 in the subsequent output of ran array will be distinct from the
blocks that occur with another seed. (Strictly speaking, this is known to be true
only when n < 270; but there are fewer than 255 nanoseconds in a year.) Several
processes can therefore start in parallel with different seeds and be sure that they
are doing independent calculations; different groups of scientists working on a
problem in different computer centers can be sure that they are not duplicating
the work of others if they restrict themselves to disjoint sets of seeds. Thus, more
than one billion essentially disjoint batches of random numbers are provided by
the single routines ran array and ran start. And if that is not enough, you can
replace the program parameters 100 and 37 by other values from Table 3.2.2Ű1.

188 RANDOM NUMBERS 3.6

These C routines use the bitwise-and operation Ś&’ for efficiency, so they are
not strictly portable unless the computer uses two’s complement representation
for integers. Almost all modern computers are based on two’s complement
arithmetic, but Ś&’ is not really necessary for this algorithm. Exercise 10 shows
how to get exactly the same sequences of numbers in FORTRAN, using no such
tricks. Although the programs illustrated here are designed to generate 30-bit
integers, they are easily modiĄed to generate random 52-bit fractions between 0
and 1, on computers that have reliable Ćoating point arithmetic; see exercise 11.

You may wish to include ran array in a library of subroutines, or you may
Ąnd that somebody else has already done so. One way to check whether an
implementation of ran array and ran start conforms with the code above is to
run the following rudimentary test program:

int main() { register int m; long a[2009];

ran_start(310952);

for (m=0;m<2009;m++) ran_array(a,1009);

printf("%ld\n", ran_x[0]);

ran_start(310952);

for (m=0;m<1009;m++) ran_array(a,2009);

printf("%ld\n", ran_x[0]); return 0;

}

The printed output should be 995235265 (twice).
Caution: The numbers generated by ran array fail the birthday spacings

test of Section 3.3.2J, and they have other deĄciencies that sometimes show up
in high-resolution simulations (see exercises 3.3.2Ű31 and 3.3.2Ű35). One way to
avoid the birthday spacings problem is simply to use only half of the numbers
(skipping the odd-numbered elements); but that doesn’t cure the other problems.
An even better procedure is to follow Martin Lüscher’s suggestion, discussed in
Section 3.2.2: Use ran array to generate, say, 1009 numbers, but use only the Ąrst
100 of these. (See exercise 15.) This method has modest theoretical support and
no known defects. Most users will not need such a precaution, but it is deĄnitely
less risky, and it allows a convenient tradeoff between randomness and speed.

A great deal is known about linear congruential sequences like (1), but
comparatively little has yet been proved about the randomness properties of
lagged Fibonacci sequences like (2). Both approaches seem to be reliable in
practice, if they are used with the caveats already stated.

When this chapter was Ąrst written in the late 1960s, a truly horrible random
number generator called RANDU was commonly used on most of the world’s
computers (see Section 3.3.4). The authors of many contributions to the science
of random number generation have often been unaware that particular methods
they were advocating would prove to be inadequate. A particularly noteworthy
example was the experience of Alan M. Ferrenberg and his colleagues, reported
in Physical Review Letters 69 (1992), 3382Ű3384: They tested their algorithms
for a three-dimensional problem by considering Ąrst a related two-dimensional
problem with a known answer, and discovered that supposedly super-quality

3.6 SUMMARY 189

modern random number generators gave wrong results in the Ąfth decimal place.
By contrast, an old-fashioned run-of-the-mill linear congruential generator, X ←
16807X mod (231−1), worked Ąne. Perhaps further research will show that even
the random number generators recommended here are unsatisfactory; we hope
this is not the case, but the history of the subject warns us to be cautious. The
most prudent policy for a person to follow is to run each Monte Carlo program
at least twice using quite different sources of random numbers, before taking
the answers of the program seriously; this will not only give an indication of
the stability of the results, it also will guard against the danger of trusting in a
generator with hidden deĄciencies. (Every random number generator will fail in
at least one application.)

Excellent bibliographies of the pre-1972 literature on random number gen-
eration have been compiled by Richard E. Nance and Claude Overstreet, Jr.,
Computing Reviews 13 (1972), 495Ű508, and by E. R. Sowey, International
Stat. Review 40 (1972), 355Ű371. The period 1972Ű1984 is covered by Sowey
in International Stat. Review 46 (1978), 89Ű102; J. Royal Stat. Soc. A149
(1986), 83Ű107. Subsequent developments are discussed by Shu Tezuka, Uniform
Random Numbers (Boston: Kluwer, 1995).

For a detailed study of the use of random numbers in numerical analysis,
see J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods (London:
Methuen, 1964). This book shows that some numerical methods are enhanced
by using numbers that are “quasirandom,Ť designed speciĄcally for a certain
purpose (not necessarily satisfying the statistical tests we have discussed). The
origins of Monte Carlo methods for computers are discussed by N. Metropolis
and R. Eckhardt in Stanislaw Ulam 1909Ű1984, a special issue of Los Alamos
Science 15 (1987), 125Ű137.

Every reader is urged to work exercise 6 in the following set of problems.

Almost all good computer programs

contain at least one random-number generator.

Ů DONALD E. KNUTH, Seminumerical Algorithms (1969)

EXERCISES

1. [21] Write a MIX subroutine with the following characteristics, using method (1):

Calling sequence: JMP RANDI

Entry conditions: rA = k, a positive integer < 5000.
Exit conditions: rA← a random integer Y , 1 ≤ Y ≤ k, with each integer

about equally probable; rX =?; overĆow off.

x 2. [15] Some people have been afraid that computers will someday take over the
world; but they are reassured by the statement that a machine cannot do anything
really new, since it is only obeying the commands of its master, the programmer.
Lady Lovelace wrote in 1844, “The Analytical Engine has no pretensions to originate

anything. It can do whatever we know how to order it to perform.Ť Her statement
has been elaborated further by many philosophers. Discuss this topic, with random
number generators in mind.

190 RANDOM NUMBERS 3.6

3. [32] (A dice game.) Write a program that simulates a roll of two dice, each of
which takes on the values 1, 2, . . . , 6 with equal probability. If the total is 7 or 11 on
the Ąrst roll, the game is won; a total of 2, 3, or 12 loses; and on any other total, call
that total the “pointŤ and continue rolling dice until either a 7 occurs (a loss) or the
point occurs again (a win).

Play ten games. The result of each roll of the dice should be printed in the form
mn, where m and n are the contents of the two dice, followed by some appropriate
comment (like “snake eyesŤ or “little JoeŤ or “the hard wayŤ, etc.).

4. [40] (Solitaire or patience.) Some people spend a lot of valuable time playing card
games of solitaire, and perhaps automation will make an important inroad in this area.
Write a program that (i) shuffles a simulated deck of cards; (ii) plays some common
game of solitaire based on the order of the cards in the deck; and (iii) displays the result
of the game, showing how close the program came to winning. Cumulative statistics
should be kept. The program might be set up to “cheatŤ upon request.

5. [46] (Creative writing by computer.) A television program entitled “The Thinking
Machine,Ť broadcast by the CBS television network on October 26, 1960, featured
(among other things) two Western-style playlets that were written by a computer
program. Here are the two scripts as they were printed out by the computer:

Saga #1. (The gun is in the right hand; the money is in the left hand; the glass is
on the table; the bottle is on the table; the holster is on the robber; the sheriff’s gun
is in the sheriff’s right hand; the sheriff’s holster is on the sheriff.)

ROBBER: (The robber is at the window.) Go to door; open door; go thru door; close
door; go to corner; put money down at corner; go to table; put gun on
table; sit and Ądget; sit at table; pick up glass with right hand (empty);
put glass on table; pick up bottle with right hand; pour; put bottle on
table; pick up glass with right hand; take a drink from glass; put glass on
table; pick up bottle with right hand; sit at table; sit at table; go to corner;
go to window; go to table; put bottle on table; sit and Ądget; sit at table;
sit and Ądget; go to window; go to table; pick up glass with right hand.

SHERIFF: (The sheriff is at the window.) See robber; (robber sees sheriff); go to
door.

ROBBER: Put glass on table; pick up gun with right hand; check gun.

SHERIFF: Wait; open door; see robber; (robber sees sheriff); go thru door.

ROBBER: Go to window; aim; Ąre; SHERIFF NICKED.

SHERIFF: Go to window; aim; Ąre; MISSED; go to door; go to window.

ROBBER: Go to door; aim; aim.

SHERIFF: Aim; Ąre; MISSED.

ROBBER: Fire; SHERIFF NICKED.

SHERIFF: Go to door; aim; Ąre; MISSED; go thru door; aim.

ROBBER: Aim; Ąre; MISSED; aim; Ąre; MISSED.

SHERIFF: Fire; MISSED; go to window; aim; Ąre; MISSED.

ROBBER: Aim; Ąre; MISSED; aim; Ąre; MISSED; aim; Ąre; SHERIFF NICKED.

SHERIFF: Aim; Ąre; ROBBER HIT.

ROBBER: Drop gun; robber dies.

SHERIFF: Put gun in holster; go to table; pick up glass with right hand (empty); take
glass from right hand with left hand; pick up bottle with right hand; pour;
put bottle on table; take glass from left hand with right hand; take a drink
from glass; take glass from right hand with left hand; pick up bottle with
right hand; pour; put bottle on table; take glass from left hand with right
hand; take a drink from glass; put glass on table; go to corner; pick up
money with right hand; go to door; go thru door; close door. CURTAIN.

3.6 SUMMARY 191

Saga #2. (The gun is in the right hand; the money is in the left hand; the glass is
on the table; the bottle is on the table; the holster is on the robber; the sheriff’s gun
is in the sheriff’s right hand; the sheriff’s holster is on the sheriff.)

ROBBER: (The robber is at the window.) Go to door; open door; go thru door;
close door; go to corner; put money down at corner; go to window; put
gun down at window; lean on window and look; lean on window and look;
go to corner; count money; go to table; pick up glass with right hand
(empty); take glass from right hand with left hand; pick up bottle with
right hand; pour; put bottle on table; take glass from left hand with right
hand; take a drink from glass; put glass on table; pick up bottle with right
hand; pour; go to corner; put bottle down at corner; go to window; pick
up gun with right hand; check gun; put gun in holster; go to table; pick
up glass with right hand; take a drink from glass; go to window; put glass
down at window.

SHERIFF: (The sheriff is at the window.) See robber; (robber sees sheriff); go to
door.

ROBBER: Take gun from holster with right hand; check gun; go to door; check gun;
put gun down at door.

SHERIFF: Open door; see robber; (robber sees sheriff); go thru door; go to window.

ROBBER: Pick up gun with right hand.

SHERIFF: Go to table.

ROBBER: Aim; Ąre; MISSED; aim; Ąre; SHERIFF HIT; blow out barrel; put gun in
holster.

SHERIFF: Drop gun; sheriff dies.

ROBBER: Go to corner; pick up money with right hand; go to door; go thru door;
close door. CURTAIN.

A careful reading of these scripts reveals the highly intense drama present here.
The computer program was careful to keep track of the locations of each player, the
contents of his hands, etc. Actions taken by the players were random, governed by
certain probabilities; the probability of a foolish action was increased depending on
how much that player had had to drink and on how often he had been nicked by a
shot. The reader will be able to deduce further properties of the program by studying
the sample scripts.

192 RANDOM NUMBERS 3.6

Of course, even the best scripts are rewritten before they are produced, and this
is especially true when an inexperienced writer has prepared the original draft. Here
are the scripts just as they were actually used in the show:

Saga #1. Music up.

MS Robber peering thru window of shack.

CU Robber’s face.

MS Robber entering shack.

CU Robber sees whiskey bottle on table.

CU Sheriff outside shack.

MS Robber sees sheriff.

LS Sheriff in doorway over shoulder of robber, both draw.

MS Sheriff drawing gun.

LS Shooting it out. Robber gets shot.

MS Sheriff picking up money bags.

MS Robber staggering.

MS Robber dying. Falls across table, after trying to take last shot at sheriff.

MS Sheriff walking thru doorway with money.

MS of robber’s body, now still, lying across table top. Camera dollies back. (Laughter)

Saga #2. Music up.

CU of window. Robber appears.

MS Robber entering shack with two sacks of money.

MS Robber puts money bags on barrel.

CU Robber Ů sees whiskey on table.

MS Robber pouring himself a drink at table. Goes to count money. Laughs.

MS Sheriff outside shack.

MS thru window.

MS Robber sees sheriff thru window.

LS Sheriff entering shack. Draw. Shoot it out.

CU Sheriff. Writhing from shot.

M/2 shot Sheriff staggering to table for a drink . . . falls dead.

MS Robber leaves shack with money bags.*

[Note: CU = “close upŤ, MS = “medium shotŤ, etc. The details above were kindly
furnished to the author by Thomas H. Wolf, producer of the television show, who sug-
gested the idea of a computer-written playlet in the Ąrst place, and also by Douglas T.
Ross and Harrison R. Morse who produced the computer program.]

In the summer of 1952, Christopher Strachey had used the hardware random
number generator of the Ferranti Mark I to compose the following letter:

Honey Dear

My sympathetic affection beautifully attracts your affectionate enthusi-

asm. You are my loving adoration: my breathless adoration. My fellow

feeling breathlessly hopes for your dear eagerness. My lovesick adoration

cherishes your avid ardour.

Yours wistfully,

M. U. C.

[Encounter 3 (1954), 4, 25Ű31; another example appears in the article on Electronic
Computers in the 64th edition of Pears Cyclopedia (London, 1955), 190Ű191.]

* c⃝ 1962 by Columbia Broadcasting System, Inc. All Rights Reserved. Used by permission.
For further information, see J. E. Pfeiffer, The Thinking Machine (New York: J. B. Lippin-
cott, 1962).

3.6 SUMMARY 193

The reader will undoubtedly have many ideas about how to teach a computer to
do creative writing; and that is the point of this exercise.

x 6. [40] Look at the subroutine library of each computer installation in your organi-
zation, and replace the random number generators by good ones. Try to avoid being
too shocked at what you Ąnd.

x 7. [M40] A programmer decided to encipher his Ąles by using a linear congruential
sequence ⟨Xn⟩ of period 232 generated by (1) withm = 232. He took the most signiĄcant
bits ⌊Xn/216⌋ and exclusive-or’ed them onto his data, but kept the parameters a, c,
and X0 secret.

Show that this isn’t a very secure scheme, by devising a method that deduces the
multiplier a and the Ąrst difference X1−X0 in a reasonable amount of time, given only
the values of ⌊Xn/216⌋ for 0 ≤ n < 150.

8. [M15] Suggest a good way to test whether an implementation of linear congruen-
tial generators is working properly.

9. [HM32] Let X0, X1, . . . be the numbers produced by ran array after ran start

has initialized the generation process with seed s, and consider the polynomials

Pn(z) = Xn+62z
99 +Xn+61z

98 + · · ·+Xnz
37 +Xn+99z

36 + · · ·+Xn+64z +Xn+63.

a) Prove that Pn(z) ≡ zh(s)−n (modulo 2 and z100 +z37 +1), for some exponent h(s).
b) Express h(s) in terms of the binary representation of s.
c) Prove that if X ′

0, X ′
1, . . . is the sequence of numbers produced by the same routines

from the seed s′ ̸= s, we have Xn+k ≡ X ′
n′+k (modulo 2) for 0 ≤ k < 100 only if

|n− n′| ≥ 270 − 1.

10. [22] Convert the C code for ran array and ran start to FORTRAN 77 subroutines
that generate exactly the same sequences of numbers.

x 11. [M25] Assuming that Ćoating point arithmetic on numbers of type double is
properly rounded in the sense of Section 4.2.2 (hence exact when the values are suitably
restricted), convert the C routines ran array and ran start to similar programs that
deliver double-precision random fractions in the range [0 . . 1), instead of 30-bit integers.

x 12. [M21] What random number generator would be suitable for a minicomputer that
does arithmetic only on integers in the range [−32768 . . 32767]?

13. [M25] Compare the subtract-with-borrow generators of exercise 3.2.1.1Ű12 to the
lagged Fibonacci generators implemented in the programs of this section.

x 14. [M35] (The future versus the past.) Let Xn = (Xn−37 + Xn−100) mod 2 and
consider the sequence

⟨Y0, Y1, . . . ⟩ = ⟨X0, X1, . . . , X99, X200, X201, . . . , X299, X400, X401, . . . , X499, X600, . . . ⟩.
(This sequence corresponds to calling ran array(a, 200) repeatedly and looking only
at the least signiĄcant bits, after discarding half of the elements.) The following
experiment was repeated one million times using the sequence ⟨Yn⟩: “Generate 100
random bits; then if 60 or more of them were 0, generate one more bit and print it.Ť
The result was to print 14527 0s and 13955 1s; but the probability that 28482 random
bits contain at most 13955 1s is only about .000358.

Give a mathematical explanation why so many 0s were output.

x 15. [25] Write C code that makes it convenient to generate the random integers
obtained from ran array by discarding all but the Ąrst 100 of every 1009 elements,
as recommended in the text.

CHAPTER FOUR

ARITHMETIC

Seeing there is nothing (right well beloued Students in the Mathematickes)

that is so troublesome to Mathematicall practise, nor that doth more molest

and hinder Calculators, then the Multiplications, Diuisions, square and

cubical Extractions of great numbers, which besides the tedious

expence of time, are for the most part subiect to many slippery errors.

I began therefore to consider in my minde, by what certaine and

ready Art I might remoue those hindrances.

Ů JOHN NEPAIR [NAPIER] (1616)

I do hate sums. There is no greater mistake than to call arithmetic an exact

science. There are . . . hidden laws of Number which it requires a mind

like mine to perceive. For instance, if you add a sum from the bottom up,

and then again from the top down, the result is always different.

Ů M. P. LA TOUCHE (1878)

I cannot conceive that anybody will require multiplications at the rate

of 40,000, or even 4,000 per hour; such a revolutionary change as the

octonary scale should not be imposed upon mankind in general

for the sake of a few individuals.

Ů F. H. WALES (1936)

Most numerical analysts have no interest in arithmetic.

Ů B. PARLETT (1979)

The chief purpose of this chapter is to make a careful study of the four
basic processes of arithmetic: addition, subtraction, multiplication, and divi-
sion. Many people regard arithmetic as a trivial thing that children learn and
computers do, but we will see that arithmetic is a fascinating topic with many
interesting facets. It is important to make a thorough study of efficient meth-
ods for calculating with numbers, since arithmetic underlies so many computer
applications.

Arithmetic is, in fact, a lively subject that has played an important part in
the history of the world, and it still is undergoing rapid development. In this
chapter, we shall analyze algorithms for doing arithmetic operations on many
types of quantities, such as “Ćoating pointŤ numbers, extremely large numbers,
fractions (rational numbers), polynomials, and power series; and we will also
discuss related topics such as radix conversion, factoring of numbers, and the
evaluation of polynomials.

194

4.1 POSITIONAL NUMBER SYSTEMS 195

4.1. POSITIONAL NUMBER SYSTEMS

The way we do arithmetic is intimately related to the way we represent the
numbers we deal with, so it is appropriate to begin our study of the subject with
a discussion of the principal means for representing numbers.

Positional notation using base b (or radix b) is deĄned by the rule

(. . . a3a2a1a0.a−1a−2 . . .)b
= · · ·+ a3b

3 + a2b
2 + a1b

1 + a0 + a−1b
−1 + a−2b

−2 + · · · ; (1)

for example, (520.3)6 = 5 · 62 + 2 · 61 + 0 + 3 · 6−1 = 192 1
2 . Our conventional

decimal number system is, of course, the special case when b is ten, and when
the a’s are chosen from the “decimal digitsŤ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; in this
case the subscript b in (1) may be omitted.

The simplest generalizations of the decimal number system are obtained
when we take b to be an integer greater than 1 and when we require the a’s to
be integers in the range 0 ≤ ak < b. This gives us the standard binary (b = 2),
ternary (b = 3), quaternary (b = 4), quinary (b = 5), . . . number systems. In
general, we could take b to be any nonzero number, and we could choose the a’s
from any speciĄed set of numbers; this leads to some interesting situations, as
we shall see.

The dot that appears between a0 and a−1 in (1) is called the radix point.
(When b = 10, it is also called the decimal point, and when b = 2, it is sometimes
called the binary point, etc.) Continental Europeans often use a comma instead
of a dot to denote the radix point; the English formerly used a raised dot.

The a’s in (1) are called the digits of the representation. A digit ak for large k
is often said to be “more signiĄcantŤ than the digits ak for small k; accordingly,
the leftmost or “leadingŤ digit is referred to as the most signiĄcant digit and the
rightmost or “trailingŤ digit is referred to as the least signiĄcant digit. In the
standard binary system the binary digits are often called bits; in the standard
hexadecimal system (radix sixteen) the hexadecimal digits zero through Ąfteen
are usually denoted by

either 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f
or 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

The historical development of number representations is a fascinating story,
since it parallels the development of civilization itself. We would be going far
aĄeld if we were to examine this history in minute detail, but it will be instructive
to look at its main features here.

The earliest forms of number representations, still found in primitive cul-
tures, are generally based on groups of Ąngers, piles of stones, etc., usually with
special conventions about replacing a larger pile or group of, say, Ąve or ten
objects by one object of a special kind or in a special place. Such systems lead
naturally to the earliest ways of representing numbers in written form, as in
the systems of Babylonian, Egyptian, Greek, Chinese, and Roman numerals;
but such notations are comparatively inconvenient for performing arithmetic
operations except in the simplest cases.

196 ARITHMETIC 4.1

During the twentieth century, historians of mathematics have made exten-
sive studies of early cuneiform tablets found by archæologists in the Middle
East. These studies show that the Babylonian people actually had two distinct
systems of number representation: The numbers used in everyday business
transactions were written in a notation based on grouping by tens, hundreds, etc.;
this notation was inherited from earlier Mesopotamian civilizations, and large
numbers were seldom required. When more difficult mathematical problems
were considered, however, Babylonian mathematicians made extensive use of
a sexagesimal (radix sixty) positional notation that was highly developed at
least as early as 1750 B.C. This notation was unique in that it was actually a
Ćoating point form of representation with exponents omitted; the proper scale
factor or power of sixty was to be supplied by the context, so that, for example,
the numbers 2, 120, 7200, and 1

30 were all written in an identical manner.
The notation was especially convenient for multiplication and division, using
auxiliary tables, since radix-point alignment had no effect on the answer. As
examples of this Babylonian notation, consider the following excerpts from early
tables: The square of 30 is 15 (which may also be read, “The square of 1

2 is 1
4 Ť);

the reciprocal of 81 = (1 21)60 is (44 26 40)60; and the square of the latter is
(32 55 18 31 6 40)60. The Babylonians had a symbol for zero, but because of
their “Ćoating pointŤ philosophy, it was used only within numbers, not at the
right end to denote a scale factor. For the interesting story of early Babylonian
mathematics, see O. Neugebauer, The Exact Sciences in Antiquity (Princeton,
N. J.: Princeton University Press, 1952), and B. L. van der Waerden, Science
Awakening, translated by A. Dresden (Groningen: P. Noordhoff, 1954); see also
D. E. Knuth, CACM 15 (1972), 671Ű677; 19 (1976), 108.

Fixed point positional notation was apparently Ąrst conceived by the Maya
Indians in central America some 2000 years ago; their radix-20 system was highly
developed, especially in connection with astronomical records and calendar dates.
They began to use a written sign for zero about A.D. 200. But the Spanish con-
querors destroyed nearly all of the Maya books on history and science, so we have
comparatively little knowledge about the degree of sophistication that native
Americans had reached in arithmetic. Special-purpose multiplication tables have
been found, but no examples of division are known. [See J. Eric S. Thompson,
Contrib. to Amer. Anthropology and History 7 (Carnegie Inst. of Washington,
1941), 37Ű67; J. Justeson, “Pratiche di calcolo nell’antica mesoamerica,Ť Storia
della Scienza 2 (Rome: Istituto della Enciclopedia Italiana, 2001), 976Ű990.]

Several centuries before Christ, the Greek people employed an early form
of the abacus to do their arithmetical calculations, using sand and/or pebbles
on a board that had rows or columns corresponding in a natural way to our
decimal system. It is perhaps surprising to us that the same positional notation
was never adapted to written forms of numbers, since we are so accustomed to
decimal reckoning with pencil and paper; but the greater ease of calculating by
abacus (since handwriting was not a common skill, and since abacus users need
not memorize addition and multiplication tables) probably made the Greeks feel
it would be silly even to suggest that computing could be done better on “scratch

4.1 POSITIONAL NUMBER SYSTEMS 197

paper.Ť At the same time Greek astronomers did make use of a sexagesimal
positional notation for fractions, which they had learned from the Babylonians.

Our decimal notation, which differs from the more ancient forms primarily
because of its Ąxed radix point, together with its symbol for zero to mark an
empty position, was developed Ąrst in India within the Hindu culture. The exact
date when this notation Ąrst appeared is quite uncertain; about A.D. 600 seems
to be a good guess. Hindu science was highly developed at that time, particularly
in astronomy. The earliest known Hindu manuscripts that show decimal notation
have numbers written backwards (with the most signiĄcant digit at the right),
but soon it became standard to put the most signiĄcant digit at the left.

The Hindu principles of decimal arithmetic were brought to Persia about
A.D. 750, as several important works were translated into Arabic; a picturesque
account of this development is given in a Hebrew document by Abraham Ibn
Ezra, which has been translated into English in AMM 25 (1918), 99Ű108. Not
long after this, al-Khwārizmı̄ wrote his Arabic textbook on the subject. (As
noted in Chapter 1, our word “algorithmŤ comes from al-Khwārizmı̄’s name.)
His work was translated into Latin and was a strong inĆuence on Leonardo
Pisano (Fibonacci), whose book on arithmetic (A.D. 1202) played a major role
in the spreading of Hindu-Arabic numerals into Europe. It is interesting to note
that the left-to-right order of writing numbers was unchanged during these two
transitions, although Arabic is written from right to left while Hindu and Latin
scholars generally wrote from left to right. A detailed account of the subsequent
propagation of decimal numeration and arithmetic into all parts of Europe during
the period 1200Ű1600 has been given by David Eugene Smith in his History of
Mathematics 1 (Boston: Ginn and Co., 1923), Chapters 6 and 8.

Decimal notation was applied at Ąrst only to integer numbers, not to frac-
tions. Arabic astronomers, who required fractions in their star charts and other
tables, continued to use the notation of Ptolemy (the famous Greek astronomer),
a notation based on sexagesimal fractions. This system still survives today in
our trigonometric units of degrees, minutes, and seconds, and also in our units
of time, as a remnant of the original Babylonian sexagesimal notation. Early
European mathematicians also used sexagesimal fractions when dealing with
noninteger numbers; for example, Fibonacci gave the value

1◦ 22′ 7′′ 42′′′ 33IV 4V 40VI

as an approximation to the root of the equation x3 + 2x2 + 10x = 20. (The
correct answer is 1◦ 22′ 7′′ 42′′′ 33IV 4V 38VI 30VII 50VIII 15IX 43X)

The use of decimal notation also for tenths, hundredths, etc., in a similar
way seems to be a comparatively minor change; but, of course, it is hard to
break with tradition, and sexagesimal fractions have an advantage over decimal
fractions because numbers such as 1

3 can be expressed exactly, in a simple way.
Chinese mathematicians Ů who never used sexagesimals Ů were apparently

the Ąrst people to work with the equivalent of decimal fractions, although their
numeral system (lacking zero) was not originally a positional number system in
the strict sense. Chinese units of weights and measures were decimal, so that

198 ARITHMETIC 4.1

Tsu Ch’ung-Chih (who died in A.D. 500 or 501) was able to express an approxi-
mation to π in the following form:

3 chang, 1 ch’in, 4 ts’un, 1 fen, 5 li, 9 hao, 2 miao, 7 hu.
Here chang, . . . , hu are units of length; 1 hu (the diameter of a silk thread) equals
1/10 miao, etc. The use of such decimal-like fractions was fairly widespread in
China after about 1250.

An embryonic form of truly positional decimal fractions appeared in a 10th-
century arithmetic text, written in Damascus by an obscure mathematician
named al-Uql̄ıdis̄ı (“the EuclideanŤ). He occasionally marked the place of a
decimal point, for example in connection with a problem about compound in-
terest, the computation of 135 times (1.1)n for 1 ≤ n ≤ 5. [See A. S. Saidan,
The Arithmetic of al-Uql̄ıdis̄ı (Dordrecht: D. Reidel, 1975), 110, 114, 343, 355,
481Ű485.] But he did not develop the idea very fully, and his trick was soon
forgotten. Al-Samaw’al of Baghdad and Baku, writing in 1172, understood that√

10 = 3.162277 . . . , but he had no convenient way to write such approximations
down. Several centuries passed before decimal fractions were reinvented by a Per-
sian mathematician, al-Kāsh̄ı, who died in 1429. Al-Kāsh̄ı was a highly skillful
calculator, who gave the value of 2π as follows, correct to 16 decimal places:

integer fractions

0 6 2 8 3 1 8 5 3 0 7 1 7 9 5 8 6 5

This was by far the best approximation to π known until Ludolph van Ceulen
laboriously calculated 35 decimal places during the period 1586Ű1610.

Decimal fractions began to appear sporadically in Europe; for example, a
so-called “Turkish methodŤ was used to compute 153.5 × 16.25 = 2494.375.
Giovanni Bianchini developed them further, with applications to surveying, prior
to 1450; but like al-Uql̄ıdis̄ı, his work seems to have had little inĆuence. Christof
Rudolff and François Viète suggested the idea again in 1525 and 1579. Finally,
an arithmetic text by Simon Stevin, who independently hit on the idea of decimal
fractions in 1585, became popular. Stevin’s work, and the discovery of logarithms
soon afterwards, made decimal fractions commonplace in Europe during the
17th century. [For further remarks and references, see D. E. Smith, History of
Mathematics 2 (1925), 228Ű247; V. J. Katz, A History of Mathematics (1993),
225Ű228, 345Ű348; and G. Rosińska, Quart. J. Hist. Sci. Tech. 40 (1995), 17Ű32.]

The binary system of notation has its own interesting history. Many prim-
itive tribes in existence today are known to use a binary or “pairŤ system of
counting (making groups of two instead of Ąve or ten), but they do not count in
a true radix-2 system, since they do not treat powers of 2 in a special manner.
See The Diffusion of Counting Practices by Abraham Seidenberg, Univ. of Calif.
Publ. in Math. 3 (1960), 215Ű300, for interesting details about primitive number
systems. Another “primitiveŤ example of an essentially binary system is the
conventional musical notation for expressing rhythms and durations of time.

Nondecimal number systems were discussed in Europe during the seven-
teenth century. For many years astronomers had occasionally used sexagesimal

4.1 POSITIONAL NUMBER SYSTEMS 199

arithmetic both for the integer and the fractional parts of numbers, primarily
when performing multiplication [see John Wallis, Treatise of Algebra (Oxford:
1685), 18Ű22, 30]. The fact that any integer greater than 1 could serve as radix
was apparently Ąrst stated in print by Blaise Pascal in De Numeris Multiplicibus,
which was written about 1658 [see Pascal’s Œuvres Complètes (Paris: Éditions
du Seuil, 1963), 84Ű89]. Pascal wrote, “Denaria enim ex instituto hominum,
non ex necessitate naturæ ut vulgus arbitratur, et sane satis inepte, posita estŤ;
i.e., “The decimal system has been established, somewhat foolishly to be sure,
according to man’s custom, not from a natural necessity as most people think.Ť
He stated that the duodecimal (radix twelve) system would be a welcome change,
and he gave a rule for testing a duodecimal number for divisibility by nine.
Erhard Weigel tried to drum up enthusiasm for the quaternary (radix four)
system in a series of publications beginning in 1673. A detailed discussion of
radix-twelve arithmetic was given by Joshua Jordaine, Duodecimal Arithmetick
(London: 1687).

Although decimal notation was almost exclusively used for arithmetic during
that era, other systems of weights and measures were rarely if ever based on
multiples of 10, and business transactions required a good deal of skill in adding
quantities such as pounds, shillings, and pence. For centuries merchants had
therefore learned to compute sums and differences of quantities expressed in pe-
culiar units of currency, weights, and measures; thus they were doing arithmetic
in nondecimal number systems. The common units of liquid measure in England,
dating from the 13th century or earlier, are particularly noteworthy:

2 gills = 1 chopin
2 chopins = 1 pint

2 pints = 1 quart
2 quarts = 1 pottle
2 pottles = 1 gallon
2 gallons = 1 peck

2 pecks = 1 demibushel

2 demibushels = 1 bushel or Ąrkin
2 Ąrkins = 1 kilderkin

2 kilderkins = 1 barrel
2 barrels = 1 hogshead

2 hogsheads = 1 pipe
2 pipes = 1 tun

Quantities of liquid expressed in gallons, pottles, quarts, pints, etc. were essen-
tially written in binary notation. Perhaps the true inventors of binary arithmetic
were British wine merchants!

The Ąrst known appearance of pure binary notation was about 1605 in some
unpublished manuscripts of Thomas Harriot (1560Ű1621). Harriot was a creative
man who Ąrst became famous by coming to America as a representative of Sir
Walter Raleigh. He invented (among other things) a notation like that now used
for “less thanŤ and “greater thanŤ relations; but for some reason he chose not
to publish many of his discoveries. Excerpts from his notes on binary arithmetic
have been reproduced by John W. Shirley, Amer. J. Physics 19 (1951), 452Ű454;
Harriot’s discovery of binary notation was Ąrst cited by Frank Morley in The
ScientiĄc Monthly 14 (1922), 60Ű66.

The Ąrst published treatment of the binary system appeared in the work of
a prominent Cistercian bishop, Juan Caramuel de Lobkowitz, Mathesis Biceps 1

200 ARITHMETIC 4.1

(Campaniæ: 1670), 45Ű48. Caramuel discussed the representation of numbers in
radices 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, and 60 at some length, but gave no examples
of arithmetic operations in nondecimal systems except in the sexagesimal case.

Ultimately, an article by G. W. Leibniz [Mémoires de l’Académie Royale des
Sciences (Paris, 1703), 110Ű116], which illustrated binary addition, subtraction,
multiplication, and division, really brought binary notation into the limelight,
and his article is usually referred to as the birth of radix-2 arithmetic. Leibniz
later referred to the binary system quite frequently. He did not recommend it for
practical calculations, but he stressed its importance in number-theoretical inves-
tigations, since patterns in number sequences are often more apparent in binary
notation than they are in decimal; he also saw a mystical signiĄcance in the fact
that everything is expressible in terms of zero and one. Leibniz’s unpublished
manuscripts show that he had been interested in binary notation as early as
1679, when he referred to it as a “bimalŤ system (analogous to “decimalŤ).

A careful study of Leibniz’s early work with binary numbers has been made
by Hans J. Zacher, Die Hauptschriften zur Dyadik von G. W. Leibniz (Frankfurt
am Main: Klostermann, 1973). Zacher points out that Leibniz was familiar with
John Napier’s so-called “local arithmetic,Ť a way for calculating with stones
that amounts to using a radix-2 abacus. [Napier had published the idea of local
arithmetic as part three of his little book Rabdologiæ in 1617; it may be called the
world’s Ąrst “binary computer,Ť and it is surely the world’s cheapest, although
Napier felt that it was more amusing than practical. See Martin Gardner’s
discussion in Knotted Doughnuts and Other Mathematical Entertainments (New
York: Freeman, 1986), Chapter 8.]

It is interesting to note that the important concept of negative powers to the
right of the radix point was not yet well understood at that time. Leibniz asked
James Bernoulli to calculate π in the binary system, and Bernoulli “solvedŤ the
problem by taking a 35-digit approximation to π, multiplying it by 1035, and
then expressing this integer in the binary system as his answer. On a smaller
scale this would be like saying that π ≈ 3.14, and (314)10 = (100111010)2;
hence π in binary is 100111010! [See Leibniz, Math. Schriften, edited by C. I.
Gerhardt, 3 (Halle: 1855), 97; two of the 118 bits in the answer are incorrect, due
to computational errors.] The motive for Bernoulli’s calculation was apparently
to see whether any simple pattern could be observed in this representation of π.

Charles XII of Sweden, whose talent for mathematics perhaps exceeded that
of all other kings in the history of the world, hit on the idea of radix-8 arithmetic
about 1717. This was probably his own invention, although he had met Leibniz
brieĆy in 1707. Charles felt that radix 8 or 64 would be more convenient
for calculation than the decimal system, and he considered introducing octal
arithmetic into Sweden; but he died in battle before decreeing such a change.
[See The Works of Voltaire 21 (Paris: E. R. DuMont, 1901), 49; E. Swedenborg,
Gentleman’s Magazine 24 (1754), 423Ű424.]

Octal notation was proposed also in colonial America before 1750, by the
Rev. Hugh Jones, professor at the College of William and Mary [see Gentleman’s
Magazine 15 (1745), 377Ű379; H. R. Phalen, AMM 56 (1949), 461Ű465].

4.1 POSITIONAL NUMBER SYSTEMS 201

More than a century later, a prominent Swedish-American civil engineer
named John W. Nystrom decided to carry Charles XII’s plans a step further,
by devising a complete system of numeration, weights, and measures based on
radix-16 arithmetic. He wrote, “I am not afraid, or do not hesitate, to advocate a
binary system of arithmetic and metrology. I know I have nature on my side; if I
do not succeed to impress upon you its utility and great importance to mankind,
it will reĆect that much less credit upon our generation, upon our scientiĄc men
and philosophers.Ť Nystrom devised special means for pronouncing hexadecimal
numbers; for example, (C0160)16 was to be read “vybong, bysanton.Ť His entire
system was called the Tonal System, and it is described in J. Franklin Inst. 46
(1863), 263Ű275, 337Ű348, 402Ű407. A similar system, but using radix 8, was
worked out by Alfred B. Taylor [Proc. Amer. Pharmaceutical Assoc. 8 (1859),
115Ű216; Proc. Amer. Philosophical Soc. 24 (1887), 296Ű366]. Increased use of
the French (metric) system of weights and measures prompted extensive debate
about the merits of decimal arithmetic during that era; indeed, octal arithmetic
was even being proposed in France [J. D. Collenne, Le Système Octaval (Paris:
1845); Aimé Mariage, Numération par Huit (Paris: Le Nonnant, 1857)].

The binary system was well known as a curiosity ever since Leibniz’s time,
and about 20 early references to it have been compiled by R. C. Archibald
[AMM 25 (1918), 139Ű142]. It was applied chieĆy to the calculation of powers,
as explained in Section 4.6.3, and to the analysis of certain games and puzzles.
Giuseppe Peano [Atti della R. Accademia delle Scienze di Torino 34 (1898), 47Ű
55] used binary notation as the basis of a “logicalŤ character set of 256 symbols.
Joseph Bowden [Special Topics in Theoretical Arithmetic (Garden City: 1936),
49] gave his own system of nomenclature for hexadecimal numbers.

The book History of Binary and Other Nondecimal Numeration by Anton
Glaser (Los Angeles: Tomash, 1981) contains an informative and nearly complete
discussion of the development of binary notation, including English translations
of many of the works cited above [see Historia Math. 10 (1983), 236Ű243].

Much of the recent history of number systems is connected with the develop-
ment of calculating machines. Charles Babbage’s notebooks for 1838 show that
he considered using nondecimal numbers in his Analytical Engine [see M. V.
Wilkes, Historia Math. 4 (1977), 421]. Increased interest in mechanical devices
for arithmetic, especially for multiplication, led several people in the 1930s to
consider the binary system for this purpose. A particularly delightful account of
such activity appears in the article “Binary CalculationŤ by E. William Phillips
[Journal of the Institute of Actuaries 67 (1936), 187Ű221] together with a record
of the discussion that followed a lecture he gave on the subject. Phillips began by
saying, “The ultimate aim [of this paper] is to persuade the whole civilized world
to abandon decimal numeration and to use octonal [that is, radix 8] numeration
in its place.Ť

Modern readers of Phillips’s article will perhaps be surprised to discover that
a radix-8 number system was properly referred to as “octonaryŤ or “octonal,Ť
according to all dictionaries of the English language at that time, just as the
radix-10 number system is properly called either “denaryŤ or “decimalŤ; the

202 ARITHMETIC 4.1

word “octalŤ did not appear in English language dictionaries until 1961, and it
apparently originated as a term for the base of a certain class of vacuum tubes.
The word “hexadecimal,Ť which has crept into our language even more recently,
is a mixture of Greek and Latin stems; more proper terms would be “senidenaryŤ
or “sedecimalŤ or even “sexadecimal,Ť but the latter is perhaps too risqué for
computer programmers.

The comment by Mr. Wales that is quoted at the beginning of this chapter
has been taken from the discussion printed with Phillips’s paper. Another man
who attended the same lecture objected to the octal system for business purposes:
“5% becomes 3.

.
146

.
3 per 64, which sounds rather horrible.Ť

Phillips got the inspiration for his proposals from an electronic circuit that
was capable of counting in binary [C. E. Wynn-Williams, Proc. Roy. Soc. London
A136 (1932), 312Ű324]. Electromechanical and electronic circuitry for general
arithmetic operations was developed during the late 1930s, notably by John V.
Atanasoff and George R. Stibitz in the U.S.A., L. Couffignal and R. Valtat in
France, Helmut Schreyer and Konrad Zuse in Germany. All of these inventors
used the binary system, although Stibitz later developed excess-3 binary-coded-
decimal notation. A fascinating account of these early developments, including
reprints and translations of important contemporary documents, appears in
Brian Randell’s book The Origins of Digital Computers (Berlin: Springer, 1973).

The Ąrst American high-speed computers, built in the early 1940s, used
decimal arithmetic. But in 1946, an important memorandum by A. W. Burks,
H. H. Goldstine, and J. von Neumann, in connection with the design of the Ąrst
stored-program computers, gave detailed reasons for making a radical departure
from tradition and using base-two notation [see John von Neumann, Collected
Works 5, 41Ű65]. Since then binary computers have multiplied. After a dozen
years of experience with binary machines, a discussion of the relative advantages
and disadvantages of radix-2 notation was given by W. Buchholz in his paper
“Fingers or Fists?Ť [CACM 2, 12 (December 1959), 3Ű11].

The MIX computer used in this book has been deĄned so that it can be
either binary or decimal. It is interesting to note that nearly all MIX programs
can be expressed without knowing whether binary or decimal notation is being
used Ů even when we are doing calculations involving multiple-precision arith-
metic. Thus we Ąnd that the choice of radix does not signiĄcantly inĆuence
computer programming. (Noteworthy exceptions to this statement, however, are
the “BooleanŤ algorithms discussed in Section 7.1; see also Algorithm 4.5.2B.)

There are several different ways to represent negative numbers in a computer,
and this sometimes inĆuences the way arithmetic is done. In order to understand
these notations, let us Ąrst consider MIX as if it were a decimal computer; then
each word contains 10 digits and a sign, for example

−12345 67890. (2)

This is called the signed magnitude representation. Such a representation agrees
with common notational conventions, so it is preferred by many programmers. A
potential disadvantage is that minus zero and plus zero can both be represented,

4.1 POSITIONAL NUMBER SYSTEMS 203

while they usually should mean the same number; this possibility requires some
care in practice, although it turns out to be useful at times.

Most mechanical calculators that do decimal arithmetic use another system
called ten’s complement notation. If we subtract 1 from 00000 00000, we get
99999 99999 in this notation; in other words, no explicit sign is attached to the
number, and calculation is done modulo 1010. The number −12345 67890 would
appear as

87654 32110 (3)

in ten’s complement notation. It is conventional to regard any number whose
leading digit is 5, 6, 7, 8, or 9 as a negative value in this notation, although
with respect to addition and subtraction there is no harm in regarding (3) as
the number +87654 32110 if it is convenient to do so. Notice that there is no
problem of minus zero in such a system.

The major difference between signed magnitude and ten’s complement no-
tations in practice is that shifting right does not divide the magnitude by ten;
for example, the number −11 = . . . 99989, shifted right one, gives . . . 99998 = −2
(assuming that a shift to the right inserts “9Ť as the leading digit when the num-
ber shifted is negative). In general, x shifted right one digit in ten’s complement
notation will give ⌊x/10⌋, whether x is positive or negative.

A possible disadvantage of the ten’s complement system is the fact that
it is not symmetric about zero; the p-digit negative number 500 . . . 0 is not the
negative of any p-digit positive number. Thus it is possible that changing x to −x
will cause overĆow. (See exercises 7 and 31 for a discussion of radix-complement
notation with inĄnite precision.)

Another notation that has been used since the earliest days of high-speed
computers is called nines’ complement representation. In this case the number
−12345 67890 would appear as

87654 32109. (4)

Each digit of a negative number (−x) is equal to 9 minus the corresponding digit
of x. It is not difficult to see that the nines’ complement notation for a negative
number is always one less than the corresponding ten’s complement notation.
Addition and subtraction are done modulo 1010 − 1, which means that a carry
off the left end is to be added at the right end. (See the discussion of arithmetic
modulo w− 1 in Section 3.2.1.1.) Again there is a potential problem with minus
zero, since 99999 99999 and 00000 00000 denote the same value.

The ideas just explained for radix-10 arithmetic apply in a similar way to
radix-2 arithmetic, where we have signed magnitude, two’s complement, and
ones’ complement notations. Two’s complement arithmetic on n-bit numbers
is arithmetic modulo 2n; ones’ complement arithmetic is modulo 2n − 1. The
MIX computer, as used in the examples of this chapter, deals only with signed
magnitude arithmetic; however, alternative procedures for complement notations
are discussed in the accompanying text when it is important to do so.

Detail-oriented readers and copy editors should notice the position of the
apostrophe in terms like “two’s complementŤ and “ones’ complementŤ: A two’s

204 ARITHMETIC 4.1

complement number is complemented with respect to a single power of 2, while
a ones’ complement number is complemented with respect to a long sequence
of 1s. Indeed, there is also a “twos’ complement notation,Ť which has radix 3
and complementation with respect to (2 . . . 22)3.

Descriptions of machine language often tell us that a computer’s circuitry
is set up with the radix point at a particular place within each numeric word.
Such statements should usually be disregarded. It is better to learn the rules
concerning where the radix point will appear in the result of an instruction if
we assume that it lies in a certain place beforehand. For example, in the case
of MIX we could regard our operands either as integers with the radix point at
the extreme right, or as fractions with the radix point at the extreme left, or as
some mixture of these two extremes; the rules for the appearance of the radix
point after addition, subtraction, multiplication, or division are straightforward.

It is easy to see that there is a simple relation between radix b and radix bk:

(. . . a3a2a1a0.a−1a−2 . . .)b = (. . . A3A2A1A0.A−1A−2 . . .)bk , (5)

where
Aj = (akj+k−1 . . . akj+1akj)b;

see exercise 8. Thus we have simple techniques for converting at sight between,
say, binary and hexadecimal notation.

Many interesting variations on positional number systems are possible in
addition to the standard b-ary systems discussed so far. For example, we might
have numbers in base (−10), so that

(. . . a3a2a1a0.a−1a−2 . . .)−10

= · · ·+ a3(−10)3 + a2(−10)2 + a1(−10)1 + a0 + · · ·
= · · · − 1000a3 + 100a2 − 10a1 + a0 − 1

10a−1 + 1
100a−2 − · · · .

Here the individual digits satisfy 0 ≤ ak ≤ 9 just as in the decimal system. The
number 12345 67890 appears in the “negadecimalŤ system as

(1 93755 73910)−10, (6)

since the latter represents 10305070900 − 9070503010. It is interesting to note
that the negative of this number, −12345 67890, would be written

(28466 48290)−10, (7)

and, in fact, every real number whether positive or negative can be represented
without a sign in the −10 system.

Negative-base systems were Ąrst considered by Vittorio Grünwald [Giornale
di Matematiche di Battaglini 23 (1885), 203Ű221, 367], who explained how to
perform the four arithmetic operations in such systems; Grünwald also discussed
root extraction, divisibility tests, and radix conversion. However, his work seems
to have had no effect on other research, since it was published in a rather
obscure journal, and it was soon forgotten. The next publication about negative-
base systems was apparently by A. J. Kempner [AMM 43 (1936), 610Ű617],

4.1 POSITIONAL NUMBER SYSTEMS 205

who discussed the properties of noninteger radices and remarked in a footnote
that negative radices would be feasible too. After twenty more years the idea
was rediscovered again, this time by Z. Pawlak and A. Wakulicz [Bulletin de
l’Académie Polonaise des Sciences, Classe III, 5 (1957), 233Ű236; Série des
sciences techniques 7 (1959), 713Ű721], and also by L. Wadel [IRE Transactions
EC-6 (1957), 123]. Experimental computers called SKRZAT 1 and BINEG, which
used −2 as the radix of arithmetic, were built in Poland in the late 1950s;
see N. M. Blachman, CACM 4 (1961), 257; R. W. Marczyński, Ann. Hist.
Computing 2 (1980), 37Ű48. For further references see IEEE Transactions EC-
12 (1963), 274Ű277; Computer Design 6 (May 1967), 52Ű63. There is evidence
that the idea of negative bases occurred independently to quite a few people. For
example, D. E. Knuth had discussed negative-radix systems in 1955, together
with a further generalization to complex-valued bases, in a short paper submitted
to a “science talent searchŤ contest for high-school seniors.

The base 2i gives rise to a system called the “quater-imaginaryŤ number
system (by analogy with “quaternaryŤ), which has the unusual feature that every
complex number can be represented with the digits 0, 1, 2, and 3 without a sign.
[See D. E. Knuth, CACM 3 (1960), 245Ű247; 4 (1961), 355.] For example,

(11210.31)2i = 1 ·16 + 1 · (−8i)+ 2 · (−4)+ 1 · (2i)+ 3 · (− 1
2 i)+ 1(− 1

4) = 7 3
4 −7 1

2 i.

Here the number (a2n . . . a1a0.a−1 . . . a−2k)2i is equal to

(a2n . . . a2a0.a−2 . . . a−2k)−4 + 2i(a2n−1 . . . a3a1.a−1 . . . a−2k+1)−4,

so conversion to and from quater-imaginary notation reduces to conversion to and
from negative quaternary representation of the real and imaginary parts. The
interesting property of this system is that it allows multiplication and division
of complex numbers to be done in a fairly uniĄed manner without treating real
and imaginary parts separately. For example, we can multiply two numbers in
this system much as we do with any base, merely using a different carry rule:
Whenever a digit exceeds 3 we subtract 4 and carry −1 two columns to the left;
when a digit is negative, we add 4 to it and carry +1 two columns to the left.
The following example shows this peculiar carry rule at work:

1 2 2 3 1 [9− 10i]
× 1 2 2 3 1 [9− 10i]

1 2 2 3 1
1 0 3 2 0 2 1 3

1 3 0 2 2
1 3 0 2 2

1 2 2 3 1
0 2 1 3 3 3 1 2 1 [−19− 180i]

A similar system that uses just the digits 0 and 1 may be based on
√

2 i,
but this requires an inĄnite nonrepeating expansion for the simple number “iŤ
itself. Vittorio Grünwald proposed using the digits 0 and 1/

√
2 in odd-numbered

positions, to avoid such a problem; but that actually spoils the whole system [see
Commentari dell’Ateneo di Brescia (1886), 43Ű54].

206 ARITHMETIC 4.1

✾✾ ✾✾
✾✾ ✾✾

✾✾✾✾✾✾✾✾
✾✾✾✾✾✾✾✾

✾✾ ✾✾✾✾ ✾✾
✾✾ ✾✾✾✾ ✾✾

✾✾✾✾✾✾✾✾
✾✾✾✾✾✾✾✾

✾✾✾✾✾✾✾✾
✾✾✾✾✾✾✾✾

✾✾✾✾✾✾✾✾
✾✾✾✾✾✾✾✾

✾✾ ✾✾✾✾ ✾✾
✾✾ ✾✾✾✾ ✾✾

✾✾✾✾✾✾✾✾
✾✾✾✾✾✾✾✾

✾✾ ✾✾ ✾✾ ✾✾
✾✾ ✾✾ ✾✾ ✾✾

✾✾✾✾✾✾✾✾
✾✾✾✾✾✾✾✾

✾✾ ✾✾ ✾
✾✾ ✾✾ ✾✾

✾✾
✾✾

✾✾
✾✾

✾✾ ✾✾
✾✾ ✾✾

✾✾✾✾✾✾✾✾
✾✾✾✾✾✾✾✾

✾✾ ✾✾✾✾ ✾✾
✾✾ ✾✾✾✾ ✾✾

✾✾✾✾✾✾✾✾
✾✾✾✾✾✾✾✾

✾✾ ✾✾
✾✾ ✾✾

✾✾ ✾
✾✾

✾✾✾✾ ✾✾
✾✾✾✾ ✾✾

✾✾
✾✾

✻✼ ✻✼
✷✼ ✷✼

✻✻✹✵✷✻✹✶
✵✵✵✵✵✵✷✼

✹✶ ✵✵✵✶ ✻✼
✷✼ ✵✵✷✼ ✷✼

✹✵✵✵✷✻✹✶
✵✵✵✵✵✵✷✼

✻✼ ✻✼ ✻✻✹✵✵✵✵✶
✷✼ ✷✼ ✵✵✵✵✵✵✷✼

✻✻✹✵✷✻✹✵✷✻✹✵✵✵✵✶
✵✵✵✵✵✵✵✵✵✵✵✵✵✵✷✼

✹✶ ✵✵✵✵✵✵✵✵✵✵✵✶ ✻✼
✷✼ ✵✵✵✵✵✵✵✵✵✵✷✼ ✷✼

✹✵✵✵✵✵✵✵✵✵✵✵✷✻✹✶
✵✵✵✵✵✵✵✵✵✵✵✵✵✵✷✼

✻✻✹✵✵✵✵✶ ✵✶ ✵✶
✵✵✵✵✵✵✷✼ ✷✼ ✷✼

✻✻✹✵✵✵✵✶
✵✵✵✵✵✵✷✼

✹✶ ✵✵✵✶ ✻✼
✷✼ ✵✵✷✼ ✷✼

✹✵✵✵✷✻✹✶
✵✵✵✵✵✵✷✼

✹✶ ✵✶
✷✼ ✷✼

r
−1+i

r
−1

r
−1−i

r
+i

r
−i

r
+1+i

r
+1

r
+1−i

Fig. 1. The fractal set S called the “twindragon.Ť

Another “binaryŤ complex number system may be obtained by using the
base i− 1, as suggested by W. Penney [JACM 12 (1965), 247Ű248]:

(. . . a4a3a2a1a0.a−1 . . .)i−1

= · · · − 4a4 + (2i+2)a3 − 2ia2 + (i−1)a1 + a0 − 1
2 (i+1)a−1 + · · · .

In this system, only the digits 0 and 1 are needed. One way to demonstrate that
every complex number has such a representation is to consider the interesting
set S shown in Fig. 1; this set is, by deĄnition, all points that can be written as

k≥1ak(i− 1)−k, for an inĄnite sequence a1, a2, a3, . . . of zeros and ones. It is
also known as the “twindragon fractalŤ [see M. F. Barnsley, Fractals Everywhere,
second edition (Academic Press, 1993), 306, 310]. Figure 1 shows that S can be
decomposed into 256 pieces congruent to 1

16S. Notice that if the diagram of S
is rotated counterclockwise by 135◦, we obtain two adjacent sets congruent to

4.1 POSITIONAL NUMBER SYSTEMS 207

(1/
√

2)S, because (i− 1)S = S ∪ (S + 1). For details of a proof that S contains
all complex numbers that are of sufficiently small magnitude, see exercise 18.

Perhaps the prettiest number system of all is the balanced ternary notation,
which consists of radix-3 representation using −1, 0, and +1 as “tritsŤ (ternary
digits) instead of 0, 1, and 2. If we let the symbol 1 stand for −1, we have the
following examples of balanced ternary numbers:

Balanced ternary Decimal

1 0 1 8
1 1 1 0.1 1 32 5

9

1 1 1 0.1 1 −32 5
9

1 1 1 0 −33
0.1 1 1 1 1 . . . 1

2

One way to Ąnd the representation of a number in the balanced ternary
system is to start by representing it in ordinary ternary notation; for example,

208.3 = (21201.022002200220 . . .)3.

(A very simple pencil-and-paper method for converting to ternary notation is
given in exercise 4.4Ű12.) Now add the inĄnite number . . . 11111.11111 . . . in
ternary notation; we obtain, in the example above, the inĄnite number

(. . . 11111210012.210121012101 . . .)3.

Finally, subtract . . . 11111.11111 . . . by decrementing each digit; we get

208.3 = (101101.101010101010 . . .)3. (8)

This process may clearly be made rigorous if we replace the artiĄcial inĄnite
number . . . 11111.11111 . . . by a number with suitably many ones.

The balanced ternary number system has many pleasant properties:

a) The negative of a number is obtained by interchanging 1 and 1.

b) The sign of a number is given by its most signiĄcant nonzero trit, and in
general we can compare any two numbers by reading them from left to right
and using lexicographic order, as in the decimal system.

c) The operation of rounding to the nearest integer is identical to truncation;
in other words, we simply delete everything to the right of the radix point.

Addition in the balanced ternary system is quite simple, using the table

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1
1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1

10 11 1 11 1 0 1 0 1 11 1 0 1 0 1 0 1 11 1 0 1 0 1 11 1 11 10

(The three inputs to the addition are the digits of the numbers to be added and
the carry digit.) Subtraction is negation followed by addition. Multiplication

208 ARITHMETIC 4.1

also reduces to negation and addition, as in the following example:

1 1 0 1 [17]
× 1 1 0 1 [17]

1 1 0 1
1 1 0 1

1 1 0 1
0 1 1 1 1 0 1 [289]

Representation of numbers in the balanced ternary system is implicitly
present in a famous mathematical puzzle, commonly called “Bachet’s problem
of weightsŤ Ů although it was already stated by Fibonacci four centuries before
Bachet wrote his book, and by T. abar̄ı in Persia more than 100 years before Fi-
bonacci. [See W. Ahrens, Mathematische Unterhaltungen und Spiele 1 (Leipzig:
Teubner, 1910), Section 3.4; H. Hermelink, Janus 65 (1978), 105Ű117.] Positional
number systems with negative digits were invented by J. Colson [Philos. Trans.
34 (1726), 161Ű173], then forgotten and rediscovered about 100 years later by Sir
John Leslie [The Philosophy of Arithmetic (Edinburgh: 1817); see pages 33Ű34,
54, 64Ű65, 117, 150], and by A. Cauchy [Comptes Rendus Acad. Sci. 11 (Paris,
1840), 789Ű798]. Cauchy pointed out that negative digits make it unnecessary for
a person to memorize the multiplication table past 5×5. A claim that such num-
ber systems were known in India long ago [J. Bharati, Vedic Mathematics (Delhi:
Motilal Banarsidass, 1965)] has been refuted by K. S. Shukla [Mathematical
Education 5, 3 (1989), 129Ű133]. The Ąrst true appearance of “pureŤ balanced
ternary notation was in an article by Léon Lalanne [Comptes Rendus Acad.
Sci. 11 (Paris, 1840), 903Ű905], who was a designer of mechanical devices for
arithmetic. Thomas Fowler independently invented and constructed a balanced
ternary calculator at about the same time [see Report British Assoc. Adv. Sci.
10 (1840), 55; 11 (1841), 39Ű40]. The balanced ternary number system was men-
tioned only rarely for the next 100 years, until the development of the Ąrst elec-
tronic computers at the Moore School of Electrical Engineering in 1945Ű1946; at
that time it was given serious consideration as a possible replacement for the dec-
imal system. The complexity of arithmetic circuitry for balanced ternary arith-
metic is not much greater than it is for the binary system, and a given number
requires only ln 2/ ln 3 ≈ 63% as many digit positions for its representation. Dis-
cussions of the balanced ternary system appear in AMM 57 (1950), 90Ű93, and
in High-speed Computing Devices, Engineering Research Associates (McGrawŰ
Hill, 1950), 287Ű289. The experimental Russian computer SETUN was based on
balanced ternary notation [see CACM 3 (1960), 149Ű150], and perhaps the sym-
metric properties and simple arithmetic of this number system will prove to be
quite important someday Ů when the “Ćip-ĆopŤ is replaced by a “Ćip-Ćap-Ćop.Ť

Positional notation generalizes in another important way to a mixed-radix

system. Given a sequence of numbers ⟨bn⟩ (where n may be negative), we deĄne

. . . , a3, a2, a1, a0; a−1, a−2, . . .

. . . , b3, b2, b1, b0; b−1, b−2, . . .

4.1 POSITIONAL NUMBER SYSTEMS 209

= · · ·+ a3b2b1b0 + a2b1b0 + a1b0 + a0 + a−1/b−1 + a−2/b−1b−2 + · · · . (9)

In the simplest mixed-radix systems, we work only with integers; we let b0, b1,
b2, . . . be integers greater than one, and deal only with numbers that have no
radix point, where an is required to lie in the range 0 ≤ an < bn.

One of the most important mixed-radix systems is the factorial number

system, where bn = n+ 2. Using this system, which was known in 13th-century
India, we can represent every positive integer uniquely in the form

cn n! + cn−1 (n− 1)! + · · ·+ c2 2! + c1, (10)

where 0 ≤ ck ≤ k for 1 ≤ k ≤ n, and cn ̸= 0. (See Algorithms 3.3.2P and 3.4.2P.)
Mixed-radix systems are familiar in everyday life, when we deal with units

of measure. For example, the quantity “3 weeks, 2 days, 9 hours, 22 minutes, 57
seconds, and 492 millisecondsŤ is equal to

3, 2, 9, 22, 57; 492

7, 24, 60, 60; 1000

seconds.

The quantity “10 pounds, 6 shillings, and thruppence ha’pennyŤ was once equal
to

10, 6,
20,

3;
12;

1
2

pence in British currency, before Great Britain changed to a

purely decimal monetary system.
It is possible to add and subtract mixed-radix numbers by using a straight-

forward generalization of the usual addition and subtraction algorithms, provided
of course that the same mixed-radix system is being used for both operands
(see exercise 4.3.1Ű9). Similarly, we can easily multiply or divide a mixed-radix
number by small integer constants, using simple extensions of the familiar pencil-
and-paper methods.

Mixed-radix systems were Ąrst discussed in full generality by Georg Cantor
[Zeitschrift für Math. und Physik 14 (1869), 121Ű128]. Exercises 26 and 29 give
further information about them.

Several questions concerning irrational radices have been investigated by
W. Parry, Acta Math. Acad. Sci. Hung. 11 (1960), 401Ű416.

Besides the systems described in this section, several other ways to represent
numbers are mentioned elsewhere in this series of books: the combinatorial num-
ber system (exercise 1.2.6Ű56); the Fibonacci number system (exercises 1.2.8Ű34,
5.4.2Ű10); the phi number system (exercise 1.2.8Ű35); modular representations
(Section 4.3.2); Gray code (Section 7.2.1); and Roman numerals (Section 9.1).

EXERCISES

1. [15] Express −10, −9, . . . , 9, 10 in the number system whose radix is −2.

x 2. [24] Consider the following four number systems: (a) binary (signed magnitude);
(b) negabinary (radix −2); (c) balanced ternary; and (d) radix b = 1

10
. Use each of

these four number systems to express each of the following three numbers: (i) −49;
(ii) −3 1

7
(show the repeating cycle); (iii) π (to a few signiĄcant Ągures).

3. [20] Express −49 + i in the quater-imaginary system.

210 ARITHMETIC 4.1

4. [15] Assume that we have a MIX program in which location A contains a number
for which the radix point lies between bytes 3 and 4, while location B contains a number
whose radix point lies between bytes 2 and 3. (The leftmost byte is number 1.) Where
will the radix point be, in registers A and X, after the following instructions?

(a) LDA A; MUL B (b) LDA A; SRAX 5; DIV B

5. [00] Explain why a negative integer in nines’ complement notation has a represen-
tation in ten’s complement notation that is always one greater, if the representations
are regarded as positive.

6. [16] What are the largest and smallest p-bit integers that can be represented
in (a) signed magnitude binary notation (including one bit for the sign), (b) two’s
complement notation, (c) ones’ complement notation?

7. [M20] The text deĄnes ten’s complement notation only for integers represented
in a single computer word. Is there a way to deĄne a ten’s complement notation for all

real numbers, having “inĄnite precision,Ť analogous to the text’s deĄnition? Is there a
similar way to deĄne a nines’ complement notation for all real numbers?

8. [M10] Prove Eq. (5).

x 9. [15] Change the following octal numbers to hexadecimal notation, using the hexa-
decimal digits 0, 1, . . . , 9, A, B, C, D, E, F: 12 ; 5655 ; 2550276 ; 76545336 ; 3726755.

10. [M22] Generalize Eq. (5) to mixed-radix notation as in (9).

11. [22] Design an algorithm that uses the −2 number system to compute the sum
of (an . . . a1a0)−2 and (bn . . . b1b0)−2, obtaining the answer (cn+2 . . . c1c0)−2.

12. [23] Specify algorithms that convert (a) the binary signed magnitude number
±(an . . . a0)2 to its negabinary form (bn+2 . . . b0)−2; and (b) the negabinary number
(bn+1 . . . b0)−2 to its signed magnitude form ±(an+1 . . . a0)2.

x 13. [M21] In the decimal system there are some numbers with two inĄnite decimal
expansions; for example, 2.3599999 . . . = 2.3600000 Does the negadecimal (base
−10) system have unique expansions, or are there real numbers with two different
inĄnite expansions in this base also?

14. [14] Multiply (11321)2i by itself in the quater-imaginary system using the method
illustrated in the text.

15. [M24] What are the sets S = {k≥1 akb
−k | ak an allowable digit}, analogous

to Fig. 1, for the negative decimal and for the quater-imaginary number systems?

16. [M24] Design an algorithm to add 1 to (an . . . a1a0)i−1 in the i−1 number system.

17. [M30] It may seem peculiar that i − 1 has been suggested as a number-system
base, instead of the similar but intuitively simpler number i + 1. Can every complex
number a+bi, where a and b are integers, be represented in a positional number system
to base i+ 1, using only the digits 0 and 1?

18. [HM32] Show that the twindragon of Fig. 1 is a closed set that contains a neighbor-
hood of the origin. (Consequently, every complex number has a binary representation
with radix i− 1.)

x 19. [23] (David W. Matula.) Let D be a set of b integers, containing exactly one
solution to the congruence x ≡ j (modulo b) for 0 ≤ j < b. Prove that all integers m
(positive, negative, or zero) can be represented in the form m = (an . . . a0)b, where all
the aj are in D, if and only if all integers in the range l ≤ m ≤ u can be so represented,

4.1 POSITIONAL NUMBER SYSTEMS 211

where l = −max{a | a ∈ D}/(b− 1) and u = −min{a | a ∈ D}/(b− 1). For example,
D = {−1, 0, . . . , b− 2} satisĄes the conditions for all b ≥ 3. [Hint: Design an algorithm
that constructs a suitable representation.]

20. [HM28] (David W. Matula.) Consider a decimal number system that uses the
digits D = {−1, 0, 8, 17, 26, 35, 44, 53, 62, 71} instead of {0, 1, . . . , 9}. The result of
exercise 19 implies (as in exercise 18) that all real numbers have an inĄnite decimal
expansion using digits from D.

In the usual decimal system, exercise 13 points out that some numbers have two
representations. (a) Find a real number that has more than two D-decimal represen-
tations. (b) Show that no real number has inĄnitely many D-decimal representations.
(c) Show that uncountably many numbers have two or more D-decimal representations.

x 21. [M22] (C. E. Shannon.) Can every real number (positive, negative, or zero)
be expressed in a “balanced decimalŤ system, that is, in the form

k≤nak10k, for

some integer n and some sequence an, an−1, an−2, . . . , where each ak is one of the
ten numbers {−4 1

2
,−3 1

2
,−2 1

2
,−1 1

2
,− 1

2
, 1

2
, 1 1

2
, 2 1

2
, 3 1

2
, 4 1

2
}? (Although zero is not one

of the allowed digits, we implicitly assume that an+1, an+2, . . . are zero.) Find all
representations of zero in this number system, and Ąnd all representations of unity.

22. [HM25] Let α = −m≥1 10−m2

. Given ϵ > 0 and any real number x, prove that
there is a “decimalŤ representation such that 0 < |x−n

k=0 ak10k| < ϵ, where each ak

is allowed to be only one of the three values 0, 1, or α. (No negative powers of 10 are
used in this representation!)

23. [HM30] Let D be a set of b real numbers such that every positive real number
has a representation

k≤n akb

k with all ak ∈ D. Exercise 20 shows that there may
be many numbers without unique representations; but prove that the set T of all such
numbers has measure zero, if 0 ∈ D. Show that this conclusion need not be true if
0 /∈ D.

24. [M35] Find inĄnitely many different sets D of ten nonnegative integers satisfying
the following three conditions: (i) gcd(D) = 1; (ii) 0 ∈ D; (iii) every positive real
number can be represented in the form

k≤n ak10k with all ak ∈ D.

25. [M25] (S. A. Cook.) Let b, u, and v be positive integers, where b ≥ 2 and
0 < v < bm. Show that the radix-b representation of u/v does not contain a run of
m consecutive digits equal to b − 1, anywhere to the right of the radix point. (By
convention, no runs of inĄnitely many (b − 1)’s are permitted in the standard radix-b
representation.)

x 26. [HM30] (N. S. Mendelsohn.) Let ⟨βn⟩ be a sequence of real numbers deĄned for
all integers n, −∞ < n <∞, such that

βn < βn+1; lim
n→∞

βn =∞; lim
n→−∞

βn = 0.

Let ⟨cn⟩ be an arbitrary sequence of positive integers that is deĄned for all integers n,
−∞ < n < ∞. Let us say that a number x has a “generalized representationŤ if
there is an integer n and an inĄnite sequence of integers an, an−1, an−2, . . . such that
x =

k≤n akβk, where an ̸= 0, 0 ≤ ak ≤ ck, and ak < ck for inĄnitely many k.

Show that every positive real number x has exactly one generalized representation
if and only if

βn+1 =

k≤n

ckβk for all n.

212 ARITHMETIC 4.1

(Consequently, the mixed-radix systems with integer bases all have this property; and
mixed-radix systems with β1 = (c0 +1)β0, β2 = (c1 +1)(c0 +1)β0, . . . , β−1 = β0/(c−1 +
1), . . . are the most general number systems of this type.)

27. [M21] Show that every nonzero integer has a unique “reversing binary representa-
tionŤ

2e0 − 2e1 + · · ·+ (−1)t2et ,

where e0 < e1 < · · · < et.

x 28. [M24] Show that every nonzero complex number of the form a+ bi where a and b
are integers has a unique “revolving binary representationŤ

(1 + i)e0 + i(1 + i)e1 − (1 + i)e2 − i(1 + i)e3 + · · ·+ it(1 + i)et ,

where e0 < e1 < · · · < et. (Compare with exercise 27.)

29. [M35] (N. G. de Bruijn.) Let S0, S1, S2, . . . be sets of nonnegative integers;
we will say that the collection {S0, S1, S2, . . .} has Property B if every nonnegative
integer n can be written in the form

n = s0 + s1 + s2 + · · · , sj ∈ Sj ,

in exactly one way. (Property B implies that 0 ∈ Sj for all j, since n = 0 can only
be represented as 0 + 0 + 0 + · · · .) Any mixed-radix number system with radices b0,
b1, b2, . . . provides an example of a collection of sets satisfying Property B, if we let
Sj = {0, Bj , . . . , (bj − 1)Bj}, where Bj = b0b1 . . . bj−1; here the representation of n =
s0+s1+s2+· · · corresponds in an obvious manner to its mixed-radix representation (9).
Furthermore, if the collection {S0, S1, S2, . . .} has Property B, and if A0, A1, A2, . . .
is any partition of the nonnegative integers (so that we have A0 ∪ A1 ∪ A2 ∪ · · · =
{0, 1, 2, . . .} and Ai ∩Aj = ∅ for i ̸= j; some Aj ’s may be empty), then the “collapsedŤ
collection {T0, T1, T2, . . .} also has Property B, where Tj is the set of all sums

i∈Aj

si

taken over all possible choices of si ∈ Si.
Prove that any collection {T0, T1, T2, . . .} that satisĄes Property B may be obtained

by collapsing some collection {S0, S1, S2, . . .} that corresponds to a mixed-radix number
system.

30. [M39] (N. G. de Bruijn.) The negabinary number system shows us that every
integer (positive, negative, or zero) has a unique representation of the form

(−2)e1 + (−2)e2 + · · ·+ (−2)et , e1 > e2 > · · · > et ≥ 0, t ≥ 0.

The purpose of this exercise is to explore generalizations of this phenomenon.

a) Let b0, b1, b2, . . . be a sequence of integers such that every integer n has a unique
representation of the form

n = be1 + be2 + · · ·+ bet , e1 > e2 > · · · > et ≥ 0, t ≥ 0.

(Such a sequence ⟨bn⟩ is called a “binary basis.Ť) Show that there is an index j
such that bj is odd, but bk is even for all k ̸= j.

b) Prove that a binary basis ⟨bn⟩ can always be rearranged into the form d0, 2d1,
4d2, . . . = ⟨2ndn⟩, where each dk is odd.

c) If each of d0, d1, d2, . . . in (b) is ±1, prove that ⟨bn⟩ is a binary basis if and only
if there are inĄnitely many +1’s and inĄnitely many −1’s.

d) Prove that 7, −13 · 2, 7 · 22, −13 · 23, . . . , 7 · 22k, −13 · 22k+1, . . . is a binary basis,
and Ąnd the representation of n = 1.

4.1 POSITIONAL NUMBER SYSTEMS 213

x 31. [M35] A generalization of two’s complement arithmetic, called “2-adic numbers,Ť
was introduced by K. Hensel in Crelle 127 (1904), 51Ű84. (In fact he treated p-adic

numbers, for any prime p.) A 2-adic number may be regarded as a binary number

u = (. . . u3u2u1u0.u−1 . . . u−n)2,

whose representation extends inĄnitely far to the left of the binary point, but only
Ąnitely many places to the right. Addition, subtraction, and multiplication of 2-adic
numbers are done according to the ordinary procedures of arithmetic, which can in
principle be extended indeĄnitely to the left. For example,

7 = (. . . 000000000000111)2

−7 = (. . . 111111111111001)2

7
4

= (. . . 000000000000001.11)2

1
7

= (. . . 110110110110111)2

− 1
7

= (. . . 001001001001001)2

1
10

= (. . . 110011001100110.1)2

√
−7 = (. . . 100000010110101)2 or (. . . 011111101001011)2.

Here 7 appears as the ordinary binary integer seven, while −7 is its two’s comple-
ment (extending inĄnitely to the left); it is easy to verify that the ordinary procedure
for addition of binary numbers will give −7+7 = (. . . 00000)2 = 0, when the procedure
is continued indeĄnitely. The values of 1

7
and − 1

7
are the unique 2-adic numbers that,

when formally multiplied by 7, give 1 and −1, respectively. The values of 7
4

and 1
10

are examples of 2-adic numbers that are not 2-adic “integers,Ť since they have nonzero
bits to the right of the binary point. The two values of

√
−7, which are negatives of

each other, are the only 2-adic numbers that, when formally squared, yield the value
(. . . 111111111111001)2.

a) Prove that any 2-adic number u can be divided by any nonzero 2-adic number v
to obtain a unique 2-adic number w satisfying u = vw. (Hence the set of 2-adic
numbers forms a “ĄeldŤ; see Section 4.6.1.)

b) Prove that the 2-adic representation of the rational number −1/(2n + 1) may be
obtained as follows, when n is a positive integer: First Ąnd the ordinary binary
expansion of +1/(2n+1), which has the periodic form (0.ααα . . .)2 for some string
α of 0s and 1s. Then −1/(2n+ 1) is the 2-adic number (. . . ααα)2.

c) Prove that the representation of a 2-adic number u is ultimately periodic (that is,
uN+λ = uN for all large N, for some λ ≥ 1) if and only if u is rational (that is,
u = m/n, for some integers m and n).

d) Prove that, when n is an integer,
√
n is a 2-adic number if and only if it satisĄes

nmod 22k+3 = 22k for some nonnegative integer k. (Thus, the possibilities are
either nmod 8 = 1, or nmod 32 = 4, etc.)

32. [M40] (I. Z. Ruzsa.) Construct inĄnitely many integers whose ternary represen-
tation uses only 0s and 1s and whose quinary representation uses only 0s, 1s, and 2s.

33. [M40] (D. A. Klarner.) Let D be any set of integers, let b be any positive integer,
and let kn be the number of distinct integers that can be written as n-digit numbers
(an−1 . . . a1a0)b to base b with digits ai in D. Prove that the sequence ⟨kn⟩ satisĄes
a linear recurrence relation, and explain how to compute the generating function

n knz
n. Illustrate your algorithm by showing that kn is a Fibonacci number in

the case b = 3 and D = {−1, 0, 3}.
x 34. [22] (G. W. Reitwiesner, 1960.) Explain how to represent a given integer n in the

form (. . . a2a1a0)2, where each aj is −1, 0, or 1, using the fewest nonzero digits.

214 ARITHMETIC 4.2

4.2. FLOATING POINT ARITHMETIC

In this section we shall study the basic principles of arithmetic operations on
“Ćoating pointŤ numbers, by analyzing the internal mechanisms underlying such
calculations. Perhaps many readers will have little interest in this subject, since
their computers either have built-in Ćoating point instructions or their operating
systems include suitable subroutines. But, in fact, the material of this section
should not merely be the concern of computer-design engineers or of a small
clique of people who write library subroutines for new machines; every well-
rounded programmer ought to have a knowledge of what goes on during the ele-
mentary steps of Ćoating point arithmetic. This subject is not at all as trivial as
most people think, and it involves a surprising amount of interesting information.

4.2.1. Single-Precision Calculations

A. Floating point notation. We have discussed “Ąxed pointŤ notation for
numbers in Section 4.1; in such a case the programmer knows where the radix
point is assumed to lie in the numbers being manipulated. For many purposes,
however, it is considerably more convenient to let the position of the radix point
be dynamically variable or “ĆoatingŤ as a program is running, and to carry with
each number an indication of its current radix point position. This idea has been
used for many years in scientiĄc calculations, especially for expressing very large
numbers like Avogadro’s number N = 6.02214×1023, or very small numbers like
Planck’s constant h = 6.6261× 10−27 erg sec.

In this section we shall work with base b, excess q, Ćoating point numbers

with p digits: Such numbers will be represented by pairs of values (e, f), denoting

(e, f) = f × be−q. (1)

Here e is an integer having a speciĄed range, and f is a signed fraction. We will
adopt the convention that

|f | < 1;

in other words, the radix point appears at the left of the positional representation
of f. More precisely, the stipulation that we have p-digit numbers means that
bpf is an integer, and that

−bp < bpf < bp. (2)

The term “Ćoating binaryŤ implies that b = 2, “Ćoating decimalŤ implies b = 10,
etc. Using excess-50 Ćoating decimal numbers with 8 digits, we can write, for
example,

Avogadro’s number N = (74,+.60221400);
Planck’s constant h = (24,+.66261000).

(3)

The two components e and f of a Ćoating point number are called the
exponent and the fraction parts, respectively. (Other names are occasionally
used for this purpose, notably “characteristicŤ and “mantissaŤ; but it is an abuse
of terminology to call the fraction part a mantissa, since that term has quite a
different meaning in connection with logarithms. Furthermore the English word
mantissa means “a worthless addition.Ť)

4.2.1 SINGLE-PRECISION CALCULATIONS 215

The MIX computer assumes that its Ćoating point numbers have the form

± e f f f f . (4)

Here we have base b, excess q, Ćoating point notation with four bytes of precision,
where b is the byte size (e.g., b = 64 or b = 100), and q is equal to ⌊ 1

2b⌋.
The fraction part is ± f f f f, and e is the exponent, which lies in the range
0 ≤ e < b. This internal representation is typical of the conventions in most
existing computers, although b is a much larger base than usual.

B. Normalized calculations. A Ćoating point number (e, f) is normalized if
the most signiĄcant digit of the representation of f is nonzero, so that

1/b ≤ |f | < 1; (5)

or if f = 0 and e has its smallest possible value. It is possible to tell which of
two normalized Ćoating point numbers has a greater magnitude by comparing
the exponent parts Ąrst, and then testing the fraction parts only if the exponents
are equal.

Most Ćoating point routines now in use deal almost entirely with normalized
numbers: Inputs to the routines are assumed to be normalized, and the outputs
are always normalized. Under these conventions we lose the ability to represent
a few numbers of very small magnitude Ů for example, the value (0, .00000001)
can’t be normalized without producing a negative exponent Ů but we gain in
speed, uniformity, and the ability to give relatively simple bounds on the relative
error in our computations. (Unnormalized Ćoating point arithmetic is discussed
in Section 4.2.2.)

Let us now study the normalized Ćoating point operations in detail. At the
same time we can consider the construction of subroutines for these operations,
assuming that we have a computer without built-in Ćoating point hardware.

Machine-language subroutines for Ćoating point arithmetic are usually writ-
ten in a very machine-dependent manner, using many of the wildest idiosyn-
crasies of the computer at hand. Therefore Ćoating point addition subroutines
for two different machines usually bear little superĄcial resemblance to each
other. Yet a careful study of numerous subroutines for both binary and decimal
computers reveals that these programs actually have quite a lot in common, and
it is possible to discuss the topics in a machine-independent way.

The Ąrst (and by far the most difficult!) algorithm we shall discuss in this
section is a procedure for Ćoating point addition,

(eu, fu)⊕ (ev, fv) = (ew, fw). (6)

Since Ćoating point arithmetic is inherently approximate, not exact, we will use
“roundŤ symbols

⊕, ⊖, ⊗, ⊘
to stand for Ćoating point addition, subtraction, multiplication, and division,
respectively, in order to distinguish approximate operations from the true ones.

216 ARITHMETIC 4.2.1

A1. Unpack

A2. Assume eu ≥ ev

A3. Set ew

A4. Test eu−ev A5. Scale right A6. Add A7. Normalize

eu ≥ ev+p+2

Fig. 2. Floating point addition.

The basic idea involved in Ćoating point addition is fairly simple: Assuming
that eu ≥ ev, we take ew = eu, fw = fu + fv/b

eu−ev (thereby aligning the
radix points for a meaningful addition), and normalize the result. But several
situations can arise that make this process nontrivial, and the following algorithm
explains the method more precisely.

Algorithm A (Floating point addition). Given base b, excess q, p-digit, nor-
malized Ćoating point numbers u = (eu, fu) and v = (ev, fv), this algorithm
forms the sum w = u ⊕ v. The same procedure may be used for Ćoating point
subtraction, if −v is substituted for v.

A1. [Unpack.] Separate the exponent and fraction parts of the representations
of u and v.

A2. [Assume eu ≥ ev.] If eu < ev, interchange u and v. (In many cases, it is
best to combine step A2 with step A1 or with some of the later steps.)

A3. [Set ew.] Set ew ← eu.

A4. [Test eu−ev.] If eu−ev ≥ p+2 (large difference in exponents), set fw ← fu
and go to step A7. (Actually, since we are assuming that u is normalized,
we could terminate the algorithm; but it is occasionally useful to be able to
normalize a possibly unnormalized number by adding zero to it.)

A5. [Scale right.] Shift fv to the right eu− ev places; that is, divide it by beu−ev.
[Note: This will be a shift of up to p + 1 places, and the next step (which
adds fu to fv) thereby requires an accumulator capable of holding 2p + 1
base-b digits to the right of the radix point. If such a large accumulator
is not available, it is possible to shorten the requirement to p + 2 or p + 3
places if proper precautions are taken; the details are given in exercise 5.]

A6. [Add.] Set fw ← fu + fv.

4.2.1 SINGLE-PRECISION CALCULATIONS 217

f =0

|f | ≥ 1

Yes

No

Rounding overflow

Overflow or
underflow

N1. Test f

N2. Is f normalized?

N3. Scale left

N4. Scale right

N5. Round

N6. Check e

N7. Pack

Fig. 3. Normalization of (e, f).

A7. [Normalize.] (At this point (ew, fw) represents the sum of u and v, but |fw|
may have more than p digits, and it may be greater than unity or less than
1/b.) Perform Algorithm N below, to normalize and round (ew, fw) into the
Ąnal answer.

Algorithm N (Normalization). A “raw exponentŤ e and a “raw fractionŤ f are
converted to normalized form, rounding if necessary to p digits. This algorithm
assumes that |f | < b.

N1. [Test f.] If |f | ≥ 1 (“fraction overĆowŤ), go to step N4. If f = 0, set e to
its lowest possible value and go to step N7.

N2. [Is f normalized?] If |f | ≥ 1/b, go to step N5.

N3. [Scale left.] Shift f to the left by one digit position (that is, multiply it
by b), and decrease e by 1. Return to step N2.

N4. [Scale right.] Shift f to the right by one digit position (that is, divide it
by b), and increase e by 1.

N5. [Round.] Round f to p places. (We take this to mean that f is changed to
the nearest multiple of b−p. It is possible that (bpf) mod 1 = 1

2 so that there
are two nearest multiples; if b is even, we change f to the nearest multiple
f ′ of b−p such that bpf ′ + 1

2b is odd. Further discussion of rounding appears
in Section 4.2.2.) It is important to note that this rounding operation can
make |f | = 1 (“rounding overĆowŤ); in such a case, return to step N4.

N6. [Check e.] If e is too large, that is, greater than its allowed range, an
exponent overĆow condition is sensed. If e is too small, an exponent under-

Ćow condition is sensed. (See the discussion below; since the result cannot
be expressed as a normalized Ćoating point number in the required range,
special action is necessary.)

N7. [Pack.] Put e and f together into the desired output representation.

Some simple examples of Ćoating point addition are given in exercise 4.

218 ARITHMETIC 4.2.1

The following MIX subroutines, for addition and subtraction of numbers
having the form (4), show how Algorithms A and N can be expressed as computer
programs. The subroutines below are designed to take one input u from symbolic
location ACC, and the other input v comes from register A upon entrance to the
subroutine. The output w appears both in register A and location ACC. Thus, a
Ąxed point coding sequence

LDA A; ADD B; SUB C; STA D (7)

would correspond to the Ćoating point coding sequence

LDA A, STA ACC; LDA B, JMP FADD; LDA C, JMP FSUB; STA D. (8)

Program A (Addition, subtraction, and normalization). The following program
is a subroutine for Algorithm A, and it is also designed so that the normalization
portion can be used by other subroutines that appear later in this section. In
this program and in many others throughout this chapter, OFLO stands for a
subroutine that prints out a message to the effect that MIX’s overĆow toggle
was unexpectedly found to be on. The byte size b is assumed to be a multiple
of 4. The normalization routine NORM assumes that rI2 = e and rAX = f, where
rA = 0 implies rX = 0 and rI2 < b.

00 BYTE EQU 1(4:4) Byte size b
01 EXP EQU 1:1 DeĄnition of exponent Ąeld
02 FSUB STA TEMP Floating point subtraction subroutine:
03 LDAN TEMP Change sign of operand.
04 FADD STJ EXITF Floating point addition subroutine:
05 JOV OFLO Ensure that overĆow is off.
06 STA TEMP TEMP← v.
07 LDX ACC rX← u.
08 CMPA ACC(EXP) Steps A1, A2, A3 are combined here:
09 JGE 1F Jump if ev ≥ eu.
10 STX FU(0:4) FU← ± f f f f 0.
11 LD2 ACC(EXP) rI2← ew.
12 STA FV(0:4)
13 LD1N TEMP(EXP) rI1← −ev.
14 JMP 4F
15 1H STA FU(0:4) FU← ± f f f f 0 (u, v interchanged).
16 LD2 TEMP(EXP) rI2← ew.
17 STX FV(0:4)
18 LD1N ACC(EXP) rI1← −ev.
19 4H INC1 0,2 rI1← eu − ev. (Step A4 unnecessary.)
20 5H LDA FV A5. Scale right.
21 ENTX 0 Clear rX.
22 SRAX 0,1 Shift right eu − ev places.
23 6H ADD FU A6. Add.
24 JOV N4 A7. Normalize. Jump if fraction overĆow.
25 JXZ NORM Easy case?
26 LD1 FV(0:1) Check for opposite signs.
27 JAP 1F

4.2.1 SINGLE-PRECISION CALCULATIONS 219

28 J1N N2 If not, normalize.
29 JMP 2F
30 1H J1P N2
31 2H SRC 5 |rX| ↔ |rA|.
32 DECX 1 (rX is positive.)
33 STA TEMP (The operands had opposite signs;
34 STA HALF(0:0) we must adjust the registers
35 LDAN TEMP before rounding and normalization.)
36 ADD HALF
37 ADD HALF Complement the least signiĄcant portion.
38 SRC 5 Jump into normalization routine.
39 JMP N2
40 HALF CON 1//2 One half the word size (Sign varies)
41 FU CON 0 Fraction part fu

42 FV CON 0 Fraction part fv

43 NORM JAZ ZRO N1. Test f .
44 N2 CMPA =0=(1:1) N2. Is f normalized?
45 JNE N5 To N5 if leading byte nonzero.
46 N3 SLAX 1 N3. Scale left.
47 DEC2 1 Decrease e by 1.
48 JMP N2 Return to N2.
49 N4 ENTX 1 N4. Scale right.
50 SRC 1 Shift right, insert “1Ť with proper sign.
51 INC2 1 Increase e by 1.
52 N5 CMPA =BYTE/2=(5:5) N5. Round.
53 JL N6 Is |tail| < 1

2
b?

54 JG 5F
55 JXNZ 5F Is |tail| > 1

2
b?

56 STA TEMP |tail| = 1
2
b; round to odd.

57 LDX TEMP(4:4)
58 JXO N6 To N6 if rX is odd.
59 5H STA *+1(0:0) Store sign of rA.
60 INCA BYTE Add b−4 to |f |. (Sign varies)
61 JOV N4 Check for rounding overĆow.
62 N6 J2N EXPUN N6. Check e. UnderĆow if e < 0.
63 N7 ENTX 0,2 N7. Pack. rX← e.
64 SRC 1
65 ZRO DEC2 BYTE rI2← e− b.
66 8H STA ACC
67 EXITF J2N * Exit, unless e ≥ b.
68 EXPOV HLT 2 Exponent overĆow detected
69 EXPUN HLT 1 Exponent underĆow detected
70 ACC CON 0 Floating point accumulator

The rather long section of code from lines 26 to 40 is needed because MIX has
only a 5-byte accumulator for adding signed numbers while in general 2p+1 = 9
places of accuracy are required by Algorithm A. The program could be shortened
to about half its present length if we were willing to sacriĄce a little bit of its
accuracy, but we shall see in the next section that full accuracy is important.
Line 58 uses a nonstandard MIX instruction deĄned in Section 4.5.2. The running

220 ARITHMETIC 4.2.1

time for Ćoating point addition and subtraction depends on several factors that
are analyzed in Section 4.2.4.

Now let us consider multiplication and division, which are simpler than
addition, and somewhat similar to each other.

Algorithm M (Floating point multiplication or division). Given base b, excess q,
p-digit, normalized Ćoating point numbers u = (eu, fu) and v = (ev, fv), this
algorithm forms the product w = u⊗ v or the quotient w = u⊘ v.

M1. [Unpack.] Separate the exponent and fraction parts of the representations
of u and v. (Sometimes it is convenient, but not necessary, to test the
operands for zero during this step.)

M2. [Operate.] Set

ew ← eu + ev − q, fw ← fu fv for multiplication;

ew ← eu − ev + q + 1, fw ← (b−1fu)/fv for division.
(9)

(Since the input numbers are assumed to be normalized, it follows that
either fw = 0, or 1/b2 ≤ |fw| < 1, or a division-by-zero error has occurred.)
If necessary, the representation of fw may be reduced to p+2 or p+3 digits
at this point, as in exercise 5.

M3. [Normalize.] Perform Algorithm N on (ew, fw) to normalize, round, and
pack the result. (Note: Normalization is simpler in this case, since scaling
left occurs at most once, and since rounding overĆow cannot occur after
division.)

The following MIX subroutines, intended to be used in connection with
Program A, illustrate the machine considerations that arise in Algorithm M.

Program M (Floating point multiplication and division).

01 Q EQU BYTE/2 q is half the byte size
02 FMUL STJ EXITF Floating point multiplication subroutine:
03 JOV OFLO Ensure that overĆow is off.
04 STA TEMP TEMP← v.
05 LDX ACC rX← u.
06 STX FU(0:4) FU← ± f f f f 0.
07 LD1 TEMP(EXP)
08 LD2 ACC(EXP)
09 INC2 -Q,1 rI2← eu + ev − q.
10 SLA 1
11 MUL FU Multiply fu times fv.
12 JMP NORM Normalize, round, and exit.

13 FDIV STJ EXITF Floating point division subroutine:
14 JOV OFLO Ensure that overĆow is off.
15 STA TEMP TEMP← v.
16 STA FV(0:4) FV← ± f f f f 0.
17 LD1 TEMP(EXP)
18 LD2 ACC(EXP)
19 DEC2 -Q,1 rI2← eu − ev + q.

4.2.1 SINGLE-PRECISION CALCULATIONS 221

20 ENTX 0
21 LDA ACC
22 SLA 1 rA← fu.
23 CMPA FV(1:5)
24 JL *+3 Jump if |fu| < |fv|.
25 SRA 1 Otherwise, scale fu right
26 INC2 1 and increase rI2 by 1.
27 DIV FV Divide.
28 JNOV NORM Normalize, round, and exit.
29 DVZRO HLT 3 Unnormalized or zero divisor

The most noteworthy feature of this program is the provision for division
in lines 23Ű26, which is made in order to ensure enough accuracy to round the
answer. If |fu| < |fv|, straightforward application of Algorithm M would leave
a result of the form “± 0 f f f f Ť in register A, and this would not allow a
proper rounding without a careful analysis of the remainder (which appears in
register X). So the program computes fw ← fu/fv in this case, ensuring that fw
is either zero or normalized in all cases; rounding can proceed with Ąve signiĄcant
bytes, possibly testing whether the remainder is zero.

We occasionally need to convert values between Ąxed and Ćoating point
representations. A “Ąx-to-ĆoatŤ routine is easily obtained with the help of the
normalization algorithm above; for example, in MIX, the following subroutine
converts an integer to Ćoating point form:

01 FLOT STJ EXITF Assume that rA = u, an integer.
02 JOV OFLO Ensure that overĆow is off.
03 ENT2 Q+5 Set raw exponent.
04 ENTX 0
05 JMP NORM Normalize, round, and exit.

(10)

A “Ćoat-to-ĄxŤ subroutine is the subject of exercise 14.

The debugging of Ćoating point subroutines is usually a difficult job, since
there are so many cases to consider. Here is a list of common pitfalls that often
trap a programmer or machine designer who is preparing Ćoating point routines:

1) Losing the sign. On many machines (not MIX), shift instructions between
registers will affect the sign, and the shifting operations used in normalizing and
scaling numbers must be carefully analyzed. The sign is also lost frequently
when minus zero is present. (For example, Program A is careful to retain the
sign of register A in lines 33Ű37. See also exercise 6.)

2) Failure to treat exponent underĆow or overĆow properly. The size of ew
should not be checked until after the rounding and normalization, because
preliminary tests may give an erroneous indication. Exponent underĆow and
overĆow can occur on Ćoating point addition and subtraction, not only during
multiplication and division; and even though this is a rather rare occurrence, it
must be tested each time. Enough information should be retained so that mean-
ingful corrective actions are possible after overĆow or underĆow has occurred.

222 ARITHMETIC 4.2.1

It has unfortunately become customary in many instances to ignore exponent
underĆow and simply to set underĆowed results to zero with no indication of
error. This causes a serious loss of accuracy in most cases (indeed, it is the
loss of all the signiĄcant digits), and the assumptions underlying Ćoating point
arithmetic have broken down; so the programmer really must be told when
underĆow has occurred. Setting the result to zero is appropriate only in certain
cases when the result is later to be added to a signiĄcantly larger quantity.
When exponent underĆow is not detected, we Ąnd mysterious situations in which
(u⊗v)⊗w is zero, but u⊗(v⊗w) is not, since u⊗v results in exponent underĆow
but u ⊗ (v ⊗ w) can be calculated without any exponents falling out of range.
Similarly, we can Ąnd positive numbers a, b, c, d, and y such that

(a⊗ y ⊕ b)⊘ (c⊗ y ⊕ d) ≈ 2
3 ,

(a ⊕ b⊘ y)⊘ (c ⊕ d⊘ y) = 1
(11)

if exponent underĆow is not detected. (See exercise 9.) Even though Ćoating
point routines are not precisely accurate, such a disparity as (11) is certainly
unexpected when a, b, c, d, and y are all positive! Exponent underĆow is usually
not anticipated by a programmer, so it needs to be reported.*

3) Inserted garbage. When scaling to the left it is important to keep from
introducing anything but zeros at the right. For example, note the ŚENTX 0’
instruction in line 21 of Program A, and the all-too-easily-forgotten ŚENTX 0’
instruction in line 04 of the FLOT subroutine (10). (But it would be a mistake to
clear register X after line 27 in the division subroutine.)

4) Unforeseen rounding overĆow. When a number like .999999997 is rounded
to 8 digits, a carry will occur to the left of the decimal point, and the result must
be scaled to the right. Many people have mistakenly concluded that rounding
overĆow is impossible during multiplication, since they look at the maximum
value of |fufv|, which is 1 − 2b−p + b−2p; and this cannot round up to 1. The
fallacy in this reasoning is exhibited in exercise 11. Curiously, it turns out that
the phenomenon of rounding overĆow is impossible during Ćoating point division
(see exercise 12).

* On the other hand, we must admit that today’s high-level programming languages give the
programmer little or no satisfactory way to make use of the information that a Ćoating point
routine wants to provide; and the MIX programs in this section, which simply halt when errors
are detected, are even worse. There are numerous important applications in which exponent
underĆow is relatively harmless, and it is desirable to Ąnd a way for programmers to cope
with such situations easily and safely. The practice of silently replacing underĆows by zero has
been thoroughly discredited, but there is another alternative that has recently been gaining
much favor, namely to modify the deĄnition that we have given for Ćoating point numbers,
allowing an unnormalized fraction part when the exponent has its smallest possible value. This
idea of “gradual underĆow,Ť which was Ąrst embodied in the hardware of the Electrologica X8
computer, adds only a small amount of complexity to the algorithms, and it makes exponent
underĆow impossible during addition or subtraction. The simple formulas for relative error in
Section 4.2.2 no longer hold in the presence of gradual underĆow, so the topic is beyond the
scope of this book. However, by using formulas like round(x) = x(1−δ)+ϵ, where |δ| < b1−p/2
and |ϵ| < b−p−q/2, one can show that gradual underĆow succeeds in many important cases.
See W. M. Kahan and J. Palmer, ACM SIGNUM Newsletter (October 1979), 13Ű21.

4.2.1 SINGLE-PRECISION CALCULATIONS 223

There is a school of thought that says it is harmless to “roundŤ a value like
.999999997 to .99999999 instead of to 1.0000000, since this does not increase
the worst-case bounds on relative error. The Ćoating decimal number 1.0000000
may be said to represent all real values in the interval

[1.0000000− 5× 10−8 . . 1.0000000 + 5× 10−8],

while .99999999 represents all values in the much smaller interval

(.99999999− 5× 10−9 . . .99999999 + 5× 10−9).

Even though the latter interval does not contain the original value .999999997,
each number of the second interval is contained in the Ąrst, so subsequent
calculations with the second interval are no less accurate than with the Ąrst. This
ingenious argument is, however, incompatible with the mathematical philosophy
of Ćoating point arithmetic expressed in Section 4.2.2.

5) Rounding before normalizing. Inaccuracies are caused by premature round-
ing in the wrong digit position. This error is obvious when rounding is being done
to the left of the appropriate position; but it is also dangerous in the less obvious
cases where rounding is Ąrst done too far to the right, followed by rounding in the
true position. For this reason it is a mistake to round during the “scaling-rightŤ
operation in step A5, except as prescribed in exercise 5. (The special case of
rounding in step N5, then rounding again after rounding overĆow has occurred,
is harmless, however, because rounding overĆow always yields ±1.0000000 and
such values are unaffected by the subsequent rounding process.)

6) Failure to retain enough precision in intermediate calculations. Detailed
analyses of the accuracy of Ćoating point arithmetic, made in the next section,
suggest strongly that normalizing Ćoating point routines should always deliver
a properly rounded result to the maximum possible accuracy. There should
be no exceptions to this dictum, even in cases that occur with extremely low
probability; the appropriate number of signiĄcant digits should be retained
throughout the computations, as stated in Algorithms A and M.

C. Floating point hardware. Nearly every large computer intended for
scientiĄc calculations includes Ćoating point arithmetic as part of its repertoire of
built-in operations. Unfortunately, the design of such hardware usually includes
some anomalies that result in dismally poor behavior in certain circumstances,
and we hope that future computer designers will pay more attention to providing
the proper behavior than they have in the past. It costs only a little more
to build the machine right, and considerations in the following section show
that substantial beneĄts will be gained. Yesterday’s compromises are no longer
appropriate for modern machines, based on what we know now.

The MIX computer, which is being used as an example of a “typicalŤ machine
in this series of books, has an optional “Ćoating point attachmentŤ (available at
extra cost) that includes the following seven operations:

• FADD, FSUB, FMUL, FDIV, FLOT, FCMP (C = 1, 2, 3, 4, 5, 56, respectively; F = 6).
The contents of rA after the operation ŚFADD V’ are precisely the same as the

224 ARITHMETIC 4.2.1

contents of rA after the operations

STA ACC; LDA V; JMP FADD

where FADD is the subroutine that appears earlier in this section, except that both
operands are automatically normalized before entry to the subroutine if they
were not already in normalized form. (If exponent underĆow occurs during this
pre-normalization, but not during the normalization of the answer, no underĆow
is signalled.) Similar remarks apply to FSUB, FMUL, and FDIV. The contents of
rA after the operation ŚFLOT’ are the contents after ŚJMP FLOT’ in the subroutine
(10) above.

The contents of rA are unchanged by the operation ŚFCMP V’. This instruc-
tion sets the comparison indicator to LESS, EQUAL, or GREATER, depending on
whether the contents of rA are “deĄnitely less than,Ť “approximately equal to,Ť
or “deĄnitely greater thanŤ V, as discussed in the next section. The precise
action is deĄned by the subroutine FCMP of exercise 4.2.2Ű17 with EPSILON in
location 0.

No register other than rA is affected by any of the Ćoating point operations.
If exponent overĆow or underĆow occurs, the overĆow toggle is turned on and
the exponent of the answer is given modulo the byte size. Division by zero leaves
undeĄned garbage in rA. Execution times: 4u, 4u, 9u, 11u, 3u, 4u, respectively.

• FIX (C = 5; F = 7). The contents of rA are replaced by the integer “round(rA)Ť,
rounding to the nearest integer as in step N5 of Algorithm N. However, if this
answer is too large to Ąt in the register, the overĆow toggle is set on and the
result is undeĄned. Execution time: 3u.

Sometimes it is helpful to use Ćoating point operators in a nonstandard
way. For example, if the operation FLOT had not been included as part of MIX’s
Ćoating point attachment, we could easily achieve its effect on 4-byte numbers
by writing

FLOT STJ 9F
SLA 1
ENTX Q+4
SRC 1
FADD =0=

9H JMP *

(12)

This routine is not strictly equivalent to the FLOT operator, since it assumes that
the 1:1 byte of rA is zero, and it destroys rX. The handling of more general
situations is a little tricky, because rounding overĆow can occur even during a
FLOT operation.

Similarly, suppose MIX had a FADD operation but not FIX. If we wanted to
round a number u from Ćoating point form to the nearest Ąxed point integer,
and if we knew that the number was nonnegative and would Ąt in at most three
bytes, we could write

FADD FUDGE

4.2.1 SINGLE-PRECISION CALCULATIONS 225

where location FUDGE contains the constant

+ Q+4 1 0 0 0 ;

the result in rA would be

+ Q+4 1 round(u) . (13)

D. History and bibliography. The origins of Ćoating point notation can
be traced back to Babylonian mathematicians (1800 B.C. or earlier), who made
extensive use of radix-60 Ćoating point arithmetic but did not have a notation for
the exponents. The appropriate exponent was always somehow “understoodŤ by
whoever was doing the calculations. At least one case has been found in which
the wrong answer was given because addition was performed with improper
alignment of the operands, but such examples are very rare; see O. Neugebauer,
The Exact Sciences in Antiquity (Princeton, N. J.: Princeton University Press,
1952), 26Ű27. Another early contribution to Ćoating point notation is due to
the Greek mathematician Apollonius (3rd century B.C.), who apparently was
the Ąrst to explain how to simplify multiplication by collecting powers of 10
separately from their coefficients, at least in simple cases. [For a discussion of
Apollonius’s method, see Pappus, Mathematical Collections (4th century A.D.).]
After the Babylonian civilization died out, the Ąrst signiĄcant uses of Ćoating
point notation for products and quotients did not emerge until much later, about
the time logarithms were invented (1600) and shortly afterwards when Oughtred
invented the slide rule (1630). The modern notation “ xn Ť for exponents was
being introduced at about the same time; separate symbols for x squared, x
cubed, etc., had been in use before this.

Floating point arithmetic was incorporated into the design of some of the ear-
liest computers. It was independently proposed by Leonardo Torres y Quevedo
in Madrid, 1914; by Konrad Zuse in Berlin, 1936; and by George Stibitz in
New Jersey, 1939. Zuse’s machines used a Ćoating binary representation that he
called “semi-logarithmic notationŤ; he also incorporated conventions for dealing
with special quantities like “∞Ť and “undeĄned.Ť The Ąrst American computers
to operate with Ćoating point arithmetic hardware were the Bell Laboratories’
Model V and the Harvard Mark II, both of which were relay calculators designed
in 1944. [See B. Randell, The Origins of Digital Computers (Berlin: Springer,
1973), 100, 155, 163Ű164, 259Ű260; Proc. Symp. Large-Scale Digital Calculating
Machinery (Harvard, 1947), 41Ű68, 69Ű79; Datamation 13 (April 1967), 35Ű44
(May 1967), 45Ű49; Zeit. für angew. Math. und Physik 1 (1950), 345Ű346.]

The use of Ćoating binary arithmetic was seriously considered in 1944Ű1946
by researchers at the Moore School in their plans for the Ąrst electronic digital
computers, but they found that Ćoating point circuitry was much harder to
implement with tubes than with relays. The group realized that scaling was a
problem in programming; but they knew that it was only a very small part of a
total programming job in those days. Indeed, explicit Ąxed-point scaling seemed
to be well worth the time and trouble it took, since it tended to keep programmers

226 ARITHMETIC 4.2.1

aware of the numerical accuracy they were getting. Furthermore, the machine de-
signers argued that Ćoating point representation would consume valuable mem-
ory space, since the exponents must be stored; and they noted that Ćoating point
hardware was not readily adapted to multiple-precision calculations. [See von
Neumann’s Collected Works 5 (New York: Macmillan, 1963), 43, 73Ű74.] At that
time, of course, they were designing the Ąrst stored-program computer and the
second electronic computer, and their choice had to be either Ąxed point or Ćoat-
ing point arithmetic, not both. They anticipated the coding of Ćoating binary
subroutines, and in fact “shift leftŤ and “shift rightŤ instructions were put into
their design primarily to make such routines more efficient. The Ąrst machine to
have both kinds of arithmetic in its hardware was apparently a computer devel-
oped at General Electric Company [see Proc. 2nd Symp. Large-Scale Digital Cal-
culating Machinery (Cambridge, Mass.: Harvard University Press, 1951), 65Ű69].

Floating point subroutines and interpretive systems for early machines were
coded by D. J. Wheeler and others, and the Ąrst publication of such routines
was in The Preparation of Programs for an Electronic Digital Computer by
Wilkes, Wheeler, and Gill (Reading, Mass.: AddisonŰWesley, 1951), subroutines
A1ŰA11, pages 35Ű37 and 105Ű117. It is interesting to note that Ćoating decimal

subroutines are described here, although a binary computer was being used; in
other words, the numbers were represented as 10ef, not 2ef, and therefore the
scaling operations required multiplication or division by 10. On this particular
machine such decimal scaling was almost as easy as shifting, and the decimal
approach greatly simpliĄed input/output conversions.

Most published references to the details of Ćoating point arithmetic rou-
tines are scattered in technical memorandums distributed by various computer
manufacturers, but there have been occasional appearances of these routines in
the open literature. Besides the reference above, the following are of historical
interest: R. H. Stark and D. B. MacMillan, Math. Comp. 5 (1951), 86Ű92,
where a plugboard-wired program is described; D. McCracken, Digital Computer
Programming (New York: Wiley, 1957), 121Ű131; J. W. Carr III, CACM 2, 5
(May 1959), 10Ű15; W. G. Wadey, JACM 7 (1960), 129Ű139; D. E. Knuth, JACM
8 (1961), 119Ű128; O. Kesner, CACM 5 (1962), 269Ű271; F. P. Brooks and K. E.
Iverson, Automatic Data Processing (New York: Wiley, 1963), 184Ű199. For a
discussion of Ćoating point arithmetic from a computer designer’s standpoint, see
“Floating point operationŤ by S. G. Campbell, in Planning a Computer System,
edited by W. Buchholz (New York: McGrawŰHill, 1962), 92Ű121; A. Padegs,
IBM Systems J. 7 (1968), 22Ű29. Additional references, which deal primarily
with the accuracy of Ćoating point methods, are given in Section 4.2.2.

A revolutionary change in Ćoating point hardware took place when most
manufacturers began to adopt ANSI/IEEE Standard 754 during the late 1980s.
Relevant references are: IEEE Micro 4 (1984), 86Ű100; W. J. Cody, Comp.
Sci. and Statistics: Symp. on the Interface 15 (1983), 133Ű139; W. M. Kahan,
Mini/Micro West-83 Conf. Record (1983), Paper 16/1; D. Goldberg, Computing
Surveys 23 (1991), 5Ű48, 413; W. J. Cody and J. T. Coonen, ACM Trans. Math.
Software 19 (1993), 443Ű451.

4.2.1 SINGLE-PRECISION CALCULATIONS 227

The MMIX computer, which will replace MIX in the next edition of this book,
will naturally conform to the new standard.

EXERCISES

1. [10] How would Avogadro’s number and Planck’s constant (3) be represented in
base 100, excess 50, four-digit Ćoating point notation? (This would be the representa-
tion used by MIX, as in (4), when the byte size is 100.)

2. [12] Assume that the exponent e is constrained to lie in the range 0 ≤ e ≤ E;
what are the largest and smallest positive values that can be written as base b, excess q,
p-digit Ćoating point numbers? What are the largest and smallest positive values that
can be written as normalized Ćoating point numbers with these speciĄcations?

3. [11] (K. Zuse, 1936.) Show that if we are using normalized Ćoating binary
arithmetic, there is a way to increase the precision slightly without loss of memory
space: A p-bit fraction part can be represented using only p − 1 bit positions of a
computer word, if the range of exponent values is decreased very slightly.

x 4. [16] Assume that b = 10, p = 8. What result does Algorithm A give for
(50,+.98765432) ⊕ (49,+.33333333)? For (53,−.99987654) ⊕ (54,+.10000000)? For
(45,−.50000001)⊕ (54,+.10000000)?

x 5. [24] Let us say that x ∼ y (with respect to a given radix b) if x and y are real
numbers satisfying the following conditions:

⌊x/b⌋ = ⌊y/b⌋;
xmod b = 0 ⇐⇒ y mod b = 0;

0 < xmod b < 1
2
b ⇐⇒ 0 < y mod b < 1

2
b;

xmod b = 1
2
b ⇐⇒ y mod b = 1

2
b;

1
2
b < xmod b < b ⇐⇒ 1

2
b < y mod b < b.

Prove that if fv is replaced by b−p−2Fv between steps A5 and A6 of Algorithm A, where
Fv ∼ bp+2fv, the result of that algorithm will be unchanged. (If Fv is an integer and b is
even, this operation essentially truncates fv to p+2 places while remembering whether
any nonzero digits have been dropped, thereby minimizing the length of register that
is needed for the addition in step A6.)

6. [20] If the result of a FADD instruction is zero, what will be the sign of rA, according
to the deĄnitions of MIX’s Ćoating point attachment given in this section?

7. [27] Discuss Ćoating point arithmetic using balanced ternary notation.

8. [20] Give examples of normalized eight-digit Ćoating decimal numbers u and v
for which addition yields (a) exponent underĆow, (b) exponent overĆow, assuming that
exponents must satisfy 0 ≤ e < 100.

9. [M24] (W. M. Kahan.) Assume that the occurrence of exponent underĆow causes
the result to be replaced by zero, with no error indication given. Using excess zero,
eight-digit Ćoating decimal numbers with e in the range −50 ≤ e < 50, Ąnd positive
values of a, b, c, d, and y such that (11) holds.

10. [12] Give an example of normalized eight-digit Ćoating decimal numbers u and v
for which rounding overĆow occurs in addition.

x 11. [M20] Give an example of normalized, excess 50, eight-digit Ćoating decimal
numbers u and v for which rounding overĆow occurs in multiplication.

228 ARITHMETIC 4.2.1

12. [M25] Prove that rounding overĆow cannot occur during the normalization phase
of Ćoating point division.
13. [30] When doing “interval arithmeticŤ we don’t want to round the results of a
Ćoating point computation; we want rather to implement operations such as▽+ and△+ ,
which give the tightest possible representable bounds on the true sum:

u▽+ v ≤ u+ v ≤ u△+ v.

How should the algorithms of this section be modiĄed for such a purpose?
14. [25] Write a MIX subroutine that begins with an arbitrary Ćoating point number
in register A, not necessarily normalized, and converts it to the nearest Ąxed point
integer (or determines that the number is too large in absolute value to make such a
conversion possible).

x 15. [28] Write a MIX subroutine, to be used in connection with the other subroutines
of this section, that calculates u X

mod 1, namely u−⌊u⌋ rounded to the nearest Ćoating
point number, given a Ćoating point number u. Notice that when u is a very small
negative number, u X

mod 1 should be rounded so that the result is unity (even though
umod 1 has been deĄned to be always less than unity, as a real number).
16. [HM21] (Robert L. Smith.) Design an algorithm to compute the real and imagi-
nary parts of the complex number (a+bi)/(c+di), given real Ćoating point values a, b,
c, and d with c+di ̸= 0. Avoid the computation of c2 +d2, since it would cause Ćoating
point overĆow even when |c| or |d| is approximately the square root of the maximum
allowable Ćoating point value.
17. [40] (John Cocke.) Explore the idea of extending the range of Ćoating point
numbers by deĄning a single-word representation in which the precision of the fraction
decreases as the magnitude of the exponent increases.
18. [25] Consider a binary computer with 36-bit words, on which positive Ćoating
binary numbers are represented as (0e1e2 . . . e8f1f2 . . . f27)2; here (e1e2 . . . e8)2 is an
excess (10000000)2 exponent and (f1f2 . . . f27)2 is a 27-bit fraction. Negative Ćoating
point numbers are represented by the two’s complement of the corresponding positive
representation (see Section 4.1). Thus, 1.5 is 201 |600000000 in octal notation, while
−1.5 is 576 |200000000 ; the octal representations of 1.0 and −1.0 are 201 |400000000

and 576 |400000000, respectively. (A vertical line is used here to show the boundary
between exponent and fraction.) Note that bit f1 of a normalized positive number is
always 1, while it is almost always zero for negative numbers; the exceptional cases are
representations of −2k.

Suppose that the exact result of a Ćoating point operation has the octal code
572 |740000000 |01 ; this (negative) 33-bit fraction must be normalized and rounded to
27 bits. If we shift left until the leading fraction bit is zero, we get 576 |000000000 |20,
but this rounds to the illegal value 576 |000000000 ; we have over-normalized, since
the correct answer is 575 |400000000. On the other hand if we start (in some other
problem) with the value 572 |740000000 |05 and stop before over-normalizing it, we get
575 |400000000 |50, which rounds to the unnormalized number 575 |400000001 ; subse-
quent normalization yields 576 |000000002 while the correct answer is 576 |000000001.

Give a simple, correct rounding rule that resolves this dilemma on such a machine
(without abandoning two’s complement notation).
19. [24] What is the running time for the FADD subroutine in Program A, in terms
of relevant characteristics of the data? What is the maximum running time, over all
inputs that do not cause exponent overĆow or underĆow?

4.2.2 ACCURACY OF FLOATING POINT ARITHMETIC 229

Round numbers are always false.

Ů SAMUEL JOHNSON (1750)

I shall speak in round numbers, not absolutely accurate,

yet not so wide from truth as to vary the result materially.

Ů THOMAS JEFFERSON (1824)

4.2.2. Accuracy of Floating Point Arithmetic

Floating point computation is by nature inexact, and programmers can easily
misuse it so that the computed answers consist almost entirely of “noise.Ť One
of the principal problems of numerical analysis is to determine how accurate
the results of certain numerical methods will be. There’s a credibility gap: We
don’t know how much of the computer’s answers to believe. Novice computer
users solve this problem by implicitly trusting in the computer as an infallible
authority; they tend to believe that all digits of a printed answer are signiĄcant.
Disillusioned computer users have just the opposite approach; they are constantly
afraid that their answers are almost meaningless. Many serious mathematicians
have attempted to analyze a sequence of Ćoating point operations rigorously,
but have found the task so formidable that they have tried to be content with
plausibility arguments instead.

A thorough examination of error analysis techniques is beyond the scope
of this book, but in the present section we shall study some of the low-level
characteristics of Ćoating point arithmetic errors. Our goal is to discover how
to perform Ćoating point arithmetic in such a way that reasonable analyses of
error propagation are facilitated as much as possible.

A rough (but reasonably useful) way to express the behavior of Ćoating
point arithmetic can be based on the concept of “signiĄcant ĄguresŤ or relative

error. If we are representing an exact real number x inside a computer by
using the approximation x̂ = x(1 + ϵ), the quantity ϵ = (x̂ − x)/x is called the
relative error of approximation. Roughly speaking, the operations of Ćoating
point multiplication and division do not magnify the relative error by very
much; but Ćoating point subtraction of nearly equal quantities (and Ćoating
point addition, u ⊕ v, where u is nearly equal to −v) can very greatly increase
the relative error. So we have a general rule of thumb, that a substantial loss
of accuracy is expected from such additions and subtractions, but not from
multiplications and divisions. On the other hand, the situation is somewhat
paradoxical and needs to be understood properly, since the “badŤ additions and
subtractions are always performed with perfect accuracy! (See exercise 25.)

One of the consequences of the possible unreliability of Ćoating point addi-
tion is that the associative law breaks down:

(u⊕ v)⊕ w ̸= u⊕ (v ⊕ w), for many u, v, w. (1)

For example,

(11111113.⊕−11111111.)⊕ 7.5111111 = 2.0000000⊕ 7.5111111 = 9.5111111;

11111113.⊕ (−11111111.⊕ 7.5111111) = 11111113.⊕−11111103. = 10.000000.

230 ARITHMETIC 4.2.2

(All examples in this section are given in eight-digit Ćoating decimal arithmetic,
with exponents indicated by an explicit decimal point. Recall that, as in Section
4.2.1, the symbols ⊕, ⊖, ⊗, ⊘ are used to stand for Ćoating point operations
that correspond to the exact operations +, −, ×, /.)

In view of the failure of the associative law, the comment of Mrs. La Touche
that appears at the beginning of this chapter makes a good deal of sense with
respect to Ćoating point arithmetic. Mathematical notations like “a1 + a2 + a3Ť
or “

n
k=1 akŤ are inherently based upon the assumption of associativity, so

a programmer must be especially careful not to assume implicitly that the
associative law is valid.

A. An axiomatic approach. Although the associative law is not valid, the
commutative law

u⊕ v = v ⊕ u (2)

does hold, and this law can be a valuable conceptual asset in programming and
in the analysis of programs. Equation (2) suggests that we should look for
additional examples of important laws that are satisĄed by ⊕, ⊖, ⊗, and ⊘;
it is not unreasonable to say that Ćoating point routines should be designed to
preserve as many of the ordinary mathematical laws as possible. If more axioms
are valid, it becomes easier to write good programs, and programs also become
more portable from machine to machine.

Let us therefore consider some of the other basic laws that are valid for
normalized Ćoating point operations as described in the previous section. First
we have

u⊖ v = u⊕−v; (3)

−(u⊕ v) = −u⊕−v; (4)

u⊕ v = 0 if and only if v = −u; (5)

u⊕ 0 = u. (6)

From these laws we can derive further identities; for example (exercise 1),

u⊖ v = −(v ⊖ u). (7)

Identities (2) to (6) are easily deduced from the algorithms in Section 4.2.1.
The following rule is slightly less obvious:

if u ≤ v then u⊕ w ≤ v ⊕ w. (8)

Instead of attempting to prove this rule by analyzing Algorithm 4.2.1A, let us go
back to the basic principle by which that algorithm was designed. (Algorithmic
proofs aren’t always easier than mathematical ones.) Our idea was that the
Ćoating point operations should satisfy

u⊕ v = round(u+ v),

u⊗ v = round(u× v),

u⊖ v = round(u− v),

u⊘ v = round(u / v),
(9)

4.2.2 ACCURACY OF FLOATING POINT ARITHMETIC 231

where round(x) denotes the best Ćoating point approximation to x as deĄned in
Algorithm 4.2.1N. We have

round(−x) = −round(x), (10)

x ≤ y implies round(x) ≤ round(y), (11)

and these fundamental relations yield properties (2) through (8) immediately.
We can also write down several more identities:

u⊗ v = v ⊗ u, (−u)⊗ v = −(u⊗ v), 1⊗ v = v;

u⊗ v = 0 if and only if u = 0 or v = 0;

(−u)⊘ v = u⊘ (−v) = −(u⊘ v);

0⊘ v = 0, u⊘ 1 = u, u⊘ u = 1.

If u ≤ v and w > 0, then u⊗w ≤ v ⊗w and u⊘w ≤ v ⊘w; also w⊘ u ≥ w⊘ v
when v ≥ u > 0. If u⊕ v = u+ v, then (u⊕ v)⊖ v = u; and if u⊗ v = u× v ̸= 0,
then (u⊗ v)⊘ v = u. We see that a good deal of regularity is present in spite of
the inexactness of the Ćoating point operations, when things have been deĄned
properly.

Several familiar rules of algebra are still, of course, conspicuously absent
from the collection of identities above. The associative law for Ćoating point
multiplication is not strictly true, as shown in exercise 3, and the distributive
law between ⊗ and ⊕ can fail rather badly: Let u = 20000.000, v = −6.0000000,
and w = 6.0000003; then

(u⊗ v)⊕ (u⊗ w) = −120000.00⊕ 120000.01 = .010000000

u⊗ (v ⊕ w) = 20000.000⊗ .00000030000000 = .0060000000

so

u⊗ (v ⊕ w) ̸= (u⊗ v)⊕ (u⊗ w). (12)

On the other hand we do have b ⊗ (v ⊕ w) = (b ⊗ v) ⊕ (b ⊗ w), when b is the
Ćoating point radix, since

round(bx) = b round(x). (13)

(Strictly speaking, the identities and inequalities we are considering in this
section implicitly assume that exponent underĆow and overĆow do not occur.
The function round(x) is undeĄned when |x| is too small or too large, and
equations such as (13) hold only when both sides are deĄned.)

The failure of Cauchy’s fundamental inequality

(x2
1 + · · ·+ x2

n)(y2
1 + · · ·+ y2

n) ≥ (x1y1 + · · ·+ xnyn)2

is another important example of the breakdown of traditional algebra in the
presence of Ćoating point arithmetic. Exercise 7 shows that Cauchy’s inequality
can fail even in the simple case n = 2, x1 = x2 = 1. Novice programmers who

232 ARITHMETIC 4.2.2

calculate the standard deviation of some observations by using the textbook
formula

σ =

n

1≤k≤n

x2
k −

1≤k≤n

xk

2

n(n− 1) (14)

often Ąnd themselves taking the square root of a negative number! A much better
way to calculate means and standard deviations with Ćoating point arithmetic
is to use the recurrence formulas

M1 = x1, Mk = Mk−1 ⊕ (xk ⊖Mk−1)⊘ k, (15)

S1 = 0, Sk = Sk−1 ⊕ (xk ⊖Mk−1)⊗ (xk ⊖Mk), (16)

for 2 ≤ k ≤ n, where σ =

Sn/(n− 1). [See B. P. Welford, Technometrics 4
(1962), 419Ű420.] With this method Sn can never be negative, and we avoid
other serious problems encountered by the naïve method of accumulating sums,
as shown in exercise 16. (See exercise 19 for a summation technique that provides
an even better guarantee on the accuracy.)

Although algebraic laws do not always hold exactly, we can often show that
they aren’t too far off base. When be−1 ≤ |x| < be we have round(x) = x+ ρ(x),
where |ρ(x)| ≤ 1

2b
e−p; hence

round(x) = x

1 + δ(x)

, (17)

where the relative error is bounded independently of x:

|δ(x)| = |ρ(x)|
|x| ≤

|ρ(x)|
be−1 + |ρ(x)| ≤

1
2b

e−p

be−1 + 1
2b

e−p
< 1

2b
1−p. (18)

We can use this inequality to estimate the relative error of normalized Ćoating
point calculations in a simple way, since u⊕ v = (u+ v)

1 + δ(u+ v)

, etc.

As an example of typical error-estimation procedures, let us consider the
associative law for multiplication. Exercise 3 shows that (u ⊗ v) ⊗ w is not in
general equal to u⊗ (v⊗w); but the situation in this case is much better than it
was with respect to the associative law of addition (1) and the distributive law
(12). In fact, we have

(u⊗ v)⊗ w =

(uv)(1 + δ1)

⊗ w = uvw(1 + δ1)(1 + δ2),

u⊗ (v ⊗ w) = u⊗

(vw)(1 + δ3)

= uvw(1 + δ3)(1 + δ4),

for some δ1, δ2, δ3, δ4, provided that no exponent underĆow or overĆow occurs,
where |δj | < 1

2b
1−p for each j. Hence

(u⊗ v)⊗ w
u⊗ (v ⊗ w)

=
(1 + δ1)(1 + δ2)
(1 + δ3)(1 + δ4)

= 1 + δ,

where
|δ| < 2b1−p/

1− 1

2b
1−p
2
. (19)

The number b1−p occurs so often in such analyses, it has been given a special
name, one ulp, meaning one unit in the last place of the fraction part. Floating

4.2.2 ACCURACY OF FLOATING POINT ARITHMETIC 233

point operations are correct to within half an ulp, and the calculation of uvw by
two Ćoating point multiplications will be correct within about one ulp (ignoring
second-order terms). Hence the associative law for multiplication holds to within
about two ulps of relative error.

We have shown that (u ⊗ v) ⊗ w is approximately equal to u ⊗ (v ⊗ w),
except when exponent overĆow or underĆow is a problem. It is worthwhile to
study this intuitive idea of approximate equality in more detail; can we make
such a statement more precise in a reasonable way?

Programmers who use Ćoating point arithmetic almost never want to test
if two computed values are exactly equal to each other (or at least they hardly
ever should try to do so), because this is an extremely improbable occurrence.
For example, if a recurrence relation

xn+1 = f(xn)

is being used, where the theory in some textbook says that xn approaches a
limit as n→∞, it is usually a mistake to wait until xn+1 = xn for some n, since
the sequence xn might be periodic with a longer period due to the rounding of
intermediate results. The proper procedure is to wait until |xn+1 − xn| < δ, for
some suitably chosen number δ; but since we don’t necessarily know the order
of magnitude of xn in advance, it is even better to wait until

|xn+1 − xn| ≤ ϵ|xn|; (20)

now ϵ is a number that is much easier to select. Relation (20) is another
way of saying that xn+1 and xn are approximately equal; and our discussion
indicates that a relation of “approximately equalŤ would be more useful than the
traditional relation of equality, when Ćoating point computations are involved,
if we could only deĄne a suitable approximation relation.

In other words, the fact that strict equality of Ćoating point values is of
little importance implies that we ought to have a new operation, Ćoating point

comparison, which is intended to help assess the relative values of two Ćoating
point quantities. The following deĄnitions seem to be appropriate for base b,
excess q, Ćoating point numbers u = (eu, fu) and v = (ev, fv):

u ≺ v (ϵ) if and only if v − u > ϵmax(beu−q, bev−q); (21)

u ∼ v (ϵ) if and only if |v − u| ≤ ϵmax(beu−q, bev−q); (22)

u ≻ v (ϵ) if and only if u− v > ϵmax(beu−q, bev−q); (23)

u ≈ v (ϵ) if and only if |v − u| ≤ ϵmin(beu−q, bev−q). (24)

These deĄnitions apply to unnormalized values as well as to normalized ones.
Notice that exactly one of the conditions u ≺ v (deĄnitely less than), u ∼ v
(approximately equal to), or u ≻ v (deĄnitely greater than) must always hold
for any given pair of values u and v. The relation u ≈ v is somewhat stronger
than u ∼ v, and it might be read “u is essentially equal to v.Ť All of the relations
are speciĄed in terms of a positive real number ϵ that measures the degree of
approximation being considered.

234 ARITHMETIC 4.2.2

One way to view the deĄnitions above is to associate a “neighborhoodŤ set
N(u) = {x | |x − u| ≤ ϵbeu−q} with each Ćoating point number u; thus, N(u)
represents a set of values near u based on the exponent of u’s Ćoating point rep-
resentation. In these terms, we have u ≺ v if and only if N(u) < v and u < N(v);
u ∼ v if and only if u ∈ N(v) or v ∈ N(u); u ≻ v if and only if u > N(v) and
N(u) > v; u ≈ v if and only if u ∈ N(v) and v ∈ N(u). (Here we are assuming
that the parameter ϵ, which measures the degree of approximation, is a constant;
a more complete notation would indicate the dependence of N(u) upon ϵ.)

Here are some simple consequences of deĄnitions (21)Ű(24):

if u ≺ v (ϵ) then v ≻ u (ϵ); (25)

if u ≈ v (ϵ) then u ∼ v (ϵ); (26)

u ≈ u (ϵ); (27)

if u ≺ v (ϵ) then u < v; (28)

if u ≺ v (ϵ1) and ϵ1 ≥ ϵ2 then u ≺ v (ϵ2); (29)

if u ∼ v (ϵ1) and ϵ1 ≤ ϵ2 then u ∼ v (ϵ2); (30)

if u ≈ v (ϵ1) and ϵ1 ≤ ϵ2 then u ≈ v (ϵ2); (31)

if u ≺ v (ϵ1) and v ≺ w (ϵ2) then u ≺ w

min(ϵ1, ϵ2)

; (32)

if u ≈ v (ϵ1) and v ≈ w (ϵ2) then u ∼ w (ϵ1 + ϵ2). (33)

Moreover, we can prove without difficulty that

|u− v| ≤ ϵ|u| and |u− v| ≤ ϵ|v| implies u ≈ v (ϵ); (34)

|u− v| ≤ ϵ|u| or |u− v| ≤ ϵ|v| implies u ∼ v (ϵ); (35)

and conversely, for normalized Ćoating point numbers u and v, when ϵ < 1,

u ≈ v (ϵ) implies |u− v| ≤ bϵ|u| and |u− v| ≤ bϵ|v|; (36)

u ∼ v (ϵ) implies |u− v| ≤ bϵ|u| or |u− v| ≤ bϵ|v|. (37)

Let ϵ0 = b1−p be one ulp. The derivation of (17) establishes the inequality
|x− round(x)| = |ρ(x)| < 1

2ϵ0 min

|x|, |round(x)|

, hence

x ≈ round(x) (1
2ϵ0); (38)

it follows that u ⊕ v ≈ u + v (1
2ϵ0), etc. The approximate associative law for

multiplication derived above can be recast as follows: We have

(u⊗ v)⊗ w − u⊗ (v ⊗ w)

 <

2ϵ0
(1− 1

2ϵ0)2

u⊗ (v ⊗ w)

by (19), and the same inequality is valid with (u ⊗ v) ⊗ w and u ⊗ (v ⊗ w)
interchanged. Hence by (34),

(u⊗ v)⊗ w ≈ u⊗ (v ⊗ w) (ϵ) (39)

whenever ϵ ≥ 2ϵ0/(1 − 1
2ϵ0)2. For example, if b = 10 and p = 8 we may take

ϵ = 0.00000021.

4.2.2 ACCURACY OF FLOATING POINT ARITHMETIC 235

The relations ≺, ∼, ≻, and ≈ are useful within numerical algorithms, and it
is therefore a good idea to provide routines for comparing Ćoating point numbers
as well as for doing arithmetic on them.

Let us now shift our attention back to the question of Ąnding exact relations
that are satisĄed by the Ćoating point operations. It is interesting to note that
Ćoating point addition and subtraction are not completely intractable from an
axiomatic standpoint, since they do satisfy the nontrivial identities stated in the
following theorems.

Theorem A. Let u and v be normalized Ćoating point numbers. Then

(u⊕ v)⊖ u

+

(u⊕ v)⊖

(u⊕ v)⊖ u

= u⊕ v, (40)

provided that no exponent overĆow or underĆow occurs.

This rather cumbersome-looking identity can be rewritten in a simpler manner:
Let

u′ = (u⊕ v)⊖ v ,
u′′ = (u⊕ v)⊖ v′,

v′ = (u⊕ v)⊖ u ;

v′′ = (u⊕ v)⊖ u′.
(41)

Intuitively, u′ and u′′ should be approximations to u, and v′ and v′′ should be
approximations to v. Theorem A tells us that

u⊕ v = u′ + v′′ = u′′ + v′. (42)

This is a stronger statement than the identity

u⊕ v = u′ ⊕ v′′ = u′′ ⊕ v′, (43)

which follows by rounding (42).

Proof. Let us say that t is a tail of x modulo be if

t ≡ x (modulo be), |t| ≤ 1
2b

e; (44)

thus, x − round(x) is always a tail of x. The proof of Theorem A rests largely
on the following simple fact proved in exercise 11:

Lemma T. If t is a tail of the Ćoating point number x, then x⊖ t = x− t.
Let w = u ⊕ v. Theorem A holds trivially when w = 0. By multiplying all

variables by a suitable power of b, we may assume without loss of generality that
ew = p. Then u + v = w + r, where r is a tail of u + v modulo 1. Furthermore
u′ = round(w−v) = round(u−r) = u−r− t, where t is a tail of u−r modulo be

and e = eu′ − p.
If e ≤ 0, then t ≡ u − r ≡ −v (modulo be), hence t is a tail of −v and

v′′ = round(w − u′) = round(v + t) = v + t; this proves (40). If e > 0, then
|u − r| ≥ bp − 1

2 ; and since |r| ≤ 1
2 , we have |u| ≥ bp − 1. It follows that u is

an integer, so r is a tail of v modulo 1. If u′ = u, then t = −r is a tail of −v.
Otherwise the relation round(u − r) ̸= u implies that |u| = bp − 1, |r| = 1

2 ,
|u′| = bp, t = r; again t is a tail of −v.

236 ARITHMETIC 4.2.2

Theorem A exhibits a regularity property of Ćoating point addition, but it
doesn’t seem to be an especially useful result. The following identity is more
signiĄcant:

Theorem B. Under the hypotheses of Theorem A and (41),

u+ v = (u⊕ v) +

(u⊖ u′)⊕ (v ⊖ v′′)

. (45)

Proof. In fact, we can show that u ⊖ u′ = u − u′, v ⊖ v′′ = v − v′′, and
(u−u′)⊕ (v− v′′) = (u−u′) + (v− v′′), hence (45) will follow from Theorem A.
Using the notation of the preceding proof, these relations are respectively equiv-
alent to

round(t+ r) = t+ r, round(t) = t, round(r) = r. (46)

Exercise 12 establishes the theorem in the special case |eu − ev| ≥ p. Otherwise
u+ v has at most 2p signiĄcant digits and it is easy to see that round(r) = r. If
now e > 0, the proof of Theorem A shows that t = −r or t = r = ± 1

2 . If e ≤ 0
we have t + r ≡ u and t ≡ −v (modulo be); this is enough to prove that t + r
and t round to themselves, provided that eu ≥ e and ev ≥ e. But either eu < 0
or ev < 0 would contradict our hypothesis that |eu − ev| < p, since ew = p.

Theorem B gives an explicit formula for the difference between u + v and
u⊕ v, in terms of quantities that can be calculated directly using Ąve operations
of Ćoating point arithmetic. If the radix b is 2 or 3, we can improve on this
result, obtaining the exact value of the correction term with only two Ćoating
point operations and one (Ąxed point) comparison of absolute values:

Theorem C. If b ≤ 3 and |u| ≥ |v|, then

u+ v = (u⊕ v) +

u⊖ (u⊕ v)

⊕ v. (47)

Proof. Following the conventions of preceding proofs again, we wish to show
that v ⊖ v′ = r. It suffices to show that v′ = w − u, because (46) will then yield
v ⊖ v′ = round(v − v′) = round(u+ v − w) = round(r) = r.

We shall in fact prove (47) whenever b ≤ 3 and eu ≥ ev. If eu ≥ p, then r
is a tail of v modulo 1, hence v′ = w ⊖ u = v ⊖ r = v − r = w − u as desired.
If eu < p, then we must have eu = p− 1, and w − u is a multiple of b−1; it will
therefore round to itself if its magnitude is less than bp−1 + b−1. Since b ≤ 3, we
have indeed |w − u| ≤ |w − u − v| + |v| ≤ 1

2 + (bp−1 − b−1) < bp−1 + b−1. This
completes the proof.

The proofs of Theorems A, B, and C do not rely on the precise deĄnitions of
round(x) in the ambiguous cases when x is exactly midway between consecutive
Ćoating point numbers; any way of resolving the ambiguity will suffice for the
validity of everything we have proved so far.

No rounding rule can be best for every application. For example, we gener-
ally want a special rule when computing our income tax. But for most numerical
calculations the best policy appears to be the rounding scheme speciĄed in
Algorithm 4.2.1N, which insists that the least signiĄcant digit should always

4.2.2 ACCURACY OF FLOATING POINT ARITHMETIC 237

be made even (or always odd) when an ambiguous value is rounded. This is not
a trivial technicality, of interest only to nit-pickers; it is an important practical
consideration, since the ambiguous case arises surprisingly often and a biased
rounding rule produces signiĄcantly poor results. For example, consider decimal
arithmetic and assume that remainders of 5 are always rounded upwards. Then if
u = 1.0000000 and v = 0.55555555 we have u⊕v = 1.5555556; and if we Ćoating-
subtract v from this result we get u′ = 1.0000001. Adding and subtracting v
from u′ gives 1.0000002, and the next time we get 1.0000003, etc.; the result
keeps growing although we are adding and subtracting the same value.

This phenomenon, called drift, will not occur when we use a stable rounding
rule based on the parity of the least signiĄcant digit. More precisely:

Theorem D.

((u⊕ v)⊖ v)⊕ v

⊖ v = (u⊕ v)⊖ v.

For example, if u = 1.2345679 and v = −0.23456785, we Ąnd

u⊕ v = 1.0000000,

((u⊕ v)⊖ v)⊕ v = 0.99999995,

(u⊕ v)⊖ v = 1.2345678,

((u⊕ v)⊖ v)⊕ v

⊖ v = 1.2345678.

The proof for general u and v seems to require a case analysis even more detailed
than that in the theorems above; see the references below.

Theorem D is valid both for “round to evenŤ and “round to oddŤ; how should
we choose between these possibilities? When the radix b is odd, ambiguous cases
never arise except during Ćoating point division, and the rounding in such cases
is comparatively unimportant. For even radices, there is reason to prefer the
following rule: “Round to even when b/2 is odd, round to odd when b/2 is
even.Ť The least signiĄcant digit of a Ćoating point fraction occurs frequently
as a remainder to be rounded off in subsequent calculations, and this rule avoids
generating the digit b/2 in the least signiĄcant position whenever possible; its
effect is to provide some memory of an ambiguous rounding so that subsequent
rounding will tend to be unambiguous. For example, if we were to round to
odd in the decimal system, repeated rounding of the number 2.44445 to one less
place each time leads to the sequence 2.4445, 2.445, 2.45, 2.5, 3; if we round to
even, such situations do not occur, although repeated rounding of a number like
2.5454 will lead to almost as much error. [See Roy A. Keir, Inf. Proc. Letters
3 (1975), 188Ű189.] Some people prefer rounding to even in all cases, so that
the least signiĄcant digit will tend to be 0 more often. Exercise 23 demonstrates
this advantage of round-to-even. Neither alternative conclusively dominates the
other; fortunately the base is usually b = 2 or b = 10, when everyone agrees that
round-to-even is best.

A reader who has checked some of the details of the proofs above will realize
the immense simpliĄcation that has been afforded by the simple rule u ⊕ v =
round(u+ v). If our Ćoating point addition routine would fail to give this result
even in a few rare cases, the proofs would become enormously more complicated
and perhaps they would even break down completely.

Theorem B fails if truncation arithmetic is used in place of rounding, that
is, if we let u⊕ v = trunc(u+ v) and u⊖ v = trunc(u− v), where trunc(x) for a

238 ARITHMETIC 4.2.2

positive real x is the largest Ćoating point number ≤ x. An exception to Theo-
rem B would then occur for cases such as (20,+.10000001)⊕ (10,−.10000001) =
(20,+.10000000), when the difference between u+v and u⊕v cannot be expressed
exactly as a Ćoating point number; and also for cases such as 12345678 ⊕
.012345678, when it can be.

Many people feel that, since Ćoating point arithmetic is inexact by nature,
there is no harm in making it just a little bit less exact in certain rather rare cases,
if it is convenient to do so. This policy saves a few cents in the design of computer
hardware, or a small percentage of the average running time of a subroutine. But
our discussion shows that such a policy is mistaken. We could save about Ąve
percent of the running time of the FADD subroutine, Program 4.2.1A, and about
25 percent of its space, if we took the liberty of rounding incorrectly in a few
cases, but we are much better off leaving it as it is. The reason is not to glorify
“bit chasingŤ; a more fundamental issue is at stake here: Numerical subroutines
should deliver results that satisfy simple, useful mathematical laws whenever
possible. The crucial formula u ⊕ v = round(u + v) is a regularity property
that makes a great deal of difference between whether mathematical analysis
of computational algorithms is worth doing or worth avoiding. Without any
underlying symmetry properties, the job of proving interesting results becomes
extremely unpleasant. The enjoyment of one’s tools is an essential ingredient of
successful work.

B. Unnormalized Ćoating point arithmetic. The policy of normalizing all
Ćoating point numbers may be construed in two ways: We may look on it favor-
ably by saying that it is an attempt to get the maximum possible accuracy ob-
tainable with a given degree of precision, or we may consider it to be potentially
dangerous since it tends to imply that the results are more accurate than they
really are. When we normalize the result of (1,+.31428571) ⊖ (1,+.31415927)
to (−2,+.12644000), we are suppressing information about the possibly greater
inaccuracy of the latter quantity. Such information would be retained if the
answer were left as (1,+.00012644).

The input data to a problem is frequently not known as precisely as the
Ćoating point representation allows. For example, the values of Avogadro’s
number and Planck’s constant are not known to eight signiĄcant digits, and
it might be more appropriate to denote them, respectively, by

(27,+.00060221) and (−23,+.00066261)

instead of by (24,+.60221400) and (−26,+.66261000). It would be nice if
we could give our input data for each problem in an unnormalized form that
expresses how much precision is assumed, and if the output would indicate just
how much precision is known in the answer. Unfortunately, this is a terribly
difficult problem, although the use of unnormalized arithmetic can help to give
some indication. For example, we can say with a fair degree of certainty that the
product of Avogadro’s number by Planck’s constant is (1,+.00039903), and that
their sum is (27,+.00060221). (The purpose of this example is not to suggest that

4.2.2 ACCURACY OF FLOATING POINT ARITHMETIC 239

any important physical signiĄcance should be attached to the sum and product
of these fundamental constants; the point is that it is possible to preserve a little
of the information about precision in the result of calculations with imprecise
quantities, when the original operands are independent of each other.)

The rules for unnormalized arithmetic are simply this: Let lu be the number
of leading zeros in the fraction part of u = (eu, fu), so that lu is the largest integer
≤ p with |fu| < b−lu . Then addition and subtraction are performed just as in
Algorithm 4.2.1A, except that all scaling to the left is suppressed. Multiplication
and division are performed as in Algorithm 4.2.1M, except that the answer is
scaled right or left so that precisely max(lu, lv) leading zeros appear. Essentially
the same rules have been used in manual calculation for many years.

It follows that, for unnormalized computations,

eu⊕v, eu⊖v = max(eu, ev) + (0 or 1) (48)

eu⊗v = eu + ev − q −min(lu, lv)− (0 or 1) (49)

eu⊘v = eu − ev + q − lu + lv + max(lu, lv) + (0 or 1). (50)

When the result of a calculation is zero, an unnormalized zero (often called an
“order of magnitude zeroŤ) is given as the answer; this indicates that the answer
may not truly be zero, we just don’t know any of its signiĄcant digits.

Error analysis takes a somewhat different form with unnormalized Ćoating
point arithmetic. Let us deĄne

δu = 1
2b

eu−q−p if u = (eu, fu). (51)

This quantity depends on the representation of u, not just on the value beu−qfu.
Our rounding rule tells us that

u⊕ v − (u+ v)

 ≤ δu⊕v,

u⊗ v − (u× v)

 ≤ δu⊗v,

u⊖ v − (u− v)

 ≤ δu⊖v,

u⊘ v − (u / v)

 ≤ δu⊘v.

These inequalities apply to normalized as well as unnormalized arithmetic; the
main difference between the two types of error analysis is the deĄnition of the
exponent of the result of each operation

Eqs. (48) to (50)

.

We have remarked that the relations ≺, ∼, ≻, and ≈ deĄned earlier in
this section are valid and meaningful for unnormalized numbers as well as for
normalized numbers. As an example of the use of these relations, let us prove
an approximate associative law for unnormalized addition, analogous to (39):

(u⊕ v)⊕ w ≈ u⊕ (v ⊕ w) (ϵ), (52)

for suitable ϵ. We have

|(u⊕ v)⊕w− (u+ v+w)| ≤

(u⊕ v)⊕w−

(u⊕ v) +w

+ |u⊕ v− (u+ v)|

≤ δ(u⊕v)⊕w + δu⊕v

≤ 2δ(u⊕v)⊕w.

A similar formula holds for |u ⊕ (v ⊕ w) − (u + v + w)|. Now since e(u⊕v)⊕w =
max(eu, ev, ew)+(0, 1, or 2), we have δ(u⊕v)⊕w ≤ b2δu⊕(v⊕w). Therefore we Ąnd

240 ARITHMETIC 4.2.2

that (52) is valid when ϵ ≥ b2−p + b−p; unnormalized addition is not as erratic
as normalized addition with respect to the associative law.

It should be emphasized that unnormalized arithmetic is by no means a
panacea. There are examples where it indicates greater accuracy than is present
(for example, addition of a great many small quantities of about the same magni-
tude, or evaluation of xn for large n); and there are many more examples when it
indicates poor accuracy while normalized arithmetic actually does produce good
results. There is an important reason why no straightforward one-operation-at-
a-time method of error analysis can be completely satisfactory, namely the fact
that operands are usually not independent of each other. This means that errors
tend to cancel or reinforce each other in strange ways. For example, suppose that
x is approximately 1/2, and suppose that we have an approximation y = x + δ
with absolute error δ. If we now wish to compute x(1−x), we can form y(1−y);
if x = 1

2 + ϵ we Ąnd y(1 − y) = x(1 − x) − 2ϵδ − δ2, so the absolute error has
decreased substantially: It has been multiplied by a factor of 2ϵ + δ. This is
just one case where multiplication of imprecise quantities can lead to a quite
accurate result when the operands are not independent of each other. A more
obvious example is the computation of x⊖x, which can be obtained with perfect
accuracy regardless of how bad an approximation to x we begin with.

The extra information that unnormalized arithmetic gives us can often be
more important than the information it destroys during an extended calcula-
tion, but (as usual) we must use it with care. Examples of the proper use of
unnormalized arithmetic are discussed by R. L. Ashenhurst and N. Metropolis
in Computers and Computing, AMM, Slaught Memorial Papers 10 (February
1965), 47Ű59; by N. Metropolis in Numer. Math. 7 (1965), 104Ű112; and by
R. L. Ashenhurst in Error in Digital Computation 2, edited by L. B. Rall
(New York: Wiley, 1965), 3Ű37. Appropriate methods for computing standard
mathematical functions with both input and output in unnormalized form are
given by R. L. Ashenhurst in JACM 11 (1964), 168Ű187. An extension of
unnormalized arithmetic, which remembers that certain values are known to
be exact, has been discussed by N. Metropolis in IEEE Trans. C-22 (1973),
573Ű576.

C. Interval arithmetic. Another approach to the problem of error determi-
nation is the so-called interval or range arithmetic, in which rigorous upper and
lower bounds on each number are maintained during the calculations. Thus, for
example, if we know that u0 ≤ u ≤ u1 and v0 ≤ v ≤ v1, we represent this by the
interval notation u = [u0 . . u1], v = [v0 . . v1]. The sum u⊕v is [u0▽+ v0 . . u1△+ v1],
where ▽+ denotes “lower Ćoating point addition,Ť the greatest representable
number less than or equal to the true sum, and △+ is deĄned similarly (see
exercise 4.2.1Ű13). Furthermore u⊖ v = [u0▽− v1 . . u1△− v0]; and if u0 and v0 are
positive, we have u ⊗ v = [u0 ▽× v0 . . u1 △× v1], u ⊘ v = [u0 ▽/ v1 . . u1 △/ v0]. For
example, we might represent Avogadro’s number and Planck’s constant as

N =

(24,+.60221331) . . (24,+.60221403)

,

h =

(−26,+.66260715) . . (−26,+.66260795)

;

4.2.2 ACCURACY OF FLOATING POINT ARITHMETIC 241

their sum and product would then turn out to be

N ⊕ h =

(24,+.60221331) . . (24,+.60221404)

,

N ⊗ h =

(−2,+.39903084) . . (−2,+.39903181)

.

If we try to divide by [v0 . . v1] when v0 < 0 < v1, there is a possibility of
division by zero. Since the philosophy underlying interval arithmetic is to provide
rigorous error estimates, a divide-by-zero error should be signalled in this case.
However, overĆow and underĆow need not be treated as fatal errors in interval
arithmetic, if special conventions are introduced as discussed in exercise 24.

Interval arithmetic takes only about twice as long as ordinary arithmetic,
and it provides truly reliable error estimates. Considering the difficulty of
mathematical error analyses, this is indeed a small price to pay. Since the
intermediate values in a calculation often depend on each other, as explained
above, the Ąnal estimates obtained with interval arithmetic will tend to be
pessimistic; and iterative numerical methods often have to be redesigned if we
want to deal with intervals. However, the prospects for effective use of interval
arithmetic look very good, so efforts should be made to increase its availability
and to make it as user-friendly as possible.

D. History and bibliography. Jules Tannery’s classic treatise on decimal
calculations, Leçons d’Arithmétique (Paris: Colin, 1894), stated that positive
numbers should be rounded upwards if the Ąrst discarded digit is 5 or more;
since exactly half of the decimal digits are 5 or more, he felt that this rule would
round upwards exactly half of the time, on the average, so it would produce
compensating errors. The idea of “round to evenŤ in the ambiguous cases seems
to have been mentioned Ąrst by James B. Scarborough in the Ąrst edition of his
pioneering book Numerical Mathematical Analysis (Baltimore: Johns Hopkins
Press, 1930), 2; in the second (1950) edition he ampliĄed his earlier remarks,
stating that “It should be obvious to any thinking person that when a 5 is cut
off, the preceding digit should be increased by 1 in only half the cases,Ť and he
recommended round-to-even in order to achieve this.

The Ąrst analysis of Ćoating point arithmetic was given by F. L. Bauer and K.
Samelson, Zeitschrift für angewandte Math. und Physik 4 (1953), 312Ű316. The
next publication was not until over Ąve years later: J. W. Carr III, CACM 2, 5
(May 1959), 10Ű15. See also P. C. Fischer, Proc. ACM Nat. Meeting 13 (1958),
Paper 39. The book Rounding Errors in Algebraic Processes (Englewood Cliffs:
PrenticeŰHall, 1963), by J. H. Wilkinson, shows how to apply error analysis of
the individual arithmetic operations to the error analysis of large-scale problems;
see also his treatise on The Algebraic Eigenvalue Problem (Oxford: Clarendon
Press, 1965).

Additional early work on Ćoating point accuracy is summarized in two
important papers that can be especially recommended for further study: W. M.
Kahan, Proc. IFIP Congress (1971), 2, 1214Ű1239; R. P. Brent, IEEE Trans.
C-22 (1973), 601Ű607. Both papers include useful theory and demonstrate that
it pays off in practice.

242 ARITHMETIC 4.2.2

The relations ≺, ∼, ≻, ≈ introduced in this section are similar to ideas
published by A. van Wijngaarden in BIT 6 (1966), 66Ű81. Theorems A and B
above were inspired by some related work of Ole Møller, BIT 5 (1965), 37Ű50,
251Ű255; Theorem C is due to T. J. Dekker, Numer. Math. 18 (1971), 224Ű
242. Extensions and reĄnements of all three theorems have been published by
S. Linnainmaa, BIT 14 (1974), 167Ű202. W. M. Kahan introduced Theorem D
in some unpublished notes; for a complete proof and further commentary, see
J. F. Reiser and D. E. Knuth, Inf. Proc. Letters 3 (1975), 84Ű87, 164.

Unnormalized Ćoating point arithmetic was recommended by F. L. Bauer
and K. Samelson in the article cited above, and it was independently used by
J. W. Carr III at the University of Michigan in 1953. Several years later, the
MANIAC III computer was designed to include both kinds of arithmetic in its
hardware; see R. L. Ashenhurst and N. Metropolis, JACM 6 (1959), 415Ű428,
IEEE Trans. EC-12 (1963), 896Ű901; R. L. Ashenhurst, Proc. Spring Joint Com-
puter Conf. 21 (1962), 195Ű202. See also H. L. Gray and C. Harrison, Jr., Proc.
Eastern Joint Computer Conf. 16 (1959), 244Ű248, and W. G. Wadey, JACM 7
(1960), 129Ű139, for further early discussions of unnormalized arithmetic.

For early developments in interval arithmetic, and some modiĄcations, see
A. Gibb, CACM 4 (1961), 319Ű320; B. A. Chartres, JACM 13 (1966), 386Ű
403; and the book Interval Analysis by Ramon E. Moore (PrenticeŰHall, 1966).
The subsequent Ćourishing of this subject is described in Moore’s later book,
Methods and Applications of Interval Analysis (Philadelphia: SIAM, 1979).

An extension of the Pascal language that allows variables to be of type
“intervalŤ was developed at the University of Karlsruhe in the early 1980s. For
a description of this language, which also includes numerous other features for
scientiĄc computing, see Pascal-SC by Bohlender, Ullrich, Wolff von Gudenberg,
and Rall (New York: Academic Press, 1987).

The book Grundlagen des numerischen Rechnens: Mathematische Begrün-
dung der Rechnerarithmetik by Ulrich Kulisch (Mannheim: Bibl. Inst., 1976)
is entirely devoted to the study of Ćoating point arithmetic systems. See also
Kulisch’s article in IEEE Trans. C-26 (1977), 610Ű621, and his more recent book
written jointly with W. L. Miranker, entitled Computer Arithmetic in Theory
and Practice (New York: Academic Press, 1981).

An excellent summary of more recent work on Ćoating point error analysis
appears in the book Accuracy and Stability of Numerical Algorithms by N. J.
Higham (Philadelphia: SIAM, 1996).

EXERCISES

Note: Normalized Ćoating point arithmetic is assumed unless the contrary is speciĄed.
1. [M18] Prove that identity (7) is a consequence of (2) through (6).
2. [M20] Use identities (2) through (8) to prove that (u ⊕ x) ⊕ (v ⊕ y) ≥ u ⊕ v

whenever x ≥ 0 and y ≥ 0.
3. [M20] Find eight-digit Ćoating decimal numbers u, v, and w such that

u⊗ (v ⊗ w) ̸= (u⊗ v)⊗ w,
and such that no exponent overĆow or underĆow occurs during the computations.

4.2.2 ACCURACY OF FLOATING POINT ARITHMETIC 243

4. [10] Is it possible to have Ćoating point numbers u, v, and w for which exponent
overĆow occurs during the calculation of u⊗ (v ⊗w) but not during the calculation of
(u⊗ v)⊗ w?

5. [M20] Is u⊘v = u⊗(1⊘v) an identity, for all Ćoating point numbers u and v ̸= 0
such that no exponent overĆow or underĆow occurs?

6. [M22] Are either of the following two identities valid for all Ćoating point num-
bers u? (a) 0⊖ (0⊖ u) = u; (b) 1⊘ (1⊘ u) = u.

7. [M21] Let u 2⃝ stand for u ⊗ u. Find Ćoating binary numbers u and v such that
(u⊕ v) 2⃝ > 2(u 2⃝+ v 2⃝).

x 8. [20] Let ϵ = 0.0001; which of the relations

u ≺ v (ϵ), u ∼ v (ϵ), u ≻ v (ϵ), u ≈ v (ϵ)

hold for the following pairs of base 10, excess 0, eight-digit Ćoating point numbers?

a) u = (1,+.31415927), v = (1,+.31416000);
b) u = (0,+.99997000), v = (1,+.10000039);
c) u = (24,+.60221400), v = (27,+.00060221);
d) u = (24,+.60221400), v = (31,+.00000006);
e) u = (24,+.60221400), v = (28,+.00000000).

9. [M22] Prove (33), and explain why the conclusion cannot be strengthened to the
relation u ≈ w (ϵ1 + ϵ2).

x 10. [M25] (W. M. Kahan.) A certain computer performs Ćoating point arithmetic
without proper rounding, and, in fact, its Ćoating point multiplication routine ignores
all but the Ąrst p most signiĄcant digits of the 2p-digit product fufv. (Thus when
fufv < 1/b, the least-signiĄcant digit of u ⊗ v always comes out to be zero, due to
subsequent normalization.) Show that this causes the monotonicity of multiplication
to fail; in other words, exhibit positive normalized Ćoating point numbers u, v, and w
such that u < v but u⊗ w > v ⊗ w on this machine.

11. [M20] Prove Lemma T.

12. [M24] Carry out the proof of Theorem B and (46) when |eu − ev| ≥ p.
x 13. [M25] Some programming languages (and even some computers) make use of

Ćoating point arithmetic only, with no provision for exact calculations with integers. If
operations on integers are desired, we can, of course, represent an integer as a Ćoating
point number; and when the Ćoating point operations satisfy the basic deĄnitions in
(9), we know that all Ćoating point operations will be exact, provided that the operands
and the answer can each be represented exactly with p signiĄcant digits. Therefore Ů so
long as we know that the numbers aren’t too large Ů we can add, subtract, or multiply
integers with no inaccuracy due to rounding errors.

But suppose that a programmer wants to determine if m is an exact multiple of n,
when m and n ̸= 0 are integers. Suppose further that a subroutine is available to
calculate the quantity round(umod 1) = u

X
mod 1 for any given Ćoating point num-

ber u, as in exercise 4.2.1Ű15. One good way to determine whether or not m is a
multiple of n might be to test whether or not (m⊘ n) X

mod 1 = 0, using the assumed
subroutine; but perhaps rounding errors in the Ćoating point calculations will invalidate
this test in certain cases.

Find suitable conditions on the range of integer values n ̸= 0 and m, such that m
is a multiple of n if and only if (m ⊘ n) X

mod 1 = 0. In other words, show that if m
and n are not too large, this test is valid.

244 ARITHMETIC 4.2.2

14. [M27] Find a suitable ϵ such that (u⊗v)⊗w ≈ u⊗(v⊗w) (ϵ), when unnormalized

multiplication is being used. (This generalizes (39), since unnormalized multiplication
is exactly the same as normalized multiplication when the input operands u, v, and w
are normalized.)

x 15. [M24] (H. Björk.) Does the computed midpoint of an interval always lie between
the endpoints? (In other words, does u ≤ v imply that u ≤ (u⊕ v)⊘ 2 ≤ v?)

16. [M28] (a) What is (· · · ((x1⊕x2)⊕x3)⊕· · ·⊕xn) when n = 106 and xk = 1.1111111
for all k, using eight-digit Ćoating decimal arithmetic? (b) What happens when Eq. (14)
is used to calculate the standard deviation of these particular values xk? What happens
when Eqs. (15) and (16) are used instead? (c) Prove that Sk ≥ 0 in (16), for all choices
of x1, . . . , xk.

17. [28] Write a MIX subroutine, FCMP, that compares the Ćoating point number u in
location ACC with the Ćoating point number v in register A, setting the comparison
indicator to LESS, EQUAL, or GREATER according as u ≺ v, u ∼ v, or u ≻ v (ϵ); here ϵ is
stored in location EPSILON as a nonnegative Ąxed point quantity with the radix point
assumed at the left of the word. Assume normalized inputs.

18. [M40] In unnormalized arithmetic is there a suitable number ϵ such that

u⊗ (v ⊕ w) ≈ (u⊗ v)⊕ (u⊗ w) (ϵ) ?

x 19. [M30] (W. M. Kahan.) Consider the following procedure for Ćoating point sum-
mation of x1, x2, . . . , xn:

s0 = c0 = 0;

yk = xk ⊖ ck−1, sk = sk−1 ⊕ yk, ck = (sk ⊖ sk−1)⊖ yk, for 1 ≤ k ≤ n.

Let the relative errors in these operations be deĄned by the equations

yk = (xk − ck−1)(1 + ηk), sk = (sk−1 + yk)(1 + σk),

ck = ((sk − sk−1)(1 + γk)− yk)(1 + δk),

where |ηk|, |σk|, |γk|, |δk| ≤ ϵ. Prove that sn − cn =
n

k=1(1 + θk)xk, where |θk| ≤
2ϵ+O(nϵ2). [Theorem C says that if b = 2 and |sk−1| ≥ |yk| we have sk−1 +yk = sk−ck

exactly. But in this exercise we want to obtain an estimate that is valid even when

Ćoating point operations are not carefully rounded, assuming only that each operation
has bounded relative error.]

20. [25] (S. Linnainmaa.) Find all u and v for which |u| ≥ |v| and (47) fails.

21. [M35] (T. J. Dekker.) Theorem C shows how to do exact addition of Ćoating
binary numbers. Explain how to do exact multiplication: Express the product uv in
the form w+w′, where w and w′ are computed from two given Ćoating binary numbers
u and v, using only the operations ⊕, ⊖, and ⊗.

22. [M30] Can drift occur in Ćoating point multiplication/division? Consider the
sequence x0 = u, x2n+1 = x2n ⊗ v, x2n+2 = x2n+1 ⊘ v, given u and v ̸= 0; what is the
largest subscript k such that xk ̸= xk+2 is possible?

x 23. [M26] Prove or disprove: u⊖ (u X
mod 1) = ⌊u⌋, for all Ćoating point u.

24. [M27] Consider the set of all intervals [ul . . ur], where ul and ur are either nonzero
Ćoating point numbers or the special symbols +0, −0, +∞, −∞; each interval must

4.2.2 ACCURACY OF FLOATING POINT ARITHMETIC 245

have ul ≤ ur, and ul = ur is allowed only when ul is Ąnite and nonzero. The interval
[ul . . ur] stands for all Ćoating point x such that ul ≤ x ≤ ur, where we agree that

−∞ < −x < −0 < 0 < +0 < +x < +∞

for all positive x. (Thus, [1 . . 2] means 1 ≤ x ≤ 2; [+0 . . 1] means 0 < x ≤ 1;
[−0 . . 1] means 0 ≤ x ≤ 1; [−0 . .+0] denotes the single value 0; and [−∞ . .+∞] stands
for everything.) Show how to deĄne appropriate arithmetic operations on all such
intervals, without resorting to overĆow or underĆow or other anomalous indications
except when dividing by an interval that includes zero.

x 25. [15] When people speak about inaccuracy in Ćoating point arithmetic they often
ascribe errors to “cancellationŤ that occurs during the subtraction of nearly equal
quantities. But when u and v are approximately equal, the difference u⊖ v is obtained
exactly, with no error. What do these people really mean?

26. [M21] Given that u, u′, v, and v′ are positive Ćoating point numbers with u ∼
u′ (ϵ) and v ∼ v′ (ϵ), prove that there’s a small ϵ′ such that u ⊕ v ∼ u′ ⊕ v′ (ϵ′),
assuming normalized arithmetic.

27. [M27] (W. M. Kahan.) Prove that 1⊘ (1⊘ (1⊘ u)) = 1⊘ u for all u ̸= 0.

28. [HM30] (H. G. Diamond.) Suppose f(x) is a strictly increasing function on some
interval [x0 . . x1], and let g(x) be the inverse function. (For example, f and g might
be “expŤ and “lnŤ, or “tanŤ and “arctanŤ.) If x is a Ćoating point number such that
x0 ≤ x ≤ x1, let f̂(x) = round(f(x)), and if y is another such that f(x0) ≤ y ≤ f(x1),
let ĝ(y) = round(g(y)); furthermore, let h(x) = ĝ(f̂(x)), whenever this is deĄned.
Although h(x) won’t always be equal to x, due to rounding, we expect h(x) to be fairly
near x.

Prove that if the precision bp is at least 3, and if f is strictly concave or strictly
convex (that is, f ′′(x) has the same sign for all x in [x0 . . x1]), then repeated application
of h will be stable in the sense that

h(h(h(x))) = h(h(x)),

for all x such that both sides of this equation are deĄned. In other words, there will
be no “driftŤ if the subroutines are properly implemented.

x 29. [M25] Give an example to show that the condition bp ≥ 3 is necessary in the
previous exercise.

x 30. [M30] (W. M. Kahan.) Let f(x) = 1 + x + · · · + x106 = (1− x107)/(1− x) for
x < 1, and let g(y) = f((1

3
− y2)(3 + 3.45y2)) for 0 < y < 1. Evaluate g(y) on one or

more pocket calculators, for y = 10−3, 10−4, 10−5, 10−6, and explain all inaccuracies
in the results you obtain. (Since most present-day calculators do not round correctly,
the results are often surprising. Note that g(ϵ) = 107− 10491.35ϵ2 + 659749.9625ϵ4 −
30141386.26625ϵ6 +O(ϵ8).)

31. [M25] (U. Kulisch.) When the polynomial 2y2 + 9x4 − y4 is evaluated for x =
408855776 and y = 708158977 using standard 53-bit double-precision Ćoating point
arithmetic, the result is ≈ −3.7 × 1019. Evaluating it in the alternative form 2y2 +
(3x2 − y2)(3x2 + y2) gives ≈ +1.0 × 1018. The true answer, however, is 1.0 (exactly).
Explain how to construct similar examples of numerical instability.

32. [M21] For what pairs (a, b) is round to even(x) = ⌊ax+ b⌋+ ⌈ax− b⌉ for all x?

246 ARITHMETIC 4.2.3

*4.2.3. Double-Precision Calculations

Up to now we have considered “single-precisionŤ Ćoating point arithmetic, which
essentially means that the Ćoating point values we have dealt with can be stored
in a single machine word. When single-precision Ćoating point arithmetic does
not yield sufficient accuracy for a given application, the precision can be increased
by suitable programming techniques that use two or more words of memory to
represent each number.

Although we shall discuss the general question of high-precision calculations
in Section 4.3, it is appropriate to give a separate discussion of double-precision
here. Special techniques apply to double precision that are comparatively inap-
propriate for higher precisions; and double precision is a reasonably important
topic in its own right, since it is the Ąrst step beyond single precision and it is
applicable to many problems that do not require extremely high precision.

Well, that paragraph was true when the author wrote the Ąrst edition of
this book in the 1960s. But computers have evolved in such a way that the

old motivations for double-precision Ćoating point have mostly disappeared; the
present section is therefore primarily of historical interest. In the planned fourth
edition of this book, Section 4.2.1 will be renamed “Normalized Calculations,Ť
and the present Section 4.2.3 will be replaced by a discussion of “Exceptional
Numbers.Ť The new material will focus on special aspects of ANSI/IEEE Stan-
dard 754: subnormal numbers, inĄnities, and the so-called NaNs that represent
undeĄned or otherwise unusual quantities. (See the references at the end of
Section 4.2.1.) Meanwhile, let us take one last look at the older ideas, in order
to see what lessons they can still teach us.

Double-precision calculations are almost always required for Ćoating point
rather than Ąxed point arithmetic, except perhaps in statistical work where Ąxed
point double-precision is commonly used to calculate sums of squares and cross
products; since Ąxed point versions of double-precision arithmetic are simpler
than Ćoating point versions, we shall conĄne our discussion here to the latter.

Double precision is quite frequently desired not only to extend the precision
of the fraction parts of Ćoating point numbers, but also to increase the range of
the exponent part. Thus we shall deal in this section with the following two-word
format for double-precision Ćoating point numbers in the MIX computer:

± e e f f f f f f f f . (1)

Here two bytes are used for the exponent and eight bytes are used for the fraction.
The exponent is “excess b2/2,Ť where b is the byte size. The sign will appear in
the most signiĄcant word; it is convenient to ignore the sign of the other word
completely.

Our discussion of double-precision arithmetic will be quite machine-oriented,
because it is only by studying the problems involved in coding these routines
that a person can properly appreciate the subject. A careful study of the MIX

programs below is therefore essential to the understanding of the material.

4.2.3 DOUBLE-PRECISION CALCULATIONS 247

In this section we shall depart from the idealistic goals of accuracy stated
in the previous two sections; our double-precision routines will not round their
results, and a little bit of error will sometimes be allowed to creep in. Users
dare not trust these routines too much. There was ample reason to squeeze out
every possible drop of accuracy in the single-precision case, but now we face a
different situation: (a) The extra programming required to ensure true double-
precision rounding in all cases is considerable; fully accurate routines would take,
say, twice as much space and half again as much time. It was comparatively
easy to make our single-precision routines perfect, but double precision brings
us face to face with our machine’s limitations. A similar situation occurs with
respect to other Ćoating point subroutines; we can’t expect the cosine routine
to compute round(cosx) exactly for all x, since that turns out to be virtually
impossible. Instead, the cosine routine should provide the best relative error it
can achieve with reasonable speed, for all reasonable values of x. Of course, the
designer of the routine should try to make the computed function satisfy simple
mathematical laws whenever possible Ů for example,

Xcos (−x) = Xcos x; | Xcos x| ≤ 1; Xcos x ≥ Xcos y for 0 ≤ x ≤ y < π.

(b) Single-precision arithmetic is a “staple foodŤ that everybody who wants to
employ Ćoating point arithmetic must use, but double precision is usually for
situations where such clean results aren’t as important. The difference between
seven- and eight-place accuracy can be noticeable, but we rarely care about the
difference between 15- and 16-place accuracy. Double precision is most often
used for intermediate steps during the calculation of single-precision results; its
full potential isn’t needed. (c) It will be instructive for us to analyze these
procedures in order to see how inaccurate they can be, since they typify the
types of short cuts generally taken in bad single-precision routines (see exercises
7 and 8).

Let us now consider addition and subtraction operations from this stand-
point. Subtraction is, of course, converted to addition by changing the sign of
the second operand. Addition is performed by separately adding together the
least-signiĄcant halves and the most-signiĄcant halves, propagating “carriesŤ
appropriately.

A difficulty arises, however, since we are doing signed magnitude arithmetic:
it is possible to add the least-signiĄcant halves and to get the wrong sign (namely,
when the signs of the operands are opposite and the least-signiĄcant half of the
smaller operand is bigger than the least-signiĄcant half of the larger operand).
The simplest solution is to anticipate the correct sign; so in step A2 of Algorithm
4.2.1A we will now assume not only that eu ≥ ev but also that |u| ≥ |v|. Then
we can be sure that the Ąnal sign will be the sign of u. In other respects, double-
precision addition is very much like its single-precision counterpart, except that
everything needs to be done twice.

Program A (Double-precision addition). The subroutine DFADD adds a double-
precision Ćoating point number v, having the form (1), to a double-precision

248 ARITHMETIC 4.2.3

Ćoating point number u, assuming that v is initially in rAX (registers A and X),
and that u is initially stored in locations ACC and ACCX. The answer appears both
in rAX and in (ACC, ACCX). The subroutine DFSUB subtracts v from u under the
same conventions.

Both input operands are assumed to be normalized, and the answer is
normalized. The last portion of this program is a double-precision normalization
procedure that is used by other subroutines of this section. Exercise 5 shows
how to improve the program signiĄcantly.

01 ABS EQU 1:5 Field deĄnition for absolute value
02 SIGN EQU 0:0 Field deĄnition for sign
03 EXPD EQU 1:2 Double-precision exponent Ąeld
04 DFSUB STA TEMP Double-precision subtraction:
05 LDAN TEMP Change sign of v.
06 DFADD STJ EXITDF Double-precision addition:
07 CMPA ACC(ABS) Compare |v| with |u|.
08 JG 1F
09 JL 2F
10 CMPX ACCX(ABS)
11 JLE 2F
12 1H STA ARG If |v| > |u|, interchange u↔ v.
13 STX ARGX
14 LDA ACC
15 LDX ACCX
16 ENT1 ACC (ACC and ACCX are in consecutive
17 MOVE ARG(2) locations.)
18 2H STA TEMP
19 LD1N TEMP(EXPD) rI1← −ev.
20 LD2 ACC(EXPD) rI2← eu.
21 INC1 0,2 rI1← eu − ev.
22 SLAX 2 Remove exponent.
23 SRAX 1,1 Scale right.
24 STA ARG 0 v1 v2 v3 v4

25 STX ARGX v5 v6 v7 v8 v9

26 STA ARGX(SIGN) Store true sign of v in both halves.
27 LDA ACC (We know that u has the sign of the answer.)
28 LDX ACCX rAX← u.
29 SLAX 2 Remove exponent.
30 STA ACC u1 u2 u3 u4 u5

31 SLAX 4
32 ENTX 1
33 STX EXPO EXPO← 1 (see below).
34 SRC 1 1 u5 u6 u7 u8

35 STA 1F(SIGN) A trick, see comments in text.
36 ADD ARGX(0:4) Add 0 v5 v6 v7 v8.
37 SRAX 4
38 1H DECA 1 Recover from inserted 1. (Sign varies)
39 ADD ACC(0:4) Add most signiĄcant halves.
40 ADD ARG (OverĆow cannot occur)

4.2.3 DOUBLE-PRECISION CALCULATIONS 249

41 DNORM JANZ 1F Normalization routine:
42 JXNZ 1F fw in rAX, ew = EXPO + rI2.
43 DZERO STA ACC If fw = 0, set ew ← 0.
44 JMP 9F
45 2H SLAX 1 Normalize to the left.
46 DEC2 1
47 1H CMPA =0=(1:1) Is the leading byte zero?
48 JE 2B
49 SRAX 2 (Rounding omitted)
50 STA ACC
51 LDA EXPO Compute Ąnal exponent.
52 INCA 0,2
53 JAN EXPUND Is it negative?
54 STA ACC(EXPD)
55 CMPA =1(3:3)= Is it more than two bytes?
56 JL 8F
57 EXPOVD HLT 20
58 EXPUND HLT 10
59 8H LDA ACC Bring answer into rA.
60 9H STX ACCX
61 EXITDF JMP * Exit from subroutine.
62 ARG CON 0
63 ARGX CON 0
64 ACC CON 0 Floating point accumulator
65 ACCX CON 0
66 EXPO CON 0 Part of “raw exponentŤ

When the least-signiĄcant halves are added together in this program, an
extra digit “1Ť is inserted at the left of the word that is known to have the
correct sign. After the addition, this byte can be 0, 1, or 2, depending on
the circumstances, and all three cases are handled simultaneously in this way.
(Compare this with the rather cumbersome method of complementation that is
used in Program 4.2.1A.)

It is worth noting that register A can be zero after the instruction on line 40
has been performed; and, because of the way MIX deĄnes the sign of a zero result,
the accumulator contains the correct sign that is to be attached to the result if
register X is nonzero. If lines 39 and 40 were interchanged, the program would
be incorrect, even though both instructions are ŚADD’!

Now let us consider double-precision multiplication. The product has four
components, shown schematically in Fig. 4. Since we need only the leftmost
eight bytes, it is convenient to ignore the digits to the right of the vertical line
in the diagram; in particular, we need not even compute the product of the two
least-signiĄcant halves.

Program M (Double-precision multiplication). The input and output conven-
tions for this subroutine are the same as for Program A.

01 BYTE EQU 1(4:4) Byte size
02 QQ EQU BYTE*BYTE/2 Excess of double-precision exponent

250 ARITHMETIC 4.2.3

u u u u u u u u 0 0 = um + ϵul
v v v v v v v v 0 0 = vm + ϵvl
x x x x x x 0 0 0 0 = ϵ2ul × vl

x x x x x x x x 0 0 = ϵ um × vl
x x x x x x x x 0 0 = ϵ ul × vm

x x x x x x x x x x = um × vm
w w w w w w w w w w w w w w w w 0 0 0 0

Fig. 4. Double-precision multiplication of eight-byte fraction parts.

03 DFMUL STJ EXITDF Double-precision multiplication:
04 STA TEMP
05 SLAX 2 Remove exponent.
06 STA ARG vm

07 STX ARGX vl

08 LDA TEMP(EXPD)
09 ADD ACC(EXPD)
10 STA EXPO EXPO← eu + ev.
11 ENT2 -QQ rI2← −QQ.
12 LDA ACC
13 LDX ACCX
14 SLAX 2 Remove exponent.
15 STA ACC um

16 STX ACCX ul

17 MUL ARGX um × vl

18 STA TEMP
19 LDA ARG(ABS)
20 MUL ACCX(ABS) |vm × ul|
21 SRA 1 0 x x x x
22 ADD TEMP(1:4) (OverĆow cannot occur)
23 STA TEMP
24 LDA ARG
25 MUL ACC vm × um

26 STA TEMP(SIGN) Store true sign of result.
27 STA ACC Now prepare to add all the
28 STX ACCX partial products together.
29 LDA ACCX(0:4) 0 x x x x
30 ADD TEMP (OverĆow cannot occur)
31 SRAX 4
32 ADD ACC (OverĆow cannot occur)
33 JMP DNORM Normalize and exit.

Notice the careful treatment of signs in this program, and note also the fact
that the range of exponents makes it impossible to compute the Ąnal exponent
using an index register. Program M is perhaps too slipshod in accuracy, since it
uses only the information to the left of the vertical line in Fig. 4; this can make
the least signiĄcant byte as much as 2 in error. A little more accuracy can be
achieved as discussed in exercise 4.

4.2.3 DOUBLE-PRECISION CALCULATIONS 251

Double-precision Ćoating division is the most difficult routine, or at least the
most frightening prospect we have encountered so far in this chapter. Actually,
it is not terribly complicated, once we see how to do it; let us write the numbers
to be divided in the form (um + ϵul)/(vm + ϵvl), where ϵ is the reciprocal of
the word size of the computer, and where vm is assumed to be normalized. The
fraction can now be expanded as follows:

um + ϵul
vm + ϵvl

=
um + ϵul
vm

1

1 + ϵ(vl/vm)

=
um + ϵul
vm

1− ϵ

vl
vm

+ ϵ2

vl
vm

2

− · · ·

. (2)

Since 0 ≤ |vl| < 1 and 1/b ≤ |vm| < 1, we have |vl/vm| < b, and the error
from dropping terms involving ϵ2 can be disregarded. Our method therefore is
to compute wm + ϵwl = (um + ϵul)/vm, and then to subtract ϵ times wmvl/vm
from the result.

In the following program, lines 27Ű32 do the lower half of a double-precision
addition, using another method for forcing the appropriate sign as an alternative
to the trick of Program A.

Program D (Double-precision division). This program adheres to the same
conventions as Programs A and M.

01 DFDIV STJ EXITDF Double-precision division:
02 JOV OFLO Ensure that overĆow is off.
03 STA TEMP
04 SLAX 2 Remove exponent.
05 STA ARG vm

06 STX ARGX vl

07 LDA ACC(EXPD)
08 SUB TEMP(EXPD)
09 STA EXPO EXPO← eu − ev.
10 ENT2 QQ+1 rI2← QQ + 1.
11 LDA ACC
12 LDX ACCX
13 SLAX 2 Remove exponent.
14 SRAX 1 (See Algorithm 4.2.1M)
15 DIV ARG If overĆow, it is detected below.
16 STA ACC wm

17 SLAX 5 Use remainder in further division.
18 DIV ARG
19 STA ACCX ±wl

20 LDA ARGX(1:4)
21 ENTX 0
22 DIV ARG(ABS) rA← ⌊|b4vl/vm|⌋/b5.
23 JOV DVZROD Did division cause overĆow?
24 MUL ACC(ABS) rAX← |wmvl/bvm|, approximately.
25 SRAX 4 Multiply by b, and save
26 SLC 5 the leading byte in rX.

252 ARITHMETIC 4.2.3

27 SUB ACCX(ABS) Subtract |wl|.
28 DECA 1 Force minus sign.
29 SUB WM1
30 JOV *+2 If no overĆow, carry one more
31 INCX 1 to upper half.
32 SLC 5 (Now rA ≤ 0)
33 ADD ACC(ABS) rA← |wm| − |rA|.
34 STA ACC(ABS) (Now rA ≥ 0)
35 LDA ACC rA← wm with correct sign.
36 JMP DNORM Normalize and exit.
37 DVZROD HLT 30 Unnormalized or zero divisor
38 1H EQU 1(1:1)
39 WM1 CON 1B-1,BYTE-1(1:1) Word size minus one

Here is a table of the approximate average computation times for these
double-precision subroutines, compared to the single-precision subroutines that
appear in Section 4.2.1:

Single precision Double precision

Addition 45.5u 84u
Subtraction 49.5u 88u
Multiplication 48u 109u
Division 52u 126.5u

For extension of the methods of this section to triple-precision Ćoating point
fraction parts, see Y. Ikebe, CACM 8 (1965), 175Ű177.

EXERCISES

1. [16] Try the double-precision division technique by hand, with ϵ = 1
1000

, when di-
viding 180000 by 314159. (Thus, let (um, ul) = (.180, .000) and (vm, vl) = (.314, .159),
and Ąnd the quotient using the method suggested in the text following (2).)

2. [20] Would it be a good idea to insert the instruction ŚENTX 0’ between lines 30
and 31 of Program M, in order to keep unwanted information left over in register X
from interfering with the accuracy of the results?

3. [M20] Explain why overĆow cannot occur during Program M.

4. [22] How should Program M be changed so that extra accuracy is achieved,
essentially by moving the vertical line in Fig. 4 over to the right one position? Specify
all changes that are required, and determine the difference in execution time caused by
these changes.

x 5. [24] How should Program A be changed so that extra accuracy is achieved, essen-
tially by working with a nine-byte accumulator instead of an eight-byte accumulator
to the right of the radix point? Specify all changes that are required, and determine
the difference in execution time caused by these changes.

6. [23] Assume that the double-precision subroutines of this section and the single-
precision subroutines of Section 4.2.1 are being used in the same main program. Write a
subroutine that converts a single-precision Ćoating point number into double-precision
form (1), and write another subroutine that converts a double-precision Ćoating point

4.2.4 DISTRIBUTION OF FLOATING POINT NUMBERS 253

number into single-precision form (reporting exponent overĆow or underĆow if the
conversion is impossible).

x 7. [M30] Estimate the accuracy of the double-precision subroutines in this section,
by Ąnding bounds δ1, δ2, and δ3 on the relative errors

((u⊕ v)− (u+ v))/(u+ v)
 ,

((u⊗ v)− (u× v))/(u× v)
 ,

((u⊘ v)− (u/v))/(u/v)
 .

8. [M28] Estimate the accuracy of the “improvedŤ double-precision subroutines of
exercises 4 and 5, in the sense of exercise 7.

9. [M42] T. J. Dekker [Numer. Math. 18 (1971), 224Ű242] has suggested an alter-
native approach to double precision, based entirely on single-precision Ćoating binary
calculations. For example, Theorem 4.2.2C states that u+ v = w+ r, where w = u⊕ v
and r = (u ⊖ w) ⊕ v, if |u| ≥ |v| and the radix is 2; here |r| ≤ |w|/2p, so the pair
(w, r) may be considered a double-precision version of u + v. To add two such pairs
(u, u′) ⊕ (v, v′), where |u′| ≤ |u|/2p and |v′| ≤ |v|/2p and |u| ≥ |v|, Dekker suggests
computing u+ v = w+ r (exactly), then s = (r⊕ v′)⊕u′ (an approximate remainder),
and Ąnally returning the value (w ⊕ s, (w ⊖ (w ⊕ s))⊕ s).

Study the accuracy and efficiency of this approach when it is used recursively to
produce quadruple-precision calculations.

4.2.4. Distribution of Floating Point Numbers

In order to analyze the average behavior of Ćoating point arithmetic algorithms
(and in particular to determine their average running time), we need some
statistical information that allows us to determine how often various cases arise.
The purpose of this section is to discuss the empirical and theoretical properties
of the distribution of Ćoating point numbers.

A. Addition and subtraction routines. The execution time for a Ćoating
point addition or subtraction depends largely on the initial difference of expo-
nents, and also on the number of normalization steps required (to the left or to
the right). No way is known to give a good theoretical model that tells what
characteristics to expect, but extensive empirical investigations have been made
by D. W. Sweeney [IBM Systems J. 4 (1965), 31Ű42].

By means of a special tracing routine, Sweeney ran six “typicalŤ large-scale
numerical programs, selected from several different computing laboratories, and
examined each Ćoating addition or subtraction operation very carefully. Over
250,000 Ćoating point addition-subtractions were involved in gathering this data.
About one out of every ten instructions executed by the tested programs was
either FADD or FSUB.

Subtraction is the same as addition preceded by negating the second operand,
so we can give all the statistics as if we were merely doing addition. Sweeney’s
results can be summarized as follows:

One of the two operands to be added was found to be equal to zero about
9 percent of the time, and this was usually the accumulator (ACC). The other
91 percent of the cases split about equally between operands of the same or of

254 ARITHMETIC 4.2.4

Table 1

EMPIRICAL DATA FOR OPERAND ALIGNMENTS BEFORE ADDITION

|eu − ev| b = 2 b = 10 b = 16 b = 64

0 0.33 0.47 0.47 0.56
1 0.12 0.23 0.26 0.27
2 0.09 0.11 0.10 0.04
3 0.07 0.03 0.02 0.02
4 0.07 0.01 0.01 0.02
5 0.04 0.01 0.02 0.00

over 5 0.28 0.13 0.11 0.09

average 3.1 0.9 0.8 0.5

Table 2

EMPIRICAL DATA FOR NORMALIZATION AFTER ADDITION

b = 2 b = 10 b = 16 b = 64

Shift right 1 0.20 0.07 0.06 0.03
No shift 0.59 0.80 0.82 0.87
Shift left 1 0.07 0.08 0.07 0.06
Shift left 2 0.03 0.02 0.01 0.01
Shift left 3 0.02 0.00 0.01 0.00
Shift left 4 0.02 0.01 0.00 0.01
Shift left > 4 0.06 0.02 0.02 0.02

opposite signs, and about equally between cases where |u| ≤ |v| or |v| ≤ |u|. The
computed answer was zero about 1.4 percent of the time.

The difference between exponents had a behavior approximately given by
the probabilities shown in Table 1, for various radices b. (The “over 5Ť line of
that table includes essentially all of the cases when one operand was zero, but
the “averageŤ line does not include these cases.)

When u and v have the same sign and are normalized, then u + v either
requires one shift to the right (for fraction overĆow), or no normalization shifts
whatever. When u and v have opposite signs, we have zero or more left shifts
during the normalization. Table 2 gives the observed number of shifts required;
the last line of that table includes all cases where the result was zero. The
average number of left shifts per normalization was about 0.9 when b = 2; about
0.2 when b = 10 or 16; and about 0.1 when b = 64.

B. The fraction parts. Further analysis of Ćoating point routines can be based
on the statistical distribution of the fraction parts of randomly chosen normalized
Ćoating point numbers. The facts are quite surprising, and there is an interesting
theory that accounts for the unusual phenomena that are observed.

For convenience let us assume temporarily that we are dealing with Ćoating
decimal arithmetic (radix 10); modiĄcations of the following discussion to any
other positive integer base b will be very straightforward. Suppose we are given
a “randomŤ positive normalized number (e, f) = 10e · f . Since f is normalized,
we know that its leading digit is 1, 2, 3, 4, 5, 6, 7, 8, or 9, and we might naturally

4.2.4 DISTRIBUTION OF FLOATING POINT NUMBERS 255

expect each of these nine possible leading digits to occur about one-ninth of the
time. But, in fact, the behavior in practice is quite different. For example, the
leading digit tends to be equal to 1 more than 30 percent of the time!

One way to test the assertion just made is to take a table of physical con-
stants (like the speed of light or the acceleration of gravity) from some standard
reference. If we look at the Handbook of Mathematical Functions (U.S. Dept of
Commerce, 1964), for example, we Ąnd that 8 of the 28 different physical con-
stants given in Table 2.3, roughly 29 percent, have leading digit equal to 1. The
decimal values of n! for 1 ≤ n ≤ 100 include exactly 30 entries beginning with 1;
so do the decimal values of 2n and of Fn, for 1 ≤ n ≤ 100. We might also try look-
ing at census reports, or a Farmer’s Almanack (but not a telephone directory).

In the days before pocket calculators, the pages in well-used tables of loga-
rithms tended to get quite dirty in the front, while the last pages stayed relatively
clean and neat. This phenomenon was apparently Ąrst mentioned in print by
the astronomer Simon Newcomb [Amer. J. Math. 4 (1881), 39Ű40], who gave
good grounds for believing that the leading digit d occurs with probability
log10(1 + 1/d). The same distribution was discovered empirically, many years
later, by Frank Benford, who reported the results of 20,229 observations taken
from many different sources [Proc. Amer. Philosophical Soc. 78 (1938), 551Ű572].

In order to account for this leading-digit law, let’s take a closer look at
the way we write numbers in Ćoating point notation. If we take any positive
number u, its fraction part is determined by the formula 10fu = 10(log10 u) mod 1;
hence its leading digit is less than d if and only if

(log10 u) mod 1 < log10 d. (1)

Now if we have a “randomŤ positive number U, chosen from some reasonable
distribution that might occur in nature, we might expect that (log10 U) mod 1
would be uniformly distributed between zero and one, at least to a very good
approximation. (Similarly, we expect U mod 1, U2 mod 1,

√
U + π mod 1, etc.,

to be uniformly distributed. We expect a roulette wheel to be unbiased, for essen-
tially the same reason.) Therefore by (1) the leading digit will be 1 with probabil-
ity log10 2 ≈ 30.103 percent; it will be 2 with probability log10 3−log10 2 ≈ 17.609
percent; and, in general, if r is any real value between 1 and 10, we ought to
have 10fU ≤ r approximately log10 r of the time.

The fact that leading digits tend to be small makes the most obvious tech-
niques of “average errorŤ estimation for Ćoating point calculations invalid. The
relative error due to rounding is usually a little more than expected.

Of course, it may justly be said that the heuristic argument above does
not prove the stated law. It merely shows us a plausible reason why the leading
digits behave the way they do. An interesting approach to the analysis of leading
digits has been suggested by R. Hamming: Let p(r) be the probability that
10fU ≤ r, where 1 ≤ r ≤ 10 and fU is the normalized fraction part of a random
normalized Ćoating point number U. If we think of random quantities in the real
world, we observe that they are measured in terms of arbitrary units; and if we
were to change the deĄnition of a meter or a gram, many of the fundamental

256 ARITHMETIC 4.2.4

physical constants would have different values. Suppose then that all of the
numbers in the universe are suddenly multiplied by a constant factor c; our
universe of random Ćoating point quantities should be essentially unchanged by
this transformation, so p(r) should not be affected.

Multiplying everything by c has the effect of transforming (log10 U) mod 1
into (log10 U + log10 c) mod 1. It is now time to set up formulas that describe
the desired behavior; we may assume that 1 ≤ c ≤ 10. By deĄnition,

p(r) = Pr

(log10 U) mod 1 ≤ log10 r

.

By our assumption, we should also have

p(r) = Pr

(log10 U + log10 c) mod 1 ≤ log10 r

=

Pr

(log10 U mod 1) ≤ log10 r − log10 c

or (log10 U mod 1) ≥ 1− log10 c

, if c ≤ r;

Pr

(log10 U mod 1) ≤ log10 r + 1− log10 c

and (log10 U mod 1) ≥ 1− log10 c

, if c ≥ r;

=

p(r/c) + 1− p(10/c), if c ≤ r;
p(10r/c)− p(10/c), if c ≥ r. (2)

Let us now extend the function p(r) to values outside the range 1 ≤ r ≤ 10, by
deĄning p(10nr) = p(r)+n; then if we replace 10/c by d, the last equation of (2)
may be written

p(rd) = p(r) + p(d). (3)

If our assumption about invariance of the distribution under multiplication by
a constant factor is valid, then Eq. (3) must hold for all r > 0 and 1 ≤ d ≤ 10.
The facts that p(1) = 0 and p(10) = 1 now imply that

1 = p(10) = p

(
n
√

10)n

= p(
n
√

10) + p

(

n
√

10)n−1

= · · · = np(
n
√

10);

hence we deduce that p(10m/n) = m/n for all positive integers m and n. If
we now decide to require that p is continuous, we are forced to conclude that
p(r) = log10 r, and this is the desired law.

Although this argument may be more convincing than the Ąrst one, it doesn’t
really hold up under scrutiny if we stick to conventional notions of probability.
The traditional way to make the argument above rigorous is to assume that
there is some underlying distribution of numbers F (u) such that a given positive
number U is ≤ u with probability F (u); then the probability of concern to us is

p(r) =

m

F (10mr)− F (10m)

, (4)

summed over all values −∞ < m <∞. Our assumptions about scale invariance
and continuity have led us to conclude that

p(r) = log10 r.

4.2.4 DISTRIBUTION OF FLOATING POINT NUMBERS 257

Using the same argument, we could “proveŤ that

m

F (bmr)− F (bm)

= logb r, (5)

for each integer b ≥ 2, when 1 ≤ r ≤ b. But there is no distribution function F
that satisĄes this equation for all such b and r! (See exercise 7.)

One way out of the difficulty is to regard the logarithm law p(r) = log10 r as
only a very close approximation to the true distribution. The true distribution
itself may perhaps be changing as the universe expands, becoming a better and
better approximation as time goes on; and if we replace 10 by an arbitrary
base b, the approximation might be less accurate (at any given time) as b gets
larger. Another rather appealing way to resolve the dilemma, by abandoning the
traditional idea of a distribution function, has been suggested by R. A. Raimi,
AMM 76 (1969), 342Ű348.

The hedging in the last paragraph is probably a very unsatisfactory ex-
planation, and so the following further calculation (which sticks to rigorous
mathematics and avoids any intuitive, yet paradoxical, notions of probability)
should be welcome. Let us consider the distribution of the leading digits of
the positive integers, instead of the distribution for some imagined set of real
numbers. The investigation of this topic is quite interesting, not only because
it sheds some light on the probability distributions of Ćoating point data, but
also because it makes a particularly instructive example of how to combine the
methods of discrete mathematics with the methods of inĄnitesimal calculus.

In the following discussion, let r be a Ąxed real number, 1 ≤ r ≤ 10; we
will attempt to make a reasonable deĄnition of p(r), the “probabilityŤ that the
representation 10eN ·fN of a “randomŤ positive integerN has 10fN < r, assuming
inĄnite precision.

To start, let us try to Ąnd the probability using a limiting method like the
deĄnition of “PrŤ in Section 3.5. One nice way to rephrase that deĄnition is to
deĄne

P0(n) =

n = 10e · f where 10f < r

=

(log10 n) mod 1 < log10 r

. (6)

Now P0(1), P0(2), . . . is an inĄnite sequence of zeros and ones, with ones to
represent the cases that contribute to the probability we are seeking. We can
try to “average outŤ this sequence, by deĄning

P1(n) =
1
n

n

k=1

P0(k). (7)

Thus if we generate a random integer between 1 and n using the techniques of
Chapter 3, and convert it to Ćoating decimal form (e, f), the probability that
10f < r is exactly P1(n). It is natural to let limn→∞ P1(n) be the “probabilityŤ
p(r) we are after, and that is just what we did in DeĄnition 3.5A.

But in this case the limit does not exist. For example, let us consider the
subsequence

P1(s), P1(10s), P1(100s), . . . , P1(10ns), . . . ,

258 ARITHMETIC 4.2.4

where s is a real number, 1 ≤ s ≤ 10. If s ≤ r, we Ąnd that

P1(10ns) =
1

10ns

⌈r⌉−1+⌈10r⌉−10+ · · ·+⌈10n−1r⌉−10n−1 +⌊10ns⌋+1−10n

=
1

10ns

r(1+10+ · · ·+10n−1)+O(n)+⌊10ns⌋−1−10−· · ·−10n

=
1

10ns

1
9 (10nr−10n+1)+⌊10ns⌋+O(n)

. (8)

As n→∞, P1(10ns) therefore approaches the limiting value 1+(r−10)/9s. The
same calculation is valid for the case s > r if we replace ⌊10ns⌋ + 1 by ⌈10nr⌉;
thus we obtain the limiting value 10(r − 1)/9s when s ≥ r. [See J. Franel,
Naturforschende Gesellschaft, Vierteljahrsschrift 62 (Zürich: 1917), 286Ű295.]

In other words, the sequence ⟨P1(n)⟩ has subsequences ⟨P1(10ns)⟩ whose
limit goes from (r − 1)/9 up to 10(r − 1)/9r and down again to (r − 1)/9, as
s goes from 1 to r to 10. We see that P1(n) has no limit as n→∞; and the values
of P1(n) for large n are not particularly good approximations to our conjectured
limit log10 r either!

Since P1(n) doesn’t approach a limit, we can try to use the same idea as (7)
once again, to “average outŤ the anomalous behavior. In general, let

Pm+1(n) =
1
n

n

k=1

Pm(k). (9)

Then Pm+1(n) will tend to be a more well-behaved sequence than Pm(n). Let us
try to conĄrm this with quantitative calculations; our experience with the special
case m = 0 indicates that it might be worthwhile to consider the subsequence
Pm+1(10ns). The following results can, in fact, be derived:

Lemma Q. For any integer m ≥ 1 and any real number ϵ > 0, there are
functions Qm(s), Rm(s) and an integer Nm(ϵ), such that whenever n > Nm(ϵ)
and 1 ≤ s ≤ 10, we have

|Pm(10ns)−Qm(s)−Rm(s)[s> r] | < ϵ. (10)

Furthermore the functions Qm(s) and Rm(s) satisfy the relations

Qm(s) =
1
s

1
9

 10

1

Qm−1(t) dt+
 s

1

Qm−1(t) dt+
1
9

 10

r

Rm−1(t) dt

;

Rm(s) =
1
s

 s

r

Rm−1(t) dt; (11)

Q0(s) = 1, R0(s) = −1.

Proof. Consider the functions Qm(s) and Rm(s) deĄned by (11), and let

Sm(t) = Qm(t) +Rm(t)[t> r]. (12)

We will prove the lemma by induction on m.

4.2.4 DISTRIBUTION OF FLOATING POINT NUMBERS 259

First note that Q1(s) =

1 + (s− 1)− (10− r)/9

/s = 1 + (r− 10)/9s, and

R1(s) = (r − s)/s. From (8) we Ąnd that |P1(10ns) − S1(s)| = O(n)/10n; this
establishes the lemma when m = 1.

Now for m > 1, we have

Pm(10ns) =
1
s

0≤j<n

1
10n−j

10j≤k<10j+1

1
10j

Pm−1(k)+

10n≤k≤10ns

1
10n

Pm−1(k)

,

and we want to approximate this quantity. By induction, the difference

10j≤k≤10jq

1
10j

Pm−1(k)−

10j≤k≤10jq

1
10j

Sm−1

k

10j

(13)

is less than qϵ when 1 ≤ q ≤ 10 and j > Nm−1(ϵ). Since Sm−1(t) is continuous,
it is a Riemann-integrable function; and the difference

10j≤k≤10jq

1
10j

Sm−1

k

10j

−
 q

1

Sm−1(t) dt

(14)

is less than ϵ for all j greater than some number N, independent of q, by the
deĄnition of integration. We may choose N to be > Nm−1(ϵ). Therefore for
n > N, the difference

Pm(10ns)− 1

s

0≤j<n

1
10n−j

 10

1

Sm−1(t) dt+
 s

1

Sm−1(t) dt

(15)

is bounded by
N

j=0(M/10n−j) +

N<j<n(11ϵ/10n−j) + 11ϵ, if M is an upper
bound for (13) + (14) that is valid for all positive integers j. Finally, the sum

0≤j<n(1/10n−j), which appears in (15), is equal to (1− 1/10n)/9; so

Pm(10ns)− 1

s

1
9

 10

1

Sm−1(t) dt+
 s

1

Sm−1(t) dt

can be made smaller than, say, 20ϵ, if n is taken large enough. Comparing this
with (10) and (11) completes the proof.

The gist of Lemma Q is that we have the limiting relationship

lim
n→∞

Pm(10ns) = Sm(s). (16)

Also, since Sm(s) is not constant as s varies, the limit

lim
n→∞

Pm(n)

(which would be our desired “probabilityŤ) does not exist for any m. The
situation is shown in Fig. 5, which shows the values of Sm(s) when m is small
and r = 2.

260 ARITHMETIC 4.2.4

2 3 4 5 6 7 8 9 101
s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

S
m
(s
)

m=1

m=2

m=3

Fig. 5. The probability that the leading digit is 1.

Even though Sm(s) is not a constant, so that we do not have a deĄnite limit
for Pm(n), notice that already for m = 3 in Fig. 5 the value of Sm(s) stays very
close to log10 2 ≈ 0.30103. Therefore we have good reason to suspect that Sm(s)
is very close to log10 r for all large m, and, in fact, that the sequence of functions
⟨Sm(s)⟩ converges uniformly to the constant function log10 r.

It is interesting to prove this conjecture by explicitly calculating Qm(s) and
Rm(s) for all m, as in the proof of the following theorem:

Theorem F. Let Sm(s) be the limit deĄned in (16). For all ϵ > 0, there exists
a number N(ϵ) such that

|Sm(s)− log10 r| < ϵ, for 1 ≤ s ≤ 10, (17)

whenever m > N(ϵ).

Proof. In view of Lemma Q, we can prove this result if we can show that there
is a number M depending on ϵ such that, for 1 ≤ s ≤ 10 and for all m > M, we
have

|Qm(s)− log10 r| < ϵ and |Rm(s)| < ϵ. (18)

It is not difficult to solve the recurrence formula (11) for Rm : We have
R0(s) = −1, R1(s) = −1 + r/s, R2(s) = −1 + (r/s)

1 + ln(s/r)

, and in general

Rm(s) = −1 +
r

s

1 +
1
1!

ln
s

r
+ · · ·+ 1

(m− 1)!

ln
s

r

m−1

. (19)

For the stated range of s, this converges uniformly to−1+(r/s) exp

ln(s/r)

= 0.

The recurrence (11) for Qm takes the form

Qm(s) =
1
s

cm + 1 +
 s

1

Qm−1(t) dt

, (20)

where

cm =
1
9

 10

1

Qm−1(t) dt+
 10

r

Rm−1(t) dt

− 1. (21)

4.2.4 DISTRIBUTION OF FLOATING POINT NUMBERS 261

And the solution to recurrence (20) is easily found by trying out the Ąrst few
cases and guessing at a formula that can be proved by induction; we Ąnd that

Qm(s) = 1 +
1
s

cm +
1
1!
cm−1 ln s+ · · ·+ 1

(m− 1)!
c1(ln s)m−1

. (22)

It remains for us to calculate the coefficients cm, which by (19), (21), and
(22) satisfy the relations

c1 = (r − 10)/9;

cm+1 =
1
9

cm ln 10 +
1
2!
cm−1(ln 10)2 + · · ·+ 1

m!
c1(ln 10)m

+ r

1 +
1
1!

ln
10
r

+ · · ·+ 1
m!

ln
10
r

m

− 10

.

(23)

This sequence appears at Ąrst to be very complicated, but actually we can
analyze it without difficulty with the help of generating functions. Let

C(z) = c1z + c2z
2 + c3z

3 + · · · ;

then since 10z = 1 + z ln 10 + (1/2!)(z ln 10)2 + · · · , we deduce that

cm+1 =
1
10
cm+1+

9
10
cm+1

=
1
10

cm+1+cm ln10+· · ·+ 1
m!
c1(ln10)m

+
r

10

1+· · ·+ 1
m!

ln
10
r

m

−1

is the coefficient of zm+1 in the function

1
10
C(z)10z +

r

10

10
r

z z

1− z

− z

1− z . (24)

This condition holds for all values of m, so (24) must equal C(z), and we obtain
the explicit formula

C(z) =
−z

1− z

(10/r)z−1 − 1

10z−1 − 1

. (25)

We want to study asymptotic properties of the coefficients of C(z), to complete
our analysis. The large parenthesized factor in (25) approaches ln(10/r)/ln 10 =
1− log10 r as z → 1, so we see that

C(z) +
1− log10 r

1− z = R(z) (26)

is an analytic function of the complex variable z in the circle

|z| <

1 +

2πi
ln 10

.

262 ARITHMETIC 4.2.4

In particular, R(z) converges for z = 1, so its coefficients approach zero. This
proves that the coefficients of C(z) behave like those of (log10 r − 1)/(1 − z),
that is,

lim
m→∞

cm = log10 r − 1.

Finally, we may combine this with (22), to show that Qm(s) approaches

1 +
log10 r − 1

s

1 + ln s+
1
2!

(ln s)2 + · · ·

= log10 r

uniformly for 1 ≤ s ≤ 10.

Therefore we have established the logarithmic law for integers by direct
calculation, at the same time seeing that it is an extremely good approximation
to the average behavior although it is never precisely achieved.

The proofs of Lemma Q and Theorem F given above are slight simpliĄca-
tions and ampliĄcations of methods due to B. J. Flehinger, AMM 73 (1966),
1056Ű1061. Many authors have written about the distribution of initial digits,
showing that the logarithmic law is a good approximation for many underlying
distributions; see the surveys by Ralph A. Raimi, AMM 83 (1976), 521Ű538, and
Peter Schatte, J. Information Processing and Cybernetics 24 (1988), 443Ű455,
for a comprehensive review of the literature.

Exercise 17 discusses an approach to the deĄnition of probability under
which the logarithmic law holds exactly, over the integers. Furthermore, ex-
ercise 18 demonstrates that any reasonable deĄnition of probability over the
integers must lead to the logarithmic law, if it assigns a value to the probability
of leading digits.

Floating point computations operate primarily on noninteger numbers, of
course; we have studied integers because of their familiarity and their simplic-
ity. When arbitrary real numbers are considered, theoretical results are more
difficult to obtain, but evidence is accumulating that the same statistics apply,
in the sense that repeated calculations with real numbers will nearly always
tend to yield better and better approximations to a logarithmic distribution of
fraction parts. For example, Peter Schatte [Zeitschrift für angewandte Math.
und Mechanik 53 (1973), 553Ű565] showed that, under mild restrictions, the
products of independent, identically distributed random real variables approach
the logarithmic distribution. The sums of such variables do too, but only in the
sense of repeated averaging. Similar results have been obtained by J. L. Barlow
and E. H. Bareiss, Computing 34 (1985), 325Ű347. See also A. Berger, L. A.
Bunimovich, and T. P. Hill, Trans. Amer. Math. Soc. 357 (2004), 197Ű219.

EXERCISES

1. [13] Given that u and v are nonzero Ćoating decimal numbers with the same sign,
what is the approximate probability that fraction overĆow occurs during the calculation
of u⊕ v, according to Tables 1 and 2?

2. [42] Make further tests of Ćoating point addition and subtraction, to conĄrm or
improve on the accuracy of Tables 1 and 2.

4.2.4 DISTRIBUTION OF FLOATING POINT NUMBERS 263

3. [15] What is the probability that the two leading digits of a Ćoating decimal
number are “23Ť, according to the logarithmic law?

4. [M18] The text points out that the front pages of a well-used table of logarithms
get dirtier than the back pages do. What if we had an antilogarithm table instead,
namely a table that tells us the value of x when log10 x is given; which pages of such a
table would be the dirtiest?

x 5. [M20] Let U be a random real number that is uniformly distributed in the interval
0 < U < 1. What is the distribution of the leading digits of U?

6. [23] If we have binary computer words containing n + 1 bits, we might use p
bits for the fraction part of Ćoating binary numbers, one bit for the sign, and n − p
bits for the exponent. This means that the range of values representable, namely the
ratio of the largest positive normalized value to the smallest, is essentially 22n−p

. The
same computer word could be used to represent Ćoating hexadecimal numbers, that is,
Ćoating point numbers with radix 16, with p + 2 bits for the fraction part ((p + 2)/4
hexadecimal digits) and n−p−2 bits for the exponent; then the range of values would
be 162n−p−2

= 22n−p

, the same as before, and with more bits in the fraction part. This
may sound as if we are getting something for nothing, but the normalization condition
for base 16 is weaker in that there may be up to three leading zero bits in the fraction
part; thus not all of the p+ 2 bits are “signiĄcant.Ť

On the basis of the logarithmic law, what are the probabilities that the fraction
part of a positive normalized radix 16 Ćoating point number has exactly 0, 1, 2, and 3
leading zero bits? Discuss the desirability of hexadecimal versus binary.

7. [HM28] Prove that there is no distribution function F (u) that satisĄes (5) for
each integer b ≥ 2, and for all real values r in the range 1 ≤ r ≤ b.

8. [HM23] Does (10) hold when m = 0 for suitable N0(ϵ)?

9. [HM25] (P. Diaconis.) Let P1(n), P2(n), . . . be any sequence of functions deĄned
by repeatedly averaging a given function P0(n) according to Eq. (9). Prove that
limm→∞ Pm(n) = P0(1) for all Ąxed n.

x 10. [HM28] The text shows that cm = log10 r − 1 + ϵm, where ϵm approaches zero as
m→∞. Obtain the next term in the asymptotic expansion of cm.

11. [M15] Given that U is a random variable distributed according to the logarithmic
law, prove that 1/U is also.

12. [HM25] (R. W. Hamming.) The purpose of this exercise is to show that the result
of Ćoating point multiplication tends to obey the logarithmic law more perfectly than
the operands do. Let U and V be random, normalized, positive Ćoating point numbers,
whose fraction parts are independently distributed with the respective density functions
f(x) and g(x). Thus, fu ≤ r and fv ≤ s with probability

 r

1/b

 s

1/b
f(x)g(y) dy dx,

for 1/b ≤ r, s ≤ 1. Let h(x) be the density function of the fraction part of U × V
(unrounded). DeĄne the abnormality A(f) of a density function f to be the maximum
relative error,

A(f) = max
1/b≤x≤1

f(x)− l(x)

l(x)

 ,

where l(x) = 1/(x ln b) is the density of the logarithmic distribution.
Prove that A(h) ≤ min(A(f), A(g)). (In particular, if either factor has logarithmic

distribution the product does also.)

264 ARITHMETIC 4.2.4

x 13. [M20] The Ćoating point multiplication routine, Algorithm 4.2.1M, requires zero
or one left shifts during normalization, depending on whether fufv ≥ 1/b or not.
Assuming that the input operands are independently distributed according to the
logarithmic law, what is the probability that no left shift is needed for normalization
of the result?

x 14. [HM30] Let U and V be random, normalized, positive Ćoating point numbers
whose fraction parts are independently distributed according to the logarithmic law,
and let pk be the probability that the difference in their exponents is k. Assuming that
the distribution of the exponents is independent of the fraction parts, give an equation
for the probability that “fraction overĆowŤ occurs during the Ćoating point addition of
U ⊕ V , in terms of the base b and the quantities p0, p1, p2, Compare this result
with exercise 1. (Ignore rounding.)

15. [HM28] Let U, V , p0, p1, . . . be as in exercise 14, and assume that radix 10
arithmetic is being used. Show that regardless of the values of p0, p1, p2, . . . , the sum
U ⊕V will not obey the logarithmic law exactly, and in fact the probability that U ⊕V
has leading digit 1 is always strictly less than log10 2.

16. [HM28] (P. Diaconis.) Let P0(n) be 0 or 1 for each n, and deĄne “probabilitiesŤ
Pm+1(n) by repeated averaging, as in (9). Show that if limn→∞ P1(n) does not exist,
neither does limn→∞ Pm(n) for any m. [Hint: Prove that an → 0 whenever we have
(a1 + · · ·+ an)/n→ 0 and an+1 ≤ an +M/n, for some Ąxed constant M > 0.]

x 17. [HM25] (M. Tsuji.) Another way to deĄne the value of Pr(S(n)) is to evaluate the
quantity limn→∞(H−1

n

n
k=1[S(k)]/k); it can be shown that this harmonic probability

exists and is equal to Pr(S(n)), whenever the latter exists according to DeĄnition 3.5A.
Prove that the harmonic probability of the statement “(log10 n) mod 1 < rŤ exists and
equals r. (Thus, initial digits of integers satisfy the logarithmic law exactly in this
sense.)

x 18. [HM30] Let P (S) be any real-valued function deĄned on sets S of positive integers,
but not necessarily on all such sets, satisfying the following rather weak axioms:

i) If P (S) and P (T) are deĄned and S ∩ T = ∅, then P (S ∪ T) = P (S) + P (T).
ii) If P (S) is deĄned, then P (S + 1) = P (S), where S + 1 = {n+ 1 | n ∈ S}.

iii) If P (S) is deĄned, then P (2S) = 1
2
P (S), where 2S = {2n | n ∈ S}.

iv) If S is the set of all positive integers, then P (S) = 1.
v) If P (S) is deĄned, then P (S) ≥ 0.

Assume furthermore that P (La) is deĄned for all positive integers a, where La is the
set of all integers whose decimal representation begins with a:

La = {n | 10ma ≤ n < 10m(a+ 1) for some integer m} .
(In this deĄnition, m may be negative; for example, 1 is an element of L10, but not
of L11.) Prove that P (La) = log10(1 + 1/a) for all integers a ≥ 1.

19. [HM25] (R. L. Duncan.) Prove that the leading digits of Fibonacci numbers obey
the logarithmic law of fraction parts: Pr(10fFn < r) = log10 r.

20. [HM40] Sharpen (16) by Ąnding the asymptotic behavior of Pm(10ns)−Sm(s) as
n→∞.

4.3.1 THE CLASSICAL ALGORITHMS 265

4.3. MULTIPLE-PRECISION ARITHMETIC

Let us now consider operations on numbers that have arbitrarily high precision.
For simplicity in exposition, we shall assume that we are working with integers,
instead of with numbers that have an embedded radix point.

4.3.1. The Classical Algorithms

In this section we shall discuss algorithms for

a) addition or subtraction of n-place integers, giving an n-place answer and a
carry;

b) multiplication of an m-place integer by an n-place integer, giving an (m+n)-
place answer;

c) division of an (m+n)-place integer by an n-place integer, giving an (m+1)-
place quotient and an n-place remainder.

These may be called the classical algorithms, since the word “algorithmŤ was
used only in connection with these processes for several centuries. The term
“n-place integerŤ means any nonnegative integer less than bn, where b is the
radix of ordinary positional notation in which the numbers are expressed; such
numbers can be written using at most n “placesŤ in this notation.

It is a straightforward matter to apply the classical algorithms for integers
to numbers with embedded radix points or to extended-precision Ćoating point
numbers, in the same way that arithmetic operations deĄned for integers in MIX

are applied to these more general problems.
In this section we shall study algorithms that do operations (a), (b), and (c)

above for integers expressed in radix b notation, where b is any given integer
that is 2 or more. Thus the algorithms are quite general deĄnitions of arithmetic
processes, and as such they are unrelated to any particular computer. But the
discussion in this section will also be somewhat machine-oriented, since we are
chieĆy concerned with efficient methods for doing high-precision calculations by
computer. Although our examples are based on the mythical MIX, essentially the
same considerations apply to nearly every other machine.

The most important fact to understand about extended-precision numbers
is that they may be regarded as numbers written in radix w notation, where
w is the computer’s word size. For example, an integer that Ąlls 10 words on a
computer whose word size is w = 1010 has 100 decimal digits; but we will consider
it to be a 10-place number to the base 1010. This viewpoint is justiĄed for the
same reason that we may convert, say, from binary to hexadecimal notation,
simply by grouping the bits together.

See Eq. 4.1Ű(5).

In these terms, we are given the following primitive operations to work with:

a0) addition or subtraction of one-place integers, giving a one-place answer and
a carry;

b0) multiplication of a one-place integer by another one-place integer, giving a
two-place answer;

c0) division of a two-place integer by a one-place integer, provided that the
quotient is a one-place integer, and yielding also a one-place remainder.

266 ARITHMETIC 4.3.1

By adjusting the word size, if necessary, nearly all computers will have these three
operations available; so we will construct algorithms (a), (b), and (c) mentioned
above in terms of the primitive operations (a0), (b0), and (c0).

Since we are visualizing extended-precision integers as base b numbers, it is
sometimes helpful to think of the situation when b = 10, and to imagine that
we are doing the arithmetic by hand. Then operation (a0) is analogous to mem-
orizing the addition table; (b0) is analogous to memorizing the multiplication
table; and (c0) is essentially memorizing the multiplication table in reverse. The
more complicated operations (a), (b), (c) on high-precision numbers can now
be done using the simple addition, subtraction, multiplication, and long-division
procedures that children are taught in elementary school. In fact, most of the
algorithms we shall discuss in this section are essentially nothing more than
mechanizations of familiar pencil-and-paper operations. Of course, we must
state the algorithms much more precisely than they have ever been stated in
the Ąfth grade, and we should also attempt to minimize computer memory and
running time requirements.

To avoid a tedious discussion and cumbersome notations, we shall assume
Ąrst that all the numbers we deal with are nonnegative. The additional work
of computing the signs, etc., is quite straightforward, although some care is
necessary when dealing with complemented numbers on computers that do not
use a signed magnitude representation. Such issues are discussed near the end
of this section.

First comes addition, which of course is very simple, but it is worth careful
study since the same ideas occur also in the other algorithms.

Algorithm A (Addition of nonnegative integers). Given nonnegative n-place
integers (un−1 . . . u1u0)b and (vn−1 . . . v1v0)b, this algorithm forms their radix-b
sum, (wnwn−1 . . . w1w0)b. Here wn is the carry, and it will always be equal to
0 or 1.

A1. [Initialize.] Set j ← 0, k ← 0. (The variable j will run through the various
digit positions, and the variable k will keep track of carries at each step.)

A2. [Add digits.] Set wj ← (uj + vj + k) mod b, and k ← ⌊(uj + vj + k)/b⌋.

By

induction on the computation, we will always have

uj + vj + k ≤ (b− 1) + (b− 1) + 1 < 2b.

Thus k is being set to 1 or 0, depending on whether a carry occurs or not;
equivalently, k ← [uj + vj + k≥ b].

A3. [Loop on j.] Increase j by one. Now if j < n, go back to step A2; otherwise
set wn ← k and terminate the algorithm.

For a formal proof that Algorithm A is valid, see exercise 4.

A MIX program for this addition process might take the following form:

Program A (Addition of nonnegative integers). Let LOC(uj) ≡ U+j, LOC(vj) ≡
V + j, LOC(wj) ≡ W + j, rI1 ≡ j − n, rA ≡ k, word size ≡ b, N ≡ n.

4.3.1 THE CLASSICAL ALGORITHMS 267

01 ENN1 N 1 Al. Initialize. j ← 0.
02 JOV OFLO 1 Ensure that overĆow is off.
03 1H ENTA 0 N + 1−K k ← 0.
04 J1Z 3F N + 1−K Exit the loop if j = n.
05 2H ADD U+N,1 N A2. Add digits.
06 ADD V+N,1 N
07 STA W+N,1 N
08 INC1 1 N A3. Loop on j. j ← j + 1.
09 JNOV 1B N If no overĆow, set k ← 0.
10 ENTA 1 K Otherwise, set k ← 1.
11 J1N 2B K To A2 if j < n.
12 3H STA W+N 1 Store Ąnal carry in wn.

The running time for this program is 10N +6 cycles, independent of the number
of carries, K. The quantity K is analyzed in detail at the close of this section.

Many modiĄcations of Algorithm A are possible, and only a few of these are
mentioned in the exercises below. A chapter on generalizations of this algorithm
might be entitled “How to design addition circuits for a digital computer.Ť

The problem of subtraction is similar to addition, but the differences are
worth noting:

Algorithm S (Subtraction of nonnegative integers). Given nonnegative n-place
integers (un−1 . . . u1u0)b ≥ (vn−1 . . . v1v0)b, this algorithm forms their nonneg-
ative radix-b difference, (wn−1 . . . w1w0)b.

S1. [Initialize.] Set j ← 0, k ← 0.

S2. [Subtract digits.] Set wj ← (uj − vj + k) mod b, and k ← ⌊(uj − vj + k)/b⌋.
(In other words, k is set to −1 or 0, depending on whether a borrow occurs
or not, namely whether uj − vj + k < 0 or not. In the calculation of wj , we
must have −b = 0 − (b − 1) + (−1) ≤ uj − vj + k ≤ (b − 1) − 0 + 0 < b;
hence 0 ≤ uj − vj + k + b < 2b, and this suggests the method of computer
implementation explained below.)

S3. [Loop on j.] Increase j by one. Now if j < n, go back to step S2; otherwise
terminate the algorithm. (When the algorithm terminates, we should have
k = 0; the condition k = −1 will occur if and only if (vn−1 . . . v1v0)b >
(un−1 . . . u1u0)b, contrary to the given assumptions. See exercise 12.)

In a MIX program to implement subtraction, it is most convenient to retain
the value 1 + k instead of k throughout the algorithm, so that we can calculate
uj − vj + (1 + k) + (b − 1) in step S2. (Recall that b is the word size.) This is
illustrated in the following code.

Program S (Subtraction of nonnegative integers). This program is analogous
to the code in Program A, but with rA ≡ 1 + k. Here, as in other programs of
this section, location WM1 contains the constant b− 1, the largest possible value
that can be stored in a MIX word; see Program 4.2.3D, lines 38Ű39.

01 ENN1 N 1 S1. Initialize. j ← 0.
02 JOV OFLO 1 Ensure that overĆow is off.

268 ARITHMETIC 4.3.1

03 1H J1Z DONE K + 1 Terminate if j = n.
04 ENTA 1 K Set k ← 0.
05 2H ADD U+N,1 N S2. Subtract digits.
06 SUB V+N,1 N Compute uj − vj + k + b.
07 ADD WM1 N
08 STA W+N,1 N (May be minus zero)
09 INC1 1 N S3. Loop on j. j ← j + 1.
10 JOV 1B N If overĆow, set k ← 0.
11 ENTA 0 N −K Otherwise set k ← −1.
12 J1N 2B N −K Back to S2 if j < n.
13 HLT 5 (Error, v > u)

The running time for this program is 12N + 3 cycles, slightly longer than the
corresponding amount for Program A.

The reader may wonder if it would not be worthwhile to have a combined
addition-subtraction routine in place of the two algorithms A and S. But an
examination of the code shows that it is generally better to use two different
routines, so that the inner loops of the computations can be performed as rapidly
as possible, since the programs are so short.

Our next problem is multiplication, and here we carry the ideas used in
Algorithm A a little further:

Algorithm M (Multiplication of nonnegative integers). Given nonnegative
integers (um−1 . . . u1u0)b and (vn−1 . . . v1v0)b, this algorithm forms their radix-b
product (wm+n−1 . . . w1w0)b. (The conventional pencil-and-paper method is
based on forming the partial products (um−1 . . . u1u0)b × vj Ąrst, for 0 ≤ j < n,
and then adding these products together with appropriate scale factors; but in
a computer it is simpler to do the addition concurrently with the multiplication,
as described in this algorithm.)
M1. [Initialize.] Set wm−1, wm−2, . . . , w0 all to zero. Set j ← 0. (If those

positions were not cleared to zero in this step, one can show that the steps
below would set

(wm+n−1 . . . w0)b ← (um−1 . . . u0)b × (vn−1 . . . v0)b + (wm−1 . . . w0)b.

This more general multiply-and-add operation is often useful.)
M2. [Zero multiplier?] If vj = 0, set wj+m ← 0 and go to step M6. (This test

might save time if there is a reasonable chance that vj is zero, but it may
be omitted without affecting the validity of the algorithm.)

M3. [Initialize i.] Set i← 0, k ← 0.
M4. [Multiply and add.] Set t ← ui × vj + wi+j + k; then set wi+j ← tmod b

and k ← ⌊t/b⌋. (Here the carry k will always be in the range 0 ≤ k < b;
see below.)

M5. [Loop on i.] Increase i by one. Now if i < m, go back to step M4; otherwise
set wj+m ← k.

M6. [Loop on j.] Increase j by one. Now if j < n, go back to step M2; otherwise
the algorithm terminates.

4.3.1 THE CLASSICAL ALGORITHMS 269

Table 1

MULTIPLICATION OF 914 BY 84

Step i j ui vj t w4 w3 w2 w1 w0

M5 0 0 4 4 16 . . 0 0 6
M5 1 0 1 4 05 . . 0 5 6
M5 2 0 9 4 36 . . 6 5 6
M6 3 0 . 4 36 . 3 6 5 6
M5 0 1 4 8 37 . 3 6 7 6
M5 1 1 1 8 17 . 3 7 7 6
M5 2 1 9 8 76 . 6 7 7 6
M6 3 1 . 8 76 7 6 7 7 6

Algorithm M is illustrated in Table 1, assuming that b = 10, by showing
the states of the computation at the beginning of steps M5 and M6. A proof of
Algorithm M appears in the answer to exercise 14.

The two inequalities

0 ≤ t < b2, 0 ≤ k < b (1)

are crucial for an efficient implementation of this algorithm, since they point out
how large a register is needed for the computations. These inequalities may be
proved by induction as the algorithm proceeds, for if we have k < b at the start
of step M4, we have

ui × vj + wi+j + k ≤ (b− 1)× (b− 1) + (b− 1) + (b− 1) = b2 − 1 < b2.

The following MIX program shows the considerations that are necessary when
Algorithm M is implemented on a computer. The coding for step M4 would be a
little simpler if our computer had a “multiply-and-addŤ instruction, or if it had
a double-length accumulator for addition.

Program M (Multiplication of nonnegative integers). This program is analo-
gous to Program A. rI1 ≡ i−m, rI2 ≡ j−n, rI3 ≡ i+ j, CONTENTS(CARRY) ≡ k.

01 ENT1 M-1 1 M1. Initialize.
02 JOV OFLO 1 Ensure that overĆow is off.
03 STZ W,1 M wrI1 ← 0.
04 DEC1 1 M
05 J1NN *-2 M Repeat for m > rI1 ≥ 0.
06 ENN2 N 1 j ← 0.
07 1H LDX V+N,2 N M2. Zero multiplier?
08 JXZ 8F N If vj = 0, set wj+m ← 0 and go to M6.
09 ENN1 M N − Z M3. Initialize i. i← 0.
10 ENT3 N,2 N − Z (i+ j)← j.
11 ENTX 0 N − Z k ← 0.
12 2H STX CARRY (N − Z)M M4. Multiply and add.
13 LDA U+M,1 (N − Z)M
14 MUL V+N,2 (N − Z)M rAX← ui × vj .
15 SLC 5 (N − Z)M Interchange rA↔ rX.
16 ADD W,3 (N − Z)M Add wi+j to lower half.

270 ARITHMETIC 4.3.1

17 JNOV *+2 (N − Z)M Did overĆow occur?
18 INCX 1 K If so, carry 1 into upper half.
19 ADD CARRY (N − Z)M Add k to lower half.
20 JNOV *+2 (N − Z)M Did overĆow occur?
21 INCX 1 K′ If so, carry 1 into upper half.
22 STA W,3 (N − Z)M wi+j ← tmod b.
23 INC1 1 (N − Z)M M5. Loop on i. i← i+ 1.
24 INC3 1 (N − Z)M (i+ j)← (i+ j) + 1.
25 J1N 2B (N − Z)M Back to M4 with rX = ⌊t/b⌋ if i < m.
26 8H STX W+M+N,2 N Set wj+m ← k.
27 INC2 1 N M6. Loop on j. j ← j + 1.
28 J2N 1B N Repeat until j = n.

The execution time of Program M depends on the number of places, M, in
the multiplicand u; the number of places, N, in the multiplier v; the number
of zeros, Z, in the multiplier; and the number of carries, K and K ′, that occur
during the addition to the lower half of the product in the computation of t. If we
approximate both K and K ′ by the reasonable (although somewhat pessimistic)
values 1

2 (N −Z)M, we Ąnd that the total running time comes to 28MN + 4M +
10N + 3− Z(28M + 3) cycles. If step M2 were deleted, the running time would
be 28MN + 4M + 7N + 3 cycles, so that step is advantageous only if the density
of zero positions within the multiplier is Z/N > 3/(28M + 3). If the multiplier
is chosen completely at random, the ratio Z/N is expected to be only about 1/b,
which is extremely small. We conclude that step M2 is usually not worthwhile,
unless b is small.

Algorithm M is not the fastest way to multiply when m and n are large,
although it has the advantage of simplicity. Speedier but more complicated
methods are discussed in Section 4.3.3; it is possible to multiply numbers faster
than Algorithm M even when m = n = 4.

The Ąnal algorithm of concern to us in this section is long division, in which
we want to divide (m+ n)-place integers by n-place integers. Here the ordinary
pencil-and-paper method involves a certain amount of guesswork and ingenuity
on the part of the person doing the division; we must either eliminate this guess-
work from the algorithm or develop some theory to explain it more carefully.

A moment’s reĆection about the ordinary process of long division shows that
the general problem breaks down into simpler steps, each of which is the division
of an (n + 1)-place dividend u by the n-place divisor v, where 0 ≤ u/v < b;
the remainder r after each step is less than v, so we may use the quantity
rb+ (next place of dividend) as the new u in the succeeding step. For example,
if we are asked to divide 3142 by 53, we Ąrst divide 314 by 53, getting 5 and
a remainder of 49; then we divide 492 by 53, getting 9 and a remainder of 15;
thus we have a quotient of 59 and a remainder of 15. It is clear that this same
idea works in general, and so our search for an appropriate division algorithm
reduces to the following problem (Fig. 6):

Let u = (unun−1 . . . u1u0)b and v = (vn−1 . . . v1v0)b be nonnegative integers in
radix-b notation, where u/v < b. Find an algorithm to determine q = ⌊u/v⌋.

4.3.1 THE CLASSICAL ALGORITHMS 271

Fig. 6. Wanted: a way to
determine q rapidly.

q

vn−1 . . . v1v0)unun−1 . . . u1u0

←−−−−qv−−−−→

←−−−−r−−−−→

We may observe that the condition u/v < b is equivalent to the condition that
u/b < v, which is the same as ⌊u/b⌋ < v. This is simply the condition that
(unun−1 . . . u1)b < (vn−1vn−2 . . . v0)b. Furthermore, if we write r = u− qv, then
q is the unique integer such that 0 ≤ r < v.

The most obvious approach to this problem is to make a guess about q,
based on the most signiĄcant digits of u and v. It isn’t obvious that such a
method will be reliable enough, but it is worth investigating; let us therefore set

q̂ = min

unb+ un−1

vn−1

, b− 1

. (2)

This formula says that q̂ is obtained by dividing the two leading digits of u by
the leading digit of v; and if the result is b or more we can replace it by (b− 1).

It is a remarkable fact, which we will now investigate, that this value q̂ is
always a very good approximation to the desired answer q, so long as vn−1 is
reasonably large. In order to analyze how close q̂ comes to q, we will Ąrst prove
that q̂ is never too small.

Theorem A. In the notation above, q̂ ≥ q.
Proof. Since q ≤ b− 1, the theorem is certainly true if q̂ = b− 1. Otherwise we
have q̂ = ⌊(unb+ un−1)/vn−1⌋, hence q̂vn−1 ≥ unb+ un−1 − vn−1 + 1. It follows
that

u− q̂v ≤ u− q̂vn−1b
n−1

≤ unbn + · · ·+ u0 − (unbn + un−1b
n−1 − vn−1b

n−1 + bn−1)

= un−2b
n−2 + · · ·+ u0 − bn−1 + vn−1b

n−1 < vn−1b
n−1 ≤ v.

Since u− q̂v < v, we must have q̂ ≥ q.
We will now prove that q̂ cannot be much larger than q in practical situa-

tions. Assume that q̂ ≥ q + 3. We have

q̂ ≤ unb+ un−1

vn−1
=
unb

n + un−1b
n−1

vn−1bn−1
≤ u

vn−1bn−1
<

u

v − bn−1
.

The case v = bn−1 is impossible, for if v = (100 . . . 0)b then q = q̂.

Furthermore,

the relation q > (u/v)− 1 implies that

3 ≤ q̂ − q < u

v − bn−1
− u

v
+ 1 =

u

v

bn−1

v − bn−1

+ 1.

Therefore
u

v
> 2

v − bn−1

bn−1

≥ 2(vn−1 − 1).

272 ARITHMETIC 4.3.1

Finally, since b − 4 ≥ q̂ − 3 ≥ q = ⌊u/v⌋ ≥ 2(vn−1 − 1), we have vn−1 < ⌊b/2⌋.
This proves the result we seek:

Theorem B. If vn−1 ≥ ⌊b/2⌋, then q̂ − 2 ≤ q ≤ q̂.
The most important part of this theorem is that the conclusion is indepen-

dent of b; no matter how large the radix is, the trial quotient q̂ will never be
more than 2 in error.

The condition that vn−1 ≥ ⌊b/2⌋ is very much like a normalization require-
ment; in fact, it is exactly the condition of Ćoating-binary normalization in a
binary computer. One simple way to ensure that vn−1 is sufficiently large is to
multiply both u and v by ⌊b/(vn−1 + 1)⌋; this does not change the value of u/v,
nor does it increase the number of places in v, and exercise 23 proves that it will
always make the new value of vn−1 large enough. (Another way to normalize
the divisor is discussed in exercise 28.)

Now that we have armed ourselves with all of these facts, we are in a
position to write the desired long-division algorithm. This algorithm uses a
slightly improved choice of q̂ in step D3, which guarantees that q = q̂ or q̂ − 1;
in fact, the improved choice of q̂ made here is almost always accurate.

Algorithm D (Division of nonnegative integers). Given nonnegative integers
u = (um+n−1 . . . u1u0)b and v = (vn−1 . . . v1v0)b, where vn−1 ̸= 0 and n > 1, we
form the radix-b quotient ⌊u/v⌋ = (qmqm−1 . . . q0)b and the remainder umod v =
(rn−1 . . . r1r0)b. (When n = 1, the simpler algorithm of exercise 16 should
be used.)

D1. [Normalize.] Set d ← ⌊b/(vn−1 + 1)⌋. Then set (um+num+n−1 . . . u1u0)b
equal to (um+n−1 . . . u1u0)b times d; similarly, set (vn−1 . . . v1v0)b equal to
(vn−1 . . . v1v0)b times d. (Notice the introduction of a new digit position
um+n at the left of um+n−1; if d = 1, all we need to do in this step is to set
um+n ← 0. On a binary computer it may be preferable to choose d to be
a power of 2 instead of using the value suggested here; any value of d that
results in vn−1 ≥ ⌊b/2⌋ will suffice. See also exercise 37.)

D2. [Initialize j.] Set j ← m. (The loop on j, steps D2 through D7, will be
essentially a division of (uj+n . . . uj+1uj)b by (vn−1 . . . v1v0)b to get a single
quotient digit qj ; see Fig. 6.)

D3. [Calculate q̂.] Set q̂ ←

(uj+nb+uj+n−1)/vn−1

and let r̂ be the remainder,

(uj+nb + uj+n−1) mod vn−1. Now test if q̂ ≥ b or q̂vn−2 > br̂ + uj+n−2; if
so, decrease q̂ by 1, increase r̂ by vn−1, and repeat this test if r̂ < b. (The
test on vn−2 determines at high speed most of the cases in which the trial
value q̂ is one too large, and it eliminates all cases where q̂ is two too large;
see exercises 19, 20, 21.)

D4. [Multiply and subtract.] Replace (uj+nuj+n−1 . . . uj)b by

(uj+nuj+n−1 . . . uj)b − q̂ (0vn−1 . . . v1v0)b.

This computation (analogous to steps M3, M4, and M5 of Algorithm M)
consists of a simple multiplication by a one-place number, combined with

4.3.1 THE CLASSICAL ALGORITHMS 273

D1. Normalize

D2. Initialize j

D3. Calculate q̂
D4. Multiply
and subtract

D5. Test
remainder

D6. Add back

D7. Loop on j D8. Unnormalize

q 6= q̂

j≥ 0

Fig. 7. Long division.

a subtraction. The digits (uj+n, uj+n−1, . . . , uj) should be kept positive; if
the result of this step is actually negative, (uj+nuj+n−1 . . . uj)b should be
left as the true value plus bn+1, namely as the b’s complement of the true
value, and a “borrowŤ to the left should be remembered.

D5. [Test remainder.] Set qj ← q̂. If the result of step D4 was negative, go to
step D6; otherwise go on to step D7.

D6. [Add back.] (The probability that this step is necessary is very small, on
the order of only 2/b, as shown in exercise 21; test data to activate this step
should therefore be speciĄcally contrived when debugging. See exercise 22.)
Decrease qj by 1, and add (0vn−1 . . . v1v0)b to (uj+nuj+n−1 . . . uj+1uj)b. (A
carry will occur to the left of uj+n, and it should be ignored since it cancels
with the borrow that occurred in D4.)

D7. [Loop on j.] Decrease j by one. Now if j ≥ 0, go back to D3.

D8. [Unnormalize.] Now (qm . . . q1q0)b is the desired quotient, and the desired
remainder may be obtained by dividing (un−1 . . . u1u0)b by d.

The representation of Algorithm D as a MIX program has several points of
interest:

Program D (Division of nonnegative integers). The conventions of this program
are analogous to Program A; rI1 ≡ i− n, rI2 ≡ j, rI3 ≡ i+ j.

001 D1 JOV OFLO 1 D1. Normalize.
· · · (See exercise 25)

039 D2 ENT2 M 1 D2. Initialize j. j ← m.
040 STZ V+N 1 Set vn ← 0, for convenience in D4.
041 D3 LDA U+N,2(1:5) M + 1 D3. Calculate q̂.
042 LDX U+N-1,2 M + 1 rAX← uj+nb+ uj+n−1.
043 DIV V+N-1 M + 1 rA← ⌊rAX/vn−1⌋.
044 JOV 1F M + 1 Jump if quotient ≥ b.
045 STA QHAT M + 1 q̂ ← rA.
046 STX RHAT M + 1 r̂ ← uj+nb+ uj+n−1 − q̂vn−1

047 JMP 2F M + 1 = (uj+nb+ uj+n−1) mod vn−1.

274 ARITHMETIC 4.3.1

048 1H LDX WM1 rX← b− 1.
049 LDA U+N-1,2 rA← uj+n−1. (Here uj+n = vn−1.)
050 JMP 4F
051 3H LDX QHAT E
052 DECX 1 E Decrease q̂ by one.
053 LDA RHAT E Adjust r̂ accordingly:
054 4H STX QHAT E q̂ ← rX.
055 ADD V+N-1 E rA← r̂ + vn−1.
056 JOV D4 E (If r̂ will be ≥ b, q̂vn−2 will be < r̂b.)
057 STA RHAT E r̂ ← rA.
058 LDA QHAT E
059 2H MUL V+N-2 M + E + 1
060 CMPA RHAT M + E + 1 Test if q̂vn−2 ≤ r̂b+ uj+n−2.
061 JL D4 M + E + 1
062 JG 3B E
063 CMPX U+N-2,2
064 JG 3B If not, q̂ is too large.
065 D4 ENTX 1 M + 1 D4. Multiply and subtract.
066 ENN1 N M + 1 i← 0.
067 ENT3 0,2 M + 1 (i+ j)← j.
068 2H STX CARRY (M + 1)(N + 1) (Here 1− b < rX ≤ +1.)
069 LDAN V+N,1 (M + 1)(N + 1)
070 MUL QHAT (M + 1)(N + 1) rAX← −q̂vi.
071 SLC 5 (M + 1)(N + 1) Interchange rA↔ rX.
072 ADD CARRY (M + 1)(N + 1) Add the contribution from the
073 JNOV *+2 (M + 1)(N + 1) digit to the right, plus 1.
074 DECX 1 K If sum is ≤ −b, carry −1.
075 ADD U,3 (M + 1)(N + 1) Add ui+j .
076 ADD WM1 (M + 1)(N + 1) Add b− 1 to force + sign.
077 JNOV *+2 (M + 1)(N + 1) If no overĆow, carry −1.
078 INCX 1 K′ rX ≡ carry + 1.
079 STA U,3 (M + 1)(N + 1) ui+j ← rA (may be minus zero).
080 INC1 1 (M + 1)(N + 1)
081 INC3 1 (M + 1)(N + 1)
082 J1NP 2B (M + 1)(N + 1) Repeat for 0 ≤ i ≤ n.
083 D5 LDA QHAT M + 1 D5. Test remainder.
084 STA Q,2 M + 1 Set qj ← q̂.
085 JXP D7 M + 1 (Here rX = 0 or 1, since vn = 0.)
086 D6 DECA 1 D6. Add back.
087 STA Q,2 Set qj ← q̂ − 1.
088 ENN1 N i← 0.
089 ENT3 0,2 (i+ j)← j.
090 1H ENTA 0 (This is essentially Program A.)
091 2H ADD U,3
092 ADD V+N,1
093 STA U,3
094 INC1 1
095 INC3 1
096 JNOV 1B

4.3.1 THE CLASSICAL ALGORITHMS 275

097 ENTA 1
098 J1NP 2B
099 D7 DEC2 1 M + 1 D7. Loop on j.
100 J2NN D3 M + 1 Repeat for m ≥ j ≥ 0.
101 D8 · · · (See exercise 26)

Note how easily the rather complex-appearing calculations and decisions of
step D3 can be handled inside the machine. Notice also that the program for
step D4 is analogous to Program M, except that the ideas of Program S have
also been incorporated.

The running time for Program D can be estimated by considering the quan-
tities M, N, E, K, and K ′ shown in the program. (These quantities ignore several
situations that occur only with very low probability; for example, we may assume
that lines 048Ű050, 063Ű064, and step D6 are never executed.) Here M + 1 is
the number of words in the quotient; N is the number of words in the divisor;
E is the number of times q̂ is adjusted downwards in step D3; K and K ′ are
the number of times certain carry adjustments are made during the multiply-
subtract loop. If we assume that K + K ′ is approximately (N + 1)(M + 1),
and that E is approximately 1

2M, we get a total running time of approximately
30MN + 30N + 89M + 111 cycles, plus 67N + 23.5M + 4 more if d > 1. (The
program segments of exercises 25 and 26 are included in these totals.) When M
and N are large, this is only about seven percent longer than the time needed
by Program M to multiply the quotient by the divisor.

When the radix b is comparatively small, so that b2 is less than the com-
puter’s word size, multiprecision division can be speeded up by not reducing
individual digits of intermediate results to the range [0 . . b); see D. M. Smith,
Math. Comp. 65 (1996), 157Ű163. Further commentary on Algorithm D appears
in the exercises at the close of this section.

It is possible to debug programs for multiple-precision arithmetic by using
the multiplication and addition routines to check the result of the division
routine, etc. The following type of test data is occasionally useful:

(tm − 1)(tn − 1) = tm+n − tn − tm + 1.

If m < n, this number has the radix-t expansion

(t− 1) . . . (t− 1)

m−1 places

(t− 2) (t− 1) . . . (t− 1)

n−m places

0 . . . 0

m−1 places

1;

for example, (103 − 1)(108 − 1) = 99899999001. In the case of Program D, it is
also necessary to Ąnd some test cases that cause the rarely executed parts of the
program to be exercised; some portions of that program would probably never
get tested even if a million random test cases were tried. (See exercise 22.)

Now that we have seen how to operate with signed magnitude numbers,
let us consider what approach should be taken to the same problems when a
computer with complement notation is being used. For two’s complement and
ones’ complement notations, it is usually best to let the radix b be one half of the

276 ARITHMETIC 4.3.1

word size; thus for a 32-bit computer word we would use b = 231 in the algorithms
above. The sign bit of all but the most signiĄcant word of a multiple-precision
number will be zero, so that no anomalous sign correction takes place during the
computer’s multiplication and division operations. In fact, the basic meaning of
complement notation requires that we consider all but the most signiĄcant word
to be nonnegative. For example, assuming an 8-bit word, the two’s complement
number

11011111 1111110 1101011

(where the sign bit is shown only in the most signiĄcant word) is properly thought
of as −221 + (1011111)2 · 214 + (1111110)2 · 27 + (1101011)2.

On the other hand, some binary computers that work with two’s complement
notation also provide true unsigned arithmetic as well. For example, let x
and y be 32-bit operands. A computer might regard them as two’s complement
numbers in the range −231 ≤ x, y < 231, or as unsigned numbers in the range
0 ≤ x, y < 232. If we ignore overĆow, the 32-bit sum (x+ y) mod 232 is the same
under either interpretation; but overĆow occurs in different circumstances when
we change the assumed range. If the computer allows easy computation of the
carry bit ⌊(x + y)/232⌋ in the unsigned interpretation, and if it provides a full
64-bit product of unsigned 32-bit integers, we can use b = 232 instead of b = 231

in our high-precision algorithms.
Addition of signed numbers is slightly easier when complement notations

are being used, since the routine for adding n-place nonnegative integers can be
used for arbitrary n-place integers; the sign appears only in the Ąrst word, so
the less signiĄcant words may be added together irrespective of the actual sign.
(Special attention must be given to the leftmost carry when ones’ complement
notation is being used, however; it must be added into the least signiĄcant word,
and possibly propagated further to the left.) Similarly, we Ąnd that subtraction
of signed numbers is slightly simpler with complement notation. On the other
hand, multiplication and division seem to be done most easily by working with
nonnegative quantities and doing suitable complementation operations before-
hand to make sure that both operands are nonnegative. It may be possible to
avoid this complementation by devising some tricks for working directly with
negative numbers in a complement notation, and it is not hard to see how this
could be done in double-precision multiplication; but care should be taken not
to slow down the inner loops of the subroutines when high precision is required.

Let us now turn to an analysis of the quantity K that arises in Program A,
namely the number of carries that occur when two n-place numbers are being
added together. Although K has no effect on the total running time of Pro-
gram A, it does affect the running time of the Program A’s counterparts that
deal with complement notations, and its analysis is interesting in itself as a
signiĄcant application of generating functions.

Suppose that u and v are independent random n-place integers, uniformly
distributed in the range 0 ≤ u, v < bn. Let pnk be the probability that exactly
k carries occur in the addition of u to v, and that one of these carries occurs

4.3.1 THE CLASSICAL ALGORITHMS 277

in the most signiĄcant position (so that u + v ≥ bn). Similarly, let qnk be the
probability that exactly k carries occur, but that there is no carry in the most
signiĄcant position. Then it is not hard to see that, for all k and n,

p0k = 0, p(n+1)(k+1) =
b+ 1

2b
pnk +

b− 1
2b

qnk,

q0k = δ0k, q(n+1)k =
b− 1

2b
pnk +

b+ 1
2b

qnk;

(3)

this happens because (b − 1)/2b is the probability that un−1 + vn−1 ≥ b and
(b+1)/2b is the probability that un−1 +vn−1 +1 ≥ b, when un−1 and vn−1 are in-
dependently and uniformly distributed integers in the range 0 ≤ un−1, vn−1 < b.

To obtain further information about these quantities pnk and qnk, we set up
the generating functions

P (z, t) =

k,n

pnk z
ktn, Q(z, t) =

k,n

qnk z
ktn. (4)

From (3) we have the basic relations

P (z, t) = zt

b+ 1

2b
P (z, t) +

b− 1
2b

Q(z, t)

,

Q(z, t) = 1 + t

b− 1

2b
P (z, t) +

b+ 1
2b

Q(z, t)

.

These two equations are readily solved for P (z, t) and Q(z, t); and if we let

G(z, t) = P (z, t) +Q(z, t) =

n

Gn(z)tn,

where Gn(z) is the generating function for the total number of carries when
n-place numbers are added, we Ąnd that

G(z, t) = (b− zt)/p(z, t), where p(z, t) = b− 1
2 (1 + b)(1 + z)t+ zt2. (5)

Note that G(1, t) = 1/(1 − t), and this checks with the fact that Gn(1) must
equal 1 (it is the sum of all the possible probabilities). Taking partial derivatives
of (5) with respect to z, we Ąnd that

∂G

∂z
=

n

G′
n(z)tn =

−t
p(z, t)

+
t(b− zt)(b+ 1− 2t)

2p(z, t)2
;

∂2G

∂z2
=

n

G′′
n(z)tn =

−t2(b+ 1− 2t)
p(z, t)2

+
t2(b− zt)(b+ 1− 2t)2

2p(z, t)3
.

Now let us put z = 1 and expand in partial fractions:

n

G′
n(1)tn =

t

2

1

(1− t)2
− 1

(b−1)(1− t) +
1

(b−1)(b− t)

,

n

G′′
n(1)tn =

t2

2

1

(1− t)3
− 1

(b−1)2(1− t) +
1

(b−1)2(b− t) +
1

(b−1)(b− t)2

.

278 ARITHMETIC 4.3.1

It follows that the average number of carries, the mean value of K, is

G′
n(1) =

1
2

n− 1
b− 1

1−
1
b

n

; (6)

the variance is

G′′
n(1) +G′

n(1)−G′
n(1)2

=
1
4

n+
2n
b− 1

− 2b+ 1
(b− 1)2

+
2b+ 2

(b− 1)2

1
b

n

− 1
(b− 1)2

1
b

2n

. (7)

So the number of carries is just slightly less than 1
2n under these assumptions.

History and bibliography. The early history of the classical algorithms
described in this section is left as an interesting project for the reader, and
only the history of their implementation on computers will be traced here.

The use of 10n as an assumed radix when multiplying large numbers on a
desk calculator was discussed by D. N. Lehmer and J. P. Ballantine, AMM 30
(1923), 67Ű69.

Double-precision arithmetic on digital computers was Ąrst treated by J. von
Neumann and H. H. Goldstine in their introductory notes on programming,
originally published in 1947 [J. von Neumann, Collected Works 5, 142Ű151].
Theorems A and B above are due to D. A. Pope and M. L. Stein [CACM 3
(1960), 652Ű654], whose paper also contains a bibliography of earlier work on
double-precision routines. Other ways of choosing the trial quotient q̂ have been
discussed by A. G. Cox and H. A. Luther, CACM 4 (1961), 353 [divide by vn−1+1
instead of vn−1], and by M. L. Stein, CACM 7 (1964), 472Ű474 [divide by vn−1

or vn−1 + 1 according to the magnitude of vn−2]; E. V. Krishnamurthy [CACM
8 (1965), 179Ű181] showed that examination of the single-precision remainder in
the latter method leads to an improvement over Theorem B. Krishnamurthy and
Nandi [CACM 10 (1967), 809Ű813] suggested a way to replace the normalization
and unnormalization operations of Algorithm D by a calculation of q̂ based on
several leading digits of the operands. G. E. Collins and D. R. Musser have
carried out an interesting analysis of the original Pope and Stein algorithm
[Information Processing Letters 6 (1977), 151Ű155].

Several alternative approaches to division have also been suggested:

1) “Fourier divisionŤ [J. Fourier, Analyse des Équations Déterminées (Paris:
1831), §2.21]. This method, which was often used on desk calculators, essentially
obtains each new quotient digit by increasing the precision of the divisor and the
dividend at each step. Some rather extensive tests by the author have indicated
that such a method is inferior to the divide-and-correct technique above, but
there may be some applications in which Fourier division is practical. See D. H.
Lehmer, AMM 33 (1926), 198Ű206; J. V. Uspensky, Theory of Equations (New
York: McGrawŰHill, 1948), 159Ű164.

2) “Newton’s methodŤ for evaluating the reciprocal of a number was extensively
used in early computers when there was no single-precision division instruction.
The idea is to Ąnd some initial approximation x0 to the number 1/v, then to let

4.3.1 THE CLASSICAL ALGORITHMS 279

xn+1 = 2xn − vx2
n. This method converges rapidly to 1/v, since xn = (1− ϵ)/v

implies that xn+1 = (1− ϵ2)/v. Convergence to third order, with ϵ replaced by
O(ϵ3) at each step, can be obtained using the formula

xn+1 = xn + xn(1− vxn) + xn(1− vxn)2

= xn

1 + (1− vxn)(1 + (1− vxn))

,

and similar formulas hold for fourth-order convergence, etc.; see P. Rabinowitz,
CACM 4 (1961), 98. For calculations on extremely large numbers, Newton’s
second-order method and subsequent multiplication by u can actually be consid-
erably faster than Algorithm D, if we increase the precision of xn at each step and
if we also use the fast multiplication routines of Section 4.3.3. (See Algorithm
4.3.3R for details.) Some related iterative schemes have been discussed by E. V.
Krishnamurthy, IEEE Trans. C-19 (1970), 227Ű231.

3) Division methods have also been based on the evaluation of

u

v + ϵ
=
u

v

1−
 ϵ

v

+
 ϵ

v

2

−
 ϵ

v

3

+ · · ·

.

See H. H. Laughlin, AMM 37 (1930), 287Ű293. We have used this idea in the
double-precision case

Eq. 4.2.3Ű(2)

.

Besides the references just cited, the following early articles concerning
multiple-precision arithmetic are also of interest: High-precision routines for
Ćoating point calculations using ones’ complement arithmetic were described
by A. H. Stroud and D. Secrest, Comp. J. 6 (1963), 62Ű66. Extended-precision
subroutines for use in FORTRAN programs were described by B. I. Blum, CACM
8 (1965), 318Ű320, and for use in ALGOL by M. Tienari and V. Suokonautio,
BIT 6 (1966), 332Ű338. Arithmetic on integers with unlimited precision, making
use of linked memory allocation techniques, was elegantly introduced by G. E.
Collins, CACM 9 (1966), 578Ű589. For a much larger repertoire of multiple-
precision operations, including logarithms and trigonometric functions, see R. P.
Brent, ACM Trans. Math. Software 4 (1978), 57Ű81; D. M. Smith, ACM Trans.
Math. Software 17 (1991), 273Ű283, 24 (1998), 359Ű367.

Human progress in calculation has traditionally been measured by the num-
ber of decimal digits of π that were known at a given point in history. Section 4.1
mentions some of the early developments; by 1719, Thomas Fantet de Lagny
had computed π to 127 decimal places [Mémoires Acad. Sci. (Paris, 1719), 135Ű
145; a typographical error affected the 113th digit]. After better formulas were
discovered, a famous mental calculator from Hamburg named Zacharias Dase
needed less than two months to calculate 200 decimal digits correctly in 1844
[Crelle 27 (1844), 198]. Then William Shanks published 607 decimals of π in
1853, and continued to extend his calculations until he had obtained 707 digits
in 1873. [See W. Shanks, Contributions to Mathematics (London: 1853); Proc.
Royal Soc. London 21 (1873), 318Ű319; 22 (1873), 45Ű46; J. C. V. Hoffmann,
Zeit. für math. und naturwiss. Unterricht 26 (1895), 261Ű264.] Shanks’s 707-
place value was widely quoted in mathematical reference books for many years,

280 ARITHMETIC 4.3.1

but D. F. Ferguson noticed in 1945 that it contained several mistakes beginning
at the 528th decimal place [Math. Gazette 30 (1946), 89Ű90]. G. Reitwiesner
and his colleagues used 70 hours of computing time on ENIAC during Labor
Day weekend in 1949 to obtain 2037 correct decimals [Math. Tables and Other
Aids to Comp. 4 (1950), 11Ű15]. F. Genuys reached 10,000 digits in 1958,
after 100 minutes on an IBM 704 [Chiffres 1 (1958), 17Ű22]; shortly afterwards,
the Ąrst 100,000 digits were published by D. Shanks [no relation to William]
and J. W. Wrench, Jr. [Math. Comp. 16 (1962), 76Ű99], after about 8 hours
on an IBM 7090 and another 4.5 hours for checking. Their check actually
revealed a transient hardware error, which went away when the computation
was repeated. One million digits of π were computed by Jean Guilloud and
Martine Bouyer of the French Atomic Energy Commission in 1973, after nearly
24 hours of computer time on a CDC 7600 [see A. Shibata, Surikagaku 20
(1982), 65Ű73]. Amazingly, Dr. I. J. Matrix had correctly predicted seven years
earlier that the millionth digit would turn out to be “5Ť [Martin Gardner, New
Mathematical Diversions (Simon and Schuster, 1966), addendum to Chapter 8].
The billion-digit barrier was passed in 1989 by Gregory V. Chudnovsky and
David V. Chudnovsky, and independently by Yasumasa Kanada and Yoshiaki
Tamura; the Chudnovskys extended their calculation to two billion digits in 1991,
after 250 hours of computation on a home-built parallel machine. [See Richard
Preston, The New Yorker 68, 2 (2 March 1992), 36Ű67. The novel formula used
by the Chudnovskys is described in Proc. Nat. Acad. Sci. 86 (1989), 8178Ű8182.]
Yasumasa Kanada and Daisuke Takahashi obtained more than 51.5 billion digits
in July, 1997, using two independent methods that required respectively 29.0 and
37.1 hours on a HITACHI SR2201 computer with 1024 processing elements. By
2011 the world record had risen to ten trillion digits(!), obtained by A. J. Yee
and S. Kondo using the Chudnovsky formula together with exercise 39.

We have restricted our discussion in this section to arithmetic techniques for
use in computer programming. Many algorithms for hardware implementation
of arithmetic operations are also quite interesting, but they appear to be inap-
plicable to high-precision software routines; see, for example, G. W. Reitwiesner,
“Binary Arithmetic,Ť Advances in Computers 1 (New York: Academic Press,
1960), 231Ű308; O. L. MacSorley, Proc. IRE 49 (1961), 67Ű91; G. Metze, IRE
Trans. EC-11 (1962), 761Ű764; H. L. Garner, “Number Systems and Arith-
metic,Ť Advances in Computers 6 (New York: Academic Press, 1965), 131Ű
194. An infamous but very instructive bug in the division routine of the 1994
Pentium chip is discussed by A. Edelman in SIAM Review 39 (1997), 54Ű67. The
minimum achievable execution time for hardware addition and multiplication
operations has been investigated by S. Winograd, JACM 12 (1965), 277Ű285,
14 (1967), 793Ű802; by R. P. Brent, IEEE Trans. C-19 (1970), 758Ű759; and by
R. W. Floyd, FOCS 16 (1975), 3Ű5. See also Section 4.3.3E.

EXERCISES

1. [42] Study the early history of the classical algorithms for arithmetic by looking up
the writings of, say, Sun Tsŭ, al-Khwārizmı̄, al-Uql̄ıdis̄ı, Fibonacci, and Robert Recorde,

4.3.1 THE CLASSICAL ALGORITHMS 281

and by translating their methods as faithfully as possible into precise algorithmic
notation.

2. [15] Generalize Algorithm A so that it does “column addition,Ť obtaining the
sum of m nonnegative n-place integers. (Assume that m ≤ b.)

3. [21] Write a MIX program for the algorithm of exercise 2, and estimate its running
time as a function of m and n.

4. [M21] Give a formal proof of the validity of Algorithm A, using the method of
inductive assertions explained in Section 1.2.1.

5. [21] Algorithm A adds the two inputs by going from right to left, but sometimes
the data is more readily accessible from left to right. Design an algorithm that produces
the same answer as Algorithm A, but that generates the digits of the answer from left
to right, going back to change previous values if a carry occurs to make a previous
value incorrect. [Note: Early Hindu and Arabic manuscripts dealt with addition from
left to right in this way, probably because it was customary to work from left to right
on an abacus; the right-to-left addition algorithm was a reĄnement due to al-Uql̄ıdis̄ı,
perhaps because Arabic is written from right to left.]

x 6. [22] Design an algorithm that adds from left to right (as in exercise 5), but never
stores a digit of the answer until this digit cannot possibly be affected by future carries;
there is to be no changing of any answer digit once it has been stored. [Hint: Keep track
of the number of consecutive (b − 1)’s that have not yet been stored in the answer.]
This sort of algorithm would be appropriate, for example, in a situation where the
input and output numbers are to be read and written from left to right on magnetic
tapes, or if they appear in straight linear lists.

7. [M26] Determine the average number of times the algorithm of exercise 5 will Ąnd
that a carry makes it necessary to go back and change k digits of the partial answer, for
k = 1, 2, . . . , n. (Assume that both inputs are independently and uniformly distributed
between 0 and bn − 1.)

8. [M26] Write a MIX program for the algorithm of exercise 5, and determine its
average running time based on the expected number of carries as computed in the text.

x 9. [21] Generalize Algorithm A to obtain an algorithm that adds two n-place num-
bers in a mixed-radix number system, with bases b0, b1, . . . (from right to left). Thus
the least signiĄcant digits lie between 0 and b0 − 1, the next digits lie between 0 and
b1 − 1, etc.; see Eq. 4.1Ű(9).

10. [18] Would Program S work properly if the instructions on lines 06 and 07 were
interchanged? If the instructions on lines 05 and 06 were interchanged?

11. [10] Design an algorithm that compares two nonnegative n-place integers u =
(un−1 . . . u1u0)b and v = (vn−1 . . . v1v0)b, to determine whether u < v, u = v, or u > v.

12. [16] Algorithm S assumes that we know which of the two input operands is the
larger; if this information is not known, we could go ahead and perform the subtraction
anyway, and we would Ąnd that an extra borrow is still present at the end of the
algorithm. Design another algorithm that could be used (if there is a borrow present
at the end of Algorithm S) to complement (wn−1 . . . w1w0)b and therefore to obtain
the absolute value of the difference of u and v.

13. [21] Write a MIX program that multiplies (un−1 . . . u1u0)b by v, where v is a single-
precision number (that is, 0 ≤ v < b), producing the answer (wn . . . w1w0)b. How much
running time is required?

282 ARITHMETIC 4.3.1

x 14. [M22] Give a formal proof of the validity of Algorithm M, using the method of
inductive assertions explained in Section 1.2.1. (See exercise 4.)

15. [M20] If we wish to form the product of two n-place fractions, (.u1u2 . . . un)b ×
(.v1v2 . . . vn)b, and to obtain only an n-place approximation (.w1w2 . . . wn)b to the
result, Algorithm M could be used to obtain a 2n-place answer that is subsequently
rounded to the desired approximation. But this involves about twice as much work as
is necessary for reasonable accuracy, since the products uivj for i+j > n+2 contribute
very little to the answer.

Give an estimate of the maximum error that can occur, if these products uivj for
i+ j > n+ 2 are not computed during the multiplication, but are assumed to be zero.

x 16. [20] (Short division.) Design an algorithm that divides a nonnegative n-place
integer (un−1 . . . u1u0)b by v, where v is a single-precision number (that is, 0 < v < b),
producing the quotient (wn−1 . . . w1w0)b and remainder r.

17. [M20] In the notation of Fig. 6, assume that vn−1 ≥ ⌊b/2⌋; show that if un = vn−1,
we must have q = b− 1 or b− 2.

18. [M20] In the notation of Fig. 6, show that if q′ = ⌊(unb+un−1)/(vn−1 +1)⌋, then
q′ ≤ q.

x 19. [M21] In the notation of Fig. 6, let q̂ be an approximation to q, and let r̂ =
unb + un−1 − q̂vn−1. Assume that vn−1 > 0. Show that if q̂vn−2 > br̂ + un−2, then
q < q̂. [Hint: Strengthen the proof of Theorem A by examining the inĆuence of vn−2.]

20. [M22] Using the notation and assumptions of exercise 19, show that if q̂vn−2 ≤
br̂ + un−2 and q̂ < b, then q̂ = q or q = q̂ − 1.

x 21. [M23] Show that if vn−1 ≥ ⌊b/2⌋, and if q̂vn−2 ≤ br̂ + un−2 but q̂ ̸= q in the
notation of exercises 19 and 20, then umod v ≥ (1 − 2/b)v. (The latter event occurs
with approximate probability 2/b, so that when b is the word size of a computer we
must have qj = q̂ in Algorithm D except in very rare circumstances.)

x 22. [24] Find an example of a four-digit number divided by a three-digit number for
which step D6 is necessary in Algorithm D, when the radix b is 10.

23. [M23] Given that v and b are integers, and that 1 ≤ v < b, prove that we always
have ⌊b/2⌋ ≤ v⌊b/(v + 1)⌋ < (v + 1)⌊b/(v + 1)⌋ ≤ b.
24. [M20] Using the law of the distribution of leading digits explained in Section 4.2.4,
give an approximate formula for the probability that d = 1 in Algorithm D. (When
d = 1, we can omit most of the calculation in steps D1 and D8.)

25. [26] Write a MIX routine for step D1, which is needed to complete Program D.

26. [21] Write a MIX routine for step D8, which is needed to complete Program D.

27. [M20] Prove that at the beginning of step D8 in Algorithm D, the unnormalized
remainder (un−1 . . . u1u0)b is always an exact multiple of d.

28. [M30] (A. Svoboda, Stroje na Zpracování Informací 9 (1963), 25Ű32.) Let v =
(vn−1 . . . v1v0)b be any radix b integer, where vn−1 ̸= 0. Perform the following opera-
tions:

N1. If vn−1 < b/2, multiply v by ⌊(b+ 1)/(vn−1 + 1)⌋. Let the result of this step
be (vnvn−1 . . . v1v0)b.

N2. If vn = 0, set v ← v + (1/b)⌊b(b − vn−1)/(vn−1 + 1)⌋v; let the result of this
step be (vnvn−1 . . . v0.v−1 . . .)b. Repeat step N2 until vn ̸= 0.

4.3.1 THE CLASSICAL ALGORITHMS 283

Prove that step N2 will be performed at most three times, and that we must always
have vn = 1, vn−1 = 0 at the end of the calculations.

[Note: If u and v are both multiplied by the constants above, we do not change
the value of the quotient u/v, and the divisor has been converted into the form
(10vn−2 . . . v0.v−1v−2v−3)b. This form of the divisor is very convenient because, in
the notation of Algorithm D, we may simply take q̂ = uj+n as a trial divisor at the
beginning of step D3, or q̂ = b− 1 when (uj+n+1, uj+n) = (1, 0).]

29. [15] Prove or disprove: At the beginning of step D7 of Algorithm D, we always
have uj+n = 0.

x 30. [22] If memory space is limited, it may be desirable to use the same storage
locations for both input and output during the performance of some of the algorithms
in this section. Is it possible to have w0, w1, . . . , wn−1 stored in the same respective
locations as u0, . . . , un−1 or v0, . . . , vn−1 during Algorithm A or S? Is it possible to have
the quotient q0, . . . , qm occupy the same locations as un, . . . , um+n in Algorithm D?
Is there any permissible overlap of memory locations between input and output in
Algorithm M?

31. [28] Assume that b = 3 and that u = (um+n−1 . . . u1u0)3, v = (vn−1 . . . v1v0)3 are
integers in balanced ternary notation (see Section 4.1), vn−1 ̸= 0. Design a long-division
algorithm that divides u by v, obtaining a remainder whose absolute value does not
exceed 1

2
|v|. Try to Ąnd an algorithm that would be efficient if incorporated into the

arithmetic circuitry of a balanced ternary computer.

32. [M40] Assume that b = 2i and that u and v are complex numbers expressed in
the quater-imaginary number system. Design algorithms that divide u by v, perhaps
obtaining a suitable remainder of some sort, and compare their efficiency.

33. [M40] Design an algorithm for taking square roots, analogous to Algorithm D
and to the traditional pencil-and-paper method for extracting square roots.

34. [40] Develop a set of computer subroutines for doing the four arithmetic opera-
tions on arbitrary integers, putting no constraint on the size of the integers except for
the implicit assumption that the total memory capacity of the computer should not be
exceeded. (Use linked memory allocation, so that no time is wasted in Ąnding room to
put the results.)

35. [40] Develop a set of computer subroutines for “decuple-precision Ćoating pointŤ
arithmetic, using excess 0, base b, nine-place Ćoating point number representation,
where b is the computer word size, and allowing a full word for the exponent. (Thus
each Ćoating point number is represented in 10 words of memory, and all scaling is
done by moving full words instead of by shifting within the words.)

36. [M25] Explain how to compute lnϕ to high precision, given a suitably precise
approximation to ϕ, using only multiprecision addition, subtraction, and division by
small numbers.

x 37. [20] (E. Salamin.) Explain how to avoid the normalization and unnormalization
steps of Algorithm D, when d is a power of 2 on a binary computer, without changing
the sequence of trial quotient digits computed by that algorithm. (How can q̂ be
computed in step D3 if the normalization of step D1 hasn’t been done?)

38. [M35] Suppose u and v are integers in the range 0 ≤ u, v < 2n. Devise a way
to compute the geometric mean ⌊√uv + 1

2
⌋ by doing O(n) operations of addition,

subtraction, and comparison of (n+2)-bit numbers. [Hint: Use a “pipelineŤ to combine
the classical methods of multiplication and square rooting.]

284 ARITHMETIC 4.3.1

39. [25] (D. Bailey, P. Borwein, and S. Plouffe, 1996.) Explain how to compute the
nth bit of the binary representation of π without knowing the previous n− 1 bits, by
using the identity

π =

k≥0

1
16k

 4
8k + 1

− 2
8k + 4

− 1
8k + 5

− 1
8k + 6

and doing O(n logn) arithmetic operations on O(logn)-bit integers. (Assume that the
binary digits of π do not have surprisingly long stretches of consecutive 0s or 1s.)

40. [M24] Sometimes we want to divide u by v when we know that the remainder
will be zero. Show that if u is a 2n-place number and v is an n-place number with
umod v = 0, we can save about 75% of the work of Algorithm D if we compute half of
the quotient from left to right and the other half from right to left.

x 41. [M26] Many applications of high-precision arithmetic require repeated calcula-
tions modulo a Ąxed n-place number w, where w is relatively prime to the base b. We
can speed up such calculations by using a trick due to Peter L. Montgomery [Math.
Comp. 44 (1985), 519Ű521], which streamlines the remaindering process by essentially
working from right to left instead of left to right.

a) Given u = ±(um+n−1 . . . u1u0)b, w = (wn−1 . . . w1w0)b, and a number w′ such
that w0w

′ mod b = 1, show how to compute v = ±(vn−1 . . . v1v0)b such that
bmv mod w = umod w.

b) Given n-place signed integers u, v, w with |u|, |v| < w, and given w′ as in (a), show
how to calculate an n-place integer t such that |t| < w and bnt ≡ uv (modulo w).

c) How do the algorithms of (a) and (b) facilitate arithmetic mod w?

42. [HM35] Given m and b, let Pnk be the probability that ⌊(u1 + · · ·+um)/bn⌋ = k,
when u1, . . . , um are random n-place integers in radix b. (This is the distribution of
wn in the column addition algorithm of exercise 2.) Show that Pnk = 1

m!

m
k

+O(b−n),

where

m
k

is an Eulerian number (see Section 5.1.3).

x 43. [22] Shades of gray or components of color values in digitized images are usually
represented as 8-bit numbers u in the range [0 . . 255], denoting the fraction u/255.
Given two such fractions u/255 and v/255, graphical algorithms often need to compute
their approximate product w/255, where w is the nearest integer to uv/255. Prove
that w can be obtained from the efficient formula

t = uv + 128, w = ⌊(⌊t/256⌋+ t)/256⌋.

*4.3.2. Modular Arithmetic

Another interesting alternative is available for doing arithmetic on large integer
numbers, based on some simple principles of number theory. The idea is to have
several moduli m1, m2, . . . , mr that contain no common factors, and to work
indirectly with residues umodm1, umodm2, . . . , umodmr instead of directly
with the number u.

For convenience in notation throughout this section, let

u1 = umodm1, u2 = umodm2, . . . , ur = umodmr. (1)

It is easy to compute (u1, u2, . . . , ur) from an integer number u by means of
division; and it is important to note that no information is lost in this process (if

4.3.2 MODULAR ARITHMETIC 285

u isn’t too large), since we can recompute u from (u1, u2, . . . , ur). For example,
if 0 ≤ u < v ≤ 1000, it is impossible to have (umod 7, umod 11, umod 13)
equal to (v mod 7, v mod 11, v mod 13). This is a consequence of the “Chinese
remainder theoremŤ stated below.

We may therefore regard (u1, u2, . . . , ur) as a new type of internal computer
representation, a “modular representation,Ť of the integer u.

The advantages of a modular representation are that addition, subtraction,
and multiplication are very simple:

(u1, . . . , ur) + (v1, . . . , vr) =

(u1 + v1) modm1, . . . , (ur + vr) modmr

, (2)

(u1, . . . , ur)− (v1, . . . , vr) =

(u1 − v1) modm1, . . . , (ur − vr) modmr

, (3)

(u1, . . . , ur)× (v1, . . . , vr) =

(u1 × v1) modm1, . . . , (ur × vr) modmr

. (4)

To derive (4), for example, we need to show that

uv modmj = (umodmj)(v modmj) modmj

for each modulus mj . But this is a basic fact of elementary number theory:
xmodmj = y modmj if and only if x ≡ y (modulo mj); furthermore if x ≡ x′

and y ≡ y′, then xy ≡ x′y′ (modulo mj); hence (umodmj)(v modmj) ≡ uv
(modulo mj).

The main disadvantage of a modular representation is that we cannot easily
test whether (u1, . . . , ur) is greater than (v1, . . . , vr). It is also difficult to test
whether or not overĆow has occurred as the result of an addition, subtraction,
or multiplication, and it is even more difficult to perform division. When such
operations are required frequently in conjunction with addition, subtraction, and
multiplication, the use of modular arithmetic can be justiĄed only if fast means
of conversion to and from the modular representation are available. Therefore
conversion between modular and positional notation is one of the principal topics
of interest to us in this section.

The processes of addition, subtraction, and multiplication using (2), (3),
and (4) are called residue arithmetic or modular arithmetic. The range of num-
bers that can be handled by modular arithmetic is equal to m = m1m2 . . .mr,
the product of the moduli; and if each mj is near our computer’s word size we
can deal with n-place numbers when r ≈ n. Therefore we see that the amount
of time required to add, subtract, or multiply n-place numbers using modular
arithmetic is essentially proportional to n (not counting the time to convert in
and out of modular representation). This is no advantage at all when addition
and subtraction are considered, but it can be a considerable advantage with
respect to multiplication since the conventional method of Section 4.3.1 requires
an execution time proportional to n2.

Moreover, on a computer that allows many operations to take place simul-
taneously, modular arithmetic can be a signiĄcant advantage even for addition
and subtraction; the operations with respect to different moduli can all be done
at the same time, so we obtain a substantial increase in speed. The same kind of
decrease in execution time could not be achieved by the conventional techniques

286 ARITHMETIC 4.3.2

discussed in the previous section, since carry propagation must be considered.
Perhaps highly parallel computers will someday make simultaneous operations
commonplace, so that modular arithmetic will be of signiĄcant importance in
“real-timeŤ calculations when a quick answer to a single problem requiring high
precision is needed. (With highly parallel computers, it is often preferable to
run k separate programs simultaneously, instead of running a single program k
times as fast, since the latter alternative is more complicated but does not utilize
the machine any more efficiently. “Real-timeŤ calculations are exceptions that
make the inherent parallelism of modular arithmetic more signiĄcant.)

Now let us examine the basic fact that underlies the modular representation
of numbers:

Theorem C (Chinese Remainder Theorem). Let m1, m2, . . . , mr be positive
integers that are relatively prime in pairs; that is,

mj ⊥ mk when j ̸= k. (5)

Let m = m1m2 . . .mr, and let a, u1, u2, . . . , ur be integers. Then there is
exactly one integer u that satisĄes the conditions

a ≤ u < a+m, and u ≡ uj (modulo mj) for 1 ≤ j ≤ r. (6)

Proof. If u ≡ v (modulo mj) for 1 ≤ j ≤ r, then u − v is a multiple of mj for
all j, so (5) implies that u− v is a multiple of m = m1m2 . . .mr. This argument
shows that there is at most one solution of (6). To complete the proof we must
now show the existence of at least one solution, and this can be done in two
simple ways:

Method 1 (“NonconstructiveŤ proof). As u runs through the m distinct values
a ≤ u < a + m, the r-tuples (umodm1, . . . , umodmr) must also run through
m distinct values, since (6) has at most one solution. But there are exactly
m1m2 . . .mr possible r-tuples (v1, . . . , vr) such that 0 ≤ vj < mj . Therefore
each r-tuple must occur exactly once, and there must be some value of u for
which (umodm1, . . . , umodmr) = (u1, . . . , ur).

Method 2 (“ConstructiveŤ proof). We can Ąnd numbers Mj for 1 ≤ j ≤ r such
that

Mj ≡ 1 (modulo mj) and Mj ≡ 0 (modulo mk) for k ̸= j. (7)

This follows because (5) implies that mj and m/mj are relatively prime, so we
may take

Mj = (m/mj)φ(mj) (8)

by Euler’s theorem (exercise 1.2.4Ű28). Now the number

u = a+

(u1M1 + u2M2 + · · ·+ urMr − a) modm

(9)

satisĄes all the conditions of (6).

4.3.2 MODULAR ARITHMETIC 287

A very special case of this theorem was stated by the Chinese mathematician
Sun Tsǔ, who gave a rule called tái-yen (“great generalizationŤ). The date of
his writing is very uncertain; it is thought to be between A.D. 280 and 473.
Mathematicians in mediæval India developed the techniques further, with their
methods of kut.t.aka (see Section 4.5.2), but Theorem C was Ąrst stated and proved
in its proper generality by Ch’in Chiu-Shao in his Shu Shu Chiu Chang (1247);
the latter work considers also the case where the moduli might have common
factors as in exercise 3. [See J. Needham, Science and Civilisation in China 3
(Cambridge University Press, 1959), 33Ű34, 119Ű120; Y. Li and S. Du, Chinese
Mathematics (Oxford: Clarendon, 1987), 92Ű94, 105, 161Ű166; K. Shen, Archive
for History of Exact Sciences 38 (1988), 285Ű305.] Numerous early contributions
to this theory have been summarized by L. E. Dickson in his History of the
Theory of Numbers 2 (Carnegie Inst. of Washington, 1920), 57Ű64.

As a consequence of Theorem C, we may use modular representation for
numbers in any consecutive interval of m = m1m2 . . .mr integers. For example,
we could take a = 0 in (6), and work only with nonnegative integers u less
than m. On the other hand, when addition and subtraction are being done, as
well as multiplication, it is usually most convenient to assume that all of the
moduli m1, m2, . . . , mr are odd numbers, so that m = m1m2 . . .mr is odd, and
to work with integers in the range

−m
2
< u <

m

2
, (10)

which is completely symmetrical about zero.
In order to perform the basic operations listed in (2), (3), and (4), we

need to compute (uj + vj) modmj , (uj − vj) modmj , and ujvj modmj , when
0 ≤ uj , vj < mj . If mj is a single-precision number, it is most convenient to
form ujvj modmj by doing a multiplication and then a division operation. For
addition and subtraction, the situation is a little simpler, since no division is
necessary; the following formulas may conveniently be used:

(uj + vj) modmj = uj + vj −mj [uj + vj ≥mj]. (11)

(uj − vj) modmj = uj − vj +mj [uj <vj]. (12)

(See Section 3.2.1.1.) Since we want m to be as large as possible, it is easiest
to let m1 be the largest odd number that Ąts in a computer word, to let m2 be
the largest odd number < m1 that is relatively prime to m1, to let m3 be the
largest odd number < m2 that is relatively prime to both m1 and m2, and so on
until enough mj ’s have been found to give the desired range m. Efficient ways
to determine whether or not two integers are relatively prime are discussed in
Section 4.5.2.

As a simple example, suppose that we have a decimal computer whose words
hold only two digits, so that the word size is 100. Then the procedure described
in the previous paragraph would give

m1 = 99, m2 = 97, m3 = 95, m4 = 91, m5 = 89, m6 = 83, (13)

and so on.

288 ARITHMETIC 4.3.2

On binary computers it is sometimes desirable to choose the mj in a different
way, by selecting

mj = 2ej − 1. (14)

In other words, each modulus is one less than a power of 2. Such a choice of
mj often makes the basic arithmetic operations simpler, because it is relatively
easy to work modulo 2ej − 1, as in ones’ complement arithmetic. When the
moduli are chosen according to this strategy, it is helpful to relax the condition
0 ≤ uj < mj slightly, so that we require only

0 ≤ uj < 2ej , uj ≡ u (modulo 2ej − 1). (15)

Thus, the value uj = mj = 2ej−1 is allowed as an optional alternative to uj = 0;
this does not affect the validity of Theorem C, and it means we are allowing uj to
be any ej -bit binary number. Under this assumption, the operations of addition
and multiplication modulo mj become the following:

uj ⊕ vj =

(uj + vj) mod 2ej

+ [uj + vj ≥ 2ej]. (16)

uj ⊗ vj = (ujvj mod 2ej) ⊕ ⌊ujvj/2ej⌋. (17)

Here ⊕ and ⊗ refer to the operations done on the individual components of

(u1, . . . , ur) and (v1, . . . , vr) when adding or multiplying, respectively, using the
convention (15).

Equation (12) is still good for subtraction, or we can use

uj ⊖ vj =

(uj − vj) mod 2ej

− [uj <vj]. (18)

These operations can be performed efficiently even when 2ej is larger than the
computer’s word size, since it is a simple matter to compute the remainder of a
positive number modulo a power of 2, or to divide a number by a power of 2.
In (17) we have the sum of the “upper halfŤ and the “lower halfŤ of the product,
as discussed in exercise 3.2.1.1Ű8.

If moduli of the form 2ej − 1 are to be used, we must know under what
conditions the number 2e−1 is relatively prime to the number 2f−1. Fortunately,
there is a very simple rule:

gcd(2e − 1, 2f − 1) = 2gcd(e,f) − 1. (19)

This formula states in particular that 2e − 1 and 2f − 1 are relatively prime if
and only if e and f are relatively prime. Equation (19) follows from Euclid’s
algorithm and the identity

(2e − 1) mod (2f − 1) = 2e mod f − 1. (20)

(See exercise 6.) On a computer with word size 232, we could therefore choose
m1 = 232 − 1, m2 = 231 − 1, m3 = 229 − 1, m4 = 227 − 1, m5 = 225 − 1; this
would permit efficient addition, subtraction, and multiplication of integers in a
range of size m1m2m3m4m5 > 2143.

As we have already observed, the operations of conversion to and from
modular representation are very important. If we are given a number u, its
modular representation (u1, . . . , ur) may be obtained by simply dividing u by

4.3.2 MODULAR ARITHMETIC 289

m1, . . . , mr and saving the remainders. A possibly more attractive procedure,
if u = (vmvm−1 . . . v0)b, is to evaluate the polynomial

. . . (vmb+ vm−1)b+ · · ·

b+ v0

using modular arithmetic. When b = 2 and when the modulus mj has the special
form 2ej−1, both of these methods reduce to quite a simple procedure: Consider
the binary representation of u with blocks of ej bits grouped together,

u = atA
t + at−1A

t−1 + · · ·+ a1A+ a0, (21)

where A = 2ej and 0 ≤ ak < 2ej for 0 ≤ k ≤ t. Then

u ≡ at + at−1 + · · ·+ a1 + a0 (modulo 2ej − 1), (22)

since A ≡ 1, so we obtain uj by adding the ej -bit numbers at ⊕ · · · ⊕ a1 ⊕ a0,
using (16). This process is similar to the familiar device of “casting out ninesŤ
that determines umod 9 when u is expressed in the decimal system.

Conversion back from modular form to positional notation is somewhat more
difficult. It is interesting in this regard to notice how the study of computation
changes our viewpoint towards mathematical proofs: Theorem C tells us that the
conversion from (u1, . . . , ur) to u is possible, and two proofs are given. The Ąrst
proof we considered is a classical one that relies only on very simple concepts,
namely the facts that

i) any number that is a multiple of m1, of m2, . . . , and of mr, must be a
multiple of m1m2 . . .mr when the mj ’s are pairwise relatively prime; and

ii) if m pigeons are put into m pigeonholes with no two pigeons in the same
hole, then there must be one in each hole.

By traditional notions of mathematical aesthetics, this is no doubt the nicest
proof of Theorem C; but from a computational standpoint it is completely
worthless. It amounts to saying, “Try u = a, a+ 1, . . . until you Ąnd a value for
which u ≡ u1 (modulo m1), . . . , u ≡ ur (modulo mr).Ť

The second proof of Theorem C is more explicit; it shows how to compute r
new constants M1, . . . , Mr, and to get the solution in terms of these constants
by formula (9). This proof uses more complicated concepts (for example, Euler’s
theorem), but it is much more satisfactory from a computational standpoint,
since the constants M1, . . . , Mr need to be determined only once. On the
other hand, the determination of Mj by Eq. (8) is certainly not trivial, since the
evaluation of Euler’s φ-function requires, in general, the factorization of mj into
prime powers. There are much better ways to compute Mj than to use (8); in
this respect we can see again the distinction between mathematical elegance and
computational efficiency. But even if we Ąnd Mj by the best possible method,
we’re stuck with the fact that Mj is a multiple of the huge number m/mj . Thus,
(9) forces us to do a lot of high-precision calculation, and such calculation is just
what we wished to avoid by modular arithmetic in the Ąrst place.

So we need an even better proof of Theorem C if we are going to have a
really usable method of conversion from (u1, . . . , ur) to u. Such a method was

290 ARITHMETIC 4.3.2

suggested by H. L. Garner in 1958; it can be carried out using

r
2

constants cij

for 1 ≤ i < j ≤ r, where

cij mi ≡ 1 (modulo mj). (23)

These constants cij are readily computed using Euclid’s algorithm, since for any
given i and j Algorithm 4.5.2X will determine a and b such that ami + bmj =
gcd(mi,mj) = 1, and we may take cij = a. When the moduli have the special
form 2ej − 1, a simple method of determining cij is given in exercise 6.

Once the cij have been determined satisfying (23), we can set

v1 ← u1 modm1,

v2 ← (u2 − v1) c12 modm2,

v3 ←

(u3 − v1) c13 − v2

c23 modm3,

...

vr ←

. . . ((ur − v1) c1r − v2) c2r − · · · − vr−1

c(r−1)r modmr.

(24)

Then
u = vrmr−1 . . .m2m1 + · · ·+ v3m2m1 + v2m1 + v1 (25)

is a number satisfying the conditions

0 ≤ u < m, u ≡ uj (modulo mj) for 1 ≤ j ≤ r. (26)

(See exercise 8; another way of rewriting (24) that does not involve as many
auxiliary constants is given in exercise 7.) Equation (25) is a mixed-radix repre-

sentation of u, which can be converted to binary or decimal notation using the
methods of Section 4.4. If 0 ≤ u < m is not the desired range, an appropriate
multiple of m can be added or subtracted after the conversion process.

The advantage of the computation shown in (24) is that the calculation
of vj can be done using only arithmetic mod mj , which is already built into the
modular arithmetic algorithms. Furthermore, (24) allows parallel computation:
We can start with (v1, . . . , vr) ← (u1 modm1, . . . , ur modmr), then at time j
for 1 ≤ j < r we simultaneously set vk ← (vk − vj)cjk modmk for j < k ≤ r.
An alternative way to compute the mixed-radix representation, allowing similar
possibilities for parallelism, has been discussed by A. S. Fraenkel, Proc. ACM
Nat. Conf. 19 (Philadelphia: 1964), E1.4.

It is important to observe that the mixed-radix representation (25) is suffi-
cient to compare the magnitudes of two modular numbers. For if we know that
0 ≤ u < m and 0 ≤ u′ < m, then we can tell if u < u′ by Ąrst doing the
conversion to (v1, . . . , vr) and (v′1, . . . , v

′
r), then testing if vr < v′r, or if vr = v′r

and vr−1 < v′r−1, etc., according to lexicographic order. It is not necessary
to convert all the way to binary or decimal notation if we only want to know
whether (u1, . . . , ur) is less than (u′1, . . . , u

′
r).

The operation of comparing two numbers, or of deciding if a modular number
is negative, is intuitively very simple, so we would expect to have a much easier
way to make this test than the conversion to mixed-radix form. But the following

4.3.2 MODULAR ARITHMETIC 291

theorem shows that there is little hope of Ąnding a substantially better method,
since the range of a modular number depends essentially on all bits of all the
residues (u1, . . . , ur):

Theorem S (Nicholas Szabó, 1961). In terms of the notation above, assume
that m1 <

√
m, and let L be any value in the range

m1 ≤ L ≤ m−m1. (27)

Let g be any function such that the set {g(0), g(1), . . . , g(m1−1)} contains fewer
than m1 values. Then there are numbers u and v such that

g(umodm1) = g(v modm1), umodmj = v modmj for 2 ≤ j ≤ r; (28)
0 ≤ u < L ≤ v < m. (29)

Proof. By hypothesis, there must exist numbers u ̸= v satisfying (28), since
g must take on the same value for two different residues. Let (u, v) be a pair
of values with 0 ≤ u < v < m satisfying (28), for which u is a minimum.
Since u′ = u −m1 and v′ = v −m1 also satisfy (28), we must have u′ < 0 by
the minimality of u. Hence u < m1 ≤ L; and if (29) does not hold, we must
have v < L. But v > u, and v − u is a multiple of m2 . . .mr = m/m1, so
v ≥ v − u ≥ m/m1 > m1. Therefore, if (29) does not hold for (u, v), it will be
satisĄed for the pair (u′′, v′′) = (v −m1, u+m−m1).

Of course, a similar result can be proved for any mj in place of m1; and we
could also replace (29) by the condition “a ≤ u < a + L ≤ v < a + mŤ with
only minor changes in the proof. Therefore Theorem S shows that many simple
functions cannot be used to determine the range of a modular number.

Let us now reiterate the main points of the discussion in this section: Mod-
ular arithmetic can be a signiĄcant advantage for applications in which the pre-
dominant calculations involve exact multiplication (or raising to a power) of
large integers, combined with addition and subtraction, but where there is very
little need to divide or compare numbers, or to test whether intermediate results
“overĆowŤ out of range. (It is important not to forget the latter restriction;
methods are available to test for overĆow, as in exercise 12, but they are so
complicated that they nullify the advantages of modular arithmetic.) Several
applications of modular computations have been discussed by H. Takahasi and
Y. Ishibashi, Information Proc. in Japan 1 (1961), 28Ű42.

An example of such an application is the exact solution of linear equations
with rational coefficients. For various reasons it is desirable in this case to assume
that the moduli m1, m2, . . . , mr are all prime numbers; the linear equations can
be solved independently modulo each mj . A detailed discussion of this procedure
has been given by I. Borosh and A. S. Fraenkel [Math. Comp. 20 (1966), 107Ű
112], with further improvements by A. S. Fraenkel and D. Loewenthal [J. Res.
National Bureau of Standards 75B (1971), 67Ű75]. By means of their method,
the nine independent solutions of a system of 111 linear equations in 120 un-
knowns were obtained exactly in less than 20 minutes on a CDC 1604 computer.
The same procedure is worthwhile also for solving simultaneous linear equations

292 ARITHMETIC 4.3.2

with Ćoating point coefficients, when the matrix of coefficients is ill-conditioned.
The modular technique (treating the given Ćoating point coefficients as exact
rational numbers) gives a method for obtaining the true answers in less time
than conventional methods can produce reliable approximate answers! [See M. T.
McClellan, JACM 20 (1973), 563Ű588, for further developments of this approach;
and see also E. H. Bareiss, J. Inst. Math. and Appl. 10 (1972), 68Ű104, for a
discussion of its limitations.]

The published literature concerning modular arithmetic is mostly oriented
towards hardware design, since the carry-free properties of modular arithmetic
make it attractive from the standpoint of high-speed operation. The idea was
Ąrst published by A. Svoboda and M. Valach in the Czechoslovakian journal
Stroje na Zpracování Informací (Information Processing Machines) 3 (1955),
247Ű295; then independently by H. L. Garner [IRE Trans. EC-8 (1959), 140Ű
147]. The use of moduli of the form 2ej − 1 was suggested by A. S. Fraenkel
[JACM 8 (1961), 87Ű96], and several advantages of such moduli were demon-
strated by A. Schönhage [Computing 1 (1966), 182Ű196]. See the book Residue
Arithmetic and Its Applications to Computer Technology by N. S. Szabó and
R. I. Tanaka (New York: McGrawŰHill, 1967), for additional information and a
comprehensive bibliography of the subject. A Russian book published in 1968
by I. Y. Akushsky and D. I. Yuditsky includes a chapter about complex moduli
[see Rev. Roumaine de Math. Pures et Appl. 15 (1970), 159Ű160].

Further discussion of modular arithmetic can be found in Section 4.3.3B.

The notice-board had said he was in Room 423,

but the numbering system, nominally consecutive,

seemed to have been applied on a plan that could only

have been the work of a lunatic or a mathematician.

Ů ROBERT BARNARD, The Case of the Missing Brontë (1983)

EXERCISES

1. [20] Find all integers u that satisfy all of the following conditions: umod 7 = 1,
umod 11 = 6, umod 13 = 5, 0 ≤ u < 1000.

2. [M20] Would Theorem C still be true if we allowed a, u1, u2, . . . , ur and u to be
arbitrary real numbers (not just integers)?

x 3. [M26] (Generalized Chinese Remainder Theorem.) Let m1, m2, . . . , mr be posi-
tive integers. Let m be the least common multiple of m1, m2, . . . , mr, and let a, u1,
u2, . . . , ur be any integers. Prove that there is exactly one integer u that satisĄes the
conditions

a ≤ u < a+m, u ≡ uj (modulo mj), 1 ≤ j ≤ r,
provided that

ui ≡ uj (modulo gcd(mi,mj)), 1 ≤ i < j ≤ r;
and there is no such integer u when the latter condition fails to hold.

4. [20] Continue the process shown in (13); what would m7, m8, m9, . . . be?

x 5. [M23] (a) Suppose that the method of (13) is continued until no more mj can be
chosen. Does this “greedyŤ method give the largest attainable value m1m2 . . .mr such

4.3.2 MODULAR ARITHMETIC 293

that the mj are odd positive integers less than 100 that are relatively prime in pairs?
(b) What is the largest possible m1m2 . . .mr when each residue uj must Ąt in eight
bits of memory?

6. [M22] Let e, f , and g be nonnegative integers.
a) Show that 2e ≡ 2f (modulo 2g − 1) if and only if e ≡ f (modulo g).
b) Given that emod f = d and cemod f = 1, prove the identity

((1 + 2d + · · ·+ 2(c−1)d) · (2e − 1)) mod (2f − 1) = 1.

(Thus, we have a comparatively simple formula for the inverse of 2e − 1, modulo
2f − 1, as required in (23).)

x 7. [M21] Show that (24) can be rewritten as follows:

v1 ← u1 modm1,

v2 ← (u2 − v1) c12 modm2,

v3 ← (u3 − (v1 +m1v2)) c13c23 modm3,

...

vr ← (ur − (v1 +m1(v2 +m2(v3 + · · ·+mr−2vr−1) . . .))) c1r . . . c(r−1)r modmr.

If the formulas are rewritten in this way, we see that only r − 1 constants Cj =
c1j . . . c(j−1)j modmj are needed instead of r(r− 1)/2 constants cij as in (24). Discuss
the relative merits of this version of the formula as compared to (24), from the stand-
point of computer calculation.

8. [M21] Prove that the number u deĄned by (24) and (25) satisĄes (26).

9. [M20] Show how to go from the values v1, . . . , vr of the mixed-radix notation (25)
back to the original residues u1, . . . , ur, using only arithmetic mod mj to compute the
value of uj .

10. [M25] An integer u that lies in the symmetrical range (10) might be represented
by Ąnding the numbers u1, . . . , ur such that u ≡ uj (modulo mj) and −mj/2 <
uj < mj/2, instead of insisting that 0 ≤ uj < mj as in the text. Discuss the modular
arithmetic procedures that would be appropriate in connection with such a symmetrical
representation (including the conversion process, (24)).

11. [M23] Assume that all the mj are odd, and that u = (u1, . . . , ur) is known to be
even, where 0 ≤ u < m. Find a reasonably fast method to compute u/2 using modular
arithmetic.

12. [M10] Prove that, if 0 ≤ u, v < m, the modular addition of u and v causes overĆow
(lies outside the range allowed by the modular representation) if and only if the sum
is less than u. (Thus the overĆow detection problem is equivalent to the comparison
problem.)

x 13. [M25] (Automorphic numbers.) An n-digit decimal number x > 1 is called an
“automorphŤ by recreational mathematicians if the last n digits of x2 are equal to x.
For example, 9376 is a 4-digit automorph, since 93762 = 87909376. [See ScientiĄc
American 218, 1 (January 1968), 125.]

a) Prove that an n-digit number x > 1 is an automorph if and only if xmod 5n =
0 or 1 and xmod 2n = 1 or 0, respectively. (Thus, if m1 = 2n and m2 = 5n, the
only two n-digit automorphs are the numbers M1 and M2 in (7).)

294 ARITHMETIC 4.3.2

b) Prove that if x is an n-digit automorph, then (3x2 − 2x3) mod 102n is a 2n-digit
automorph.

c) Given that cx ≡ 1 (modulo y), Ąnd a simple formula for a number c′ depending
on c and x but not on y, such that c′x2 ≡ 1 (modulo y2).

x 14. [M30] (Mersenne multiplication.) The cyclic convolution of (x0, x1, . . . , xn−1) and
(y0, y1, . . . , yn−1) is deĄned to be (z0, z1, . . . , zn−1), where

zk =

i+j≡k (modulo n)

xiyj , for 0 ≤ k < n.

We will study efficient algorithms for cyclic convolution in Sections 4.3.3 and 4.6.4.
Consider q-bit integers u and v that are represented in the form

u =
n−1

k=0

uk2⌊kq/n⌋, v =
n−1

k=0

vk2⌊kq/n⌋,

where 0 ≤ uk, vk < 2⌊(k+1)q/n⌋−⌊kq/n⌋. (This representation is a mixture of radices
2⌊q/n⌋ and 2⌈q/n⌉.) Suggest a good way to Ąnd the representation of

w = (uv) mod (2q − 1) ,

using an appropriate cyclic convolution. [Hint: Do not be afraid of Ćoating point
arithmetic.]

*4.3.3. How Fast Can We Multiply?

The conventional procedure for multiplication in positional number systems, Al-
gorithm 4.3.1M, requires approximately cmn operations to multiply an m-place
number by an n-place number, where c is a constant. In this section, let us
assume for convenience that m = n, and let us consider the following question:
Does every general computer algorithm for multiplying two n-place numbers
require an execution time proportional to n2, as n increases?

(In this question, a “generalŤ algorithm means one that accepts, as input,
the number n and two arbitrary n-place numbers in positional notation; the
algorithm is supposed to output their product in positional form. Certainly if
we were allowed to choose a different algorithm for each value of n, the question
would be of no interest, since multiplication could be done for any speciĄc value
of n by a “table-lookupŤ operation in some huge table. The term “computer
algorithmŤ is meant to imply an algorithm that is suitable for implementation
on a digital computer like MIX, and the execution time is to be the time it takes
to perform the algorithm on such a computer.)

A. Digital methods. The answer to the question above is, rather surprisingly,
“No,Ť and, in fact, it is not very difficult to see why. For convenience, let
us assume throughout this section that we are working with integers expressed
in binary notation. If we have two 2n-bit numbers u = (u2n−1 . . . u1u0)2 and
v = (v2n−1 . . . v1v0)2, we can write

u = 2nU1 + U0, v = 2nV1 + V0, (1)

4.3.3 HOW FAST CAN WE MULTIPLY? 295

where U1 = (u2n−1 . . . un)2 is the “most signiĄcant halfŤ of the number u and
U0 = (un−1 . . . u0)2 is the “least signiĄcant halfŤ; similarly V1 = (v2n−1 . . . vn)2

and V0 = (vn−1 . . . v0)2. Now we have

uv = (22n + 2n)U1V1 + 2n(U1 − U0)(V0 − V1) + (2n + 1)U0V0. (2)

This formula reduces the problem of multiplying 2n-bit numbers to three mul-
tiplications of n-bit numbers, namely U1V1, (U1 − U0)(V0 − V1), and U0V0, plus
some simple shifting and adding operations.

Formula (2) can be used to multiply double-precision inputs when we want
a quadruple-precision result, and it will be just a little faster than the traditional
method on many machines. But the main advantage of (2) is that we can use
it to deĄne a recursive process for multiplication that is signiĄcantly faster than
the familiar order-n2 method when n is large: If T (n) is the time required to
perform multiplication of n-bit numbers, we have

T (2n) ≤ 3T (n) + cn (3)

for some constant c, since the right-hand side of (2) uses just three multiplications
plus some additions and shifts. Relation (3) implies by induction that

T (2k) ≤ c(3k − 2k), k ≥ 1, (4)

if we choose c to be large enough so that this inequality is valid when k = 1;
therefore we have

T (n) ≤ T

2⌈lg n⌉ ≤ c

3⌈lg n⌉ − 2⌈lg n⌉ < 3c · 3lg n = 3cnlg 3. (5)

Relation (5) shows that the running time for multiplication can be reduced from
order n2 to order nlg 3 ≈ n1.585, so the recursive method is much faster than the
traditional method when n is large. Exercise 18 discusses an implementation of
this approach.

(A similar but slightly more complicated method for doing multiplication
with running time of order nlg 3 was apparently Ąrst suggested by A. Karatsuba
in Doklady Akad. Nauk SSSR 145 (1962), 293Ű294 [English translation in Soviet
PhysicsŰDoklady 7 (1963), 595Ű596]. Curiously, this idea does not seem to
have been discovered before 1962; none of the “calculating prodigiesŤ who have
become famous for their ability to multiply large numbers mentally have been
reported to use any such method, although formula (2) adapted to decimal
notation would seem to lead to a reasonably easy way to multiply eight-digit
numbers in one’s head.)

The running time can be reduced still further, in the limit as n approaches
inĄnity, if we observe that the method just used is essentially the special case
r = 1 of a more general method that yields

T

(r + 1)n

≤ (2r + 1)T (n) + cn (6)

for any Ąxed r. This more general method can be obtained as follows: Let

u = (u(r+1)n−1 . . . u1u0)2 and v = (v(r+1)n−1 . . . v1v0)2

296 ARITHMETIC 4.3.3

be broken into r + 1 pieces,

u = Ur2rn + · · ·+ U12n + U0, v = Vr2rn + · · ·+ V12n + V0, (7)

where each Uj and each Vj is an n-bit number. Consider the polynomials

U(x) = Urx
r + · · ·+ U1x+ U0, V (x) = Vrx

r + · · ·+ V1x+ V0, (8)

and let
W (x) = U(x)V (x) = W2rx

2r + · · ·+W1x+W0. (9)

Since u = U(2n) and v = V (2n), we have uv = W (2n), so we can easily compute
uv if we know the coefficients of W (x). The problem is to Ąnd a good way
to compute the coefficients of W (x) by using only 2r + 1 multiplications of n-
bit numbers plus some further operations that involve only an execution time
proportional to n. This can be done by computing

U(0)V (0) = W (0), U(1)V (1) = W (1), . . . , U(2r)V (2r) = W (2r). (10)

The coefficients of a polynomial of degree 2r can be written as a linear com-
bination of the values of that polynomial at 2r + 1 distinct points; computing
such a linear combination requires an execution time at most proportional to n.
(Actually, the products U(j)V (j) are not strictly products of n-bit numbers,
but they are products of at most (n + t)-bit numbers, where t is a Ąxed value
depending on r. It is easy to design a multiplication routine for (n + t)-bit
numbers that requires only T (n) + c1n operations, where T (n) is the number of
operations needed for n-bit multiplications, since two products of t-bit by n-bit
numbers can be done in c2n operations when t is Ąxed.) Therefore we obtain a
method of multiplication satisfying (6).

Relation (6) implies that T (n) ≤ c3n
logr+1(2r+1) < c3n

1+logr+1 2, if we argue
as in the derivation of (5), so we have now proved the following result:

Theorem A. Given ϵ > 0, there exists a multiplication algorithm such that the
number of elementary operations T (n) needed to multiply two n-bit numbers
satisĄes

T (n) < c(ϵ)n1+ϵ, (11)

for some constant c(ϵ) independent of n.

This theorem is still not the result we are after. It is unsatisfactory for
practical purposes because the method becomes quite complicated as ϵ → 0
(and therefore as r → ∞), causing c(ϵ) to grow so rapidly that extremely huge
values of n are needed before we have any signiĄcant improvement over (5). And
it is unsatisfactory for theoretical purposes because it does not make use of the
full power of the polynomial method on which it is based. We can obtain a better
result if we let r vary with n, choosing larger and larger values of r as n increases.
This idea is due to A. L. Toom [Doklady Akad. Nauk SSSR 150 (1963), 496Ű
498, English translation in Soviet Mathematics 4 (1963), 714Ű716], who used it
to show that computer circuitry for the multiplication of n-bit numbers can be

4.3.3 HOW FAST CAN WE MULTIPLY? 297

constructed with a fairly small number of components as n grows. S. A. Cook
[On the Minimum Computation Time of Functions (Thesis, Harvard University,
1966), 51Ű77] showed later that Toom’s method can be adapted to fast computer
programs.

Before we discuss the ToomŰCook algorithm any further, let us study a small
example of the transition from U(x) and V (x) to the coefficients of W (x). This
example will not demonstrate the efficiency of the method, since the numbers
are too small, but it reveals some useful simpliĄcations that we can make in the
general case. Suppose that we want to multiply u = 1234 times v = 2341; in
binary notation this is

u = (0100 1101 0010)2 times v = (1001 0010 0101)2. (12)

Let r = 2; the polynomials U(x) and V (x) in (8) are

U(x) = 4x2 + 13x+ 2, V (x) = 9x2 + 2x+ 5.

Hence we Ąnd, for W (x) = U(x)V (x),

U(0) = 2, U(1) = 19, U(2) = 44, U(3) = 77, U(4) = 118;

V (0) = 5, V (1) = 16, V (2) = 45, V (3) = 92, V (4) = 157;

W (0) = 10, W (1) = 304, W (2) = 1980, W (3) = 7084, W (4) = 18526. (13)

Our job is to compute the Ąve coefficients of W (x) from the latter Ąve values.
An attractive little algorithm can be used to compute the coefficients of a

polynomial W (x) = Wm−1x
m−1 + · · ·+W1x+W0 when the values W (0), W (1),

. . . , W (m− 1) are given. Let us Ąrst write

W (x) = am−1x
m−1 + am−2x

m−2 + · · ·+ a1x
1 + a0, (14)

where xk = x(x− 1) . . . (x− k + 1), and where the coefficients aj are unknown.
The falling factorial powers have the important property that

W (x+ 1)−W (x) = (m− 1)am−1x
m−2 + (m− 2)am−2x

m−3 + · · ·+ a1;

hence by induction we Ąnd that, for all k ≥ 0,

1
k!

W (x+k)−

k

1

W (x+k−1) +

k

2

W (x+k−2)− · · ·+ (−1)kW (x)

=

m− 1
k

am−1x
m−1−k +

m− 2
k

am−2x
m−2−k + · · ·+

k

k

ak. (15)

Denoting the left-hand side of (15) by (1/k!)∆kW (x), we see that

1
k!
∆kW (x) =

1
k

1

(k − 1)!
∆k−1W (x+ 1)− 1

(k − 1)!
∆k−1W (x)

298 ARITHMETIC 4.3.3

and (1/k!)∆kW (0) = ak. So the coefficients aj can be evaluated using a very
simple method, illustrated here for the polynomial W (x) in (13):

10
294

304 1382/2 = 691
1676 1023/3 = 341

1980 3428/2 = 1714 144/4 = 36 (16)
5104 1455/3 = 485

7084 6338/2 = 3169
11442

18526

The leftmost column of this tableau is a listing of the given values of W (0),
W (1), . . . , W (4); the kth succeeding column is obtained by computing the
difference between successive values of the preceding column and dividing by k.
The coefficients aj appear at the top of the columns, so that a0 = 10, a1 = 294,
. . . , a4 = 36, and we have

W (x) = 36x4 + 341x3 + 691x2 + 294x1 + 10

=

((36(x− 3) + 341)(x− 2) + 691)(x− 1) + 294

x+ 10. (17)

In general, we can write

W (x)=

. . . ((am−1(x−m+2)+am−2)(x−m+3)+am−3)(x−m+4)+· · ·+a1

x+a0,

and this formula shows how the coefficients Wm−1, . . . , W1, W0 can be obtained
from the a’s:

36 341
−3 · 36

36 233 691
−2 · 36 −2 · 233

36 161 225 294
−1 · 36 −1 · 161 −1 · 225

36 125 64 69 10

(18)

Here the numbers below the horizontal lines successively show the coefficients of
the polynomials

am−1,
am−1(x−m+ 2) + am−2,
am−1(x−m+ 2) + am−2

(x−m+ 3) + am−3, etc.

From this tableau we have

W (x) = 36x4 + 125x3 + 64x2 + 69x+ 10, (19)

so the answer to our original problem is 1234 · 2341 = W (16) = 2888794, where
W (16) is obtained by adding and shifting. A generalization of this method for
obtaining coefficients is discussed in Section 4.6.4.

The basic Stirling number identity of Eq. 1.2.6Ű(45),

xn =

n

n

xn + · · ·+

n

1

x1 +

n

0

,

4.3.3 HOW FAST CAN WE MULTIPLY? 299

shows that if the coefficients of W (x) are nonnegative, so are the numbers aj ,
and in such a case all of the intermediate results in the computation above are
nonnegative. This further simpliĄes the ToomŰCook multiplication algorithm,
which we will now consider in detail. (Impatient readers should, however, skip
to subsection C below.)

Algorithm T (High-precision multiplication of binary numbers). Given a pos-
itive integer n and two nonnegative n-bit integers u and v, this algorithm forms
their 2n-bit product, w. Four auxiliary stacks are used to hold the long numbers
that are manipulated during the procedure:

Stacks U, V : Temporary storage of U(j) and V (j) in step T4.
Stack C: Numbers to be multiplied, and control codes.
Stack W : Storage of W (j).

These stacks may contain either binary numbers or special control symbols called
code-1, code-2, and code-3. The algorithm also constructs an auxiliary table of
numbers qk, rk; this table is maintained in such a manner that it may be stored
as a linear list, where a single pointer that traverses the list (moving back and
forth) can be used to access the current table entry of interest.

(Stacks C and W are used to control the recursive mechanism of this multi-
plication algorithm in a reasonably straightforward manner that is a special case
of general procedures discussed in Chapter 8.)

T1. [Compute q, r tables.] Set stacks U, V , C, and W empty. Set

k ← 1, q0 ← q1 ← 16, r0 ← r1 ← 4, Q← 4, R← 2.

Now if qk−1 + qk < n, set

k ← k + 1, Q← Q+R, R← ⌊

Q ⌋, qk ← 2Q, rk ← 2R,

and repeat this operation until qk−1 + qk ≥ n.

Note: The calculation of

R← ⌊
√
Q ⌋ does not require a square root to be taken, since we may simply

set R ← R + 1 if (R + 1)2 ≤ Q and leave R unchanged if (R + 1)2 > Q;
see exercise 2. In this step we build the sequences

k = 0 1 2 3 4 5 6 . . .

qk = 24 24 26 28 210 213 216 . . .

rk = 22 22 22 22 23 23 24 . . .

The multiplication of 70000-bit numbers would cause this step to terminate
with k = 6, since 70000 < 213 + 216.

T2. [Put u, v on stack.] Put code-1 on stack C, then place u and v onto stack C
as numbers of exactly qk−1 + qk bits each.

T3. [Check recursion level.] Decrease k by 1. If k = 0, the top of stack C now
contains two 32-bit numbers, u and v; remove them, set w ← uv using
a built-in routine for multiplying 32-bit numbers, and go to step T10. If
k > 0, set r ← rk, q ← qk, p← qk−1 + qk, and go on to step T4.

300 ARITHMETIC 4.3.3

T1. Compute

q, r tables
T2. Put u, v

on stack
T3. Check

recursion level

T4. Break into

r+1 parts
T5. Recurse

T6. Save

one product

T7. Find a’s T8. Find W ’s T9. Set answer T10. Return

k=0

k> 0

code-1

code-3

code-2

Fig. 8. The ToomŰCook algorithm for high-precision multiplication.

T4. [Break into r+ 1 parts.] Let the number at the top of stack C be regarded
as a list of r + 1 numbers with q bits each, (Ur . . . U1U0)2q . (The top of
stack C now contains an (r+ 1)q = (qk + qk+1)-bit number.) For j = 0, 1,
. . . , 2r, compute the p-bit numbers

. . . (Urj + Ur−1)j + · · ·+ U1

j + U0 = U(j)

and successively put these values onto stack U. (The bottom of stack U
now contains U(0), then comes U(1), etc., with U(2r) on top. We have

U(j) ≤ U(2r) < 2q

(2r)r + (2r)r−1 + · · ·+ 1

< 2q+1(2r)r ≤ 2p,

by exercise 3.) Then remove Ur . . . U1U0 from stack C.
Now the top of stack C contains another list of r + 1 q-bit numbers,

Vr . . . V1V0, and the p-bit numbers

. . . (Vrj + Vr−1)j + · · ·+ V1

j + V0 = V (j)

should be put onto stack V in the same way. After this has been done,
remove Vr . . . V1V0 from stack C.

T5. [Recurse.] Successively put the following items onto stack C, at the same
time emptying stacks U and V :

code-2, V (2r), U(2r), code-3, V (2r − 1), U(2r − 1), . . . ,

code-3, V (1), U(1), code-3, V (0), U(0).

Go back to step T3.

T6. [Save one product.]

At this point the multiplication algorithm has set w

to one of the products W (j) = U(j)V (j).

Put w onto stack W. (This
number w contains 2(qk + qk−1) bits.) Go back to step T3.

T7. [Find a’s.] Set r ← rk, q ← qk, p ← qk−1 + qk. (At this point stack W
contains a sequence of numbers ending with W (0), W (1), . . . , W (2r) from
bottom to top, where each W (j) is a 2p-bit number.)

4.3.3 HOW FAST CAN WE MULTIPLY? 301

Now for j = 1, 2, 3, . . . , 2r, perform the following loop: For t = 2r,
2r − 1, 2r − 2, . . . , j, set W (t) ←

W (t) −W (t − 1)

/j.

Here j must

increase and t must decrease. The quantity

W (t)−W (t−1)

/j will always

be a nonnegative integer that Ąts in 2p bits; see (16).

T8. [Find W ’s.] For j = 2r− 1, 2r− 2, . . . , 1, perform the following loop: For
t = j, j + 1, . . . , 2r − 1, set W (t) ← W (t) − jW (t + 1).

Here j must

decrease and t must increase. The result of this operation will again be a
nonnegative 2p-bit integer; see (18).

T9. [Set answer.] Set w to the 2(qk + qk+1)-bit integer

. . .

W (2r)2q +W (2r − 1)

2q + · · ·+W (1)

2q +W (0).

Remove W (2r), . . . , W (0) from stack W.
T10. [Return.] Set k ← k + 1. Remove the top of stack C. If it is code-3, go to

step T6. If it is code-2, put w onto stack W and go to step T7. And if it
is code-1, terminate the algorithm (w is the answer).

Let us now estimate the running time, T (n), for Algorithm T, in terms
of some things we shall call “cycles,Ť that is, elementary machine operations.
Step T1 takes O(qk) cycles, even if we represent the number qk internally as a
long string of qk bits followed by some delimiter, since qk + qk−1 + · · ·+ q0 will
be O(qk). Step T2 obviously takes O(qk) cycles.

Now let tk denote the amount of computation required to get from step T3
to step T10 for a particular value of k (after k has been decreased at the
beginning of step T3). Step T3 requires O(q) cycles at most. Step T4 involves r
multiplications of q-bit numbers by (lg 2r)-bit numbers, and r additions of p-bit
numbers, all repeated 4r + 2 times. Thus we need a total of O(r2q log r) cycles.
Step T5 requires moving 4r+2 p-bit numbers, so it involves O(rq) cycles. Step T6
requires O(q) cycles, and it is done 2r + 1 times per iteration. The recursion
involved when the algorithm essentially invokes itself (by returning to step T3)
requires tk−1 cycles, 2r + 1 times. Step T7 requires O(r2) subtractions of p-bit
numbers and divisions of 2p-bit by (lg 2r)-bit numbers, so it requires O(r2q log r)
cycles. Similarly, step T8 requires O(r2q log r) cycles. Step T9 involves O(rq)
cycles, and T10 takes hardly any time at all.

Summing up, we have T (n) = O(qk) + O(qk) + tk−1, where (if q = qk and
r = rk) the main contribution to the running time satisĄes

tk = O(q) +O(r2q log r) +O(rq) + (2r + 1)O(q) +O(r2q log r)

+O(r2q log r) +O(rq) +O(q) + (2r + 1)tk−1

= O(r2q log r) + (2r + 1)tk−1.

Thus there is a constant c such that

tk ≤ cr2
kqk lg rk + (2rk + 1)tk−1.

To complete the estimation of tk we can prove by brute force that

tk ≤ Cqk+122.5
√

lg qk+1 (20)

302 ARITHMETIC 4.3.3

for some constant C. Let us choose C > 20c, and let us also take C large enough
so that (20) is valid for k ≤ k0, where k0 will be speciĄed below. Then when
k > k0, let Qk = lg qk, Rk = lg rk; we have by induction

tk ≤ cqkr2
k lg rk + (2rk + 1)Cqk22.5

√
Qk = Cqk+122.5

√
lg qk+1(η1 + η2),

where
η1 =

c

C
Rk2Rk−2.5

√
Qk+1 <

1
20
Rk2−Rk < 0.05,

η2 =

2 +
1
rk

22.5(
√
Qk−

√
Qk+1) → 2−1/4 < 0.85,

since √
Qk+1 −

√
Qk =

Qk + ⌊
√
Qk⌋ −

√
Qk → 1

2

as k →∞. It follows that we can Ąnd k0 such that η2 < 0.95 for all k > k0, and
this completes the proof of (20) by induction.

Finally, therefore, we are ready to estimate T (n). Since n > qk−1 + qk−2,
we have qk−1 < n; hence

rk−1 = 2⌊
√

lg qk−1⌋ < 2
√

lg n, and qk = rk−1qk−1 < n2
√

lg n.

Thus
tk−1 ≤ Cqk22.5

√
lg qk < Cn2

√
lg n +2.5(

√
lg n +1),

and, since T (n) = O(qk) + tk−1, we have derived the following theorem:

Theorem B. There is a constant c0 such that the execution time of Algorithm T
is less than c0n23.5

√
lg n cycles.

Since n23.5
√

lg n = n1+3.5/
√

lg n, this result is noticeably stronger than The-
orem A. By adding a few complications to the algorithm, pushing the ideas to
their apparent limits (see exercise 5), we can improve the estimated execution
time to

T (n) = O(n2
√

2 lg n logn). (21)

*B. A modular method. There is another way to multiply large numbers very
rapidly, based on the ideas of modular arithmetic as presented in Section 4.3.2.
It is very hard to believe at Ąrst that this method can be of advantage, since a
multiplication algorithm based on modular arithmetic must include the choice of
moduli and the conversion of numbers into and out of modular representation,
besides the actual multiplication operation itself. In spite of these formidable
difficulties, A. Schönhage discovered that all of these operations can be carried
out quite rapidly.

In order to understand the essential mechanism of Schönhage’s method, we
shall look at a special case. Consider the sequence deĄned by the rules

q0 = 1, qk+1 = 3qk − 1, (22)

so that qk = 3k − 3k−1 − · · · − 1 = 1
2 (3k + 1). We will study a procedure

that multiplies pk-bit numbers, where pk = (18qk + 8), in terms of a method

4.3.3 HOW FAST CAN WE MULTIPLY? 303

for multiplying pk−1-bit numbers. Thus, if we know how to multiply numbers
having p0 = 26 bits, the procedure to be described will show us how to multiply
numbers of p1 = 44 bits, then 98 bits, then 260 bits, etc., eventually increasing
the number of bits by almost a factor of 3 at each step.

When multiplying pk-bit numbers, the idea is to use the six moduli

m1 = 26qk−1 − 1,

m4 = 26qk+3 − 1,

m2 = 26qk+1 − 1,

m5 = 26qk+5 − 1,

m3 = 26qk+2 − 1,

m6 = 26qk+7 − 1.
(23)

These moduli are relatively prime, by Eq. 4.3.2Ű(19), since the exponents

6qk − 1, 6qk + 1, 6qk + 2, 6qk + 3, 6qk + 5, 6qk + 7 (24)

are always relatively prime (see exercise 6). The six moduli in (23) are capable
of representing numbers up to m = m1m2m3m4m5m6 > 236qk+16 = 22pk , so
there is no chance of overĆow in the multiplication of pk-bit numbers u and v.
Thus we can use the following method, when k > 0:

a) Compute u1 = umodm1, . . . , u6 = umodm6; and v1 = v modm1, . . . ,
v6 = v modm6.

b) Multiply u1 by v1, u2 by v2, . . . , u6 by v6. These are numbers of at most
6qk + 7 = 18qk−1 + 1 < pk−1 bits, so the multiplications can be performed
by using the assumed pk−1-bit multiplication procedure.

c) Compute w1 = u1v1 modm1, w2 = u2v2 modm2, . . . , w6 = u6v6 modm6.

d) Compute w such that 0 ≤ w < m, w modm1 = w1, . . . , w modm6 = w6.

Let tk be the amount of time needed for this process. It is not hard to see that
operation (a) takesO(pk) cycles, since the determination of umod (2e−1) is quite
simple (like “casting out ninesŤ), as shown in Section 4.3.2. Similarly, operation
(c) takes O(pk) cycles. Operation (b) requires essentially 6tk−1 cycles. This
leaves us with operation (d), which seems to be quite a difficult computation;
but Schönhage has found an ingenious way to perform step (d) in O(pk log pk)
cycles, and this is the crux of the method. As a consequence, we have

tk = 6tk−1 +O(pk log pk).

Since pk = 3k+2 + 17, we can show that the time for n-bit multiplication is

T (n) = O(nlog3 6) = O(n1.631). (25)

(See exercise 7.)
Although the modular method is more complicated than the O(nlg 3) pro-

cedure discussed at the beginning of this section, Eq. (25) shows that it does,
in fact, lead to an execution time substantially better than O(n2) for the multi-
plication of n-bit numbers. Thus we have seen how to improve on the classical
method by using either of two completely different approaches.

Let us now analyze operation (d) above. Assume that we are given a set of
positive integers e1 < e2 < · · · < er, relatively prime in pairs; let

m1 = 2e1 − 1, m2 = 2e2 − 1, . . . , mr = 2er − 1. (26)

304 ARITHMETIC 4.3.3

We are also given numbers w1, . . . , wr such that 0 ≤ wj ≤ mj . Our job is to
determine the binary representation of the number w that satisĄes the conditions

0 ≤ w < m1m2 . . .mr,

w ≡ w1 (modulo m1), . . . , w ≡ wr (modulo mr).
(27)

The method is based on (24) and (25) of Section 4.3.2. First we compute

w′
j =

. . . ((wj − w′

1) c1j − w′
2) c2j − · · · − w′

j−1

c(j−1)j modmj , (28)

for j = 2, . . . , r, where w′
1 = w1 modm1; then we compute

w =

. . . (w′

rmr−1 + w′
r−1)mr−2 + · · ·+ w′

2

m1 + w′

1. (29)

Here cij is a number such that cijmi ≡ 1 (modulo mj); these numbers cij are
not given, they must be determined from the ej ’s.

The calculation of (28) for all j involves

r
2

additions modulo mj , each

of which takes O(er) cycles, plus

r
2

multiplications by cij , modulo mj . The

calculation of w by formula (29) involves r additions and r multiplications by mj ;
it is easy to multiply by mj , since this is just adding, shifting, and subtracting,
so it is clear that the evaluation of Eq. (29) takes O(r2er) cycles. We will soon
see that each of the multiplications by cij , modulo mj , requires only O(er log er)
cycles, and therefore it is possible to complete the entire job of conversion in
O(r2er log er) cycles.

These observations leave us with the following problem to solve: Given
relatively prime positive integers e and f with e < f , and a nonnegative integer
u < 2f , compute the value of (cu) mod (2f − 1), where c is the number such
that (2e − 1)c ≡ 1 (modulo 2f − 1); this entire computation must be done in
O(f log f) cycles. The result of exercise 4.3.2Ű6 gives a formula for c that suggests
a suitable procedure. First we Ąnd the least positive integer b such that

be ≡ 1 (modulo f). (30)

Euclid’s algorithm will discover b in O

(log f)3

cycles, since it requires O(log f)

iterations when applied to e and f , and each iteration requires O

(log f)2

cycles.

Alternatively, we could be very sloppy here without violating the total time
constraint, by simply trying b = 1, 2, etc., until (30) is satisĄed; such a process
would take O(f log f) cycles in all. Once b has been found, exercise 4.3.2Ű6 tells
us that

c = c[b] =

0≤j<b

2je

mod (2f − 1). (31)

A brute-force multiplication of (cu) mod (2f − 1) would not be good enough
to solve the problem, since we do not know how to multiply general f -bit numbers
in O(f log f) cycles. But the special form of c provides a clue: The binary
representation of c is composed of bits in a regular pattern, and Eq. (31) shows
that the number c[2b] can be obtained in a simple way from c[b]. This suggests

4.3.3 HOW FAST CAN WE MULTIPLY? 305

that we can rapidly multiply a number u by c[b] if we build c[b]u up in lg b steps
in a suitably clever manner, such as the following: Suppose b is

b = (bs . . . b2b1b0)2

in binary notation; we can calculate four sequences ak, dk, uk, vk deĄned by

a0 = e,

d0 = b0e,

u0 = u,

v0 = b0u,

ak = 2ak−1 mod f ;

dk = (dk−1 + bk ak) mod f ;

uk = (uk−1 + 2ak−1uk−1) mod (2f − 1);

vk = (vk−1 + bk 2dk−1uk) mod (2f − 1).

(32)

It is easy to prove by induction on k that

ak = (2ke) mod f ;

dk =

(bk . . . b1b0)2 e

mod f ;

uk = (c[2k]u) mod (2f − 1);

vk =

c[(bk . . . b1b0)2]u

mod (2f − 1).

(33)

Hence the desired result, (c[b]u) mod (2f − 1), is vs. The calculation of ak, dk,
uk, and vk from ak−1, dk−1, uk−1, vk−1 takes O(log f) + O(log f) + O(f) +
O(f) = O(f) cycles; consequently the entire calculation can be done in sO(f) =
O(f log f) cycles as desired.

The reader will Ąnd it instructive to study the ingenious method represented
by (32) and (33) very carefully. Similar techniques are discussed in Section 4.6.3.

Schönhage’s paper [Computing 1 (1966), 182Ű196] shows that these ideas
can be extended to the multiplication of n-bit numbers using r ≈ 2

√
2 lg n moduli,

obtaining a method analogous to Algorithm T. We shall not dwell on the details
here, since Algorithm T is always superior; in fact, an even better method is
next on our agenda.

C. Discrete Fourier transforms. The critical problem in high-precision
multiplication is the determination of “convolution productsŤ such as

urv0 + ur−1v1 + · · ·+ u0vr, (34)

and there is an intimate relation between convolutions and an important math-
ematical concept called “Fourier transformation.Ť If ω = exp(2πi/K) is a Kth
root of unity, the one-dimensional Fourier transform of the sequence of complex
numbers (u0, u1, . . . , uK−1) is deĄned to be the sequence (û0, û1, . . . , ûK−1),
where

ûs =

0≤t<K

ωstut, 0 ≤ s < K. (35)

Letting (v̂0, v̂1, . . . , v̂K−1) be deĄned in the same way, as the Fourier transform
of (v0, v1, . . . , vK−1), it is not difficult to see that (û0v̂0, û1v̂1, . . . , ûK−1v̂K−1) is
the transform of (w0, w1, . . . , wK−1), where

wr = urv0 + ur−1v1 + · · ·+ u0vr + uK−1vr+1 + · · ·+ ur+1vK−1

=

i+j≡r (modulo K)

uivj . (36)

306 ARITHMETIC 4.3.3

When K ≥ 2n − 1 and un = un+1 = · · · = uK−1 = vn = vn+1 = · · · =
vK−1 = 0, the w’s are just what we need for multiplication, since the terms
uK−1vr+1 + · · · + ur+1vK−1 vanish when 0 ≤ r ≤ 2n − 2. In other words, the
transform of a convolution product is the ordinary product of the transforms.
This idea is actually a special case of Toom’s use of polynomials

see (10)

, with

x replaced by roots of unity.
If K is a power of 2, the discrete Fourier transform (35) can be obtained quite

rapidly when the computations are arranged in a certain way, and so can the
inverse transform (determining the w’s from the ŵ’s). This property of Fourier
transforms was exploited by V. Strassen in 1968, who discovered how to multiply
large numbers faster than was possible under all previously known schemes. He
and A. Schönhage later reĄned the method and published improved procedures
in Computing 7 (1971), 281Ű292. Similar ideas, but with all-integer methods,
had been worked out independently by J. M. Pollard [Math. Comp. 25 (1971),
365Ű374]. In order to understand their approach to the problem, let us Ąrst take
a look at the mechanism of fast Fourier transforms.

Given a sequence of K = 2k complex numbers (u0, . . . , uK−1), and given the
complex number

ω = exp(2πi/K), (37)

the sequence (û0, . . . , ûK−1) deĄned in (35) can be calculated rapidly by carrying
out the following scheme. (In these formulas the parameters sj and tj are either
0 or 1, so that each “passŤ represents 2k elementary computations.)

Pass 0. Let A[0](tk−1, . . . , t0) = ut, where t = (tk−1 . . . t0)2.

Pass 1. Set A[1](sk−1, tk−2, . . . , t0)←
A[0](0, tk−2, . . . , t0) + ω2k−1sk−1A[0](1, tk−2, . . . , t0).

Pass 2. Set A[2](sk−1, sk−2, tk−3, . . . , t0)←
A[1](sk−1, 0, tk−3, . . . , t0) + ω2k−2(sk−2sk−1)2A[1](sk−1, 1, tk−3, . . . , t0).

. . .

Pass k. Set A[k](sk−1, . . . , s1, s0)←
A[k−1](sk−1, . . . , s1, 0) + ω(s0s1...sk−1)2A[k−1](sk−1, . . . , s1, 1).

It is fairly easy to prove by induction that we have

A[j](sk−1, . . . , sk−j , tk−j−1, . . . , t0) =

0≤tk−1,...,tk−j≤1

ω2k−j(sk−j ...sk−1)2 (tk−1...tk−j)2ut,
(38)

where t = (tk−1 . . . t1t0)2, so that

A[k](sk−1, . . . , s1, s0) = ûs, where s = (s0s1 . . . sk−1)2. (39)

(It is important to notice that the binary digits of s are reversed in the Ąnal
result (39). Section 4.6.4 contains further discussion of transforms such as this.)

4.3.3 HOW FAST CAN WE MULTIPLY? 307

To get the inverse Fourier transform (u0, . . . , uK−1) from the values of
(û0, . . . , ûK−1), notice that the “double transformŤ is

ˆ̂ur =

0≤s<K

ωrsûs =

0≤s,t<K

ωrsωstut

=

0≤t<K

ut

0≤s<K

ωs(t+r)

= Ku(−r) mod K , (40)

since the geometric series

0≤s<K ωsj sums to zero unless j is a multiple of K.
Therefore the inverse transform can be computed in the same way as the trans-
form itself, except that the Ąnal results must be divided by K and shuffled
slightly.

Returning to the problem of integer multiplication, suppose we wish to
compute the product of two n-bit integers u and v. As in Algorithm T we
shall work with groups of bits; let

2n ≤ 2k l < 4n, K = 2k, L = 2l, (41)

and write
u = (UK−1 . . . U1U0)L, v = (VK−1 . . . V1V0)L, (42)

regarding u and v as K-place numbers in radix L so that each digit Uj or Vj is
an l-bit integer. Actually the leading digits Uj and Vj are zero for all j ≥ K/2,
because 2k−1l ≥ n. We will select appropriate values for k and l later; at the
moment our goal is to see what happens in general, so that we can choose k
and l intelligently when all the facts are before us.

The next step of the multiplication procedure is to compute the Fourier
transforms (û0, . . . , ûK−1) and (v̂0, . . . , v̂K−1) of the sequences (u0, . . . , uK−1)
and (v0, . . . , vK−1), where we deĄne

ut = Ut/2k+l, vt = Vt/2k+l. (43)

This scaling is done for convenience so that each ut and vt is less than 2−k,
ensuring that the absolute values |ûs| and |v̂s| will be less than 1 for all s.

An obvious problem arises here, since the complex number ω can’t be
represented exactly in binary notation. How are we going to compute a reliable
Fourier transform? By a stroke of good luck, it turns out that everything will
work properly if we do the calculations with only a modest amount of precision.
For the moment let us bypass this question and assume that inĄnite-precision
calculations are being performed; we shall analyze later how much accuracy is
actually needed.

Once the ûs and v̂s have been found, we let ŵs = ûsv̂s for 0 ≤ s < K and
determine the inverse Fourier transform (w0, . . . , wK−1). As explained above,
we now have

wr =

i+j=r

uivj =

i+j=r

UiVj/22k+2l,

308 ARITHMETIC 4.3.3

Table 1

MULTIPLICATION VIA DISCRETE FOURIER TRANSFORMATION

s 27ûs 27v̂s 214ŵs 214 ˆ̂ws 214ws = Ws

0 19 16 304 80 10
1 2 + 4i + 13ω 5 + 9i + 2ω −26 + 64i + 69ω − 125ω̄ 0 69
2 −2 + 13i −4 + 2i −18 − 56i 0 64
3 2 − 4i − 13ω̄ 5 − 9i − 2ω̄ −26 − 64i + 125ω − 69ω̄ 0 125
4 −7 12 −84 288 36
5 2 + 4i − 13ω 5 + 9i − 2ω −26 + 64i − 69ω + 125ω̄ 1000 0
6 −2 − 13i −4 − 2i −18 + 56i 512 0
7 2 − 4i + 13ω̄ 5 − 9i + 2ω̄ −26 − 64i − 125ω + 69ω̄ 552 0

so the integers Wr = 22k+2lwr are the coefficients in the desired product

u · v = WK−2L
K−2 + · · ·+W1L+W0. (44)

Since 0 ≤ Wr < (r + 1)L2 < KL2, each Wr has at most k + 2l bits, so it will
not be difficult to compute the binary representation when the W ’s are known
unless k is large compared to l.

For example, suppose we want to multiply u = 1234 times v = 2341 when
the parameters are k = 3 and l = 4. The computation of (û0, . . . , û7) from u
proceeds as follows

see (12)

:

(r, s, t) = (0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)
27A[0](r, s, t) = 2 13 4 0 0 0 0 0
27A[1](r, s, t) = 2 13 4 0 2 13 4 0
27A[2](r, s, t) = 6 13 −2 13 2 + 4i 13 2− 4i 13
27A[3](r, s, t) = 19 −7 −2 + 13i −2− 13i α+ β α− β ᾱ− β̄ ᾱ+ β̄

Here α = 2 + 4i, β = 13ω, and ω = (1 + i)/
√

2; this gives us the column headed
27 ûs in Table 1. The column for v̂s is obtained from v in the same way; then
we multiply ûs by v̂s to get ŵs. Transforming again gives us ws and Ws, using
relation (40). Once again we obtain the convolution products in (19), this time
using complex numbers instead of sticking to an all-integer method.

Let us try to estimate how much time this method takes on large numbers,
if m-bit Ąxed point arithmetic is used in calculating the Fourier transforms.
Exercise 10 shows that all of the quantities A[j] during all the passes of the
transform calculations will be less than 1 in magnitude because of the scaling
(43), hence it suffices to deal with m-bit fractions (.a−1 . . . a−m)2 for the real and
imaginary parts of all the intermediate quantities. SimpliĄcations are possible
because the inputs ut and vt are real-valued; only K real values instead of 2K
need to be carried in each step (see exercise 4.6.4Ű14). We will ignore such
reĄnements in order to keep complications to a minimum.

The Ąrst job is to compute ω and its powers. For simplicity we shall make
a table of the values ω0, . . . , ωK−1. Let

ωr = exp(2πi/2r), (45)

4.3.3 HOW FAST CAN WE MULTIPLY? 309

so that ω1 = −1, ω2 = i, ω3 = (1 + i)/
√

2, . . . , ωk = ω. If ωr = xr + iyr and
r ≥ 2, we have ωr+1 = xr+1 + iyr+1 where

xr+1 =

1 + xr
2

, yr+1 =
yr

2xr+1
. (46)

[See S. R. Tate, IEEE Transactions SP-43 (1995), 1709Ű1711.] The calculation
of ω1, ω2, . . . , ωk takes negligible time compared with the other computations
we need, so we can use any straightforward algorithm for square roots. Once the
ωr have been calculated we can compute all of the powers ωj by noting that

ωj = ω
jk−1

1 . . . ωj1

k−1ω
j0

k if j = (jk−1 . . . j1j0)2. (47)

This method of calculation keeps errors from propagating, since each ωj is a
product of at most k of the ωr’s. The total time to calculate all the ωj is
O(KM), where M is the time to do an m-bit complex multiplication, because
only one multiplication is needed to obtain each ωj from a previously computed
value. The subsequent steps will require more than O(KM) cycles, so the powers
of ω have been computed at negligible cost.

Each of the three Fourier transformations comprises k passes, each of which
involves K operations of the form a← b+ωjc, so the total time to calculate the
Fourier transforms is

O(kKM) = O(Mnk/l).

Finally, the work involved in computing the binary digits of u · v using (44) is
O

K(k+ l)

= O(n+nk/l). Summing over all operations, we Ąnd that the total

time to multiply n-bit numbers u and v will be O(n) +O(Mnk/l).
Now let’s see how large the intermediate precision m needs to be, so that

we know how large M needs to be. For simplicity we shall be content with safe
estimates of the accuracy, instead of Ąnding the best possible bounds. It will be
convenient to compute all the ωj in such a way that our approximations (ωj)′ will
satisfy |(ωj)′| ≤ 1; this condition is easy to guarantee if we truncate towards zero
instead of rounding, because x2

r+1 +y2
r+1 = (1 +x2

r +y2
r + 2xr)/(2 + 2xr) in (46).

The operations we need to perform with m-bit Ąxed point complex arithmetic
are all obtained by replacing an exact computation of the form a← b+ ωjc by
the approximate computation

a′ ← truncate

b′ + (ωj)′c′

, (48)

where b′, (ωj)′, and c′ are previously computed approximations; all of these
complex numbers and their approximations are bounded by 1 in absolute value.
If |b′ − b| ≤ δ1, |(ωj)′ − ωj | ≤ δ2, and |c′ − c| ≤ δ3, it is not difficult to see that
we will have |a′ − a| < δ + δ1 + δ2 + δ3, where

δ = |2−m + 2−m i| = 21/2−m, (49)

because we have

(ωj)′c′ − ωjc

 =

(ωj)′ − ωj

c′ + ωj(c′ − c)

 ≤ δ2 + δ3, and

δ exceeds the maximum truncation error. The approximations (ωj)′ are obtained
by starting with approximations ω′

r to the numbers deĄned in (46), and we may

310 ARITHMETIC 4.3.3

assume that (46) is performed with sufficient precision to make |ω′
r − ωr| < δ.

Then (47) implies that

(ωj)′ − ωj

 < (2k − 1)δ for all j, because the error is

due to at most k approximations and k − 1 truncations.
If we have errors of at most ϵ before any pass of the fast Fourier transform,

the operations of that pass therefore have the form (48) where δ1 = δ3 = ϵ and
δ2 = (2k − 1)δ; the errors after the pass will then be at most 2ϵ+ 2kδ. There is
no error in Pass 0, so we Ąnd by induction on j that the maximum error after
Pass j is bounded by (2j − 1) · 2kδ, and the computed values of ûs will satisfy
|(ûs)′ − ûs| < (2k − 1) · 2kδ. A similar formula will hold for (v̂s)′; and we will
have

|(ŵs)′ − ŵs| < 2(2k − 1) · 2kδ + δ < (4k2k − 2k)δ.

During the inverse transformation there is an additional accumulation of errors,
but the division by K = 2k ameliorates most of this; by the same argument we
Ąnd that the computed values w′

r will satisfy

(ˆ̂wr)′ − ˆ̂wr

 < 2k(4k2k−2k)δ + (2k−1)2kδ; |w′

r − wr| < 4k2kδ. (50)

We need enough precision to make 22k+2lw′
r round to the correct integer Wr,

hence we need
22k+2l+2+lg k+k+1/2−m ≤ 1

2 ; (51)

that is, m ≥ 3k + 2l + lg k + 7/2. This will hold if we simply require that

k ≥ 7 and m ≥ 4k + 2l. (52)

Relations (41) and (52) can be used to determine parameters k, l, m so that
multiplication takes O(n) + O(Mnk/l) units of time, where M is the time to
multiply m-bit fractions.

If we are using MIX, for example, suppose we want to multiply binary num-
bers having n = 213 = 8192 bits each. We can choose k = 11, l = 8, m = 60,
so that the necessary m-bit operations are nothing more than double-precision
arithmetic. The running time M needed to do Ąxed point m-bit complex multi-
plication will therefore be comparatively small. With triple-precision operations
we can go up for example to k = l = 15, n ≤ 15 · 214, which takes us way beyond
MIX’s memory capacity. On a larger machine we could multiply a pair of gigabit
numbers if we took k = l = 27 and m = 144.

Further study of the choice of k, l, and m leads in fact to a rather surprising
conclusion: For all practical purposes we can assume that M is constant, and the
SchönhageŰStrassen multiplication technique will have a running time linearly
proportional to n. The reason is that we can choose k = l and m = 6k; this
choice of k is always less than lgn, so we will never need to use more than
sextuple precision unless n is larger than the word size of our computer. (In
particular, n would have to be larger than the capacity of an index register, so
we probably couldn’t Ąt the numbers u and v in main memory.)

The practical problem of fast multiplication is therefore solved, except for
improvements in the constant factor. In fact, the all-integer convolution algo-
rithm of exercise 4.6.4Ű59 is probably a better choice for practical high-precision

4.3.3 HOW FAST CAN WE MULTIPLY? 311

multiplication. Our interest in multiplying large numbers is partly theoretical,
however, because it is interesting to explore the ultimate limits of computational
complexity. So let’s forget practical considerations momentarily and suppose
that n is extremely huge, perhaps much larger than the number of atoms in
the universe. We can let m be approximately 6 lgn, and use the same algorithm
recursively to do the m-bit multiplications. The running time will satisfy T (n) =
O

nT (logn)

; hence

T (n) ≤ C n(C lgn)(C lg lgn)(C lg lg lgn) . . . , (53)

where the product continues until reaching a factor with lg . . . lgn ≤ 2.
Schönhage and Strassen showed how to improve this theoretical upper bound

to O(n logn log logn) in their paper, by using integer numbers ω to carry out
fast Fourier transforms on integers, modulo numbers of the form 2e + 1. This
upper bound applies to Turing machines, namely to computers with bounded
memory and a Ąnite number of arbitrarily long tapes.

If we allow ourselves a more powerful computer, with random access to any
number of words of bounded size, Schönhage has pointed out that the upper
bound drops to O(n logn). For we can choose k = l and m = 6k, and we
have time to build a complete multiplication table of all possible products xy
for 0 ≤ x, y < 2⌈m/12⌉. (The number of such products is 2k or 2k+1, and we
can compute each table entry by addition from one of its predecessors in O(k)
steps, hence O(k2k) = O(n) steps will suffice for the calculation.) In this case
M is the time needed to do 12-place arithmetic in radix 2⌈m/12⌉, and it follows
that M = O(k) = O(logn) because 1-place multiplication can be done by table
lookup. (The time to access a word of memory is assumed to be proportional to
the number of bits in the address of that word.)

Moreover, Schönhage discovered in 1979 that a pointer machine can carry
out n-bit multiplication in O(n) steps; see exercise 12. Such devices (which are
also called “storage modiĄcation machinesŤ and “linking automataŤ) seem to
provide the best models of computation when n → ∞, as discussed at the end
of Section 2.6. So we can conclude that multiplication in O(n) steps is possible
for theoretical purposes as well as in practice.

An unusual general-purpose computer called Little Fermat, with a spe-
cial ability to multiply large integers rapidly, was designed in 1986 by D. V.
Chudnovsky, G. V. Chudnovsky, M. M. Denneau, and S. G. Younis. Its hardware
featured fast arithmetic modulo 2256 + 1 on 257-bit words; a convolution of 256-
word arrays could then be done using 256 single-word multiplications, together
with three discrete transforms that required only addition, subtraction, and
shifting. This made it possible to multiply two 106-bit integers in less than
0.1 second, based on a pipelined cycle time of approximately 60 nanoseconds
[Proc. Third Int. Conf. on Supercomputing 2 (International Supercomputing
Institute, 1988), 498Ű499; Contemporary Math. 143 (1993), 136].

D. Division. Now that we have efficient routines for multiplication, let’s
consider the inverse problem. It turns out that division can be performed just
as fast as multiplication, except for a constant factor.

312 ARITHMETIC 4.3.3

To divide an n-bit number u by an n-bit number v, we can Ąrst Ąnd an
n-bit approximation to 1/v, then multiply by u to get an approximation q̂ to
u/v; Ąnally, we can make the slight correction necessary to q̂ to ensure that
0 ≤ u − qv < v by using another multiplication. From this reasoning, we see
that it suffices to have an efficient way to approximate the reciprocal of an n-
bit number. The following algorithm does this, using “Newton’s methodŤ as
explained at the end of Section 4.3.1.

Algorithm R (High-precision reciprocal). Let v have the binary representation
v = (0.v1v2v3 . . .)2, where v1 = 1. This algorithm computes an approximation z
to 1/v, such that

|z − 1/v| ≤ 2−n. (54)

R1. [Initial approximation.] Set z ← 1
4⌊32/(4v1 + 2v2 + v3)⌋ and k ← 0.

R2. [Newtonian iteration.] (At this point we have a number z of the binary
form (xx.xx . . . x)2 with 2k + 1 places after the radix point, and z ≤ 2.)
Calculate z2 = (xxx.xx . . . x)2 exactly, using a high-speed multiplication
routine. Then calculate Vk z

2 exactly, where Vk = (0.v1v2 . . . v2k+1+3)2.
Then set z ← 2z − Vk z2 + r, where 0 ≤ r < 2−2k+1−1 is added if necessary
to round z up so that it is a multiple of 2−2k+1−1. Finally, set k ← k + 1.

R3. [Test for end.] If 2k < n, go back to step R2; otherwise the algorithm
terminates.

This algorithm is based on a suggestion by S. A. Cook. A similar technique
has been used in computer hardware [see Anderson, Earle, Goldschmidt, and
Powers, IBM J. Res. Dev. 11 (1967), 48Ű52]. Of course, it is necessary to check
the accuracy of Algorithm R quite carefully, because it comes very close to being
inaccurate. We will prove by induction that

z ≤ 2 and |z − 1/v| ≤ 2−2k

(55)

at the beginning and end of step R2.
For this purpose, let δk = 1/v−zk, where zk is the value of z after k iterations

of step R2. To start the induction on k, we have

δ0 = 1/v − 8/v′ + (32/v′ − ⌊32/v′⌋)/4 = η1 + η2,

where v′ = (v1v2v3)2 and η1 = (v′ − 8v)/vv′, so that we have − 1
2 < η1 ≤ 0 and

0 ≤ η2 <
1
4 . Hence |δ0| < 1

2 . Now suppose that (55) has been veriĄed for k; then

δk+1 = 1/v − zk+1 = 1/v − zk − zk(1− zkVk)− r
= δk − zk(1− zkv)− z2

k(v − Vk)− r
= δk − (1/v − δk)vδk − z2

k(v − Vk)− r
= vδ2

k − z2
k(v − Vk)− r.

Now 0 ≤ vδ2
k < δ2

k ≤ (2−2k

)2 = 2−2k+1

, and

0 ≤ z2(v − Vk) + r < 4(2−2k+1−3) + 2−2k+1−1 = 2−2k+1

,

4.3.3 HOW FAST CAN WE MULTIPLY? 313

so |δk+1| ≤ 2−2k+1

. We must still verify the Ąrst inequality of (55); to show that
zk+1 ≤ 2, there are three cases:

a) Vk = 1
2 ; then zk+1 = 2.

b) Vk ̸= 1
2 = Vk−1; then zk = 2, so 2zk − z2

kVk ≤ 2− 2−2k+1−1.

c) Vk−1 ̸= 1
2 ; then zk+1 = 1/v − δk+1 < 2− 2−2k+1 ≤ 2, since k > 0.

The running time of Algorithm R is bounded by

2T (4n) + 2T (2n) + 2T (n) + 2T (1
2n) + · · ·+O(n)

steps, where T (n) is an upper bound on the time needed to do a multiplication of
n-bit numbers. If T (n) has the form nf(n) for some monotonically nondecreasing
function f(n), we have

T (4n) + T (2n) + T (n) + · · · < T (8n), (56)

so division can be done with a speed comparable to that of multiplication except
for a constant factor.

R. P. Brent has shown that functions such as log x, expx, and arctanx can
be evaluated to n signiĄcant bits in O

M(n) logn

steps, if it takes M(n) units

of time to multiply n-bit numbers [JACM 23 (1976), 242Ű251].

E. Multiplication in real time. It is natural to wonder if multiplication of
n-bit numbers can be accomplished in just n steps. We have come from order
n2 down to order n, so perhaps we can squeeze the time down to the absolute
minimum. In fact, it is actually possible to output the answer as fast as we input
the digits, if we leave the domain of conventional computer programming and
allow ourselves to build a computer that has an unlimited number of components
all acting at once.

A linear iterative array of automata is a set of devices M1, M2, M3, . . .
that can each be in a Ąnite set of “statesŤ at each step of a computation. The
machines M2, M3, . . . all have identical circuitry, and their state at time t + 1
is a function of their own state at time t as well as the states of their left and
right neighbors at time t. The Ąrst machine M1 is slightly different: Its state at
time t + 1 is a function of its own state and that of M2, at time t, and also of
the input at time t. The output of a linear iterative array is a function deĄned
on the states of M1.

Let u = (un−1 . . . u1u0)2, v = (vn−1 . . . v1v0)2, and q = (qn−1 . . . q1q0)2 be
binary numbers, and let uv + q = w = (w2n−1 . . . w1w0)2. It is a remarkable
fact that a linear iterative array can be constructed, independent of n, that will
output w0, w1, w2, . . . at times 1, 2, 3, . . . , if it is given the inputs (u0, v0, q0),
(u1, v1, q1), (u2, v2, q2), . . . at times 0, 1, 2,

We can state this phenomenon in the language of computer hardware by
saying that it is possible to design a single integrated circuit module with the fol-
lowing property: If we wire together sufficiently many of these chips in a straight
line, with each module communicating only with its left and right neighbors, the
resulting circuitry will produce the 2n-bit product of n-bit numbers in exactly
2n clock pulses.

314 ARITHMETIC 4.3.3

Table 2

MULTIPLICATION IN A LINEAR ITERATIVE ARRAY

Time Input Module M1 Module M2 Module M3

uj

vj
qj c

x0

y0

x1

y1

x
y

z2

z1

z0

c
x0

y0

x1

y1

x
y

z2

z1

z0

c
x0

y0

x1

y1

x
y

z2

z1

z0

0 1
1

1 0 0
0

0
0

0
0

0
0
0

0 0
0

0
0

0
0

0
0
0

0 0
0

0
0

0
0

0
0
0

1 1
1

1 1 1
1

0
0

0
0

0
1
0

0 0
0

0
0

0
0

0
0
0

0 0
0

0
0

0
0

0
0
0

2 1
1

0 2 1
1

1
1

0
0

1
0
0

0 0
0

0
0

0
0

0
0
0

0 0
0

0
0

0
0

0
0
0

3 0
0

1 3 1
1

1
1

1
1

0
1
1

0 0
0

0
0

0
0

0
0
1

0 0
0

0
0

0
0

0
0
0

4 1
1

0 3 1
1

1
1

0
0

1
0
1

1 1
1

0
0

0
0

0
0
1

0 0
0

0
0

0
0

0
0
0

5 0
0

0 3 1
1

1
1

1
1

0
1
1

2 1
1

0
0

0
0

0
0
1

0 0
0

0
0

0
0

0
0
0

6 0
0

0 3 1
1

1
1

0
0

1
0
0

3 1
1

0
0

1
1

0
1
0

0 0
0

0
0

0
0

0
0
0

7 0
0

0 3 1
1

1
1

0
0

0
0
0

3 1
1

0
0

0
0

0
1
0

1 1
1

0
0

0
0

0
0
1

8 0
0

0 3 1
1

1
1

0
0

0
0
0

3 1
1

0
0

0
0

0
1
0

2 1
1

0
0

0
0

0
0
0

9 0
0

0 3 1
1

1
1

0
0

0
0
0

3 1
1

0
0

0
0

0
0
1

3 1
1

0
0

0
0

0
0
0

10 0
0

0 3 1
1

1
1

0
0

0
0
1

3 1
1

0
0

0
0

0
0
0

3 1
1

0
0

0
0

0
0
0

11 0
0

0 3 1
1

1
1

0
0

0
0
0

3 1
1

0
0

0
0

0
0
0

3 1
1

0
0

0
0

0
0
0

4.3.3 HOW FAST CAN WE MULTIPLY? 315

The basic idea can be understood as follows. At time 0, machine M1 senses
(u0, v0, q0) and it therefore is able to output (u0v0 +q0) mod 2 at time 1. Then it
sees (u1, v1, q1) and it can output (u0v1 + u1v0 + q1 + k1) mod 2, where k1 is the
“carryŤ left over from the previous step, at time 2. Next it sees (u2, v2, q2) and
outputs (u0v2 + u1v1 + u2v0 + q2 + k2) mod 2; furthermore, its state holds the
values of u2 and v2 so that machineM2 will be able to sense these values at time 3,
and M2 will be able to compute u2v2 for the beneĄt of M1 at time 4. Machine
M1 essentially arranges to start M2 multiplying the sequence (u2, v2), (u3, v3),
. . . , and M2 will ultimately give M3 the job of multiplying (u4, v4), (u5, v5), etc.
Fortunately, things just work out so that no time is lost. The reader will Ąnd it
interesting to deduce further details from the formal description that follows.

Each automaton has 211 states (c, x0, y0, x1, y1, x, y, z2, z1, z0), where
0 ≤ c < 4 and each of the x’s, y’s, and z’s is either 0 or 1. Initially, all the
devices are in state (0, 0, 0, 0, 0, 0, 0, 0, 0, 0). Suppose that a machine Mj , for
j > 1, is in state (c, x0, y0, x1, y1, x, y, z2, z1, z0) at time t, and its left neighbor
Mj−1 is in state (cl, xl0, y

l
0, x

l
1, y

l
1, x

l, y l, zl2, z
l
1, z

l
0) while its right neighbor Mj+1

is in state (cr, xr0, y
r
0, x

r
1, y

r
1, x

r, yr, zr2 , z
r
1 , z

r
0) at that time. Then machine Mj will

go into state (c′, x′0, y
′
0, x

′
1, y

′
1, x

′, y′, z′2, z
′
1, z

′
0) at time t+ 1, where

c′ = min(c+ 1, 3) if cl = 3, 0 otherwise;
(x′0, y

′
0) = (xl, y l) if c = 0, (x0, y0) otherwise;

(x′1, y
′
1) = (xl, y l) if c = 1, (x1, y1) otherwise;

(x′, y′) = (xl, y l) if c ≥ 2, (x, y) otherwise;

(57)

and (z′2z
′
1z

′
0)2 is the binary notation for

zr0 + z1 + zl2 +

xly l if c = 0;
x0y

l + xly0 if c = 1;
x0y

l + x1y1 + xly0 if c = 2;
x0y

l + x1y + xy1 + xly0 if c = 3.

(58)

The leftmost machine M1 behaves in almost the same way as the others; it acts
exactly as if there were a machine to its left in state (3, 0, 0, 0, 0, u, v, q, 0, 0) when
it is receiving the inputs (u, v, q). The output of the array is the z0 component
of M1.

Table 2 shows an example of this array acting on the inputs

u = v = (. . . 00010111)2, q = (. . . 00001011)2.

The output sequence appears in the lower right portion of the states of M1:

0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, . . . ,

representing the number (. . . 01000011100)2 from right to left.
This construction is based on a similar one Ąrst published by A. J. Atrubin,

IEEE Trans. EC-14 (1965), 394Ű399.
Fast as it is, the iterative array is optimum only when the input bits arrive

one at a time. If the input bits are all present simultaneously, we prefer parallel
circuitry that will obtain the product of two n-bit numbers after O(logn) levels

316 ARITHMETIC 4.3.3

of delay. Efficient circuits of that kind have been described, for example, by
C. S. Wallace, IEEE Trans. EC-13 (1964), 14Ű17; D. E. Knuth, The Stanford
GraphBase (New York: ACM Press, 1994), 270Ű279.

S. Winograd [JACM 14 (1967), 793Ű802] has investigated the minimum
multiplication time achievable in a logical circuit when n is given and when the
inputs are available all at once in arbitrarily coded form. For similar questions
when multiplication and addition must both be supported simultaneously, see
A. C. Yao, STOC 13 (1981), 308Ű311; Mansour, Nisan, and Tiwari, STOC 22
(1990), 235Ű243.

Multiplication is mie vexation,

And Division is quite as bad:

The Golden Rule is mie stumbling stule,

And Practice drives me mad.

Ů Manuscript collected by J. O. HALLIWELL (c. 1570)

EXERCISES

1. [22] The idea expressed in (2) can be generalized to the decimal system, if the
radix 2 is replaced by 10. Using this generalization, calculate 1234 times 2341 (reducing
this product of four-digit numbers to three products of two-digit numbers, and reducing
each of the latter to products of one-digit numbers).

2. [M22] Prove that, in step T1 of Algorithm T, the value of R either stays the same
or increases by one when we set R ← ⌊

√
Q⌋. (Therefore, as observed in that step, we

need not calculate a square root.)

3. [M22] Prove that the sequences qk and rk deĄned in Algorithm T satisfy the
inequality 2qk+1(2rk)rk ≤ 2qk−1+qk , when k > 0.

x 4. [28] (K. Baker.) Show that it is advantageous to evaluate the polynomial W (x)
at the points x = −r, . . . , 0, . . . , r instead of at the nonnegative points x = 0, 1,
. . . , 2r as in Algorithm T. The polynomial U(x) can be written

U(x) = Ue(x2) + xUo(x2),

and similarly V (x) and W (x) can be expanded in this way; show how to exploit this
idea, obtaining faster calculations in steps T7 and T8.

x 5. [35] Show that if in step T1 of Algorithm T we set R ← ⌈
√

2Q ⌉ + 1 instead of
setting R ← ⌊

√
Q⌋, with suitable initial values of q0, q1, r0, and r1, then (20) can be

improved to tk ≤ qk+12
√

2 lg qk+1 (lg qk+1).

6. [M23] Prove that the six numbers in (24) are relatively prime in pairs.

7. [M23] Prove (25).

8. [M20] True or false: We can ignore the bit reversal (sk−1, . . . , s0)→ (s0, . . . , sk−1)
in (39), because the inverse Fourier transform will reverse the bits again anyway.

9. [M15] Suppose the Fourier transformation method of the text is applied with all
occurrences of ω replaced by ωq, where q is some Ąxed integer. Find a simple relation
between the numbers (ũ0, ũ1, . . . , ũK−1) obtained by this general procedure and the
numbers (û0, û1, . . . , ûK−1) obtained when q = 1.

4.3.3 HOW FAST CAN WE MULTIPLY? 317

10. [M26] The scaling in (43) makes it clear that all the complex numbers A[j]

computed by pass j of the transformation subroutine will be less than 2j−k in absolute
value, during the calculations of ûs and v̂s in the SchönhageŰStrassen multiplication
algorithm. Show that all of the A[j] will be less than 1 in absolute value during the
third Fourier transformation (the calculation of ˆ̂wr).

x 11. [M26] If n is Ąxed, how many of the automata in the linear iterative array deĄned
by (57) and (58) are needed to compute the product of n-bit numbers? (Notice that the
automaton Mj is inĆuenced only by the component zr

0 of the machine on its right, so
we may remove all automata whose z0 component is always zero whenever the inputs
are n-bit numbers.)

x 12. [M41] (A. Schönhage.) The purpose of this exercise is to prove that a simple
form of pointer machine can multiply n-bit numbers in O(n) steps. The machine has
no built-in facilities for arithmetic; all it does is work with nodes and pointers. Each
node has the same Ąnite number of link Ąelds, and there are Ąnitely many link registers.
The only operations this machine can do are:

i) read one bit of input and jump if that bit is 0;
ii) output 0 or 1;

iii) load a register with the contents of another register or with the contents of a
link Ąeld in a node pointed to by a register;

iv) store the contents of a register into a link Ąeld in a node pointed to by a register;
v) jump if two registers are equal;

vi) create a new node and make a register point to it;
vii) halt.

Implement the Fourier-transform multiplication method efficiently on such a machine.
[Hints: First show that if N is any positive integer, it is possible to create N nodes
representing the integers {0, 1, . . . , N − 1}, where the node representing p has pointers
to the nodes representing p + 1, ⌊p/2⌋, and 2p. These nodes can be created in O(N)
steps. Show that arithmetic with radix N can now be simulated without difficulty: For
example, it takes O(logN) steps to Ąnd the node for (p+q) modN and to determine if
p+ q ≥ N, given pointers to p and q; and multiplication can be simulated in O(logN)2

steps. Now consider the algorithm in the text, with k = l and m = 6k and N = 2⌈m/13⌉,
so that all quantities in the Ąxed point arithmetic calculations are 13-place integers with
radix N. Finally, show that each pass of the fast Fourier transformations can be done
in O(K+(N logN)2) = O(K) steps, using the following idea: Each of the K necessary
assignments can be “compiledŤ into a bounded list of instructions for a simulated MIX-
like computer whose word size is N, and instructions for K such machines acting in
parallel can be simulated in O(K + (N logN)2) steps if they are Ąrst sorted so that
all identical instructions are performed together. (Two instructions are identical if
they have the same operation code, the same register contents, and the same memory
operand contents.) Note that N2 = O(n12/13), so (N logN)2 = O(K).]

13. [M25] (A. Schönhage.) What is a good upper bound on the time needed to
multiply an m-bit number by an n-bit number, when both m and n are very large but
n is much larger than m, based on the results discussed in this section for the case
m = n?

14. [M42] Write a program for Algorithm T, incorporating the improvements of
exercise 4. Compare it with a program for Algorithm 4.3.1M and with a program
based on (2), to see how large n must be before Algorithm T is an improvement.

318 ARITHMETIC 4.3.3

15. [M49] (S. A. Cook.) A multiplication algorithm is said to be online if the (k+1)st
input bits of the operands, from right to left, are not read until the kth output bit
has been produced. What are the fastest possible online multiplication algorithms
achievable on various species of automata?

x 16. [25] Prove that it takes only O(K logK) arithmetic operations to evaluate the
discrete Fourier transform (35), even when K is not a power of 2. [Hint: Rewrite (35)
in the form

ûs = ω−s2/2

0≤t<K

ω(s+t)2/2ω−t2/2ut

and express this sum as a convolution product.]

17. [M26] Karatsuba’s multiplication scheme (2) does Kn 1-place multiplications
when it forms the product of n-place numbers, where K1 = 1, K2n = 3Kn, and
K2n+1 = 2Kn+1 +Kn for n ≥ 1. “SolveŤ this recurrence by Ąnding an explicit formula
for Kn when n = 2e1 + 2e2 + · · ·+ 2et, e1 > e2 > · · · > et ≥ 0.

x 18. [M30] Devise a scheme to allocate memory for the intermediate results when
multiplication is performed by a recursive algorithm based on (2): Given two N -place
integers u and v, each in N consecutive places of memory, show how to arrange the
computation so that the product uv appears in the least signiĄcant 2N places of a
(3N +O(logN))-place area of working storage.

x 19. [M23] Show how to compute uv modm with a bounded number of operations that
meet the ground rules of exercise 3.2.1.1Ű11, if you are also allowed to test whether
one operand is less than another. Both u and v are variable, but m is constant. Hint:

Consider the decomposition in (2).

4.4 RADIX CONVERSION 319

4.4. RADIX CONVERSION

If our ancestors had invented arithmetic by counting with their two Ąsts or
their eight Ąngers, instead of their ten “digits,Ť we would never have to worry
about writing binary-decimal conversion routines. (And we would perhaps never
have learned as much about number systems.) In this section, we shall discuss
the conversion of numbers from positional notation with one radix into positional
notation with another radix; this process is, of course, most important on binary
computers when converting decimal input data into binary form, and converting
binary answers into decimal form.

A. The four basic methods. Binary-decimal conversion is one of the most
machine-dependent operations of all, since computer designers keep inventing
different ways to provide for it in the hardware. Therefore we shall discuss
only the general principles involved, from which programmers can select the
procedures that are best suited to their machines.

We shall assume that only nonnegative numbers enter into the conversion,
since the manipulation of signs is easily accounted for.

Let us assume that we are converting from radix b to radix B. (Mixed-
radix generalizations are considered in exercises 1 and 2.) Most radix-conversion
routines are based on multiplication and division, using one of the four methods
below. The Ąrst two methods apply to integers (radix point at the right), and the
others to fractions (radix point at the left). It is often impossible to express a ter-
minating radix-b fraction (0.u−1u−2 . . . u−m)b exactly as a terminating radix-B
fraction (0.U−1U−2 . . . U−M)B . For example, the fraction 1

10 has the inĄnite
binary representation (0.0001100110011 . . .)2. Therefore methods of rounding
the result to M places are sometimes necessary.

Method 1a (Division by B using radix-b arithmetic). Given an integer u, we
can obtain its radix-B representation (. . . U2U1U0)B as follows:

U0 = umodB, U1 = ⌊u/B⌋modB, U2 = ⌊⌊u/B⌋/B⌋modB, . . . ,

stopping when ⌊. . . ⌊⌊u/B⌋/B⌋ . . . /B⌋ = 0.

Method 1b (Multiplication by b using radix-B arithmetic). If u has the radix-b
representation (um . . . u1u0)b, we can use radix-B arithmetic to evaluate the
polynomial umbm + · · ·+ u1b+ u0 = u in the form

(. . . (um b+ um−1) b+ · · ·) b+ u1

b+ u0.

Method 2a (Multiplication by B using radix-b arithmetic). Given a fractional
number u, we can obtain the digits of its radix-B representation (.U−1U−2 . . .)B
as follows:

U−1 = ⌊uB⌋, U−2 = ⌊{uB}B⌋, U−3 = ⌊{{uB}B}B⌋, . . . ,

where {x} denotes xmod 1 = x − ⌊x⌋. If it is desired to round the result
to M places, the computation can be stopped after U−M has been calculated,

320 ARITHMETIC 4.4

and U−M should be increased by unity if {. . . {{uB}B} . . . B} is greater than 1
2 .

Note, however, that this may cause carries to propagate, and these carries must

be incorporated into the answer using radix-B arithmetic. It would be simpler to
add the constant 1

2B
−M to the original number u before the calculation begins,

but this may lead to an incorrect answer when 1
2B

−M cannot be represented
exactly as a radix-b number inside the computer. Note further that it is possible
for the answer to round up to (1.00 . . . 0)B , if bm ≥ 2BM .

Exercise 3 shows how to extend this method so that M is variable, just large
enough to represent the original number to a speciĄed accuracy. In this case the
problem of carries does not occur.

Method 2b (Division by b using radix-B arithmetic). If u has the radix-b
representation (0.u−1u−2 . . . u−m)b, we can use radix-B arithmetic to evaluate
u−1b

−1 + u−2b
−2 + · · ·+ u−mb

−m in the form

(. . . (u−m/b+ u1−m)/b+ · · ·+ u−2)/b+ u−1

/b.

Care should be taken to control errors that might occur due to truncation or
rounding in the division by b; these are often negligible, but not always.

To summarize, Methods 1a, 1b, 2a, and 2b give us two ways to convert
integers and two ways to convert fractions; and it is certainly possible to convert
between integers and fractions by multiplying or dividing by an appropriate
power of b or B. Therefore there are at least four methods to choose from when
trying to do radix conversion.

B. Single-precision conversion. To illustrate these four methods, let us
assume that MIX is a binary computer, and suppose that we want to convert a
nonnegative binary integer u to a decimal integer. Thus b = 2 and B = 10.
Method 1a could be programmed as follows:

ENT1 0 Set j ← 0.
LDX U
ENTA 0 Set rAX← u.

1H DIV =10= (rA, rX)← (⌊rAX/10⌋, rAX mod 10).
STX ANSWER,1 Uj ← rX.
INC1 1 j ← j + 1.
SRAX 5 rAX← rA.
JXP 1B Repeat until result is zero.

(1)

This requires 18M + 4 cycles to obtain M digits.
Method 1a uses division by 10; Method 2a uses multiplication by 10, so it

might be a little faster. But in order to use Method 2a, we must deal with
fractions, and this leads to an interesting situation. Let w be the word size of
the computer, and assume that u < 10n < w. With a single division we can Ąnd
q and r, where

wu = 10nq + r, 0 ≤ r < 10n. (2)

4.4 RADIX CONVERSION 321

Now if we apply Method 2a to the fraction (q + 1)/w, we will obtain the digits
of u from left to right, in n steps, since

10n
q + 1
w

=

u+
10n − r
w

= u. (3)

(This idea is due to P. A. Samet, Software Practice & Experience 1 (1971),
93Ű96.)

Here is the corresponding MIX program:

JOV OFLO Ensure that overĆow is off.
LDA U
LDX =10n= rAX← wu+ 10n.
DIV =10n= rA← q + 1, rX← r.
JOV ERROR Jump if u ≥ 10n.
ENT1 n-1 Set j ← n− 1.

2H MUL =10= Now imagine the radix point at the left, rA = x.
STA ANSWER,1 Set Uj ← ⌊10x⌋.
SLAX 5 x← {10x}.
DEC1 1 j ← j − 1.
J1NN 2B Repeat for n > j ≥ 0.

(4)

This slightly longer routine requires 16n + 19 cycles, so it is a little faster than
program (1) if n = M ≥ 8; when leading zeros are present, (1) will be faster.

Program (4) as it stands cannot be used to convert integers u ≥ 10m when
10m < w < 10m+1, since we would need to take n = m + 1. In this case we
can obtain the leading digit of u by computing ⌊u/10m⌋; then umod 10m can be
converted as above with n = m.

The fact that the answer digits are obtained from left to right may be an
advantage in some applications (for example, when typing out an answer one
digit at a time). Thus we see that a fractional method can be used for conversion
of integers, although the use of inexact division makes a little bit of numerical
analysis necessary.

We can avoid the division by 10 in Method 1a if we do two multiplications
instead. This alternative can be important, because radix conversion is often
done by “satelliteŤ computers that have no built-in division capability. If we let
x be an approximation to 1

10 , so that

1
10

< x <
1
10

+
1
w
,

it is easy to prove (see exercise 7) that ⌊ux⌋ = ⌊u/10⌋ or ⌊u/10⌋+ 1, so long as
0 ≤ u < w. Therefore, if we compute u − 10⌊ux⌋, we will be able to determine
the value of ⌊u/10⌋:

⌊u/10⌋ = ⌊ux⌋ −

u < 10⌊ux⌋

. (5)

At the same time we will have determined umod 10. A MIX program for conver-
sion using (5) appears in exercise 8; it requires about 33 cycles per digit.

322 ARITHMETIC 4.4

If the computer has neither division nor multiplication in its repertoire of
built-in instructions, we can still use Method 1a for conversion by judiciously
shifting and adding, as explained in exercise 9.

Another way to convert from binary to decimal is to use Method 1b, but to
do this we need to simulate doubling in a decimal number system. This approach
is generally most suitable for incorporation into computer hardware; however, it
is possible to program the doubling process for decimal numbers, using binary
addition, binary shifting, and binary extraction or masking (bitwise AND) as
shown in Table 1, which was suggested by Peter L. Montgomery.

Table 1

DOUBLING A BINARY-CODED DECIMAL NUMBER

Operation General form Example

1. Given
number

u11 u10 u9 u8 u7 u6 u5 u4 u3 u2 u1 u0 0011 0110 1001 = 3 6 9

2. Add 3 to
each digit

v11 v10 v9 v8 v7 v6 v5 v4 v3 v2 v1 v0 0110 1001 1100

3. Extract each
high bit

v11 0 0 0 v7 0 0 0 v3 0 0 0 0000 1000 1000

4. Shift right 2
and subtract

0 v11 v110 0 v7 v7 0 0 v3 v3 0 0000 0110 0110

5. Add original
number

w11w10w9w8 w7w6w5w4 w3w2w1w0 0011 1100 1111

6. Add original
number

x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0 0 0111 0011 1000 = 7 3 8

This method changes each individual digit d into 2d when 0 ≤ d ≤ 4, and
into 6 + 2d = (2d− 10) + 24 when 5 ≤ d ≤ 9; and that is just what is needed to
double decimal numbers encoded with 4 bits per digit.

Another related idea is to keep a table of the powers of two in decimal form,
and to add the appropriate powers together by simulating decimal addition. A
survey of bit-manipulation techniques appears in Section 7.1.3.

Finally, even Method 2b can be used for the conversion of binary integers to
decimal integers. We can Ąnd q as in (2), and then we can simulate the decimal
division of q + 1 by w, using a “halvingŤ process (exercise 10) that is similar
to the doubling process just described, retaining only the Ąrst n digits to the
right of the radix point in the answer. In this situation, Method 2b does not
seem to offer advantages over the other three methods already discussed, but we
have conĄrmed the remark made earlier that at least four distinct methods are
available for converting integers from one radix to another.

Now let us consider decimal-to-binary conversion (so that b = 10, B = 2).
Method 1a simulates a decimal division by 2; this is feasible (see exercise 10),
but it is primarily suitable for incorporation in hardware instead of programs.

Method 1b is the most practical method for decimal-to-binary conversion
in the great majority of cases. The following MIX code assumes that there

4.4 RADIX CONVERSION 323

are at least two digits in the number (um . . . u1u0)10 being converted, and that
10m+1 < w so that overĆow is not an issue:

ENT1 M-1 Set j ← m− 1.
LDA INPUT+M Set U ← um.

1H MUL =10=
SLAX 5
ADD INPUT,1 U ← 10U + uj .
DEC1 1
J1NN 1B Repeat for m > j ≥ 0.

(6)

The multiplication by 10 could be replaced by shifting and adding.
A trickier but perhaps faster method, which uses about lgm multiplications,

extractions, and additions instead of m − 1 multiplications and additions, is
described in exercise 19.

For the conversion of decimal fractions (0.u−1u−2 . . . u−m)10 to binary form,
we can use Method 2b; or, more commonly, we can Ąrst convert the integer
(u−1u−2 . . . u−m)10 by Method 1b and then divide by 10m.

C. Hand calculation. It is occasionally necessary for computer programmers to
convert numbers by hand, and since this is a subject not yet taught in elementary
schools, it may be worthwhile to examine it brieĆy here. There are simple pencil-
and-paper methods for converting between decimal and octal notations, and
these methods are easily learned, so they should be more widely known.

Converting octal integers to decimal. The simplest conversion is from octal
to decimal; this technique was apparently Ąrst published by Walter Soden, Math.
Comp. 7 (1953), 273Ű274. To do the conversion, write down the given octal num-
ber; then at the kth step, double the k leading digits using decimal arithmetic,
and subtract this from the k + 1 leading digits using decimal arithmetic. The
process terminates in m steps if the given number has m+ 1 digits. It is a good
idea to insert a radix point to show which digits are being doubled, as shown in
the following example, in order to prevent embarrassing mistakes.

Example 1. Convert (5325121)8 to decimal.

5 .3 2 5 1 2 1
− 1 0

4 3.2 5 1 2 1
− 8 6

3 4 6.5 1 2 1
− 6 9 2

2 7 7 3.1 2 1
− 5 5 4 6

2 2 1 8 5.2 1
− 4 4 3 7 0

1 7 7 4 8 2.1
− 3 5 4 9 6 4

1 4 1 9 8 5 7 Answer: (1419857)10.

324 ARITHMETIC 4.4

A reasonably good check on the computations may be had by “casting out
ninesŤ: The sum of the digits of the decimal number must be congruent modulo 9
to the alternating sum and difference of the digits of the octal number, with the
rightmost digit of the latter given a plus sign. In the example above, we have
1 + 4 + 1 + 9 + 8 + 5 + 7 = 35, and 1 − 2 + 1 − 5 + 2 − 3 + 5 = −1; the
difference is 36 (a multiple of 9). If this test fails, it can be applied to the k + 1
leading digits after the kth step, and the error can be located using a “binary
searchŤ procedure; in other words, we can locate the error by Ąrst checking the
middle result, then using the same procedure on the Ąrst or second half of the
calculation, depending on whether the middle result is incorrect or correct.

The “casting-out-ninesŤ process is only about 89 percent reliable, because
there is one chance in nine that two random integers will differ by a multiple of
nine. An even better check is to convert the answer back to octal by using an
inverse method, which we shall now consider.

Converting decimal integers to octal. A similar procedure can be used for
the opposite conversion: Write down the given decimal number; then at the kth
step, double the k leading digits using octal arithmetic, and add these to the
k+ 1 leading digits using octal arithmetic. The process terminates in m steps if
the given number has m+ 1 digits.

Example 2. Convert (1419857)10 to octal.

1 .4 1 9 8 5 7
+ 2

1 6 .1 9 8 5 7
+ 3 4

2 1 5 .9 8 5 7
+ 4 3 2

2 6 1 3 .8 5 7
+ 5 4 2 6

3 3 5 6 6 .5 7
+ 6 7 3 5 4

4 2 5 2 4 1 .7
+ 1 0 5 2 5 0 2

5 3 2 5 1 2 1 Answer: (5325121)8.

(Notice that the nonoctal digits 8 and 9 enter into this octal computation.)
The answer can be checked as discussed above. This method was published by
Charles P. Rozier, IEEE Trans. EC-11 (1962), 708Ű709.

The two procedures just given are essentially Method 1b of the general
radix-conversion procedures. Doubling and subtracting in decimal notation is
like multiplying by 10 − 2 = 8; doubling and adding in octal notation is like
multiplying by 8 + 2 = 10. There is a similar method for hexadecimal/decimal
conversions, but it is a little more difficult since it involves multiplication by 6
instead of by 2.

4.4 RADIX CONVERSION 325

To keep these two methods straight in our minds, it is not hard to remember
that we must subtract to go from octal to decimal, since the decimal representa-
tion of a number is smaller; similarly we must add to go from decimal to octal.
The computations are performed using the radix of the answer, not the radix of
the given number, otherwise we couldn’t get the desired answer.

Converting fractions. No equally fast method of converting fractions manually
is known. The best way seems to be Method 2a, with doubling and adding
or subtracting to simplify the multiplications by 10 or by 8. In this case, we
reverse the addition-subtraction criterion, adding when we convert to decimal
and subtracting when we convert to octal; we also use the radix of the given
input number, not the radix of the answer, in this computation (see Examples
3 and 4). The process is about twice as hard as the method that we used for
integers.

Example 3. Convert (.14159)10 to octal.

.1 4 1 5 9
2 8 3 1 8−

1 .1 3 2 7 2
2 6 5 4 4−

1 .0 6 1 7 6
1 2 3 5 2−

0 .4 9 4 0 8
9 8 8 1 6−

3 .9 5 2 6 4
1 9 0 5 2 8−
7 .6 2 1 1 2

1 2 4 2 2 4−
4 .9 6 8 9 6 Answer: (.110374 . . .)8.

Example 4. Convert (.110374)8 to decimal.

.1 1 0 3 7 4
2 2 0 7 7 0 +

1.3 2 4 7 3 0
6 5 1 6 6 0 +

4.1 2 1 1 6 0
2 4 2 3 4 0 +

1.4 5 4 1 4 0
1 1 3 0 3 0 0 +
5.6 7 1 7 0 0

1 5 6 3 6 0 0 +
8.5 0 2 6 0 0

1 2 0 5 4 0 0 +
6.2 3 3 4 0 0 Answer: (.141586 . . .)10.

326 ARITHMETIC 4.4

D. Floating point conversion. When Ćoating point values are to be con-
verted, it is necessary to deal with both the exponent and the fraction parts
simultaneously, since conversion of the exponent will affect the fraction part.
Given the number f · 2e to be converted to decimal, we may express 2e in the
form F · 10E (usually by means of auxiliary tables), and then convert Ff to
decimal. Alternatively, we can multiply e by log10 2 and round this to the nearest
integer E; then divide f ·2e by 10E and convert the result. Conversely, given the
number F · 10E to be converted to binary, we may convert F and then multiply
it by the Ćoating point number 10E (again by using auxiliary tables). Obvious
techniques can be used to reduce the maximum size of the auxiliary tables by
using several multiplications and/or divisions, although this can cause rounding
errors to propagate. Exercise 17 considers the minimization of error.

E. Multiple-precision conversion. When converting extremely long numbers,
it is most convenient to start by converting blocks of digits, which can be handled
by single-precision techniques, and then to combine these blocks by using simple
multiple-precision techniques. For example, suppose that 10n is the highest
power of 10 less than the computer word size. Then:

a) To convert a multiple-precision integer from binary to decimal, divide it
repeatedly by 10n (thus converting from binary to radix 10n by Method 1a).
Single-precision operations will give the n decimal digits for each place of the
radix-10n representation.
b) To convert a multiple-precision fraction from binary to decimal, proceed

similarly, multiplying by 10n (that is, using Method 2a with B = 10n).
c) To convert a multiple-precision integer from decimal to binary, convert

blocks of n digits Ąrst; then use Method 1b to convert from radix 10n to binary.
d) To convert a multiple-precision fraction from decimal to binary, convert Ąrst

to radix 10n as in (c), then use Method 2b.

F. History and Bibliography. Radix-conversion techniques implicitly origi-
nated in ancient problems dealing with weights, measures, and currencies, where
mixed-radix systems were generally involved. Auxiliary tables were usually
prepared to help people make the conversions. During the seventeenth century,
when sexagesimal fractions were being supplanted by decimal fractions, it was
necessary to convert between the two systems in order to use existing books of
astronomical tables; a systematic method to transform fractions from radix 60
to radix 10 and vice versa was given in the 1667 edition of William Oughtred’s
Clavis Mathematicæ, Chapter 6, Section 18. (This material was not present
in the original 1631 edition of Oughtred’s book.) Conversion rules had already
been given by al-Kāsh̄ı of Samarkand in his Key to Arithmetic (1427), where
Methods 1a, 1b, and 2a are clearly explained [Istoriko-Mat. Issled. 7 (1954),
126Ű135], but his work was unknown in Europe. The 18th century American
mathematician Hugh Jones used the words “octavationŤ and “decimationŤ to
describe octal/decimal conversions, but his methods were not as clever as his
terminology. A. M. Legendre [Théorie des Nombres (Paris: 1798), 229] noted

4.4 RADIX CONVERSION 327

that positive integers may be conveniently converted to binary form if they are
repeatedly divided by 64.

In 1946, H. H. Goldstine and J. von Neumann gave prominent consideration
to radix conversion in their classic memoir, Planning and Coding Problems for
an Electronic Computing Instrument, because it was necessary to justify the use
of binary arithmetic; see John von Neumann, Collected Works 5 (New York:
Macmillan, 1963), 127Ű142. Another early discussion of radix conversion on
binary computers was published by F. Koons and S. Lubkin, Math. Comp. 3
(1949), 427Ű431, who suggested a rather unusual method. The Ąrst discussion
of Ćoating point conversion was given somewhat later by F. L. Bauer and K.
Samelson [Zeit. für angewandte Math. und Physik 4 (1953), 312Ű316].

The following articles are, similarly, of historic interest: A note by G. T.
Lake [CACM 5 (1962), 468Ű469] mentioned some hardware techniques for con-
version and gave clear examples. A. H. Stroud and D. Secrest [Comp. J. 6
(1963), 62Ű66] discussed conversion of multiple-precision Ćoating point numbers.
The conversion of unnormalized Ćoating point numbers, preserving the amount of
“signiĄcanceŤ implied by the representation, was discussed by H. Kanner [JACM
12 (1965), 242Ű246] and by N. Metropolis and R. L. Ashenhurst [Math. Comp.
19 (1965), 435Ű441]. See also K. Sikdar, Sankhyā B30 (1968), 315Ű334, and the
references cited in his paper.

Detailed subroutines for formatted input and output of integers and Ćoating
point numbers in the C programming language have been given by P. J. Plauger
in The Standard C Library (PrenticeŰHall, 1992), 301Ű331.

EXERCISES

x 1. [25] Generalize Method 1b so that it works with arbitrary mixed-radix notations,
converting

ambm−1 . . . b1b0 + · · ·+ a1b0 + a0 into AMBM−1 . . . B1B0 + · · ·+A1B0 +A0,

where 0 ≤ aj < bj and 0 ≤ AJ < BJ for 0 ≤ j < m and 0 ≤ J < M.
Give an example of your generalization by manually converting “3 days, 9 hours,

12 minutes, and 37 secondsŤ into long tons, hundredweights, stones, pounds, and
ounces. (Let one second equal one ounce. The British system of weights has 1 stone =
14 pounds, 1 hundredweight = 8 stone, 1 long ton = 20 hundredweight.) In other
words, let b0 = 60, b1 = 60, b2 = 24, m = 3, B0 = 16, B1 = 14, B2 = 8,
B3 = 20, M = 4; the problem is to Ąnd A4, . . . , A0 in the proper ranges such that
3b2b1b0 +9b1b0 +12b0 +37 = A4B3B2B1B0 +A3B2B1B0 +A2B1B0 +A1B0 +A0, using
a systematic method that generalizes Method 1b. (All arithmetic is to be done in a
mixed-radix system.)

2. [25] Generalize Method 1a so that it works with mixed-radix notations, as in
exercise 1, and give an example of your generalization by manually solving the same
conversion problem stated in exercise 1.

x 3. [25] (D. Taranto.) When fractions are being converted, there is no obvious way to
decide how many digits to give in the answer. Design a simple generalization of Method
2a that, given two positive radix-b fractions u and ϵ between 0 and 1, converts u to a
rounded radix-B equivalent U that has just enough places M to the right of the radix

328 ARITHMETIC 4.4

point to ensure that |U−u| < ϵ. (In particular if u is a multiple of b−m and ϵ = b−m/2,
the value of U will have just enough digits so that u can be recomputed exactly, given
U and m. Note that M might be zero; for example, if ϵ ≤ 1

2
and u > 1− ϵ, the proper

answer is U = 1.)

4. [M21] (a) Prove that every real number with a terminating binary representation
also has a terminating decimal representation. (b) Find a simple condition on the
positive integers b and B that is satisĄed if and only if every real number that has a
terminating radix-b representation also has a terminating radix-B representation.

5. [M20] Show that program (4) would still work if the instruction ŚLDX =10n=’ were
replaced by ŚLDX =c=’ for certain other constants c.

6. [30] Discuss using Methods 1a, 1b, 2a, and 2b when b or B is −2.

7. [M18] Given that 0 < α ≤ x ≤ α + 1/w and 0 ≤ u ≤ w, where u is an integer,
prove that ⌊ux⌋ is equal to either ⌊αu⌋ or ⌊αu⌋+ 1. Furthermore ⌊ux⌋ = ⌊αu⌋ exactly,
if u < αw and α−1 is an integer.

8. [24] Write a MIX program analogous to (1) that uses (5) and includes no division
instructions.

x 9. [M29] The purpose of this exercise is to compute ⌊u/10⌋ with binary shifting and
addition operations only, when u is a nonnegative integer. Let v0(u) = 3⌊u/2⌋+ 3 and

vk+1(u) = vk(u) + ⌊vk(u)/22k+2⌋ for k ≥ 0.

Given k, what is the smallest nonnegative integer u such that ⌊vk[u]/16⌋ ≠ ⌊u/10⌋?
10. [22] Table 1 shows how a binary-coded decimal number can be doubled by using
various shifting, extracting, and addition operations on a binary computer. Give an
analogous method that computes half of a binary-coded decimal number (throwing
away the remainder if the number is odd).

11. [16] Convert (57721)8 to decimal.

x 12. [22] Invent a rapid pencil-and-paper method for converting integers from ternary
notation to decimal, and illustrate your method by converting (1212011210210)3 into
decimal. How would you go from decimal to ternary?

x 13. [25] Assume that locations U + 1, U + 2, . . . , U + m contain a multiple-precision
fraction (.u−1u−2 . . . u−m)b, where b is the word size of MIX. Write a MIX routine that
converts this fraction to decimal notation, truncating it to 180 decimal digits. The
answer should be printed on two lines, with the digits grouped into 20 blocks of nine
each separated by blanks. (Use the CHAR instruction.)

x 14. [M27] (A. Schönhage.) The text’s method of converting multiple-precision in-
tegers requires an execution time of order n2 to convert an n-place integer, when
n is large. Show that it is possible to convert n-digit decimal integers into binary
notation in O(M(n) logn) steps, where M(n) is an upper bound on the number of
steps needed to multiply n-bit binary numbers that satisĄes the “smoothness conditionŤ
M(2n) ≥ 2M(n).

15. [M47] Can the upper bound on the time to convert large integers given in the
preceding exercise be substantially lowered? (See exercise 4.3.3Ű12.)

16. [41] Construct a fast linear iterative array for radix conversion from decimal to
binary (see Section 4.3.3E).

4.4 RADIX CONVERSION 329

17. [M40] Design “idealŤ Ćoating point conversion subroutines, taking p-digit decimal
numbers into P -digit binary numbers and vice versa, in both cases producing a true
rounded result in the sense of Section 4.2.2.

18. [HM34] (David W. Matula.) Let roundb(u, p) be the function of b, u, and p that
represents the best p-digit base b Ćoating point approximation to u, in the sense of
Section 4.2.2. Under the assumption that logB b is irrational and that the range of
exponents is unlimited, prove that

u = roundb(roundB(u, P), p)

holds for all p-digit base b Ćoating point numbers u if and only if BP−1 ≥ bp. (In
other words, an “idealŤ input conversion of u into an independent base B, followed by
an “idealŤ output conversion of this result, will always yield u again if and only if the
intermediate precision P is suitably large, as speciĄed by the formula above.)

x 19. [M23] Let the decimal number u = (u7 . . . u1u0)10 be represented as the binary-
coded decimal number U = (u7 . . . u1u0)16. Find appropriate constants ci and masksmi

so that the operation U ← U − ci(U &mi), repeated for i = 1, 2, 3, will convert U to
the binary representation of u, where “&Ť denotes extraction (bitwise AND).

330 ARITHMETIC 4.5

4.5. RATIONAL ARITHMETIC

It is often important to know that the answer to some numerical problem
is exactly 1/3, not a Ćoating point number that gets printed as “0.333333574Ť.
If arithmetic is done on fractions instead of on approximations to fractions,
many computations can be done entirely without any accumulated rounding

errors. This results in a comfortable feeling of security that is often lacking when
Ćoating point calculations have been made, and it means that the accuracy of
the calculation cannot be improved upon.

Irrationality is the square root of all evil.

Ů DOUGLAS HOFSTADTER, Metamagical Themas (1983)

4.5.1. Fractions

When fractional arithmetic is desired, the numbers can be represented as pairs
of integers, (u/u′), where u and u′ are relatively prime to each other and u′ > 0.
The number zero is represented as (0/1). In this form, (u/u′) = (v/v′) if and
only if u = v and u′ = v′.

Multiplication of fractions is, of course, easy; to form (u/u′) × (v/v′) =
(w/w′), we can simply compute uv and u′v′. The two products uv and u′v′

might not be relatively prime, but if d = gcd(uv, u′v′), the desired answer is
w = uv/d, w′ = u′v′/d. (See exercise 2.) Efficient algorithms to compute the
greatest common divisor are discussed in Section 4.5.2.

Another way to perform the multiplication is to Ąnd d1 = gcd(u, v′) and
d2 = gcd(u′, v); then the answer is w = (u/d1)(v/d2), w′ = (u′/d2)(v′/d1). (See
exercise 3.) This method requires two gcd calculations, but it is not really slower
than the former method; the gcd process involves a number of iterations that
is essentially proportional to the logarithm of its inputs, so the total number of
iterations needed to evaluate both d1 and d2 is essentially the same as the number
of iterations during the single calculation of d. Furthermore, each iteration in
the evaluation of d1 and d2 is potentially faster, because comparatively small
numbers are being examined. If u, u′, v, and v′ are single-precision quantities,
this method has the advantage that no double-precision numbers appear in the
calculation unless it is impossible to represent both of the answers w and w′ in
single-precision form.

Division may be done in a similar manner; see exercise 4.
Addition and subtraction are slightly more complicated. The obvious pro-

cedure is to set (u/u′) ± (v/v′) =

(uv′ ± u′v)/u′v′

and then to reduce this

fraction to lowest terms by calculating d = gcd(uv′ ± u′v, u′v′), as in the Ąrst
multiplication method. But again it is possible to avoid working with such large
numbers, if we start by calculating d1 = gcd(u′, v′). If d1 = 1, then the desired
numerator and denominator are w = uv′ ± u′v and w′ = u′v′. (According to
Theorem 4.5.2D, d1 will be 1 about 61 percent of the time, if the denominators
u′ and v′ are randomly distributed, so it is wise to single out this case.) If
d1 > 1, then let t = u(v′/d1)± v(u′/d1) and calculate d2 = gcd(t, d1); Ąnally the
answer is w = t/d2, w′ = (u′/d1)(v′/d2). (Exercise 6 proves that these values

4.5.1 FRACTIONS 331

of w and w′ are relatively prime to each other.) If single-precision numbers are
being used, this method requires only single-precision operations, except that
t may be a double-precision number or slightly larger (see exercise 7); since
gcd(t, d1) = gcd(tmod d1, d1), the calculation of d2 does not require double
precision.

For example, to compute (7/66) + (17/12), we form d1 = gcd(66, 12) = 6;
then t = 7 · 2 + 17 · 11 = 201, and d2 = gcd(201, 6) = 3, so the answer is

201
3

66
6
· 12

3

= 67/44.

To help check out subroutines for rational arithmetic, inversion of matrices
with known inverses (like Cauchy matrices, exercise 1.2.3Ű41) is suggested.

Experience with fractional calculations shows that in many cases the num-
bers grow to be quite large. So if u and u′ are intended to be single-precision
numbers for each fraction (u/u′), it is important to include tests for overĆow
in each of the addition, subtraction, multiplication, and division subroutines.
For numerical problems in which perfect accuracy is important, a set of subrou-
tines for fractional arithmetic with arbitrary precision allowed in numerator and
denominator is very useful.

The methods of this section extend also to other number Ąelds besides the
rational numbers; for example, we could do arithmetic on quantities of the form
(u + u′

√
5)/u′′, where u, u′, u′′ are integers, gcd(u, u′, u′′) = 1, and u′′ > 0; or

on quantities of the form (u+ u′
3
√

2 + u′′
3
√

4)/u′′′, etc.
Instead of insisting on exact calculations with fractions, it is interesting to

consider also “Ąxed slashŤ and “Ćoating slashŤ numbers, which are analogous to
Ćoating point numbers but based on rational fractions instead of radix-oriented
fractions. In a binary Ąxed-slash scheme, the numerator and denominator of
a representable fraction each consist of at most p bits, for some given p. In a
Ćoating-slash scheme, the sum of numerator bits plus denominator bits must be
a total of at most q, for some given q, and another Ąeld of the representation is
used to indicate how many of these q bits belong to the numerator. InĄnity can
be represented as (1/0). To do arithmetic on such numbers, we deĄne x ⊕ y =
round(x+y), x⊖y = round(x−y), etc., where round(x) = x if x is representable,
otherwise it is one of the two representable numbers that surround x.

It may seem at Ąrst that the best deĄnition of round(x) would be to choose
the representable number that is closest to x, by analogy with the way we round
in Ćoating point arithmetic. But experience has shown that it is best to bias our
rounding towards “simpleŤ numbers, since numbers with small numerator and
denominator occur much more often than complicated fractions do. We want
more numbers to round to 1

2 than to 127
255 . The rounding rule that turns out to

be most successful in practice is called “mediant roundingŤ: If (u/u′) and (v/v′)
are adjacent representable numbers, so that whenever u/u′ ≤ x ≤ v/v′ we must
have round(x) equal to (u/u′) or (v/v′), the mediant rounding rule says that

round(x) =
u

u′
for x <

u+ v

u′ + v′
, round(x) =

v

v′
for x >

u+ v

u′ + v′
. (1)

332 ARITHMETIC 4.5.1

If x = (u+ v)/(u′ + v′) exactly, we let round(x) be the neighboring fraction with
the smallest denominator (or, if u′ = v′, with the smallest numerator). Exercise
4.5.3Ű43 shows that it is not difficult to implement mediant rounding efficiently.

For example, suppose we are doing Ąxed slash arithmetic with p = 8, so
that the representable numbers (u/u′) have −128 < u < 128 and 0 ≤ u′ < 256
and u ⊥ u′. This isn’t much precision, but it is enough to give us a feel for
slash arithmetic. The numbers adjacent to 0 = (0/1) are (−1/255) and (1/255);
according to the mediant rounding rule, we will therefore have round(x) = 0
if and only if |x| ≤ 1/256. Suppose we have a calculation that would take the
overall form 22

7 = 314
159 + 1300

1113 if we were working in exact rational arithmetic, but
the intermediate quantities have had to be rounded to representable numbers.
In this case 314

159 would round to (79/40) and 1300
1113 would round to (7/6). The

rounded terms sum to 79
40 + 7

6 = 377
120 , which rounds to (22/7); so we have obtained

the correct answer even though three roundings were required. This example was
not specially contrived. When the answer to a problem is a simple fraction, slash
arithmetic tends to make the intermediate rounding errors cancel out.

Exact representation of fractions within a computer was Ąrst discussed in
the literature by P. Henrici, JACM 3 (1956), 6Ű9. Fixed and Ćoating slash
arithmetic were proposed by David W. Matula, in Applications of Number
Theory to Numerical Analysis, edited by S. K. Zaremba (New York: Academic
Press, 1972), 486Ű489. Further developments of the idea are discussed by Matula
and Kornerup in Proc. IEEE Symp. Computer Arith. 4 (1978), 29Ű38, 39Ű47;
Lecture Notes in Comp. Sci. 72 (1979), 383Ű397; Computing, Suppl. 2 (1980),
85Ű111; IEEE Trans. C-32 (1983), 378Ű388; IEEE Trans. C-34 (1985), 3Ű18;
IEEE Trans. C-39 (1990), 1106Ű1115.

EXERCISES

1. [15] Suggest a reasonable computational method for comparing two fractions, to
test whether or not (u/u′) < (v/v′).

2. [M15] Prove that if d = gcd(u, v) then u/d and v/d are relatively prime.

3. [M20] Prove that u ⊥ u′ and v ⊥ v′ implies gcd(uv, u′v′) = gcd(u, v′) gcd(u′, v).

4. [11] Design a division algorithm for fractions, analogous to the second multipli-
cation method of the text. (Note that the sign of v must be considered.)

5. [10] Compute (17/120) + (−27/70) by the method recommended in the text.

x 6. [M23] Show that u ⊥ u′ and v ⊥ v′ implies gcd(uv′ + vu′, u′v′) = d1d2, where
d1 = gcd(u′, v′) and d2 = gcd(d1, u(v′/d1) + v(u′/d1)). (Hence if d1 = 1 we have
(uv′ + vu′) ⊥ u′v′.)

7. [M22] How large can the absolute value of the quantity t become, in the addition-
subtraction method recommended in the text, if the numerators and denominators of
the inputs are less than N in absolute value?

x 8. [22] Discuss using (1/0) and (−1/0) as representations for∞ and −∞, and/or as
representations of overĆow.

9. [M23] If 1 ≤ u′, v′ < 2n, show that ⌊22nu/u′⌋ = ⌊22nv/v′⌋ implies u/u′ = v/v′.

4.5.2 THE GREATEST COMMON DIVISOR 333

10. [41] Extend the subroutines suggested in exercise 4.3.1Ű34 so that they deal with
“arbitraryŤ rational numbers.

11. [M23] Consider fractions of the form (u+u′√5)/u′′, where u, u′, u′′ are integers,
gcd(u, u′, u′′) = 1, and u′′ > 0. Explain how to divide two such fractions and to obtain
a quotient having the same form.

12. [M16] What is the largest Ąnite Ćoating slash number, given a bound q on the
numerator length plus the denominator length? Which numbers round to (0/1)?

13. [20] (Matula and Kornerup.) Discuss the representation of Ćoating slash numbers
in a 32-bit word.

14. [M23] Explain how to compute the exact number of pairs of integers (u, u′) such
that M1 < u ≤M2 and N1 < u′ ≤ N2 and u ⊥ u′. (This can be used to determine how
many numbers are representable in slash arithmetic. According to Theorem 4.5.2D,
the number will be approximately (6/π2)(M2 −M1)(N2 −N1).)

15. [42] Modify one of the compilers at your installation so that it will replace all
Ćoating point calculations by Ćoating slash calculations. Experiment with the use of
slash arithmetic by running existing programs that were written by programmers who
actually had Ćoating point arithmetic in mind. (When special subroutines like square
root or logarithm are called, your system should automatically convert slash numbers
to Ćoating point form before the subroutine is invoked, then back to slash form again
afterwards. There should be a new option to print slash numbers in a fractional format;
however, you should also print slash numbers in decimal notation as usual, if no changes
are made to a user’s source program.) Are the results better or worse, when Ćoating
slash numbers are substituted?

16. [40] Experiment with interval arithmetic on slash numbers.

4.5.2. The Greatest Common Divisor

If u and v are integers, not both zero, we say that their greatest common divisor,
gcd(u, v), is the largest integer that evenly divides both u and v. This deĄnition
makes sense, because if u ̸= 0 then no integer greater than |u| can evenly divide u,
but the integer 1 does divide both u and v; hence there must be a largest integer
that divides them both. When u and v are both zero, every integer evenly divides
zero, so the deĄnition above does not apply; it is convenient to set

gcd(0, 0) = 0. (1)

The deĄnitions just given obviously imply that

gcd(u, v) = gcd(v, u), (2)

gcd(u, v) = gcd(−u, v), (3)

gcd(u, 0) = |u|. (4)

In the previous section, we reduced the problem of expressing a rational
number in lowest terms to the problem of Ąnding the greatest common divisor
of its numerator and denominator. Other applications of the greatest common
divisor have been mentioned for example in Sections 3.2.1.2, 3.3.3, 4.3.2, 4.3.3.
So the concept of gcd(u, v) is important and worthy of serious study.

334 ARITHMETIC 4.5.2

The least common multiple of two integers u and v, written lcm(u, v), is
a related idea that is also important. It is deĄned to be the smallest positive
integer that is an integer multiple of both u and v; and lcm(u, 0) = lcm(0, v) = 0.
The classical method for teaching children how to add fractions u/u′ + v/v′ is
to train them to Ąnd the “least common denominator,Ť which is lcm(u′, v′).

According to the “fundamental theorem of arithmeticŤ (proved in exercise
1.2.4Ű21), each positive integer u can be expressed in the form

u = 2u23u35u57u711u11 . . . =

p prime

pup , (5)

where the exponents u2, u3, . . . are uniquely determined nonnegative integers,
and where all but a Ąnite number of the exponents are zero. From this canonical
factorization of a positive integer, we immediately obtain one way to compute
the greatest common divisor of u and v: By (2), (3), and (4), we may assume
that u and v are positive integers, and if both of them have been canonically
factored into primes we have

gcd(u, v) =

p prime

pmin(up,vp), (6)

lcm(u, v) =

p prime

pmax(up,vp). (7)

Thus, for example, the greatest common divisor of u = 7000 = 23 · 53 · 7 and
v = 4400 = 24 · 52 · 11 is 2min(3,4) 5min(3,2) 7min(1,0) 11min(0,1) = 23 · 52 = 200. The
least common multiple of the same two numbers is 24 · 53 · 7 · 11 = 154000.

From formulas (6) and (7) we can easily prove a number of basic identities
concerning the gcd and the lcm:

gcd(u, v)w = gcd(uw, vw), if w ≥ 0; (8)

lcm(u, v)w = lcm(uw, vw), if w ≥ 0; (9)

u · v = gcd(u, v) · lcm(u, v), if u, v ≥ 0; (10)

gcd

lcm(u, v), lcm(u,w)

= lcm

u, gcd(v, w)

; (11)

lcm

gcd(u, v), gcd(u,w)

= gcd

u, lcm(v, w)

. (12)

The latter two formulas are “distributive lawsŤ analogous to the familiar identity
uv + uw = u(v + w). Equation (10) reduces the calculation of gcd(u, v) to the
calculation of lcm(u, v), and conversely.

Euclid’s algorithm. Although Eq. (6) is useful for theoretical purposes, it is
generally no help for calculating a greatest common divisor in practice, because
it requires that we Ąrst determine the canonical factorization of u and v. There
is no known way to Ąnd the prime factors of an integer very rapidly (see Section
4.5.4). But fortunately the greatest common divisor of two integers can be found
efficiently without factoring, and in fact such a method was discovered more
than 2250 years ago; it is Euclid’s algorithm, which we have already examined
in Sections 1.1 and 1.2.1.

4.5.2 THE GREATEST COMMON DIVISOR 335

Euclid’s algorithm is found in Book 7, Propositions 1 and 2 of his Elements
(c. 300 B.C.), but it probably wasn’t his own invention. Some scholars believe
that the method was known up to 200 years earlier, at least in its subtractive
form, and it was almost certainly known to Eudoxus (c. 375 B.C.); see K. von
Fritz, Ann. Math. (2) 46 (1945), 242Ű264. Aristotle (c. 330 B.C.) hinted at it
in his Topics, 158b, 29Ű35. However, very little hard evidence about such early
history has survived [see W. R. Knorr, The Evolution of the Euclidean Elements
(Dordrecht: 1975)].

We might call Euclid’s method the granddaddy of all algorithms, because it
is the oldest nontrivial algorithm that has survived to the present day. (The chief
rival for this honor is perhaps the ancient Egyptian method for multiplication,
which was based on doubling and adding, and which forms the basis for efficient
calculation of nth powers as explained in Section 4.6.3. But the Egyptian
manuscripts merely give examples that are not completely systematic, and the
examples were certainly not stated systematically; the Egyptian method is there-
fore not quite deserving of the name “algorithm.Ť Several ancient Babylonian
methods, for doing such things as solving special sets of quadratic equations in
two variables, are also known. Genuine algorithms are involved in this case,
not just special solutions to the equations for certain input parameters; even
though the Babylonians invariably presented each method in conjunction with an
example worked with particular input data, they regularly explained the general
procedure in the accompanying text. [See D. E. Knuth, CACM 15 (1972), 671Ű
677; 19 (1976), 108.] Many of these Babylonian algorithms predate Euclid by
1500 years, and they are the earliest known instances of written procedures for
mathematics. But they do not have the stature of Euclid’s algorithm, since
they do not involve iteration and since they have been superseded by modern
algebraic methods.)

In view of the importance of Euclid’s algorithm, for historical as well as
practical reasons, let us now consider how Euclid himself treated it. Paraphrased
into modern terminology, this is essentially what he wrote:

Proposition. Given two positive integers, Ąnd their greatest common divisor.

Let A and C be the two given positive integers; it is required to Ąnd their greatest
common divisor. If C divides A, then C is a common divisor of C and A, since it
also divides itself. And it clearly is in fact the greatest, since no greater number
than C will divide C.

But if C does not divide A, then continually subtract the lesser of the numbers
A, C from the greater, until some number is left that divides the previous one.
This will eventually happen, for if unity is left, it will divide the previous number.

Now let E be the positive remainder of A divided by C; let F be the positive
remainder of C divided by E; and suppose that F is a divisor of E. Since F
divides E and E divides C − F , F also divides C − F ; but it also divides itself,
so it divides C. And C divides A−E; therefore F also divides A−E. But it also
divides E; therefore it divides A. Hence it is a common divisor of A and C.

I now claim that it is also the greatest. For if F is not the greatest common divisor
of A and C, some larger number will divide them both. Let such a number be G.

336 ARITHMETIC 4.5.2

Now since G divides C while C divides A−E, G divides A−E. G also divides the
whole of A, so it divides the remainder E. But E divides C − F ; therefore G also
divides C − F . And G also divides the whole of C, so it divides the remainder F ;
that is, a greater number divides a smaller one. This is impossible.

Therefore no number greater than F will divide A and C, so F is their greatest
common divisor.

Corollary. This argument makes it evident that any number dividing two num-
bers divides their greatest common divisor. Q.E.D.

Euclid’s statements have been simpliĄed here in one nontrivial respect: Greek
mathematicians did not regard unity as a “divisorŤ of another positive integer.
Two positive integers were either both equal to unity, or they were relatively
prime, or they had a greatest common divisor. In fact, unity was not even
considered to be a “number,Ť and zero was of course nonexistent. These rather
awkward conventions made it necessary for Euclid to duplicate much of his
discussion, and he gave two separate propositions that are each essentially like
the one appearing here.

In his discussion, Euclid Ąrst suggests subtracting the smaller of the two
current numbers from the larger, repeatedly, until we get two numbers where one
is a multiple of the other. But in the proof he really relies on taking the remainder
of one number divided by another; and since he has no simple concept of zero,
he cannot speak of the remainder when one number divides the other. It is
reasonable to say that he imagines each division (not the individual subtractions)
as a single step of the algorithm, and hence an “authenticŤ rendition of his
algorithm can be phrased as follows:

Algorithm E (Original Euclidean algorithm). Given two integers A and C
greater than unity, this algorithm Ąnds their greatest common divisor.

E1. [Is A divisible by C?] If C divides A, the algorithm terminates with C as
the answer.

E2. [Replace A by remainder.] If Amod C is equal to unity, the given numbers
were relatively prime, so the algorithm terminates. Otherwise replace the
pair of values (A,C) by (C, Amod C) and return to step E1.

Euclid’s “proofŤ quoted above is especially interesting because it is not really
a proof at all! He veriĄes the result of the algorithm only if step E1 is performed
once or thrice. Surely he must have realized that step E1 could take place more
than three times, although he made no mention of such a possibility. Not having
the notion of a proof by mathematical induction, he could only give a proof for a
Ąnite number of cases. (In fact, he often proved only the case n = 3 of a theorem
that he wanted to establish for general n.) Although Euclid is justly famous for
the great advances he made in the art of logical deduction, techniques for giving
valid proofs by induction were not discovered until many centuries later, and the
crucial ideas for proving the validity of algorithms are only now becoming really
clear. (See Section 1.2.1 for a complete proof of Euclid’s algorithm, together
with a short discussion of general proof procedures for algorithms.)

4.5.2 THE GREATEST COMMON DIVISOR 337

It is worth noting that this algorithm for Ąnding the greatest common divisor
was chosen by Euclid to be the very Ąrst step in his development of the theory
of numbers. The same order of presentation is still in use today in modern
textbooks. Euclid also gave a method (Proposition 34) to Ąnd the least common
multiple of two integers u and v, namely to divide u by gcd(u, v) and to multiply
the result by v; this is equivalent to Eq. (10).

If we avoid Euclid’s bias against the numbers 0 and 1, we can reformulate
Algorithm E in the following way.

Algorithm A (Modern Euclidean algorithm). Given nonnegative integers u
and v, this algorithm Ąnds their greatest common divisor.

Note: The greatest

common divisor of arbitrary integers u and v may be obtained by applying this
algorithm to |u| and |v|, because of Eqs. (2) and (3).

A1. [v = 0?] If v = 0, the algorithm terminates with u as the answer.
A2. [Take umod v.] Set r ← umod v, u ← v, v ← r, and return to A1. (The

operations of this step decrease the value of v, but they leave gcd(u, v)
unchanged.)

For example, we may calculate gcd(40902, 24140) as follows:

gcd(40902, 24140) = gcd(24140, 16762) = gcd(16762, 7378)

= gcd(7378, 2006) = gcd(2006, 1360) = gcd(1360, 646)

= gcd(646, 68) = gcd(68, 34) = gcd(34, 0) = 34.

The validity of Algorithm A follows readily from Eq. (4) and the fact that

gcd(u, v) = gcd(v, u− qv), (13)

if q is any integer. Equation (13) holds because any common divisor of u and v
is a divisor of both v and u− qv, and, conversely, any common divisor of v and
u− qv must divide both u and v.

The following MIX program illustrates the fact that Algorithm A can easily
be implemented on a computer:

Program A (Euclid’s algorithm). Assume that u and v are single-precision,
nonnegative integers, stored respectively in locations U and V; this program puts
gcd(u, v) into rA.

LDX U 1 rX← u.
JMP 2F 1

1H STX V T v ← rX.
SRAX 5 T rAX← rA.
DIV V T rX← rAX mod v.

2H LDA V 1 + T rA← v.
JXNZ 1B 1 + T Done if rX = 0.

The running time for this program is 19T + 6 cycles, where T is the number
of divisions performed. The discussion in Section 4.5.3 shows that we may take
T = 0.842766 lnN + 0.06 as an approximate average value, when u and v are
independently and uniformly distributed in the range 1 ≤ u, v ≤ N.

338 ARITHMETIC 4.5.2

A binary method. Since Euclid’s patriarchal algorithm has been used for so
many centuries, it is rather surprising that it might not be the best way to Ąnd
the greatest common divisor after all. A quite different gcd algorithm, primarily
suited to binary arithmetic, was devised by Josef Stein in 1961 [see J. Comp.
Phys. 1 (1967), 397Ű405]. This new algorithm requires no division instruction; it
relies solely on the operations of subtraction, parity testing, and halving of even
numbers (which corresponds to a right shift in binary notation).

The binary gcd algorithm is based on four simple facts about positive inte-
gers u and v:
a) If u and v are both even, then gcd(u, v) = 2 gcd(u/2, v/2). [See Eq. (8).]
b) If u is even and v is odd, then gcd(u, v) = gcd(u/2, v). [See Eq. (6).]
c) As in Euclid’s algorithm, gcd(u, v) = gcd(u− v, v). [See Eqs. (13), (2).]
d) If u and v are both odd, then u− v is even, and |u− v| < max(u, v).

Algorithm B (Binary gcd algorithm). Given positive integers u and v, this
algorithm Ąnds their greatest common divisor.
B1. [Find power of 2.] Set k ← 0, and then repeatedly set k ← k + 1, u← u/2,

v ← v/2, zero or more times until u and v are not both even.
B2. [Initialize.] (Now the original values of u and v have been divided by 2k,

and at least one of their present values is odd.) If u is odd, set t← −v and
go to B4. Otherwise set t← u.

B3. [Halve t.] (At this point, t is even, and nonzero.) Set t← t/2.
B4. [Is t even?] If t is even, go back to B3.
B5. [Reset max(u, v).] If t > 0, set u← t; otherwise set v ← −t. (The larger of

u and v has been replaced by |t|, except perhaps during the Ąrst time this
step is performed.)

B6. [Subtract.] Set t← u− v. If t ̸= 0, go back to B3. Otherwise the algorithm
terminates with u · 2k as the output.

As an example of Algorithm B, let us consider u = 40902, v = 24140, the
same numbers we used when trying out Euclid’s algorithm. Step B1 sets k ← 1,
u← 20451, v ← 12070. Then t is set to −12070, and replaced by −6035; then v
is replaced by 6035, and the computation proceeds as follows:

u v t

20451 6035 +14416, +7208, +3604, +1802, +901;
901 6035 −5134, −2567;
901 2567 −1666, −833;
901 833 +68, +34, +17;
17 833 −816, −408, −204, −102, −51;
17 51 −34, −17;
17 17 0.

The answer is 17 · 21 = 34. A few more iterations were necessary here than
we needed with Algorithm A, but each iteration was somewhat simpler since no
division steps were used.

4.5.2 THE GREATEST COMMON DIVISOR 339

Yes
No

u= v

u 6= v

B1. Find power of 2

B2. Initialize B3. Halve t B4. Is t even? B5. Reset max(u, v)

B6. Subtract

Fig. 9. Binary algorithm for the greatest common divisor.

A MIX program for Algorithm B requires a bit more code than for Algo-
rithm A, but the steps are elementary. In order to make such a program fairly
typical of a binary computer’s representation of Algorithm B, let us assume that
MIX is extended to include the following operators:

• SLB (shift left AX binary). C = 6; F = 6.
The contents of registers A and X are “shifted leftŤ M binary places; that is,
|rAX| ← |2M rAX|modB10, where B is the byte size. (As with all MIX shift
commands, the signs of rA and rX are not affected.)

• SRB (shift right AX binary). C = 6; F = 7.
The contents of registers A and X are “shifted rightŤ M binary places; that is,
|rAX| ← ⌊|rAX|/2M⌋.
• JAE, JAO (jump A even, jump A odd). C = 40; F = 6, 7, respectively.
A JMP occurs if rA is even or odd, respectively.

• JXE, JXO (jump X even, jump X odd). C = 47; F = 6, 7, respectively.
Analogous to JAE, JAO.

Program B (Binary gcd algorithm). Assume that u and v are single-precision
positive integers, stored respectively in locations U and V; this program uses
Algorithm B to put gcd(u, v) into rA. Register assignments: rA ≡ t, rI1 ≡ k.

01 ABS EQU 1:5
02 B1 ENT1 0 1 B1. Find power of 2.
03 LDX U 1 rX← u.
04 LDAN V 1 rA← −v.
05 JMP 1F 1
06 2H SRB 1 A Halve rA, rX.
07 INC1 1 A k ← k + 1.
08 STX U A u← u/2.
09 STA V(ABS) A v ← v/2.
10 1H JXO B4 1 +A To B4 with t← −v if u is odd.
11 B2 JAE 2B B +A B2. Initialize.

340 ARITHMETIC 4.5.2

12 LDA U B t← u.
13 B3 SRB 1 D B3. Halve t.
14 B4 JAE B3 1−B +D B4. Is t even?
15 B5 JAN 1F C B5. Reset max(u, v).
16 STA U E If t > 0, set u← t.
17 SUB V E t← u− v.
18 JMP 2F E
19 1H STA V(ABS) C − E If t < 0, set v ← −t.
20 B6 ADD U C − E B6. Subtract.
21 2H JANZ B3 C To B3 if t ̸= 0.
22 LDA U 1 rA← u.
23 ENTX 0 1 rX← 0.
24 SLB 0,1 1 rA← 2k · rA.

The running time of this program is

9A+ 2B + 6C + 3D + E + 13

units, where A = k, B = 1 if t ← u in step B2 (otherwise B = 0), C is the
number of subtraction steps, D is the number of halvings in step B3, and E is
the number of times t > 0 in step B5. Calculations discussed later in this section
imply that we may take A = 1

3 , B = 1
3 , C = 0.71N − 0.5, D = 1.41N − 2.7, and

E = 0.35N − 0.4 as average values for these quantities, assuming random inputs
u and v in the range 1 ≤ u, v < 2N . The total running time is therefore about
8.8N+5.2 cycles, compared to about 11.1N+7.1 for Program A under the same
assumptions. The worst possible running time for u and v in this range occurs
when A = 0, B = 1, C = N , D = 2N − 2, E = N − 1; this amounts to 13N + 8
cycles. (The corresponding value for Program A is 26.8N + 19.)

Thus the greater speed of the iterations in Program B, due to the simplicity
of the operations, compensates for the greater number of iterations required. We
have found that the binary algorithm is about 20 percent faster than Euclid’s
algorithm on the MIX computer. Of course, the situation may be different
on other computers, and in any event both programs are quite efficient; but
it appears that not even a procedure as venerable as Euclid’s algorithm can
withstand progress.

The binary gcd algorithm itself might have a distinguished pedigree, since
it may well have been known in ancient China. Chapter 1, Section 6 of a classic
text called Chiu Chang Suan Shu, the “Nine Chapters on ArithmeticŤ (c. 1st
century A.D.), gives the following method for reducing a fraction to lowest terms:

If halving is possible, take half.
Otherwise write down the denominator and the numerator, and subtract the
smaller from the greater.
Repeat until both numbers are equal.
Simplify with this common value.

If the repeat instruction means to go back to the halving step instead of to
repeat the subtraction step Ů this point isn’t clear Ů the method is essentially
Algorithm B. [See Y. Mikami, The Development of Mathematics in China

4.5.2 THE GREATEST COMMON DIVISOR 341

and Japan (Leipzig: 1913), 11; K. Vogel, Neun Bücher arithmetischer Technik
(Braunschweig: Vieweg, 1968), 8.]

V. C. Harris [Fibonacci Quarterly 8 (1970), 102Ű103; see also V. A. Le-
besgue, J. Math. Pures Appl. 12 (1847), 497Ű520] has suggested an interesting
cross between Euclid’s algorithm and the binary algorithm. If u and v are odd,
with u ≥ v > 0, we can always write

u = qv ± r

where 0 ≤ r < v and r is even; if r ̸= 0 we set r ← r/2 until r is odd, then set
u← v, v ← r and repeat the process. In subsequent iterations, q ≥ 3.

Extensions. We can extend the methods used to calculate gcd(u, v) in order to
solve some slightly more difficult problems. For example, assume that we want
to compute the greatest common divisor of n integers u1, u2, . . . , un.

One way to calculate gcd(u1, u2, . . . , un), assuming that the u’s are all
nonnegative, is to extend Euclid’s algorithm in the following way: If all uj are
zero, the greatest common divisor is taken to be zero; otherwise if only one uj is
nonzero, it is the greatest common divisor; otherwise replace uk by uk mod uj for
all k ̸= j, where uj is the minimum of the nonzero u’s, and repeat the process.

The algorithm sketched in the preceding paragraph is a natural generaliza-
tion of Euclid’s method, and it can be justiĄed in a similar manner. But there
is a simpler method available, based on the easily veriĄed identity

gcd(u1, u2, . . . , un) = gcd

u1, gcd(u2, . . . , un)

. (14)

To calculate gcd(u1, u2, . . . , un), we may therefore proceed as follows:

Algorithm C (Greatest common divisor of n integers). Given integers u1, u2,
. . . , un, where n ≥ 1, this algorithm computes their greatest common divisor,
using an algorithm for the case n = 2 as a subroutine.

C1. Set d← un, k ← n− 1.

C2. If d ̸= 1 and k > 0, set d← gcd(uk, d) and k ← k − 1 and repeat this step.
Otherwise d = gcd(u1, . . . , un).

This method reduces the calculation of gcd(u1, . . . , un) to repeated calculations
of the greatest common divisor of two numbers at a time. It makes use of the fact
that gcd(u1, . . . , uk, 1) = 1; and this will be helpful, since we will already have
gcd(un−1, un) = 1 more than 60 percent of the time, if un−1 and un are chosen
at random. In most cases the value of d will decrease rapidly during the Ąrst few
stages of the calculation, and this will make the remainder of the computation
quite fast. Here Euclid’s algorithm has an advantage over Algorithm B, because
its running time is primarily governed by the value of min(u, v), while the running
time for Algorithm B is primarily governed by max(u, v); it would be reasonable
to perform one iteration of Euclid’s algorithm, replacing u by umod v if u is
much larger than v, and then to continue with Algorithm B.

342 ARITHMETIC 4.5.2

The assertion that gcd(un−1, un) will be equal to unity more than 60 percent
of the time for random inputs is a consequence of the following well-known result
of number theory:

Theorem D. [G. Lejeune Dirichlet, Abhandlungen Königlich Preuß. Akad.
Wiss. (1849), 69Ű83.] If u and v are integers chosen at random, the probability
that gcd(u, v) = 1 is 6/π2 ≈ .60793.

A precise formulation of this theorem, which deĄnes carefully what is meant
by being “chosen at random,Ť appears in exercise 10 with a rigorous proof. Let
us content ourselves here with a heuristic argument that shows why the theorem
is plausible.

If we assume, without proof, the existence of a well-deĄned probability p
that u ⊥ v, then we can determine the probability that gcd(u, v) = d for any
positive integer d, because gcd(u, v) = d if and only if u is a multiple of d and
v is a multiple of d and u/d ⊥ v/d. Thus the probability that gcd(u, v) = d is
equal to 1/d times 1/d times p, namely p/d2. Now let us sum these probabilities
over all possible values of d; we should get

1 =

d≥1

p/d2 = p

1 + 1

4 + 1
9 + 1

16 + · · ·

.

Since the sum 1 + 1
4 + 1

9 + · · · = H
(2)
∞ is equal to π2/6 by Eq. 1.2.7Ű(7), we need

p = 6/π2 in order to make this equation come out right.

Euclid’s algorithm can be extended in another important way: We can
calculate integers u′ and v′ such that

uu′ + vv′ = gcd(u, v) (15)

at the same time gcd(u, v) is being calculated. This extension of Euclid’s algo-
rithm can be described conveniently in vector notation:

Algorithm X (Extended Euclid’s algorithm). Given nonnegative integers u
and v, this algorithm determines a vector (u1, u2, u3) such that uu1 + vu2 =
u3 = gcd(u, v). The computation makes use of auxiliary vectors (v1, v2, v3),
(t1, t2, t3); all vectors are manipulated in such a way that the relations

ut1 + vt2 = t3, uu1 + vu2 = u3, uv1 + vv2 = v3 (16)

hold throughout the calculation.

X1. [Initialize.] Set (u1, u2, u3)← (1, 0, u), (v1, v2, v3)← (0, 1, v).

X2. [Is v3 = 0?] If v3 = 0, the algorithm terminates.

X3. [Divide, subtract.] Set q ← ⌊u3/v3⌋, and then set

(t1, t2, t3)← (u1, u2, u3)− (v1, v2, v3)q,

(u1, u2, u3)← (v1, v2, v3), (v1, v2, v3)← (t1, t2, t3).

Return to step X2.

4.5.2 THE GREATEST COMMON DIVISOR 343

For example, let u = 40902, v = 24140. At step X2 we have

q u1 u2 u3 v1 v2 v3

Ů 1 0 40902 0 1 24140
1 0 1 24140 1 −1 16762
1 1 −1 16762 −1 2 7378
2 −1 2 7378 3 −5 2006
3 3 −5 2006 −10 17 1360
1 −10 17 1360 13 −22 646
2 13 −22 646 −36 61 68
9 −36 61 68 337 −571 34
2 337 −571 34 −710 1203 0

The solution is therefore 337 · 40902− 571 · 24140 = 34 = gcd(40902, 24140).

Algorithm X can be traced to the Āryabhat. ı̄ya (A.D. 499) by Āryabhat.a of
northern India. His description was rather cryptic, but later commentators such
as Bhāskara I in the seventh century clariĄed the rule, which was called kut.t.aka

(“the pulverizerŤ). [See B. Datta and A. N. Singh, History of Hindu Mathematics
2 (Lahore: Motilal Banarsi Das, 1938), 89Ű116.] Its validity follows from (16)
and the fact that the algorithm is identical to Algorithm A with respect to
its manipulation of u3 and v3; a detailed proof of Algorithm X is discussed in
Section 1.2.1. Gordon H. Bradley has observed that we can avoid a good deal
of the calculation in Algorithm X by suppressing u2, v2, and t2; then u2 can be
determined afterwards using the relation uu1 + vu2 = u3.

Exercise 15 shows that the values of |u1|, |u2|, |v1|, and |v2| remain bounded
by the size of the inputs u and v. Algorithm B, which computes the greatest
common divisor using properties of binary notation, can be extended in a similar
way; see exercise 39. For some instructive extensions to Algorithm X, see
exercises 18 and 19 in Section 4.6.1.

The ideas underlying Euclid’s algorithm can also be applied to Ąnd a general

solution in integers of any set of linear equations with integer coefficients. For
example, suppose that we want to Ąnd all integers w, x, y, z that satisfy the two
equations

10w + 3x+ 3y + 8z = 1, (17)

6w − 7x − 5z = 2. (18)

We can introduce a new variable

⌊10/3⌋w + ⌊3/3⌋x+ ⌊3/3⌋y + ⌊8/3⌋z = 3w + x+ y + 2z = t1,

and use it to eliminate y; Eq. (17) becomes

(10 mod 3)w + (3 mod 3)x+ 3t1 + (8 mod 3)z = w + 3t1 + 2z = 1, (19)

and Eq. (18) remains unchanged. The new equation (19) may be used to elim-
inate w, and (18) becomes

6(1− 3t1 − 2z)− 7x− 5z = 2;

344 ARITHMETIC 4.5.2

that is,
7x+ 18t1 + 17z = 4. (20)

Now as before we introduce a new variable

x+ 2t1 + 2z = t2

and eliminate x from (20):

7t2 + 4t1 + 3z = 4. (21)

Another new variable can be introduced in the same fashion, in order to eliminate
the variable z, which has the smallest coefficient:

2t2 + t1 + z = t3.

Eliminating z from (21) yields

t2 + t1 + 3t3 = 4, (22)

and this equation, Ąnally, can be used to eliminate t2. We are left with two
independent variables, t1 and t3; substituting back for the original variables, we
obtain the general solution

w = 17− 5t1 − 14t3,

x = 20− 5t1 − 17t3,

y = −55 + 19t1 + 45t3,

z = −8 + t1 + 7t3.

(23)

In other words, all integer solutions (w, x, y, z) to the original equations (17)
and (18) are obtained from (23) by letting t1 and t3 independently run through
all integers.

The general method that has just been illustrated is based on the following
procedure: Find a nonzero coefficient c of smallest absolute value in the system
of equations. Suppose that this coefficient appears in an equation having the
form

cx0 + c1x1 + · · ·+ ckxk = d; (24)

and assume for simplicity that c > 0. If c = 1, use this equation to eliminate
the variable x0 from the other equations remaining in the system; then repeat
the procedure on the remaining equations. (If no more equations remain, the
computation stops, and a general solution in terms of the variables not yet
eliminated has essentially been obtained.) If c > 1, then if c1 mod c = · · · =
ck mod c = 0 check that dmod c = 0, otherwise there is no integer solution; then
divide both sides of (24) by c and eliminate x0 as in the case c = 1. Finally,
if c > 1 and not all of c1 mod c, . . . , ck mod c are zero, then introduce a new
variable

⌊c/c⌋x0 + ⌊c1/c⌋x1 + · · ·+ ⌊ck/c⌋xk = t; (25)

4.5.2 THE GREATEST COMMON DIVISOR 345

eliminate the variable x0 from the other equations, in favor of t, and replace the
original equation (24) by

ct+ (c1 mod c)x1 + · · ·+ (ck mod c)xk = d. (26)

See (19) and (21) in the example above.

This process must terminate, since each step reduces either the number of
equations or the size of the smallest nonzero coefficient in the system. When this
procedure is applied to the equation ux + vy = 1, for speciĄc integers u and v,
it runs through essentially the steps of Algorithm X.

The transformation-of-variables procedure just explained is a simple and
straightforward way to solve linear equations when the variables are allowed
to take on integer values only, but it isn’t the best method available for this
problem. Substantial reĄnements are possible, but beyond the scope of this
book. [See Henri Cohen, A Course in Computational Algebraic Number Theory
(New York: Springer, 1993), Chapter 2.]

Variants of Euclid’s algorithm can be used also with Gaussian integers u+iu′

and in certain other quadratic number Ąelds. See, for example, A. Hurwitz, Acta
Math. 11 (1887), 187Ű200; E. Kaltofen and H. Rolletschek, Math. Comp. 53
(1989), 697Ű720; A. Knopfmacher and J. Knopfmacher, BIT 31 (1991), 286Ű
292.

High-precision calculation. If u and v are very large integers, requiring a
multiple-precision representation, the binary method (Algorithm B) is a simple
and fairly efficient means of calculating their greatest common divisor, since it
involves only subtractions and shifting.

By contrast, Euclid’s algorithm seems much less attractive, since step A2
requires a multiple-precision division of u by v. But this difficulty is not really
as bad as it seems, since we will prove in Section 4.5.3 that the quotient ⌊u/v⌋ is
almost always very small. For example, assuming random inputs, the quotient
⌊u/v⌋ will be less than 1000 approximately 99.856 percent of the time. Therefore
it is almost always possible to Ąnd ⌊u/v⌋ and (umod v) using single-precision
calculations, together with the comparatively simple operation of calculating
u − qv where q is a single-precision number. Furthermore, if it does turn out
that u is much larger than v (for instance, the initial input data might have this
form), we don’t really mind having a large quotient q, since Euclid’s algorithm
makes a great deal of progress when it replaces u by umod v in such a case.

A signiĄcant improvement in the speed of Euclid’s algorithm when high-
precision numbers are involved can be achieved by using a method due to D. H.
Lehmer [AMM 45 (1938), 227Ű233]. Working only with the leading digits of
large numbers, it is possible to do most of the calculations with single-precision
arithmetic, and to make a substantial reduction in the number of multiple-
precision operations involved. The idea is to save time by doing a “virtualŤ
calculation instead of the actual one.

For example, let us consider the pair of eight-digit numbers u = 27182818,
v = 10000000, assuming that we are using a machine with only four-digit words.

346 ARITHMETIC 4.5.2

Let u′ = 2718, v′ = 1001, u′′ = 2719, v′′ = 1000; then u′/v′ and u′′/v′′ are
approximations to u/v, with

u′/v′ < u/v < u′′/v′′. (27)

The ratio u/v determines the sequence of quotients obtained in Euclid’s algo-
rithm. If we perform Euclid’s algorithm simultaneously on the single-precision
values (u′, v′) and (u′′, v′′) until we get a different quotient, it is not difficult to
see that the same sequence of quotients would have appeared to this point if
we had worked with the multiple-precision numbers (u, v). Thus, consider what
happens when Euclid’s algorithm is applied to (u′, v′) and to (u′′, v′′):

u′ v′ q′ u′′ v′′ q′′

2718 1001 2 2719 1000 2
1001 716 1 1000 719 1
716 285 2 719 281 2
285 146 1 281 157 1
146 139 1 157 124 1
139 7 19 124 33 3

The Ąrst Ąve quotients are the same in both cases, so they must be the true ones.
But on the sixth step we Ąnd that q′ ̸= q′′, so the single-precision calculations
are suspended. We have gained the knowledge that the calculation would have
proceeded as follows if we had been working with the original multiple-precision
numbers:

u v q

u0 v0 2
v0 u0 − 2v0 1

u0 − 2v0 −u0 + 3v0 2
−u0 + 3v0 3u0 − 8v0 1
3u0 − 8v0 −4u0 + 11v0 1
−4u0 + 11v0 7u0 − 19v0 ?

(28)

(The next quotient lies somewhere between 3 and 19.) No matter how many
digits are in u and v, the Ąrst Ąve steps of Euclid’s algorithm would be the same
as (28), so long as (27) holds. We can therefore avoid the multiple-precision
operations of the Ąrst Ąve steps, and replace them all by a multiple-precision
calculation of −4u0 + 11v0 and 7u0 − 19v0. In this case we obtain u = 1268728,
v = 279726; the calculation can now continue in a similar manner with u′ = 1268,
v′ = 280, u′′ = 1269, v′′ = 279, etc. If we had a larger accumulator, more steps
could be done by single-precision calculations. Our example showed that only
Ąve cycles of Euclid’s algorithm were combined into one multiple step, but with
(say) a word size of 10 digits we could do about twelve cycles at a time. Results
proved in Section 4.5.3 imply that the number of multiple-precision cycles that
can be replaced at each iteration is essentially proportional to the number of
digits used in the single-precision calculations.

Lehmer’s method can be formulated as follows:

4.5.2 THE GREATEST COMMON DIVISOR 347

Algorithm L (Euclid’s algorithm for large numbers). Let u and v be nonnegative
integers, with u ≥ v, represented in multiple precision. This algorithm computes
the greatest common divisor of u and v, making use of auxiliary single-precision
p-digit variables û, v̂, A, B, C, D, T, q, and auxiliary multiple-precision variables
t and w.

L1. [Initialize.] If v is small enough to be represented as a single-precision
value, calculate gcd(u, v) by Algorithm A and terminate the computation.
Otherwise, let û be the p leading digits of u, and let v̂ be the corresponding
digits of v; in other words, if radix-b notation is being used, û← ⌊u/bk⌋ and
v̂ ← ⌊v/bk⌋, where k is as small as possible consistent with the condition
û < bp.

Set A ← 1, B ← 0, C ← 0, D ← 1. (These variables represent the
coefficients in (28), where

u = Au0 +Bv0, and v = Cu0 +Dv0, (29)

in the equivalent actions of Algorithm A on multiple-precision numbers. We
also have

u′ = û+B, v′ = v̂ +D, u′′ = û+A, v′′ = v̂ + C (30)

in terms of the notation in the example worked above.)

L2. [Test quotient.] Set q ← ⌊(û + A)/(v̂ + C)⌋. If q ̸= ⌊(û + B)/(v̂ + D)⌋,
go to step L4. (This step tests if q′ ̸= q′′, in the notation of the example
above. Single-precision overĆow can occur in special circumstances during
the computation in this step, but only when û = bp − 1 and A = 1 or when
v̂ = bp − 1 and D = 1; the conditions

0 ≤ û+A ≤ bp,
0 ≤ û+B < bp,

0 ≤ v̂ + C < bp,

0 ≤ v̂ +D ≤ bp (31)

will always hold, because of (30). It is possible to have v̂+C = 0 or v̂+D = 0,
but not both simultaneously; therefore division by zero in this step is taken
to mean “Go directly to L4.Ť)

L3. [Emulate Euclid.] Set T ← A− qC, A← C, C ← T, T ← B − qD, B ← D,
D ← T, T ← û− qv̂, û← v̂, v̂ ← T, and go back to step L2.

These single-

precision calculations are the equivalent of multiple-precision operations, as
in (28), under the conventions of (29).

L4. [Multiprecision step.] If B = 0, set t ← umod v, u ← v, v ← t, using
multiple-precision division. (This happens only if the single-precision oper-
ations cannot simulate any of the multiple-precision ones. It implies that
Euclid’s algorithm requires a very large quotient, and this is an extremely
rare occurrence.) Otherwise, set t← Au, t← t+Bv, w ← Cu, w ← w+Dv,
u ← t, v ← w (using straightforward multiple-precision operations). Go
back to step L1.

348 ARITHMETIC 4.5.2

The values of A, B, C, D remain as single-precision numbers throughout
this calculation, because of (31).

Algorithm L requires a somewhat more complicated program than Algo-
rithm B, but with large numbers it will be faster on many computers. The
binary technique of Algorithm B can, however, be speeded up in a similar way
(see exercise 38), to the point where it continues to win. Algorithm L has the
advantage that it determines the sequence of quotients obtained in Euclid’s algo-
rithm, and this sequence has numerous applications (see, for example, exercises
43, 47, 49, and 51 in Section 4.5.3). See also exercise 4.5.3Ű46.

*Analysis of the binary algorithm. Let us conclude this section by studying
the running time of Algorithm B, in order to justify the formulas stated earlier.

An exact determination of Algorithm B’s behavior appears to be exceedingly
difficult to derive, but we can begin to study it by means of an approximate
model. Suppose that u and v are odd numbers, with u > v and

⌊lg u⌋ = m, ⌊lg v⌋ = n. (32)

Thus, u is an (m + 1)-bit number, and v is an (n + 1)-bit number.

Consider

a subtract-and-shift cycle of Algorithm B, namely an operation that starts at
step B6 and then stops after step B5 is Ąnished. Every subtract-and-shift cycle
with u > v forms u − v and shifts this quantity right until obtaining an odd
number u′ that replaces u. Under random conditions, we would expect to have
u′ = (u − v)/2 about one-half of the time, u′ = (u − v)/4 about one-fourth of
the time, u′ = (u− v)/8 about one-eighth of the time, and so on. We have

⌊lg u′⌋ = m− k − r, (33)

where k is the number of places that u − v is shifted right, and where r is
⌊lg u⌋ − ⌊lg(u− v)⌋, the number of bits lost at the left during the subtraction of
v from u. Notice that r ≤ 1 when m ≥ n+ 2, and r ≥ 1 when m = n.

The interaction between k and r is quite messy (see exercise 20), but Richard
Brent discovered a nice way to analyze the approximate behavior by assuming
that u and v are large enough that a continuous distribution describes the ratio
v/u, while k varies discretely. [See Algorithms and Complexity, edited by J. F.
Traub (New York: Academic Press, 1976), 321Ű355.] Let us assume that u and v
are large integers that are essentially random, except that they are odd and their
ratio has a certain probability distribution. Then the least signiĄcant bits of the
quantity t = u − v in step B6 will be essentially random, except that t will
be even. Hence t will be an odd multiple of 2k with probability 2−k; this is
the approximate probability that k right shifts will be needed in the subtract-
and-shift cycle. In other words, we obtain a reasonable approximation to the
behavior of Algorithm B if we assume that step B4 always branches to B3 with
probability 1/2.

LetGn(x) be the probability that min(u,v)/max(u,v) is≥x after n subtract-
and-shift cycles have been performed under this assumption. If u ≥ v and if
exactly k right shifts are performed, the ratio X = v/u is changed to X ′ =

4.5.2 THE GREATEST COMMON DIVISOR 349

min(2kv/(u− v), (u− v)/2kv) = min

2kX/(1−X), (1−X)/2kX

. Thus we will

have X ′ ≥ x if and only if 2kX/(1 −X) ≥ x and (1 −X)/2kX ≥ x; and this is
the same as

1
1 + 2k/x

≤ X ≤ 1
1 + 2kx

. (34)

Therefore Gn(x) satisĄes the interesting recurrence

Gn+1(x) =

k≥1

2−k

Gn

 1
1 + 2k/x

−Gn

 1
1 + 2kx

, (35)

where G0(x) = 1 − x for 0 ≤ x ≤ 1. Computational experiments indicate that
Gn(x) converges rapidly to a limiting distribution G∞(x) = G(x), although a
formal proof of convergence seems to be difficult. We shall assume that G(x)
exists; hence it satisĄes

G(x) =

k≥1

2−k

G
 1

1 + 2k/x

−G
 1

1 + 2kx

, for 0 < x ≤ 1; (36)

G(0) = 1; G(1) = 0. (37)

Let

S(x) =
1
2
G
 1

1 + 2x

+
1
4
G
 1

1 + 4x

+
1
8
G
 1

1 + 8x

+ · · ·

=

k≥1

2−kG
 1

1 + 2kx

; (38)

then we have
G(x) = S(1/x)− S(x). (39)

It is convenient to deĄne
G(1/x) = −G(x), (40)

so that (39) holds for all x > 0. As x runs from 0 to ∞, S(x) increases from
0 to 1, hence G(x) decreases from +1 to −1. Of course G(x) is no longer a
probability when x > 1; but it is meaningful nevertheless (see exercise 23).

We will assume that there are power series α(x), β(x), γm(x), δm(x), λ(x),
µ(x), σm(x), τm(x), and ρ(x) such that

G(x) = α(x) lg x+ β(x) +
∞

m=1

γm(x) cos 2πm lg x+ δm(x) sin 2πm lg x

, (41)

S(x) = λ(x) lg x+ µ(x) +
∞

m=1

σm(x) cos 2πm lg x+ τm(x) sin 2πm lg x

, (42)

ρ(x) = G(1 + x) = ρ1x+ ρ2x
2 + ρ3x

3 + ρ4x
4 + ρ5x

5 + ρ6x
6 + · · · , (43)

because it can be shown that the solutions Gn(x) to (35) have this property for
n ≥ 1. (See, for example, exercise 30.) The power series converge for |x| < 1.

350 ARITHMETIC 4.5.2

0.0 1.0 2.0 3.0 4.0 x

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

G(x)

Fig. 10. The limiting distribution of ratios in the binary gcd algorithm.

What can we deduce about α(x), . . . , ρ(x) from equations (36)Ű(43)? In the
Ąrst place we have

2S(x) = G

1/(1 + 2x)

+ S(2x) = S(2x)− ρ(2x) (44)

from (38), (40), and (43). Consequently Eq. (42) holds if and only if

2λ(x) = λ(2x); (45)

2µ(x) = µ(2x) + λ(2x)− ρ(2x); (46)

2σm(x) = σm(2x), 2τm(x) = τm(2x), for m ≥ 1. (47)

Relation (45) tells us that λ(x) is simply a constant multiple of x; we will write

λ(x) = −λx (48)

because the constant is negative. (The relevant coefficient turns out to be

λ = 0.39792 26811 88316 64407 67071 61142 65498 23098+, (49)

but no easy way to compute it is known.) Relation (46) tells us that ρ1 = −λ,
and that 2µk = 2kµk − 2kρk when k > 1; in other words,

µk = ρk/(1− 21−k), for k ≥ 2. (50)

We also know from (47) that the two families of power series

σm(x) = σmx, τm(x) = τmx (51)

are simply linear functions.

This is not true for γm(x) and δm(x).

Replacing x by 1/2x in (44) yields

2S(1/2x) = S(1/x) +G(x/(1 + x)), (52)

and (39) converts this equation to a relation between G and S when x is near 0:

2G(2x) + 2S(2x) = G(x) + S(x) +G(x/(1 + x)). (53)

4.5.2 THE GREATEST COMMON DIVISOR 351

The coefficients of lg x must agree when both sides of this equation are expanded
in power series, hence

2α(2x)− 4λx = α(x)− λx+ α(x/(1 + x)). (54)

Equation (54) is a recurrence that deĄnes α(x). In fact, let us consider the
function ψ(z) that satisĄes

ψ(z) =
1
2

z + ψ

z

2

+ ψ

z

2 + z

, ψ(0) = 0, ψ′(0) = 1. (55)

Then (54) says that

α(x) =
3
2
λψ(x). (56)

Moreover, iteration of (55) yields

ψ(z) =
z

2

1
1

+
1
2

1
2

+
1

2 + z

+
1
4

1
4

+
1

4 + z
+

1
4 + 2z

+
1

4 + 3z

+ · · ·

=
z

2

k≥0

1
2k

0≤j<2k

1
2k + jz

. (57)

It follows that the power series expansion of ψ(z) is

ψ(z) =

n≥1

(−1)n−1ψnz
n, ψn =

1
2n

n−1

k=0

Bk

2k+1 − 1

n

k

+
δn1

2
; (58)

see exercise 27. This formula for ψn is surprisingly similar to an expression that
arises in connection with digital search tree algorithms, Eq. 6.3Ű(18). Exercise 28
proves that ψn = Θ(n−2).

We now know α(x), except for the constant λ = −ρ1, and (50) relates
µ(x) to ρ(x) except for the coefficient µ1. The answer to exercise 25 shows
that the coefficients of ρ(x) can all be expressed in terms of ρ1, ρ3, ρ5, . . . ;
moreover, the constants σm and τm can be computed by the method used to
solve exercise 29, and complicated relations also hold between the coefficients of
the functions γm(x) and δm(x). However, there seems to be no way to compute
all the coefficients of the various functions that enter into G(x) except to iterate
the recurrence (36) by elaborate numerical methods.

Once we have computed a good approximation to G(x), we can estimate the
asymptotic average running time of Algorithm B as follows: If u ≥ v and if k
right shifts are performed, the quantity Y = uv is changed to Y ′ = (u− v)v/2k;
hence the ratio Y/Y ′ is 2k/(1−X), where X = v/u is ≥ x with probability G(x).
Therefore the number of bits in uv decreases on the average by the constant

b = E lg(Y/Y ′) =

k≥1

2−k

fk(0) +
 1

0

G(x)f ′k(x) dx

,

352 ARITHMETIC 4.5.2

where fk(x) = lg

2k/(1− x)

; we have

b =

k≥1

2−k

k +
 1

0

G(x) dx
(1− x) ln 2

= 2 +
 1

0

G(x) dx
(1− x) ln 2

. (59)

When eventually u = v, the expected value of lg uv will be approximately 0.9779
(see exercise 14); therefore the total number of subtract-and-shift cycles of Algo-
rithm B will be approximately 1/b times the initial value of lg uv. By symmetry,
this is about 2/b times the initial value of lg u. Numerical computations carried
out by Richard Brent in 1997 give the value

2/b = 0.70597 12461 01916 39152 93141 35852 88176 66677+ (60)

for this fundamental constant.
A deeper study of these functions by Brigitte Vallée led her to suspect that

the constants λ and b might be related by the remarkable formula

λ

b
=

2 ln 2
π2

. (61)

Sure enough, the values computed by Brent agree perfectly with this tantalizing
conjecture. Vallée has successfully analyzed Algorithm B using rigorous “dy-
namicalŤ methods of great interest [see Algorithmica 22 (1998), 660Ű685].

Let us return to our assumption in (32) that u and v are odd and in the
ranges 2m ≤ u < 2m+1 and 2n ≤ v < 2n+1. Empirical tests of Algorithm B with
several million random inputs and with various values of m and n in the range
29 ≤ m,n ≤ 37 indicate that the actual average behavior of the algorithm is
given by

C ≈ 1
2m+ 0.203n+ 1.9− 0.4(0.6)m−n,

D ≈ m+ 0.41n − 0.5− 0.7(0.6)m−n,
m ≥ n, (62)

with a rather small standard deviation from these observed average values. The
coefficients 1

2 and 1 of m in (62) can be veriĄed rigorously (see exercise 21).
If we assume instead that u and v are to be any integers, independently and

uniformly distributed over the ranges

1 ≤ u < 2N , 1 ≤ v < 2N , (63)

then we can calculate the average values of C and D from the data already given:

C ≈ 0.70N +O(1), D ≈ 1.41N +O(1). (64)

(See exercise 22.) This agrees perfectly with the results of further empirical tests,
made on several million random inputs for N ≤ 30; the latter tests show that
we may take

C = 0.70N − 0.5, D = 1.41N − 2.7 (65)

as decent estimates of the values, given this distribution of the inputs u and v.
The theoretical analysis in Brent’s continuous model of Algorithm B predicts

that C and D will be asymptotically equal to 2N/b and 4N/b under assump-
tion (63), where 2/b ≈ 0.70597 is the constant in (60). The agreement with

4.5.2 THE GREATEST COMMON DIVISOR 353

experiment is so good that Brent’s constant 2/b must be the true value of the
number “0.70Ť in (65), and we should replace 0.203 by 0.206 in (62).

This completes our study of the average values of C and D. The other three
quantities that appear in the running time of Algorithm B are quite easy to
analyze; see exercises 6, 7, and 8.

Now that we know approximately how Algorithm B behaves on the average,
let’s consider a “worst caseŤ scenario: What values of u and v are in some sense
the hardest to handle? If we assume as before that

⌊lg u⌋ = m and ⌊lg v⌋ = n,

we want to Ąnd u and v that make the algorithm run most slowly. The subtrac-
tions take somewhat longer than the shifts, when the auxiliary bookkeeping is
considered, so this question may be rephrased by asking for the inputs u and v
that require the most subtractions. The answer is somewhat surprising; the
maximum value of C is exactly

max(m,n) + 1, (66)

although a naïve analysis would predict that substantially higher values of C
are possible (see exercise 35). The derivation of the worst case (66) is quite
interesting, so it has been left as an amusing problem for readers to work out for
themselves (see exercises 36 and 37).

EXERCISES

1. [M21] How can (8), (9), (10), (11), and (12) be derived easily from (6) and (7)?

2. [M22] Given that u divides v1v2 . . . vn, prove that u divides

gcd(u, v1) gcd(u, v2) . . . gcd(u, vn).

3. [M23] Show that the number of ordered pairs of positive integers (u, v) such that
lcm(u, v) = n is the number of divisors of n2.

4. [M21] Given positive integers u and v, show that there are divisors u′ of u and
v′ of v such that u′ ⊥ v′ and u′v′ = lcm(u, v).

x 5. [M26] Invent an algorithm (analogous to Algorithm B) for calculating the greatest
common divisor of two integers based on their balanced ternary representation. Dem-
onstrate your algorithm by applying it to the calculation of gcd(40902, 24140).

6. [M22] Given that u and v are random positive integers, Ąnd the mean and the
standard deviation of the quantity A that enters into the timing of Program B. (This
is the number of right shifts applied to both u and v during the preparatory phase.)

7. [M20] Analyze the quantity B that enters into the timing of Program B.

x 8. [M25] Show that in Program B, the average value of E is approximately equal to
1
2
Cave, where Cave is the average value of C.

9. [18] Using Algorithm B and hand calculation, Ąnd gcd(31408, 2718). Also Ąnd
integers m and n such that 31408m+ 2718n = gcd(31408, 2718), using Algorithm X.

354 ARITHMETIC 4.5.2

x 10. [HM24] Let qn be the number of ordered pairs of integers (u, v) lying in the range
1 ≤ u, v ≤ n such that u ⊥ v. The object of this exercise is to prove that we have
limn→∞ qn/n

2 = 6/π2, thereby establishing Theorem D.

a) Use the principle of inclusion and exclusion (Section 1.3.3) to show that

qn = n2 −

p1

⌊n/p1⌋2 +

p1<p2

⌊n/p1p2⌋2 − · · · ,

where the sums are taken over all prime numbers pi.
b) The Möbius function µ(n) is deĄned by the rules µ(1) = 1, µ(p1p2 . . . pr) = (−1)r

if p1, p2, . . . , pr are distinct primes, and µ(n) = 0 if n is divisible by the square of
a prime. Show that qn =

k≥1 µ(k)⌊n/k⌋2.

c) As a consequence of (b), prove that limn→∞ qn/n
2 =

k≥1 µ(k)/k2.

d) Prove that (

k≥1 µ(k)/k2)(

m≥1 1/m2) = 1. Hint: When the series are abso-
lutely convergent we have

k≥1

ak/k
z

m≥1

bm/m
z

=

n≥1

d\n

adbn/d

nz.

11. [M22] What is the probability that gcd(u, v) ≤ 3? (See Theorem D.) What is
the average value of gcd(u, v)?

12. [M24] (E. Cesàro.) If u and v are random positive integers, what is the aver-
age number of (positive) divisors they have in common? [Hint: See the identity in
exercise 10(d), with ak = bm = 1.]

13. [HM23] Given that u and v are random odd positive integers, show that they are
relatively prime with probability 8/π2.

x 14. [HM25] What is the expected value of ln gcd(u, v) when u and v are (a) random
positive integers? (b) random positive odd integers?

15. [M21] What are the values of v1 and v2 when Algorithm X terminates?

x 16. [M22] Design an algorithm to divide u by v modulo m, given positive integers u,
v, and m, with v relatively prime to m. In other words, your algorithm should Ąnd w,
in the range 0 ≤ w < m, such that u ≡ vw (modulo m).

x 17. [M20] Given two integers u and v such that uv ≡ 1 (modulo 2e), explain how to
compute an integer u′ such that u′v ≡ 1 (modulo 22e). [This leads to a fast algorithm
for computing the reciprocal of an odd number modulo a power of 2, since we can start
with a table of all such reciprocals for e = 8 or e = 16.]

x 18. [M24] Show how Algorithm L can be extended (as Algorithm A was extended to
Algorithm X) to obtain solutions of (15) when u and v are large.

19. [21] Use the text’s method to Ąnd a general solution in integers to the following
sets of equations:

a) 3x+ 7y + 11z = 1

5x+ 7y − 5z = 3

b) 3x+ 7y + 11z = 1

5x+ 7y − 5z = −3

20. [M37] Let u and v be odd integers, independently and uniformly distributed in
the ranges 2m ≤ u < 2m+1, 2n ≤ v < 2n+1. What is the exact probability that a single
subtract-and-shift cycle in Algorithm B reduces u and v to the ranges 2m′ ≤ u < 2m′+1,
2n′ ≤ v < 2n′+1, as a function of m, n, m′, and n′?

4.5.2 THE GREATEST COMMON DIVISOR 355

21. [HM26] Let Cmn and Dmn be the average number of subtraction steps and shift
steps, respectively, in Algorithm B, when u and v are odd, ⌊lg u⌋ = m, ⌊lg v⌋ = n.
Show that for Ąxed n, Cmn = 1

2
m+O(1) and Dmn = m+O(1) as m→∞.

22. [M28] Continuing the previous exercise, show that if Cmn = αm + βn + γ for
some constants α, β, and γ, then

1≤n<m≤N

(N −m)(N − n)2m+n−2Cmn = 22N (11
27

(α+ β)N +O(1)),

1≤n≤N

(N − n)222n−2Cnn = 22N (5
27

(α+ β)N +O(1)).

x 23. [M20] What is the probability that v/u ≤ x after n subtract-and-shift cycles of
Algorithm B, when the algorithm begins with large random integers? (Here x is any
real number ≥ 0; we do not assume that u ≥ v.)

24. [M20] Suppose u > v in step B6, and assume that the ratio v/u has Brent’s
limiting distribution G. What is the probability that u < v the next time step B6 is
encountered?

25. [M21] Equation (46) implies that ρ1 = −λ; prove that ρ2 = λ/2.

26. [M22] Prove that when G(x) satisĄes (36)Ű(40) we have

2G(x)− 5G(2x) + 2G(4x) = G(1 + 2x)− 2G(1 + 4x) + 2G(1 + 1/x)−G(1 + 1/2x).

27. [M22] Prove (58), which expresses ψn in terms of Bernoulli numbers.

28. [HM36] Study the asymptotic behavior of ψn. Hint: See exercise 6.3Ű34.

x 29. [HM26] (R. P. Brent.) Find G1(x), the distribution of min(u, v)/max(u, v) after
the Ąrst subtract-and-shift cycle of Algorithm B as deĄned in (35). Hint: Let Sn+1(x) =∞

k=1 2−kGn(1/(1+2kx)), and use the method of Mellin transforms for harmonic sums
[see P. Flajolet, X. Gourdon, and P. Dumas, Theor. Comp. Sci. 144 (1995), 3Ű58].

30. [HM39] Continuing the previous exercise, determine G2(x).

31. [HM46] Prove or disprove Vallée’s conjecture (61).

32. [HM42] Is there a unique continuous function G(x) that satisĄes (36) and (37)?

33. [M46] Analyze Harris’s “binary Euclidean algorithm,Ť stated after Program B.

34. [HM49] Find a rigorous proof that Brent’s model describes the asymptotic be-
havior of Algorithm B.

35. [M23] Consider a directed graph with vertices (m,n) for all nonnegative integers
m,n ≥ 0, having arcs from (m,n) to (m′, n′) whenever it is possible for a subtract-and-
shift cycle of Algorithm B to transform integers u and v with ⌊lg u⌋ = m and ⌊lg v⌋ = n
into integers u′ and v′ with ⌊lg u′⌋ = m′ and ⌊lg v′⌋ = n′; there also is a special “StopŤ
vertex, with arcs from (n, n) to Stop for all n ≥ 0. What is the length of the longest
path from (m,n) to Stop? (This gives an upper bound on the maximum running time
of Algorithm B.)

x 36. [M28] Given m ≥ n ≥ 1, Ąnd values of u and v with ⌊lg u⌋ = m and ⌊lg v⌋ = n
such that Algorithm B requires m+ 1 subtraction steps.

37. [M32] Prove that the subtraction step B6 of Algorithm B is never executed more
than 1 + ⌊lg max(u, v)⌋ times.

x 38. [M32] (R. W. Gosper.) Demonstrate how to modify Algorithm B for large num-
bers, using ideas analogous to those in Algorithm L.

356 ARITHMETIC 4.5.2

x 39. [M28] (V. R. Pratt.) Extend Algorithm B to an Algorithm Y that is analogous
to Algorithm X.

x 40. [M25] (R. P. Brent and H. T. Kung.) The following variant of the binary gcd
algorithm is better than Algorithm B from the standpoint of hardware implementation,
because it does not require testing the sign of u − v. Assume that u is odd; u and v
can be either positive or negative.

K1. [Initialize.] Set c ← 0. (This counter estimates the difference between lg |u|
and lg |v|.)

K2. [Done?] If v = 0, terminate with |u| as the answer.

K3. [Make v odd.] Set v ← v/2 and c← c+ 1 zero or more times, until v is odd.

K4. [Make c ≤ 0.] If c > 0, interchange u↔ v and set c← −c.
K5. [Reduce.] Set w ← (u+v)/2. If w is even, set v ← w; otherwise set v ← w−v.

Return to step K2.

Prove that step K2 is performed at most 2 + 2 lg max(|u|, |v|) times.

41. [M22] Use Euclid’s algorithm to Ąnd a simple formula for gcd(10m − 1, 10n − 1)
when m and n are nonnegative integers.

42. [M30] Evaluate the determinant

gcd(1, 1) gcd(1, 2) . . . gcd(1, n)
gcd(2, 1) gcd(2, 2) . . . gcd(2, n)

...
...

...
gcd(n, 1) gcd(n, 2) . . . gcd(n, n)

.

*4.5.3. Analysis of Euclid’s Algorithm

The execution time of Euclid’s algorithm depends on T, the number of times
the division step A2 is performed. (See Algorithm 4.5.2A and Program 4.5.2A.)
The quantity T is also an important factor in the running time of other algo-
rithms, such as the evaluation of functions satisfying a reciprocity formula (see
Section 3.3.3). We shall see in this section that the mathematical analysis of this
quantity T is interesting and instructive.

Relation to continued fractions. Euclid’s algorithm is intimately connected
with continued fractions, which are expressions of the form

b1

a1 +
b2

a2 +
b3

· · ·
an−1+

bn
an

= b1/

a1+b2/(a2+b3/(· · · /(an−1+bn/an) . . .))

.

(1)

Continued fractions have a beautiful theory that is the subject of several classic
books, such as O. Perron, Die Lehre von den Kettenbrüchen, 3rd edition (Stutt-
gart: Teubner, 1954), 2 volumes; A. Khinchin, Continued Fractions, translated by
Peter Wynn (Groningen: P. Noordhoff, 1963); and H. S. Wall, Analytic Theory

4.5.3 ANALYSIS OF EUCLID’S ALGORITHM 357

of Continued Fractions (New York: Van Nostrand, 1948). See also Claude
Brezinski, History of Continued Fractions and Padé Approximants (Springer,
1991), for the early history of the subject. It is necessary to limit ourselves to
a comparatively brief treatment of the theory here, studying only those aspects
that give us more insight into the behavior of Euclid’s algorithm.

The continued fractions of primary interest to us are those in which all of
the b’s in (1) are equal to unity. For convenience in notation, let us deĄne

//x1, x2, . . . , xn// = 1/

x1 + 1/(x2 + 1/(· · · /(xn−1 + 1/xn) . . .))

. (2)

Thus, for example,

//x1// =
1
x1
, //x1, x2// =

1
x1 + 1/x2

=
x2

x1x2 + 1
. (3)

If n = 0, the symbol //x1, . . . , xn// is taken to mean 0. Let us also deĄne the
so-called continuant polynomials Kn(x1, x2, . . . , xn) of n variables, for n ≥ 0, by
the rule

Kn(x1, x2, . . . , xn) =

1, if n= 0;
x1, if n= 1;
x1Kn−1(x2, . . . , xn)+Kn−2(x3, . . . , xn), if n > 1.

(4)

Thus K2(x1, x2) = x1x2 + 1,K3(x1, x2, x3) = x1x2x3 + x1 + x3, etc. In general,
as noted by L. Euler in the eighteenth century, Kn(x1, x2, . . . , xn) is the sum
of all terms obtainable by starting with x1x2 . . . xn and deleting zero or more
nonoverlapping pairs of consecutive variables xjxj+1; there are Fn+1 such terms.

The basic property of continuants is the explicit formula

//x1, x2, . . . , xn// = Kn−1(x2, . . . , xn)/Kn(x1, x2, . . . , xn), n ≥ 1. (5)

This can be proved by induction, since it implies that

x0 + //x1, . . . , xn// = Kn+1(x0, x1, . . . , xn)/Kn(x1, . . . , xn);

hence //x0, x1, . . . , xn// is the reciprocal of the latter quantity.
The K-polynomials are symmetrical in the sense that

Kn(x1, x2, . . . , xn) = Kn(xn, . . . , x2, x1). (6)

This follows from Euler’s observation above, and as a consequence we have

Kn(x1, . . . , xn) = xnKn−1(x1, . . . , xn−1) +Kn−2(x1, . . . , xn−2) (7)

for n > 1. The K-polynomials also satisfy the important identity

Kn(x1, . . . , xn)Kn(x2, . . . , xn+1)−Kn+1(x1, . . . , xn+1)Kn−1(x2, . . . , xn)

= (−1)n, n ≥ 1. (8)

(See exercise 4.) The latter equation in connection with (5) implies that

//x1, . . . , xn// =
1
q0q1

− 1
q1q2

+
1
q2q3

− · · ·+ (−1)n−1

qn−1qn
,

where qk = Kk(x1, . . . , xk). (9)

358 ARITHMETIC 4.5.3

Thus the K-polynomials are intimately related to continued fractions.
Every real number X in the range 0 ≤ X < 1 has a regular continued fraction

deĄned as follows: Let X0 = X, and for all n ≥ 0 such that Xn ̸= 0 let

An+1 = ⌊1/Xn⌋, Xn+1 = 1/Xn −An+1. (10)

If Xn = 0, the quantities An+1 and Xn+1 are not deĄned, and the regular
continued fraction for X is //A1, . . . , An//. If Xn ̸= 0, this deĄnition guarantees
that 0 ≤ Xn+1 < 1, so each of the A’s is a positive integer. DeĄnition (10) also
implies that

X = X0 =
1

A1 +X1
=

1
A1 + 1/(A2 +X2)

= · · · ;

hence
X = //A1, . . . , An−1, An +Xn// (11)

for all n ≥ 1, whenever Xn is deĄned. In particular, we have X = //A1, . . . , An//
when Xn = 0. If Xn ̸= 0, the number X always lies between //A1, . . . , An//
and //A1, . . . , An + 1//, since by (7) the quantity qn = Kn(A1, . . . , An + Xn)
increases monotonically from Kn(A1, . . . , An) up to Kn(A1, . . . , An + 1) as Xn

increases from 0 to 1, and by (9) the continued fraction increases or decreases
when qn increases, according as n is even or odd. In fact,

|X − //A1, . . . , An//| = |//A1, . . . , An +Xn//− //A1, . . . , An//|
= |//A1, . . . , An, 1/Xn//− //A1, . . . , An//|

=

Kn(A2, . . . , An, 1/Xn)
Kn+1(A1, . . . , An, 1/Xn)

− Kn−1(A2, . . . , An)
Kn(A1, . . . , An)

= 1/

Kn(A1, . . . , An)Kn+1(A1, . . . , An, 1/Xn)

≤ 1/

Kn(A1, . . . , An)Kn+1(A1, . . . , An, An+1)

(12)

by (5), (7), (8), and (10). Therefore //A1, . . . , An// is an extremely close approx-
imation to X, unless n is small. If Xn is nonzero for all n, we obtain an inĄnite

continued fraction //A1, A2, A3, . . . //, whose value is deĄned to be

lim
n→∞

//A1, A2, . . . , An//;

from inequality (12) it is clear that this limit equals X.
The regular continued fraction expansion of real numbers has several prop-

erties analogous to the representation of numbers in the decimal system. If we
use the formulas above to compute the regular continued fraction expansions of
some familiar real numbers, we Ąnd, for example, that

8
29

= //3, 1, 1, 1, 2//;

8
29

= //1, 1, 9, 2, 2, 3, 2, 2, 9, 1, 2, 1, 9, 2, 2, 3, 2, 2, 9, 1, 2, 1, 9, 2, 2, 3, 2, 2, 9, 1, . . . //;
3√

2 = 1 + //3, 1, 5, 1, 1, 4, 1, 1, 8, 1, 14, 1, 10, 2, 1, 4, 12, 2, 3, 2, 1, 3, 4, 1, 1, 2, 14, 3, . . . //;

π = 3 + //7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1, 15, 3, 13, . . . //;

4.5.3 ANALYSIS OF EUCLID’S ALGORITHM 359

e = 2 + //1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, 1, 12, 1, 1, 14, 1, 1, 16, 1, 1, 18, 1, . . . //;

γ = //1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, 40, 1, 11, 3, 7, 1, 7, 1, 1, 5, 1, 49, . . . //;

ϕ = 1 + //1, . . . //. (13)

The numbers A1, A2, . . . are called the partial quotients of X. Notice the regular
pattern that appears in the partial quotients for

8/29, ϕ, and e; the reasons for
this behavior are discussed in exercises 12 and 16. There is no apparent pattern
in the partial quotients for 3

√
2, π, or γ.

It is interesting to note that the ancient Greeks’ Ąrst deĄnition of real
numbers, once they had discovered the existence of irrationals, was essentially
stated in terms of inĄnite continued fractions. (Later they adopted the suggestion
of Eudoxus that x = y should be deĄned instead as “x < r if and only if y < r,
for all rational r.Ť) See O. Becker, Quellen und Studien zur Geschichte Math.,
Astron., Physik B2 (1933), 311Ű333.

When X is a rational number, the regular continued fraction corresponds
in a natural way to Euclid’s algorithm. Let us assume that X = v/u, where
u > v ≥ 0. The regular continued fraction process starts with X0 = X; let us
deĄne U0 = u, V0 = v. Assuming that Xn = Vn/Un ̸= 0, (10) becomes

An+1 = ⌊Un/Vn⌋, Xn+1 = Un/Vn −An+1 = (Un mod Vn)/Vn. (14)

Therefore, if we deĄne

Un+1 = Vn, Vn+1 = Un mod Vn, (15)

the condition Xn = Vn/Un holds throughout the process. Furthermore, (15) is
precisely the transformation made on the variables u and v in Euclid’s algorithm
(see Algorithm 4.5.2A, step A2). For example, since 8

29 = //3, 1, 1, 1, 2//, we
know that Euclid’s algorithm applied to u = 29 and v = 8 will require exactly
Ąve division steps, and the quotients ⌊u/v⌋ in step A2 will be successively 3, 1,
1, 1, and 2. The last partial quotient An must always be 2 or more when Xn = 0
and n ≥ 1, since Xn−1 is less than unity.

From this correspondence with Euclid’s algorithm we can see that the regular
continued fraction for X terminates at some step with Xn = 0 if and only if X
is rational; for it is obvious that Xn cannot be zero if X is irrational, and,
conversely, we know that Euclid’s algorithm always terminates. If the partial
quotients obtained during Euclid’s algorithm are A1, A2, . . . , An, then we have,
by (5),

v

u
=

Kn−1(A2, . . . , An)
Kn(A1, A2, . . . , An)

. (16)

This formula holds also if Euclid’s algorithm is applied for u < v, when A1 = 0.
Furthermore, because of relation (8), the continuants Kn−1(A2, . . . , An) and
Kn(A1, A2, . . . , An) are relatively prime, and the fraction on the right-hand side
of (16) is in lowest terms; therefore

u = Kn(A1, A2, . . . , An)d, v = Kn−1(A2, . . . , An)d, (17)

where d = gcd(u, v).

360 ARITHMETIC 4.5.3

The worst case. We can now apply these observations to determine the
behavior of Euclid’s algorithm in the worst case, or in other words to give an
upper bound on the number of division steps. The worst case occurs when the
inputs are consecutive Fibonacci numbers:

Theorem F. For n ≥ 1, let u and v be integers with u > v > 0 such that
Euclid’s algorithm applied to u and v requires exactly n division steps, and such
that u is as small as possible satisfying these conditions. Then u = Fn+2 and
v = Fn+1.

Proof. By (17), we must have u = Kn(A1, A2, . . . , An)d, where A1, A2, . . . ,
An, and d are positive integers and An ≥ 2. Since Kn is a polynomial with
nonnegative coefficients, involving all of the variables, the minimum value is
achieved only when A1 = 1, . . . , An−1 = 1, An = 2, d = 1. Putting these values
in (17) yields the desired result.

This theorem has the historical claim of being the Ąrst practical application
of the Fibonacci sequence; since then many other applications of Fibonacci
numbers to algorithms and to the study of algorithms have been discovered. The
result is essentially due to T. F. de Lagny [Mém. Acad. Sci. 11 (Paris, 1733), 363Ű
364], who tabulated the Ąrst several continuants and observed that Fibonacci
numbers give the smallest numerator and denominator for continued fractions
of a given length. He did not explicitly mention gcd calculation, however; the
connection between Fibonacci numbers and Euclid’s algorithm was Ąrst pointed
out by É. Léger [Correspondance Math. et Physique 9 (1837), 483Ű485.]

Shortly afterwards, P. J. É. Finck [Traité Élémentaire d’Arithmétique (Stras-
bourg: 1841), 44] proved by another method that gcd(u, v) takes at most 2 lg v+1
steps, when u > v > 0; and G. Lamé [Comptes Rendus Acad. Sci. 19 (Paris,
1844), 867Ű870] improved this to 5⌈log10(v + 1)⌉. Full details about these
pioneering studies in the analysis of algorithms appear in an interesting review
by J. O. Shallit, Historia Mathematica 21 (1994), 401Ű419. A more precise
estimate of the worst case is, however, a direct consequence of Theorem F:

Corollary L. If 0 ≤ v < N, the number of division steps required when
Algorithm 4.5.2A is applied to u and v is at most

logϕ (3− ϕ)N

.

Proof. After step A1 we have v > umod v. Therefore by Theorem F, the
maximum number of steps, n, occurs when v = Fn+1 and umod v = Fn. Since
Fn+1 < N, we have ϕn+1/

√
5 < N

see Eq. 1.2.8Ű(15)

; thus ϕn < (

√
5/ϕ)N =

(3− ϕ)N .

The quantity logϕ (3 − ϕ)N is approximately equal to 2.078 lnN + .6723 ≈
4.785 log10 N + .6723. See exercises 31, 36, and 38 for extensions of Theorem F.

An approximate model. Now that we know the maximum number of division
steps that can occur, let us attempt to Ąnd the average number. Let T (m,n)
be the number of division steps that occur when u = m and v = n are input to
Euclid’s algorithm. Thus

T (m, 0) = 0; T (m,n) = 1 + T (n,mmod n) if n ≥ 1. (18)

4.5.3 ANALYSIS OF EUCLID’S ALGORITHM 361

Let Tn be the average number of division steps when v = n and when u is chosen
at random; since only the value of umod v affects the algorithm after the Ąrst
division step, we have

Tn =
1
n

0≤k<n

T (k, n). (19)

For example, T (0, 5) = 1, T (1, 5) = 2, T (2, 5) = 3, T (3, 5) = 4, T (4, 5) = 3, so

T5 = 1
5 (1 + 2 + 3 + 4 + 3) = 2 3

5 .

Our goal is to estimate Tn for large n. One idea is to try an approximation
suggested by R. W. Floyd: We might assume that, for 0 ≤ k < n, the value of n
is essentially “randomŤ modulo k, so that we can set

Tn ≈ 1 +
1
n

(T0 + T1 + · · ·+ Tn−1).

Then Tn ≈ Sn, where the sequence ⟨Sn⟩ is the solution to the recurrence relation

S0 = 0, Sn = 1 +
1
n

(S0 + S1 + · · ·+ Sn−1), n ≥ 1. (20)

This recurrence is easy to solve by noting that

Sn+1 = 1 +
1

n+ 1
(S0 + S1 + · · ·+ Sn−1 + Sn)

= 1 +
1

n+ 1

n(Sn − 1) + Sn

= Sn +

1
n+ 1

;

hence Sn is 1 + 1
2 + · · · + 1

n = Hn, a harmonic number. The approximation
Tn ≈ Sn now suggests that we might have Tn ≈ lnn+O(1).

Comparison of this approximation with tables of the true value of Tn show,
however, that lnn is too large; Tn does not grow this fast. Our tentative
assumption that n is random modulo k must therefore be too pessimistic. And
indeed, a closer look shows that the average value of nmod k is less than the
average value of 1

2k, in the range 1 ≤ k ≤ n:

1
n

1≤k≤n

(nmod k) =
1
n

1≤k,q≤n

(n− qk)

⌊n/(q + 1)⌋ < k ≤ ⌊n/q⌋

= n− 1
n

1≤q≤n

q

⌊n/q⌋+ 1
2

−
⌊n/(q + 1)⌋+ 1

2

= n− 1
n

1≤q≤n

⌊n/q⌋+ 1
2

=

1− π2

12

n+O(logn) (21)

see exercise 4.5.2Ű10(c)

. This is only about .1775n, not .25n; so the value of

nmod k tends to be smaller than Floyd’s model predicts, and Euclid’s algorithm
works faster than we might expect.

362 ARITHMETIC 4.5.3

A continuous model. The behavior of Euclid’s algorithm with v = N is
essentially determined by the behavior of the regular continued fraction process
when X = 0/N, 1/N, . . . , (N−1)/N. When N is very large, we therefore want to
study the behavior of regular continued fractions when X is essentially a random
real number, uniformly distributed in [0 . . 1). Consider the distribution function

Fn(x) = Pr(Xn ≤ x), for 0 ≤ x ≤ 1, (22)

given a uniform distribution of X = X0. By the deĄnition of regular continued
fractions, we have F0(x) = x, and

Fn+1(x) =

k≥1

Pr(k ≤ 1/Xn ≤ k + x)

=

k≥1

Pr

1/(k + x) ≤ Xn ≤ 1/k

=

k≥1

Fn(1/k)− Fn

1/(k + x)

. (23)

If the distributions F0(x), F1(x), . . . deĄned by these formulas approach a
limiting distribution F∞(x) = F (x), we will have

F (x) =

k≥1

F (1/k)− F

1/(k + x)

. (24)

(An analogous relation, 4.5.2Ű(36), arose in our study of the binary gcd algo-
rithm.) One function that satisĄes (24) is F (x) = logb(1+x), for any base b > 1;
see exercise 19. The further condition F (1) = 1 implies that we should take
b = 2. Thus it is reasonable to make a guess that F (x) = lg(1 + x), and that
Fn(x) approaches this behavior.

We might conjecture, for example, that F (1
2) = lg(3

2) ≈ 0.58496; let us see
how close Fn(1

2) comes to this value for small n. We have F0(1
2) = 0.50000, and

F1(x) =

k≥1

1
k
− 1
k + x

= Hx;

F1(1
2) = H1/2 = 2− 2 ln 2 ≈ 0.61371;

F2(1
2) = H2/2 −H2/3 +H2/4 −H2/5 +H2/6 −H2/7 + · · · .

(See Table 3 of Appendix A.) The power series expansion

Hx = ζ(2)x− ζ(3)x2 + ζ(4)x3 − ζ(5)x4 + · · · (25)

makes it feasible to compute the numerical value

F2(1
2) = 0.57655 93276 99914 08418 82618 72122 27055 92452− . (26)

We’re getting closer to 0.58496; but it is not immediately clear how to get a good
estimate of Fn(1

2) for n = 3, much less for really large values of n.

4.5.3 ANALYSIS OF EUCLID’S ALGORITHM 363

The distributions Fn(x) were Ąrst studied by C. F. Gauss, who Ąrst thought
of the problem on the 5th day of February in 1799. His notebook for 1800
lists various recurrence relations and gives a brief table of values, including the
(inaccurate) approximation F2(1

2) ≈ 0.5748. After performing these calculations,
Gauss wrote, “Tam complicatæ evadunt, ut nulla spes superesse videaturŤ; i.e.,
“They come out so complicated that no hope appears to be left.Ť Twelve years
later, he wrote a letter to Laplace in which he posed the problem as one he could
not resolve to his satisfaction. He said, “I found by very simple reasoning that,
for n inĄnite, Fn(x) = log(1 + x)/ log 2. But the efforts that I made since then
in my inquiries to assign Fn(x)− log(1 + x)/ log 2 for very large but not inĄnite
values of n were fruitless.Ť He never published his “very simple reasoning,Ť
and it is not completely clear that he had found a rigorous proof. [See Gauss’s
Werke, vol. 101, 552Ű556.] More than 100 years went by before a proof was Ąnally
published, by R. O. Kuz’min [Atti del Congresso Internazionale dei Matematici
6 (Bologna, 1928), 83Ű89], who showed that

Fn(x) = lg(1 + x) +O(e−A
√
n)

for some positive constant A. The error term was improved to O(e−An) by Paul
Lévy shortly afterwards [Bull. Soc. Math. de France 57 (1929), 178Ű194]*; but
Gauss’s problem, namely to Ąnd the asymptotic behavior of Fn(x) − lg(1 + x),
was not really resolved until 1974, when Eduard Wirsing published a beautiful
analysis of the situation [Acta Arithmetica 24 (1974), 507Ű528]. We shall study
the simplest aspects of Wirsing’s approach here, since his method is an instructive
use of linear operators.

If G is any function of x deĄned for 0 ≤ x ≤ 1, let SG be the function
deĄned by

SG(x) =

k≥1

G
1
k

−G
 1
k + x

. (27)

Thus, S is an operator that changes one function into another. In particular,
by (23) we have Fn+1(x) = SFn(x), hence

Fn = SnF0. (28)

(In this discussion Fn stands for a distribution function, not for a Fibonacci
number.) Notice that S is a “linear operatorŤ; that is, S(cG) = c(SG) for all
constants c, and S(G1 +G2) = SG1 + SG2.

Now if G has a bounded Ąrst derivative, we can differentiate (27) term by
term to show that

(SG)′(x) =

k≥1

1
(k + x)2

G′
 1
k + x

; (29)

hence SG also has a bounded Ąrst derivative.

Term-by-term differentiation

of a convergent series is justiĄed when the series of derivatives is uniformly

* An exposition of Lévy’s interesting proof appeared in the Ąrst edition of this book.

364 ARITHMETIC 4.5.3

convergent; see, for example, K. Knopp, Theory and Application of InĄnite
Series (Glasgow: Blackie, 1951), §47.

Let H = SG, and let g(x) = (1 + x)G′(x), h(x) = (1 + x)H ′(x). It follows
that

h(x) =

k≥1

1 + x

(k + x)2

1 +
1

k + x

−1

g
 1
k + x

=

k≥1

k

k + 1 + x
− k − 1
k + x

g
 1
k + x

.

In other words, h = Tg, where T is the linear operator deĄned by

Tg(x) =

k≥1

k

k + 1 + x
− k − 1
k + x

g
 1
k + x

. (30)

Continuing, we see that if g has a bounded Ąrst derivative, we can differen-
tiate term by term to show that Tg does also:

(Tg)′(x) = −

k≥1

k

(k + 1 + x)2
− k − 1

(k + x)2

g
 1
k + x

+

k

k + 1 + x
− k − 1
k + x

 1
(k + x)2

g′
 1
k + x

= −

k≥1

k

(k + 1 + x)2

g
 1
k + x

− g
 1
k + 1 + x

+
1 + x

(k + x)3(k + 1 + x)
g′
 1
k + x

.

There is consequently a third linear operator, U, such that (Tg)′ = −U(g′),
namely

Uφ(x) =

k≥1

k

(k+1+x)2

 1/(k+x)

1/(k+1+x)

φ(t) dt +
1+x

(k+x)3(k+1+x)
φ
 1
k+x

.

(31)
What is the relevance of all this to our problem? Well, if we set

Fn(x) = lg(1 + x) +Rn

lg(1 + x)

, (32)

fn(x) = (1 + x)F ′
n(x) =

1
ln 2

1 +R′

n

lg(1 + x)

, (33)

we have
f ′n(x) = R′′

n

lg(1 + x)

(ln 2)2(1 + x)

; (34)

the effect of the lg(1 +x) term disappears, after these transformations. Further-
more, since Fn = SnF0, we have fn = Tnf0 and f ′n = (−1)nUnf ′0. Both Fn

and fn have bounded derivatives, by induction on n. Thus (34) becomes

(−1)nR′′
n

lg(1 + x)

= (1 + x)(ln 2)2 Unf ′0(x). (35)

4.5.3 ANALYSIS OF EUCLID’S ALGORITHM 365

Now F0(x) = x, f0(x) = 1 + x, and f ′0(x) is the constant function 1. We are
going to show that the operator Un takes the constant function into a function
with very small values, hence |R′′

n(x)| must be very small for 0 ≤ x ≤ 1. Finally
we can clinch the argument by showing that Rn(x) itself is small: Since we have
Rn(0) = Rn(1) = 0, it follows from a well-known interpolation formula (see
exercise 4.6.4Ű15 with x0 = 0, x1 = x, x2 = 1) that

Rn(x) = − x(1− x)
2

R′′
n

ξn(x)

(36)

for some function ξn(x), where 0 ≤ ξn(x) ≤ 1 when 0 ≤ x ≤ 1.
Thus everything hinges on our being able to prove that Un produces small

function values, where U is the linear operator deĄned in (31). Notice that U is
a positive operator, in the sense that Uφ(x) ≥ 0 for all x if φ(x) ≥ 0 for all x.
It follows that U is order-preserving: If φ1(x) ≤ φ2(x) for all x then we have
Uφ1(x) ≤ Uφ2(x) for all x.

One way to exploit this property is to Ąnd a function φ for which we can
calculate Uφ exactly, and to use constant multiples of this function to bound the
ones that we are really interested in. First let us look for a function g such that
Tg is easy to compute. If we consider functions deĄned for all x ≥ 0, instead of
only on [0 . . 1], it is easy to remove the summation from (27) by observing that

SG(x+ 1)− SG(x) = G
 1

1 + x

− lim
k→∞

G
 1
k + x

= G
 1

1 + x

−G(0) (37)

when G is continuous. Since T

(1 + x)G′ = (1 + x)(SG)′, it follows (see

exercise 20) that

Tg(x)
1 + x

− Tg(1 + x)
2 + x

=
 1

1 + x
− 1

2 + x

g
 1

1 + x

. (38)

If we set Tg(x) = 1/(1 + x), we Ąnd that the corresponding value of g(x) is
1 + x−1/(1+x). Let φ(x) = g′(x) = 1+1/(1+x)2, so that Uφ(x) = −(Tg)′(x) =
1/(1 + x)2; this is the function φ we have been looking for.

For this choice of φ we have 2 ≤ φ(x)/Uφ(x) = (1+x)2+1 ≤ 5 for 0 ≤ x ≤ 1,
hence

1
5φ ≤ Uφ ≤ 1

2φ.

By the positivity of U and φ we can apply U to this inequality again, obtaining
1

25φ ≤ 1
5Uφ ≤ U2φ ≤ 1

2Uφ ≤ 1
4φ; and after n− 1 applications we have

5−nφ ≤ Unφ ≤ 2−nφ (39)

for this particular φ. Let χ(x) = f ′0(x) = 1 be the constant function; then for
0 ≤ x ≤ 1 we have 5

4χ ≤ φ ≤ 2χ, hence
5
8 5−nχ ≤ 1

2 5−nφ ≤ 1
2U

nφ ≤ Unχ ≤ 4
5U

nφ ≤ 4
5 2−nφ ≤ 8

5 2−nχ.

It follows by (35) that
5
8 (ln 2)25−n ≤ (−1)nR′′

n(x) ≤ 16
5 (ln 2)22−n, for 0 ≤ x ≤ 1;

hence by (32) and (36) we have proved the following result:

366 ARITHMETIC 4.5.3

Theorem W. The distribution Fn(x) equals lg(1 + x) + O(2−n) as n → ∞.
In fact, Fn(x) − lg(1 + x) lies between 5

16 (−1)n+15−n

ln(1 + x)

ln 2/(1 + x)

and 8
5 (−1)n+12−n

ln(1 + x)

ln 2/(1 + x)

, for 0 ≤ x ≤ 1.

With a slightly different choice of φ, we can obtain tighter bounds (see
exercise 21). In fact, Wirsing went much further in his paper, proving that

Fn(x) = lg(1 + x) + (−λ)nΨ(x) +O

x(1− x)(λ− 0.031)n

, (40)

where
λ = 0.30366 30028 98732 65859 74481 21901 55623 31109−

= //3, 3, 2, 2, 3, 13, 1, 174, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 1, . . . //
(41)

is a fundamental constant (apparently unrelated to more familiar constants), and
where Ψ is an interesting function that is analytic in the entire complex plane
except for the negative real axis from −1 to −∞. Wirsing’s function satisĄes
Ψ(0) = Ψ(1) = 0, Ψ ′(0) < 0, and SΨ = −λΨ ; thus by (37) it satisĄes the identity

Ψ(z)− Ψ(z + 1) =
1
λ
Ψ
 1

1 + z

. (42)

Furthermore, Wirsing demonstrated that

Ψ

−u
v

+
i

N

= cλ−n logN +O(1) as N →∞, (43)

where c is a constant and n = T (u, v) is the number of iterations when Euclid’s
algorithm is applied to the integers u > v > 0.

A complete solution to Gauss’s problem was found a few years later by K. I.
Babenko [Doklady Akad. Nauk SSSR 238 (1978), 1021Ű1024], who used powerful
techniques of functional analysis to prove that

Fn(x) = lg(1 + x) +

j≥2

λnj Ψj(x) (44)

for all 0 ≤ x ≤ 1, n ≥ 1. Here |λ2| > |λ3| ≥ |λ4| ≥ · · · , and each Ψj(z)
is an analytic function in the complex plane except for a cut at [−∞ . . − 1].
The function Ψ2 is Wirsing’s Ψ , and λ2 = −λ, while λ3 ≈ 0.10088, λ4 ≈
−0.03550, λ5 ≈ 0.01284, λ6 ≈ −0.00472, λ7 ≈ 0.00175. Babenko also es-
tablished further properties of the eigenvalues λj , proving in particular that
they are exponentially small as j →∞, and that the sum for j ≥ k in (44) is
bounded by (π2/6)|λk|n−1 min(x, 1−x). [Further information appears in papers
by Babenko and Yuriev, Doklady Akad. Nauk SSSR 240 (1978), 1273Ű1276;
Mayer and Roepstorff, J. Statistical Physics 47 (1987), 149Ű171; 50 (1988), 331Ű
344; D. Hensley, J. Number Theory 49 (1994), 142Ű182; Daudé, Flajolet, and
Vallée, Combinatorics, Probability and Computing 6 (1997), 397Ű433; Flajolet
and Vallée, Theoretical Comp. Sci. 194 (1998), 1Ű34.] The 40-place value of λ
in (41) was computed by John Hershberger.

4.5.3 ANALYSIS OF EUCLID’S ALGORITHM 367

From continuous to discrete. We have now derived results about the prob-
ability distributions for continued fractions when X is a real number uniformly
distributed in the interval [0 . . 1). But a real number is rational with probability
zero Ů almost all numbers are irrational Ů so these results do not apply directly
to Euclid’s algorithm. Before we can apply Theorem W to our problem, some
technicalities must be overcome. Consider the following observation based on
elementary measure theory:

Lemma M. Let I1, I2, . . . , J1, J2, . . . be pairwise disjoint intervals contained
in the interval [0 . . 1), and let

I =

k≥1

Ik, J =

k≥1

Jk, K = [0 . . 1] \ (I ∪ J).

Assume that K has measure zero. Let Pn be the set {0/n, 1/n, . . . , (n− 1)/n}.
Then

lim
n→∞

|I ∩ Pn|
n

= µ(I). (45)

Here µ(I) is the Lebesgue measure of I, namely,

k≥1 length(Ik); and |I ∩ Pn|
denotes the number of elements in the set I ∩ Pn.

Proof. Let IN =

1≤k≤N Ik and JN =

1≤k≤N Jk. Given ϵ > 0, Ąnd N large

enough so that µ(IN) + µ(JN) ≥ 1− ϵ, and let

KN = K ∪

k>N

Ik ∪

k>N

Jk.

If I is an interval, having any of the forms (a . . b) or [a . . b) or (a . . b] or [a . . b],
it is clear that µ(I) = b− a and

nµ(I)− 1 ≤ |I ∩ Pn| ≤ nµ(I) + 1.

Now let rn = |IN ∩ Pn|, sn = |JN ∩ Pn|, tn = |KN ∩ Pn|; we have

rn + sn + tn = n;

nµ(IN)−N ≤ rn ≤ nµ(IN) +N ;
nµ(JN)−N ≤ sn ≤ nµ(JN) +N.

Furthermore rn ≤ |I ∩ Pn| ≤ rn + tn, because IN ⊆ I ⊆ IN ∪ K. Consequently

µ(I)− N

n
− ϵ ≤ µ(IN)− N

n
≤ rn

n
≤ rn + tn

n

= 1− sn
n
≤ 1−µ(JN) +

N

n
≤ µ(I) +

N

n
+ ϵ.

Given ϵ, this holds for all n; so limn→∞ rn/n = limn→∞(rn + tn)/n = µ(I).

Exercise 25 shows that Lemma M is not trivial, in the sense that some rather
restrictive hypotheses are needed to prove (45).

Distribution of partial quotients. Now we put Theorem W and Lemma M
together to derive some solid facts about Euclid’s algorithm.

368 ARITHMETIC 4.5.3

Theorem E. Let pk(a, n) be the probability that the (k + 1)st quotient Ak+1

in Euclid’s algorithm is equal to a, when u = n and when v is equally likely to
be any of the numbers {0, 1, . . . , n− 1}. Then

lim
n→∞

pk(a, n) = Fk

1
a

− Fk

 1
a+ 1

,

where Fk(x) is the distribution function (22).

Proof. The set I of all X in [0 . . 1) for which Ak+1 = a is a union of disjoint
intervals, and so is the set J of all X for which Ak+1 ̸= a. Lemma M therefore
applies, with K the set of all X for which Ak+1 is undeĄned. Furthermore,
Fk(1/a)− Fk

1/(a+ 1)

is the probability that 1/(a+ 1) < Xk ≤ 1/a, which is

µ(I), the probability that Ak+1 = a.

As a consequence of Theorems E and W, we can say that a quotient equal
to a occurs with the approximate probability

lg(1 + 1/a)− lg

1 + 1/(a+ 1)

= lg

(a+ 1)2/

(a+ 1)2 − 1

.

Thus
a quotient of 1 occurs about lg(4

3) ≈ 41.504 percent of the time;

a quotient of 2 occurs about lg(9
8) ≈ 16.993 percent of the time;

a quotient of 3 occurs about lg(16
15) ≈ 9.311 percent of the time;

a quotient of 4 occurs about lg(25
24) ≈ 5.889 percent of the time.

Actually, if Euclid’s algorithm produces the quotients A1, A2, . . . , At, the
nature of the proofs above will guarantee this behavior only for Ak when k is
comparatively small with respect to t; the values At−1, At−2, . . . are not covered
by this proof. But we can in fact show that the distribution of the last quotients
At−1, At−2, . . . is essentially the same as the Ąrst.

For example, consider the regular continued fraction expansions for the set
of all proper fractions whose denominator is 29:
1

29 = //29// 8
29 = //3, 1, 1, 1, 2// 15

29 = //1, 1, 14// 22
29 = //1, 3, 7//

2
29 = //14, 2// 9

29 = //3, 4, 2// 16
29 = //1, 1, 4, 3// 23

29 = //1, 3, 1, 5//
3

29 = //9, 1, 2// 10
29 = //2, 1, 9// 17

29 = //1, 1, 2, 2, 2// 24
29 = //1, 4, 1, 4//

4
29 = //7, 4// 11

29 = //2, 1, 1, 1, 3// 18
29 = //1, 1, 1, 1, 1, 3// 25

29 = //1, 6, 4//
5

29 = //5, 1, 4// 12
29 = //2, 2, 2, 2// 19

29 = //1, 1, 1, 9// 26
29 = //1, 8, 1, 2//

6
29 = //4, 1, 5// 13

29 = //2, 4, 3// 20
29 = //1, 2, 4, 2// 27

29 = //1, 13, 2//
7

29 = //4, 7// 14
29 = //2, 14// 21

29 = //1, 2, 1, 1, 1, 2// 28
29 = //1, 28//

Several things can be observed in this table.

a) As mentioned earlier, the last quotient is always 2 or more. Furthermore,
we have the obvious identity

//x1, . . . , xn−1, xn + 1// = //x1, . . . , xn−1, xn, 1//, (46)

4.5.3 ANALYSIS OF EUCLID’S ALGORITHM 369

which shows how continued fractions whose last quotient is unity are related to
regular continued fractions.

b) The values in the right-hand columns have a simple relationship to the values
in the left-hand columns; can the reader see the correspondence before reading
any further? The relevant identity is

1− //x1, x2, . . . , xn// = //1, x1 − 1, x2, . . . , xn//; (47)

see exercise 9.

c) There is symmetry between left and right in the Ąrst two columns: If
//A1, A2, . . . , At// occurs, so does //At, . . . , A2, A1//. This will always be the
case (see exercise 26).

d) If we examine all of the quotients in the table, we Ąnd that there are 96 in
all, of which 39

96 ≈ 40.6 percent are equal to 1, 21
96 ≈ 21.9 percent are equal to 2,

8
96 ≈ 8.3 percent are equal to 3; this agrees reasonably well with the probabilities
listed above.

The number of division steps. Let us now return to our original problem and
investigate Tn, the average number of division steps when v = n.

See Eq. (19).

Here are some sample values of Tn:

n = 95 96 97 98 99 100 101 102 103 104 105
Tn = 5.0 4.4 5.3 4.8 4.7 4.6 5.3 4.6 5.3 4.7 4.6

n = 996 997 998 999 1000 1001 · · · 9999 10000 10001
Tn = 6.5 7.3 7.0 6.8 6.4 6.7 · · · 8.6 8.3 9.1

n = 49998 49999 50000 50001 · · · 99999 100000 100001
Tn = 9.8 10.6 9.7 10.0 · · · 10.7 10.3 11.0

Notice the somewhat erratic behavior; Tn tends to be larger than its neighbors
when n is prime, and it is correspondingly lower when n has many divisors. (In
this list, 97, 101, 103, 997, and 49999 are primes; 10001 = 73 · 137; 49998 =
2 ·3 ·13 ·641; 50001 = 3 ·7 ·2381; 99999 = 3 ·3 ·41 ·271; and 100001 = 11 ·9091.)
It is not difficult to understand why this happens: If gcd(u, v) = d, Euclid’s
algorithm applied to u and v behaves essentially the same as if it were applied to
u/d and v/d. Therefore, when v = n has several divisors, there are many choices
of u for which n behaves as if it were smaller.

Accordingly let us consider another quantity, τn, which is the average num-
ber of division steps when v = n and when u is relatively prime to n. Thus

τn =
1

φ(n)

0≤m<n
m⊥n

T (m,n). (48)

It follows that

Tn =
1
n

d\n
φ(d)τd. (49)

370 ARITHMETIC 4.5.3

Here is a table of τn for the same values of n considered above:

n = 95 96 97 98 99 100 101 102 103 104 105
τn = 5.4 5.3 5.3 5.6 5.2 5.2 5.4 5.3 5.4 5.3 5.6

n = 996 997 998 999 1000 1001 · · · 9999 10000 10001
τn = 7.2 7.3 7.3 7.3 7.3 7.4 · · · 9.21 9.21 9.22

n = 49998 49999 50000 50001 · · · 99999 100000 100001
τn = 10.59 10.58 10.57 10.59 · · · 11.170 11.172 11.172

Clearly τn is much more well-behaved than Tn, and it should be more susceptible
to analysis. Inspection of a table of τn for small n reveals some curious anomalies;
for example, τ50 = τ100 and τ60 = τ120. But as n grows, the values of τn
behave quite regularly indeed, as the table indicates, and they show no signiĄcant
relation to the factorization properties of n. If these values τn are plotted as
functions of lnn on graph paper, for the values of τn given above, they lie very
nearly on the straight line

τn ≈ 0.843 lnn+ 1.47. (50)

We can account for this behavior if we study the regular continued fraction
process a little further. In Euclid’s algorithm as expressed in (15) we have

V0

U0

V1

U1
. . .

Vt−1

Ut−1
=
Vt−1

U0
,

since Uk+1 = Vk; therefore if U = U0 and V = V0 are relatively prime, and if
there are t division steps, we have

X0X1 . . . Xt−1 = 1/U.

Setting U = N and V = m < N, we Ąnd that

lnX0 + lnX1 + · · ·+ lnXt−1 = − lnN. (51)

We know the approximate distribution of X0, X1, X2, . . . , so we can use this
equation to estimate

t = T (N,m) = T (m,N)− 1.

Returning to the formulas preceding Theorem W, we Ąnd that the average
value of lnXn, when X0 is a real number uniformly distributed in [0 . . 1), is

 1

0

ln xF ′
n(x) dx =

 1

0

ln x fn(x) dx/(1 + x), (52)

where fn(x) is deĄned in (33). Now

fn(x) =
1

ln 2
+O(2−n), (53)

4.5.3 ANALYSIS OF EUCLID’S ALGORITHM 371

using the facts we have derived earlier (see exercise 23); hence the average value
of lnXn is very well approximated by

1
ln 2

 1

0

ln x
1 + x

dx = − 1
ln 2

 ∞

0

ue−u

1 + e−u
du

= − 1
ln 2

k≥1

(−1)k+1

 ∞

0

ue−ku du

= − 1
ln 2

1− 1
4

+
1
9
− 1

16
+

1
25
− · · ·

= − 1
ln 2

1 +
1
4

+
1
9

+ · · · − 2
1

4
+

1
16

+
1
36

+ · · ·

= − 1
2 ln 2

1 +
1
4

+
1
9

+ · · ·

= −π2/(12 ln 2).

By (51) we therefore expect to have the approximate formula

−tπ2/(12 ln 2) ≈ − lnN ;

that is, t should be approximately equal to

(12 ln 2)/π2

lnN. This constant

(12 ln 2)/π2 = 0.842765913 . . . agrees perfectly with the empirical formula (50)
obtained earlier, so we have good reason to believe that the formula

τn ≈
12 ln 2
π2

lnn+ 1.47 (54)

indicates the true asymptotic behavior of τn as n→∞.
If we assume that (54) is valid, we obtain the formula

Tn ≈
12 ln 2
π2

lnn−

d\n

Λ(d)
d

+ 1.47, (55)

where Λ(d) is von Mangoldt’s function deĄned by the rules

Λ(n) =

ln p, if n = pr for p prime and r ≥ 1;

0, otherwise.
(56)

(See exercise 27.) For example,

T100 ≈
12 ln 2
π2

ln 100− ln 2
2
− ln 2

4
− ln 5

5
− ln 5

25

+ 1.47

≈ (0.843)(4.605− 0.347− 0.173− 0.322− 0.064) + 1.47

≈ 4.59;

the exact value of T100 is 4.56.

372 ARITHMETIC 4.5.3

We can also estimate the average number of division steps when u and v are
both uniformly distributed between 1 and N, by calculating

1
N2

N

m=1

N

n=1

T (m,n) =
2
N2

N

n=1

nTn −
1
2
− 1

2N
. (57)

Assuming formula (55), exercise 29 shows that this sum has the form

12 ln 2
π2

lnN +O(1), (58)

and empirical calculations with the same numbers used to derive Eq. 4.5.2Ű(65)
show good agreement with the formula

12 ln 2
π2

lnN + 0.06. (59)

Of course we have not yet proved anything about Tn and τn in general; so far
we have only been considering plausible reasons why certain formulas ought to
hold. Fortunately it is now possible to supply rigorous proofs, based on a careful
analysis by several mathematicians.

The leading coefficient 12π−2 ln 2 in the formulas above was established Ąrst,
in independent studies by Gustav Lochs, John D. Dixon, and Hans A. Heilbronn.
Lochs [Monatshefte für Math. 65 (1961), 27Ű52] derived a formula equivalent to
the fact that (57) equals (12π−2 ln 2) lnN + a + O(N−1/2), where a ≈ 0.065.
Unfortunately his paper remained essentially unknown for many years, perhaps
because it computed only an average value from which we cannot derive deĄnite
information about Tn for any particular n. Dixon [J. Number Theory 2 (1970),
414Ű422] developed the theory of the Fn(x) distributions to show that individual
partial quotients are essentially independent of each other in an appropriate
sense, and proved that for all positive ϵ we have |T (m,n)− (12π−2 ln 2) lnn| <
(lnn)(1/2)+ϵ except for exp

−c(ϵ)(logN)ϵ/2

N2 values of m and n in the range

1 ≤ m < n ≤ N, where c(ϵ) > 0. Heilbronn’s approach was completely different,
working entirely with integers instead of continuous variables. His idea, which is
presented in slightly modiĄed form in exercises 33 and 34, is based on the fact
that τn can be related to the number of ways to represent n in a certain manner.
Furthermore, his paper [Number Theory and Analysis, edited by Paul Turán
(New York: Plenum, 1969), 87Ű96] shows that the distribution of individual
partial quotients 1, 2, . . . that we have discussed above actually applies to the
entire collection of partial quotients belonging to the fractions having a given
denominator; this is a sharper form of Theorem E. A still sharper result was
obtained several years later by J. W. Porter [Mathematika 22 (1975), 20Ű28],
who established that

τn =
12 ln 2
π2

lnn+ C +O(n−1/6+ϵ), (60)

where C ≈ 1.46707 80794 is the constant
6 ln 2
π2

3 ln 2 + 4γ − 24
π2
ζ ′(2)− 2

− 1
2

; (61)

4.5.3 ANALYSIS OF EUCLID’S ALGORITHM 373

see D. E. Knuth, Computers and Math. with Applic. 2 (1976), 137Ű139. Thus
the conjecture (50) is fully proved. Using (60), Graham H. Norton [J. Sym-
bolic Computation 10 (1990), 53Ű58] extended the calculations of exercise 29 to
conĄrm Lochs’s work, proving that the empirical constant 0.06 in (59) is actually

6 ln 2
π2

3 ln 2 + 4γ − 12

π2
ζ ′(2)− 3

− 1 = 0.06535 14259 (62)

D. Hensley proved in J. Number Theory 49 (1994), 142Ű182, that the variance
of τn is proportional to logn.

The average running time for Euclid’s algorithm on multiple-precision inte-
gers, using classical algorithms for arithmetic, was shown to be of order

1 + log

max(u, v)/gcd(u, v)

log min(u, v) (63)

by G. E. Collins, in SICOMP 3 (1974), 1Ű10.

Summary. We have found that the worst case of Euclid’s algorithm occurs
when its inputs u and v are consecutive Fibonacci numbers (Theorem F); the
number of division steps when 0 ≤ v < N will never exceed ⌈4.8 log10 N − 0.32⌉.
We have determined the frequency of the values of various partial quotients,
showing, for example, that the division step Ąnds ⌊u/v⌋ = 1 about 41 percent of
the time (Theorem E). And, Ąnally, the theorems of Heilbronn and Porter prove
that the average number Tn of division steps when v = n is approximately

(12 ln 2)/π2

lnn ≈ 1.9405 log10 n,

minus a correction term based on the divisors of n as shown in Eq. (55).

EXERCISES

x 1. [20] Since the quotient ⌊u/v⌋ is equal to unity more than 40 percent of the time
in Algorithm 4.5.2A, it may be advantageous on some computers to make a test for
this case and to avoid the division when the quotient is unity. Is the following MIX

program for Euclid’s algorithm more efficient than Program 4.5.2A?

LDX U rX← u.
JMP 2F

1H STX V v ← rX.
SUB V rA← u− v.
CMPA V

SRAX 5 rAX← rA.
JL 2F Is u− v < v?
DIV V rX← rAX mod v.

2H LDA V rA← v.
JXNZ 1B Done if rX = 0.

2. [M21] Evaluate the matrix product

x1

1
1
0

x2

1
1
0

. . .

xn

1
1
0

.

3. [M21] What is the value of det

x1 1 0 . . . 0
−1 x2 1 0

0 −1 x3 1 −1
. . . 1

0 0 . . . −1 xn

?

4. [M20] Prove Eq. (8).

374 ARITHMETIC 4.5.3

5. [HM25] Let x1, x2, . . . be a sequence of real numbers that are each greater than
some positive real number ϵ. Prove that the inĄnite continued fraction //x1, x2, . . . // =
limn→∞ //x1, . . . , xn// exists. Show also that //x1, x2, . . . // need not exist if we assume
only that xj > 0 for all j.

6. [M23] Prove that the regular continued fraction expansion of a number is unique

in the following sense: If B1, B2, . . . are positive integers, then the inĄnite continued
fraction //B1, B2, . . . // is an irrational number X between 0 and 1 whose regular
continued fraction has An = Bn for all n ≥ 1; and if B1, . . . , Bm are positive integers
with Bm > 1, then the regular continued fraction for X = //B1, . . . , Bm// has An = Bn

for 1 ≤ n ≤ m.

7. [M26] Find all permutations p(1)p(2) . . . p(n) of the integers {1, 2, . . . , n} such
that Kn(x1, x2, . . . , xn) = Kn(xp(1), xp(2), . . . , xp(n)) is an identity for all x1, x2, . . . , xn.

8. [M20] Show that −1/Xn = //An, . . . , A1,−X//, whenever Xn is deĄned, in the
regular continued fraction process.

9. [M21] Show that continued fractions satisfy the following identities:
a) //x1, . . . , xn// = //x1, . . . , xk + //xk+1, . . . , xn////, 1 ≤ k ≤ n;
b) //0, x1, x2, . . . , xn// = x1 + //x2, . . . , xn//, n ≥ 1;
c) //x1, . . . ,xk−1,xk,0,xk+1,xk+2, . . . ,xn// = //x1, . . . ,xk−1,xk + xk+1,xk+2, . . . ,xn//,

1 ≤ k < n;
d) 1− //x1, x2, . . . , xn// = //1, x1 − 1, x2, . . . , xn//, n ≥ 1.

10. [M28] By the result of exercise 6, every irrational real number X has a unique
regular continued fraction representation of the form

X = A0 + //A1, A2, A3, . . . //,

where A0 is an integer and A1, A2, A3, . . . are positive integers. Show that if X has
this representation then the regular continued fraction for 1/X is

1/X = B0 + //B1, . . . , Bm, A5, A6, . . . //

for suitable integers B0, B1, . . . , Bm. (The case A0 < 0 is, of course, the most
interesting.) Explain how to determine the B’s in terms of A0, A1, A2, A3, and A4.

11. [M30] (J.-A. Serret, 1850.) Let X = A0 + //A1, A2, A3, A4, . . . // and Y = B0 +
//B1, B2, B3, B4, . . . // be the regular continued fraction representations of two real
numbers X and Y , in the sense of exercise 10. Show that these representations
“eventually agree,Ť in the sense that Am+k = Bn+k for some m and n and for all
k ≥ 0, if and only if we have X = (qY + r)/(sY + t) for some integers q, r, s, t with
|qt − rs| = 1. (This theorem is the analog, for continued fraction representations, of
the simple result that the representations of X and Y in the decimal system eventually
agree if and only if X = (10qY + r)/10s for some integers q, r, and s.)

x 12. [M30] A quadratic irrationality is a number of the form (
√
D − U)/V , where D,

U, and V are integers, D > 0, V ̸= 0, and D is not a perfect square. We may assume
without loss of generality that V is a divisor of D−U2, for otherwise the number may
be rewritten as (

√
DV 2 − U |V |)/(V |V |).

a) Prove that the regular continued fraction expansion (in the sense of exercise 10) of
a quadratic irrationality X = (

√
D − U)/V is obtained by the following formulas:

V0 = V,

Vn+1 = (D − U2
n)/Vn,

A0 = ⌊X⌋,
An+1 = ⌊(

√
D + Un)/Vn+1⌋,

U0 = U +A0V ;

Un+1 = An+1Vn+1 − Un.

4.5.3 ANALYSIS OF EUCLID’S ALGORITHM 375

b) Prove that 0 < Un <
√
D, 0 < Vn < 2

√
D, for all n > N, where N is some

integer depending on X; hence the regular continued fraction representation of
every quadratic irrationality is eventually periodic. [Hint: Show that

(−
√
D − U)/V = A0 + //A1, . . . , An,−Vn/(

√
D + Un)//,

and use Eq. (5) to prove that (
√
D + Un)/Vn is positive when n is large.]

c) Letting pn = Kn+1(A0, A1, . . . , An) and qn = Kn(A1, . . . , An), prove the identity
V p2

n + 2Upnqn + ((U2 −D)/V)q2
n = (−1)n+1Vn+1.

d) Prove that the regular continued fraction representation of an irrational number X
is eventually periodic if and only if X is a quadratic irrationality. (This is the
continued fraction analog of the fact that the decimal expansion of a real number X
is eventually periodic if and only if X is rational.)

13. [M40] (J. Lagrange, 1767.) Let f(x) = anx
n + · · ·+ a0, an > 0, be a polynomial

having exactly one real root ξ > 1, where ξ is irrational and f ′(ξ) ̸= 0. Experiment
with a computer program to Ąnd the Ąrst thousand or so partial quotients of ξ, using
the following algorithm (which essentially involves only addition):

L1. Set A← 1.

L2. For k = 0, 1, . . . , n−1 (in this order) and for j = n−1, . . . , k (in this order),
set aj ← aj+1 +aj . (This step replaces f(x) by g(x) = f(x+ 1), a polynomial
whose roots are one less than those of f .)

L3. If an + an−1 + · · ·+ a0 < 0, set A← A+ 1 and return to L2.

L4. Output A (which is the value of the next partial quotient). Replace the coeffi-
cients (an, an−1, . . . , a0) by (−a0,−a1, . . . ,−an) and return to L1. (This step
replaces f(x) by a polynomial whose roots are reciprocals of those of f .)

For example, starting with f(x) = x3−2, the algorithm will output “1Ť (changing
f(x) to x3 − 3x2 − 3x− 1); then “3Ť (changing f(x) to 10x3 − 6x2 − 6x− 1); etc.

14. [M22] (A. Hurwitz, 1891.) Show that the following rules make it possible to Ąnd
the regular continued fraction expansion of 2X, given the partial quotients of X:

2// 2a, b, c, . . . // = // a, 2b+ 2//c, . . . ////;

2// 2a+ 1, b, c, . . . // = // a, 1, 1 + 2//b− 1, c, . . . ////.

Use this idea to Ąnd the regular continued fraction expansion of 1
2
e, given the expansion

of e in (13).

x 15. [M31] (R. W. Gosper.) Generalizing exercise 14, design an algorithm that com-
putes the continued fraction X0 + //X1, X2, . . . // for (ax + b)/(cx + d), given the
continued fraction x0 + //x1, x2, . . . // for x, and given integers a, b, c, d with ad ̸= bc.
Make your algorithm an “online coroutineŤ that outputs as many Xk as possible before
inputting each xj . Demonstrate how your algorithm computes (97x+ 39)/(−62x− 25)
when x = −1 + //5, 1, 1, 1, 2, 1, 2//.

16. [HM30] (L. Euler, 1731.) Let f0(z) = (ez − e−z)/(ez + e−z) = tanh z, and let
fn+1(z) = 1/fn(z)− (2n+ 1)/z. Prove that, for all n, fn(z) is an analytic function of
the complex variable z in a neighborhood of the origin, and it satisĄes the differential
equation f ′

n(z) = 1− fn(z)2 − 2nfn(z)/z. Use this fact to prove that

tanh z = //z−1, 3z−1, 5z−1, 7z−1, . . . //;

376 ARITHMETIC 4.5.3

then apply Hurwitz’s rule (exercise 14) to prove that

e−1/n = // 1, (2m+ 1)n− 1, 1//, m ≥ 0.

(This notation denotes the inĄnite continued fraction // 1, n − 1, 1, 1, 3n − 1, 1, 1,
5n − 1, 1, . . . //.) Also Ąnd the regular continued fraction expansion of e−2/n when
n > 0 is odd.

x 17. [M23] (a) Prove that //x1,−x2// = //x1 − 1, 1, x2 − 1//. (b) Generalize this
identity, obtaining a formula for //x1,−x2, x3,−x4, x5,−x6, . . . , x2n−1,−x2n// in which
all partial quotients are positive integers when the x’s are large positive integers.
(c) The result of exercise 16 implies that tan 1 = //1,−3, 5,−7, . . . //. Find the regular
continued fraction expansion of tan 1.

18. [M25] Show that //a1, a2, . . . , am, x1, a1, a2, . . . , am, x2, a1, a2, . . . , am, x3, . . . // −
//am, . . . , a2, a1, x1, am, . . . , a2, a1, x2, am, . . . , a2, a1, x3, . . . // does not depend on x1,
x2, x3, Hint: Multiply both continued fractions by Km(a1, a2, . . . , am).

19. [M20] Prove that F (x) = logb(1 + x) satisĄes Eq. (24).

20. [HM20] Derive (38) from (37).

21. [HM29] (E. Wirsing.) The bounds (39) were obtained for a function φ corre-
sponding to g with Tg(x) = 1/(x + 1). Show that the function corresponding to
Tg(x) = 1/(x+ c) yields better bounds, when c > 0 is an appropriate constant.

22. [HM46] (K. I. Babenko.) Develop efficient means to calculate accurate approxi-
mations to the quantities λj and Ψj(x) in (44), for small j ≥ 3 and for 0 ≤ x ≤ 1.

23. [HM23] Prove (53), using results from the proof of Theorem W.

24. [M22] What is the average value of a partial quotient An in the regular continued
fraction expansion of a random real number?

25. [HM25] Find an example of a set I = I1 ∪ I2 ∪ I3 ∪ · · · ⊆ [0 . . 1], where the I’s
are disjoint intervals, for which (45) does not hold.

26. [M23] Show that if the numbers {1/n, 2/n, . . . , ⌊n/2⌋/n} are expressed as regular
continued fractions, the result is symmetric between left and right, in the sense that
//At, . . . , A2, A1// appears whenever //A1, A2, . . . , At// does.

27. [M21] Derive (55) from (49) and (54).

28. [M23] Prove the following identities involving the three number-theoretic func-
tions φ(n), µ(n), Λ(n):

a)

d\n

µ(d) = δn1. b) lnn =

d\n

Λ(d), n =

d\n

φ(d).

c) Λ(n) =

d\n

µ
n
d

ln d, φ(n) =

d\n

µ
n
d

d.

29. [M23] Assuming that Tn is given by (55), show that (57) equals (58).

x 30. [HM32] The following “greedyŤ variant of Euclid’s algorithm is often suggested:
Instead of replacing v by umod v during the division step, replace it by |(umod v)−v|
if umod v > 1

2
v. Thus, for example, if u = 26 and v = 7, we have gcd(26, 7) =

gcd(−2, 7) = gcd(7, 2); −2 is the remainder of smallest magnitude when multiples of 7
are subtracted from 26. Compare this procedure with Euclid’s algorithm; estimate the
number of division steps this method saves, on the average.

4.5.3 ANALYSIS OF EUCLID’S ALGORITHM 377

x 31. [M35] Find the worst case of the modiĄcation of Euclid’s algorithm suggested in
exercise 30: What are the smallest inputs u > v > 0 that require n division steps?

32. [20] (a) A Morse code sequence of length n is a string of r dots and s dashes,
where r + 2s = n. For example, the Morse code sequences of length 4 are

q q q q, q q , q q, q q, .

Noting that the continuant K4(x1, x2, x3, x4) is x1x2x3x4 + x1x2 + x1x4 + x3x4 + 1,
Ąnd and prove a simple relation between Kn(x1, . . . , xn) and Morse code sequences of
length n. (b) (L. Euler, Novi Comm. Acad. Sci. Pet. 9 (1762), 53Ű69.) Prove that

Km+n(x1, . . . , xm+n) = Km(x1, . . . , xm)Kn(xm+1, . . . , xm+n)

+Km−1(x1, . . . , xm−1)Kn−1(xm+2, . . . , xm+n).

33. [M32] Let h(n) be the number of representations of n in the form

n = xx′ + yy′, x > y > 0, x′ > y′ > 0, x ⊥ y, integer x, x′, y, y′.

a) Show that if the conditions are relaxed to allow x′ = y′, the number of represen-
tations is h(n) + ⌊(n− 1)/2⌋.

b) Show that for Ąxed y > 0 and 0 < t ≤ y, where t ⊥ y, and for each Ąxed x′

in the range 0 < x′ < n/(y + t) such that x′t ≡ n (modulo y), there is exactly
one representation of n satisfying the restrictions of (a) and the condition x ≡ t
(modulo y).

c) Consequently, h(n) =
 ⌈(n/(y + t)− t′) /y⌉− ⌊(n− 1)/2⌋, where the sum is over

all positive integers y, t, t′ such that t ⊥ y, t ≤ y, t′ ≤ y, tt′ ≡ n (modulo y).
d) Show that each of the h(n) representations can be expressed uniquely in the form

x = Km(x1, . . . , xm),

x′ = Kk(xm+1, . . . , xm+k) d,

y = Km−1(x1, . . . , xm−1),

y′ = Kk−1(xm+2, . . . , xm+k) d,

where m, k, d, and the xj are positive integers with x1 ≥ 2, xm+k ≥ 2, and d is a di-
visor of n. The identity of exercise 32 now implies that n/d = Km+k(x1, . . . , xm+k).
Conversely, any given sequence of positive integers x1, . . . , xm+k such that x1 ≥ 2,
xm+k ≥ 2, and Km+k(x1, . . . , xm+k) divides n, corresponds in this way to m+k−1
representations of n.

e) Therefore nTn = ⌊(5n− 3)/2⌋+ 2h(n).

34. [HM40] (H. Heilbronn.) Let hd(n) be the number of representations of n as in
exercise 33 such that xd < x′, plus half the number of representations with xd = x′.

a) Let g(n) be the number of representations without the requirement that x ⊥ y.
Prove that

h(n) =

d\n

µ(d)g
n
d

, g(n) = 2

d\n

hd

n
d

.

b) Generalizing exercise 33(b), show that for d ≥ 1, hd(n) =

(n/(y(y+ t)))+O(n),
where the sum is over all integers y and t such that t ⊥ y and 0 < t ≤ y <

n/d.

c) Show that

(y/(y+ t)) = φ(y) ln 2 +O(σ−1(y)), where the sum is over the range
0 < t ≤ y, t ⊥ y, and where σ−1(y) =

d\y(1/d).

d) Show that
n

y=1 φ(y)/y2 =
n

d=1 µ(d)H⌊n/d⌋/d
2.

e) Hence we have the asymptotic formula

Tn = ((12 ln 2)/π2)(lnn−

d\n

Λ(d)/d) +O(σ−1(n)2).

378 ARITHMETIC 4.5.3

35. [HM41] (A. C. Yao and D. E. Knuth.) Prove that the sum of all partial quotients
for the fractions m/n, for 1 ≤ m < n, is equal to 2(

⌊x/y⌋+ ⌊n/2⌋), where the sum is
over all representations n = xx′ + yy′ satisfying the conditions of exercise 33(a). Show
that

⌊x/y⌋ = 3π−2n(lnn)2 +O(n logn (log logn)2), and apply this to the “ancientŤ
form of Euclid’s algorithm that uses only subtraction instead of division.

36. [M25] (G. H. Bradley.) What is the smallest value of un such that the calculation
of gcd(u1, . . . , un) by Algorithm 4.5.2C requires N divisions, if Euclid’s algorithm is
used throughout? Assume that N ≥ n ≥ 3.

37. [M38] (T. S. Motzkin and E. G. Straus.) Let a1, . . . , an be positive integers. Show
that maxKn(ap(1), . . . , ap(n)), over all permutations p(1) . . . p(n) of {1, 2, . . . , n}, occurs
when ap(1) ≥ ap(n) ≥ ap(2) ≥ ap(n−1) ≥ · · · ; and the minimum occurs when ap(1) ≤
ap(n) ≤ ap(3) ≤ ap(n−2) ≤ ap(5) ≤ · · · ≤ ap(6) ≤ ap(n−3) ≤ ap(4) ≤ ap(n−1) ≤ ap(2).

38. [M25] (J. Mikusiński.) Let L(n) = maxm≥0 T (m,n). Theorem F shows that
L(n) ≤ logϕ(

√
5n+ 1)− 2; prove that 2L(n) ≥ logϕ(

√
5n+ 1)− 2.

x 39. [M25] (R. W. Gosper.) If a baseball player’s batting average is .334, what is the
smallest possible number of times he has been at bat? [Note for non-baseball-fans:
Batting average = (number of hits)/(times at bat), rounded to three decimal places.]

x 40. [M28] (The SternŰBrocot tree.) Consider an inĄnite binary tree in which each
node is labeled with the fraction (pl + pr)/(ql + qr), where pl/ql is the label of the
node’s nearest left ancestor and pr/qr is the label of the node’s nearest right ancestor.
(A left ancestor is one that precedes a node in symmetric order, while a right ancestor
follows the node. See Section 2.3.1 for the deĄnition of symmetric order.) If the node
has no left ancestors, pl/ql = 0/1; if it has no right ancestors, pr/qr = 1/0. Thus the
label of the root is 1/1; the labels of its two children are 1/2 and 2/1; the labels of the
four nodes on level 2 are 1/3, 2/3, 3/2, and 3/1, from left to right; the labels of the
eight nodes on level 3 are 1/4, 2/5, 3/5, 3/4, 4/3, 5/3, 5/2, 4/1; and so on.

Prove that p is relatively prime to q in each label p/q; furthermore, the node
labeled p/q precedes the node labeled p′/q′ in symmetric order if and only if the labels
satisfy p/q < p′/q′. Find a connection between the continued fraction for the label of
a node and the path to that node, thereby showing that each positive rational number
appears as the label of exactly one node in the tree.

41. [M40] (J. Shallit, 1979.) Show that the regular continued fraction expansion of

1
21

+
1
23

+
1
27

+ · · · =

n≥1

1
22n−1

contains only 1s and 2s and has a fairly simple pattern. Prove that the partial quotients
of Liouville’s numbers

n≥1 l

−n! also have a regular pattern, when l is any integer
≥ 2. [The latter numbers, introduced by J. Liouville in J. de Math. Pures et Appl. 16

(1851), 133Ű142, were the Ąrst explicitly deĄned numbers to be proved transcendental.
The former number and similar constants were Ąrst proved transcendental by A. J.
Kempner, Trans. Amer. Math. Soc. 17 (1916), 476Ű482.]

42. [M30] (J. Lagrange, 1798.) Let X have the regular continued fraction expansion
//A1, A2, . . . //, and let qn = Kn(A1, . . . , An). Let ∥x∥ denote the distance from x to
the nearest integer, namely minp |x− p|. Show that ∥qX∥ ≥ ∥qn−1X∥ for 1 ≤ q < qn.
(Thus the denominators qn of the so-called convergents pn/qn = //A1, . . . , An// are the
“record-breakingŤ integers that make ∥qX∥ achieve new lows.)

4.5.4 FACTORING INTO PRIMES 379

43. [M30] (D. W. Matula.) Show that the “mediant roundingŤ rule for Ąxed slash
or Ćoating slash numbers, Eq. 4.5.1Ű(1), can be implemented simply as follows, when
the number x > 0 is not representable: Let the regular continued fraction expansion
of x be a0 + //a1, a2, . . . //, and let pn = Kn+1(a0, . . . , an), qn = Kn(a1, . . . , an). Then
round(x) = (pi/qi), where (pi/qi) is representable but (pi+1/qi+1) is not. [Hint: See
exercise 40.]

44. [M25] Suppose we are doing Ąxed slash arithmetic with mediant rounding, where
the fraction (u/u′) is representable if and only if |u| < M and 0 ≤ u′ < N and u ⊥ u′.
Prove or disprove the identity ((u/u′)⊕ (v/v′))⊖ (v/v′) = (u/u′) for all representable
(u/u′) and (v/v′), provided that u′ <

√
N and no overĆow occurs.

45. [M25] Show that Euclid’s algorithm (Algorithm 4.5.2A) applied to two n-bit
binary numbers requires O(n2) units of time, as n → ∞. (The same upper bound
obviously holds for Algorithm 4.5.2B.)

46. [M43] Can the upper bound O(n2) in exercise 45 be decreased, if another algo-
rithm for calculating the greatest common divisor is used?

47. [M40] Develop a computer program to Ąnd as many partial quotients of x as
possible, when x is a real number given with high precision. Use your program to
calculate the Ąrst several thousand partial quotients of Euler’s constant γ, which can
be calculated as explained by D. W. Sweeney in Math. Comp. 17 (1963), 170Ű178. (If
γ is a rational number, you might discover its numerator and denominator, thereby
resolving a famous problem in mathematics. According to the theory in the text, we
expect to get about 0.97 partial quotients per decimal digit, when the given number is
random. Multiprecision division is not necessary; see Algorithm 4.5.2L and the article
by J. W. Wrench, Jr. and D. Shanks, Math. Comp. 20 (1966), 444Ű447.)
48. [M21] Let T0 = (1, 0, u), T1 = (0, 1, v), . . . , Tn+1 = ((−1)n+1v/d, (−1)nu/d, 0)
be the sequence of vectors computed by Algorithm 4.5.2X (the extended Euclidean
algorithm), and let //a1, . . . , an// be the regular continued fraction for v/u. Express Tj

in terms of continuants involving a1, . . . , an, for 1 < j ≤ n.

49. [M33] By adjusting the Ąnal iteration of Algorithm 4.5.2X so that an is optionally
replaced by two partial quotients (an − 1, 1), we can assume that the number of
iterations, n, has a given parity. Continuing the previous exercise, let λ and µ be
arbitrary positive real numbers and let θ =

λµv/d, where d = gcd(u, v). Prove that

if n is even, and if Tj = (xj , yj , zj), we have minn+1
j=1 |λxj + µzj − [j even] θ| ≤ θ.

x 50. [M25] Given an irrational number α ∈ (0 . . 1) and real numbers β and γ with
0 ≤ β < γ < 1, let f(α, β, γ) be the smallest nonnegative integer n such that β ≤
αnmod 1 < γ. (Such an integer exists because of Weyl’s theorem, exercise 3.5Ű22.)
Design an algorithm to compute f(α, β, γ).

x 51. [M30] (Rational reconstruction.) The number 28481 turns out to be equal to
41/316 (modulo 199999), in the sense that 316 · 28481 ≡ 41. How could a person
discover this? Given integers a and m with m > a > 1, explain how to Ąnd integers x
and y such that ax ≡ y (modulo m), x ⊥ y, 0 < x ≤

√
m/2, and |y| ≤

√
m/2, or to

determine that no such x and y exist. Can there be more than one solution?

4.5.4. Factoring into Primes

Several of the computational methods we have encountered in this book rest on
the fact that every positive integer n can be expressed in a unique way in the

380 ARITHMETIC 4.5.4

form
n = p1p2 . . . pt, p1 ≤ p2 ≤ · · · ≤ pt, (1)

where each pk is prime. (When n = 1, this equation holds for t = 0.) It is
unfortunately not a simple matter to Ąnd this prime factorization of n, or to
determine whether or not n is prime. So far as anyone knows, it is a great
deal harder to factor a large number n than to compute the greatest common
divisor of two large numbers m and n; therefore we should avoid factoring large
numbers whenever possible. But several ingenious ways to speed up the factoring
process have been discovered, and we will now investigate some of them. [A
comprehensive history of factoring before 1950 has been compiled by H. C.
Williams and J. O. Shallit, Proc. Symp. Applied Math. 48 (1993), 481Ű531.]

Divide and factor. First let us consider the most obvious algorithm for factor-
ization: If n > 1, we can divide n by successive primes p = 2, 3, 5, . . . until
discovering the smallest p for which nmod p = 0. Then p is the smallest prime
factor of n, and the same process may be applied to n ← n/p in an attempt
to divide this new value of n by p and by higher primes. If at any stage we
Ąnd that nmod p ̸= 0 but ⌊n/p⌋ ≤ p, we can conclude that n is prime; for
if n is not prime, then by (1) we must have n ≥ p2

1 , but p1 > p implies that
p2

1 ≥ (p+ 1)2 > p(p+ 1) > p2 + (nmod p) ≥ ⌊n/p⌋p+ (nmod p) = n. This leads
us to the following procedure:

Algorithm A (Factoring by division). Given a positive integer N, this algorithm
Ąnds the prime factors p1 ≤ p2 ≤ · · · ≤ pt of N as in Eq. (1). The method makes
use of an auxiliary sequence of trial divisors

2 = d0 < d1 < d2 < d3 < · · · , (2)

which includes all prime numbers ≤
√
N (and possibly values that are not prime,

if convenient). The sequence of d’s must also include at least one value such that
dk ≥

√
N .

A1. [Initialize.] Set t← 0, k ← 0, n← N. (During this algorithm the variables
t, k, n are related by the following condition: “n = N/p1 . . . pt, and n has
no prime factors less than dk.Ť)

A2. [n = 1?] If n = 1, the algorithm terminates.

A3. [Divide.] Set q ← ⌊n/dk⌋, r ← nmod dk. (Here q and r are the quotient
and remainder obtained when n is divided by dk.)

A4. [Zero remainder?] If r ̸= 0, go to step A6.

A5. [Factor found.] Increase t by 1, and set pt ← dk, n← q. Return to step A2.

A6. [Low quotient?] If q > dk, increase k by 1 and return to step A3.

A7. [n is prime.] Increase t by 1, set pt ← n, and terminate the algorithm.

As an example of Algorithm A, consider the factorization of the number
N = 25852. We Ąnd immediately that N = 2·12926; hence p1 = 2. Furthermore,
12926 = 2 · 6463, so p2 = 2. But now n = 6463 is not divisible by 2, 3, 5, . . . , 19;

4.5.4 FACTORING INTO PRIMES 381

A1. Initialize

A2. n=1?

A3. Divide

A4. Zero
remainder?

A5. Factor
found

A6. Low
quotient?

A7. n is
prime

Yes

No No

Yes

No

Yes

Fig. 11. A simple factoring algorithm.

we Ąnd that n = 23 · 281, hence p3 = 23. Finally 281 = 12 · 23 + 5 and 12 ≤ 23;
hence p4 = 281. The determination of 25852’s factors has therefore involved a
total of 12 division operations; on the other hand, if we had tried to factor the
slightly smaller number 25849 (which is prime), at least 38 division operations
would have been performed. This illustrates the fact that Algorithm A requires
a running time roughly proportional to max(pt−1,

√
pt). (If t = 1, this formula

is valid if we adopt the convention p0 = 1.)
The sequence d0, d1, d2, . . . of trial divisors used in Algorithm A can be

taken to be simply 2, 3, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, . . . , where we
alternately add 2 and 4 after the Ąrst three terms. This sequence contains all
numbers that are not multiples of 2 or 3; it also includes numbers such as 25,
35, 49, etc., which are not prime, but the algorithm will still give the correct
answer. A further savings of 20 percent in computation time can be made by
removing the numbers 30m ± 5 from the list for m ≥ 1, thereby eliminating all
of the spurious multiples of 5. The exclusion of multiples of 7 shortens the list
by 14 percent more, etc. A compact bit table can be used to govern the choice
of trial divisors.

If N is known to be small, it is reasonable to have a table of all the necessary
primes as part of the program. For example, if N is less than a million, we
need only include the 168 primes less than a thousand (followed by the value
d168 = 1000, to terminate the list in case N is a prime larger than 9972). Such
a table can be set up by means of a short auxiliary program; see, for example,
Algorithm 1.3.2P or exercise 8.

How many trial divisions are necessary in Algorithm A? Let π(x) be the
number of primes ≤ x, so that π(2) = 1, π(10) = 4; the asymptotic behavior
of this function has been studied extensively by many of the world’s greatest
mathematicians, beginning with Legendre in 1798. Numerous advances made
during the nineteenth century culminated in 1899, when Charles de La Vallée
Poussin proved that, for some A > 0,

π(x) =
 x

2

dt

ln t
+O

xe−A

√
log x

. (3)

382 ARITHMETIC 4.5.4

[Mém. Couronnés Acad. Roy. Belgique 59 (1899), 1Ű74; see also J. Hadamard,
Bull. Soc. Math. de France 24 (1896), 199Ű220.] Integrating by parts yields

π(x) =
x

ln x
+

x

(ln x)2
+

2!x
(ln x)3

+ · · ·+ r!x
(ln x)r+1

+O

x

(log x)r+2

(4)

for all Ąxed r ≥ 0. The error term in (3) has subsequently been improved;
for example, it can be replaced by O

x exp

−A(log x)3/5/(log log x)1/5

. [See

A. WalĄsz, Weyl’sche Exponentialsummen in der neueren Zahlentheorie (Berlin:
1963), Chapter 5.] Bernhard Riemann conjectured in 1859 that

π(x) ≈
lg x

k=1

µ(k)
k

L

k
√
x

= L(x)− 1
2
L
√
x

− 1

3
L

3
√
x

+ · · · (5)

where L(x) =
 x

2
dt/ln t, and his formula agrees well with actual counts when x

is of reasonable size:

x π(x) L(x) Riemann’s formula
103 168 176.6 168.3
106 78498 78626.5 78527.4
109 50847534 50849233.9 50847455.4
1012 37607912018 37607950279.8 37607910542.2
1015 29844570422669 29844571475286.5 29844570495886.9
1018 24739954287740860 24739954309690414.0 24739954284239494.4

(See exercise 41.) However, the distribution of large primes is not that simple,
and Riemann’s conjecture (5) was disproved by J. E. Littlewood in 1914; see
Hardy and Littlewood, Acta Math. 41 (1918), 119Ű196, where it is shown that
there is a positive constant C such that

π(x) > L(x) + C
√
x log log log x/log x

for inĄnitely many x. Littlewood’s result shows that prime numbers are inher-
ently somewhat mysterious, and it will be necessary to develop deep properties
of mathematics before their distribution is really understood. Riemann made
another much more plausible conjecture, the famous “Riemann hypothesis,Ť
which states that the complex function ζ(z) is zero only when the real part of z is
equal to 1/2, except in the trivial cases where z is a negative even integer. This
hypothesis, if true, would imply that π(x) = L(x)+O

√
x log x

; see exercise 25.

Richard Brent has used a method of D. H. Lehmer to verify Riemann’s hypothesis
computationally for all “smallŤ values of z, by showing that ζ(z) has exactly
75,000,000 zeros whose imaginary part is in the range 0 < ℑz < 32585736.4; all
of these zeros have ℜz = 1

2 and ζ ′(z) ̸= 0. [Math. Comp. 33 (1979), 1361Ű1372.]
In order to analyze the average behavior of Algorithm A, we would like to

know how large the largest prime factor pt will tend to be. This question was Ąrst
investigated by Karl Dickman [Arkiv för Mat., Astron. och Fys. 22A, 10 (1930),
1Ű14], who studied the probability that a random integer between 1 and x will
have its largest prime factor ≤ xα. Dickman gave a heuristic argument to show

4.5.4 FACTORING INTO PRIMES 383

that this probability approaches the limiting value F (α) as x→∞, where F can
be calculated from the functional equation

F (α) =
 α

0

F

t

1− t

dt

t
, for 0 ≤ α ≤ 1; F (α) = 1, for α ≥ 1. (6)

His argument was essentially this: Given 0 < t < 1, the number of integers
less than x whose largest prime factor is between xt and xt+dt is xF ′(t) dt. The
number of primes p in that range is π(xt+dt)−π(xt) = π

xt+(ln x)xt dt

−π(xt) =

xt dt/t. For every such p, the number of integers n such that “np ≤ x and
the largest prime factor of n is ≤ pŤ is the number of n ≤ x1−t whose largest
prime factor is ≤ (x1−t)t/(1−t), namely x1−t F

t/(1 − t)

. Hence xF ′(t) dt =

(xt dt/t)

x1−tF

t/(1− t)

, and (6) follows by integration. This heuristic argu-

ment can be made rigorous; V. Ramaswami [Bull. Amer. Math. Soc. 55 (1949),
1122Ű1127] showed that the probability in question for Ąxed α is asymptotically
F (α)+O(1/log x), as x→∞, and many other authors have extended the analysis
[see the survey by Karl K. Norton, Memoirs Amer. Math. Soc. 106 (1971), 9Ű27].

If 1
2 ≤ α ≤ 1, formula (6) simpliĄes to

F (α) = 1−
 1

α

F

t

1− t

dt

t
= 1−

 1

α

dt

t
= 1 + lnα.

Thus, for example, the probability that a random positive integer ≤ x has a
prime factor >

√
x is 1 − F (1

2) = ln 2, about 69 percent. In all such cases,
Algorithm A must work hard.

The net result of this discussion is that Algorithm A will give the answer
rather quickly if we want to factor a six-digit number; but for large N the amount
of computer time for factorization by trial division will rapidly exceed practical
limits, unless we are unusually lucky.

Later in this section we will see that there are fairly good ways to determine
whether or not a reasonably large number n is prime, without trying all divisors
up to

√
n. Therefore Algorithm A would often run faster if we inserted a

primality test between steps A2 and A3; the running time for this improved
algorithm would then be roughly proportional to pt−1, the second-largest prime
factor of N, instead of to max(pt−1,

√
pt). By an argument analogous to Dick-

man’s (see exercise 18), we can show that the second-largest prime factor of a
random integer ≤ x will be ≤ xβ with approximate probability G(β), where

G(β) =
 β

0

G

t

1− t

− F

t

1− t

dt

t
, for 0 ≤ β ≤ 1

2 . (7)

Clearly G(β) = 1 for β ≥ 1
2 . (See Fig. 12.) Numerical evaluation of (6) and (7)

yields the following “percentage pointsŤ:

F (α), G(β) = .01 .05 .10 .20 .35 .50 .65 .80 .90 .95 .99
α ≈ .2697 .3348 .3785 .4430 .5220 .6065 .7047 .8187 .9048 .9512 .9900
β ≈ .0056 .0273 .0531 .1003 .1611 .2117 .2582 .3104 .3590 .3967 .4517

Thus, the second-largest prime factor will be ≤ x.2117 about half the time, etc.

384 ARITHMETIC 4.5.4

x
0

x
.1

x
.2

x
.3

x
.4

x
.5

x
.6

x
.7

x
.8

x
.9

x
1

0.0

0.2

0.4

0.6

0.8

1.0

Largest

Second largest

Fig. 12. Probability distribution functions for the
two largest prime factors of a random integer ≤ x.

The total number of prime factors, t, has also been intensively analyzed.
Obviously 1 ≤ t ≤ lgN, but these lower and upper bounds are seldom achieved.
It is possible to prove that if N is chosen at random between 1 and x, the
probability that t ≤ ln ln x+ c

√
ln ln x approaches

1√
2π

 c

−∞
e−u2/2 du (8)

as x → ∞, for any Ąxed c. In other words, the distribution of t is essentially
normal, with mean and variance ln lnx; about 99.73 percent of all the large
integers ≤ x have |t − ln ln x| ≤ 3

√
ln ln x. Furthermore the average value of

t− ln ln x for 1 ≤ N ≤ x is known to approach

γ +

p prime

ln(1− 1/p) + 1/(p− 1)

= γ +

n≥2

φ(n) ln ζ(n)
n

= 1.03465 38818 97437 91161 97942 98464 63825 46703+ . (9)

[See G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers,
5th edition (Oxford, 1979), §22.11; see also P. Erdös and M. Kac, Amer. J. Math.
62 (1940), 738Ű742.]

The size of prime factors has a remarkable connection with permutations:
The average number of bits in the kth largest prime factor of a random n-bit
integer is asymptotically the same as the average length of the kth largest cycle
of a random n-element permutation, as n → ∞. [See D. E. Knuth, Selected
Papers on Analysis of Algorithms (2000), 329Ű330, 336Ű337, for references to
the relevant literature.] It follows that Algorithm A usually Ąnds a few small
factors and then begins a long-drawn-out search for the big ones that are left.

An excellent exposition of the probability distribution of the prime factors
of a random integer has been given by Patrick Billingsley, AMM 80 (1973),
1099Ű1115; see also his paper in Annals of Probability 2 (1974), 749Ű791.

Factoring by pseudorandom cycles. Near the beginning of Chapter 3, we
observed that “a random number generator chosen at random isn’t very random.Ť
This principle, which worked against us in that chapter, has the redeeming virtue

4.5.4 FACTORING INTO PRIMES 385

that it leads to a surprisingly efficient method of factorization, discovered by
J. M. Pollard [BIT 15 (1975), 331Ű334]. The number of computational steps
in Pollard’s method is on the order of

√
pt−1, so it is signiĄcantly faster than

Algorithm A when N is large. According to (7) and Fig. 12, the running time
will usually be well under N1/4.

Let f(x) be any polynomial with integer coefficients, and consider the two
sequences deĄned by

x0 = y0 = A; xm+1 = f(xm) modN, ym+1 = f(ym) mod p, (10)

where p is any prime factor of N. It follows that

ym = xm mod p, for m ≥ 1. (11)

Now exercise 3.1Ű7 shows that we will have ym = yℓ(m)−1 for some m ≥ 1,
where ℓ(m) is the greatest power of 2 that is ≤ m. Thus xm − xℓ(m)−1 will
be a multiple of p. Furthermore if f(y) mod p behaves as a random mapping
from the set {0, 1, . . . , p − 1} into itself, exercise 3.1Ű12 shows that the average
value of the least such m will be of order

√
p. In fact, exercise 4 below shows

that this average value for random mappings is less than 1.625Q(p), where the
function Q(p) ≈

πp/2 was deĄned in Section 1.2.11.3. If the different prime
divisors of N correspond to different values of m (as they almost surely will, when
N is large), we will be able to Ąnd them by calculating gcd(xm − xℓ(m)−1, N)
for m = 1, 2, 3, . . . , until the unfactored residue is prime. Pollard called his
technique the “rho method,Ť because an eventually periodic sequence such as
y0, y1, . . . is reminiscent of the Greek letter ρ.

From the theory in Chapter 3, we know that a linear polynomial f(x) =
ax + c will not be sufficiently random for our purposes. The next-simplest
case is quadratic, say f(x) = x2 + 1. We don’t know that this function is
sufficiently random, but our lack of knowledge tends to support the hypothesis
of randomness, and empirical tests show that this f does work essentially as
predicted. In fact, f is probably slightly better than random, since x2 + 1 takes
on only 1

2 (p+ 1) distinct values mod p; see Arney and Bender, PaciĄc J. Math.
103 (1982), 269Ű294. Therefore the following procedure is reasonable:

Algorithm B (Factoring by the rho method). This algorithm outputs the prime
factors of a given integer N ≥ 2, with high probability, although there is a chance
that it will fail.

B1. [Initialize.] Set x ← 5, x′ ← 2, k ← 1, l ← 1, n ← N.

During this

algorithm, n is the unfactored part of N, and the variables x and x′ represent
the quantities xm mod n and xℓ(m)−1 mod n in (10), where f(x) = x2 + 1,
A = 2, l = ℓ(m), and k = 2l −m.

B2. [Test primality.] If n is prime (see the discussion below), output n; the
algorithm terminates.

B3. [Factor found?] Set g ← gcd(x′−x, n). If g = 1, go on to step B4; otherwise
output g. Now if g = n, the algorithm terminates (and it has failed, because

386 ARITHMETIC 4.5.4

we know that n isn’t prime). Otherwise set n ← n/g, x ← xmod n, x′ ←
x′ mod n, and return to step B2. (Note that g may not be prime; this should
be tested. In the rare event that g isn’t prime, its prime factors won’t be
determinable with this algorithm.)

B4. [Advance.] Set k ← k − 1. If k = 0, set x′ ← x, l ← 2l, k ← l. Set
x← (x2 + 1) mod n and return to B3.

As an example of Algorithm B, let’s try to factor N = 25852 again. The
third execution of step B3 will output g = 4 (which isn’t prime). After six
more iterations the algorithm Ąnds the factor g = 23. Algorithm B has not
distinguished itself in this example, but of course it was designed to factor big

numbers. Algorithm A takes much longer to Ąnd large prime factors, but it can’t
be beat when it comes to removing the small ones. In practice, we should run
Algorithm A awhile before switching over to Algorithm B.

We can get a better idea of Algorithm B’s prowess by considering the ten
largest six-digit primes. The number of iterations, m(p), that Algorithm B needs
to Ąnd the factor p is given in the following table:

p = 999863 999883 999907 999917 999931 999953 999959 999961 999979 999983
m(p) = 276 409 2106 1561 1593 1091 474 1819 395 814

Experiments by Tomás Oliveira e Silva indicate that m(p) has an average value
of about 2

√
p, and it never exceeds 16

√
p when p < 1000000000. The maximum

m(p) for p < 109 is m(850112303) = 416784; and the maximum of m(p)/
√
p

occurs when p = 695361131, m(p) = 406244. According to these experimental
results, almost all 18-digit numbers can be factored in fewer than 64,000 itera-
tions of Algorithm B (compared to roughly 50,000,000 divisions in Algorithm A).

The time-consuming operations in each iteration of Algorithm B are the
multiple-precision multiplication and division in step B4, and the gcd in step B3.
The technique of “Montgomery multiplicationŤ (exercise 4.3.1Ű41) will speed
this up. Moreover, if the gcd operation is slow, Pollard suggests gaining speed
by accumulating the product mod n of, say, ten consecutive (x′ − x) values
before taking each gcd; this replaces 90 percent of the gcd operations by a single
multiplication mod N while only slightly increasing the chance of failure. He
also suggests starting with m = q instead of m = 1 in step B1, where q is, say,
one tenth of the number of iterations you are planning to use.

In those rare cases where failure occurs for large N, we could try using
f(x) = x2 + c for some c ̸= 0 or 1. The value c = −2 should also be avoided,
since the recurrence xm+1 = x2

m − 2 has solutions of the form xm = r2m

+ r−2m

.
Other values of c do not seem to lead to simple relationships mod p, and they
should all be satisfactory when used with suitable starting values.

Richard Brent used a modiĄcation of Algorithm B to discover the prime
factor 1238926361552897 of 2256 + 1. [See Math. Comp. 36 (1981), 627Ű630; 38
(1982), 253Ű255.]

Fermat’s method. Another approach to the factoring problem, which was used
by Pierre de Fermat in 1643, is more suited to Ąnding large factors than small

4.5.4 FACTORING INTO PRIMES 387

ones. [Fermat’s original description of his method, translated into English, can
be found in L. E. Dickson’s monumental History of the Theory of Numbers 1
(Carnegie Inst. of Washington, 1919), 357. An equivalent idea had in fact been
used already by Nārāyan. a Pan.d. ita in his remarkable book Gan. ita Kaumud̄ı
(1356); see Parmanand Singh, Gan. ita Bhārat̄ı 22 (2000), 72Ű74.]

Assume that N = uv, where u ≤ v. For practical purposes we may assume
that N is odd; this means that u and v are odd, and we can let

x = (u+ v)/2, y = (v − u)/2, (12)

N = x2 − y2, 0 ≤ y < x ≤ N. (13)

Fermat’s method consists of searching systematically for values of x and y that
satisfy Eq. (13). The following algorithm shows how factoring can therefore be
done without using any multiplication or division:

Algorithm C (Factoring by addition and subtraction). Given an odd number N,
this algorithm determines the largest factor of N less than or equal to

√
N .

C1. [Initialize.] Set a ← 2⌊
√
N⌋ + 1, b ← 1, r ← ⌊

√
N⌋2 − N. (During this

algorithm a, b, and r correspond respectively to 2x+1, 2y+1, and x2−y2−N
as we search for a solution to (13); we will have |r| < a and b < a.)

C2. [Done?] If r = 0, the algorithm terminates; we have

N =

(a− b)/2

(a+ b− 2)/2

,

and (a− b)/2 is the largest factor of N less than or equal to
√
N.

C3. [Increase a.] Set r ← r + a and a← a+ 2.

C4. [Increase b.] Set r ← r − b and b← b+ 2.

C5. [Test r.] Return to step C4 if r > 0, otherwise go back to C2.

The reader may Ąnd it amusing to Ąnd the factors of 377 by hand, using this
algorithm. The number of steps needed to Ąnd the factors u and v of N = uv is
essentially proportional to (a+ b−2)/2−⌊

√
N⌋ = v−⌊

√
N⌋; this can, of course,

be a very large number, although each step can be done very rapidly on most
computers. An improvement that requires only O(N1/3) operations in the worst
case has been developed by R. S. Lehman [Math. Comp. 28 (1974), 637Ű646].

It is not quite correct to call Algorithm C “Fermat’s method,Ť since Fermat
used a somewhat more streamlined approach. Algorithm C’s main loop is quite
fast on computers, but it is not very suitable for hand calculation. Fermat didn’t
actually maintain the running value of y; he would look at x2 − N and guess
whether or not this quantity was a perfect square by looking at its least signiĄcant
digits. (The last two digits of a perfect square must be 00, e1, e4, 25, o6, or
e9, where e is an even digit and o is an odd digit.) Therefore he avoided the
operations of steps C4 and C5, replacing them by an occasional determination
that a certain number is not a perfect square.

Fermat’s method of looking at the rightmost digits can, of course, be general-
ized by using other moduli. Suppose for clarity that N = 8616460799, a number

388 ARITHMETIC 4.5.4

whose historic signiĄcance is explained below, and consider the following table:

m if xmodm is then x2 modm is and (x2 −N) modm is

3 0, 1, 2 0, 1, 1 1, 2, 2
5 0, 1, 2, 3, 4 0, 1, 4, 4, 1 1, 2, 0, 0, 2
7 0, 1, 2, 3, 4, 5, 6 0, 1, 4, 2, 2, 4, 1 5, 6, 2, 0, 0, 2, 6
8 0, 1, 2, 3, 4, 5, 6, 7 0, 1, 4, 1, 0, 1, 4, 1 1, 2, 5, 2, 1, 2, 5, 2

11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 0, 1, 4, 9, 5, 3, 3, 5, 9, 4, 1 10, 0, 3, 8, 4, 2, 2, 4, 8, 3, 0

If x2 −N is to be a perfect square y2, it must have a residue mod m consistent
with this fact, for all m. For example, if N = 8616460799 and xmod 3 ̸= 0, then
(x2 −N) mod 3 = 2, so x2 −N cannot be a perfect square; therefore x must be
a multiple of 3 whenever N = x2 − y2. The table tells us, in fact, that

xmod 3 = 0;
xmod 5 = 0, 2, or 3;
xmod 7 = 2, 3, 4, or 5;
xmod 8 = 0 or 4 (hence xmod 4 = 0);
xmod 11 = 1, 2, 4, 7, 9, or 10.

(14)

This narrows down the search for x considerably. For example, x must be a
multiple of 12. We must have x ≥ ⌈

√
N ⌉ = 92825, and the least such multiple

of 12 is 92832. This value has residues (2, 5, 3) modulo (5, 7, 11) respectively, so
it fails (14) with respect to modulus 11. Increasing x by 12 changes the residue
mod 5 by 2, mod 7 by 5, and mod 11 by 1; so it is easy to see that the Ąrst
value of x ≥ 92825 that satisĄes all of the conditions in (14) is x = 92880. Now
928802 −N = 10233601, and the pencil-and-paper method for square root tells
us that 10233601 = 31992 is indeed a perfect square. Therefore we have found
the desired solution x = 92880, y = 3199, and the factorization is

8616460799 = (x− y)(x+ y) = 89681 · 96079.

This value of N is interesting because the English economist and logician W.
S. Jevons introduced it as follows in a well-known book: “Given any two num-
bers, we may by a simple and infallible process obtain their product, but it is
quite another matter when a large number is given to determine its factors. Can
the reader say what two numbers multiplied together will produce the number
8,616,460,799? I think it unlikely that anyone but myself will ever know.Ť [The
Principles of Science (1874), Chapter 7.] We have just seen, however, that Fer-
mat could have factored N in less than 10 minutes, on the back of an envelope!
Jevons’s point about the difficulty of factoring versus multiplying is well taken,
but only if we form the product of numbers that aren’t so close to each other.

In place of the moduli considered in (14), we can use any powers of distinct
primes. For example, if we had used 25 in place of 5, we would Ąnd that the
only permissible values of xmod 25 are 0, 5, 7, 10, 15, 18, and 20. This gives
more information than (14). In general, we will get more information modulo p2

than we do modulo p, for odd primes p, whenever x2 −N ≡ 0 (modulo p) has a
solution x. Individual primes p and q are, however, preferable to moduli like p2

unless p is quite small, because we tend to get even more information mod pq.

4.5.4 FACTORING INTO PRIMES 389

The modular method just used is called a sieve procedure, since we can
imagine passing all integers through a “sieveŤ for which only those values with
xmod 3 = 0 come out, then sifting these numbers through another sieve that
allows only numbers with xmod 5 = 0, 2, or 3 to pass, etc. Each sieve by itself
will remove about half of the remaining values (see exercise 6); and when we sieve
with respect to moduli that are relatively prime in pairs, each sieve is independent
of the others because of the Chinese remainder theorem (Theorem 4.3.2C). So if
we sieve with respect to, say, 30 different primes, only about one value in every
230 will need to be examined to see if x2 −N is a perfect square y2.

Algorithm D (Factoring with sieves). Given an odd number N, this algorithm
determines the largest factor of N less than or equal to

√
N . The procedure

uses moduli m1, m2, . . . , mr that are relatively prime to each other in pairs and
relatively prime to N. We assume that we have access to r sieve tables S[i, j] for
0 ≤ j < mi, 1 ≤ i ≤ r, where

S[i, j] =

j2 −N ≡ y2 (modulo mi) has a solution y

.

D1. [Initialize.] Set x ← ⌈
√
N ⌉, and set ki ← (−x) modmi for 1 ≤ i ≤ r.

(Throughout this algorithm the index variables k1, k2, . . . , kr will be set so
that ki = (−x) modmi.)

D2. [Sieve.] If S[i, ki] = 1 for 1 ≤ i ≤ r, go to step D4.

D3. [Step x.] Set x← x+ 1, and set ki ← (ki−1) modmi for 1 ≤ i ≤ r. Return
to step D2.

D4. [Test x2 − N.] Set y ← ⌊
√
x2 −N⌋ or to ⌈

√
x2 −N ⌉. If y2 = x2 − N,

then (x− y) is the desired factor, and the algorithm terminates. Otherwise
return to step D3.

There are several ways to make this procedure run fast. For example, we
have seen that if N mod 3 = 2, then x must be a multiple of 3; we can set x = 3x′,
and use a different sieve corresponding to x′, increasing the speed threefold. If
N mod 9 = 1, 4, or 7, then x must be congruent respectively to ±1, ±2, or ±4
(modulo 9); so we run two sieves (one for x′ and one for x′′, where x = 9x′ + a
and x = 9x′′ − a) to increase the speed by a factor of 4 1

2 . If N mod 4 = 3,
then xmod 4 is known and the speed is increased by an additional factor of 4;
in the other case, when N mod 4 = 1, x must be odd so the speed may be
doubled. Another way to double the speed of the algorithm (at the expense of
storage space) is to combine pairs of moduli, using mr−kmk in place of mk for
1 ≤ k < 1

2r.
An even more important method of speeding up Algorithm D is to use

the Boolean operations found on most binary computers. Let us assume, for
example, that MIX is a binary computer with 30 bits per word. The tables
S[i, ki] can be kept in memory with one bit per entry; thus 30 values can be
stored in a single word. The operation AND, which replaces the kth bit of the
accumulator by zero if the kth bit of a speciĄed word in memory is zero, for
1 ≤ k ≤ 30, can be used to process 30 values of x at once! For convenience,

390 ARITHMETIC 4.5.4

we can make several copies of the tables S[i, j] so that the table entries for mi

involve lcm(mi, 30) bits; then the sieve tables for each modulus Ąll an integral
number of words. Under these assumptions, 30 executions of the main loop in
Algorithm D are equivalent to code of the following form:

D2 LD1 K1 rI1← k′1.
LDA S1,1 rA← S′[1, rI1].
DEC1 1 rI1← rI1− 1.
J1NN *+2
INC1 M1 If rI1 < 0, set rI1← rI1 + lcm(m1, 30).
ST1 K1 k′1 ← rI1.
LD1 K2 rI1← k′2.
AND S2,1 rA← rA & S′[2, rI1].
DEC1 1 rI1← rI1− 1.
J1NN *+2
INC1 M2 If rI1 < 0, set rI1← rI1 + lcm(m2, 30).
ST1 K2 k′2 ← rI1.
LD1 K3 rI1← k′3.
· · · (m3 through mr are like m2)
ST1 Kr k′r ← rI1.
INCX 30 x← x+ 30.
JAZ D2 Repeat if all sieved out.

The number of cycles for 30 iterations is essentially 2 + 8r ; if r = 11, this
means three cycles are being used on each iteration, just as in Algorithm C, and
Algorithm C involves y = 1

2 (v − u) more iterations.
If the table entries for mi do not come out to be an integral number of

words, further shifting of the table entries would be necessary on each iteration
in order to align the bits properly. This would add quite a lot of coding to the
main loop and it would probably make the program too slow to compete with
Algorithm C unless v/u ≤ 100 (see exercise 7).

Sieve procedures can be applied to a variety of other problems, not neces-
sarily having much to do with arithmetic. A survey of these techniques has been
prepared by Marvin C. Wunderlich, JACM 14 (1967), 10Ű19.

F. W. Lawrence proposed the construction of special sieve machines for
factorization in the 19th century [Quart. J. of Pure and Applied Math. 28
(1896), 285Ű311], and E. O. Carissan completed such a device with 14 moduli
in 1919. [See Shallit, Williams, and Morain, Math. Intelligencer 17, 3 (1995),
41Ű47, for the interesting story of how Carissan’s long-lost sieve was rediscovered
and preserved for posterity.] D. H. Lehmer and his associates constructed and
used many different sieve devices during the period 1926Ű1989, beginning with
bicycle chains and later using photoelectric cells and other kinds of technology;
see, for example, AMM 40 (1933), 401Ű406. Lehmer’s electronic delay-line sieve,
which began operating in 1965, processed one million numbers per second. By
1995 it was possible to construct a machine that sieved 6144 million numbers per
second, performing 256 iterations of steps D2 and D3 in about 5.2 nanoseconds
[see Lukes, Patterson, and Williams, Nieuw Archief voor Wiskunde (4) 13 (1995),

4.5.4 FACTORING INTO PRIMES 391

113Ű139]. Another way to factor with sieves was described by D. H. and Emma
Lehmer in Math. Comp. 28 (1974), 625Ű635.

Primality testing. None of the algorithms we have discussed so far is an
efficient way to determine that a large number n is prime. Fortunately, there are
other methods available for settling this question; efficient techniques have been
devised by É. Lucas and others, notably D. H. Lehmer [see Bull. Amer. Math.
Soc. 33 (1927), 327Ű340].

According to Fermat’s theorem (Theorem 1.2.4F), we have

xp−1 mod p = 1

whenever p is prime and x is not a multiple of p. Furthermore, there are
efficient ways to calculate xn−1 mod n, requiring only O(logn) operations of
multiplication mod n. (We shall study them in Section 4.6.3 below.) Therefore
we can often determine that n is not prime when this relationship fails.

For example, Fermat once veriĄed that the numbers 21 + 1, 22 + 1, 24 + 1,
28 + 1, and 216 + 1 are prime. In a letter to Mersenne written in 1640, Fermat
conjectured that 22n

+ 1 is always prime, but said he was unable to determine
deĄnitely whether the number 4294967297 = 232 + 1 is prime or not. Neither
Fermat nor Mersenne ever resolved this problem, although they could have done
it as follows: The number 3232

mod (232 + 1) can be computed by doing 32
operations of squaring modulo 232 + 1, and the answer is 3029026160; therefore
(by Fermat’s own theorem, which he discovered in the same year 1640!) the
number 232 + 1 is not prime. This argument gives us absolutely no idea what
the factors are, but it answers Fermat’s question.

Fermat’s theorem is a powerful test for showing nonprimality of a given
number. When n is not prime, it is always possible to Ąnd a value of x < n
such that xn−1 mod n ̸= 1; experience shows that, in fact, such a value can
almost always be found very quickly. There are some rare values of n for which
xn−1 mod n is frequently equal to unity, but then n has a factor less than 3

√
n;

see exercise 9.
The same method can be extended to prove that a large prime number n

really is prime, by using the following idea: If there is a number x for which
the order of x modulo n is equal to n − 1, then n is prime. (The order of x
modulo n is the smallest positive integer k such that xk mod n = 1; see Section
3.2.1.2.) For this condition implies that the numbers x1 mod n, . . . , xn−1 mod n
are distinct and relatively prime to n, so they must be the numbers 1, 2, . . . ,
n−1 in some order; thus n has no proper divisors. If n is prime, such a number x
(called a primitive root of n) will always exist; see exercise 3.2.1.2Ű16. In fact,
primitive roots are rather numerous. There are φ(n − 1) of them, and this is
quite a substantial number, since n/φ(n− 1) = O(log logn).

It is unnecessary to calculate xk mod n for all k ≤ n− 1 to determine if the
order of x is n− 1 or not. The order of x will be n− 1 if and only if

i) xn−1 mod n = 1;
ii) x(n−1)/p mod n ̸= 1 for all primes p that divide n− 1.

392 ARITHMETIC 4.5.4

For xs mod n = 1 if and only if s is a multiple of the order of x modulo n. If the
two conditions hold, and if k is the order of x modulo n, we therefore know that
k is a divisor of n − 1, but not a divisor of (n − 1)/p for any prime factor p of
n− 1; the only remaining possibility is k = n− 1. This completes the proof that
conditions (i) and (ii) suffice to establish the primality of n.

Exercise 10 shows that we can in fact use different values of x for each of
the primes p, and n will still be prime. We may restrict consideration to prime
values of x, since the order of uv modulo n divides the least common multiple of
the orders of u and v by exercise 3.2.1.2Ű15. Conditions (i) and (ii) can be tested
efficiently by using the rapid methods for evaluating powers of numbers discussed
in Section 4.6.3. But it is necessary to know the prime factors of n−1, so we have
an interesting situation in which the factorization of n depends on that of n− 1.

An example. The study of a reasonably typical large factorization will help
to Ąx the ideas we have discussed so far. Let us try to Ąnd the prime factors
of 2214 + 1, a 65-digit number. The factorization can be initiated with a bit of
clairvoyance if we notice that

2214 + 1 = (2107 − 254 + 1)(2107 + 254 + 1); (15)

this is a special case of the factorization 4x4 + 1 = (2x2 + 2x+ 1)(2x2 − 2x+ 1),
which Euler communicated to Goldbach in 1742 [P. H. Fuss, Correspondance
Math. et Physique 1 (1843), 145]. The problem now boils down to examining
each of the 33-digit factors in (15).

A computer program readily discovers that 2107−254 +1 = 5 ·857 ·n0, where

n0 = 37866809061660057264219253397 (16)

is a 29-digit number having no prime factors less than 1000. A multiple-precision
calculation using Algorithm 4.6.3A shows that

3n0−1 mod n0 = 1,

so we suspect that n0 is prime. It is certainly out of the question to prove that
n0 is prime by trying the 10 million million or so potential divisors, but the
method discussed above gives a feasible test for primality: Our next goal is to
factor n0 − 1. With little difficulty, our computer will tell us that

n0 − 1 = 2 · 2 · 19 · 107 · 353 · n1, n1 = 13191270754108226049301.

Here 3n1−1 mod n1 ̸= 1, so n1 is not prime; by continuing Algorithm A or Algo-
rithm B we obtain another factor,

n1 = 91813 · n2, n2 = 143675413657196977.

This time 3n2−1 mod n2 = 1, so we will try to prove that n2 is prime. Casting out
factors < 1000 yields n2−1 = 2 ·2 ·2 ·2 ·3 ·3 ·547 ·n3, where n3 = 1824032775457.
Since 3n3−1 mod n3 ̸= 1, we know that n3 cannot be prime, and Algorithm A
Ąnds that n3 = 1103 · n4, where n4 = 1653701519. The number n4 behaves like
a prime (that is, 3n4−1 mod n4 = 1), so we calculate

n4 − 1 = 2 · 7 · 19 · 23 · 137 · 1973.

4.5.4 FACTORING INTO PRIMES 393

Good; this is our Ąrst complete factorization. We are now ready to backtrack
to the previous subproblem, proving that n4 is prime. Using the procedure
suggested by exercise 10, we compute the following values:

x p x(n4−1)/p mod n4 xn4−1 mod n4

2 2 1 (1)
2 7 766408626 (1)
2 19 332952683 (1)
2 23 1154237810 (1)
2 137 373782186 (1)
2 1973 490790919 (1)
3 2 1 (1)
5 2 1 (1)
7 2 1653701518 1

(17)

(Here “(1)Ť means a result of 1 that needn’t be computed since it can be
deduced from previous calculations.) Thus n4 is prime, and n2 − 1 has been
completely factored. A similar calculation shows that n2 is prime, and this
complete factorization of n0 − 1 Ąnally shows, after still another calculation like
(17), that n0 is prime.

The last three lines of (17) represent a search for an integer x that satisĄes
x(n4−1)/2 ̸≡ xn4−1 ≡ 1 (modulo n4). If n4 is prime, we have only a 50-50 chance
of success, so the case p = 2 is typically the hardest one to verify. We could
streamline this part of the calculation by using the law of quadratic reciprocity
(see exercise 23), which tells us for example that 5(q−1)/2 ≡ 1 (modulo q)
whenever q is a prime congruent to ±1 (modulo 5). Merely calculating n4 mod 5
would have told us right away that x = 5 could not possibly help in showing
that n4 is prime. In fact, however, the result of exercise 26 implies that the case
p = 2 doesn’t really need to be considered at all when testing n for primality,
unless n − 1 is divisible by a high power of 2, so we could have dispensed with
the last three lines of (17) entirely.

The next quantity to be factored is the other half of (15), namely

n5 = 2107 + 254 + 1.

Since 3n5−1 mod n5 ̸= 1, we know that n5 is not prime, and Algorithm B shows
that n5 = 843589 · n6, where n6 = 192343993140277293096491917. Unfortu-
nately, 3n6−1 mod n6 ̸= 1, so we are left with a 27-digit nonprime. Continuing
Algorithm B might well exhaust our patience (not our budget Ů we’re using
idle time on a weekend rather than “prime timeŤ). But the sieve method of
Algorithm D will be able to crack n6 into its two factors,

n6 = 8174912477117 · 23528569104401.

(It turns out that Algorithm B would also have succeeded, after 6,432,966 iter-
ations.) The factors of n6 could not have been discovered by Algorithm A in a
reasonable length of time.

394 ARITHMETIC 4.5.4

Now the computation is complete: 2214 + 1 has the prime factorization

5 · 857 · 843589 · 8174912477117 · 23528569104401 · n0,

where n0 is the 29-digit prime in (16). A certain amount of good fortune entered
into these calculations, for if we had not started with the known factorization
(15) it is quite probable that we would Ąrst have cast out the small factors,
reducing n to n6n0. This 55-digit number would have been much more difficult
to factor Ů Algorithm D would be useless and Algorithm B would have to work
overtime because of the high precision necessary.

Dozens of further numerical examples can be found in an article by John
Brillhart and J. L. Selfridge, Math. Comp. 21 (1967), 87Ű96.

Improved primality tests. The procedure just illustrated requires the com-
plete factorization of n−1 before we can prove that n is prime, so it will bog down
for large n. Another technique, which uses the factorization of n+ 1 instead, is
described in exercise 15; if n− 1 turns out to be too hard, n+ 1 might be easier.

SigniĄcant improvements are available for dealing with large n. For example,
it is not difficult to prove a stronger converse of Fermat’s theorem that requires
only a partial factorization of n − 1. Exercise 26 shows that we could have
avoided most of the calculations in (17); the three conditions 2n4−1 mod n4 =
gcd(2(n4−1)/23 − 1, n4) = gcd(2(n4−1)/1973 − 1, n4) = 1 are sufficient by them-
selves to prove that n4 is prime. Brillhart, Lehmer, and Selfridge have in fact
developed a method that works when the numbers n − 1 and n + 1 have been
only partially factored [Math. Comp. 29 (1975), 620Ű647, Corollary 11]: Suppose
n − 1 = f−r− and n + 1 = f+r+, where we know the complete factorizations
of f− and f+, and we also know that all factors of r− and r+ are ≥ b. If the
product

b3f−f+ max(f−, f+)

is greater than 2n, a small amount of additional

computation, described in their paper, will determine whether or not n is prime.
Therefore numbers of up to 35 digits can usually be tested for primality in a
fraction of a second, simply by casting out all prime factors < 30030 from n± 1
[see J. L. Selfridge and M. C. Wunderlich, Congressus Numerantium 12 (1974),
109Ű120]. The partial factorization of other quantities like n2±n+ 1 and n2 + 1
can be used to improve this method still further [see H. C. Williams and J. S.
Judd, Math. Comp. 30 (1976), 157Ű172, 867Ű886].

In practice, when n has no small prime factors and 3n−1 mod n = 1, further
calculations almost always show that n is prime.

One of the rare exceptions in

the author’s experience is n = 1
7 (228 − 9) = 2341 · 16381.

On the other hand,

some nonprime values of n are deĄnitely bad news for the primality test we
have discussed, because it might happen that xn−1 mod n = 1 for all x relatively
prime to n (see exercise 9). The smallest such number is n = 3·11·17 = 561; here
λ(n) = lcm(2, 10, 16) = 80 in the notation of Eq. 3.2.1.2Ű(9), so x80 mod 561 =
1 = x560 mod 561 whenever x is relatively prime to 561. Our procedure would
repeatedly fail to show that such an n is nonprime, until we had stumbled across
one of its divisors. To improve the method, we need a quick way to determine
the nonprimality of nonprime n, even in such pathological cases.

4.5.4 FACTORING INTO PRIMES 395

The following surprisingly simple procedure is guaranteed to do the job with
high probability:

Algorithm P (Probabilistic primality test). Given an odd integer n, this algo-
rithm attempts to decide whether or not n is prime. By repeating the algorithm
several times, as explained in the remarks below, it is possible to be extremely
conĄdent about the primality of n, in a precise sense, yet the primality will not
be rigorously proved. Let n = 1 + 2kq, where q is odd.

P1. [Generate x.] Let x be a random integer in the range 1 < x < n.

P2. [Exponentiate.] Set j ← 0 and y ← xq mod n. (As in our previous primality
test, xq mod n should be calculated in O(log q) steps; see Section 4.6.3.)

P3. [Done?] (Now y = x2jq mod n.) If y = n−1, or if y = 1 and j = 0, terminate
the algorithm and say “n is probably prime.Ť If y = 1 and j > 0, go to P5.

P4. [Increase j.] Increase j by 1. If j < k, set y ← y2 mod n and return to P3.

P5. [Not prime.] Terminate and say “n is deĄnitely not prime.Ť

The idea underlying Algorithm P is that if xq mod n ̸= 1 and n = 1 + 2kq is
prime, the sequence of values

xq mod n, x2q mod n, x4q mod n, . . . , x2kq mod n

will end with 1, and the value just preceding the Ąrst appearance of 1 will be
n − 1.

The only solutions to y2 ≡ 1 (modulo p) are y ≡ ±1, when p is prime,

since (y − 1)(y + 1) must be a multiple of p.

Exercise 22 proves the basic fact that Algorithm P will be wrong at most 1/4
of the time, for all n. Actually it will rarely fail at all, for most n; but the crucial
point is that the probability of failure is bounded regardless of the value of n.

Suppose we invoke Algorithm P repeatedly, choosing x independently and
at random whenever we get to step P1. If the algorithm ever reports that n is
nonprime, we can be sure this is so. But if the algorithm reports 25 times in a row
that n is “probably prime,Ť we can say that n is “almost surely prime.Ť For the
probability is less than (1/4)25 that such a 25-times-in-a-row procedure gives the
wrong information about its input. This is less than one chance in a quadrillion;
even if we tested a billion different numbers with such a procedure, the expected
number of mistakes would be less than 1

1000000 . It’s much more likely that our
computer has dropped a bit in its calculations, due to hardware malfunctions or
cosmic radiations, than that Algorithm P has repeatedly guessed wrong!

Probabilistic algorithms like this lead us to question our traditional stan-
dards of reliability. Do we really need to have a rigorous proof of primality?
For people unwilling to abandon traditional notions of proof, Gary L. Miller has
demonstrated (in slightly weaker form) that if a certain well-known conjecture
in number theory called the Extended Riemann Hypothesis can be proved, then
either n is prime or there is an x < 2(lnn)2 such that Algorithm P will discover
the nonprimality of n. [See J. Comp. System Sci. 13 (1976), 300Ű317. The
constant 2 in this upper bound is due to Eric Bach, Math. Comp. 55 (1990),
355Ű380. See Chapter 8 of Algorithmic Number Theory 1 by E. Bach and J. O.

396 ARITHMETIC 4.5.4

Shallit (MIT Press, 1996), for an exposition of various generalizations of the
Riemann hypothesis.] Thus, we would have a rigorous way to test primality in
O(logn)5 elementary operations, as opposed to a probabilistic method whose
running time is O(logn)3, if the Extended Riemann Hypothesis were proved.
But one might well ask whether any purported proof of that hypothesis will ever
be as reliable as repeated application of Algorithm P on random x’s.

A probabilistic test for primality was proposed in 1974 by R. Solovay and
V. Strassen, who devised the interesting but more complicated test described
in exercise 23(b). [See SICOMP 6 (1977), 84Ű85; 7 (1978), 118.] Algorithm P
is a simpliĄed version of a procedure due to M. O. Rabin, based in part on
ideas of Gary L. Miller [see Algorithms and Complexity (1976), 35Ű36], and
independently discovered by J. L. Selfridge. B. Arazi [Comp. J. 37 (1994), 219Ű
222] has observed that Algorithm P can be speeded up signiĄcantly for large n
by using Montgomery’s fast method for remainders (exercise 4.3.1Ű41).

A completely rigorous and deterministic way to test for primality in poly-
nomial time was Ąnally discovered in 2002 by Manindra Agrawal, Neeraj Kayal,
and Nitin Saxena, who proved the following result:

Theorem A. Let r be an integer such that n ⊥ r and the order of n modulo r
exceeds (lgn)2. Then n is prime if and only if the polynomial congruence

(z + a)n ≡ zn + a (modulo zr − 1 and n)

holds for 0 ≤ z ≤ √r lgn. (See exercise 3.2.2Ű11(a).)

An excellent exposition of this theorem has been prepared by Andrew Gran-
ville [Bull. Amer. Math. Soc. 42 (2005), 3Ű38], who presents an elementary proof
that it yields a primality test with running time Ω(logn)6 and O(logn)11. He
also explains a subsequent improvement due to H. Lenstra and C. Pomerance,
who showed that the running time can be reduced to O(logn)6+ϵ if the poly-
nomial zr − 1 is replaced by a more general family of polynomials. And he
discusses reĄnements by P. Berrizbeitia, Q. Cheng, P. Mihăilescu, R. Avanzi, and
D. Bernstein, leading to a probabilistic algorithm by which a proof of primality
can almost surely be found in O(logn)4+ϵ steps whenever n is prime.

Factoring via continued fractions. The factorization procedures we have
discussed so far will often balk at numbers of 30 digits or more, and another
idea is needed if we are to go much further. Fortunately there is such an idea; in
fact, there were two ideas, due respectively to A. M. Legendre and M. Kraitchik,
which led D. H. Lehmer and R. E. Powers to devise a new technique many years
ago [Bull. Amer. Math. Soc. 37 (1931), 770Ű776]. However, the method was not
used at the time because it was comparatively unsuitable for desk calculators.
This negative judgment prevailed until the late 1960s, when John Brillhart found
that the LehmerŰPowers approach deserved to be resurrected, since it was quite
well suited to computer programming. In fact, he and Michael A. Morrison later
developed it into the champion of all multiprecision factorization methods that
were known in the 1970s. Their program would handle typical 25-digit numbers
in about 30 seconds, and 40-digit numbers in about 50 minutes, on an IBM

4.5.4 FACTORING INTO PRIMES 397

360/91 computer [see Math. Comp. 29 (1975), 183Ű205]. The method had its
Ąrst triumphant success in 1970, discovering that 2128 +1 = 59649589127497217 ·
5704689200685129054721.

The basic idea is to search for numbers x and y such that

x2 ≡ y2 (modulo N), 0 < x, y < N, x ̸= y, x+ y ̸= N. (18)

Fermat’s method imposes the stronger requirement x2 − y2 = N, but actually
the congruence (18) is enough to split N into factors: It implies that N is a
divisor of x2 − y2 = (x− y)(x+ y), yet N divides neither x− y nor x+ y; hence
gcd(N, x − y) and gcd(N, x + y) are proper factors of N that can be found by
the efficient methods of Section 4.5.2.

One way to discover solutions of (18) is to look for values of x such that
x2 ≡ a (modulo N), for small values of |a|. As we will see, it is often a simple
matter to piece together solutions of this congruence to obtain solutions of (18).
Now if x2 = a+kNd2 for some k and d, with small |a|, the fraction x/d is a good
approximation to

√
kN ; conversely, if x/d is an especially good approximation

to
√
kN , the difference |x2 − kNd2| will be small. This observation suggests

looking at the continued fraction expansion of
√
kN , since we have seen in

Eq. 4.5.3Ű(12) and exercise 4.5.3Ű42 that continued fractions yield good rational
approximations.

Continued fractions for quadratic irrationalities have many pleasant prop-
erties, which are proved in exercise 4.5.3Ű12. The algorithm below makes use of
these properties to derive solutions to the congruence

x2 ≡ (−1)e0pe1
1 p

e2
2 . . . pemm (modulo N). (19)

Here we use a Ąxed set of small primes p1 = 2, p2 = 3, . . . , up to pm; only
primes p such that either p = 2 or (kN)(p−1)/2 mod p ≤ 1 should appear in this
list, since other primes will never be factors of the numbers generated by the
algorithm (see exercise 14). If (x1, e01, e11, . . . , em1), . . . , (xr, e0r, e1r, . . . , emr)
are solutions of (19) such that the vector sum

(e01, e11, . . . , em1) + · · ·+ (e0r, e1r, . . . , emr) = (2e′0, 2e
′
1, . . . , 2e

′
m) (20)

is even in each component, then

x = (x1 . . . xr) modN, y =

(−1)e

′
0p

e′1
1 . . . p

e′m
m) modN (21)

yields a solution to (18), except for the possibility that x ≡ ±y. Condition (20)
essentially says that the vectors are linearly dependent modulo 2, so we must
have a solution to (20) if we have found at least m+ 2 solutions to (19).

Algorithm E (Factoring via continued fractions). Given a positive integer N
and a positive integer k such that kN is not a perfect square, this algorithm
attempts to discover solutions to the congruence (19) for a given sequence of
primes p1, . . . , pm, by analyzing the convergents of the continued fraction for√
kN . (Another algorithm, which uses the outputs to discover factors of N, is

the subject of exercise 12.)

398 ARITHMETIC 4.5.4

Table 1

AN ILLUSTRATION OF ALGORITHM E
N = 197209, k = 1, m = 3, p1 = 2, p2 = 3, p3 = 5

U V A P S T Output
After E1: 876 73 12 5329 1 Ů
After E4: 882 145 6 5329 0 29
After E4: 857 37 23 32418 1 37
After E4: 751 720 1 159316 0 1 1593162 ≡ +24 · 32 · 51

After E4: 852 143 5 191734 1 143
After E4: 681 215 3 131941 0 43
After E4: 863 656 1 193139 1 41
After E4: 883 33 26 127871 0 11
After E4: 821 136 6 165232 1 17
After E4: 877 405 2 133218 0 1 1332182 ≡ +20 · 34 · 51

After E4: 875 24 36 37250 1 1 372502 ≡ −23 · 31 · 50

After E4: 490 477 1 93755 0 53

E1. [Initialize.] Set D ← kN, R ← ⌊
√
D⌋, R′ ← 2R, U ′ ← R′, V ← D − R2,

V ′ ← 1, A← ⌊R′/V ⌋, U ← R′−(R′ mod V), P ′ ← R, P ← (AR+1) modN ,
S ← 1. (This algorithm follows the general procedure of exercise 4.5.3Ű12,
Ąnding the continued fraction expansion of

√
kN . The variables U, U ′, V , V ′,

P , P ′, A, and S represent, respectively, what that exercise calls ⌊
√
D⌋+Un,

⌊
√
D⌋ + Un−1, Vn, Vn−1, pn modN, pn−1 modN, An, and nmod 2, where

n is initially 1. We will always have 0 < V ≤ U ≤ R′, so the highest
precision is needed only for P and P ′.)

E2. [Advance U, V, S.] Set T ← V , V ← A(U ′ −U) + V ′, V ′ ← T, A← ⌊U/V ⌋,
U ′ ← U, U ← R′ − (U mod V), S ← 1− S.

E3. [Factor V .]

Now we have P 2−kNQ2 = (−1)SV , for some Q relatively prime

to P , by exercise 4.5.3Ű12(c).

Set (e0, e1, . . . , em) ← (S, 0, . . . , 0), T ← V .
Now do the following, for 1 ≤ j ≤ m: If T mod pj = 0, set T ← T/pj and
ej ← ej + 1, and repeat this process until T mod pj ̸= 0.

E4. [Solution?] If T = 1, output the values (P, e0, e1, . . . , em), which comprise a
solution to (19). (If enough solutions have been generated, we may terminate
the algorithm now.)

E5. [Advance P , P ′.] If V ̸= 1, set T ← P , P ← (AP + P ′) modN, P ′ ← T,
and return to step E2. Otherwise the continued fraction process has started
to repeat its cycle, except perhaps for S, so the algorithm terminates. (The
cycle will usually be so long that this doesn’t happen.)

We can illustrate the application of Algorithm E to relatively small numbers
by considering the case N = 197209, k = 1, m = 3, p1 = 2, p2 = 3, p3 = 5. The
computation begins as shown in Table 1.

Continuing the computation gives 25 outputs in the Ąrst 100 iterations; in
other words, the algorithm is Ąnding solutions quite rapidly. But some of the
solutions are trivial. For example, if the computation above were continued 14

4.5.4 FACTORING INTO PRIMES 399

more times, we would obtain the output 1971972 ≡ 24 · 32 · 50, which is of no
interest since 197197 ≡ −12. The Ąrst two solutions above are already enough
to complete the factorization: We have found that

(159316 · 133218)2 ≡ (22 · 33 · 51)2 (modulo 197209);

thus (18) holds with x = (159316 · 133218) mod 197209 = 126308, y = 540. By
Euclid’s algorithm, gcd(126308−540, 197209) = 199; hence we obtain the pretty
factorization

197209 = 199 · 991.

We can get some understanding of why Algorithm E factors large numbers
so successfully by considering a heuristic analysis of its running time, following
unpublished ideas that R. Schroeppel communicated to the author in 1975. Let
us assume for convenience that k = 1. The number of outputs needed to produce
a factorization of N will be roughly proportional to the number m of small primes
being cast out. Each execution of step E3 takes about order m logN units of
time, so the total running time will be roughly proportional to m2 logN/P ,
where P is the probability of a successful output per iteration. If we make the
conservative assumption that V is randomly distributed between 0 and 2

√
N, the

probability P is (2
√
N)−1 times the number of integers < 2

√
N whose prime

factors are all in the set {p1, . . . , pm}. Exercise 29 gives a lower bound for P ,
from which we conclude that the running time is at most of order

2
√
N m2 logN
mr/r!

, where r =

log 2
√
N

log pm

. (22)

If we let lnm be approximately 1
2

√
lnN ln lnN , we have r ≈

lnN/ ln lnN−1,
assuming that pm = O(m logm), so formula (22) reduces to

exp

2

(lnN)(ln lnN) + O

(logN)1/2(log logN)−1/2(log log logN)

.

Stating this another way, the running time of Algorithm E is expected to be at
most N ϵ(N) under reasonably plausible assumptions, where the exponent ϵ(N) ≈
2

ln lnN/lnN goes to 0 as N →∞.
When N is in a practical range, we should of course be careful not to take

such asymptotic estimates too seriously. For example, if N = 1050 we have
N1/α = (lgN)α when α ≈ 4.75, and the same relation holds for α ≈ 8.42
when N = 10200. The function N ϵ(N) has an order of growth that is sort of
a cross between N1/α and (lgN)α; but all three of these forms are about the
same, unless N is intolerably large. Extensive computational experiments by
M. C. Wunderlich have shown that a well-tuned version of Algorithm E performs
much better than our estimate would indicate [see Lecture Notes in Math. 751
(1979), 328Ű342]; although 2

ln lnN/lnN ≈ .41 when N = 1050, he obtained
running times of about N0.15 while factoring thousands of numbers in the range
1013 ≤ N ≤ 1042.

Algorithm E begins its attempt to factorize N by essentially replacing N
by kN, and this is a rather curious way to proceed (if not downright stupid).

400 ARITHMETIC 4.5.4

“Excuse me, do you mind if I multiply your number by 3 before I try to factor
it?Ť Nevertheless, it turns out to be a good idea, since certain values of k will
make the V numbers potentially divisible by more small primes, hence they will
be more likely to factor completely in step E3. On the other hand, a large value
of k will make the V numbers larger, hence they will be less likely to factor
completely; we want to balance these tendencies by choosing k wisely. Consider,
for example, the divisibility of V by powers of 5. We have P 2−kNQ2 = (−1)SV
in step E3, so if 5 divides V we have P 2 ≡ kNQ2 (modulo 5). In this congruence
Q cannot be a multiple of 5, since it is relatively prime to P , so we may write
(P/Q)2 ≡ kN (modulo 5). If we assume that P and Q are random relatively
prime integers, so that the 24 possible pairs (P mod 5, Qmod 5) ̸= (0, 0) are
equally likely, the probability that 5 divides V is therefore 4

24 , 8
24 , 0, 0, or 8

24
according as kN mod 5 is 0, 1, 2, 3, or 4. Similarly the probability that 25 divides
V is 0, 40

600 , 0, 0, 40
600 respectively, unless kN is a multiple of 25. In general, given

an odd prime p with (kN)(p−1)/2 mod p = 1, we Ąnd that V is a multiple of pe

with probability 2/

pe−1(p + 1)

; and the average number of times p divides V

comes to 2p/(p2 − 1). This analysis, suggested by R. Schroeppel, suggests that
the best choice of k is the value that maximizes

m

j=1

f(pj , kN) log pj −
1
2

log k, (23)

where f is the function deĄned in exercise 28, since this is essentially the expected
value of ln(

√
N/T) when we reach step E4.

Best results will be obtained with Algorithm E when both k and m are well
chosen. The proper choice of m can only be made by experimental testing, since
the asymptotic analysis we have made is too crude to give sufficiently precise
information, and since a variety of reĄnements to the algorithm tend to have
unpredictable effects. For example, we can make an important improvement by
comparing step E3 with Algorithm A: The factoring of V can stop whenever we
Ąnd T mod pj ̸= 0 and ⌊T/pj⌋ ≤ pj , since T will then be either 1 or prime. If T is
a prime greater than pm (it will be at most p2

m+pm−1 in such a case), we can still
output (P, e0, . . . , em, T), since a complete factorization has been obtained. The
second phase of the algorithm will use only those outputs whose prime T ’s have
occurred at least twice. This modiĄcation gives the effect of a much longer list
of primes, without increasing the factorization time. Wunderlich’s experiments
indicate that m ≈ 150 works well in the presence of this reĄnement, when N is
in the neighborhood of 1040.

Since step E3 is by far the most time-consuming part of the algorithm,
Morrison, Brillhart, and Schroeppel have suggested several ways to abort this
step when success becomes improbable: (a) Whenever T changes to a single-
precision value, continue only if ⌊T/pj⌋ > pj and 3T−1 mod T ̸= 1. (b) Give
up if T is still > p2

m after casting out factors < 1
10pm. (c) Cast out factors

only up to p5, say, for batches of 100 or so consecutive V ’s; continue the
factorization later, but only on the V from each batch that has produced the

4.5.4 FACTORING INTO PRIMES 401

smallest residual T. (Before casting out the factors up to p5, it is wise to calculate
V mod pf1

1 pf2

2 pf3

3 pf4

4 pf5

5 , where the f ’s are small enough to make pf1

1 pf2

2 pf3

3 pf4

4 pf5

5

Ąt in single precision, but large enough to make V mod pfi+1
i = 0 unlikely. One

single-precision remainder will therefore characterize the value of V modulo Ąve
small primes.)

For estimates of the cycle length in the output of Algorithm E, see H. C.
Williams, Math. Comp. 36 (1981), 593Ű601.

*A theoretical upper bound. From the standpoint of computational complex-
ity, we would like to know if there is any method of factorization whose expected
running time can be proved to be O(N ϵ(N)), where ϵ(N) → 0 as N → ∞. We
have seen that Algorithm E probably has such behavior, but it seems hopeless
to Ąnd a rigorous proof, because continued fractions are not sufficiently well
disciplined. The Ąrst proof that a good factorization algorithm exists in this
sense was discovered by John Dixon in 1978; Dixon showed, in fact, that it
suffices to consider a simpliĄed version of Algorithm E, in which the continued
fraction apparatus is removed but the basic idea of (18) remains.

Dixon’s method [Math. Comp. 36 (1981), 255Ű260] is simply this, assuming
that N is known to have at least two distinct prime factors, and that N is not
divisible by the Ąrst m primes p1, p2, . . . , pm: Choose a random integer X in
the range 0 < X < N, and let V = X2 modN. If V = 0, the number gcd(X,N)
is a proper factor of N. Otherwise cast out all of the small prime factors of V as
in step E3; in other words, express V in the form

V = pe1
1 . . . pemm T, (24)

where T is not divisible by any of the Ąrst m primes. If T = 1, the algorithm
proceeds as in step E4 to output (X, e1, . . . , em), which represents a solution
to (19) with e0 = 0. This process continues with new random values of X until
there are sufficiently many outputs to discover a factor of N by the method of
exercise 12.

In order to analyze this algorithm, we want to Ąnd bounds on (a) the
probability that a random X will yield an output, and (b) the probability that a
large number of outputs will be required before a factor is found. Let P (m,N)
be the probability (a), namely the probability that T = 1 when X is chosen at
random. AfterM values ofX have been tried, we will obtainMP (m,N) outputs,
on the average; and the number of outputs has a binomial distribution, so the
standard deviation is less than the square root of the mean. The probability (b)
is fairly easy to deal with, since exercise 13 proves that the algorithm needs more
than m+ k outputs with probability ≤ 2−k.

Exercise 30 proves that P (m,N) ≥ mr/(r!N) when r = 2⌊logN/(2 log pm)⌋,
so we can estimate the running time almost as we did in (22) but with the
quantity 2

√
N replaced by N. This time we choose

r =

2 lnN/ ln lnN + θ,

where |θ| ≤ 1 and r is even, and we choose m so that

r = lnN/ ln pm +O(1/ log logN);

402 ARITHMETIC 4.5.4

this means

ln pm =

lnN ln lnN
2

− θ

2
ln lnN +O(1),

lnm = ln π(pm) = ln pm − ln ln pm +O(1/ log pm)

=

lnN ln lnN
2

− θ + 1
2

ln lnN +O(log log logN),

mr

r!N
= exp

−
√

2 lnN ln lnN +O(r log log logN)

.

We will choose M so that Mmr/(r!N) ≥ 4m; thus the expected number of
outputs MP (m,N) will be at least 4m. The running time of the algorithm is
of order Mm logN, plus O(m3) steps for exercise 12; it turns out that O(m3) is
less than Mm logN, which is

exp

8(lnN)(ln lnN) + O

(logN)1/2(log logN)−1/2(log log logN)

.

The probability that this method fails to Ąnd a factor is negligibly small, since
the probability is at most e−m/2 that fewer than 2m outputs are obtained (see
exercise 31), while the probability is at most 2−m that no factors are found
from the Ąrst 2m outputs, and m ≫ lnN. We have proved the following slight
strengthening of Dixon’s original theorem:

Theorem D. There is an algorithm whose running time is O(N ϵ(N)), where
ϵ(N) = c

ln lnN/lnN and c is any constant greater than
√

8, that Ąnds a
nontrivial factor of N with probability 1−O(1/N), whenever N has at least two
distinct prime divisors.

Other approaches. Another factorization technique was suggested by John M.
Pollard [Proc. Cambridge Phil. Soc. 76 (1974), 521Ű528], who gave a practical
way to discover prime factors p of N when p − 1 has no large prime factors.
The latter algorithm (see exercise 19) is probably the Ąrst thing to try after
Algorithms A and B have run too long on a large N .

A survey paper by R. K. Guy, written in collaboration with J. H. Conway,
Congressus Numerantium 16 (1976), 49Ű89, gave a unique perspective on the de-
velopments up till that time. Guy stated, “I shall be surprised if anyone regularly
factors numbers of size 1080 without special form during the present centuryŤ;
and he was indeed destined to be surprised many times during the next 20 years.

Tremendous advances in factorization techniques for large numbers were
made during the 1980s, beginning with Carl Pomerance’s quadratic sieve method

of 1981 [see Lecture Notes in Comp. Sci. 209 (1985), 169Ű182]. Then Hendrik
Lenstra devised the elliptic curve method [Annals of Math. (2) 126 (1987), 649Ű
673], which heuristically is expected to take about exp

(2 + ϵ)(ln p)(ln ln p)

multiplications to Ąnd a prime factor p. This is asymptotically the square root of
the running time in our estimate for Algorithm E when p ≈

√
N , and it becomes

even better when N has relatively small prime factors. An excellent exposition
of this method has been given by Joseph H. Silverman and John Tate in Rational
Points on Elliptic Curves (New York: Springer, 1992), Chapter 4.

4.5.4 FACTORING INTO PRIMES 403

John Pollard came back in 1988 with another new technique, which has
become known as the number Ąeld sieve; see Lecture Notes in Math. 1554 (1993)
for a series of papers about this method, which is the current champion for
factoring extremely large integers. Its running time is predicted to be of order

exp

(64/9 + ϵ)1/3(lnN)1/3(ln lnN)2/3

(25)

as N → ∞. The crossover point at which a well-tuned version of the number
Ąeld sieve begins to beat a well-tuned version of the quadratic sieve appears to
be at N ≈ 10112, according to A. K. Lenstra.

Details of the new methods are beyond the scope of this book, but we can
get an idea of their effectiveness by noting some of the early success stories in
which unfactored Fermat numbers of the form 22k+1 were cracked. For example,
the factorization

2512 + 1 = 2424833 ·
7455602825647884208337395736200454918783366342657 · p99

was found by the number Ąeld sieve, after four months of computation that occu-
pied otherwise idle time on about 700 workstations [Lenstra, Lenstra, Manasse,
and Pollard, Math. Comp. 61 (1993), 319Ű349; 64 (1995), 1357]; here p99 denotes
a 99-digit prime number. The next Fermat number has twice as many digits,
but it yielded to the elliptic curve method on October 20, 1995:

21024 + 1 = 45592577 · 6487031809 ·
4659775785220018543264560743076778192897 · p252.

[Richard Brent, Math. Comp. 68 (1999), 429Ű451.] In fact, Brent had already
used the elliptic curve method to resolve the next case as early as 1988:

22048 + 1 = 319489 · 974849 ·
167988556341760475137 · 3560841906445833920513 · p564;

by a stroke of good luck, all but one of the prime factors was < 1022, so the
elliptic curve method was a winner.

What about 24096 + 1? At present, that number seems completely out of
reach. It has Ąve factors < 1016, but the unfactored residual has 1187 decimal
digits. The next case, 28192 + 1, has four known factors < 1027 [Crandall and
Fagin, Math. Comp. 62 (1994), 321; Brent, Crandall, Dilcher, and van Halewyn,
Math. Comp. 69 (2000), 1297Ű1304] and a huge unfactored residual.

Secret factors. Worldwide interest in the problem of factorization increased
dramatically in 1977, when R. L. Rivest, A. Shamir, and L. Adleman discovered
a way to encode messages that can apparently be decoded only by knowing the
factors of a large number N, even though the method of encoding is known to
everyone. Since a signiĄcant number of the world’s greatest mathematicians
have been unable to Ąnd efficient methods of factoring, this scheme [CACM 21
(1978), 120Ű126] almost certainly provides a secure way to protect conĄdential
data and communications in computer networks.

404 ARITHMETIC 4.5.4

Let us imagine a small electronic device called an RSA box that has two large
prime numbers p and q stored in its memory. We will assume that p−1 and q−1
are not divisible by 3. The RSA box is connected somehow to a computer, and
it has told the computer the product N = pq; however, no human being will be
able to discover the values of p and q except by factoring N, since the RSA box
is cleverly designed to self-destruct if anybody tries to tamper with it. In other
words, it will erase its memory if it is jostled or if it is subjected to any radiation
that could change or read out the data stored inside. Furthermore, the RSA
box is sufficiently reliable that it never needs to be maintained; we simply would
discard it and buy another, if an emergency arose or if it wore out. The prime
factors p and q were generated by the RSA box itself, using some scheme based
on truly random phenomena in nature like cosmic rays. The important point is
that nobody knows p or q, not even a person or organization that owns or has
access to this RSA box; there is no point in bribing or blackmailing anyone or
holding anybody hostage in order to discover N ’s factors.

To send a secret message to the owner of an RSA box whose product number
is N, you break the message up into a sequence of numbers (x1, . . . , xk), where
each xi lies in the range 0 ≤ xi < N; then you transmit the numbers

(x3
1 modN, . . . , x3

k modN).

The RSA box, knowing p and q, can decode the message, because it has pre-
computed a number d < N such that 3d ≡ 1

modulo (p − 1)(q − 1)

; it can

now compute each secret component (x3
i modN)d modN = xi in a reasonable

amount of time, using the method of Section 4.6.3. Naturally the RSA box keeps
this magic number d to itself; in fact, the RSA box might choose to remember
only d instead of p and q, because its only duties after having computed N are
to protect its secrets and to take cube roots mod N.

Such an encoding scheme is ineffective if x <
3
√
N, since x3 modN = x3

and the cube root will easily be found. The logarithmic law of leading digits in
Section 4.2.4 implies that the leading place x1 of a k-place message (x1, . . . , xk)
will be less than

3
√
N about 1

3 of the time, so this is a problem that needs to be
resolved. Exercise 32 presents one way to avoid the difficulty.

The security of the RSA encoding scheme relies on the fact that nobody has
been able to discover how to take cube roots quickly mod N without knowing
N ’s factors. It seems likely that no such method will be found, but we cannot be
absolutely sure. So far all that can be said for certain is that all of the ordinary
ways to discover cube roots will fail. For example, there is essentially no point
in trying to compute the number d as a function of N; the reason is that if
d is known, or in fact if any number m of reasonable size is known such that
xm modN = 1 holds for a signiĄcant number of x’s, then we can Ąnd the factors
of N in a few more steps (see exercise 34). Thus, any method of attack based
explicitly or implicitly on Ąnding such an m can be no better than factoring.

Some precautions are necessary, however. If the same message is sent to
three different people on a computer network, a person who knows x3 modulo N1,
N2, and N3 could reconstruct x3 modN1N2N3 = x3 by the Chinese remainder

4.5.4 FACTORING INTO PRIMES 405

theorem, so x would no longer be a secret. In fact, even if a “time-stampedŤ
message (2⌈lg ti⌉x + ti)3 modNi is sent to seven different people, with known
or guessable ti, the value of x can be deduced (see exercise 44). Therefore
some cryptographers have recommended encoding with the exponent 216 + 1 =
65537 instead of 3; this exponent is prime, and the computation of x65537 modN
takes only about 8.5 times as long as the computation of x3 modN. [CCITT
Recommendations Blue Book (Geneva: International Telecommunication Union,
1989), Fascicle VIII.8, Recommendation X.509, Annex C, pages 74Ű76.] The
original proposal of Rivest, Shamir, and Adleman was to encode x by xa modN
where a is any exponent prime to φ(N), not just a = 3; in practice, however, we
prefer an exponent for which encoding is faster than decoding.

The numbers p and q shouldn’t merely be “randomŤ primes in order to
make the RSA scheme effective. We have mentioned that p− 1 and q− 1 should
not be divisible by 3, since we want to ensure that unique cube roots exist
modulo N. Another condition is that p − 1 should have at least one very large
prime factor, and so should q−1; otherwise N can be factored using the algorithm
of exercise 19. In fact, that algorithm essentially relies on Ąnding a fairly small
number m with the property that xm modN is frequently equal to 1, and we
have just seen that such an m is dangerous. When p−1 and q−1 have large prime
factors p1 and q1, the theory in exercise 34 implies that m is either a multiple of
p1q1 (hence m will be hard to discover) or the probability that xm ≡ 1 will be less
than 1/p1q1 (hence xm modN will almost never be 1). Besides this condition,
we don’t want p and q to be close to each other, lest Algorithm D succeed in
discovering them; in fact, we don’t want the ratio p/q to be near a simple fraction,
otherwise Lehman’s generalization of Algorithm C could Ąnd them.

The following procedure for generating p and q is almost surely unbreakable:
Start with a truly random number p0 between, say, 1080 and 1081. Search
for the Ąrst prime number p1 greater than p0; this will require testing about
1
2 ln p0 ≈ 90 odd numbers, and it will be sufficient to have p1 a “probable primeŤ
with probability > 1−2−100 after 50 trials of Algorithm P. Then choose another
truly random number p2 between, say, 1039 and 1040. Search for the Ąrst prime
number p of the form kp1 + 1 where k ≥ p2, k is even, and k ≡ p1 (modulo 3).
This will require testing about 1

3 ln p1p2 ≈ 90 numbers before a prime p is found.
The prime p will be about 120 digits long; a similar construction can be used to
Ąnd a prime q about 130 digits long. For extra security, it is probably advisable
to check that neither p+1 nor q+1 consists entirely of rather small prime factors
(see exercise 20). The product N = pq, whose order of magnitude will be about
10250, now meets all of our requirements, and it is inconceivable at this time that
such an N could be factored.

For example, suppose we knew a method that could factor a 250-digit
number N in N0.1 microseconds. This amounts to 1025 microseconds, and there
are only 31,556,952,000,000 µs per year, so we would need more than 3 × 1011

years of CPU time to complete the factorization. Even if a government agency
purchased 10 billion computers and set them all to working on this problem, it
would take more than 31 years before one of them would crack N into factors;

406 ARITHMETIC 4.5.4

meanwhile the fact that the government had purchased so many specialized
machines would leak out, and people would start using 300-digit N ’s.

Since the encoding method x →→ x3 modN is known to everyone, there
are additional advantages besides the fact that the code can be cracked only
by the RSA box. Such “public keyŤ systems were Ąrst published by W. Diffie
and M. E. Hellman in IEEE Trans. IT-22 (1976), 644Ű654. As an example of
what can be done when the encoding method is public knowledge, suppose Alice
wants to communicate with Bob securely via electronic mail, signing her letter
so that Bob can be sure nobody else has forged it. Let EA(M) be the encoding
function for messages M sent to Alice, let DA(M) be the decoding done by
Alice’s RSA box, and let EB(M), DB(M) be the corresponding encoding and
decoding functions for Bob’s RSA box. Then Alice can send a signed message by
affixing her name and the date to some conĄdential message, then transmitting
EB

DA(M)

to Bob, using her machine to compute DA(M). When Bob gets this

message, his RSA box converts it to DA(M), and he knows EA so he can compute
M = EA

DA(M)

. This should convince him that the message did indeed come

from Alice; nobody else could have sent the message DA(M).

Well, Bob himself

now knows DA(M), so he could impersonate Alice by passing EX

DA(M)

to

Xavier. To defeat any such attempted forgery, the content of M should clearly
indicate that it is for Bob’s eyes only.

We might ask, how do Alice and Bob know each other’s encoding functions
EA and EB? It wouldn’t do simply to have them stored in a public Ąle, since some
Charlie could tamper with that Ąle, substituting an N that he has computed
by himself; Charlie could then surreptitiously intercept and decode a private
message before Alice or Bob would discover that something is amiss. The solution
is to keep the product numbers NA and NB in a special public directory that
has its own RSA box and its own widely publicized product number ND. When
Alice wants to know how to communicate with Bob, she asks the directory for
Bob’s product number; the directory computer sends her a signed message giving
the value of NB . Nobody can forge such a message, so it must be legitimate.

An interesting alternative to the RSA scheme has been proposed by Michael
Rabin [M.I.T. Lab. for Comp. Sci., report TR-212 (1979)], who suggests encod-
ing by the function x2 modN instead of x3 modN. In this case the decoding
mechanism, which we can call a SQRT box, returns four different messages; the
reason is that four different numbers have the same square modulo N, namely
x, −x, fxmodN, and (−fx) modN, where

f = (pq−1 − qp−1) modN.

If we agree in advance that x is even, or that x < 1
2N, then the ambiguity drops

to two messages, presumably only one of which makes any sense. The ambiguity
can in fact be eliminated entirely, as shown in exercise 35. Rabin’s scheme has
the important property that it is provably as difficult to Ąnd square roots mod N
as to Ąnd the factorization N = pq; for by taking the square root of x2 modN
when x is chosen at random, we have a 50-50 chance of Ąnding a value y such
that x2 ≡ y2 and x ̸≡ ±y, after which gcd(x − y, N) = p or q. However, the

4.5.4 FACTORING INTO PRIMES 407

system has a fatal Ćaw that does not seem to be present in the RSA scheme (see
exercise 33): Anyone with access to a SQRT box can easily determine the factors
of its N. This not only permits cheating by dishonest employees, or threats of
extortion, it also allows people to reveal their p and q, after which they might
claim that their “signatureŤ on some transmitted document was a forgery. Thus
it is clear that the goal of secure communication leads to subtle problems quite
different from those we usually face in the design and analysis of algorithms.

Historical note: It was revealed in 1997 that Clifford Cocks had considered
the encoding of messages by the transformation xpq mod pq already in 1973, but
his work was kept secret.
The largest known primes. We have discussed several computational methods
elsewhere in this book that require the use of large prime numbers, and the
techniques just described can be used to discover primes of up to, say, 25 digits
or fewer, with relative ease. Table 2 shows the ten largest primes that are less
than the word size of typical computers. (Some other useful primes appear in
the answers to exercises 3.2.1.2Ű22 and 4.6.4Ű57.)

Actually much larger primes of special forms are known, and it is occasionally
important to Ąnd primes that are as large as possible. Let us therefore conclude
this section by investigating the interesting manner in which the largest explicitly
known primes have been discovered. Such primes are of the form 2n − 1,
for various special values of n, and so they are especially suited to certain
applications of binary computers.

A number of the form 2n−1 cannot be prime unless n is prime, since 2uv−1
is divisible by 2u−1. In 1644, Marin Mersenne astonished his contemporaries by
stating, in essence, that the numbers 2p − 1 are prime for p = 2, 3, 5, 7, 13, 17,
19, 31, 67, 127, 257, and for no other p less than 257. (This statement appeared
in connection with a discussion of perfect numbers in the preface to his Cogitata
Physico-Mathematica. Curiously, he also made the following remark: “To tell if
a given number of 15 or 20 digits is prime or not, all time would not suffice for
the test, whatever use is made of what is already known.Ť) Mersenne, who had
corresponded frequently with Fermat, Descartes, and others about similar topics
in previous years, gave no proof of his assertions, and for over 200 years nobody
knew whether he was correct. Euler showed that 231 − 1 is prime in 1772, after
having tried unsuccessfully to prove this in previous years. About 100 years
later, É. Lucas discovered that 2127 − 1 is prime, but 267 − 1 was questionable;
therefore Mersenne might not be completely accurate. Then I. M. Pervushin
proved in 1883 that 261 − 1 is prime [see Istoriko-Mat. Issledovani⁀ıa 6 (1953),
559], and this touched off speculation that Mersenne had only made a copying
error, writing 67 for 61. Eventually other errors in Mersenne’s statement were
discovered; R. E. Powers [AMM 18 (1911), 195] showed that 289 − 1 is prime,
as had been conjectured by some earlier writers, and three years later he proved
that 2107−1 also is prime. M. Kraitchik found in 1922 that 2257−1 is not prime
[see his Recherches sur la Théorie des Nombres (Paris: 1924), 21]; computational
errors may have crept in to his calculations, but his conclusion has turned out
to be correct.

408 ARITHMETIC 4.5.4

Table 2

USEFUL PRIME NUMBERS

N a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

215 19 49 51 55 61 75 81 115 121 135
216 15 17 39 57 87 89 99 113 117 123
217 1 9 13 31 49 61 63 85 91 99
218 5 11 17 23 33 35 41 65 75 93
219 1 19 27 31 45 57 67 69 85 87
220 3 5 17 27 59 69 129 143 153 185
221 9 19 21 55 61 69 105 111 121 129
222 3 17 27 33 57 87 105 113 117 123
223 15 21 27 37 61 69 135 147 157 159
224 3 17 33 63 75 77 89 95 117 167
225 39 49 61 85 91 115 141 159 165 183
226 5 27 45 87 101 107 111 117 125 135
227 39 79 111 115 135 187 199 219 231 235
228 57 89 95 119 125 143 165 183 213 273
229 3 33 43 63 73 75 93 99 121 133
230 35 41 83 101 105 107 135 153 161 173
231 1 19 61 69 85 99 105 151 159 171
232 5 17 65 99 107 135 153 185 209 267
233 9 25 49 79 105 285 301 303 321 355
234 41 77 113 131 143 165 185 207 227 281
235 31 49 61 69 79 121 141 247 309 325
236 5 17 23 65 117 137 159 173 189 233
237 25 31 45 69 123 141 199 201 351 375
238 45 87 107 131 153 185 191 227 231 257
239 7 19 67 91 135 165 219 231 241 301
240 87 167 195 203 213 285 293 299 389 437
241 21 31 55 63 73 75 91 111 133 139
242 11 17 33 53 65 143 161 165 215 227
243 57 67 117 175 255 267 291 309 319 369
244 17 117 119 129 143 149 287 327 359 377
245 55 69 81 93 121 133 139 159 193 229
246 21 57 63 77 167 197 237 287 305 311
247 115 127 147 279 297 339 435 541 619 649
248 59 65 89 93 147 165 189 233 243 257
259 55 99 225 427 517 607 649 687 861 871
260 93 107 173 179 257 279 369 395 399 453
263 25 165 259 301 375 387 391 409 457 471
264 59 83 95 179 189 257 279 323 353 363

106 17 21 39 41 47 69 83 93 117 137
107 9 27 29 57 63 69 71 93 99 111
108 11 29 41 59 69 153 161 173 179 213
109 63 71 107 117 203 239 243 249 261 267
1010 33 57 71 119 149 167 183 213 219 231
1011 23 53 57 93 129 149 167 171 179 231
1012 11 39 41 63 101 123 137 143 153 233
1016 63 83 113 149 183 191 329 357 359 369

The ten largest primes less than N are N− a1, . . . , N− a10.

4.5.4 FACTORING INTO PRIMES 409

Numbers of the form 2p − 1 are now called Mersenne numbers, and it is
known that Mersenne primes are obtained for p equal to

2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281,
3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243,

110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221,
3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457,

32582657, 37156667, 42643801, 43112609, 57885161, (26)

The Ąrst entries above 100000 were found by David Slowinski and associates
while testing new supercomputers [see J. Recreational Math. 11 (1979), 258Ű
261]; he found 756839, 859433, and 1257787 in collaboration with Paul Gage
during the 1990s. But the remaining exponents, beginning with 1398269, were
found respectively by Joël Armengaud, Gordon Spence, Roland Clarkson, Nayan
Hajratwala, Michael Cameron, Michael Shafer, Josh Findley, Martin Nowak,
Curtis Cooper/Steven Boone, Hans-Michael Elvenich, Odd Magnar Strindmo,
and Edson Smith using off-the-shelf personal computers, most recently in 2013.
They used a program by George Woltman, who launched the Great Internet
Mersenne Prime Search project (GIMPS) in 1996, with Internet administrative
software contributed subsequently by Scott Kurowski.

Notice that the prime 8191 = 213 − 1 does not occur in (26); Mersenne had
stated that 28191 − 1 is prime, and others had conjectured that any Mersenne
prime could perhaps be used in the exponent.

The search for large primes has not been systematic, because people have
generally tried to set a hard-to-beat world record instead of spending time with
smaller exponents. For example, 2132049 − 1 was proved prime in 1983, and
2216091 − 1 in 1984, but the case 2110503 − 1 was not discovered until 1988.
Therefore one or more unknown Mersenne primes less than 257885161 − 1 might
still exist. According to Woltman, all exponents < 25,000,000 were checked as
of March 1, 2008; his volunteers are systematically Ąlling the remaining gaps.

Since 257885161 − 1 has more than 17 million decimal digits, it is clear that
some special techniques have been used to prove that such numbers are prime.
An efficient way to test the primality of a given Mersenne number 2p − 1 was
Ąrst devised by É. Lucas [Amer. J. Math. 1 (1878), 184Ű239, 289Ű321, especially
page 316] and improved by D. H. Lehmer [Annals of Math. (2) 31 (1930), 419Ű
448, especially page 443]. The LucasŰLehmer test, which is a special case of the
method now used for testing the primality of n when the factors of n + 1 are
known, is the following:

Theorem L. Let q be an odd prime, and deĄne the sequence ⟨Ln⟩ by the rule

L0 = 4, Ln+1 = (L2
n − 2) mod (2q − 1). (27)

Then 2q − 1 is prime if and only if Lq−2 = 0.

For example, 23 − 1 is prime since L1 = (42 − 2) mod 7 = 0. This test is
particularly well suited to binary computers, since calculation mod (2q− 1) is so
convenient; see Section 4.3.2. Exercise 4.3.2Ű14 explains how to save time when
q is extremely large.

410 ARITHMETIC 4.5.4

Proof. We will prove Theorem L using only very simple principles of number
theory, by investigating several features of recurring sequences that are of inde-
pendent interest. Consider the sequences ⟨Un⟩ and ⟨Vn⟩ deĄned by

U0 = 0,

V0 = 2,

U1 = 1,

V1 = 4,

Un+1 = 4Un − Un−1;

Vn+1 = 4Vn − Vn−1.
(28)

The following equations are readily proved by induction:

Vn = Un+1 − Un−1; (29)

Un =

(2 +

√
3)n − (2−

√
3)n

/
√

12; (30)

Vn = (2 +
√

3)n + (2−
√

3)n; (31)

Um+n = UmUn+1 − Um−1Un. (32)

Let us now prove an auxiliary result, when p is prime and e ≥ 1 :

if Un ≡ 0 (modulo pe) then Unp ≡ 0 (modulo pe+1). (33)

This follows from the more general considerations of exercise 3.2.2Ű11, but a
direct proof can be given for sequence (28). Assume that Un = bpe, Un+1 = a.
By (32) and (28), U2n = bpe(2a − 4bpe) ≡ 2aUn (modulo pe+1), while we have
U2n+1 = U2

n+1 − U2
n ≡ a2. Similarly, U3n = U2n+1Un − U2nUn−1 ≡ 3a2Un and

U3n+1 = U2n+1Un+1 − U2nUn ≡ a3. In general,

Ukn ≡ kak−1Un and Ukn+1 ≡ ak (modulo pe+1),

so (33) follows if we take k = p.
From formulas (30) and (31) we can obtain other expressions for Un and Vn,

expanding (2±
√

3)n by the binomial theorem:

Un =

k

n

2k + 1

2n−2k−13k, Vn =

k

n

2k

2n−2k+13k. (34)

Now if we set n = p, where p is an odd prime, and if we use the fact that

p
k

is

a multiple of p except when k = 0 or k = p, we Ąnd that

Up ≡ 3(p−1)/2, Vp ≡ 4 (modulo p). (35)

If p ̸= 3, Fermat’s theorem tells us that 3p−1 ≡ 1; hence (3(p−1)/2 − 1)×
(3(p−1)/2 + 1) ≡ 0, and 3(p−1)/2 ≡ ±1. When Up ≡ −1, we have Up+1 =
4Up−Up−1 = 4Up+Vp−Up+1 ≡ −Up+1; hence Up+1 mod p = 0. When Up ≡ +1,
we have Up−1 = 4Up−Up+1 = 4Up−Vp−Up−1 ≡ −Up−1; hence Up−1 mod p = 0.
We have proved that, for all primes p, there is an integer ϵ(p) such that

Up+ϵ(p) mod p = 0, |ϵ(p)| ≤ 1. (36)

Now if N is any positive integer, and if m = m(N) is the smallest positive
integer such that Um(N) modN = 0, we have

Un modN = 0 if and only if n is a multiple of m(N). (37)

(This number m(N) is called the rank of apparition of N in the sequence.)
To prove (37), observe that the sequence Um, Um+1, Um+2, . . . is congruent

4.5.4 FACTORING INTO PRIMES 411

(modulo N) to aU0, aU1, aU2, . . . , where a = Um+1 modN is relatively prime
to N because gcd(Un, Un+1) = 1.

With these preliminaries out of the way, we are ready to prove Theorem L.
By (27) and induction,

Ln = V2n mod (2q − 1). (38)

Furthermore, the identity 2Un+1 = 4Un +Vn implies that gcd(Un, Vn) ≤ 2, since
any common factor of Un and Vn must divide Un and 2Un+1, while Un ⊥ Un+1.
So Un and Vn have no odd factor in common, and if Lq−2 = 0 we must have

U2q−1 = U2q−2V2q−2 ≡ 0 (modulo 2q − 1),

U2q−2 ̸≡ 0 (modulo 2q − 1).

Now if m = m(2q−1) is the rank of apparition of 2q−1, it must be a divisor
of 2q−1 but not of 2q−2; thus m = 2q−1. We will prove that n = 2q − 1 must
therefore be prime: Let the factorization of n be pe1

1 . . . perr . All primes pj are
greater than 3, since n is odd and congruent to (−1)q − 1 = −2 (modulo 3).
From (33), (36), and (37) we know that Ut ≡ 0 (modulo 2q − 1), where

t = lcm

pe1−1

1 (p1 + ϵ1), . . . , per−1
r (pr + ϵr)

,

and each ϵj is ±1. It follows that t is a multiple of m = 2q−1. Let n0 =
r

j=1 p
ej−1
j (pj + ϵj); we have n0 ≤

r
j=1 p

ej−1
j (pj + 1

5pj) = (6
5)rn. Also, because

pj + ϵj is even, t ≤ n0/2r−1, since a factor of two is lost each time the least
common multiple of two even numbers is taken. Combining these results, we
have m ≤ t ≤ 2(3

5)rn < 4(3
5)rm < 3m; hence r ≤ 2 and t = m or t = 2m,

a power of 2. Therefore e1 = 1, er = 1, and if n is not prime we must have
n = 2q − 1 = (2k + 1)(2l − 1) where 2k + 1 and 2l − 1 are prime. The latter
factorization is obviously impossible when q is odd, so n is prime.

Conversely, suppose that n = 2q − 1 is prime; we must show that V2q−2 ≡ 0
(modulo n). For this purpose it suffices to prove that V2q−1 ≡ −2 (modulo n),
since V2q−1 = (V2q−2)2 − 2. Now

V2q−1 =

(
√

2 +
√

6)/2
n+1

+

(
√

2−
√

6)/2
n+1

= 2−n

k

n+ 1

2k

√
2
n+1−2k√

6
2k

= 2(1−n)/2

k

n+ 1

2k

3k.

Since n is an odd prime, the binomial coefficient

n+ 1

2k

=

n

2k

+

n

2k − 1

is divisible by n except when 2k = 0 and 2k = n+ 1; hence

2(n−1)/2 V2q−1 ≡ 1 + 3(n+1)/2 (modulo n).

Here 2 ≡ (2(q+1)/2)2, so 2(n−1)/2 ≡ (2(q+1)/2)(n−1) ≡ 1 by Fermat’s theorem.
Finally, by a simple case of the law of quadratic reciprocity (see exercise 23),
3(n−1)/2 ≡ −1, since nmod 3 = 1 and nmod 4 = 3. This means V2q−1 ≡ −2, so
we must have V2q−2 ≡ 0 as desired.

412 ARITHMETIC 4.5.4

An anonymous author whose works are now preserved in Italian libraries
had discovered by 1460 that 217 − 1 and 219 − 1 are prime. Ever since then,
the world’s largest explicitly known prime numbers have almost always been
Mersenne primes. But the situation might change, since Mersenne primes are
getting harder to Ąnd, and since exercise 27 presents an efficient test for primes
of other forms. [See E. Picutti, Historia Math. 16 (1989), 123Ű136; Hugh C.
Williams, Édouard Lucas and Primality Testing (1998), Chapter 2.]

EXERCISES

1. [10] If the sequence d0, d1, d2, . . . of trial divisors in Algorithm A contains a
number that is not prime, why will it never appear in the output?

2. [15] If it is known that the input N to Algorithm A is equal to 3 or more, could
step A2 be eliminated?

3. [M20] Show that there is a number P with the following property: If 1000 ≤ n ≤
1000000, then n is prime if and only if gcd(n, P) = 1.

4. [M29] In the notation of exercise 3.1Ű7 and Section 1.2.11.3, prove that the
average value of the least n such that Xn = Xℓ(n)−1 lies between 1.5Q(m) − 0.5
and 1.625Q(m)− 0.5.

5. [21] Use Fermat’s method (Algorithm D) to Ąnd the factors of 11111 by hand,
when the moduli are 3, 5, 7, 8, and 11.

6. [M24] If p is an odd prime and if N is not a multiple of p, prove that the number
of integers x such that 0 ≤ x < p and x2−N ≡ y2 (modulo p) has a solution y is equal
to (p± 1)/2.

7. [25] Discuss the problems of programming the sieve of Algorithm D on a binary
computer when the table entries for modulus mi do not exactly Ąll an integral number
of memory words.

x 8. [23] (The sieve of Eratosthenes, 3rd century B.C.) The following procedure evi-
dently discovers all odd prime numbers less than a given integer N, since it removes
all the nonprime numbers: Start with all the odd numbers between 1 and N ; then
successively strike out the multiples p2

k, pk(pk + 2), pk(pk + 4), . . . , of the kth prime
pk, for k = 2, 3, 4, . . . , until reaching a prime pk with p2

k > N.
Show how to adapt the procedure just described into an algorithm that is directly

suited to efficient computer calculation, using no multiplication.

9. [M25] Let n be an odd number, n ≥ 3. Show that if the number λ(n) of Theorem
3.2.1.2B is a divisor of n−1 but not equal to n−1, then n must have the form p1p2 . . . pt

where the p’s are distinct primes and t ≥ 3.

x 10. [M26] (John Selfridge.) Prove that if, for each prime divisor p of n − 1, there is
a number xp such that x(n−1)/p

p mod n ̸= 1 but xn−1
p mod n = 1, then n is prime.

11. [M20] What outputs does Algorithm E give when N = 197209, k = 5, m = 1?
[Hint:

√
5 · 197209 = 992 + //1, 495, 2, 495, 1, 1984//.]

x 12. [M28] Design an algorithm that uses the outputs of Algorithm E to Ąnd a proper
factor of N, if Algorithm E has produced enough outputs to deduce a solution of (18).

13. [HM25] (J. D. Dixon.) Prove that whenever the algorithm of exercise 12 is pre-
sented with a solution (x, e0, . . . , em) whose exponents are linearly dependent modulo 2

4.5.4 FACTORING INTO PRIMES 413

on the exponents of previous solutions, the probability is 21−d that a factorization will
not be found, when N has d distinct prime factors and x is chosen at random.

14. [M20] Prove that the number T in step E3 of Algorithm E will never be a multiple
of an odd prime p for which (kN)(p−1)/2 mod p > 1.

x 15. [M34] (Lucas and Lehmer.) Let P and Q be relatively prime integers, and let
U0 = 0, U1 = 1, Un+1 = PUn −QUn−1 for n ≥ 1. Prove that if N is a positive integer
relatively prime to 2P 2 − 8Q, and if UN+1 modN = 0, while U(N+1)/p modN ̸= 0 for
each prime p dividing N + 1, then N is prime. (This gives a test for primality when
the factors of N + 1 are known instead of the factors of N − 1. We can evaluate Um in
O(logm) steps as in exercise 4.6.3Ű26.) [Hint: See the proof of Theorem L.]

16. [M50] Are there inĄnitely many Mersenne primes?

17. [M25] (V. R. Pratt.) A complete proof of primality by the converse of Fermat’s
theorem takes the form of a tree whose nodes have the form (q, x), where q and x
are positive integers satisfying the following arithmetic conditions: (i) If (q1, x1), . . . ,
(qt, xt) are the children of (q, x) then q = q1 . . . qt +1. [In particular, if (q, x) is childless,
then q = 2.] (ii) If (r, y) is a child of (q, x), then x(q−1)/r mod q ̸= 1. (iii) For each node
(q, x), we have xq−1 mod q = 1. From these conditions it follows that q is prime and
x is a primitive root modulo q, for all nodes (q, x). [For example, the tree

(2, 1) (2, 1) (2, 1) (2, 1)

(2, 1) (2, 1) (2, 1)

(2, 1)

(3, 2) (3, 2)

(3, 2)

(7, 3)

(1009, 11)

(2, 1) (3, 2)

demonstrates that 1009 is prime.] Prove that such a tree with root (q, x) has at most
f(q) nodes, where f is a rather slowly growing function.

x 18. [HM23] Give a heuristic proof of (7), analogous to the text’s derivation of (6).
What is the approximate probability that pt−1 ≤

√
pt ?

x 19. [M25] (J. M. Pollard.) Show how to compute a number M that is divisible by
all odd primes p such that p− 1 is a divisor of some given number D. [Hint: Consider
numbers of the form an − 1.] Such an M is useful in factorization, for by computing
gcd(M,N) we may discover a factor of N. Extend this idea to an efficient method that
has high probability of discovering prime factors p of a given large number N, when all
prime power factors of p− 1 are less than 103 except for at most one prime factor less
than 105. [For example, the second-largest prime dividing (15) would be detected by
this method, since it is 1 + 24 · 52 · 67 · 107 · 199 · 41231.]

20. [M40] Consider exercise 19 with p+ 1 replacing p− 1.

21. [M49] (R. K. Guy.) Let m(p) be the number of iterations required by Algorithm B
to cast out the prime factor p. Is m(p) = O(

√
p log p) as p→∞?

x 22. [M30] (M. O. Rabin.) Let pn be the probability that Algorithm P guesses wrong,
when n is an odd integer ≥ 3. Show that pn <

1
4

for all n.

23. [M35] The Jacobi symbol
p

q

is deĄned to be −1, 0, or +1 for all integers p ≥ 0

and all odd integers q > 1 by the rules
p

q

≡ p(q−1)/2 (modulo q) when q is prime;

414 ARITHMETIC 4.5.4

p
q

=
 p

q1

. . .
 p

qt

when q is the product q1 . . . qt of t primes (not necessarily distinct).

Thus it generalizes the Legendre symbol of exercise 1.2.4Ű47.

a) Prove that
p

q

satisĄes the following relationships, hence it can be computed effi-

ciently:
0

q

= 0;

1
q

= 1;

p
q

=
p mod q

q

;
2

q

= (−1)(q2−1)/8;

pp′

q

=
p

q

p′

q

;

p
q

= (−1)(p−1)(q−1)/4

q
p

if both p and q are odd. [The latter law, which is a

reciprocity relation reducing the evaluation of
p

q

to the evaluation of

q
p

, has

been proved in exercise 1.2.4Ű47(d) when both p and q are prime, so you may
assume its validity in that special case.]

b) (Solovay and Strassen.) Prove that if n is odd but not prime, the number of
integers x such that 1 ≤ x < n and 0 ̸= (x

n
) ≡ x(n−1)/2 (modulo n) is at most

1
2
φ(n). (Thus, the following testing procedure correctly determines whether or

not a given n is prime, with probability at least 1/2 for all Ąxed n: “Generate x at
random with 1 ≤ x < n. If 0 ̸= (x

n
) ≡ x(n−1)/2 (modulo n), say that n is probably

prime, otherwise say that n is deĄnitely not prime.Ť)
c) (L. Monier.) Prove that if n and x are numbers for which Algorithm P concludes

that “n is probably primeŤ, then 0 ̸= (x
n

) ≡ x(n−1)/2 (modulo n). [Hence Algo-
rithm P is always superior to the test in (b).]

x 24. [M25] (L. Adleman.) When n > 1 and x > 1 are integers, n odd, let us say that
n “passes the x test of Algorithm PŤ if either xmod n = 0 or if steps P2ŰP5 lead to
the conclusion that n is probably prime. Prove that, for any N, there exists a set of
positive integers x1, . . . , xm ≤ N with m ≤ ⌊lgN⌋ such that a positive odd integer
in the range 1 < n ≤ N is prime if and only if it passes the x test of Algorithm P for
x = x1 mod n, . . . , x = xm mod n. Thus, the probabilistic test for primality can in
principle be converted into an efficient test that leaves nothing to chance. (You need
not show how to compute the xj efficiently; just prove that they exist.)

25. [HM41] (B. Riemann.) Prove that

π(x) +
π(x1/2)

2
+
π(x1/3)

3
+ · · · =

 x

2

dt

ln t
− 2

 σ

−∞

e(t+iτ) ln x dt

t+ iτ
+O(1) ,

where the sum is over all complex σ + iτ such that τ > 0 and ζ(σ + iτ) = 0.

x 26. [M25] (H. C. Pocklington, 1914.) Let N = fr + 1, where 0 < r ≤ f + 1. Prove
that N is prime if, for every prime divisor p of f , there is an integer xp such that
xN−1

p modN = gcd(x(N−1)/p
p − 1, N) = 1.

x 27. [M30] Show that there is a way to test numbers of the form N = 5·2n + 1 for
primality, using approximately the same number of squarings mod N as the LucasŰ
Lehmer test for Mersenne primes in Theorem L. [Hint: See the previous exercise.]

28. [M27] Given a prime p and a positive integer d, what is the value of f(p, d), the
average number of times that p divides A2−dB2 (counting multiplicity), when A and B
are random integers that are independent except for the condition A ⊥ B?

29. [M25] Prove that the number of positive integers ≤ n whose prime factors are all
contained in a given set of primes {p1, . . . , pm} is at leastmr/r!, when r = ⌊logn/log pm⌋
and p1 < · · · < pm.

30. [HM35] (J. D. Dixon and Claus-Peter Schnorr.) Let p1 < · · · < pm be primes
that do not divide the odd number N, and let r be an even integer ≤ logN/log pm.
Prove that the number of integers X in the range 0 ≤ X < N such that X2 modN =

4.5.4 FACTORING INTO PRIMES 415

pe1
1 . . . pem

m is at least mr/r!. Hint: Let the prime factorization of N be qf1
1 . . . q

fd
d .

Show that a sequence of exponents (e1, . . . , em) leads to 2d solutions X whenever we
have e1 + · · · + em ≤ r and pe1

1 . . . pem
m is a quadratic residue modulo qi for 1 ≤ i ≤ d.

Such exponent sequences can be obtained as ordered pairs (e′1, . . . , e
′
m; e′′1, . . . , e

′′
m) where

e′1 + · · ·+ e′m ≤ 1
2
r and e′′1 + · · ·+ e′′m ≤ 1

2
r and

(pe′1
1 . . . p

e′m
m)(qi−1)/2 ≡ (pe′′1

1 . . . p
e′′m
m)(qi−1)/2 (modulo qi) for 1 ≤ i ≤ d.

31. [M20] Use exercise 1.2.10Ű21 to estimate the probability that Dixon’s factoriza-
tion algorithm (as described preceding Theorem D) obtains fewer than 2m outputs.

x 32. [M21] Show how to modify the RSA encoding scheme so that there is no problem
with messages <

3√
N, in such a way that the length of messages is not substantially

increased.

33. [M50] Prove or disprove: If a reasonably efficient algorithm exists that has a
nonnegligible probability of being able to Ąnd xmodN, given a number N = pq whose
prime factors satisfy p ≡ q ≡ 2 (modulo 3) and given the value of x3 modN, then there
is a reasonably efficient algorithm that has a nonnegligible probability of being able to
Ąnd the factors of N. [If this could be proved, it would not only show that the cube
root problem is as difficult as factoring, it would also show that the RSA scheme has
the same fatal Ćaw as the SQRT scheme.]

34. [M30] (Peter Weinberger.) Suppose N = pq in the RSA scheme, and suppose you
know a number m such that xm modN = 1 for at least 10−12 of all positive integers x.
Explain how you could go about factoring N without great difficulty, if m is not too
large (say m < N10).

x 35. [M25] (H. C. Williams, 1979.) Let N be the product of two primes p and q,
where pmod 8 = 3 and q mod 8 = 7. Prove that the Jacobi symbol satisĄes (−x

N
) =

(x
N

) = −(2x
N

), and use this property to design an encoding/decoding scheme analogous
to Rabin’s SQRT box but with no ambiguity of messages.

36. [HM24] The asymptotic analysis following (22) is too coarse to give meaningful
values unless N is extremely large, since ln lnN is always rather small when N is in a
practical range. Carry out a more precise analysis that gives insight into the behavior
of (22) for reasonable values of N; also explain how to choose a value of lnm that
minimizes (22) except for a factor of size at most exp(O(log logN)).

37. [M27] Prove that the square root of every positive integer D has a periodic
continued fraction of the form

√
D = R+ //a1, . . . , an, 2R, a1, . . . , an, 2R, a1, . . . , an, 2R, . . . //,

unless D is a perfect square, where R = ⌊
√
D⌋ and (a1, . . . , an) is a palindrome (that

is, ai = an+1−i for 1 ≤ i ≤ n).

38. [25] (Useless primes.) For 0 ≤ d ≤ 9, Ąnd Pd, the largest 50-digit prime number
that has the maximum possible number of decimal digits equal to d. (First maximize
the number of d’s, then Ąnd the largest such prime.)

39. [40] Many primes p have the property that 2p + 1 is also prime; for example,
5 → 11 → 23 → 47. More generally, say that q is a successor of p if p and q are both
prime and q = 2kp+ 1 for some k ≥ 0. For example, 2→ 3→ 7→ 29→ 59→ 1889→
3779→ 7559→ 4058207223809→ 32465657790473→ 4462046030502692971872257→
95⟨30 omitted digits⟩37→ · · · ; the smallest successor of 95 . . . 37 has 103 digits.

Find the longest chain of successive primes that you can.

416 ARITHMETIC 4.5.4

x 40. [M36] (A. Shamir.) Consider an abstract computer that can perform the opera-
tions x+ y, x− y, x · y, and ⌊x/y⌋ on integers x and y of arbitrary length, in just one
unit of time, no matter how large those integers are. The machine stores integers in a
random-access memory and it can select different program steps depending on whether
or not x = y, given x and y. The purpose of this exercise is to demonstrate that there
is an amazingly fast way to factorize numbers on such a computer. (Therefore it will
probably be quite difficult to show that factorization is inherently complicated on real

machines, although we suspect that it is.)
a) Find a way to compute n! in O(logn) steps on such a computer, given an integer

value n ≥ 2. [Hint: If A is a sufficiently large integer, the binomial coefficients
m
k

= m!/(m− k)! k! can be computed readily from the value of (A+ 1)m.]

b) Show how to compute a number f(n) in O(logn) steps on such a computer, given
an integer value n ≥ 2, having the following properties: f(n) = n if n is prime,
otherwise f(n) is a proper (but not necessarily prime) divisor of n. [Hint: If n ̸= 4,
one such function f(n) is gcd(m(n), n), where m(n) = min{m | m! mod n = 0}.]

(As a consequence of (b), we can completely factor a given number n by doing only
O(logn)2 arithmetic operations on arbitrarily large integers: Given a partial factor-
ization n = n1 . . . nr, each nonprime ni can be replaced by f(ni) · (ni/f(ni)) in
O(logni)=O(logn) steps, and this reĄnement can be repeated until all ni are prime.)

x 41. [M28] (Lagarias, Miller, and Odlyzko.) The purpose of this exercise is to show
that the number of primes less than N3 can be calculated by looking only at the primes
less than N2, and thus to evaluate π(N3) in O(N2+ϵ) steps.

Say that an “m-survivorŤ is a positive integer whose prime factors all exceed m;
thus, an m-survivor remains in the sieve of Eratosthenes (exercise 8) after all multiples
of primes ≤ m have been sieved out. Let f(x,m) be the number of m-survivors that
are ≤ x, and let fk(x,m) be the number of such survivors that have exactly k prime
factors (counting multiplicity).

a) Prove that π(N3) = π(N) + f(N3, N)− 1− f2(N3, N).
b) Explain how to compute f2(N3, N) from the values of π(x) for x ≤ N2. Use your

method to evaluate f2(1000, 10) by hand.
c) Same question as (b), but evaluate f(N3, N) instead of f2(N3, N). [Hint: Use

the identity f(x, pj) = f(x, pj−1) − f(x/pj , pj−1), where pj is the jth prime and
p0 = 1.]

d) Discuss data structures for the efficient evaluation of the quantities in (b) and (c).

42. [M35] (H. W. Lenstra, Jr.) Given 0 < r < s < N with r ⊥ s and N ⊥ s, show
that it is possible to Ąnd all divisors of N that are ≡ r (modulo s) by performing
O(⌈N/s3⌉1/2 log s) well-chosen arithmetic operations on (lgN)-bit numbers. [Hint:

Apply exercise 4.5.3Ű49.]

x 43. [M43] Let m = pq be an r-bit Blum integer as in Theorem 3.5P, and let Qm =
{y | y = x2 modm for some x}. Then Qm has (p + 1)(q + 1)/4 elements, and every
element y ∈ Qm has a unique square root x =

√
y such that x ∈ Qm. Suppose G(y)

is an algorithm that correctly guesses
√
y mod 2 with probability ≥ 1

2
+ ϵ, when y is a

random element of Qm. The goal of this exercise is to prove that the problem solved
by G is almost as hard as the problem of factoring m.

a) Construct an algorithm A(G,m, ϵ, y, δ) that uses random numbers and algorithmG
to guess whether a given integer y is in Qm, without necessarily computing

√
y.

Your algorithm should guess correctly with probability ≥ 1 − δ, and its running

4.5.4 FACTORING INTO PRIMES 417

time T (A) should be at most O(ϵ−2(log δ−1)T (G)), assuming that T (G) ≥ r2. (If
T (G) < r2, replace T (G) by (T (G) + r2) in this formula.)

b) Construct an algorithm F (G,m, ϵ) that Ąnds the factors of m with expected
running time T (F) = O(r2(ϵ−6 + ϵ−4(log ϵ−1)T (G))).

Hints: For Ąxed y ∈ Qm, and for 0 ≤ v < m, let τv = v
√
y modm and λv =

τv mod 2. Notice that λ(−v) + λv = 1 and λ(v1 + · · · + vn) = (λv1 + · · · + λvn +
⌊(τv1 + · · ·+ τvm)/m⌋) mod 2. Furthermore we have τ(1

2
v) = 1

2
(τv + mλv); here 1

2
v

stands for (m+1
2
v) modm. If ±v ∈ Qm we have τ(±v) =

√
v2y; therefore algorithm G

gives us a way to guess λv for about half of all v.

44. [M35] (J. Håstad.) Show that it is not difficult to Ąnd x when ai0 +ai1x+ai2x
2 +

ai3x
3 ≡ 0 (modulo mi), 0 < x < mi, gcd(ai0, ai1, ai2, ai3,mi) = 1, and mi > 1027 for

1 ≤ i ≤ 7, if mi ⊥ mj for 1 ≤ i < j ≤ 7. (All variables are integers; all but x are
known.) Hint: When L is any nonsingular matrix of real numbers, the algorithm of
Lenstra, Lenstra, and Lovász [Mathematische Annalen 261 (1982), 515Ű534] efficiently
Ąnds a nonzero integer vector v = (v1, . . . , vn) such that length(vL) ≤

√
n2n | detL|1/n.

x 45. [M41] (J. M. Pollard and Claus-Peter Schnorr.) Find an efficient way to solve the
congruence

x2 − ay2 ≡ b (modulo n)

for integers x and y, given integers a, b, and n with ab ⊥ n and n odd, even if the
factorization of n is unknown. [Hint: Use the identity (x2

1−ay2
1)(x2

2−ay2
2) = x2−ay2,

where x = x1x2 − ay1y2 and y = x1y2 + x2y1.]

46. [HM30] (L. Adleman.) Let p be a rather large prime number and let a be a
primitive root modulo p; thus, all integers b in the range 1 ≤ b < p can be written
b = an mod p, for some unique n with 1 ≤ n < p.

Design an algorithm that almost always Ąnds n, given b, in O(pϵ) steps for all
ϵ > 0, using ideas similar to those of Dixon’s factoring algorithm. [Hint: Start by
building a repertoire of numbers ni such that ani mod p has only small prime factors.]

47. [M50] A certain literary quotation x = x1x2, represented in ASCII code, has the
enciphered value (x3

1 modN, x3
2 modN) =

(8372e6cadf564a9ee347092daefc242058b8044228597e5f2326bbbff1583ea4200d895d9564d39229c79af8

72a72e38bb92852a22679080e269c30690fab0ec19f78e9ef8bae74b600f4ebef42a1dd5a6d806dc70b96de2

bf4a6c7d2ebb51bfd156dd8ac3cb0ae1c1c38d76a3427bcc3f12af7d4d04314c0d8377a0c79db1b1f0cd1702,

2aabcd0f9f1f9fb382313246de168bae6a28d177963a8ebe6023f1c5bd8632caee9604f63c6a6e33ceb1e1bd

4732a2973f5021e96e05e0da932b5b1d2bc618351ca584bb6e49255ba22dca55ebd6b93a9c94d8749bb53be2

90650878b17f4fe30bbb08453929a94a2efe3367e2cd92ea31a5e0d9f466870b162272e9e164e8c3238da519)

in hexadecimal notation, where N is
c97d1cbcc3b67d1ba197100df7dbd2d2864c4fef4a78e62ddd1423d972bc7a420f66046386462d260d68a8b2

3fbf12354705d874f79c22698f750c1b4435bc99174e58180bd18560a5c69c4eafb573446f79f588f624ec18

4c3e7098e65ac7b88f89e1fadcdc3558c878dde6bc7c32be57c5e7e8d95d697ad3c6c343485132dcbb74f411.

What is x?

The problem of distinguishing prime numbers from composites,

and of resolving composite numbers into their prime factors,

is one of the most important and useful in all of arithmetic.

. . . The dignity of science seems to demand that every aid to the solution

of such an elegant and celebrated problem be zealously cultivated.

Ů C. F. GAUSS, Disquisitiones Arithmeticæ, Article 329 (1801)

418 ARITHMETIC 4.6

4.6. POLYNOMIAL ARITHMETIC

The techniques we have been studying apply in a natural way to many types
of mathematical quantities, not simply to numbers. In this section we shall deal
with polynomials, which are the next step up from numbers. Formally speaking,
a polynomial over S is an expression of the form

u(x) = unx
n + · · ·+ u1x+ u0, (1)

where the coefficients un, . . . , u1, u0 are elements of some algebraic system S,
and the variable x may be regarded as a formal symbol with an indeterminate
meaning. We will assume that the algebraic system S is a commutative ring with

identity; this means that S admits the operations of addition, subtraction, and
multiplication, satisfying the customary properties: Addition and multiplication
are binary operations deĄned on S; they are associative and commutative, and
multiplication distributes over addition. There is an additive identity element 0
and a multiplicative identity element 1, such that a + 0 = a and a · 1 = a
for all a in S. Subtraction is the inverse of addition, but we assume nothing
about the possibility of division as an inverse to multiplication. The polynomial
0xn+m + · · ·+ 0xn+1 +unx

n + · · ·+u1x+u0 is regarded as the same polynomial
as (1), although its expression is formally different.

We say that (1) is a polynomial of degree n and leading coefficient un if
un ̸= 0; and in this case we write

deg(u) = n, ℓ(u) = un. (2)

By convention, we also set

deg(0) = −∞, ℓ(0) = 0, (3)

where “0Ť denotes the zero polynomial whose coefficients are all zero. We say
that u(x) is a monic polynomial if its leading coefficient ℓ(u) is 1.

Arithmetic on polynomials consists primarily of addition, subtraction, and
multiplication; in some cases, further operations such as division, exponentiation,
factoring, and taking the greatest common divisor are important. Addition,
subtraction, and multiplication are deĄned in a natural way, as though the
variable x were an element of S: We add or subtract polynomials by adding or
subtracting the coefficients of like powers of x. Multiplication is done by the rule

(urxr + · · ·+ u0)(vsxs + · · ·+ v0) = wr+sx
r+s + · · ·+ w0,

where
wk = u0vk + u1vk−1 + · · ·+ uk−1v1 + ukv0. (4)

In the latter formula ui or vj are treated as zero if i > r or j > s.
The algebraic system S is usually the set of integers, or the rational numbers;

or it may itself be a set of polynomials (in variables other than x), in which case
(1) is a multivariate polynomial, a polynomial in several variables. Another
important case occurs when the algebraic system S consists of the integers 0,
1, . . . , m− 1, with addition, subtraction, and multiplication performed mod m

4.6 POLYNOMIAL ARITHMETIC 419

see Eq. 4.3.2Ű(11)

; this is called polynomial arithmetic modulo m. Polyno-

mial arithmetic modulo 2, when each of the coefficients is 0 or 1, is especially
important.

The reader should note the similarity between polynomial arithmetic and
multiple-precision arithmetic (Section 4.3.1), where the radix b is substituted
for x. The chief difference is that the coefficient uk of xk in polynomial arithmetic
bears no essential relation to its neighboring coefficients uk±1, so the idea of
“carryingŤ from one place to the next is absent. In fact, polynomial arithmetic
modulo b is essentially identical to multiple-precision arithmetic with radix b,
except that all carries are suppressed. For example, compare the multiplication
of (1101)2 by (1011)2 in the binary number system with the analogous multipli-
cation of x3 + x2 + 1 by x3 + x+ 1 modulo 2:

Binary system Polynomials modulo 2
1101 1101

× 1011 × 1011
1101 1101

1101 1101
1101 1101

10001111 1111111

The product of these polynomials modulo 2 is obtained by suppressing all carries,
and it is x6 +x5 +x4 +x3 +x2 +x+1. If we had multiplied the same polynomials
over the integers, without taking residues modulo 2, the result would have been
x6 + x5 + x4 + 3x3 + x2 + x + 1; again carries are suppressed, but in this case
the coefficients can get arbitrarily large.

In view of this strong analogy with multiple-precision arithmetic, it is unnec-
essary to discuss polynomial addition, subtraction, and multiplication much fur-
ther in this section. However, we should point out some aspects that often make
polynomial arithmetic somewhat different from multiple-precision arithmetic in
practice: There is often a tendency to have a large number of zero coefficients,
and polynomials of huge degrees, so special forms of representation are desirable;
see Section 2.2.4. Furthermore, arithmetic on polynomials in several variables
leads to routines that are best understood in a recursive framework; this situation
is discussed in Chapter 8.

Although the techniques of polynomial addition, subtraction, and multi-
plication are comparatively straightforward, several other important aspects of
polynomial arithmetic deserve special examination. The following subsections
therefore discuss division of polynomials, with associated techniques such as
Ąnding greatest common divisors and factoring. We shall also discuss the prob-
lem of efficient evaluation of polynomials, namely the task of Ąnding the value
of u(x) when x is a given element of S, using as few operations as possible. The
special case of evaluating xn rapidly when n is large is quite important by itself,
so it is discussed in detail in Section 4.6.3.

The Ąrst major set of computer subroutines for doing polynomial arithmetic
was the ALPAK system [W. S. Brown, J. P. Hyde, and B. A. Tague, Bell System

420 ARITHMETIC 4.6

Tech. J. 42 (1963), 2081Ű2119; 43 (1964), 785Ű804, 1547Ű1562]. Another early
landmark in this Ąeld was the PM system of George Collins [CACM 9 (1966),
578Ű589]; see also C. L. Hamblin, Comp. J. 10 (1967), 168Ű171.

EXERCISES

1. [10] If we are doing polynomial arithmetic modulo 10, what is 7x+2 minus x2+5?
What is 6x2 + x+ 3 times 5x2 + 2?

2. [17] True or false: (a) The product of monic polynomials is monic. (b) The
product of polynomials of degreesm and n has degreem+n. (c) The sum of polynomials
of degrees m and n has degree max(m,n).

3. [M20] If each of the coefficients ur, . . . , u0, vs, . . . , v0 in (4) is an integer satisfying
the conditions |ui| ≤ m1, |vj | ≤ m2, what is the maximum absolute value of the product
coefficients wk?

x 4. [21] Can the multiplication of polynomials modulo 2 be facilitated by using the
ordinary arithmetic operations on a binary computer, if coefficients are packed into
computer words?

x 5. [M21] Show how to multiply two polynomials of degree ≤ n, modulo 2, with
an execution time proportional to O(nlg 3) when n is large, by adapting Karatsuba’s
method (see Section 4.3.3).

4.6.1. Division of Polynomials

It is possible to divide one polynomial by another in essentially the same way
that we divide one multiple-precision integer by another, when arithmetic is
being done on polynomials over a Ąeld. A Ąeld S is a commutative ring with
identity, in which exact division is possible as well as the operations of addition,
subtraction, and multiplication; this means as usual that whenever u and v are
elements of S, and v ̸= 0, there is an element w in S such that u = vw. The
most important Ąelds of coefficients that arise in applications are

a) the rational numbers (represented as fractions, see Section 4.5.1);
b) the real or complex numbers (represented within a computer by means of

Ćoating point approximations; see Section 4.2);
c) the integers modulo p where p is prime (where division can be implemented

as suggested in exercise 4.5.2Ű16);
d) rational functions over a Ąeld, that is, quotients of two polynomials whose

coefficients are in that Ąeld, the denominator being monic.

Of special importance is the Ąeld of integers modulo 2, whose only elements
are 0 and 1. Polynomials over this Ąeld (namely polynomials modulo 2) have
many analogies to integers expressed in binary notation; and rational functions
over this Ąeld have striking analogies to rational numbers whose numerator and
denominator are represented in binary notation.

Given two polynomials u(x) and v(x) over a Ąeld, with v(x) ̸= 0, we can
divide u(x) by v(x) to obtain a quotient polynomial q(x) and a remainder
polynomial r(x) satisfying the conditions

u(x) = q(x) · v(x) + r(x), deg(r) < deg(v). (1)

4.6.1 DIVISION OF POLYNOMIALS 421

It is easy to see that there is at most one pair of polynomials

q(x), r(x)

satisfying these relations; for if

q1(x), r1(x)

and

q2(x), r2(x)

both satisfy (1)

with respect to the same polynomials u(x) and v(x), then q1(x)v(x) + r1(x) =
q2(x)v(x)+ r2(x), so

q1(x)− q2(x)

v(x) = r2(x)− r1(x). Now if q1(x)− q2(x) is

nonzero, we have deg

(q1−q2)·v

= deg(q1−q2)+deg(v) ≥ deg(v) > deg(r2−r1),

a contradiction; hence q1(x)− q2(x) = 0 and r1(x) = r2(x).
The following algorithm, which is essentially the same as Algorithm 4.3.1D

for multiple-precision division but without any concerns of carries, may be used
to determine q(x) and r(x):

Algorithm D (Division of polynomials over a Ąeld). Given polynomials

u(x) = umx
m + · · ·+ u1x+ u0, v(x) = vnx

n + · · ·+ v1x+ v0

over a Ąeld S, where vn ̸= 0 and m ≥ n ≥ 0, this algorithm Ąnds the polynomials

q(x) = qm−nx
m−n + · · ·+ q0, r(x) = rn−1x

n−1 + · · ·+ r0

over S that satisfy (1).

D1. [Iterate on k.] Do step D2 for k = m− n, m− n− 1, . . . , 0; then terminate
the algorithm with (rn−1, . . . , r0) = (un−1, . . . , u0).

D2. [Division loop.] Set qk ← un+k/vn, and then set uj ← uj − qkvj−k for
j = n+ k− 1, n+ k− 2, . . . , k. (The latter operation amounts to replacing
u(x) by u(x)− qkxkv(x), a polynomial of degree < n+ k.)

An example of Algorithm D appears below in (5). The number of arithmetic
operations is essentially proportional to n(m−n+1). Note that explicit division
of coefficients is done only at the beginning of step D2, and the divisor is
always vn; thus if v(x) is a monic polynomial (with vn = 1), there is no actual
division at all. If multiplication is easier to perform than division it will be
preferable to compute 1/vn at the beginning of the algorithm and to multiply
by this quantity in step D2.

We shall often write u(x) mod v(x) for the remainder r(x) in (1).

Unique factorization domains. If we restrict consideration to polynomials
over a Ąeld, we are not coming to grips with many important cases, such as
polynomials over the integers or polynomials in several variables. Let us therefore
now consider the more general situation that the algebraic system S of coefficients
is a unique factorization domain, not necessarily a Ąeld. This means that S is a
commutative ring with identity, and that

i) uv ̸= 0, whenever u and v are nonzero elements of S;
ii) every nonzero element u of S is either a unit or has a “uniqueŤ representation

as a product of primes p1, . . . , pt:

u = p1 . . . pt, t ≥ 1. (2)

A unit is an element that has a reciprocal, namely an element u such that uv = 1
for some v in S; and a prime is a nonunit element p such that the equation p = qr

422 ARITHMETIC 4.6.1

can be true only if either q or r is a unit. The representation (2) is to be unique
in the sense that if p1 . . . pt = q1 . . . qs, where all the p’s and q’s are primes, then
s = t and there is a permutation π1 . . . πt of {1, . . . , t} such that p1 = a1qπ1

, . . . ,
pt = atqπt for some units a1, . . . , at. In other words, factorization into primes
is unique, except for unit multiples and except for the order of the factors.

Any Ąeld is a unique factorization domain, in which each nonzero element is
a unit and there are no primes. The integers form a unique factorization domain
in which the units are +1 and −1, and the primes are ±2, ±3, ±5, ±7, ±11, etc.
The case that S is the set of all integers is of principal importance, because it
is often preferable to work with integer coefficients instead of arbitrary rational
coefficients.

One of the key facts about polynomials (see exercise 10) is that the poly-
nomials over a unique factorization domain form a unique factorization domain.
A polynomial that is prime in this domain is usually called an irreducible polyno-

mial. By using the unique factorization theorem repeatedly, we can prove that
multivariate polynomials over the integers, or over any Ąeld, in any number of
variables, can be uniquely factored into irreducible polynomials. For example,
the multivariate polynomial 90x3 − 120x2y + 18x2yz − 24xy2z over the integers
is the product of Ąve irreducible polynomials 2 · 3 · x · (3x− 4y) · (5x+ yz). The
same polynomial, as a polynomial over the rationals, is the product of three
irreducible polynomials (6x) · (3x− 4y) · (5x+ yz); this factorization can also be
written x · (90x− 120y) · (x+ 1

5yz) and in inĄnitely many other ways, although
the factorization is essentially unique.

As usual, we say that u(x) is a multiple of v(x), and that v(x) is a divisor

of u(x), if u(x) = v(x)q(x) for some polynomial q(x). If we have an algorithm to
tell whether or not u is a multiple of v for arbitrary nonzero elements u and v of a
unique factorization domain S, and to determine w if u = v ·w, then Algorithm D
gives us a method to tell whether or not u(x) is a multiple of v(x) for arbitrary
nonzero polynomials u(x) and v(x) over S. For if u(x) is a multiple of v(x), it is
easy to see that un+k must be a multiple of vn each time we get to step D2, hence
the quotient u(x)/v(x) will be found. Applying this observation recursively, we
obtain an algorithm that decides if a given polynomial over S, in any number of
variables, is a multiple of another given polynomial over S, and the algorithm
will Ąnd the quotient when it exists.

A set of elements of a unique factorization domain is said to be relatively

prime if no prime of that unique factorization domain divides all of them. A
polynomial over a unique factorization domain is called primitive if its coefficients
are relatively prime. (This concept should not be confused with the quite
different idea of “primitive polynomials modulo pŤ discussed in Section 3.2.2.)
The following fact, introduced for the case of polynomials over the integers by
C. F. Gauss in article 42 of his celebrated book Disquisitiones Arithmeticæ
(Leipzig: 1801), is of prime importance:

Lemma G (Gauss’s Lemma). The product of primitive polynomials over a
unique factorization domain is primitive.

4.6.1 DIVISION OF POLYNOMIALS 423

Proof. Let u(x) = umx
m + · · · + u0 and v(x) = vnx

n + · · · + v0 be primitive
polynomials. If p is any prime of the domain, we must show that p does not
divide all the coefficients of u(x)v(x). By assumption, there is an index j such
that uj is not divisible by p, and an index k such that vk is not divisible by p.
Let j and k be as small as possible; then the coefficient of xj+k in u(x)v(x) is

ujvk + uj+1vk−1 + · · ·+ uj+kv0 + uj−1vk+1 + · · ·+ u0vk+j ,

and it is easy to see that this is not a multiple of p (since its Ąrst term isn’t, but
all of its other terms are).

If a nonzero polynomial u(x) over a unique factorization domain S is not
primitive, we can write u(x) = p1 · u1(x), where p1 is a prime of S dividing all
the coefficients of u(x), and where u1(x) is another nonzero polynomial over S.
All of the coefficients of u1(x) have one less prime factor than the corresponding
coefficients of u(x). Now if u1(x) is not primitive, we can write u1(x) = p2 ·u2(x),
etc.; this process must ultimately terminate in a representation u(x) = c · uk(x),
where c is an element of S and uk(x) is primitive. In fact, we have the following
companion to Lemma G:

Lemma H. Any nonzero polynomial u(x) over a unique factorization domain S
can be factored in the form u(x) = c · v(x), where c is in S and v(x) is primitive.
Furthermore, this representation is unique, in the sense that if u = c1 · v1(x) =
c2 · v2(x), then c1 = ac2 and v2(x) = av1(x) where a is a unit of S.

Proof. We have shown that such a representation exists, so only the uniqueness
needs to be proved. Assume that c1 · v1(x) = c2 · v2(x), where v1(x) and v2(x)
are primitive. Let p be any prime of S. If pk divides c1, then pk also divides c2;
otherwise pk would divide all the coefficients of c2 · v2(x), so p would divide
all the coefficients of v2(x), a contradiction. Similarly, pk divides c2 only if pk

divides c1. Hence, by unique factorization, c1 = ac2 where a is a unit; and
0 = ac2 · v1(x)− c2 · v2(x) = c2 ·

av1(x)− v2(x)

, so av1(x)− v2(x) = 0.

Therefore we may write any nonzero polynomial u(x) as

u(x) = cont(u) · pp

u(x)

, (3)

where cont(u), the content of u, is an element of S, and pp

u(x)

, the primitive

part of u(x), is a primitive polynomial over S. When u(x) = 0, it is convenient
to deĄne cont(u) = pp

u(x)

= 0. Combining Lemmas G and H gives us the

relations
cont(u · v) = a cont(u) cont(v),

pp

u(x) · v(x)

= b pp

u(x)

pp

v(x)

,

(4)

where a and b are units, depending on the way contents are calculated, with
ab = 1. When we are working with polynomials over the integers, the only units
are +1 and −1, and it is conventional to deĄne pp

u(x)

so that its leading

coefficient is positive; then (4) is true with a = b = 1. When working with
polynomials over a Ąeld we may take cont(u) = ℓ(u), so that pp

u(x)

is monic;

in this case again (4) holds with a = b = 1, for all u(x) and v(x).

424 ARITHMETIC 4.6.1

For example, if we are dealing with polynomials over the integers, let u(x) =
−26x2 + 39 and v(x) = 21x+ 14. Then

cont(u) = −13, pp

u(x)

= 2x2 − 3,

cont(v) = +7, pp

v(x)

= 3x+ 2,

cont(u · v) = −91, pp

u(x) · v(x)

= 6x3 + 4x2 − 9x− 6.

Greatest common divisors. When there is unique factorization, it makes
sense to speak of a greatest common divisor of two elements; this is a common
divisor that is divisible by as many primes as possible.

See Eq. 4.5.2Ű(6).

Since

a unique factorization domain may have many units, however, there is ambiguity
in this deĄnition of greatest common divisor; if w is a greatest common divisor
of u and v, so is a ·w, when a is any unit. Conversely, the assumption of unique
factorization implies that if w1 and w2 are both greatest common divisors of u
and v, then w1 = a ·w2 for some unit a. In other words it does not make sense,
in general, to speak of “theŤ greatest common divisor of u and v; there is a set
of greatest common divisors, each one being a unit multiple of the others.

Let us now consider the problem of Ąnding a greatest common divisor of
two given polynomials over an algebraic system S, a question originally raised by
Pedro Nuĳez in his Libro de Algebra (Antwerp: 1567). If S is a Ąeld, the problem
is relatively simple; our division algorithm, Algorithm D, can be extended to an
algorithm that computes greatest common divisors, just as Euclid’s algorithm
(Algorithm 4.5.2A) yields the greatest common divisor of two given integers
based on a division algorithm for integers:

If v(x) = 0, then gcd

u(x), v(x)

= u(x);

otherwise gcd

u(x), v(x)

= gcd

v(x), r(x)

,

where r(x) is given by (1). This procedure is called Euclid’s algorithm for
polynomials over a Ąeld. It was Ąrst used by Simon Stevin in L’Arithmetique
(Leiden: 1585); see A. Girard, Les Œuvres Mathématiques de Simon Stevin 1
(Leiden: 1634), 56.

For example, let us determine the gcd of x8 +x6 +10x4 +10x3 +8x2 +2x+8
and 3x6 +5x4 +9x2 +4x+8, mod 13, by using Euclid’s algorithm for polynomials
over the integers modulo 13. First, writing only the coefficients to show the steps
of Algorithm D, we have

9 0 7
3 0 5 0 9 4 8

1 0 1 0 10 10 8 2 8
1 0 6 0 3 10 7

0 8 0 7 0 1 2 8
8 0 9 0 11 2 4

0 11 0 3 0 4

(5)

so that x8 + x6 + 10x4 + 10x3 + 8x2 + 2x+ 8 equals

(9x2 + 7)(3x6 + 5x4 + 9x2 + 4x+ 8) + (11x4 + 3x2 + 4).

4.6.1 DIVISION OF POLYNOMIALS 425

Similarly,

3x6 + 5x4 + 9x2 + 4x+ 8 = (5x2 + 5)(11x4 + 3x2 + 4) + (4x+ 1);

11x4 + 3x2 + 4 = (6x3 + 5x2 + 6x+ 5)(4x+ 1) + 12;

4x+ 1 = (9x+ 12) · 12 + 0. (6)

(The equality sign here means congruence modulo 13, since all arithmetic on
the coefficients has been done mod 13.) This computation shows that 12 is
a greatest common divisor of the two original polynomials. Now any nonzero
element of a Ąeld is a unit of the domain of polynomials over that Ąeld, so
it is conventional in the case of Ąelds to divide the result of the algorithm by
its leading coefficient, producing a monic polynomial that is called the greatest
common divisor of the two given polynomials. The gcd computed in (6) is
accordingly taken to be 1, not 12. The last step in (6) could have been omitted,
for if deg(v) = 0, then gcd

u(x), v(x)

= 1, no matter what polynomial is chosen

for u(x). Exercise 4 determines the average running time for Euclid’s algorithm
on random polynomials modulo p.

Let us now turn to the more general situation in which our polynomials are
given over a unique factorization domain that is not a Ąeld. From Eqs. (4) we
can deduce the important relations

cont

gcd(u, v)

= a · gcd

cont(u), cont(v)

,

pp

gcd(u(x), v(x))

= b · gcd

pp

u(x)

,pp

v(x)

,

(7)

where a and b are units. Here gcd

u(x), v(x)

denotes any particular polynomial

in x that is a greatest common divisor of u(x) and v(x). Equations (7) reduce
the problem of Ąnding greatest common divisors of arbitrary polynomials to the
problem of Ąnding greatest common divisors of primitive polynomials.

Algorithm D for division of polynomials over a Ąeld can be generalized to a
pseudo-division of polynomials over any algebraic system that is a commutative
ring with identity. We can observe that Algorithm D requires explicit division
only by ℓ(v), the leading coefficient of v(x), and that step D2 is carried out
exactly m − n + 1 times; thus if u(x) and v(x) start with integer coefficients,
and if we are working over the rational numbers, then the only denominators
that appear in the coefficients of q(x) and r(x) are divisors of ℓ(v)m−n+1. This
suggests that we can always Ąnd polynomials q(x) and r(x) such that

ℓ(v)m−n+1u(x) = q(x)v(x) + r(x), deg(r) < n, (8)

where m = deg(u) and n = deg(v), for any polynomials u(x) and v(x) ̸= 0,
provided that m ≥ n.

Algorithm R (Pseudo-division of polynomials). Given polynomials

u(x) = umx
m + · · ·+ u1x+ u0, v(x) = vnx

n + · · ·+ v1x+ v0,

where vn ̸= 0 and m ≥ n ≥ 0, this algorithm Ąnds polynomials q(x) =
qm−nx

m−n + · · ·+ q0 and r(x) = rn−1x
n−1 + · · ·+ r0 satisfying (8).

426 ARITHMETIC 4.6.1

R1. [Iterate on k.] Do step R2 for k = m− n, m− n− 1, . . . , 0; then terminate
the algorithm with (rn−1, . . . , r0) = (un−1, . . . , u0).

R2. [Multiplication loop.] Set qk ← un+kv
k
n, and set uj ← vnuj − un+kvj−k for

j = n+ k − 1, n+ k − 2, . . . , 0. (When j < k this means that uj ← vnuj ,
since we treat v−1, v−2, . . . as zero. These multiplications could have been
avoided if we had started the algorithm by replacing ut by vm−n−t

n ut, for
0 ≤ t < m− n.)

An example calculation appears below in (10). It is easy to prove the validity
of Algorithm R by induction on m−n, since each execution of step R2 essentially
replaces u(x) by ℓ(v)u(x)− ℓ(u)xkv(x), where k = deg(u)− deg(v). Notice that
no division whatever is used in this algorithm; the coefficients of q(x) and r(x)
are themselves certain polynomial functions of the coefficients of u(x) and v(x).
If vn = 1, the algorithm is identical to Algorithm D. If u(x) and v(x) are
polynomials over a unique factorization domain, we can prove as before that the
polynomials q(x) and r(x) are unique; therefore another way to do the pseudo-
division over a unique factorization domain is to multiply u(x) by vm−n+1

n and
apply Algorithm D, knowing that all the quotients in step D2 will exist.

Algorithm R can be extended to a “generalized Euclidean algorithmŤ for
primitive polynomials over a unique factorization domain, in the following way:
Let u(x) and v(x) be primitive polynomials with deg(u) ≥ deg(v), and determine
the polynomial r(x) satisfying (8) by means of Algorithm R. Now we can prove
that gcd

u(x), v(x)

= gcd

v(x), r(x)

: Any common divisor of u(x) and v(x)

divides v(x) and r(x); conversely, any common divisor of v(x) and r(x) divides
ℓ(v)m−n+1u(x), and it must be primitive

since v(x) is primitive

so it divides

u(x). If r(x) = 0, we therefore have gcd

u(x), v(x)

= v(x); on the other hand if

r(x) ̸= 0, we have gcd

v(x), r(x)

= gcd

v(x),pp

r(x)

since v(x) is primitive,

so the process can be iterated.

Algorithm E (Generalized Euclidean algorithm). Given nonzero polynomials
u(x) and v(x) over a unique factorization domain S, this algorithm calculates a
greatest common divisor of u(x) and v(x). We assume that auxiliary algorithms
exist to calculate greatest common divisors of elements of S, and to divide a by b
in S when b ̸= 0 and a is a multiple of b.

E1. [Reduce to primitive.] Set d ← gcd

cont(u), cont(v)

, using the assumed

algorithm for calculating greatest common divisors in S.

By deĄnition,

cont(u) is a greatest common divisor of the coefficients of u(x).

Replace
u(x) by the polynomial u(x)/cont(u) = pp

u(x)

; similarly, replace v(x)

by pp

v(x)

.

E2. [Pseudo-division.] Calculate r(x) using Algorithm R.

It is unnecessary to

calculate the quotient polynomial q(x).

If r(x) = 0, go to E4. If deg(r) = 0,
replace v(x) by the constant polynomial “1Ť and go to E4.

E3. [Make remainder primitive.] Replace u(x) by v(x) and replace v(x) by
pp

r(x)

. Go back to step E2. (This is the “Euclidean step,Ť analogous

to the other instances of Euclid’s algorithm that we have seen.)

4.6.1 DIVISION OF POLYNOMIALS 427

E4. [Attach the content.] The algorithm terminates, with d · v(x) as the desired
answer.

As an example of Algorithm E, let us calculate the gcd of the polynomials

u(x) = x8 + x6 − 3x4 − 3x3 + 8x2 + 2x− 5,

v(x) = 3x6 + 5x4 − 4x2 − 9x+ 21,
(9)

over the integers. These polynomials are primitive, so step E1 sets d ← 1. In
step E2 we have the pseudo-division

1 0 −6
3 0 5 0 −4 −9 21

1 0 1 0 −3 −3 8 2 −5
3 0 3 0 −9 −9 24 6 −15
3 0 5 0 −4 −9 21

0 −2 0 −5 0 3 6 −15
0 −6 0 −15 0 9 18 −45
0 0 0 0 0 0 0 0
−6 0 −15 0 9 18 −45
−18 0 −45 0 27 54 −135
−18 0 −30 0 24 54 −126

−15 0 3 0 −9

(10)

Here the quotient q(x) is 1 · 32x2 + 0 · 31x+−6 · 30; we have

27u(x) = v(x)(9x2 − 6) + (−15x4 + 3x2 − 9). (11)

Now step E3 replaces u(x) by v(x) and v(x) by pp

r(x)

= 5x4 − x2 + 3. The

subsequent calculation is summarized in the following table, where only the
coefficients are shown:

u(x) v(x) r(x)

1, 0, 1, 0,−3,−3, 8, 2,−5 3, 0, 5, 0,−4,−9, 21 −15, 0, 3, 0,−9
3, 0, 5, 0,−4,−9, 21 5, 0,−1, 0, 3 −585,−1125, 2205

5, 0,−1, 0, 3 13, 25,−49 −233150, 307500
13, 25,−49 4663,−6150 143193869 (12)

It is instructive to compare this calculation with the computation of the
same greatest common divisor over the rational numbers, instead of over the
integers, by using Euclid’s algorithm for polynomials over a Ąeld as described
earlier in this section. The following surprisingly complicated sequence appears:

u(x) v(x)

1, 0, 1, 0,−3,−3, 8, 2,−5 3, 0, 5, 0,−4,−9, 21

3, 0, 5, 0,−4,−9, 21 − 5
9 , 0,

1
9 , 0,− 1

3

− 5
9 , 0,

1
9 , 0,− 1

3 − 117
25 ,−9, 441

25

− 117
25 ,−9, 441

25
233150
19773 ,− 102500

6591
233150
19773 ,− 102500

6591 − 1288744821
543589225 (13)

428 ARITHMETIC 4.6.1

To improve that algorithm, we can reduce u(x) and v(x) to monic polynomi-
als at each step, since this removes unit factors that make the coefficients more
complicated than necessary; this is actually Algorithm E over the rationals:

u(x) v(x)

1, 0, 1, 0,−3,−3, 8, 2,−5 1, 0, 5
3 , 0,− 4

3 ,−3, 7
1, 0, 5

3 , 0,− 4
3 ,−3, 7 1, 0,− 1

5 , 0,
3
5

1, 0,− 1
5 , 0,

3
5 1, 25

13 ,− 49
13

1, 25
13 ,− 49

13 1,− 6150
4663

1,− 6150
4663 1 (14)

In both (13) and (14) the sequence of polynomials is essentially the same
as (12), which was obtained by Algorithm E over the integers; the only differ-
ence is that the polynomials have been multiplied by certain rational numbers.
Whether we have 5x4−x2+3 or − 5

9x
4+ 1

9x
2− 1

3 or x4− 1
5x

2+ 3
5 , the computations

are essentially the same. But either algorithm using rational arithmetic tends
to run slower than the all-integer Algorithm E, since rational arithmetic usually
requires more evaluations of integer gcds within each step when the polynomials
have large degree.

It is instructive to compare (12), (13), and (14) with (6) above, where we
determined the gcd of the same polynomials u(x) and v(x) modulo 13 with
considerably less labor. Since ℓ(u) and ℓ(v) are not multiples of 13, the fact
that gcd

u(x), v(x)

= 1 modulo 13 is sufficient to prove that u(x) and v(x)

are relatively prime over the integers (and therefore over the rational numbers).
We will return to this time-saving observation at the close of Section 4.6.2.

The subresultant algorithm. An ingenious algorithm that is generally supe-
rior to Algorithm E, and that gives us further information about Algorithm E’s
behavior, was discovered by George E. Collins [JACM 14 (1967), 128Ű142] and
subsequently improved by W. S. Brown and J. F. Traub [JACM 18 (1971), 505Ű
514; see also W. S. Brown, ACM Trans. Math. Software 4 (1978), 237Ű249]. This
algorithm avoids the calculation of primitive parts in step E3, dividing instead
by an element of S that is known to be a factor of r(x):

Algorithm C (Greatest common divisor over a unique factorization domain).
This algorithm has the same input and output assumptions as Algorithm E,
and has the advantage that fewer calculations of greatest common divisors of
coefficients are needed.

C1. [Reduce to primitive.] As in step E1 of Algorithm E, set d ← gcd

cont(u),

cont(v)

, and replace

u(x), v(x)

by

pp

u(x)

,pp

v(x)

. Set g ← h← 1.

C2. [Pseudo-division.] Set δ ← deg(u) − deg(v). Calculate r(x) using Algo-
rithm R. If r(x) = 0, go to C4. If deg(r) = 0, replace v(x) by the constant
polynomial “1Ť and go to C4.

C3. [Adjust remainder.] Replace the polynomial u(x) by v(x), and replace v(x)
by r(x)/ghδ.

At this point all coefficients of r(x) are multiples of ghδ.

4.6.1 DIVISION OF POLYNOMIALS 429

Then set g ← ℓ(u), h← h1−δgδ and return to C2.

The new value of h will

be in the domain S, even if δ > 1.

C4. [Attach the content.] Return d · pp

v(x)

as the answer.

If we apply this algorithm to the polynomials (9) considered earlier, the
following sequence of results is obtained at the beginning of step C2:

u(x) v(x) g h

1, 0, 1, 0,−3,−3, 8, 2,−5 3, 0, 5, 0,−4,−9, 21 1 1

3, 0, 5, 0,−4,−9, 21 −15, 0, 3, 0,−9 3 9

−15, 0, 3, 0,−9 65, 125,−245 −15 25

65, 125,−245 −9326, 12300 65 169 (15)

At the conclusion of the algorithm, r(x)/ghδ = 260708.
The sequence of polynomials consists of integral multiples of the polynomials

in the sequence produced by Algorithm E. In spite of the fact that the polyno-
mials are not reduced to primitive form, the coefficients are kept to a reasonable
size because of the reduction factor in step C3.

In order to analyze Algorithm C and to prove that it is valid, let us call the
sequence of polynomials it produces u1(x), u2(x), u3(x), . . . , where u1(x) = u(x)
and u2(x) = v(x). Let δj = nj − nj+1 for j ≥ 1, where nj = deg(uj); and let
g1 = h1 = 1, gj = ℓ(uj), hj = h

1−δj−1

j−1 g
δj−1

j for j ≥ 2. Then we have

gδ1+1
2 u1(x) = u2(x)q1(x) + g1h

δ1
1 u3(x), n3 < n2;

gδ2+1
3 u2(x) = u3(x)q2(x) + g2h

δ2
2 u4(x), n4 < n3;

gδ3+1
4 u3(x) = u4(x)q3(x) + g3h

δ3
3 u5(x), n5 < n4;

(16)

and so on. The process terminates when nk+1 = deg(uk+1) ≤ 0. We must
show that u3(x), u4(x), . . . , have coefficients in S, namely that the factors gjh

δj
j

exactly divide all coefficients of the remainders, and we must also show that the
hj values all belong to S. The proof is rather involved, and it can be most easily
understood by considering an example.

Suppose, as in (15), that n1 = 8, n2 = 6, n3 = 4, n4 = 2, n5 = 1, n6 = 0, so
that δ1 = δ2 = δ3 = 2, δ4 = δ5 = 1. Let us write u1(x) = a8x

8 + a7x
7 + · · ·+ a0,

u2(x) = b6x
6 + b5x

5 + · · ·+ b0, . . . , u5(x) = e1x+ e0, u6(x) = f0, so that h1 = 1,
h2 = b2

6, h3 = c2
4/b

2
6, h4 = d2

2b
2
6/c

2
4. In these terms it is helpful to consider the

array shown in Table 1. For concreteness, let us assume that the coefficients
of the polynomials are integers. We have b3

6u1(x) = u2(x)q1(x) + u3(x); so if
we multiply row A5 by b3

6 and subtract appropriate multiples of rows B7, B6,
and B5

corresponding to the coefficients of q1(x)

we will get row C5. If we also

multiply row A4 by b3
6 and subtract multiples of rows B6, B5, and B4, we get

row C4. In a similar way, we have c3
4u2(x) = u3(x)q2(x) + b5

6u4(x); so we can
multiply row B3 by c3

4, subtract integer multiples of rows C5, C4, and C3, then
divide by b5

6 to obtain row D3.

430 ARITHMETIC 4.6.1

In order to prove that u4(x) has integer coefficients, let us consider the
matrix

A2

A1

A0

B4

B3

B2

B1

B0

a8 a7 a6 a5 a4 a3 a2 a1 a0 0 0
0 a8 a7 a6 a5 a4 a3 a2 a1 a0 0
0 0 a8 a7 a6 a5 a4 a3 a2 a1 a0

b6 b5 b4 b3 b2 b1 b0 0 0 0 0
0 b6 b5 b4 b3 b2 b1 b0 0 0 0
0 0 b6 b5 b4 b3 b2 b1 b0 0 0
0 0 0 b6 b5 b4 b3 b2 b1 b0 0
0 0 0 0 b6 b5 b4 b3 b2 b1 b0

= M. (17)

The indicated row operations and a permutation of rows will transform M into

B4

B3

B2

B1

C2

C1

C0

D0

b6 b5 b4 b3 b2 b1 b0 0 0 0 0
0 b6 b5 b4 b3 b2 b1 b0 0 0 0
0 0 b6 b5 b4 b3 b2 b1 b0 0 0
0 0 0 b6 b5 b4 b3 b2 b1 b0 0
0 0 0 0 c4 c3 c2 c1 c0 0 0
0 0 0 0 0 c4 c3 c2 c1 c0 0
0 0 0 0 0 0 c4 c3 c2 c1 c0

0 0 0 0 0 0 0 0 d2 d1 d0

= M ′. (18)

Because of the way M ′ has been derived from M, we must have

b3
6 · b3

6 · b3
6 · (c3

4/b
5
6) · detM0 = ± detM ′

0,

if M0 and M ′
0 represent any square matrices obtained by selecting eight corre-

sponding columns from M and M ′. For example, let us select the Ąrst seven
columns and the column containing d1; then

b3
6 · b3

6 · b3
6 · (c3

4/b
5
6) · det

a8 a7 a6 a5 a4 a3 a2 0
0 a8 a7 a6 a5 a4 a3 a0

0 0 a8 a7 a6 a5 a4 a1

b6 b5 b4 b3 b2 b1 b0 0
0 b6 b5 b4 b3 b2 b1 0
0 0 b6 b5 b4 b3 b2 0
0 0 0 b6 b5 b4 b3 b0

0 0 0 0 b6 b5 b4 b1

= ±b4
6 · c3

4 · d1.

Since b6c4 ̸= 0, this proves that d1 is an integer. Similarly, d2 and d0 are integers.
In general, we can show that uj+1(x) has integer coefficients in a similar

manner. If we start with the matrix M consisting of rows An2−nj
through A0

and Bn1−nj through B0, and if we perform the row operations indicated in
Table 1, we will obtain a matrix M ′ consisting in some order of rows Bn1−nj

through Bn3−nj+1, then Cn2−nj
through Cn4−nj+1, . . . , Pnj−2−nj

through P1,
then Qnj−1−nj

through Q0, and Ąnally R0

a row containing the coefficients of

uj+1(x)

. Extracting appropriate columns shows that

(gδ1+1
2 /g1h

δ1
1)n2−nj+1(gδ2+1

3 /g2h
δ2
2)n3−nj+1 . . . (gδj−1+1

j /gj−1h
δj−1

j−1)nj−nj+1

× detM0 = ±gn1−n3
2 gn2−n4

3 . . . g
nj−2−nj

j−1 g
nj−1−nj+1
j rt, (19)

4.6.1 DIVISION OF POLYNOMIALS 431

Table 1

COEFFICIENTS THAT ARISE IN ALGORITHM C

Row Multiply Replace
name Row by by row

A5 a8 a7 a6 a5 a4 a3 a2 a1 a0 0 0 0 0 0 b3
6 C5

A4 0 a8 a7 a6 a5 a4 a3 a2 a1 a0 0 0 0 0 b3
6 C4

A3 0 0 a8 a7 a6 a5 a4 a3 a2 a1 a0 0 0 0 b3
6 C3

A2 0 0 0 a8 a7 a6 a5 a4 a3 a2 a1 a0 0 0 b3
6 C2

A1 0 0 0 0 a8 a7 a6 a5 a4 a3 a2 a1 a0 0 b3
6 C1

A0 0 0 0 0 0 a8 a7 a6 a5 a4 a3 a2 a1 a0 b3
6 C0

B7 b6 b5 b4 b3 b2 b1 b0 0 0 0 0 0 0 0
B6 0 b6 b5 b4 b3 b2 b1 b0 0 0 0 0 0 0
B5 0 0 b6 b5 b4 b3 b2 b1 b0 0 0 0 0 0
B4 0 0 0 b6 b5 b4 b3 b2 b1 b0 0 0 0 0
B3 0 0 0 0 b6 b5 b4 b3 b2 b1 b0 0 0 0 c3

4/b
5
6 D3

B2 0 0 0 0 0 b6 b5 b4 b3 b2 b1 b0 0 0 c3
4/b

5
6 D2

B1 0 0 0 0 0 0 b6 b5 b4 b3 b2 b1 b0 0 c3
4/b

5
6 D1

B0 0 0 0 0 0 0 0 b6 b5 b4 b3 b2 b1 b0 c3
4/b

5
6 D0

C5 0 0 0 0 c4 c3 c2 c1 c0 0 0 0 0 0
C4 0 0 0 0 0 c4 c3 c2 c1 c0 0 0 0 0
C3 0 0 0 0 0 0 c4 c3 c2 c1 c0 0 0 0
C2 0 0 0 0 0 0 0 c4 c3 c2 c1 c0 0 0
C1 0 0 0 0 0 0 0 0 c4 c3 c2 c1 c0 0 d2

2b
4
6/c

5
4 E1

C0 0 0 0 0 0 0 0 0 0 c4 c3 c2 c1 c0 d2
2b

4
6/c

5
4 E0

D3 0 0 0 0 0 0 0 0 d2 d1 d0 0 0 0
D2 0 0 0 0 0 0 0 0 0 d2 d1 d0 0 0
D1 0 0 0 0 0 0 0 0 0 0 d2 d1 d0 0
D0 0 0 0 0 0 0 0 0 0 0 0 d2 d1 d0 e2

2c
2
4/d

3
2b

2
6 F0

E1 0 0 0 0 0 0 0 0 0 0 0 e1 e0 0
E0 0 0 0 0 0 0 0 0 0 0 0 0 e1 e0

F0 0 0 0 0 0 0 0 0 0 0 0 0 0 f0

where rt is a given coefficient of uj+1(x) and M0 is a submatrix of M. The h’s
have been chosen very cleverly so that this equation simpliĄes to

detM0 = ± rt (20)

(see exercise 24). Therefore every coefficient of uj+1(x) can be expressed as the
determinant of an (n1 +n2−2nj +2)×(n1 +n2−2nj +2) matrix whose elements
are coefficients of u(x) and v(x).

It remains to be shown that the cleverly chosen h’s also are integers. A
similar technique applies: Let’s look, for example, at the matrix

A1

A0

B3

B2

B1

B0

a8 a7 a6 a5 a4 a3 a2 a1 a0 0
0 a8 a7 a6 a5 a4 a3 a2 a1 a0

b6 b5 b4 b3 b2 b1 b0 0 0 0
0 b6 b5 b4 b3 b2 b1 b0 0 0
0 0 b6 b5 b4 b3 b2 b1 b0 0
0 0 0 b6 b5 b4 b3 b2 b1 b0

= M. (21)

432 ARITHMETIC 4.6.1

Row operations as speciĄed in Table 1, and permutation of rows, leads to

B3

B2

B1

B0

C1

C0

b6 b5 b4 b3 b2 b1 b0 0 0 0
0 b6 b5 b4 b3 b2 b1 b0 0 0
0 0 b6 b5 b4 b3 b2 b1 b0 0
0 0 0 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 c4 c3 c2 c1 c0 0
0 0 0 0 0 c4 c3 c2 c1 c0

= M ′; (22)

hence if we consider any submatrices M0 and M ′
0 obtained by selecting six

corresponding columns ofM andM ′ we have b3
6·b3

6·detM0 = ± detM ′
0. WhenM0

is chosen to be the Ąrst six columns of M, we Ąnd that detM0 = ±c2
4/b

2
6 = ±h3,

so h3 is an integer.
In general, to show that hj is an integer for j ≥ 3, we start with the matrix

M consisting of rows An2−nj−1 through A0 and Bn1−nj−1 through B0; then we
perform appropriate row operations until obtaining a matrix M ′ consisting of
rows Bn1−nj−1 through Bn3−nj , then Cn2+nj−1 through Cn4−nj , . . . , Pnj−2−nj−1

through P0, then Qnj−1−nj−1 through Q0. Letting M0 be the Ąrst n1 +n2− 2nj

columns of M, we obtain

(gδ1+1
2 /g1h

δ1
1)n2−nj (gδ2+1

3 /g2h
δ2
2)n3−nj . . . (gδj−1+1

j /gj−1h
δj−1

j−1)nj−nj detM0

= ±gn1−n3
2 gn2−n4

3 . . . g
nj−2−nj

j−1 g
nj−1−nj

j , (23)

an equation that neatly simpliĄes to

detM0 = ±hj . (24)

(This proof, although stated for the domain of integers, obviously applies to any
unique factorization domain.)

In the process of verifying Algorithm C, we have also learned that every
element of S dealt with by the algorithm can be expressed as a determinant whose
entries are the coefficients of the primitive parts of the original polynomials. A
well-known theorem of Hadamard (see exercise 15) states that

| det(aij)| ≤

1≤i≤n

1≤j≤n

a2
ij

1/2

; (25)

therefore every coefficient appearing in the polynomials computed by Algo-
rithm C is at most

Nm+n(m+ 1)n/2(n+ 1)m/2, (26)

if all coefficients of the given polynomials u(x) and v(x) are bounded by N
in absolute value. This same upper bound applies to the coefficients of all
polynomials u(x) and v(x) computed during the execution of Algorithm E, since
the polynomials obtained in Algorithm E are always divisors of the polynomials
obtained in Algorithm C.

This upper bound on the coefficients is extremely gratifying, because it is
much better than we would ordinarily have a right to expect. For example,
consider what happens if we avoid the corrections in steps E3 and C3, merely

4.6.1 DIVISION OF POLYNOMIALS 433

replacing v(x) by r(x). This is the simplest gcd algorithm, and it is the one
that traditionally appears in textbooks on algebra (for theoretical purposes, not
intended for practical calculations). If we suppose that δ1 = δ2 = · · · = 1, we
Ąnd that the coefficients of u3(x) are bounded by N3, the coefficients of u4(x)
are bounded by N7, those of u5(x) by N17, . . . ; the coefficients of uk(x) are
bounded by Nak , where ak = 2ak−1 + ak−2. Thus the upper bound, in place of
(26) for m = n+ 1, would be approximately

N0.5(2.414)n, (27)

and experiments show that the simple algorithm does in fact have this behavior;
the number of digits in the coefficients grows exponentially at each step! In
Algorithm E, by contrast, the growth in the number of digits is only slightly
more than linear at most.

Another byproduct of our proof of Algorithm C is the fact that the degrees of
the polynomials will almost always decrease by 1 at each step, so that the number
of iterations of step C2 (or E2) will usually be deg(v) if the given polynomials
are “random.Ť In order to see why this happens, notice for example that we
could have chosen the Ąrst eight columns of M and M ′ in (17) and (18); then
we would have found that u4(x) has degree less than 3 if and only if d3 = 0, that
is, if and only if

det

a8 a7 a6 a5 a4 a3 a2 a1

0 a8 a7 a6 a5 a4 a3 a2

0 0 a8 a7 a6 a5 a4 a3

b6 b5 b4 b3 b2 b1 b0 0
0 b6 b5 b4 b3 b2 b1 b0

0 0 b6 b5 b4 b3 b2 b1

0 0 0 b6 b5 b4 b3 b2

0 0 0 0 b6 b5 b4 b3

= 0.

In general, δj will be greater than 1 for j > 1 if and only if a similar determinant
in the coefficients of u(x) and v(x) is zero. Since such a determinant is a nonzero
multivariate polynomial in the coefficients, it will be nonzero “almost always,Ť
or “with probability 1.Ť (See exercise 16 for a more precise formulation of this
statement, and see exercise 4 for a related proof.) The example polynomials in
(15) have both δ2 and δ3 equal to 2, so they are exceptional indeed.

The considerations above can be used to derive the well-known fact that
two polynomials are relatively prime if and only if their resultant is nonzero;
the resultant is a determinant having the form of rows A5 through A0 and B7

through B0 in Table 1.

This is “Sylvester’s determinantŤ; see exercise 12.

Further properties of resultants are discussed in B. L. van der Waerden, Modern
Algebra, translated by Fred Blum (New York: Ungar, 1949), Sections 27Ű28.

From the standpoint discussed above, we could say that the gcd is “almost
alwaysŤ of degree zero, since Sylvester’s determinant is almost never zero. But
many calculations of practical interest would never be undertaken if there weren’t
some reasonable chance that the gcd would be a polynomial of positive degree.

434 ARITHMETIC 4.6.1

We can see exactly what happens during Algorithms E and C when the gcd is
not 1 by considering u(x) = w(x)u1(x) and v(x) = w(x)u2(x), where u1(x) and
u2(x) are relatively prime and w(x) is primitive. Then if the polynomials u1(x),
u2(x), u3(x), . . . are obtained when Algorithm E works on u(x) = u1(x) and
v(x) = u2(x), it is easy to see that the sequence obtained for u(x) = w(x)u1(x)
and v(x) = w(x)u2(x) is simply w(x)u1(x), w(x)u2(x), w(x)u3(x), w(x)u4(x),
etc. With Algorithm C the behavior is different: If the polynomials u1(x),
u2(x), u3(x), . . . are obtained when Algorithm C is applied to u(x) = u1(x) and
v(x) = u2(x), and if we assume that deg(uj+1) = deg(uj) − 1 (which is almost
always true when j > 1), then the sequence

w(x)u1(x), w(x)u2(x), ℓ2w(x)u3(x), ℓ4w(x)u4(x), ℓ6w(x)u5(x), . . . (28)

is obtained when Algorithm C is applied to u(x) = w(x)u1(x) and v(x) =
w(x)u2(x), where ℓ = ℓ(w). (See exercise 13.) Even though these additional
ℓ-factors are present, Algorithm C will be superior to Algorithm E, because it is
easier to deal with slightly larger polynomials than to calculate primitive parts
repeatedly.

Polynomial remainder sequences such as those in Algorithms C and E are
not useful merely for Ąnding greatest common divisors and resultants. Another
important application is to the enumeration of real roots, for a given polynomial
in a given interval, according to the famous theorem of J. Sturm [Mém. Présentés
par Divers Savants 6 (Paris, 1835), 271Ű318]. Let u(x) be a polynomial over the
real numbers, having distinct complex roots. We shall see in the next section
that the roots are distinct if and only if gcd

u(x), u′(x)

= 1, where u′(x) is the

derivative of u(x); accordingly, there is a polynomial remainder sequence proving
that u(x) is relatively prime to u′(x). We set u0(x) = u(x), u1(x) = u′(x), and
(following Sturm) we negate the sign of all remainders, obtaining

c1u0(x) = u1(x)q1(x)− d1u2(x),

c2u1(x) = u2(x)q2(x)− d2u3(x),

...

ckuk−1(x) = uk(x)qk(x)− dkuk+1(x),

(29)

for some positive constants cj and dj , where deg(uk+1) = 0. We say that the
variation V (u, a) of u(x) at a is the number of changes of sign in the sequence
u0(a), u1(a), . . . , uk+1(a), not counting zeros. For example, if the sequence of
signs is 0, +, −, −, 0, +, +, −, we have V (u, a) = 3. Sturm’s theorem asserts
that the number of roots of u(x) in the interval a < x ≤ b is V (u, a) − V (u, b);
and the proof is surprisingly short (see exercise 22).

Although Algorithms C and E are interesting, they aren’t the whole story.
Important alternative ways to calculate polynomial gcds over the integers are
discussed at the end of Section 4.6.2. There is also a general determinant-
evaluation algorithm that may be said to include Algorithm C as a special case;
see E. H. Bareiss, Math. Comp. 22 (1968), 565Ű578.

4.6.1 DIVISION OF POLYNOMIALS 435

In the fourth edition of this book I plan to redo the exposition of the
present section, taking into proper account the 19th-century research on

determinants, as well as the work of W. Habicht, Comm. Math. Helvetici 21
(1948), 99Ű116. An excellent discussion of the latter has been given by R. Loos
in Computing, Supplement 4 (1982), 115Ű137. An interesting method for evalu-
ating determinants, published in 1853 by Felice Chiò and rediscovered by C. L.
Dodgson (aka Lewis Carroll), is also highly relevant. See D. E. Knuth, Electronic
J. Combinatorics 3, 2 (1996), paper #R5, §3, for a summary of the early history
of identities between determinants of submatrices.

EXERCISES

1. [10] Compute the pseudo-quotient q(x) and pseudo-remainder r(x), namely the
polynomials satisfying (8), when u(x) = x6 + x5 − x4 + 2x3 + 3x2 − x+ 2 and v(x) =
2x3 + 2x2 − x+ 3, over the integers.

2. [15] What is the greatest common divisor of 3x6 + x5 + 4x4 + 4x3 + 3x2 + 4x+ 2
and its “reverseŤ 2x6 + 4x5 + 3x4 + 4x3 + 4x2 + x+ 3, modulo 7?

x 3. [M25] Show that Euclid’s algorithm for polynomials over a Ąeld S can be extended
to Ąnd polynomials U(x) and V (x) over S such that

u(x)V (x) + U(x)v(x) = gcd(u(x), v(x)).

(See Algorithm 4.5.2X.) What are the degrees of the polynomials U(x) and V (x) that
are computed by this extended algorithm? Prove that if S is the Ąeld of rational
numbers, and if u(x) = xm − 1 and v(x) = xn − 1, then the extended algorithm yields
polynomials U(x) and V (x) having integer coefficients. Find U(x) and V (x) when
u(x) = x21 − 1 and v(x) = x13 − 1.

x 4. [M30] Let p be prime, and suppose that Euclid’s algorithm applied to the poly-
nomials u(x) and v(x) modulo p yields a sequence of polynomials having respective
degrees m, n, n1, . . . , nt, −∞, where m = deg(u), n = deg(v), and nt ≥ 0. Assume
that m ≥ n. If u(x) and v(x) are monic polynomials, independently and uniformly
distributed over all the pm+n pairs of monic polynomials having respective degrees
m and n, what are the average values of the three quantities t, n1 + · · · + nt, and
(n− n1)n1 + · · ·+ (nt−1 − nt)nt, as functions of m,n, and p? (These three quantities
are the fundamental factors in the running time of Euclid’s algorithm applied to
polynomials modulo p, assuming that division is done by Algorithm D.) [Hint: Show
that u(x) mod v(x) is uniformly distributed and independent of v(x).]

5. [M22] What is the probability that u(x) and v(x) are relatively prime modulo p,
if u(x) and v(x) are independently and uniformly distributed monic polynomials of
degree n?

6. [M23] We have seen that Euclid’s Algorithm 4.5.2A for integers can be directly
adapted to an algorithm for the greatest common divisor of polynomials. Can the
binary gcd algorithm, Algorithm 4.5.2B, be adapted in an analogous way to an algo-
rithm that applies to polynomials?

7. [M10] What are the units in the domain of all polynomials over a unique factor-
ization domain S?

x 8. [M22] Show that if a polynomial with integer coefficients is irreducible over the
domain of integers, it is irreducible when considered as a polynomial over the Ąeld of
rational numbers.

436 ARITHMETIC 4.6.1

9. [M25] Let u(x) and v(x) be primitive polynomials over a unique factorization
domain S. Prove that u(x) and v(x) are relatively prime if and only if there are
polynomials U(x) and V (x) over S such that u(x)V (x) + U(x)v(x) is a polynomial of
degree zero. [Hint: Extend Algorithm E, as Algorithm 4.5.2A is extended in exercise 3.]

10. [M28] Prove that the polynomials over a unique factorization domain form a
unique factorization domain. [Hint: Use the result of exercise 9 to help show that
there is at most one kind of factorization possible.]

11. [M22] What row names would have appeared in Table 1 if the sequence of degrees
had been 9, 6, 5, 2, −∞ instead of 8, 6, 4, 2, 1, 0?

x 12. [M24] Let u1(x), u2(x), u3(x), . . . be a sequence of polynomials obtained during a
run of Algorithm C. “Sylvester’s matrixŤ is the square matrix formed from rows An2−1

through A0 and Bn1−1 through B0 (in a notation analogous to that of Table 1). Show
that if u1(x) and u2(x) have a common factor of positive degree, then the determinant
of Sylvester’s matrix is zero; conversely, given that deg(uk) = 0 for some k, show that
the determinant of Sylvester’s matrix is nonzero by deriving a formula for its absolute
value in terms of ℓ(uj) and deg(uj), 1 ≤ j ≤ k.

13. [M22] Show that the leading coefficient ℓ of the primitive part of gcd(u(x), v(x))
enters into Algorithm C’s polynomial sequence as shown in (28), when δ1 = δ2 = · · · =
δk−1 = 1. What is the behavior for general δj?

14. [M29] Let r(x) be the pseudo-remainder when u(x) is pseudo-divided by v(x). If
deg(u) ≥ deg(v) + 2 and deg(v) ≥ deg(r) + 2, show that r(x) is a multiple of ℓ(v).

15. [M26] Prove Hadamard’s inequality (25). [Hint: Consider the matrix AAT.]

x 16. [M22] Let f(x1, . . . , xn) be a multivariate polynomial that is not identically zero,
and let r(S1, . . . , Sn) be the set of roots (x1, . . . , xn) of f(x1, . . . , xn) = 0 such that
x1 ∈ S1, . . . , xn ∈ Sn. If the degree of f is at most dj ≤ |Sj | in the variable xj , prove
that |r(S1, . . . , Sn)| ≤ |S1| . . . |Sn| − (|S1| − d1) . . . (|Sn| − dn) .
Therefore the probability of Ąnding a root at random, |r(S1, . . . , Sn)|/|S1| . . . |Sn|,
approaches zero as the sets Sj get bigger. [This inequality has many applications
in the design of randomized algorithms, because it provides a good way to test whether
a complicated sum of products of sums is identically zero without expanding out all
the terms.]

17. [M32] (P. M. Cohn’s algorithm for division of string polynomials.) Let A be an
alphabet, that is, a set of symbols. A string α on A is a sequence of n ≥ 0 symbols,
α = a1 . . . an, where each aj is in A. The length of α, denoted by |α|, is the number n
of symbols. A string polynomial on A is a Ąnite sum U =

k rk αk, where each rk is a

nonzero rational number and each αk is a string on A; we assume that αj ̸= αk when
j ̸= k. The degree of U, deg(U), is deĄned to be −∞ if U = 0 (that is, if the sum is
empty), otherwise deg(U) = max |αk|. The sum and product of string polynomials are
deĄned in an obvious manner; thus, (

j rjαj)(

k skβk) =

j,k rjskαjβk, where the

product of two strings is obtained by simply juxtaposing them, after which we collect
like terms. For example, if A = {a, b}, U = ab+ ba− 2a− 2b, and V = a+ b− 1, then
deg(U) = 2, deg(V) = 1, V 2 = aa+ab+ba+bb−2a−2b+1, and V 2−U = aa+bb+1.
Clearly deg(UV) = deg(U) + deg(V), and deg(U + V) ≤ max(deg(U), deg(V)), with
equality in the latter formula if deg(U) ̸= deg(V). (String polynomials may be regarded
as ordinary multivariate polynomials over the Ąeld of rational numbers, except that the
variables are not commutative under multiplication. In the conventional language of

4.6.1 DIVISION OF POLYNOMIALS 437

pure mathematics, the set of string polynomials with the operations deĄned here is the
“free associative algebraŤ generated by A over the rationals.)

a) Let Q1, Q2, U, and V be string polynomials with deg(U) ≥ deg(V) and such that
deg(Q1U − Q2V) < deg(Q1U). Give an algorithm to Ąnd a string polynomial Q
such that deg(U − QV) < deg(U). (Thus if we are given U and V such that
Q1U = Q2V + R and deg(R) < deg(Q1U), for some Q1 and Q2, then there is a
solution to these conditions with Q1 = 1.)

b) Given that U and V are string polynomials with deg(V) > deg(Q1U − Q2V) for
some Q1 and Q2, show that the result of (a) can be improved to Ąnd a quotient Q
such that U = QV + R, deg(R) < deg(V). (This is the analog of (1) for string
polynomials; part (a) showed that we can make deg(R) < deg(U), under weaker
hypotheses.)

c) A homogeneous polynomial is one whose terms all have the same degree (length).
If U1, U2, V1, V2 are homogeneous string polynomials with U1V1 = U2V2 and
deg(V1) ≥ deg(V2), show that there is a homogeneous string polynomial U such
that U2 = U1U and V1 = UV2.

d) Given that U and V are homogeneous string polynomials with UV = V U, prove
that there is a homogeneous string polynomial W such that U = rWm, V = sWn

for some integers m, n and rational numbers r, s. Give an algorithm to compute
such a W having the largest possible degree. (This algorithm is of interest, for
example, when U = α and V = β are strings satisfying αβ = βα; then W is
simply a string γ. When U = xm and V = xn, the solution of largest degree is the
string W = xgcd(m,n), so this algorithm includes a gcd algorithm for integers as a
special case.)

x 18. [M24] (Euclidean algorithm for string polynomials.) Let V1 and V2 be string
polynomials, not both zero, having a common left multiple. (This means that there exist
string polynomials U1 and U2, not both zero, such that U1V1 = U2V2.) The purpose
of this exercise is to Ąnd an algorithm to compute their greatest common right divisor

gcrd(V1, V2) and their least common left multiple lclm(V1, V2). The latter quantities
are deĄned as follows: gcrd(V1, V2) is a common right divisor of V1 and V2 (that is,
V1 = W1 gcrd(V1, V2) and V2 = W2 gcrd(V1, V2) for some W1 and W2), and any common
right divisor of V1 and V2 is a right divisor of gcrd(V1, V2); lclm(V1, V2) = Z1V1 = Z2V2

for some Z1 and Z2, and any common left multiple of V1 and V2 is a left multiple of
lclm(V1, V2).

For example, let U1 = abbbab+ abbab− bbab+ ab− 1, V1 = babab+ abab+ ab− b;
U2 = abb + ab − b, V2 = babbabab + bababab + babab + abab − babb − 1. Then we
have U1V1 = U2V2 = abbbabbabab+ abbabbabab+ abbbababab+ abbababab− bbabbabab+
abbbabab− bbababab+ 2abbabab− abbbabb+ ababab− abbabb− bbabab− babab+ bbabb−
abb− ab+ b. For these string polynomials it can be shown that gcrd(V1, V2) = ab+ 1,
and lclm(V1, V2) = U1V1.

The division algorithm of exercise 17 may be restated thus: If V1 and V2 are string
polynomials, with V2 ̸= 0, and if U1 ̸= 0 and U2 satisfy the equation U1V1 = U2V2,
then there exist string polynomials Q and R such that

V1 = QV2 +R, where deg(R) < deg(V2).

It follows readily that Q and R are uniquely determined; they do not depend on the
given U1 and U2. Furthermore the result is right-left symmetric, in the sense that

U2 = U1Q+R′, where deg(R′) = deg(U1)− deg(V2) + deg(R) < deg(U1).

438 ARITHMETIC 4.6.1

Show that this division algorithm can be extended to an algorithm that computes
lclm(V1, V2) and gcrd(V1, V2); in fact, the extended algorithm Ąnds string polynomials
Z1 and Z2 such that Z1V1 +Z2V2 = gcrd(V1, V2). [Hint: Use auxiliary variables u1, u2,
v1, v2, w1, w2, w′

1, w′
2, z1, z2, z′1, z′2, whose values are string polynomials; start by

setting u1 ← U1, u2 ← U2, v1 ← V1, v2 ← V2, and throughout the algorithm maintain
the conditions

U1w1 + U2w2 = u1,

U1w
′
1 + U2w

′
2 = u2,

u1z1 − u2z
′
1 = (−1)nU1,

−u1z2 + u2z
′
2 = (−1)nU2,

z1V1 + z2V2 = v1,

z′1V1 + z′2V2 = v2,

w1v1 − w′
1v2 = (−1)nV1,

−w2v1 + w′
2v2 = (−1)nV2

at the nth iteration. This might be regarded as the “ultimateŤ extension of Euclid’s
algorithm.]

19. [M39] (Common divisors of square matrices.) Exercise 18 shows that the concept
of greatest common right divisor can be meaningful when multiplication is not commu-
tative. Prove that any two n×n matrices A and B of integers have a greatest common
right matrix divisor D. [Suggestion: Design an algorithm whose inputs are A and B,
and whose outputs are integer matrices D, P , Q, X, Y , where A = PD, B = QD, and
D = XA+YB.] Find a greatest common right divisor of the matrices (1

3
2
4
) and (4

2
3
1
).

20. [M40] Investigate approximate polynomial gcds and the accuracy of Euclid’s al-
gorithm: What can be said about calculation of the greatest common divisor of poly-
nomials whose coefficients are Ćoating point numbers?

21. [M25] Prove that the computation time required by Algorithm C to compute the
gcd of two nth degree polynomials over the integers is O(n4(logNn)2), if the coefficients
of the given polynomials are bounded by N in absolute value.

22. [M23] Prove Sturm’s theorem. [Hint: Some sign sequences are impossible.]

23. [M22] Prove that if u(x) in (29) has deg(u) real roots, then we have deg(uj+1) =
deg(uj)− 1 for 0 ≤ j ≤ k.

24. [M21] Show that (19) simpliĄes to (20) and (23) simpliĄes to (24).

25. [M24] (W. S. Brown.) Prove that all the polynomials uj(x) in (16) for j ≥ 3 are
multiples of gcd(ℓ(u), ℓ(v)), and explain how to improve Algorithm C accordingly.

x 26. [M26] The purpose of this exercise is to give an analog for polynomials of the fact
that continued fractions with positive integer entries give the best approximations to
real numbers (exercise 4.5.3Ű42).

Let u(x) and v(x) be polynomials over a Ąeld, with deg(u) > deg(v), and let
a1(x), a2(x), . . . be the quotient polynomials when Euclid’s algorithm is applied to
u(x) and v(x). For example, the sequence of quotients in (5) and (6) is 9x2 +7, 5x2 +5,
6x3 + 5x2 + 6x+ 5, 9x+ 12. We wish to show that the convergents pn(x)/qn(x) of the
continued fraction //a1(x), a2(x), . . . // are the “best approximationsŤ of low degree to
the rational function v(x)/u(x), where we have pn(x) = Kn−1(a2(x), . . . , an(x)) and
qn(x) = Kn(a1(x), . . . , an(x)) in terms of the continuant polynomials of Eq. 4.5.3Ű(4).
By convention, we let p0(x) = q−1(x) = 0, p−1(x) = q0(x) = 1.

Prove that if p(x) and q(x) are polynomials such that deg(q) < deg(qn) and
deg(pu − qv) ≤ deg(pn−1u − qn−1v), for some n ≥ 1, then p(x) = cpn−1(x) and
q(x) = cqn−1(x) for some constant c. In particular, each qn(x) is a “record-breakingŤ
polynomial in the sense that no nonzero polynomial q(x) of smaller degree can make

4.6.2 FACTORIZATION OF POLYNOMIALS 439

the quantity p(x)u(x) − q(x)v(x), for any polynomial p(x), achieve a degree as small
as pn(x)u(x)− qn(x)v(x).

27. [M23] Suggest a way to speed up the division of u(x) by v(x) when we know in
advance that the remainder will be zero.

*4.6.2. Factorization of Polynomials

Let us now consider the problem of factoring polynomials, not merely Ąnding
the greatest common divisor of two or more of them.

Factoring modulo p. As in the case of integer numbers (Sections 4.5.2, 4.5.4),
the problem of factoring seems to be more difficult than Ąnding the greatest
common divisor. But factorization of polynomials modulo a prime integer p is
not as hard to do as we might expect. It is much easier to Ąnd the factors of an
arbitrary polynomial of degree n, modulo 2, than to use any known method to
Ąnd the factors of an arbitrary n-bit binary number. This surprising situation
is a consequence of an instructive factorization algorithm discovered in 1967 by
Elwyn R. Berlekamp [Bell System Technical J. 46 (1967), 1853Ű1859].

Let p be a prime number; all arithmetic on polynomials in the following
discussion will be done modulo p. Suppose that someone has given us a polyno-
mial u(x), whose coefficients are chosen from the set {0, 1, . . . , p − 1}; we may
assume that u(x) is monic. Our goal is to express u(x) in the form

u(x) = p1(x)e1 . . . pr(x)er , (1)

where p1(x), . . . , pr(x) are distinct, monic, irreducible polynomials.
As a Ąrst step, we can use a standard technique to determine whether any

of the exponents e1, . . . , er are greater than unity. If

u(x) = unx
n + · · ·+ u0 = v(x)2w(x), (2)

then the derivative (formed in the usual way, but modulo p) is

u′(x) = nunx
n−1 + · · ·+ u1 = 2v(x)v′(x)w(x) + v(x)2w′(x), (3)

and this is a multiple of the squared factor v(x). Therefore our Ąrst step in
factoring u(x) is to form

gcd

u(x), u′(x)

= d(x). (4)

If d(x) is equal to 1, we know that u(x) is squarefree, the product of distinct
primes p1(x) . . . pr(x). If d(x) is not equal to 1 and d(x) ̸= u(x), then d(x) is a
proper factor of u(x); the relation between the factors of d(x) and the factors of
u(x)/d(x) speeds up the factorization process nicely in this case (see exercises 34
and 36). Finally, if d(x) = u(x), we must have u′(x) = 0; hence the coefficient uk
of xk is nonzero only when k is a multiple of p. This means that u(x) can be
written as a polynomial of the form v(xp), and in such a case we have

u(x) = v(xp) =

v(x)

p
; (5)

the factorization process can be completed by Ąnding the irreducible factors
of v(x) and raising them to the pth power.

440 ARITHMETIC 4.6.2

Identity (5) may appear somewhat strange to the reader; it is an important
fact that is basic to Berlekamp’s algorithm and to several other methods we
shall discuss. We can prove it as follows: If v1(x) and v2(x) are any polynomials
modulo p, then

v1(x)+v2(x)

p
= v1(x)p +

p
1

v1(x)p−1v2(x)+ · · ·+

p

p−1

v1(x)v2(x)p−1 +v2(x)p

= v1(x)p +v2(x)p,

since the binomial coefficients

p
1

, . . . ,

p

p−1

are all multiples of p. Furthermore

if a is any integer, we have ap ≡ a (modulo p) by Fermat’s theorem. Therefore
when v(x) = vmx

m + vm−1x
m−1 + · · ·+ v0, we Ąnd that

v(x)p = (vmxm)p + (vm−1x
m−1)p + · · ·+ (v0)p

= vmx
mp + vm−1x

(m−1)p + · · ·+ v0 = v(xp).

The remarks above show that the problem of factoring a polynomial reduces
to the problem of factoring a squarefree polynomial. Let us therefore assume that

u(x) = p1(x)p2(x) . . . pr(x) (6)

is the product of distinct primes. How can we be clever enough to discover the
pj(x)’s when only u(x) is given? Berlekamp’s idea is to make use of the Chinese
remainder theorem, which is valid for polynomials just as it is valid for integers
(see exercise 3). If (s1, s2, . . . , sr) is any r-tuple of integers mod p, the Chinese
remainder theorem implies that there is a unique polynomial v(x) such that

v(x) ≡ s1

modulo p1(x)

, . . . , v(x) ≡ sr

modulo pr(x)

,

deg(v) < deg(p1) + deg(p2) + · · ·+ deg(pr) = deg(u).
(7)

The notation “g(x) ≡ h(x)

modulo f(x)

Ť that appears here has the same

meaning as “g(x) ≡ h(x)

modulo f(x) and p

Ť in exercise 3.2.2Ű11, since we

are considering polynomial arithmetic modulo p. The polynomial v(x) in (7)
gives us a way to get at the factors of u(x), for if r ≥ 2 and s1 ̸= s2, we will have
gcd

u(x), v(x)− s1

divisible by p1(x) but not by p2(x).

Since this observation shows that we can get information about the factors
of u(x) from appropriate solutions v(x) of (7), let us analyze (7) more closely.
In the Ąrst place we can observe that the polynomial v(x) satisĄes the condition
v(x)p ≡ spj = sj ≡ v(x)

modulo pj(x)

for 1 ≤ j ≤ r; therefore

v(x)p ≡ v(x)

modulo u(x)

, deg(v) < deg(u). (8)

In the second place we have the basic polynomial identity

xp − x ≡ (x− 0)(x− 1) . . .

x− (p− 1)

(modulo p) (9)

(see exercise 6); hence

v(x)p − v(x) =

v(x)− 0

v(x)− 1

. . .

v(x)− (p− 1)

(10)

is an identity for any polynomial v(x), when we are working modulo p. If v(x)
satisĄes (8), it follows that u(x) divides the left-hand side of (10), so every

4.6.2 FACTORIZATION OF POLYNOMIALS 441

irreducible factor of u(x) must divide one of the p relatively prime factors of the
right-hand side of (10). In other words, all solutions of (8) must have the form
of (7), for some s1, s2, . . . , sr; there are exactly pr solutions of (8).

The solutions v(x) to congruence (8) therefore provide a key to the factor-
ization of u(x). It may seem harder to Ąnd all solutions to (8) than to factor
u(x) in the Ąrst place, but in fact this is not true, since the set of solutions to
(8) is closed under addition. Let deg(u) = n; we can construct the n× n matrix

Q =

q0,0 q0,1 . . . q0,n−1

...
...

...
qn−1,0 qn−1,1 . . . qn−1,n−1

 (11)

where
xpk ≡ qk,n−1x

n−1 + · · ·+ qk,1x+ qk,0

modulo u(x)

. (12)

Then v(x) = vn−1x
n−1 + · · ·+ v1x+ v0 is a solution to (8) if and only if

(v0, v1, . . . , vn−1)Q = (v0, v1, . . . , vn−1); (13)

for the latter equation holds if and only if

v(x) =

j

vjx
j =

j

k

vkqk,jx
j ≡

k

vkx
pk = v(xp) ≡ v(x)p

modulo u(x)

.

Berlekamp’s factoring algorithm therefore proceeds as follows:

B1. [Remove duplicate factors.] Ensure that u(x) is squarefree; in other words, if
gcd

u(x), u′(x)

̸= 1, reduce the problem of factoring u(x), as stated earlier

in this section.

B2. [Get Q.] Form the matrix Q deĄned by (11) and (12). This can be done in
different ways, depending on the size of p, as explained below.

B3. [Find null space.] “TriangularizeŤ the matrix Q − I, where I = (δij) is the
n×n identity matrix, Ąnding its rank n−r and Ąnding linearly independent
vectors v[1], . . . , v[r] such that v[j](Q−I) = (0, 0, . . . , 0) for 1 ≤ j ≤ r.

The

Ąrst vector v[1] may always be taken as (1, 0, . . . , 0), representing the trivial
solution v[1](x) = 1 to (8). The computation can be done using appropriate
column operations, as explained in Algorithm N below.

At this point, r is

the number of irreducible factors of u(x), because the solutions to (8) are
the pr polynomials corresponding to the vectors t1v[1] + · · · + trv

[r] for all
choices of integers 0 ≤ t1, . . . , tr < p. Therefore if r = 1 we know that u(x)
is irreducible, and the procedure terminates.

B4. [Split.] Calculate gcd

u(x), v[2](x) − s

for 0 ≤ s < p, where v[2](x) is

the polynomial represented by vector v[2]. The result will be a nontrivial
factorization of u(x), because v[2](x)− s is nonzero and has degree less than
deg(u), and by exercise 7 we have

u(x) =

0≤s<p

gcd

v(x)− s, u(x)

(14)

whenever v(x) satisĄes (8).

442 ARITHMETIC 4.6.2

If the use of v[2](x) does not succeed in splitting u(x) into r factors,
further factors can be obtained by calculating gcd

v[k](x) − s, w(x)

for

0 ≤ s < p and all factors w(x) found so far, for k = 3, 4, . . . , until r factors
are obtained.

If we choose si ̸= sj in (7), we obtain a solution v(x) to (8)

that distinguishes pi(x) from pj(x); some v[k](x)− s will be divisible by
pi(x) and not by pj(x), so this procedure will eventually Ąnd all of the
factors.

If p is 2 or 3, the calculations of this step are quite efficient; but if p is
more than 25, say, there is a much better way to proceed, as we shall see
later.

Historical notes: M. C. R. Butler [Quart. J. Math. 5 (1954), 102Ű107] observed
that the matrix Q−I corresponding to a squarefree polynomial with r irreducible
factors will have rank n− r, modulo p. Indeed, this fact was implicit in a more
general result of K. Petr [Časopis pro Pěstování Matematiky a Fysiky 66 (1937),
85Ű94], who determined the characteristic polynomial of Q. See also Š. Schwarz,
Quart. J. Math. 7 (1956), 110Ű124.

As an example of Algorithm B, let us now determine the factorization of

u(x) = x8 + x6 + 10x4 + 10x3 + 8x2 + 2x+ 8 (15)

modulo 13. (This polynomial appears in several of the examples in Section 4.6.1.)
A quick calculation using Algorithm 4.6.1E shows that gcd

u(x), u′(x)

= 1;

therefore u(x) is squarefree, and we turn to step B2. Step B2 involves calculating
the Q matrix, which in this case is an 8× 8 array. The Ąrst row of Q is always
(1, 0, 0, . . . , 0), representing the polynomial x0 mod u(x) = 1. The second row
represents x13 mod u(x), and, in general, xk mod u(x) may readily be determined
as follows (for relatively small values of k): If

u(x) = xn + un−1x
n−1 + · · ·+ u1x+ u0

and if
xk ≡ ak,n−1x

n−1 + · · ·+ ak,1x+ ak,0

modulo u(x)

,

then

xk+1 ≡ ak,n−1x
n + · · ·+ ak,1x

2 + ak,0x

≡ ak,n−1(−un−1x
n−1 − · · · − u1x− u0) + ak,n−2x

n−1 + · · ·+ ak,0x

= ak+1,n−1x
n−1 + · · ·+ ak+1,1x+ ak+1,0,

where
ak+1,j = ak,j−1 − ak,n−1uj . (16)

In this formula ak,−1 is treated as zero, so that ak+1,0 = −ak,n−1u0. The simple
“shift registerŤ recurrence (16) makes it easy to calculate xk mod u(x) for k = 1,
2, 3, . . . , (n−1)p. Inside a computer, this calculation is of course generally done
by maintaining a one-dimensional array (an−1, . . . , a1, a0) and repeatedly setting

t← an−1, an−1 ← (an−2 − tun−1) mod p, . . . , a1 ← (a0 − tu1) mod p,

4.6.2 FACTORIZATION OF POLYNOMIALS 443

and a0 ← (−tu0) mod p.

We have seen similar procedures in connection with

random number generation, 3.2.2Ű(10).

For the example polynomial u(x)
in (15), we obtain the following sequence of coefficients of xk mod u(x), using
arithmetic modulo 13:

k ak,7 ak,6 ak,5 ak,4 ak,3 ak,2 ak,1 ak,0

0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1 0
2 0 0 0 0 0 1 0 0
3 0 0 0 0 1 0 0 0
4 0 0 0 1 0 0 0 0
5 0 0 1 0 0 0 0 0
6 0 1 0 0 0 0 0 0
7 1 0 0 0 0 0 0 0
8 0 12 0 3 3 5 11 5
9 12 0 3 3 5 11 5 0

10 0 4 3 2 8 0 2 8
11 4 3 2 8 0 2 8 0
12 3 11 8 12 1 2 5 7
13 11 5 12 10 11 7 1 2

Therefore the second row of Q is (2, 1, 7, 11, 10, 12, 5, 11). Similarly we may
determine x26 mod u(x), . . . , x91 mod u(x), and we Ąnd that

Q =

1 0 0 0 0 0 0 0
2 1 7 11 10 12 5 11
3 6 4 3 0 4 7 2
4 3 6 5 1 6 2 3
2 11 8 8 3 1 3 11
6 11 8 6 2 7 10 9
5 11 7 10 0 11 7 12
3 3 12 5 0 11 9 12

,

Q− I =

0 0 0 0 0 0 0 0
2 0 7 11 10 12 5 11
3 6 3 3 0 4 7 2
4 3 6 4 1 6 2 3
2 11 8 8 2 1 3 11
6 11 8 6 2 6 10 9
5 11 7 10 0 11 6 12
3 3 12 5 0 11 9 11

.

(17)

That Ąnishes step B2; the next step of Berlekamp’s procedure requires
Ąnding the “null spaceŤ of Q − I. In general, suppose that A is an n × n
matrix over a Ąeld, whose rank n− r is to be determined; suppose further that
we wish to determine linearly independent vectors v[1], v[2], . . . , v[r] such that
v[1]A = v[2]A = · · · = v[r]A = (0, . . . , 0). An algorithm for this calculation
can be based on the observation that any column of A may be multiplied by
a nonzero quantity, and any multiple of one of its columns may be added to a
different column, without changing the rank or the vectors v[1], . . . , v[r]. (These

444 ARITHMETIC 4.6.2

transformations amount to replacing A by AB, where B is a nonsingular matrix.)
The following well-known “triangularizationŤ procedure may therefore be used.

Algorithm N (Null space algorithm). Let A be an n × n matrix, whose
elements aij belong to a Ąeld and have subscripts in the range 0 ≤ i, j < n.
This algorithm outputs r vectors v[1], . . . , v[r], which are linearly independent
over the Ąeld and satisfy v[j]A = (0, . . . , 0), where n− r is the rank of A.

N1. [Initialize.] Set c0 ← c1 ← · · · ← cn−1 ← −1, r ← 0. (During the
calculation we will have cj ≥ 0 only if acjj = −1 and all other entries
of row cj are zero.)

N2. [Loop on k.] Do step N3 for k = 0, 1, . . . , n − 1, then terminate the
algorithm.

N3. [Scan row for dependence.] If there is some j in the range 0 ≤ j < n such
that akj ̸= 0 and cj < 0, then do the following: Multiply column j of A by
−1/akj (so that akj becomes equal to −1); then add aki times column j to
column i for all i ̸= j; Ąnally set cj ← k. (Since it is not difficult to show
that asj = 0 for all s < k, these operations have no effect on rows 0, 1, . . . ,
k − 1 of A.)

On the other hand, if there is no j in the range 0 ≤ j < n such that
akj ̸= 0 and cj < 0, then set r ← r + 1 and output the vector

v[r] = (v0, v1, . . . , vn−1)

deĄned by the rule

vj =

aks, if cs = j ≥ 0;
1, if j = k;
0, otherwise.

(18)

An example will reveal the mechanism of this algorithm. Let A be the matrix
Q − I of (17) over the Ąeld of integers modulo 13. When k = 0, we output the
vector v[1] = (1, 0, 0, 0, 0, 0, 0, 0). When k = 1, we may take j in step N3 to be
either 0, 2, 3, 4, 5, 6, or 7; the choice here is completely arbitrary, although
it affects the particular vectors that are chosen to be output by the algorithm.
For hand calculation, it is most convenient to pick j = 5, since a15 = 12 = −1
already; the column operations of step N3 then change A to the matrix

0 0 0 0 0 0 0 0
0 0 0 0 0

✞ ☎
12✝ ✆ 0 0

11 6 5 8 1 4 1 7
3 3 9 5 9 6 6 4
4 11 2 6 12 1 8 9
5 11 11 7 10 6 1 10
1 11 6 1 6 11 9 3

12 3 11 9 6 11 12 2

.

(The circled element in column “5Ť, row “1Ť, is used here to indicate that
c5 = 1. Remember that Algorithm N numbers the rows and columns of the
matrix starting with 0, not 1.) When k = 2, we may choose j = 4 and proceed

4.6.2 FACTORIZATION OF POLYNOMIALS 445

in a similar way, obtaining the following matrices, which all have the same null
space as Q− I:

k = 2

0 0 0 0 0 0 0 0
0 0 0 0 0

✞ ☎
12✝ ✆ 0 0

0 0 0 0
✞ ☎
12✝ ✆ 0 0 0

8 1 3 11 4 9 10 6
2 4 7 1 1 5 9 3

12 3 0 5 3 5 4 5
0 1 2 5 7 0 3 0

11 6 7 0 7 0 6 12

k = 3

0 0 0 0 0 0 0 0
0 0 0 0 0

✞ ☎
12✝ ✆ 0 0

0 0 0 0
✞ ☎
12✝ ✆ 0 0 0

0
✞ ☎
12✝ ✆ 0 0 0 0 0 0

9 9 8 9 11 8 8 5
1 10 4 11 4 4 0 0
5 12 12 7 3 4 6 7
2 7 2 12 9 11 11 2

k = 4

0 0 0 0 0 0 0 0
0 0 0 0 0

✞ ☎
12✝ ✆ 0 0

0 0 0 0
✞ ☎
12✝ ✆ 0 0 0

0
✞ ☎
12✝ ✆ 0 0 0 0 0 0

0 0 0 0 0 0 0
✞ ☎
12✝ ✆

1 10 4 11 4 4 0 0
8 2 6 10 11 11 0 9
1 6 4 11 2 0 0 10

k = 5

0 0 0 0 0 0 0 0
0 0 0 0 0

✞ ☎
12✝ ✆ 0 0

0 0 0 0
✞ ☎
12✝ ✆ 0 0 0

0
✞ ☎
12✝ ✆ 0 0 0 0 0 0

0 0 0 0 0 0 0
✞ ☎
12✝ ✆✞ ☎

12✝ ✆ 0 0 0 0 0 0 0
5 0 0 0 5 5 0 9

12 9 0 0 11 9 0 10

Now every column that has no circled entry is completely zero; so when k = 6
and k = 7 the algorithm outputs two more vectors, namely

v[2] = (0, 5, 5, 0, 9, 5, 1, 0), v[3] = (0, 9, 11, 9, 10, 12, 0, 1).

From the form of matrix A after k = 5, it is evident that these vectors satisfy
the equation vA = (0, . . . , 0). Since the computation has produced three linearly
independent vectors, u(x) must have exactly three irreducible factors.

Finally we can go to step B4 of the factoring procedure. The calculation of
gcd

u(x), v[2](x)− s

for 0 ≤ s < 13, where v[2](x) = x6 + 5x5 + 9x4 + 5x2 + 5x,

gives x5 + 5x4 + 9x3 + 5x+ 5 as the answer when s = 0, and x3 + 8x2 + 4x+ 12
when s = 2; the gcd is unity for other values of s. Therefore v[2](x) gives us only
two of the three factors. Turning to gcd

v[3](x) − s, x5 + 5x4 + 9x3 + 5x + 5

,

where v[3](x) = x7+12x5+10x4+9x3+11x2+9x, we obtain the factor x4+2x3+
3x2 + 4x + 6 when s = 6, x + 3 when s = 8, and unity otherwise. Thus the
complete factorization is

u(x) = (x4 + 2x3 + 3x2 + 4x+ 6)(x3 + 8x2 + 4x+ 12)(x+ 3). (19)

Let us now estimate the running time of Berlekamp’s method when an nth
degree polynomial is factored modulo p. First assume that p is relatively small,
so that the four arithmetic operations can be done modulo p in essentially a Ąxed
length of time. (Division modulo p can be converted to multiplication, by storing
a table of reciprocals as suggested in exercise 9; for example, when working
modulo 13, we have 1

2 = 7, 1
3 = 9, etc.) The computation in step B1 takes O(n2)

446 ARITHMETIC 4.6.2

units of time; step B2 takes O(pn2). For step B3 we use Algorithm N, which
requires O(n3) units of time at most. Finally, in step B4 we can observe that
the calculation of gcd

f(x), g(x)

by Euclid’s algorithm takes O

deg(f) deg(g)

units of time; hence the calculation of gcd

v[j](x) − s, w(x)

for Ąxed j and s

and for all factors w(x) of u(x) found so far takes O(n2) units. Step B4 therefore
requires O(prn2) units of time at most. Berlekamp’s procedure factors an
arbitrary polynomial of degree n, modulo p, in O(n3 + prn2) steps, when p
is a small prime; and exercise 5 shows that the average number of factors, r, is
approximately lnn. Thus the algorithm is much faster than any known methods
of factoring n-digit numbers in the p-ary number system.

Of course, when n and p are small, a trial-and-error factorization procedure
analogous to Algorithm 4.5.4A will be even faster than Berlekamp’s method.
Exercise 1 implies that it is a good idea to cast out factors of small degree Ąrst
when p is small, before going to any more complicated procedure, even when n
is large.

When p is large, a different implementation of Berlekamp’s procedure would
be used for the calculations. Division modulo p would not be done with an
auxiliary table of reciprocals; instead the method of exercise 4.5.2Ű16, which
takes O

(log p)2

steps, would probably be used. Then step B1 would take

O

n2(log p)2

units of time; similarly, step B3 would take O

n3(log p)2

. In step

B2, we can form xp mod u(x) in a more efficient way than (16) when p is large:
Section 4.6.3 shows that this value can be obtained by essentially using O(log p)
operations of squaring mod u(x), going from xk mod u(x) to x2k mod u(x), to-
gether with the operation of multiplying by x. The squaring operation is rel-
atively easy to perform if we Ąrst make an auxiliary table of xm mod u(x) for
m = n, n+ 1, . . . , 2n− 2; if xk mod u(x) = cn−1x

n−1 + · · ·+ c1x+ c0, then

x2k mod u(x) =

c2
n−1x

2n−2 + · · ·+ (c1c0 + c1c0)x+ c2
0

mod u(x),

where x2n−2, . . . , xn can be replaced by polynomials in the auxiliary table. The
total time to compute xp mod u(x) comes to O

n2(log p)3

units, and we obtain

the second row of Q. To get further rows of Q, we can compute x2p mod u(x),
x3p mod u(x), . . . , simply by multiplying repeatedly by xp mod u(x), in a fashion
analogous to squaring mod u(x); step B2 is completed inO

n3(log p)2

additional

units of time. Thus steps B1, B2, and B3 take a total of O

n2(log p)3+n3(log p)2

time units; these three steps tell us the number of factors of u(x).
But when p is large and we get to step B4, we are asked to calculate a greatest

common divisor for p different values of s, and that is out of the question if p is
even moderately large. This hurdle was Ąrst surmounted by Hans Zassenhaus
[J. Number Theory 1 (1969), 291Ű311], who showed how to determine all of the
“usefulŤ values of s (see exercise 14); but an even better way to proceed was
found by Zassenhaus and Cantor in 1980. If v(x) is any solution to (8), we know
that u(x) divides v(x)p− v(x) = v(x) ·

v(x)(p−1)/2 + 1

·

v(x)(p−1)/2− 1

. This

suggests that we calculate

gcd

u(x), v(x)(p−1)/2 − 1

; (20)

4.6.2 FACTORIZATION OF POLYNOMIALS 447

with a little bit of luck, (20) will be a nontrivial factor of u(x). In fact, we can
determine exactly how much luck is involved, by considering (7). Let v(x) ≡ sj
(modulo pj(x)) for 1 ≤ j ≤ r; then pj(x) divides v(x)(p−1)/2 − 1 if and only if
s

(p−1)/2
j ≡ 1 (modulo p). We know that exactly (p− 1)/2 of the integers s in the

range 0 ≤ s < p satisfy s(p−1)/2 ≡ 1 (modulo p), hence about half of the pj(x)
will appear in the gcd (20). More precisely, if v(x) is a random solution of (8),
where all pr solutions are equally likely, the probability that the gcd (20) equals
u(x) is exactly

(p− 1)/2p

r
,

and the probability that it equals 1 is

(p + 1)/2p

r
. The probability that a

nontrivial factor will be obtained is therefore

1−

p− 1

2p

r

−

p+ 1

2p

r

= 1− 1
2r−1

1 +

r

2

p−2 +

r

4

p−4 + · · ·

≥ 4
9
,

for all r ≥ 2 and p ≥ 3.
It is therefore a good idea to replace step B4 by the following procedure,

unless p is quite small: Set v(x)← a1v
[1](x) + a2v

[2](x) + · · ·+ arv
[r](x), where

the coefficients aj are randomly chosen in the range 0 ≤ aj < p. Let the current
partial factorization of u(x) be u1(x) . . . ut(x) where t is initially 1. Compute

gi(x) = gcd

ui(x), v(x)(p−1)/2 − 1

for all i such that deg(ui) > 1; replace ui(x) by gi(x) ·

ui(x)/gi(x)

and increase

the value of t, whenever a nontrivial gcd is found. Repeat this process for
different choices of v(x) until t = r.

If we assume (as we may) that only O(log r) random solutions v(x) to (8)
will be needed, we can give an upper bound on the time required to perform
this alternative to step B4. It takes O

rn(log p)2

steps to compute v(x); and if

deg(ui) = d, it takes O

d2(log p)3

steps to compute v(x)(p−1)/2 mod ui(x) and

O

d2(log p)2

further steps to compute gcd

ui(x), v(x)(p−1)/2 − 1

. Thus the

total time is O(n2(log p)3 log r

.

Distinct-degree factorization. We shall now turn to a somewhat simpler way
to Ąnd factors modulo p. The ideas we have studied so far in this section involve
many instructive insights into computational algebra, so the author does not
apologize to the reader for presenting them; but it turns out that the problem
of factorization modulo p can actually be solved without relying on so many
concepts.

In the Ąrst place we can make use of the fact that an irreducible polynomial
q(x) of degree d is a divisor of xpd− x, and it is not a divisor of xpc− x for
1 ≤ c < d; see exercise 16. We can therefore cast out the irreducible factors of
each degree separately, by adopting the following strategy.

D1. [Go squarefree.] Rule out squared factors, as in Berlekamp’s method. Also
set v(x)← u(x), w(x)← “xŤ, and d← 0. (Here v(x) and w(x) are variables
that have polynomials as values.)

448 ARITHMETIC 4.6.2

D2. [If not done, take pth power.] (At this point w(x) = xp
d

mod v(x); all of
the irreducible factors of v(x) are distinct and have degree > d.) If d+ 1 >
1
2 deg(v), the procedure terminates since we either have v(x) = 1 or v(x) is
irreducible. Otherwise increase d by 1 and replace w(x) by w(x)p mod v(x).

D3. [Extract factors.] Find gd(x) = gcd

w(x) − x, v(x)

.

This is the product

of all the irreducible factors of u(x) whose degree is d.

If gd(x) ̸= 1, replace
v(x) by v(x)/gd(x) and w(x) by w(x) mod v(x); and if the degree of gd(x)
is greater than d, use the algorithm below to Ąnd its factors. Return to
step D2.

This procedure determines the product of all irreducible factors of each
degree d, and therefore it tells us how many factors there are of each degree.
Since the three factors of our example polynomial (19) have different degrees,
they would all be discovered without any need to factorize the polynomials gd(x).

To complete the method, we need a way to split the polynomial gd(x) into
its irreducible factors when deg(gd) > d. Michael Rabin pointed out in 1976
that this can be done by doing arithmetic in the Ąeld of pd elements. David G.
Cantor and Hans Zassenhaus discovered in 1979 that there is an even simpler
way to proceed, based on the following identity: If p is any odd prime, we have

gd(x) = gcd

gd(x), t(x)

gcd

gd(x), t(x)(pd−1)/2 +1

gcd

gd(x), t(x)(pd−1)/2−1

(21)
for all polynomials t(x), since t(x)p

d− t(x) is a multiple of all irreducible poly-
nomials of degree d. (We may regard t(x) as an element of the Ąeld of size pd,
when that Ąeld consists of all polynomials modulo an irreducible f(x) as in
exercise 16.) Now exercise 29 shows that gcd

gd(x), t(x)(pd−1)/2 − 1

will be a

nontrivial factor of gd(x) about 50 percent of the time, when t(x) is a random
polynomial of degree ≤ 2d − 1; hence we will not need many random trials
to discover all of the factors. We may assume without loss of generality that
t(x) is monic, since integer multiples of t(x) make no difference except possibly
to change t(x)(pd−1)/2 into its negative. Thus in the case d = 1, we can take
t(x) = x+ s, where s is chosen at random.

Sometimes this procedure will in fact succeed for d > 1 when only linear
polynomials t(x) are used. For example, there are eight irreducible polynomials
f(x) of degree 3, modulo 3, and they will all be distinguished by calculating
gcd

f(x), (x+ s)13 − 1

for 0 ≤ s < 3:

f(x) s = 0 s = 1 s = 2

x3 + 2x+ 1 1 1 1
x3 + 2x+ 2 f(x) f(x) f(x)
x3 + x2 + 2 f(x) f(x) 1
x3 + x2 + x+ 2 f(x) 1 f(x)
x3 + x2 + 2x+ 1 1 f(x) f(x)
x3 + 2x2 + 1 1 f(x) 1
x3 + 2x2 + x+ 1 1 1 f(x)
x3 + 2x2 + 2x+ 2 f(x) 1 1

4.6.2 FACTORIZATION OF POLYNOMIALS 449

Exercise 31 contains a partial explanation of why linear polynomials can be effec-
tive. But when there are more than 2p irreducible polynomials of degree d, some
irreducibles must exist that cannot be distinguished by linear choices of t(x).

An alternative to (21) that works when p = 2 is discussed in exercise 30.
Faster algorithms for distinct-degree factorization when p is very large have been
found by J. von zur Gathen, V. Shoup, and E. Kaltofen; the running time is
O(n2+ϵ + n1+ϵ log p) arithmetic operations modulo p for numbers of practical
size, and O(n(5+ω+ϵ)/4 log p) such operations as n→∞, when ω is the exponent
of “fastŤ matrix multiplication in exercise 4.6.4Ű66. [See Computational Com-
plexity 2 (1992), 187Ű224; J. Symbolic Comp. 20 (1995), 363Ű397; Math. Comp.
67 (1998), 1179Ű1197.]

Historical notes: The idea of Ąnding all the linear factors of a squarefree
polynomial f(x) modulo p by Ąrst calculating g(x) = gcd

xp−1 − 1, f(x)

and

then calculating gcd

g(x), (x + s)(p−1)/2 ± 1

for arbitrary s is due to A. M.

Legendre, Mémoires Acad. Sci. (Paris, 1785), 484Ű490; his motive was to Ąnd
all of the integer solutions to Diophantine equations of the form f(x) = py,
that is, f(x) ≡ 0 (modulo p). The more general degree-separation technique
embodied in Algorithm D was discovered by C. F. Gauss before 1800, but not
published [see his Werke 2 (1876), 237], and then by Évariste Galois in the
now-classic paper that launched the theory of Ąnite Ąelds [Bulletin des Sciences
Mathématiques, Physiques et Chimiques 13 (1830), 428Ű435; reprinted in J. de
Math. Pures et Appliquées 11 (1846), 398Ű407]. However, this work of Gauss
and Galois was ahead of its time, and not well understood until J. A. Serret gave
a detailed exposition somewhat later [Mémoires Acad. Sci., series 2, 35 (Paris,
1866), 617Ű688; Algorithm D is in §7]. Special procedures for splitting gd(x) into
irreducible factors were devised subsequently by various authors, but methods
of full generality that would work efficiently for large p were apparently not
discovered until the advent of computers made them desirable. The Ąrst such
randomized algorithm with a rigorously analyzed running time was published by
E. Berlekamp [Math. Comp. 24 (1970), 713Ű735]; it was reĄned and simpliĄed
by Robert T. Moenck [Math. Comp. 31 (1977), 235Ű250], M. O. Rabin [SICOMP
9 (1980), 273Ű280], D. G. Cantor and H. J. Zassenhaus [Math. Comp. 36 (1981),
587Ű592]. Paul Camion independently found a generalization to special classes
of multivariate polynomials [Comptes Rendus Acad. Sci. A291 (Paris, 1980),
479Ű482; IEEE Trans. IT-29 (1983), 378Ű385].

The average number of operations needed to factor a random polynomial
mod p has been analyzed by P. Flajolet, X. Gourdon, and D. Panario, Lecture
Notes in Comp. Sci. 1099 (1996), 232Ű243.

Factoring over the integers. It is somewhat more difficult to Ąnd the complete
factorization of polynomials with integer coefficients when we are not working
modulo p, but some reasonably efficient methods are available for this purpose.

Isaac Newton gave a method for Ąnding linear and quadratic factors of
polynomials with integer coefficients in his Arithmetica Universalis (1707). His
method was extended by N. Bernoulli in 1708 and, more explicitly, by an as-

450 ARITHMETIC 4.6.2

tronomer named Friedrich von Schubert in 1793, who showed how to Ąnd all
factors of degree n in a Ąnite number of steps; see M. Mignotte and D. Ştefănescu,
Revue d’Hist. Math. 7 (2001), 67Ű89. L. Kronecker rediscovered their approach
independently, about 90 years later; but unfortunately the method is very ineffi-
cient when n is Ąve or more. Much better results can be obtained with the help
of the “mod pŤ factorization methods presented above.

Suppose that we want to Ąnd the irreducible factors of a given polynomial

u(x) = unx
n + un−1x

n−1 + · · ·+ u0, un ̸= 0,

over the integers. As a Ąrst step, we can divide by the greatest common divisor of
the coefficients; this leaves us with a primitive polynomial. We may also assume
that u(x) is squarefree, by dividing out gcd

u(x), u′(x)

as in exercise 34.

Now if u(x) = v(x)w(x), where each of these polynomials has integer coef-
Ącients, we obviously have u(x) ≡ v(x)w(x) (modulo p) for all primes p, so there
is a nontrivial factorization modulo p unless p divides ℓ(u). An efficient algorithm
for factoring u(x) modulo p can therefore be used in an attempt to reconstruct
possible factorizations of u(x) over the integers.

For example, let

u(x) = x8 + x6 − 3x4 − 3x3 + 8x2 + 2x− 5. (22)

We have seen above in (19) that

u(x) ≡ (x4 + 2x3 + 3x2 + 4x+ 6)(x3 + 8x2 + 4x+ 12)(x+ 3) (modulo 13); (23)

and the complete factorization of u(x) modulo 2 shows one factor of degree 6
and another of degree 2 (see exercise 10). From (23) we can see that u(x) has
no factor of degree 2, so it must be irreducible over the integers.

This particular example was perhaps too simple; experience shows that most
irreducible polynomials can be recognized as such by examining their factors
modulo a few primes, but it is not always so easy to establish irreducibility. For
example, there are polynomials that can be properly factored modulo p for all
primes p, with consistent degrees of the factors, yet they are irreducible over the
integers (see exercise 12).

A large family of irreducible polynomials is exhibited in exercise 38, and
exercise 27 proves that almost all polynomials are irreducible over the integers.
But we usually aren’t trying to factor a random polynomial; there is probably
some reason to expect a nontrivial factor or else the calculation would not have
been attempted in the Ąrst place. We need a method that identiĄes factors when
they are there.

In general if we try to Ąnd the factors of u(x) by considering its behavior
modulo different primes, the results will not be easy to combine. For example, if
u(x) is actually the product of four quadratic polynomials, we will have trouble
matching up their images with respect to different prime moduli. Therefore it is
desirable to stick to a single prime and to see how much mileage we can get out
of it, once we feel that the factors modulo this prime have the right degrees.

One idea is to work modulo a very large prime p, big enough so that the
coefficients in any true factorization u(x) = v(x)w(x) over the integers must

4.6.2 FACTORIZATION OF POLYNOMIALS 451

actually lie between −p/2 and p/2. Then all possible integer factors can be
read off from the factors that we know how to compute mod p.

Exercise 20 shows how to obtain fairly good bounds on the coefficients of
polynomial factors. For example, if (22) were reducible it would have a factor
v(x) of degree ≤ 4, and the coefficients of v would be at most 34 in magnitude
by the results of that exercise. So all potential factors of u(x) will be fairly
evident if we work modulo any prime p > 68. Indeed, the complete factorization
modulo 71 is

(x+ 12)(x+ 25)(x2 − 13x− 7)(x4 − 24x3 − 16x2 + 31x− 12),

and we see immediately that none of these polynomials could be a factor of (22)
over the integers since the constant terms do not divide 5; furthermore there is
no way to obtain a divisor of (22) by grouping two of these factors, since none
of the conceivable constant terms 12× 25, 12× (−7), 12× (−12) is congruent to
±1 or ±5 (modulo 71).

Incidentally, it is not trivial to obtain good bounds on the coefficients of
polynomial factors, since a lot of cancellation can occur when polynomials are
multiplied. For example, the innocuous-looking polynomial xn−1 has irreducible
factors whose coefficients exceed exp(n1/lg lg n) for inĄnitely many n. [See R. C.
Vaughan, Michigan Math. J. 21 (1974), 289Ű295.] The factorization of xn− 1 is
discussed in exercise 32.

Instead of using a large prime p, which might need to be truly enormous if
u(x) has large degree or large coefficients, we can also make use of small p, pro-
vided that u(x) is squarefree mod p. For in this case, an important construction
known as Hensel’s Lemma can be used to extend a factorization modulo p in
a unique way to a factorization modulo pe for arbitrarily high exponents e (see
exercise 22). If we apply Hensel’s Lemma to (23) with p = 13 and e = 2, we
obtain the unique factorization

u(x) ≡ (x− 36)(x3 − 18x2 + 82x− 66)(x4 + 54x3 − 10x2 + 69x+ 84)

(modulo 169). Calling these factors v1(x)v3(x)v4(x), we see that v1(x) and v3(x)
are not factors of u(x) over the integers, nor is their product v1(x)v3(x) when
the coefficients have been reduced modulo 169 to the range (− 169

2 . . 169
2). Thus

we have exhausted all possibilities, proving once again that u(x) is irreducible
over the integers Ů this time using only its factorization modulo 13.

The example we have been considering is atypical in one important respect:
We have been factoring the monic polynomial u(x) in (22), so we could assume
that all its factors were monic. What should we do if un > 1? In such a case, the
leading coefficients of all but one of the polynomial factors can be varied almost
arbitrarily modulo pe; we certainly don’t want to try all possibilities. Perhaps the
reader has already noticed this problem. Fortunately there is a simple way out:
The factorization u(x) = v(x)w(x) implies a factorization unu(x) = v1(x)w1(x)
where ℓ(v1) = ℓ(w1) = un = ℓ(u). (“Excuse me, do you mind if I multiply
your polynomial by its leading coefficient before I factor it?Ť) We can proceed
essentially as above, but using pe > 2B where B now bounds the maximum

452 ARITHMETIC 4.6.2

coefficient for factors of unu(x) instead of u(x). Another way to solve the leading
coefficient problem is discussed in exercise 40.

Putting these observations all together results in the following procedure:

F1. [Factor modulo a prime power.] Find the unique squarefree factorization

u(x) ≡ ℓ(u)v1(x) . . . vr(x) (modulo pe),

where pe is sufficiently large as explained above, and where the vj(x) are
monic. (This will be possible for all but a few primes p; see exercise 23.)
Also set d← 1.

F2. [Try the d-element subfactors.] For every combination of factors v(x) =
vi1

(x) . . . vid(x), with i1 = 1 if d = 1
2r, form the unique polynomial v̄(x) ≡

ℓ(u)v(x) (modulo pe) whose coefficients all lie in the interval [− 1
2p

e . . 1
2p

e).
If v̄(x) divides ℓ(u)u(x), output the factor pp

v̄(x)

, divide u(x) by this

factor, and remove the corresponding vi(x) from the list of factors modulo pe;
decrease r by the number of factors removed, and terminate if d > 1

2r.

F3. [Loop on d.] Increase d by 1, and return to F2 if d ≤ 1
2r.

At the conclusion of this process, the current value of u(x) will be the Ąnal
irreducible factor of the originally given polynomial. Notice that if |u0| < |un|,
it is preferable to do all of the work with the reverse polynomial u0x

n + · · ·+un,
whose factors are the reverses of the factors of u(x).

The procedure as stated requires pe > 2B, where B is a bound on the
coefficients of any divisor of unu(x), but we can use a much smaller value of B
if we only guarantee it to be valid for divisors of degree ≤ 1

2 deg(u). In this case
the divisibility test in step F2 should be applied to w(x) = v1(x) . . . vr(x)/v(x)
instead of v(x), whenever deg(v) > 1

2 deg(u).
We can decrease B still more if we decide to guarantee only that B should

bound the coefficients of at least one proper divisor of u(x). (For example,
when we’re factoring a nonprime integer N instead of a polynomial, some of the
divisors might be very large, but at least one will be ≤

√
N .) This idea, due

to B. Beauzamy, V. Trevisan, and P. S. Wang [J. Symbolic Comp. 15 (1993),
393Ű413], is discussed in exercise 21. The divisibility test in step F2 must then
be applied to both v(x) and w(x), but the computations are faster because pe is
often much smaller.

The algorithm above contains an obvious bottleneck: We may have to test
as many as 2r−1− 1 potential factors v(x). The average value of 2r in a random
situation is about n, or perhaps n1.5 (see exercise 5), but in nonrandom situations
we will want to speed up this part of the routine as much as we can. One way
to rule out spurious factors quickly is to compute the trailing coefficient v̄(0)
Ąrst, continuing only if this divides ℓ(u)u(0); the complications explained in
the preceding paragraphs do not have to be considered unless this divisibility
condition is satisĄed, since such a test is valid even when deg(v) > 1

2 deg(u).
Another important way to speed up the procedure is to reduce r so that

it tends to reĆect the true number of factors. The distinct degree factorization
algorithm above can be applied for various small primes pj , thus obtaining for

4.6.2 FACTORIZATION OF POLYNOMIALS 453

each prime a set Dj of possible degrees of factors modulo pj ; see exercise 26. We
can represent Dj as a string of n binary bits. Now we compute the intersection

Dj , namely the bitwise “andŤ of these strings, and we perform step F2 only

for
deg(vi1

) + · · ·+ deg(vid) ∈ Dj .

Furthermore p is chosen to be that pj having the smallest value of r. This
technique is due to David R. Musser, whose experience suggests trying about Ąve
primes pj [see JACM 25 (1978), 271Ű282]. Of course we would stop immediately
if the current

Dj shows that u(x) is irreducible.

Musser has given a complete discussion of a factorization method similar
to the steps above, in JACM 22 (1975), 291Ű308. Steps F1ŰF3 incorporate an
improvement suggested in 1978 by G. E. Collins, namely to look for trial divisors
by taking combinations of d factors at a time rather than combinations of total
degree d. This improvement is important because of the statistical behavior of
the modulo-p factors of polynomials that are irreducible over the rationals (see
exercise 37).

A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász introduced their famous
“LLL algorithmŤ in order to obtain rigorous worst-case bounds on the amount of
computation needed to factor a polynomial over the integers [Math. Annalen 261
(1982), 515Ű534]. Their method requires no random numbers, and its running
time for u(x) of degree n is O

n12 + n9(log ∥u∥)3

bit operations, where ∥u∥ is

deĄned in exercise 20. This estimate includes the time to search for a suitable
prime number p and to Ąnd all factors modulo p with Algorithm B. Of course,
heuristic methods that use randomization run noticeably faster in practice.

Greatest common divisors. Similar techniques can be used to calculate
greatest common divisors of polynomials: If gcd

u(x), v(x)

= d(x) over the

integers, and if gcd

u(x), v(x)

= q(x) (modulo p) where q(x) is monic, then

d(x) is a common divisor of u(x) and v(x) modulo p; hence

d(x) divides q(x) (modulo p). (24)

If p does not divide the leading coefficients of both u and v, it does not divide the
leading coefficient of d; in such a case deg(d) ≤ deg(q). When q(x) = 1 for such
a prime p, we must therefore have deg(d) = 0, and d(x) = gcd

cont(u), cont(v)

.

This justiĄes the remark made in Section 4.6.1 that the simple computation of
gcd

u(x), v(x)

modulo 13 in 4.6.1Ű(6) is enough to prove that u(x) and v(x) are

relatively prime over the integers; the comparatively laborious calculations of
Algorithm 4.6.1E or Algorithm 4.6.1C are unnecessary. Since two random prim-
itive polynomials are almost always relatively prime over the integers, and since
they are relatively prime modulo p with probability 1− 1/p by exercise 4.6.1Ű5,
it is usually a good idea to do the computations modulo p.

As remarked before, we need good methods also for the nonrandom poly-
nomials that arise in practice. Therefore we wish to sharpen our techniques and
discover how to Ąnd gcd

u(x), v(x)

in general, over the integers, based entirely

on information that we obtain working modulo primes p. We may assume that
u(x) and v(x) are primitive.

454 ARITHMETIC 4.6.2

Instead of calculating gcd

u(x), v(x)

directly, it will be convenient to search

instead for the polynomial

d̄(x) = c · gcd

u(x), v(x)

, (25)

where the constant c is chosen so that

ℓ(d̄) = gcd

ℓ(u), ℓ(v)

. (26)

This condition will always hold for suitable c, since the leading coefficient of any
common divisor of u(x) and v(x) must be a divisor of gcd

ℓ(u), ℓ(v)

. Once d̄(x)

has been found satisfying these conditions, we can readily compute pp

d̄(x)

,

which is the true greatest common divisor of u(x) and v(x). Condition (26)
is convenient since it avoids the uncertainty of unit multiples of the gcd; we
have used essentially the same idea to control the leading coefficients in our
factorization routine.

If p is a sufficiently large prime, based on the bounds for coefficients in
exercise 20 applied either to ℓ(d̄)u(x) or ℓ(d̄)v(x), let us compute the unique
polynomial q̄(x) ≡ ℓ(d̄)q(x) (modulo p) having all coefficients in [− 1

2p . .
1
2p).

When pp

q̄(x)

divides both u(x) and v(x), it must equal gcd

u(x), v(x)

because

of (24). On the other hand if it does not divide both u(x) and v(x) we must
have deg(q) > deg(d). A study of Algorithm 4.6.1E reveals that this will be the
case only if p divides the leading coefficient of one of the nonzero remainders
computed by that algorithm with exact integer arithmetic; otherwise Euclid’s
algorithm modulo p deals with precisely the same sequence of polynomials as
Algorithm 4.6.1E except for nonzero constant multiples (modulo p). So only a
small number of “unluckyŤ primes can cause us to miss the gcd, and we will soon
Ąnd a lucky prime if we keep trying.

If the bound on coefficients is so large that single-precision primes p are
insufficient, we can compute d̄(x) modulo several primes p until it has been
determined via the Chinese remainder algorithm of Section 4.3.2. This approach,
which is due to W. S. Brown and G. E. Collins, has been described in detail by
Brown in JACM 18 (1971), 478Ű504. Alternatively, as suggested by J. Moses and
D. Y. Y. Yun [Proc. ACM Conf. 28 (1973), 159Ű166], we can use Hensel’s method
to determine d̄(x) modulo pe for sufficiently large e. Hensel’s construction
appears to be computationally superior to the Chinese remainder approach; but
it is valid directly only when

d(x) ⊥ u(x)/d(x) or d(x) ⊥ v(x)/d(x), (27)

since the idea is to apply the techniques of exercise 22 to one of the factorizations
ℓ(d̄)u(x) ≡ q̄(x)u1(x) or ℓ(d̄)v(x) ≡ q̄(x)v1(x) (modulo p). Exercises 34 and 35
show that it is possible to arrange things so that (27) holds whenever necessary.
(The notation

u(x) ⊥ v(x) (28)

used in (27) means that u(x) and v(x) are relatively prime, by analogy with the
notation used for relatively prime integers.)

4.6.2 FACTORIZATION OF POLYNOMIALS 455

The gcd algorithms sketched here are signiĄcantly faster than those of Sec-
tion 4.6.1 except when the polynomial remainder sequence is very short. Per-
haps the best general procedure would be to start with the computation of
gcd

u(x), v(x)

modulo a fairly small prime p, not a divisor of both ℓ(u) and ℓ(v).

If the result q(x) is 1, we’re done; if it has high degree, we use Algorithm 4.6.1C;
otherwise we use one of the methods above, Ąrst computing a bound for the
coefficients of d̄(x) based on the coefficients of u(x) and v(x), and on the (small)
degree of q(x). As in the factorization problem, we should apply this procedure
to the reverses of u(x), v(x) and reverse the result, if the trailing coefficients are
simpler than the leading ones.

Multivariate polynomials. Similar techniques lead to useful algorithms for
factorization or gcd calculations on multivariate polynomials with integer coeffi-
cients. It is convenient to deal with the polynomial u(x1, . . . , xt) by working
modulo the irreducible polynomials x2−a2, . . . , xt−at, which play the role of p
in the discussion above. Since v(x) mod (x− a) = v(a), the value of

u(x1, . . . , xt) mod {x2 − a2, . . . , xt − at}
is the univariate polynomial u(x1, a2, . . . , at). When the integers a2, . . . , at are
chosen so that u(x1, a2, . . . , at) has the same degree in x1 as the original poly-
nomial u(x1, x2, . . . , xt), an appropriate generalization of Hensel’s construction
will “liftŤ squarefree factorizations of this univariate polynomial to factorizations
modulo {(x2 − a2)n2 , . . . , (xt − at)nt}, where nj is the degree of xj in u; at the
same time we can also work modulo an appropriate integer prime p. As many as
possible of the aj should be zero, so that sparseness of the intermediate results
is retained. For details, see P. S. Wang, Math. Comp. 32 (1978), 1215Ű1231, in
addition to the papers by Musser and by Moses and Yun cited earlier.

SigniĄcant computational experience has been accumulating since the days
when the pioneering papers cited above were written. See R. E. Zippel, Effective
Polynomial Computation (Boston: Kluwer, 1993) for a more recent survey. More-
over, it is now possible to factor polynomials that are given implicitly by a “black
boxŤ computational procedure, even when both input and output polynomials
would Ąll the universe if they were written out explicitly [see E. Kaltofen and
B. M. Trager, J. Symbolic Comp. 9 (1990), 301Ű320; Y. N. Lakshman and
B. David Saunders, SICOMP 24 (1995), 387Ű397].

The asymptotically best algorithms frequently turn out

to be worst on all problems for which they are used.

Ů D. G. CANTOR and H. ZASSENHAUS (1981)

EXERCISES

x 1. [M24] Let p be prime, and let u(x) be a random polynomial of degree n, assuming
that each of the pn monic polynomials is equally likely. Show that if n ≥ 2, the
probability that u(x) has a linear factor mod p lies between (1+p−1)/2 and (2+p−2)/3,
inclusive. Give a closed form for this probability when n ≥ p. What is the average
number of linear factors?

456 ARITHMETIC 4.6.2

x 2. [M25] (a) Show that any monic polynomial u(x), over a unique factorization
domain, may be expressed uniquely in the form

u(x) = v(x)2w(x),

where w(x) is squarefree (has no factor of positive degree of the form d(x)2) and both
v(x) and w(x) are monic. (b) (E. R. Berlekamp.) How many monic polynomials of
degree n are squarefree modulo p, when p is prime?

3. [M25] (The Chinese remainder theorem for polynomials.) Let u1(x), . . . , ur(x) be
polynomials over a Ąeld S, with uj(x) ⊥ uk(x) for all j ̸= k. For any given polynomials
w1(x), . . . , wr(x) over S, prove that there is a unique polynomial v(x) over S such
that deg(v) < deg(u1) + · · ·+ deg(ur) and v(x) ≡ wj(x) (modulo uj(x)) for 1 ≤ j ≤ r.
Does this result hold also when S is the set of all integers?

4. [HM28] Let anp be the number of monic irreducible polynomials of degree n,
modulo a prime p. Find a formula for the generating function Gp(z) =

n anpz

n.
[Hint: Prove the following identity connecting power series: f(z) =

j≥1 g(zj)/jt if

and only if g(z) =

n≥1 µ(n)f(zn)/nt.] What is limp→∞ anp/p
n?

5. [HM30] Let Anp be the average number of irreducible factors of a randomly
selected polynomial of degree n, modulo a prime p. Show that limp→∞Anp = Hn.
What is the limiting average value of 2r, when r is the number of irreducible factors?

6. [M21] (J. L. Lagrange, 1771.) Prove the congruence (9). [Hint: Factor xp − x in
the Ąeld of p elements.]

7. [M22] Prove Eq. (14).

8. [HM20] How can we be sure that the vectors output by Algorithm N are linearly
independent?

9. [20] Explain how to construct a table of reciprocals mod 101 in a simple way,
given that 2 is a primitive root of 101.

x 10. [21] Find the complete factorization of the polynomial u(x) in (22), modulo 2,
using Berlekamp’s procedure.

11. [22] Find the complete factorization of the polynomial u(x) in (22), modulo 5.

x 12. [M22] Use Berlekamp’s algorithm to determine the number of factors of u(x) =
x4 + 1, modulo p, for all primes p. [Hint: Consider the cases p = 2, p = 8k + 1,
p = 8k + 3, p = 8k + 5, p = 8k + 7 separately; what is the matrix Q? You need not
discover the factors; just determine how many there are.]

13. [M25] Continuing the previous exercise, give an explicit formula for the factors
of x4 + 1, modulo p, for all odd primes p, in terms of the quantities

√
−1,
√

2,
√
−2

when such square roots exist modulo p.

14. [M25] (H. Zassenhaus.) Let v(x) be a solution to (8), and let w(x) =

(x − s)
where the product is over all 0 ≤ s < p such that gcd(u(x), v(x) − s) ̸= 1. Explain
how to compute w(x), given u(x) and v(x). [Hint: Eq. (14) implies that w(x) is the
polynomial of least degree such that u(x) divides w(v(x)).]

x 15. [M27] (Square roots modulo a prime.) Design an algorithm to calculate the square
root of a given integer u modulo a given prime p, that is, to Ąnd an integer v such that
v2 ≡ u (modulo p) whenever such a v exists. Your algorithm should be efficient even
for very large primes p. (For p ̸= 2, a solution to this problem leads to a procedure for
solving any given quadratic equation modulo p, using the quadratic formula in the usual

4.6.2 FACTORIZATION OF POLYNOMIALS 457

way.) Hint: Consider what happens when the factorization methods of this section are
applied to the polynomial x2 − u.

16. [M30] (Finite Ąelds.) The purpose of this exercise is to prove basic properties of
the Ąelds introduced by É. Galois in 1830.

a) Given that f(x) is an irreducible polynomial modulo a prime p, of degree n, prove
that the pn polynomials of degree less than n form a Ąeld under arithmetic modulo
f(x) and p. [Note: The existence of irreducible polynomials of each degree is
proved in exercise 4; therefore Ąelds with pn elements exist for all primes p and all
n ≥ 1.]

b) Show that any Ąeld with pn elements has a “primitive rootŤ element ξ such that
the elements of the Ąeld are {0, 1, ξ, ξ2, . . . , ξpn−2}. [Hint: Exercise 3.2.1.2Ű16
provides a proof in the special case n = 1.]

c) If f(x) is an irreducible polynomial modulo p, of degree n, prove that xpm − x is
divisible by f(x) if and only if m is a multiple of n. (It follows that we can test
irreducibility rather quickly: A given nth degree polynomial f(x) is irreducible
modulo p if and only if xpn− x is divisible by f(x) and xpn/q− x ⊥ f(x) for all
primes q that divide n.)

17. [M23] Let F be a Ąeld with 132 elements. How many elements of F have order f ,
for each integer f with 1 ≤ f < 132? (The order of an element a is the least positive
integer m such that am = 1.)

x 18. [M25] Let u(x) = unx
n + · · ·+u0, un ̸= 0, be a primitive polynomial with integer

coefficients, and let v(x) be the monic polynomial deĄned by

v(x) = un−1
n · u(x/un) = xn + un−1x

n−1 + un−2unx
n−2 + · · ·+ u0u

n−1
n .

(a) Given that v(x) has the complete factorization p1(x) . . . pr(x) over the integers,
where each pj(x) is monic, what is the complete factorization of u(x) over the integers?
(b) If w(x) = xm +wm−1x

m−1 + · · ·+w0 is a factor of v(x), prove that wk is a multiple
of um−1−k

n for 0 ≤ k < m.

19. [M20] (Eisenstein’s criterion.) Perhaps the best-known class of irreducible poly-
nomials over the integers was introduced by T. Schönemann in Crelle 32 (1846), 100,
then popularized by G. Eisenstein in Crelle 39 (1850), 166Ű169: Let p be prime and
let u(x) = unx

n + · · · + u0 have the following properties: (i) un is not divisible by p;
(ii) un−1, . . . , u0 are divisible by p; (iii) u0 is not divisible by p2. Show that u(x) is
irreducible over the integers.

20. [HM33] If u(x) = unx
n + · · · + u0 is any polynomial over the complex numbers,

let ∥u∥ = (|un|2 + · · ·+ |u0|2)1/2.

a) Let u(x) = (x−α)w(x) and v(x) = (ᾱx−1)w(x), where α is any complex number
and ᾱ is its complex conjugate. Prove that ∥u∥ = ∥v∥.

b) Let un(x−α1) . . . (x−αn) be the complete factorization of u(x) over the complex
numbers, and write M(u) = |un|

n
j=1 max(1, |αj |). Prove that M(u) ≤ ∥u∥.

c) Show that |uj | ≤

n−1
j

M(u) +

n−1
j−1

|un|, for 0 ≤ j ≤ n.

d) Combine these results to prove that if u(x) = v(x)w(x) and v(x) = vmx
m+· · ·+v0,

where u, v, w all have integer coefficients, then the coefficients of v are bounded by

|vj | ≤

m−1
j

∥u∥+

m−1
j−1

|un|.

458 ARITHMETIC 4.6.2

21. [HM32] Continuing exercise 20, we can also derive useful bounds on the coeffi-
cients of multivariate polynomial factors over the integers. For convenience we will let
boldface letters stand for sequences of t integers; thus, instead of writing

u(x1, . . . , xt) =

j1,...,jt

uj1...jtx
j1
1 . . . xjt

t

we will write simply u(x) =

j
ujx

j. Notice the convention for xj; we also write
j! = j1! . . . jt! and Σ j = j1 + · · ·+ jt.

a) Prove the identity

j,k

1
j! k!

p,q≥0

[p− j = q − k] apbq

p! q!
(p− j)!

r,s≥0

[r− j = s− k] crds

r! s!
(r− j)!

=

i≥0

i!

p,s≥0

[p + s = i] apds

q,r≥0

[q + r = i] bqcr .

b) The polynomial u(x) =

j
ujx

j is called homogeneous of degree n if each term has
total degree n; thus we have Σ j = n whenever uj ̸= 0. Consider the weighted sum
of coefficients B(u) =

j
j! |uj|2. Use part (a) to show that B(u) ≥ B(v)B(w)

whenever u(x) = v(x)w(x) is homogeneous.
c) The Bombieri norm [u] of a polynomial u(x) is deĄned to be

B(u)/n! when u

is homogeneous of degree n. It is also deĄned for nonhomogeneous polynomials,
by adding a new variable xt+1 and multiplying each term by a power of xt+1

so that u becomes homogeneous without increasing its maximum degree. For
example, let u(x) = 4x3 + x − 2; the corresponding homogeneous polynomial is
4x3 + xy2 − 2y3, and we have [u]2 = (3! 0! 42 + 1! 2! 12 + 0! 3! 22)/3! = 16 + 1

3
+ 4.

If u(x, y, z) = 3xy3 − z2 we have, similarly, [u]2 = (1! 3! 0! 0! 32 + 0! 0! 2! 2! 12)/4! =
9
4

+ 1
6
. What does part (b) tell us about the relation between [u], [v], and [w],

when u(x) = v(x)w(x)?
d) Prove that if u(x) is a reducible polynomial of degree n in one variable, it has a

factor whose coefficients are at most n!1/4[u]1/2/(n/4)! in absolute value. What is
the corresponding result for homogeneous polynomials in t variables?

e) Calculate [u] both explicitly and asymptotically when u(x) = (x2 − 1)n.
f) Prove that [u][v] ≥ [uv].
g) Show that 2−n/2M(u) ≤ [u] ≤ 2n/2M(u), when u(x) is a polynomial of degree n

and M(u) is the quantity deĄned in exercise 20. (Therefore the bound in part (d)
is roughly the square root of the bound we obtained in that exercise.)

x 22. [M24] (Hensel’s Lemma.) Let u(x), ve(x), we(x), a(x), b(x) be polynomials with
integer coefficients, satisfying the relations

u(x) ≡ ve(x)we(x) (modulo pe), a(x)ve(x) + b(x)we(x) ≡ 1 (modulo p),

where p is prime, e ≥ 1, ve(x) is monic, deg(a) < deg(we), deg(b) < deg(ve), and
deg(u) = deg(ve) + deg(we). Show how to compute polynomials ve+1(x) ≡ ve(x) and
we+1(x) ≡ we(x) (modulo pe), satisfying the same conditions with e increased by 1.
Furthermore, prove that ve+1(x) and we+1(x) are unique, modulo pe+1.

Use your method for p = 2 to prove that (22) is irreducible over the integers,
starting with its factorization modulo 2 found in exercise 10. (Note that Euclid’s
extended algorithm, exercise 4.6.1Ű3, will get the process started for e = 1.)

4.6.2 FACTORIZATION OF POLYNOMIALS 459

23. [HM23] Let u(x) be a squarefree polynomial with integer coefficients. Prove that
there are only Ąnitely many primes p such that u(x) is not squarefree modulo p.

24. [M20] The text speaks only of factorization over the integers, not over the Ąeld
of rational numbers. Explain how to Ąnd the complete factorization of a polynomial
with rational coefficients, over the Ąeld of rational numbers.

25. [M25] What is the complete factorization of x5 + x4 + x2 + x+ 2 over the Ąeld of
rational numbers?

26. [20] Let d1, . . . , dr be the degrees of the irreducible factors of u(x) modulo p,
with proper multiplicity, so that d1 + · · ·+ dr = n = deg(u). Explain how to compute
the set {deg(v) | u(x) ≡ v(x)w(x) (modulo p) for some v(x), w(x)} by performing O(r)
operations on binary bit strings of length n.

27. [HM30] Prove that a random primitive polynomial over the integers is “almost
alwaysŤ irreducible, in some appropriate sense.

28. [M25] The distinct-degree factorization procedure is “luckyŤ when there is at
most one irreducible polynomial of each degree d; then gd(x) never needs to be broken
into factors. What is the probability of such a lucky circumstance, when factoring a
random polynomial of degree n, modulo p, for Ąxed n as p→∞?

29. [M22] Let g(x) be a product of two or more distinct irreducible polynomials of
degree d, modulo an odd prime p. Prove that gcd(g(x), t(x)(pd−1)/2 − 1) will be a
proper factor of g(x) with probability ≥ 1/2−1/(2p2d), for any Ąxed g(x), when t(x) is
selected at random from among the p2d polynomials of degree < 2d modulo p.

30. [M25] Prove that if q(x) is an irreducible polynomial of degree d, modulo p, and if
t(x) is any polynomial, then the value of (t(x)+t(x)p +t(x)p2 + · · ·+t(x)pd−1) mod q(x)
is an integer (that is, a polynomial of degree ≤ 0). Use this fact to design a randomized
algorithm for factoring a product gd(x) of degree-d irreducibles, analogous to (21), for
the case p = 2.

31. [HM30] Let p be an odd prime and let d ≥ 1. Show that there exists a number
n(p, d) having the following two properties: (i) For all integers t, exactly n(p, d)
irreducible polynomials q(x) of degree d, modulo p, satisfy (x+t)(pd−1)/2 mod q(x) = 1.
(ii) For all integers 0 ≤ t1 < t2 < p, exactly n(p, d) irreducible polynomials q(x) of
degree d, modulo p, satisfy (x+ t1)(pd−1)/2 mod q(x) = (x+ t2)(pd−1)/2 mod q(x).

x 32. [M30] (Cyclotomic polynomials.) Let Ψn(x) =

1≤k≤n, k⊥n(x − ωk), where ω =

e2πi/n; thus, the roots of Ψn(x) are the complex nth roots of unity that aren’t mth
roots for m < n.

a) Prove that Ψn(x) is a polynomial with integer coefficients, and that

xn − 1 =

d\n

Ψd(x); Ψn(x) =

d\n

(xd − 1)µ(n/d).

(See exercises 4.5.2Ű10(b) and 4.5.3Ű28(c).)
b) Prove that Ψn(x) is irreducible over the integers, hence the formula above is the

complete factorization of xn − 1 over the integers. [Hint: If f(x) is an irreducible
factor of Ψn(x) over the integers, and if ζ is a complex number with f(ζ) = 0,
prove that f(ζp) = 0 for all primes p not dividing n. It may help to use the fact
that xn − 1 is squarefree modulo p for all such primes.]

c) Discuss the calculation of Ψn(x), and tabulate the values for n ≤ 15.

460 ARITHMETIC 4.6.2

33. [M18] True or false: If u(x) ̸= 0 and the complete factorization of u(x) modulo p
is p1(x)e1 . . . pr(x)er , then u(x)/gcd(u(x), u′(x)) = p1(x) . . . pr(x).

x 34. [M25] (Squarefree factorization.) It is clear that any primitive polynomial of a
unique factorization domain can be expressed in the form u(x) = u1(x)u2(x)2u3(x)3. . . ,
where the polynomials ui(x) are squarefree and relatively prime to each other. This
representation, in which uj(x) is the product of all the irreducible polynomials that
divide u(x) exactly j times, is unique except for unit multiples; and it is a useful way to
represent polynomials that participate in multiplication, division, and gcd operations.

Let GCD(u(x), v(x)) be a procedure that returns three answers:

GCD(u(x), v(x)) = (d(x), u(x)/d(x), v(x)/d(x)), where d(x) = gcd(u(x), v(x)).

The modular method described in the text following Eq. (25) always ends with a trial
division of u(x)/d(x) and v(x)/d(x), to make sure that no “unlucky primeŤ has been
used, so the quantities u(x)/d(x) and v(x)/d(x) are byproducts of the gcd computation;
thus we can compute GCD(u(x), v(x)) essentially as fast as gcd(u(x), v(x)) when we
are using a modular method.

Devise a procedure that obtains the squarefree representation (u1(x), u2(x), . . .)
of a given primitive polynomial u(x) over the integers. Your algorithm should perform
exactly e computations of a GCD, where e is the largest subscript with ue(x) ̸= 1;
furthermore, each GCD calculation should satisfy (27), so that Hensel’s construction
can be used.

35. [M22] (D. Y. Y. Yun.) Design an algorithm that computes the squarefree rep-
resentation (w1(x), w2(x), . . .) of w(x) = gcd(u(x), v(x)) over the integers, given the
squarefree representations (u1(x), u2(x), . . .) and (v1(x), v2(x), . . .) of u(x) and v(x).

36. [M27] Extend the procedure of exercise 34 so that it will obtain the squarefree
representation (u1(x), u2(x), . . .) of a given polynomial u(x) when the coefficient arith-
metic is performed modulo p.

37. [HM24] (George E. Collins.) Let d1, . . . , dr be positive integers whose sum is n,
and let p be prime. What is the probability that the irreducible factors of a random nth-
degree integer polynomial u(x) have degrees d1, . . . , dr, when it is completely factored
modulo p? Show that this probability is asymptotically the same as the probability
that a random permutation on n elements has cycles of lengths d1, . . . , dr.

38. [HM27] (Perron’s criterion.) Let u(x) = xn +un−1x
n−1 +· · ·+u0 be a polynomial

with integer coefficients such that u0 ̸= 0 and either |un−1| > 1 + |un−2|+ · · ·+ |u0| or
(un−1 = 0 and un−2 > 1 + |un−3|+ · · ·+ |u0|). Show that u(x) is irreducible over the
integers. [Hint: Prove that almost all of u’s roots are less than 1 in absolute value.]

39. [HM42] (David G. Cantor.) Show that if the polynomial u(x) is irreducible over
the integers, it has a “succinctŤ proof of irreducibility, in the sense that the number of
bits in the proof is at most a polynomial in deg(u) and the length of the coefficients.
(Only a bound on the length of proof is requested here, as in exercise 4.5.4Ű17, not a
bound on the time needed to Ąnd such a proof.) Hint: If v(x) is irreducible and t is
any polynomial over the integers, all factors of v(t(x)) have degree ≥ deg(v). Perron’s
criterion gives a large supply of irreducible polynomials v(x).

x 40. [M20] (P. S. Wang.) If un is the leading coefficient of u(x) and B is a bound on
coefficients of some factor of u, the text’s factorization algorithm requires us to Ąnd a
factorization modulo pe where pe > 2|un|B. But |un| might be larger than B, when
B is chosen by the method of exercise 21. Show that if u(x) is reducible, there is a way

4.6.3 EVALUATION OF POWERS 461

to recover one of its true factors from a factorization modulo pe whenever pe ≥ 2B2,
by using the algorithm of exercise 4.5.3Ű51.

41. [M47] (Beauzamy, Trevisan, and Wang.) Prove or disprove: There is a constant c
such that, if f(x) is any integer polynomial with all coefficients ≤ B in absolute value,
then one of its irreducible factors has coefficients bounded by cB.

4.6.3. Evaluation of Powers

In this section we shall study the interesting problem of computing xn efficiently,
given x and n, where n is a positive integer. Suppose, for example, that we need
to compute x16; we could simply start with x and multiply by x Ąfteen times.
But it is possible to obtain the same answer with only four multiplications, if
we repeatedly take the square of each partial result, successively forming x2, x4,
x8, x16.

The same idea applies, in general, to any value of n, in the following way:
Write n in the binary number system (suppressing zeros at the left). Then
replace each “1Ť by the pair of letters SX, replace each “0Ť by S, and cross off
the “SXŤ that now appears at the left. The result is a rule for computing xn, if
“SŤ is interpreted as the operation of squaring, and if “XŤ is interpreted as the
operation of multiplying by x. For example, if n = 23, its binary representation
is 10111; so we form the sequence SX S SX SX SX and remove the leading SX
to obtain the rule SSXSXSX. This rule states that we should “square, square,
multiply by x, square, multiply by x, square, and multiply by xŤ; in other words,
we should successively compute x2, x4, x5, x10, x11, x22, x23.

This binary method is easily justiĄed by a consideration of the sequence of
exponents in the calculation: If we reinterpret “SŤ as the operation of multiplying
by 2 and “XŤ as the operation of adding 1, and if we start with 1 instead of x,
the rule will lead to a computation of n because of the properties of the binary
number system. The method is quite ancient; it appeared before A.D. 400 in
Piṅgala’s Hindu classic Chandah. śāstra [see B. Datta and A. N. Singh, History
of Hindu Mathematics 2 (Lahore: Motilal Banarsi Das, 1935), 76]. There seem
to be no other references to this method outside of India during the next several
centuries, but a clear discussion of how to compute 2n efficiently for arbitrary
n was given by al-Uql̄ıdis̄ı of Damascus in A.D. 952; see The Arithmetic of
al-Uql̄ıdis̄ı by A. S. Saidan (Dordrecht: D. Reidel, 1975), 341Ű342, where the
general ideas are illustrated for n = 51. See also al-B̄ırūn̄ı’s Chronology of
Ancient Nations, edited and translated by E. Sachau (London: 1879), 132Ű136;
this eleventh-century Arabic work had great inĆuence.

The S-and-X binary method for obtaining xn requires no temporary storage
except for x and the current partial result, so it is well suited for incorporation in
the hardware of a binary computer. The method can also be readily programmed;
but it requires that the binary representation of n be scanned from left to
right. Computer programs generally prefer to go the other way, because the
available operations of division by 2 and remainder mod 2 will deduce the binary
representation from right to left. Therefore the following algorithm, based on a
right-to-left scan of the number, is often more convenient:

462 ARITHMETIC 4.6.3

A1. Initialize A2. Halve N A3. Multiply Y by Z

A4. N =0?A5. Square Z

Odd

Even

Yes

No

Fig. 13. Evaluation of xn, based on a right-to-left scan of the binary notation for n.

Algorithm A (Right-to-left binary method for exponentiation). This algorithm
evaluates xn, where n is a positive integer. (Here x belongs to any algebraic
system in which an associative multiplication, with identity element 1, has been
deĄned.)

A1. [Initialize.] Set N ← n, Y ← 1, Z ← x.

A2. [Halve N.] (At this point, xn = Y ZN.) Set t← N mod 2 and N ← ⌊N/2⌋.
If t = 0, skip to step A5.

A3. [Multiply Y by Z.] Set Y ← Z times Y .

A4. [N = 0?] If N = 0, the algorithm terminates, with Y as the answer.

A5. [Square Z.] Set Z ← Z times Z, and return to step A2.

As an example of Algorithm A, consider the steps in the evaluation of x23:

N Y Z

After step A1 23 1 x
After step A5 11 x x2

After step A5 5 x3 x4

After step A5 2 x7 x8

After step A5 1 x7 x16

After step A4 0 x23 x16

A MIX program corresponding to Algorithm A appears in exercise 2.

The great calculator al-Kāsh̄ı stated Algorithm A in A.D. 1427 [Istoriko-Mat.
Issledovani⁀ıa 7 (1954), 256Ű257]. The method is closely related to a procedure
for multiplication that was actually used by Egyptian mathematicians as early as
2000 B.C.; for if we change step A3 to “Y ← Y +ZŤ and step A5 to “Z ← Z+ZŤ,
and if we set Y to zero instead of unity in step A1, the algorithm terminates
with Y = nx. [See A. B. Chace, The Rhind Mathematical Papyrus (1927);
W. W. Struve, Quellen und Studien zur Geschichte der Mathematik A1 (1930).]
This is a practical method for multiplication by hand, since it involves only
the simple operations of doubling, halving, and adding. It is often called the
“Russian peasant methodŤ of multiplication, since Western visitors to Russia in
the nineteenth century found the method in wide use there.

4.6.3 EVALUATION OF POWERS 463

The number of multiplications required by Algorithm A is

⌊lgn⌋+ ν(n),

where ν(n) is the number of ones in the binary representation of n. This is
one more multiplication than the left-to-right binary method mentioned at the
beginning of this section would require, due to the fact that the Ąrst execution
of step A3 is simply a multiplication by unity.

Because of the bookkeeping time required by this algorithm, the binary
method is usually not of importance for small values of n, say n ≤ 10, unless the
time for a multiplication is comparatively large. If the value of n is known in
advance, the left-to-right binary method is preferable. In some situations, such
as the calculation of xn mod u(x) discussed in Section 4.6.2, it is much easier
to multiply by x than to perform a general multiplication or to square a value,
so binary methods for exponentiation are primarily suited for quite large n in
such cases. If we wish to calculate the exact multiple-precision value of xn,
when x is an integer greater than the computer word size, binary methods are
not much help unless n is so huge that the high-speed multiplication routines
of Section 4.3.3 are involved; and such applications are rare. Similarly, binary
methods are usually inappropriate for raising a polynomial to a power; see R. J.
Fateman, SICOMP 3 (1974), 196Ű213, for a discussion of the extensive literature
on polynomial exponentiation.

The point of these remarks is that binary methods are nice, but not a
panacea. They are most applicable when the time to multiply xj·xk is essentially
independent of j and k (for example, when we are doing Ćoating point multi-
plication, or multiplication mod m); in such cases the running time is reduced
from order n to order logn.

Fewer multiplications. Several authors have published statements (without
proof) that the binary method actually gives the minimum possible number of
multiplications. But that is not true. The smallest counterexample is n = 15,
when the binary method needs six multiplications, yet we can calculate y = x3

in two multiplications and x15 = y5 in three more, achieving the desired result
with only Ąve multiplications. Let us now discuss some other procedures for
evaluating xn, assuming that n is known in advance. Such procedures are of
interest, for example, when an optimizing compiler is generating machine code.

The factor method is based on a factorization of n. If n = pq, where p is the
smallest prime factor of n and q > 1, we may calculate xn by Ąrst calculating xp

and then raising this quantity to the qth power. If n is prime, we may calculate
xn−1 and multiply by x. And, of course, if n = 1, we have xn with no calculation
at all. Repeated application of these rules gives a procedure for evaluating xn,
given any value of n. For example, if we want to calculate x55, we Ąrst evaluate
y = x5 = x4x = (x2)2x; then we form y11 = y10y = (y2)5y. The whole process
takes eight multiplications, while the binary method would have required nine.
The factor method is better than the binary method on the average, but there
are cases (n = 33 is the smallest example) where the binary method excels.

464 ARITHMETIC 4.6.3

1

2

3 4

5 6

7

8

910

11

12

1314 15

16

1718

19

20

21 22 23

24

2526 2728

29

30

31

32

33 34

35

36

3738 39

40

4142 4344 4546

48

4950 5152 5456 60

64

6566 687280 96 128

Fig. 14. The “power tree.Ť

The binary method can be generalized to an m-ary method as follows: Let
n = d0m

t +d1m
t−1 + · · ·+dt, where 0 ≤ dj < m for 0 ≤ j ≤ t. The computation

begins by forming x, x2, x3, . . . , xm−1. (Actually, only those powers xdj such
that dj appears in the representation of n are needed, and this observation often
saves some of the work.) Then raise xd0 to the mth power and multiply by xd1 ;
we have computed y1 = xd0m+d1. Next, raise y1 to the mth power and multiply
by xd2, obtaining y2 = xd0m

2+d1m+d2. The process continues in this way until
yt = xn has been computed. Whenever dj = 0, it is of course unnecessary to
multiply by xdj . Notice that this method reduces to the left-to-right binary
method discussed earlier, when m = 2; there is also a less obvious right-to-
left m-ary method that takes more memory but only a few more steps (see
exercise 9). If m is a small prime, the m-ary method will be particularly efficient
for calculating powers of one polynomial modulo another, when the coefficients
are treated modulo m, because of Eq. 4.6.2Ű(5).

A systematic method that gives the minimum number of multiplications for
all of the relatively small values of n (in particular, for most n that occur in
practical applications) is indicated in Fig. 14. To calculate xn, Ąnd n in this
tree; then the path from the root to n indicates a sequence of exponents that
occur in an efficient evaluation of xn. The rule for generating this “power treeŤ
appears in exercise 5. Computer tests have shown that the power tree gives
optimum results for all of the n listed in the Ągure. But for large enough values
of n the power tree method is not always optimum; the smallest examples are
n = 77, 154, 233. The Ąrst case for which the power tree is superior to both the
binary method and the factor method is n = 23. The Ąrst case for which the
factor method beats the power tree method is n = 19879 = 103 · 193; such cases
are quite rare. (For n ≤ 100,000 the power tree method is better than the factor
method 88,803 times; it ties 11,191 times; and it loses only 6 times.)

4.6.3 EVALUATION OF POWERS 465

1

2

3 4

5 6

7

8

910

11

12

1314 15

16

17 18

19

20

21 22 23

24

25 262728

29

30

31

32

3334

35

36

3738 39

40

4142 4344 4546

47

48

4950 51 52

53

54

55

56

5758 59

60

6162 63

64

6566

67

68

6970

71

72

73747576 7778

79

80

8182 8384 85 86

87

88

89

90

91

92

9394 95

96

97 9899100

Fig. 15. A tree that minimizes the number of multiplications, for n ≤ 100.

Addition chains. The most economical way to compute xn by multiplication
is a mathematical problem with an interesting history. We shall now examine
it in detail, not only because it is classical and interesting in its own right, but
because it is an excellent example of the theoretical questions that arise in the
study of optimum methods of computation.

Although we are concerned with multiplication of powers of x, the problem
can easily be reduced to addition, since the exponents are additive. This leads
us to the following abstract formulation: An addition chain for n is a sequence
of integers

1 = a0, a1, a2, . . . , ar = n (1)

with the property that

ai = aj + ak, for some k ≤ j < i, (2)

for all i = 1, 2, . . . , r. One way of looking at this deĄnition is to consider a
simple computer that has an accumulator and is capable of the three operations
LDA, STA, and ADD; the machine begins with the number 1 in its accumulator,
and it proceeds to compute the number n by adding together previous results.
Notice that a1 must equal 2, and a2 is either 2, 3, or 4.

The shortest length, r, for which there exists an addition chain for n is
denoted by l(n). Thus l(1) = 0, l(2) = 1, l(3) = l(4) = 2, etc. Our goal in the
remainder of this section is to discover as much as we can about this function
l(n). The values of l(n) for small n are displayed in tree form in Fig. 15, which
shows how to calculate xn with the fewest possible multiplications for all n ≤ 100.

The problem of determining l(n) was apparently Ąrst raised by H. Dellac in
1894, and a partial solution by E. de Jonquières mentioned the factor method

466 ARITHMETIC 4.6.3

[see L’Intermédiaire des Mathématiciens 1 (1894), 20, 162Ű164]. In his solution,
de Jonquières listed what he felt were the values of l(p) for all prime numbers
p < 200, but his table entries for p = 107, 149, 163, 179, 199 were one too high.

The factor method tells us immediately that

l(mn) ≤ l(m) + l(n), (3)

since we can take the chains 1, a1, . . . , ar = m and 1, b1, . . . , bs = n and form
the chain 1, a1, . . . , ar, arb1, . . . , arbs = mn.

We can also recast the m-ary method into addition-chain terminology. Con-
sider the case m = 2k, and write n = d0m

t + d1m
t−1 + · · · + dt in the m-ary

number system; the corresponding addition chain takes the form

1, 2, 3, . . . ,m− 2,m− 1,

2d0, 4d0, . . . ,md0,md0 + d1,

2(md0+d1), 4(md0+d1), . . . ,m(md0 + d1),m2d0 +md1 + d2,

. . . , mtd0 +mt−1d1 + · · ·+ dt. (4)

The length of this chain is m−2+(k+1)t; and it can often be reduced by deleting
certain elements of the Ąrst row that do not occur among the coefficients dj , plus
elements among 2d0, 4d0, . . . that already appear in the Ąrst row. Whenever
digit dj is zero, the step at the right end of the corresponding line may, of course,
be dropped. Furthermore, we can omit all the even numbers (except 2) in the
Ąrst row, if we bring values of the form dj/2e into the computation e steps earlier.
[See E. Wattel and G. A. Jensen, Math. Centrum Report ZW1968-001 (1968),
18 pp.; E. G. Thurber, Duke Math. J. 40 (1973), 907Ű913.]

The simplest case of the m-ary method is the binary method (m = 2),
when the general scheme (4) simpliĄes to the “SŤ and “XŤ rule mentioned at the
beginning of this section: The binary addition chain for 2n is the binary chain
for n followed by 2n; for 2n+ 1 it is the binary chain for 2n followed by 2n+ 1.
From the binary method we conclude that

l(2e0 + 2e1 + · · ·+ 2et) ≤ e0 + t, if e0 > e1 > · · · > et ≥ 0. (5)

Let us now deĄne two auxiliary functions for convenience in our subsequent
discussion:

λ(n) = ⌊lgn⌋; (6)

ν(n) = number of 1s in the binary representation of n. (7)

Thus λ(17) = 4, ν(17) = 2; these functions may be deĄned by the recurrence
relations

λ(1) = 0, λ(2n) = λ(2n+ 1) = λ(n) + 1; (8)

ν(1) = 1, ν(2n) = ν(n), ν(2n+ 1) = ν(n) + 1. (9)

In terms of these functions, the binary addition chain for n requires exactly
λ(n) + ν(n)− 1 steps, and (5) becomes

l(n) ≤ λ(n) + ν(n)− 1. (10)

4.6.3 EVALUATION OF POWERS 467

Special classes of chains. We may assume without any loss of generality that
an addition chain is ascending,

1 = a0 < a1 < a2 < · · · < ar = n. (11)

For if any two a’s are equal, one of them may be dropped; and we can also
rearrange the sequence (1) into ascending order and remove terms > n without
destroying the addition chain property (2). From now on we shall consider only
ascending chains, without explicitly mentioning this assumption.

It is convenient at this point to deĄne a few special terms relating to addition
chains. By deĄnition we have, for 1 ≤ i ≤ r,

ai = aj + ak (12)

for some j and k, 0 ≤ k ≤ j < i. If this relation holds for more than one
pair (j, k), we let j be as large as possible. Let us say that step i of (11) is
a doubling, if j = k = i − 1; then ai has the maximum possible value 2ai−1

that can follow the ascending chain 1, a1, . . . , ai−1. If j (but not necessarily k)
equals i− 1, let us say that step i is a star step. The importance of star steps is
explained below. Finally let us say that step i is a small step if λ(ai) = λ(ai−1).
Since ai−1 < ai ≤ 2ai−1, the quantity λ(ai) is always equal to either λ(ai−1) or
λ(ai−1) + 1; it follows that, in any chain (11), the length r is equal to λ(n) plus
the number of small steps.

Several elementary relations hold between these types of steps: Step 1 is
always a doubling. A doubling obviously is a star step, but never a small step.
A doubling must be followed by a star step. Furthermore if step i is not a small
step, then step i + 1 is either a small step or a star step, or both; putting this
another way, if step i+ 1 is neither small nor star, step i must have been small.

A star chain is an addition chain that involves only star steps. This means
that each term ai is the sum of ai−1 and a previous ak; the simple “computerŤ
discussed above after Eq. (2) makes use only of the two operations STA and
ADD (not LDA) in a star chain, since each new term of the sequence utilizes
the preceding result in the accumulator. Most of the addition chains we have
discussed so far are star chains. The minimum length of a star chain for n is
denoted by l∗(n); clearly

l(n) ≤ l∗(n). (13)

We are now ready to derive some nontrivial facts about addition chains. First
we can show that there must be fairly many doublings if r is not far from λ(n).

Theorem A. If the addition chain (11) includes d doublings and f = r − d
nondoublings, then

n ≤ 2d−1Ff+3. (14)

Proof. By induction on r = d + f , we see that (14) is certainly true when
r = 1. When r > 1, there are three cases: If step r is a doubling, then
1
2n = ar−1 ≤ 2d−2Ff+3; hence (14) follows. If steps r and r − 1 are both
nondoublings, then ar−1 ≤ 2d−1Ff+2 and ar−2 ≤ 2d−1Ff+1; hence n = ar ≤

468 ARITHMETIC 4.6.3

ar−1 +ar−2 ≤ 2d−1(Ff+2 +Ff+1) = 2d−1Ff+3 by the deĄnition of the Fibonacci
sequence. Finally, if step r is a nondoubling but step r − 1 is a doubling, then
ar−2 ≤ 2d−2Ff+2 and n = ar ≤ ar−1 + ar−2 = 3ar−2. Now 2Ff+3 − 3Ff+2 =
Ff+1 − Ff ≥ 0; hence n ≤ 2d−1Ff+3 in all cases.

The method of proof we have used shows that inequality (14) is “best
possibleŤ under the stated assumptions; the addition chain

1, 2, . . . , 2d−1, 2d−1F3, 2d−1F4, . . . , 2d−1Ff+3 (15)

has d doublings and f nondoublings.

Corollary A. If the addition chain (11) includes f nondoublings and s small
steps, then

s ≤ f ≤ 3.271s. (16)

Proof. Obviously s≤ f . We have 2λ(n) ≤ n≤ 2d−1Ff+3 ≤ 2dϕf = 2λ(n)+s(ϕ/2)f,
since d + f = λ(n) + s, and since Ff+3 ≤ 2ϕf when f ≥ 0. Hence 0 ≤ s ln 2 +
f ln(ϕ/2), and (16) follows from the fact that ln 2/ ln(2/ϕ) ≈ 3.2706.

Values of l(n) for special n. It is easy to show by induction that ai ≤ 2i,
and therefore lgn ≤ r in any addition chain (11). Hence

l(n) ≥ ⌈lgn⌉. (17)

This lower bound, together with the upper bound (10) given by the binary
method, gives us the values

l(2A) = A; (18)

l(2A + 2B) = A+ 1, if A > B. (19)

In other words, the binary method is optimum when ν(n) ≤ 2. With some
further calculation we can extend these formulas to the case ν(n) = 3:

Theorem B. l(2A + 2B + 2C) = A+ 2, if A > B > C. (20)

Proof. We can, in fact, prove a stronger result that will be of use to us later
in this section: All addition chains with exactly one small step have one of the
following six types (where all steps indicated by “. . . Ť represent doublings):

Type 1. 1, . . . , 2A, 2A + 2B, . . . , 2A+C + 2B+C; A > B ≥ 0, C ≥ 0.
Type 2. 1, . . . , 2A, 2A + 2B, 2A+1 + 2B, . . . , 2A+C+1 + 2B+C; A > B ≥ 0,

C ≥ 0.
Type 3. 1, . . . , 2A, 2A + 2A−1, 2A+1 + 2A−1, 2A+2, . . . , 2A+C; A > 0, C ≥ 2.
Type 4. 1, . . . , 2A, 2A + 2A−1, 2A+1 + 2A, 2A+2, . . . , 2A+C; A > 0, C ≥ 2.
Type 5. 1, . . . , 2A, 2A + 2A−1, . . . , 2A+C + 2A+C−1, 2A+C+1 + 2A+C−2, . . . ,

2A+C+D+1 + 2A+C+D−2; A > 0, C > 0, D ≥ 0.
Type 6. 1, . . . , 2A, 2A + 2B, 2A+1, . . . , 2A+C ; A > B ≥ 0, C ≥ 1.

4.6.3 EVALUATION OF POWERS 469

A straightforward hand calculation shows that these six types exhaust all
possibilities. By Corollary A, there are at most three nondoublings when there
is one small step; this maximum occurs only in sequences of Type 3. All of the
above are star chains, except Type 6 when B < A− 1.

The theorem now follows from the observation that

l(2A + 2B + 2C) ≤ A+ 2;

and l(2A + 2B + 2C) must be greater than A+ 1, since none of the six possible
types have ν(n) > 2.

E. de Jonquières stated without proof in 1894 that l(n) ≥ λ(n) + 2 when

ν(n) > 2. The Ąrst published demonstration of Theorem B was by A. A. Gioia,
M. V. Subbarao, and M. Sugunamma in Duke Math. J. 29 (1962), 481Ű487.

The calculation of l(2A + 2B + 2C + 2D), when A > B > C > D, is more
involved. By the binary method it is at mostA+3, and by the proof of Theorem B
it is at least A + 2. The value A + 2 is possible, since we know that the binary
method is not optimal when n = 15 or n = 23. The complete behavior when
ν(n) = 4 can be determined, as we shall now see.

Theorem C. If ν(n) ≥ 4 then l(n) ≥ λ(n) + 3, except in the following
circumstances when A > B > C > D and l(2A + 2B + 2C + 2D) equals A+ 2:

Case 1. A−B = C −D. (Example: n = 15.)

Case 2. A−B = C −D + 1. (Example: n = 23.)

Case 3. A−B = 3, C −D = 1. (Example: n = 39.)

Case 4. A−B = 5, B − C = C −D = 1. (Example: n = 135.)

Proof. When l(n) = λ(n) + 2, there is an addition chain for n having just two
small steps; such an addition chain starts out as one of the six types in the proof
of Theorem B, followed by a small step, followed by a sequence of nonsmall
steps. Let us say that n is “specialŤ if n = 2A + 2B + 2C + 2D for one of the four
cases listed in the theorem. We can obtain addition chains of the required form
for each special n, as shown in exercise 13; therefore it remains for us to prove
that no chain with exactly two small steps contains any elements with ν(ai) ≥ 4
except when ai is special.

Let a “counterexample chainŤ be an addition chain with two small steps
such that ν(ar) ≥ 4, but ar is not special. If counterexample chains exist, let
1 = a0 < a1 < · · · < ar = n be a counterexample chain of shortest possible
length. Then step r is not a small step, since none of the six types in the proof
of Theorem B can be followed by a small step with ν(n) ≥ 4 except when n is
special. Furthermore, step r is not a doubling, otherwise a0, . . . , ar−1 would
be a shorter counterexample chain; and step r is a star step, otherwise a0, . . . ,
ar−2, ar would be a shorter counterexample chain. Thus

ar = ar−1 + ar−k, k ≥ 2; and λ(ar) = λ(ar−1) + 1. (21)

470 ARITHMETIC 4.6.3

Let c be the number of carries that occur when ar−1 is added to ar−k in the
binary number system by Algorithm 4.3.1A. Using the fundamental relation

ν(ar) = ν(ar−1) + ν(ar−k)− c, (22)

we can prove that step r − 1 is not a small step (see exercise 14).
Let m = λ(ar−1). Since neither r nor r− 1 is a small step, c ≥ 2; and c = 2

can hold only when ar−1 ≥ 2m + 2m−1.
Now let us suppose that r− 1 is not a star step. Then r− 2 is a small step,

and a0, . . . , ar−3, ar−1 is a chain with only one small step; hence ν(ar−1) ≤ 2
and ν(ar−2) ≤ 4. The relation (22) can now hold only if ν(ar) = 4, ν(ar−1) = 2,
k = 2, c = 2, ν(ar−2) = 4. From c = 2 we conclude that ar−1 = 2m + 2m−1;
hence a0, a1, . . . , ar−3 = 2m−1 + 2m−2 is an addition chain with only one small
step, and it must be of Type 1, so ar belongs to Case 3. Thus r−1 is a star step.

Now assume that ar−1 = 2tar−k for some t. If ν(ar−1) ≤ 3, then by (22),
c = 2, k = 2, and we see that ar must belong to Case 3. On the other hand, if
ν(ar−1) = 4 then ar−1 is special, and it is easy to see by considering each case
that ar also belongs to one of the four cases. (Case 4 arises, for example, when
ar−1 = 90, ar−k = 45; or ar−1 = 120, ar−k = 15.) Therefore we may conclude
that ar−1 ̸= 2tar−k for any t.

We have proved that ar−1 = ar−2 + ar−q for some q ≥ 2. If k = 2, then
q > 2, and a0, a1, . . . , ar−2, 2ar−2, 2ar−2 + ar−q = ar is a counterexample
sequence in which k > 2; therefore we may assume that k > 2.

Let us now suppose that λ(ar−k) = m − 1; the case λ(ar−k) < m − 1 may
be ruled out by similar arguments, as shown in exercise 14. If k = 4, both
r − 2 and r − 3 are small steps; hence ar−4 = 2m−1, and (22) is impossible.
Therefore k = 3; step r − 2 is small, ν(ar−3) = 2, c = 2, ar−1 ≥ 2m + 2m−1,
and ν(ar−1) = 4. There must be at least two carries when ar−2 is added to
ar−1 − ar−2; hence ν(ar−2) = 4, and ar−2 (being special and ≥ 1

2ar−1) has the
form 2m−1+2m−2+2d+1+2d for some d. Now ar−1 is either 2m+2m−1+2d+1+2d

or 2m + 2m−1 + 2d+2 + 2d+1, and in both cases ar−3 must be 2m−1 + 2m−2, so
ar belongs to Case 3.

E. G. Thurber [PaciĄc J. Math. 49 (1973), 229Ű242] has extended Theorem C
to show that l(n) ≥ λ(n) + 4 when ν(n) > 8. It seems reasonable to conjecture
that l(n) ≥ λ(n) + lg ν(n) in general, since A. Schönhage has come very close to
proving this (see exercise 28).

*Asymptotic values. Theorem C indicates that it is probably quite difficult to
get exact values of l(n) for large n, when ν(n) > 4; however, we can determine
the approximate behavior in the limit as n→∞.

Theorem D. [A. Brauer, Bull. Amer. Math. Soc. 45 (1939), 736Ű739.]

lim
n→∞

l∗(n)/λ(n) = lim
n→∞

l(n)/λ(n) = 1. (23)

Proof. The addition chain (4) for the 2k-ary method is a star chain if we delete
the second occurrence of any element that appears twice in the chain; for if ai

4.6.3 EVALUATION OF POWERS 471

is the Ąrst element among 2d0, 4d0, . . . of the second line that is not present in
the Ąrst line, we have ai ≤ 2(m− 1); hence ai = (m− 1) + aj for some aj in the
Ąrst line. By totaling up the length of the chain, we have

λ(n) ≤ l(n) ≤ l∗(n) < (1 + 1/k) lgn+ 2k (24)

for all k ≥ 1. The theorem follows if we choose, say, k = ⌊ 1
2 lg λ(n)⌋.

If we let k = λλ(n) − 2λλλ(n) in (24) for large n, where λλ(n) denotes
λ

λ(n)

, we obtain the stronger asymptotic bound

l(n) ≤ l∗(n) ≤ λ(n) + λ(n)/λλ(n) +O

λ(n)λλλ(n)/λλ(n)2

. (25)

The second term λ(n)/λλ(n) is essentially the best that can be obtained from
(24). A much deeper analysis of lower bounds can be carried out, to show that
this term λ(n)/λλ(n) is, in fact, essential in (25). In order to see why this is so,
let us consider the following fact:

Theorem E. [Paul Erdős, Acta Arithmetica 6 (1960), 77Ű81.] Let ϵ be a
positive real number. The number of addition chains (11) such that

λ(n) = m, r ≤ m+ (1− ϵ)m/λ(m) (26)

is less than αm, for some α < 2, for all suitably large m. (In other words, the
number of addition chains so short that (26) is satisĄed is substantially less than
the number of values of n such that λ(n) = m, when m is large.)

Proof. We want to estimate the number of possible addition chains, and for this
purpose our Ąrst goal is to get an improvement of Theorem A that enables us to
deal more satisfactorily with nondoublings.

Lemma P. Let δ <
√

2 − 1 be a Ąxed positive real number. Call step i of an
addition chain a “ministepŤ if it is not a doubling and if ai < aj(1 + δ)i−j for
some j, where 0 ≤ j < i. If the addition chain contains s small steps and t
ministeps, then

t ≤ s/(1− θ), where (1 + δ)2 = 2θ. (27)

Proof. For each ministep ik, 1 ≤ k ≤ t, we have aik < ajk(1 + δ)ik−jk for some
jk < ik. Let I1, . . . , It be the intervals (j1 . . i1], . . . , (jt . . it], where the notation
(j . . i] stands for the set of all integers k such that j < k ≤ i. It is possible (see
exercise 17) to Ąnd nonoverlapping intervals J1, . . . , Jh = (j′1 . . i

′
1], . . . , (j′h . . i

′
h]

such that
I1 ∪ · · · ∪ It = J1 ∪ · · · ∪ Jh,

ai′
k
< aj′

k
(1 + δ)2(i′k−j′k), for 1 ≤ k ≤ h.

(28)

Now for all steps i outside of the intervals J1, . . . , Jh we have ai ≤ 2ai−1; hence
if we let

q = (i′1 − j′1) + · · ·+ (i′h − j′h),

we have 2λ(n) ≤ n ≤ 2r−q(1 + δ)2q = 2λ(n)+s−(1−θ)q ≤ 2λ(n)+s−(1−θ)t.

472 ARITHMETIC 4.6.3

Returning to the proof of Theorem E, let us choose δ = 2ϵ/4 − 1, and let us
divide the r steps of each addition chain into three classes:

t ministeps, u doublings, v other steps, t+ u+ v = r. (29)

Counting another way, we have s small steps, where s+m = r. By the hypoth-
eses, Theorem A, and Lemma P, we obtain the relations

s ≤ (1− ϵ)m/λ(m), t+ v ≤ 3.271s, t ≤ s/(1− ϵ/2). (30)

Given s, t, u, v satisfying these conditions, there are

r

t, u, v

=

r

t+ v

t+ v

v

(31)

ways to assign the steps to the speciĄed classes. Given such a distribution of
the steps, let us consider how the non-ministeps can be selected: If step i is
one of the “otherŤ steps in (29), ai ≥ (1 + δ)ai−1, so ai = aj + ak, where
δai−1 ≤ ak ≤ aj ≤ ai−1. Also aj ≤ ai/(1 + δ)i−j ≤ 2ai−1/(1 + δ)i−j , so
δ ≤ 2/(1 + δ)i−j . This gives at most β choices for j, where β is a constant that
depends only on δ. There are also at most β choices for k, so the number of
ways to assign j and k for each of the non-ministeps is at most

β2v. (32)

Finally, once the “j Ť and “kŤ have been selected for each of the non-
ministeps, there are fewer than

r2

t

(33)

ways to choose the j and the k for the ministeps: We select t distinct pairs
(j1, k1), . . . , (jt, kt) of indices in the range 0 ≤ kh ≤ jh < r, in fewer than (33)
ways. Then for each ministep i, in turn, we use a pair of indices (jh, kh) such
that
a) jh < i;
b) ajh +akh

is as small as possible among the pairs not already used for smaller
ministeps i;

c) ai = ajh + akh
satisĄes the deĄnition of ministep.

If no such pair (jh, kh) exists, we get no addition chain; on the other hand, any
addition chain with ministeps in the designated places must be selected in one
of these ways, so (33) is an upper bound on the possibilities.

Thus the total number of possible addition chains satisfying (26) is bounded
by (31) times (32) times (33), summed over all relevant s, t, u, and v. The proof
of Theorem E can now be completed by means of a rather standard estimation
of these functions (exercise 18).

Corollary E. The value of l(n) is asymptotically λ(n)+λ(n)/λλ(n), for almost
all n. More precisely, there is a function f(n) such that f(n) → 0 as n → ∞,
and

Pr

l(n)− λ(n)− λ(n)/λλ(n)

 ≥ f(n)λ(n)/λλ(n)

= 0. (34)

(See Section 3.5 for the deĄnition of this probability “PrŤ.)

4.6.3 EVALUATION OF POWERS 473

Proof. The upper bound (25) shows that (34) holds without the absolute value
signs. The lower bound comes from Theorem E, if we let f(n) decrease to zero
slowly enough so that, when f(n) ≤ ϵ, the value N is so large that at most ϵN
values n ≤ N have l(n) ≤ λ(n) + (1− ϵ)λ(n)/λλ(n).

*Star chains. Optimistic people Ąnd it reasonable to suppose that l(n) = l∗(n);
given an addition chain of minimal length l(n), it appears hard to believe that
we cannot Ąnd one of the same length that satisĄes the (apparently mild) star
condition. But in 1958 Walter Hansen proved the remarkable theorem that, for
certain large values of n, the value of l(n) is deĄnitely less than l∗(n), and he
also proved several related theorems that we shall now investigate.

Hansen’s theorems begin with an investigation of the detailed structure of
a star chain. Let n = 2e0 + 2e1 + · · · + 2et , where e0 > e1 > · · · > et ≥ 0, and
let 1 = a0 < a1 < · · · < ar = n be a star chain for n. If there are d doublings in
this chain, we deĄne the auxiliary sequence

0 = d0 ≤ d1 ≤ d2 ≤ · · · ≤ dr = d, (35)

where di is the number of doublings among steps 1, 2, . . . , i. We also deĄne
a sequence of “multisetsŤ S0, S1, . . . , Sr, which keep track of the powers of 2
present in the chain. (A multiset is a mathematical entity that is like a set,
but it is allowed to contain repeated elements; an object may be an element
of a multiset several times, and its multiplicity of occurrences is relevant. See
exercise 19 for familiar examples of multisets.) The multisets Si are deĄned by
the rules

a) S0 = {0};
b) If ai+1 = 2ai, then Si+1 = Si + 1 = {x+ 1 | x ∈ Si};
c) If ai+1 = ai + ak, k < i, then Si+1 = Si ⊎ Sk.

(The symbol ⊎ means that the multisets are combined, adding the multi-
plicities.) From this deĄnition it follows that

ai =

x∈Si

2x, (36)

where the terms in this sum are not necessarily distinct. In particular,

n = 2e0 + 2e1 + · · ·+ 2et =

x∈Sr

2x. (37)

The number of elements in the latter sum is at most 2f, where f = r − d is the
number of nondoublings.

Since n has two different binary representations in (37), we can partition
the multiset Sr into multisets M0, M1, . . . , Mt such that

2ej =

x∈Mj

2x, 0 ≤ j ≤ t. (38)

This can be done by arranging the elements of Sr into nondecreasing order
x1 ≤ x2 ≤ · · · and taking Mt = {x1, x2, . . . , xk}, where 2x1 + · · · + 2xk = 2et .

474 ARITHMETIC 4.6.3

This must be possible, since et is the smallest of the e’s. Similarly, Mt−1 =
{xk+1, xk+2, . . . , xk′}, and so on; the process is easily visualized in binary nota-
tion. An example appears below.

Let Mj contain mj elements (counting multiplicities); then mj ≤ 2f − t,
since Sr has at most 2f elements and it has been partitioned into t+1 nonempty
multisets. By Eq. (38), we can see that

ej ≥ x > ej −mj , for all x ∈Mj . (39)

Our examination of the star chain’s structure is completed by forming the
multisets Mij that record the ancestral history of Mj . The multiset Si is
partitioned into t+ 1 multisets as follows:

a) Mrj = Mj ;
b) If ai+1 = 2ai, then Mij = M(i+1)j − 1 = {x− 1 | x ∈M(i+1)j};
c) If ai+1 = ai + ak, k < i, then (since Si+1 = Si ⊎ Sk) we let Mij = M(i+1)j

minus Sk, that is, we remove the elements of Sk from M(i+1)j . If some
element of Sk appears in two or more different multisets M(i+1)j , we remove
it from the set with the largest possible value of j; this rule uniquely deĄnes
Mij for each j, when i is Ąxed.

From this deĄnition it follows that

ej + di − d ≥ x > ej + di − d−mj , for all x ∈Mij . (40)

As an example of this detailed construction, let us consider the star chain
1, 2, 3, 5, 10, 20, 23, for which t = 3, r = 6, d = 3, f = 3. We obtain the
following array of multisets:

(d0, d1, . . . , d6) : 0 1 1 1 2 3 3
(a0, a1, . . . , a6) : 1 2 3 5 10 20 23

(M03,M13, . . . ,M63) : 0 M3 e3 = 0, m3 = 1
(M02,M12, . . . ,M62) : 1 M2 e2 = 1, m2 = 1
(M01,M11, . . . ,M61) : 0 0 1 2 2 M1 e1 = 2, m1 = 1

(M00,M10, . . . ,M60) :

0 1 1 1
1

2
2

3
3

3
3

M0 e0 = 4, m0 = 2

S0 S1 S2 S3 S4 S5 S6

Thus M40 = {2, 2}, etc. From the construction we can see that di is the largest
element of Si; hence

di ∈ Mi0. (41)

The most important part of this structure comes from Eq. (40); one of its
immediate consequences is

Lemma K. If Mij and Muv both contain a common integer x, then

−mv < (ej − ev)− (du − di) < mj . (42)

Although Lemma K may not look extremely powerful, it says (when mj

and mv are reasonably small and when Mij contains an element in common

4.6.3 EVALUATION OF POWERS 475

with Muv) that the number of doublings between steps u and i is approximately
equal to the difference between the exponents ev and ej . This imposes a certain
amount of regularity on the addition chain; and it suggests that we might be
able to prove a result analogous to Theorem B above, that l∗(n) = e0 + t, if the
exponents ej are far enough apart. The next theorem shows how this can in fact
be done.

Theorem H. [W. Hansen, Crelle 202 (1959), 129Ű136.] Let n = 2e0 + 2e1 +
· · ·+ 2et , where e0 > e1 > · · · > et ≥ 0. If

e0 > 2e1 + 2.271(t− 1) and ei−1 ≥ ei + 2m for 1 ≤ i ≤ t, (43)

where m = 2⌊3.271(t−1)⌋ − t, then l∗(n) = e0 + t.

Proof. We may assume that t > 2, since the result of the theorem is true
without restriction on the e’s when t ≤ 2. Suppose that we have a star chain
1 = a0 < a1 < · · · < ar = n for n with r ≤ e0 + t − 1. Let the integers d, f ,
d0, . . . , dr, and the multisets Mj , Si, Mij reĆect the structure of this chain, as
deĄned above. By Corollary A, we know that f ≤ ⌊3.271(t − 1)⌋; therefore the
value of m is a bona Ąde upper bound for the number mj of elements in each
multiset Mj .

In the summation

ai =

x∈Mi0

2x

+

x∈Mi1

2x

+ · · ·+

x∈Mit

2x

,

no carries propagate from the term corresponding to Mij to the term correspond-
ing to Mi(j−1), if we think of this sum as being carried out in the binary number
system, since the e’s are so far apart.

See (40).

In particular, the sum of all

the terms for j ̸= 0 will not carry up to affect the terms for j = 0, so we must
have

ai ≥

x∈Mi0

2x ≥ 2λ(ai), 0 ≤ i ≤ r. (44)

In order to prove Theorem H, we would like to show that in some sense the
t extra powers of n must be put in “one at a time,Ť so we want to Ąnd a way to
tell at which step each of these terms essentially enters the addition chain.

Let j be a number between 1 and t. Since M0j is empty and Mrj = Mj is
nonempty, we can Ąnd the Ąrst step i for which Mij is not empty.

From the way in which the Mij are deĄned, we know that step i is a non-
doubling: ai = ai−1+au for some u < i−1. We also know that all the elements of
Mij are elements of Su. We will prove that au must be relatively small compared
to ai.

Let xj be an element of Mij . Then since xj ∈ Su, there is some v for which
xj ∈Muv. It follows that

di − du > m, (45)

that is, at least m+1 doublings occur between steps u and i. For if di−du ≤ m,
Lemma K tells us that |ej − ev| < 2m; hence v = j. But this is impossible,
because Muj is empty by our choice of step i.

476 ARITHMETIC 4.6.3

All elements of Su are less than or equal to e1 + di − d. For if x ∈ Su ⊆ Si

and x > e1 + di − d, then x ∈ Mu0 and x ∈ Mi0 by (40); so Lemma K implies
that |di − du| < m, contradicting (45). In fact, this argument proves that Mi0

has no elements in common with Su, so M(i−1)0 = Mi0. From (44) we have
ai−1 ≥ 2λ(ai), and therefore step i is a small step.

We can now deduce what is probably the key fact in this entire proof: All
elements of Su are in Mu0. For if not, let x be an element of Su with x /∈ Mu0.
Since x ≥ 0, (40) implies that e1 ≥ d− du, hence

e0 = f + d− s ≤ 2.271s+ d ≤ 2.271(t− 1) + e1 + du.

By hypothesis (43), this implies du > e1. But du ∈ Su by (41), and it cannot be
in Mi0, hence du ≤ e1 + di − d ≤ e1, a contradiction.

Going back to our element xj in Mij , we have xj ∈Muv; and we have proved
that v = 0. Therefore, by equation (40) again,

e0 + du − d ≥ xj > e0 + du − d−m0. (46)

For all j = 1, 2, . . . , t we have determined a number xj satisfying (46),
and a small step i at which the term 2ej may be said to have entered into the
addition chain. If j ̸= j′, the step i at which this occurs cannot be the same for
both j and j′; for (46) would tell us that |xj − xj′ | < m, while elements of Mij

and Mij′ must differ by more than m, since ej and ej′ are so far apart. We are
forced to conclude that the chain contains at least t small steps; but this is a
contradiction.

Theorem F (W. Hansen).

l(2A + xy) ≤ A+ ν(x) + ν(y)− 1, if λ(x) + λ(y) ≤ A. (47)

Proof. An addition chain (which is not a star chain in general) may be con-
structed by combining the binary and factor methods. Let x = 2x1 + · · · + 2xu

and y = 2y1 + · · ·+ 2yv , where x1 > · · · > xu ≥ 0 and y1 > · · · > yv ≥ 0.
The Ąrst steps of the chain form successive powers of 2, until 2A−y1 is

reached; in between these steps, the additional values 2xu−1 + 2xu , 2xu−2 +
2xu−1 + 2xu , . . . , and x are inserted in the appropriate places. After a chain up
to 2A−yi + x(2y1−yi + · · ·+ 2yi−1−yi) has been formed, we continue by adding x
and doubling the resulting sum yi − yi+1 times; this yields

2A−yi+1 + x(2y1−yi+1 + · · ·+ 2yi−yi+1).

If this construction is done for i = 1, 2, . . . , v, assuming for convenience that
yv+1 = 0, we have an addition chain for 2A + xy as desired.

Theorem F enables us to Ąnd values of n for which l(n) < l∗(n), since
Theorem H gives an explicit value of l∗(n) in certain cases. For example, let
x = 21016 + 1, y = 22032 + 1, and let

n = 26103 + xy = 26103 + 23048 + 22032 + 21016 + 1.

According to Theorem F, we have l(n) ≤ 6106. But Theorem H also applies,
with m = 508, and this proves that l∗(n) = 6107.

4.6.3 EVALUATION OF POWERS 477

Extensive computer calculations have shown that n = 12509 is the smallest
value with l(n) < l∗(n). No star chain for this value of n is as short as the
sequence 1, 2, 4, 8, 16, 17, 32, 64, 128, 256, 512, 1024, 1041, 2082, 4164, 8328,
8345, 12509. The smallest n with ν(n) = 5 and l(n) ̸= l∗(n) is 16537 = 214+9·17
(see exercise 15).

Jan van Leeuwen has generalized Theorem H to show that

l∗(k2e0) + t ≤ l∗(kn) ≤ l∗(k2et) + e0 − et + t

for all Ąxed k ≥ 1, if the exponents e0 > · · · > et are far enough apart [Crelle
295 (1977), 202Ű207].

Some conjectures. Although it was reasonable to guess at Ąrst glance that
l(n) = l∗(n), we have now seen that this is false. Another plausible conjecture
[Ąrst made by A. Goulard, and supposedly “provedŤ by E. de Jonquières in
L’Interméd. des Math. 2 (1895), 125Ű126] is that l(2n) = l(n)+1; a doubling step
is so efficient, it seems unlikely that there could be any shorter chain for 2n than
to add a doubling step to the shortest chain for n. But computer calculations
show that this conjecture also fails, since l(191) = l(382) = 11. (A star chain of
length 11 for 382 is not hard to Ąnd; for example, 1, 2, 4, 5, 9, 14, 23, 46, 92, 184,
198, 382. The number 191 is minimal such that l(n) = 11, and it seems to be
nontrivial to prove by hand that l(191) > 10. The author’s computer-generated
proof of this fact, using a backtrack method that will be sketched in Section
7.2.2, involved a detailed examination of 102 cases.) The smallest four values
of n such that l(2n) = l(n) are n = 191, 701, 743, 1111; E. G. Thurber proved
in PaciĄc J. Math. 49 (1973), 229Ű242, that the third of these is a member of an
inĄnite family of such n, namely 23 ·2k +7 for all k ≥ 5. Neill Clift found in 2007
that l(n) = l(2n) = l(4n) = 31 when n = 30958077; and in 2008, astonishingly,
he discovered that l(n) > l(2n) = 34 when n = 375494703. Kevin R. Hebb has
shown that l(n)− l(mn) can get arbitrarily large, for all Ąxed integers m not a
power of 2 [Notices Amer. Math. Soc. 21 (1974), AŰ294]. The smallest case in
which l(n) > l(mn) is l

(213 + 1)/3

= 15.

Let c(r) be the smallest value of n such that l(n) = r. The computation
of l(n) seems to be hardest for this sequence of n’s, which begins as follows:

r c(r)
1 2
2 3
3 5
4 7
5 11
6 19
7 29
8 47
9 71

10 127
11 191
12 379
13 607

r c(r)
14 1087
15 1903
16 3583
17 6271
18 11231
19 18287
20 34303
21 65131
22 110591
23 196591
24 357887
25 685951
26 1176431

r c(r)
27 2211837
28 4169527
29 7624319
30 14143037
31 25450463
32 46444543
33 89209343
34 155691199
35 298695487
36 550040063
37 994660991
38 1886023151
39 3502562143

478 ARITHMETIC 4.6.3

For r ≤ 11, the value of c(r) is approximately equal to c(r − 1) + c(r − 2), and
this fact led to speculation by several people that c(r) grows like the function ϕr;
but the result of Theorem D

with n = c(r)

implies that r/lg c(r) → 1 as

r → ∞. The values listed here for r > 18 have been computed by Achim
Flammenkamp, except that c(24) was Ąrst computed by Daniel Bleichenbacher,
and c(29) through c(39) by Neill Clift. Flammenkamp notes that c(r) is fairly
well approximated by the formula 2r exp(−θr/lg r) for 10 ≤ r ≤ 39, where θ
is near ln 2; this agrees nicely with the upper bound (25). Several people had
conjectured at one time that c(r) would always be a prime number, in view of
the factor method; but c(15), c(18), and c(21) are all divisible by 11. Perhaps
no conjecture about addition chains is safe!

Tabulated values of l(n) show that this function is surprisingly smooth; for
example, l(n) = 13 for all n in the range 1125 ≤ n ≤ 1148. The computer
calculations show that a table of l(n) may be prepared for 2 ≤ n ≤ 1000 by
using the formula

l(n) = min(l(n− 1) + 1, ln)− δn, (48)

where ln =∞ if n is prime, otherwise ln = l(p)+ l(n/p) if p is the smallest prime
dividing n; and δn = 1 for n in Table 1, δn = 0 otherwise.

Let d(r) be the number of solutions n to the equation l(n) = r. The following
table lists the Ąrst few values of d(r), according to Flammenkamp and Clift:

r d(r) r d(r) r d(r) r d(r) r d(r) r d(r)
1 1 6 15 11 246 16 4490 21 90371 26 1896704
2 2 7 26 12 432 17 8170 22 165432 27 3501029
3 3 8 44 13 772 18 14866 23 303475 28 6465774
4 5 9 78 14 1382 19 27128 24 558275 29 11947258
5 9 10 136 15 2481 20 49544 25 1028508 30 22087489

Surely d(r) must be an increasing function of r, but there is no evident way to
prove this seemingly simple assertion, much less to determine the asymptotic
growth of d(r) for large r.

The most famous problem about addition chains that is still outstanding is
the ScholzŰBrauer conjecture, which states that

l(2n − 1) ≤ n− 1 + l(n). (49)

Notice that 2n−1 is the worst case for the binary method, because ν(2n−1) = n.
E. G. Thurber [Discrete Math. 16 (1976), 279Ű289] has shown that several of
these values, including the case n = 32, can actually be calculated by hand.
Computer calculations by Neill Clift [Computing 91 (2011), 265Ű284] show that
l(2n − 1) is in fact exactly equal to n − 1 + l(n) for 1 ≤ n ≤ 64. Arnold Scholz
coined the name “addition chainŤ (in German) and posed (49) as a problem in
1937 [Jahresbericht der Deutschen Mathematiker-Vereinigung, Abteilung II, 47
(1937), 41Ű42]; Alfred Brauer proved in 1939 that

l∗(2n − 1) ≤ n− 1 + l∗(n). (50)

4.6.3 EVALUATION OF POWERS 479

Table 1

VALUES OF n FOR SPECIAL ADDITION CHAINS

23
43
59
77
83

107
149

163
165
179
203
211
213
227

229
233
281
283
293
311
317

319
323
347
349
355
359
367

371
373
377
381
382
395
403

413
419
421
423
429
437
451

453
455
457
479
503
509
551

553
557
561
569
571
573
581

599
611
619
623
631
637
643

645
659
667
669
677
683
691

707
709
711
713
715
717
739

741
749
759
779
787
803
809

813
825
835
837
839
841
845

849
863
869
887
893
899
901

903
905
923
941
947
955
983

Hansen’s theorems show that l(n) can be less than l∗(n), so more work is
deĄnitely necessary in order to prove or disprove (49). As a step in this direction,
Hansen has deĄned the concept of an l0-chain, which lies “betweenŤ l-chains
and l∗-chains. In an l0-chain, some of the elements are underlined; the condition
is that ai = aj + ak, where aj is the largest underlined element less than ai.

As an example of an l0-chain (certainly not a minimum one), consider

1, 2, 4, 5, 8, 10, 12, 18; (51)

it is easy to verify that the difference between each element and the previous
underlined element is in the chain. We let l0(n) denote the minimum length of
an l0-chain for n. Clearly l(n) ≤ l0(n) ≤ l∗(n).

Hansen pointed out that the chain constructed in Theorem F is an l0-chain
(see exercise 22); and he also established the following improvement of Eq. (50):

Theorem G. l0(2n − 1) ≤ n− 1 + l0(n).

Proof. Let 1 = a0, a1, . . . , ar = n be an l0-chain of minimum length for n, and
let 1 = b0, b1, . . . , bt = n be the subsequence of underlined elements. (We may
assume that n is underlined.) Then we can get an l0-chain for 2n − 1 as follows:
a) Include the l0(n) + 1 numbers 2ai − 1, for 0 ≤ i ≤ r, underlined if and only

if ai is underlined.
b) Include the numbers 2i(2bj − 1), for 0 ≤ j < t and for 0 < i ≤ bj+1 − bj , all

underlined. (This is a total of b1 − b0 + · · ·+ bt − bt−1 = n− 1 numbers.)
c) Sort the numbers from (a) and (b) into ascending order.

We may easily verify that this gives an l0-chain: The numbers of (b) are all
equal to twice some other element of (a) or (b); furthermore, this element is the
preceding underlined element. If ai = bj + ak, where bj is the largest underlined
element less than ai, then ak = ai − bj ≤ bj+1 − bj , so 2ak(2bj − 1) = 2ai − 2ak

appears underlined in the chain, just preceding 2ai − 1. Since 2ai − 1 is equal to
(2ai − 2ak) + (2ak − 1), where both of these values appear in the chain, we have
an addition chain with the l0 property.

The chain corresponding to (51), constructed in the proof of Theorem G, is

1, 2, 3, 6, 12, 15, 30, 31, 60, 120, 240, 255, 510, 1020, 1023, 2040,
4080, 4095, 8160, 16320, 32640, 65280, 130560, 261120, 262143.

Computations by Neill Clift have shown that l(n) < l0(n) when n = 5784689
(see exercise 42). This is the smallest case where Eq. (49) remains in doubt.

480 ARITHMETIC 4.6.3

Graphical representation. An addition chain (1) corresponds in a natural
way to a directed graph, where the vertices are labeled ai for 0 ≤ i ≤ r, and
where we draw arcs from aj to ai and from ak to ai as a representation of each
step ai = aj + ak in (2). For example, the addition chain 1, 2, 3, 6, 12, 15, 27,
39, 78, 79 that appears in Fig. 15 corresponds to the directed graph

1 2 3 6 12 15 27 39 78 79 .

If ai = aj + ak for more than one pair of indices (j, k), we choose a deĄnite j
and k for purposes of this construction.

In general, all but the Ąrst vertex of such a directed graph will be at the
head of exactly two arcs; however, this is not really an important property of
the graph, because it conceals the fact that many different addition chains can
be essentially equivalent. If a vertex has out-degree 1, it is used in only one later
step, hence the later step is essentially a sum of three inputs aj + ak + am that
might be computed either as (aj+ak)+am or as aj+(ak+am) or as ak+(aj+am).
These three choices are immaterial, but the addition-chain conventions force us
to distinguish between them. We can avoid such redundancy by deleting any
vertex whose out-degree is 1 and attaching the arcs from its predecessors to its
successor. For example, the graph above would become

1 3 6 12 39 79 . (52)

We can also delete any vertex whose out-degree is 0, except of course the Ąnal
vertex ar, since such a vertex corresponds to a useless step in the addition chain.

In this way every addition chain leads to a reduced directed graph that
contains one “sourceŤ vertex (labeled 1) and one “sinkŤ vertex (labeled n);
every vertex but the source has in-degree ≥ 2 and every vertex but the sink
has out-degree ≥ 2. Conversely, any such directed graph without oriented cycles
corresponds to at least one addition chain, since we can topologically sort the
vertices and write down d− 1 addition steps for each vertex of in-degree d > 0.
The length of the addition chain, exclusive of useless steps, can be reconstructed
by looking at the reduced graph; it is

(number of arcs)− (number of vertices) + 1, (53)

since deletion of a vertex of out-degree 1 also deletes one arc.
We say that two addition chains are equivalent if they have the same reduced

directed graph. For example, the addition chain 1, 2, 3, 6, 12, 15, 24, 39, 40, 79
is equivalent to the chain we began with, since it also leads to (52). This example
shows that a non-star chain can be equivalent to a star chain. An addition chain
is equivalent to a star chain if and only if its reduced directed graph can be
topologically sorted in only one way.

4.6.3 EVALUATION OF POWERS 481

An important property of this graph representation has been pointed out
by N. Pippenger: The label of each vertex is exactly equal to the number of
oriented paths from the source to that vertex. Thus, the problem of Ąnding an
optimal addition chain for n is equivalent to minimizing the quantity (53) over
all directed graphs that have one source vertex and one sink vertex and exactly
n oriented paths from the source to the sink.

This characterization has a surprising corollary, because of the symmetry of
the directed graph. If we reverse the directions of all the arcs, the source and
the sink exchange roles, and we obtain another directed graph corresponding to
a set of addition chains for the same n; these addition chains have the same
length (53) as the chain we started with. For example, if we make the arrows
in (52) run from right to left, and if we relabel the vertices according to the
number of paths from the right-hand vertex, we get

79 26 12 6 2 1 . (54)

One of the star chains corresponding to this reduced directed graph is

1, 2, 4, 6, 12, 24, 26, 52, 78, 79;

we may call this a dual of the original addition chain.
Exercises 39 and 40 discuss important consequences of this graphical repre-

sentation and the duality principle.

EXERCISES

1. [15] What is the value of Z when Algorithm A terminates?

2. [24] Write a MIX program for Algorithm A, to calculate xn mod w given integers
n and x, where w is the word size. Assume that MIX has the binary operations SRB,
JAE, etc., that are described in Section 4.5.2. Write another program that computes
xn mod w in a serial manner (multiplying repeatedly by x), and compare the running
times of these programs.

x 3. [22] How is x975 calculated by (a) the binary method? (b) the ternary method?
(c) the quaternary method? (d) the factor method?

4. [M20] Find a number n for which the octal (23-ary) method gives ten fewer
multiplications than the binary method.

x 5. [24] Figure 14 shows the Ąrst eight levels of the “power tree.Ť The (k+ 1)st level
of this tree is deĄned as follows, assuming that the Ąrst k levels have been constructed:
Take each node n of the kth level, from left to right in turn, and attach below it the
nodes

n+ 1, n+ a1, n+ a2, . . . , n+ ak−1 = 2n

(in this order), where 1, a1, a2, . . . , ak−1 is the path from the root of the tree to n;
but discard any node that duplicates a number that has already appeared in the tree.

Design an efficient algorithm that constructs the Ąrst r+1 levels of the power tree.
[Hint: Make use of two sets of variables LINKU[j], LINKR[j] for 0 ≤ j ≤ 2r; these point
upwards and to the right, respectively, if j is a number in the tree.]

482 ARITHMETIC 4.6.3

6. [M26] If a slight change is made to the deĄnition of the power tree that is given
in exercise 5, so that the nodes below n are attached in decreasing order

n+ ak−1, . . . , n+ a2, n+ a1, n+ 1

instead of increasing order, we get a tree whose Ąrst Ąve levels are

1

2

34

56

7

8

9101216

Show that this tree gives a method of computing xn that requires exactly as many
multiplications as the binary method; therefore it is not as good as the power tree,
although it has been constructed in almost the same way.

7. [M21] Prove that there are inĄnitely many values of n

a) for which the factor method is better than the binary method;
b) for which the binary method is better than the factor method;
c) for which the power tree method is better than both the binary and factor methods.

(Here the “betterŤ method is the one that computes xn using fewer multiplications.)

8. [M21] Prove that the power tree (exercise 5) never gives more multiplications for
the computation of xn than the binary method.

x 9. [25] Design an exponentiation procedure that is analogous to Algorithm A, but
based on radix m = 2e. Your method should perform approximately lgn + ν + m
multiplications, where ν is the number of nonzero digits in the m-ary representation
of n.

10. [10] Figure 15 shows a tree that indicates one way to compute xn with the fewest
possible multiplications, for all n ≤ 100. How can this tree be conveniently represented
within a computer, in just 100 memory locations?

x 11. [M26] The tree of Fig. 15 depicts addition chains a0, a1, . . . , ar having l(ai) = i
for all i in the chain. Find all addition chains for n that have this property, when
n = 43 and when n = 77. Show that any tree such as Fig. 15 must include either the
path 1, 2, 4, 8, 9, 17, 34, 43, 77 or the path 1, 2, 4, 8, 9, 17, 34, 68, 77.

12. [M10] Is it possible to extend the tree shown in Fig. 15 to an inĄnite tree that
yields a minimum-multiplication rule for computing xn, for all positive integers n?

13. [M21] Find a star chain of length A + 2 for each of the four cases listed in
Theorem C. (Consequently Theorem C holds also with l replaced by l∗.)

14. [M29] Complete the proof of Theorem C, by demonstrating that (a) step r− 1 is
not a small step; and (b) λ(ar−k) cannot be less than m− 1, where m = λ(ar−1).

15. [M43] Write a computer program to extend Theorem C, characterizing all n such
that l(n) = λ(n) + 3 and characterizing all n such that l∗(n) = λ(n) + 3.

16. [HM15] Show that Theorem D is not trivially true just because of the binary
method; if lB(n) denotes the length of the addition chain for n produced by the binary
S-and-X method, the ratio lB(n)/λ(n) does not approach a limit as n→∞.

4.6.3 EVALUATION OF POWERS 483

17. [M25] Explain how to Ąnd the intervals J1, . . . , Jh that are required in the proof
of Lemma P.

18. [HM24] Let β be a positive constant. Show that there is a constant α < 2 such
that

m+ s

t+ v

t+ v

v

β2v
 (m+ s)2

t

< αm

for all large m, where the sum is over all s, t, v satisfying (30).

19. [M23] A “multisetŤ is like a set, but it may contain identical elements repeated
a Ąnite number of times. If A and B are multisets, we deĄne new multisets A ⊎ B,
A∪B, and A∩B in the following way: An element occurring exactly a times in A and
b times in B occurs exactly a + b times in A ⊎ B, exactly max(a, b) times in A ∪ B,
and exactly min(a, b) times in A ∩B. (A “setŤ is a multiset that contains no elements
more than once; if A and B are sets, so are A∪B and A∩B, and the deĄnitions given
in this exercise agree with the customary deĄnitions of set union and intersection.)

a) The prime factorization of a positive integer n is a multiset N whose elements are
primes, where

p∈N p = n. The fact that every positive integer can be uniquely

factored into primes gives us a one-to-one correspondence between the positive
integers and the Ąnite multisets of prime numbers; for example, if n = 22 · 33 · 17,
the corresponding multiset is N = {2, 2, 3, 3, 3, 17}. If M and N are the multisets
corresponding respectively to m and n, what multisets correspond to gcd(m,n),
lcm(m,n), and mn?

b) Every monic polynomial f(z) over the complex numbers corresponds in a natural
way to the multiset F of its “rootsŤ; we have f(z) =

ζ∈F (z − ζ). If f(z)

and g(z) are the polynomials corresponding to the Ąnite multisets F and G of
complex numbers, what polynomials correspond to F ⊎G, F ∪G, and F ∩G?

c) Find as many interesting identities as you can that hold between multisets, with
respect to the three operations ⊎, ∪, ∩.

20. [M20] What are the sequences Si and Mij (0 ≤ i ≤ r, 0 ≤ j ≤ t) arising in
Hansen’s structural decomposition of star chains (a) of Type 3? (b) of Type 5? (The
six “typesŤ are deĄned in the proof of Theorem B.)

x 21. [M26] (W. Hansen.) Let q be any positive integer. Find a value of n such that
l(n) ≤ l∗(n)− q.
22. [M20] Prove that the addition chain constructed in the proof of Theorem F is an
l0-chain.

23. [M20] Prove Brauer’s inequality (50).

x 24. [M22] Generalize the proof of Theorem G to show that l0((Bn − 1)/(B − 1)) ≤
(n− 1) l0(B) + l0(n), for any integer B > 1; and prove that l(2mn − 1) ≤ l(2m − 1) +
mn−m+ l0(n).

25. [20] Let y be a fraction, 0 < y < 1, expressed in the binary number system as y =
(.d1 . . . dk)2. Design an algorithm to compute xy using the operations of multiplication
and square-root extraction.

x 26. [M25] Design an efficient algorithm that computes the nth Fibonacci number Fn,
modulo m, given large integers n and m.

27. [M23] (A. Flammenkamp.) What is the smallest n for which every addition chain
contains at least eight small steps?

484 ARITHMETIC 4.6.3

28. [HM33] (A. Schönhage.) The object of this exercise is to give a fairly short proof
that l(n) ≥ λ(n) + lg ν(n)−O(log log(ν(n) + 1)).

a) When x = (xk . . . x0.x−1 . . .)2 and y = (yk . . . y0.y−1 . . .)2 are real numbers written
in binary notation, let us write x ⊆ y if xj ≤ yj for all j. Give a simple rule for con-
structing the smallest number z with the property that x′ ⊆ x and y′ ⊆ y implies
x′ + y′ ⊆ z. Denoting this number by x∇y, prove that ν(x∇y) ≤ ν(x) + ν(y).

b) Given any addition chain (11) with r = l(n), let the sequence d0, d1, . . . , dr

be deĄned as in (35), and deĄne the sequence A0, A1, . . . , Ar by the following
rules: A0 = 1; if ai = 2ai−1 then Ai = 2Ai−1; otherwise if ai = aj + ak for some
0 ≤ k ≤ j < i, then Ai = Ai−1∇(Ai−1/2dj−dk). Prove that this sequence “coversŤ
the given chain, in the sense that ai ⊆ Ai for 0 ≤ i ≤ r.

c) Let δ be a positive integer (to be selected later). Call the nondoubling step ai =
aj + ak a “baby stepŤ if dj − dk ≥ δ, otherwise call it a “close step.Ť Let B0 = 1;
Bi = 2Bi−1 if ai = 2ai−1; Bi = Bi−1∇(Bi−1/2dj−dk) if ai = aj + ak is a baby
step; and Bi = ρ(2Bi−1) otherwise, where ρ(x) is the least number y such that
x/2e ⊆ y for 0 ≤ e ≤ δ. Show that Ai ⊆ Bi and ν(Bi) ≤ (1 + δci)2bi for 0 ≤ i ≤ r,
where bi and ci respectively denote the number of baby steps and close steps ≤ i.
[Hint: Show that the 1s in Bi appear in consecutive blocks of size ≥ 1 + δci.]

d) We now have l(n) = r = br + cr + dr and ν(n) ≤ ν(Br) ≤ (1 + δcr)2br . Explain
how to choose δ in order to obtain the inequality stated at the beginning of this
exercise. [Hint: See (16), and note that n ≤ 2rαbr for some α < 1 depending
on δ.]

29. [M49] (K. B. Stolarsky, 1969.) Is ν(n) ≤ 2l(n)−λ(n) for all positive integers n? (If
so, we have the lower bound l(2n − 1) ≥ n− 1 + ⌈lgn⌉; see (17) and (49).)

30. [20] An addition-subtraction chain has the rule ai = aj ± ak in place of (2);
the imaginary computer described in the text has a new operation code, SUB. (This
corresponds in practice to evaluating xn using both multiplications and divisions.) Find
an addition-subtraction chain, for some n, that has fewer than l(n) steps.

31. [M46] (D. H. Lehmer.) Explore the problem of minimizing ϵq + (r − q) in an
addition chain (1), where q is the number of “simpleŤ steps in which ai = ai−1 + 1,
given a small positive “weightŤ ϵ. (This problem comes closer to reality for many
calculations of xn, if multiplication by x is simpler than a general multiplication; see
the applications in Section 4.6.2.)

32. [M30] (A. C. Yao, F. F. Yao, R. L. Graham.) Associate the “costŤ ajak with each
step ai = aj + ak of an addition chain (1). Show that the left-to-right binary method
yields a chain of minimum total cost, for all positive integers n.

33. [15] How many addition chains of length 9 have (52) as their reduced directed
graph?

34. [M23] The binary addition chain for n = 2e0 + · · ·+ 2et , when e0 > · · · > et ≥ 0,
is 1, 2, . . . , 2e0−e1 , 2e0−e1 + 1, . . . , 2e0−e2 + 2e1−e2 , 2e0−e2 + 2e1−e2 + 1, . . . , n. This
corresponds to the S-and-X method described at the beginning of this section, while
Algorithm A corresponds to the addition chain obtained by sorting the two sequences
(1, 2, 4, . . . , 2e0) and (2et−1 +2et , 2et−2 +2et−1 +2et , . . . , n) into increasing order. Prove
or disprove: Each of these addition chains is a dual of the other.

35. [M27] How many addition chains without useless steps are equivalent to each of
the addition chains discussed in exercise 34, when e0 > e1 + 1?

4.6.4 EVALUATION OF POLYNOMIALS 485

x 36. [25] (E. G. Straus.) Find a way to compute a general monomial xn1
1 xn2

2 . . . xnm
m

in at most 2λ(max(n1, n2, . . . , nm)) + 2m −m− 1 multiplications.

37. [HM30] (A. C. Yao.) Let l(n1, . . . , nm) be the length of the shortest addition
chain that contains m given numbers n1 < · · · < nm. Prove that l(n1, . . . , nm) ≤
λ(nm) +mλ(nm)/λλ(nm) +O(λ(nm)λλλ(nm)/λλ(nm)2), thereby generalizing (25).

38. [M47] What is the asymptotic value of l(1, 4, 9, . . . ,m2) −m, as m → ∞, in the
notation of exercise 37?

x 39. [M25] (J. Olivos, 1979.) Let l([n1, n2, . . . , nm]) be the minimum number of mul-
tiplications needed to evaluate the monomial xn1

1 xn2
2 . . . xnm

m in the sense of exercise 36,
where each ni is a positive integer. Prove that this problem is equivalent to the problem
of exercise 37, by showing that l([n1, n2, . . . , nm]) = l(n1, n2, . . . , nm) + m − 1. [Hint:

Consider directed graphs like (52) that have more than one source vertex.]

x 40. [M21] (J. Olivos.) Generalizing the factor method and Theorem F, prove that

l(m1n1 + · · ·+mtnt) ≤ l(m1, . . . ,mt) + l(n1, . . . , nt) + t− 1,

where l(n1, . . . , nt) is deĄned in exercise 37.

41. [M40] (P. Downey, B. Leong, R. Sethi.) Let G be a connected graph with n
vertices {1, . . . , n} and m edges, where the edges join uj to vj for 1 ≤ j ≤ m. Prove
that l(1, 2, . . . , 2An, 2Au1 +2Av1 +1, . . . , 2Aum +2Avm +1) = An+m+k for all sufficiently
large A, where k is the minimum number of vertices in a vertex cover for G (namely a
set that contains either uj or vj for 1 ≤ j ≤ m).

42. [22] (Neill Clift, 2005.) Show that neither 1, 2, 4, 8, 16, 32, 64, 65, 97, 128,
256, 353, 706, 1412, 2824, 5648, 11296, 22592, 45184, 90368, 180736, 361472, 361537,
723074, 1446148, 2892296, 5784592, 5784689 nor its dual is an l0-chain.

43. [M50] Is l(2n−1) ≤ n−1+l(n) for all integers n > 0? Does equality always hold?

4.6.4. Evaluation of Polynomials

Now that we know efficient ways to evaluate the special polynomial xn, let us
consider the general problem of computing an nth degree polynomial

u(x) = unx
n + un−1x

n−1 + · · ·+ u1x+ u0, un ̸= 0, (1)

for given values of x. This problem arises frequently in practice.
In the following discussion we shall concentrate on minimizing the number of

operations required to evaluate polynomials by computer, blithely assuming that
all arithmetic operations are exact. Polynomials are most commonly evaluated
using Ćoating point arithmetic, which is not exact, and different schemes for
the evaluation will, in general, give different answers. A numerical analysis of
the accuracy achieved depends on the coefficients of the particular polynomial
being considered, and is beyond the scope of this book; the reader should be
careful to investigate the accuracy of any calculations undertaken with Ćoating
point arithmetic. In most cases the methods we shall describe turn out to be
reasonably satisfactory from a numerical standpoint, but many bad examples
can also be given. [See Webb Miller, SICOMP 4 (1975), 97Ű107, for a survey of
the literature on stability of fast polynomial evaluation, and for a demonstration
that certain kinds of numerical stability cannot be guaranteed for some families
of high-speed algorithms.]

486 ARITHMETIC 4.6.4

Throughout this section we will act as if the variable x were a single number.
But it is important to keep in mind that most of the methods we will discuss
are valid also when the variables are large objects like multiprecision numbers,
polynomials, or matrices. In such cases efficient formulas lead to even bigger
payoffs, especially when we can reduce the number of multiplications.

A beginning programmer will often evaluate the polynomial (1) in a man-
ner that corresponds directly to its conventional textbook form: First unxn is
calculated, then un−1x

n−1, . . . , u1x, and Ąnally all of the terms of (1) are added
together. But even if the efficient methods of Section 4.6.3 are used to evaluate
the powers of x in this approach, the resulting calculation is needlessly slow
unless nearly all of the coefficients uk are zero. If the coefficients are all nonzero,
an obvious alternative would be to evaluate (1) from right to left, computing the
values of xk and ukxk + · · ·+u0 for k = 1, . . . , n. Such a process involves 2n− 1
multiplications and n additions, and it might also require further instructions to
store and retrieve intermediate results from memory.

Horner’s rule. One of the Ąrst things a novice programmer is usually taught
is an elegant way to rearrange this computation, by evaluating u(x) as follows:

u(x) =

. . . (unx+ un−1)x+ · · ·

x+ u0. (2)

Start with un, multiply by x, add un−1, multiply by x, . . . , multiply by x,
add u0. This form of the computation is usually called “Horner’s ruleŤ; we have
already seen it used in connection with radix conversion in Section 4.4. The
entire process requires n multiplications and n additions, minus one addition
for each coefficient that is zero. Furthermore, there is no need to store partial
results, since each quantity arising during the calculation is used immediately
after it has been computed.

W. G. Horner gave this rule early in the nineteenth century [Philosophical
Transactions, Royal Society of London 109 (1819), 308Ű335] in connection with
a procedure for calculating polynomial roots. The fame of the latter method [see
J. L. Coolidge, Mathematics of Great Amateurs (Oxford, 1949), Chapter 15]
accounts for the fact that Horner’s name has been attached to (2); but actually
Isaac Newton had made use of the same idea more than 150 years earlier. For
example, in a well-known work entitled De Analysi per Æquationes InĄnitas,
originally written in 1669, Newton wrote

y − 4× y : + 5× y :− 12× y : + 17

for the polynomial y4 − 4y3 + 5y2 − 12y+ 17, while illustrating what later came
to be known as Newton’s method for rootĄnding. This clearly shows the idea
of (2), since he often denoted grouping by using horizontal lines and colons
instead of parentheses. Newton had been using the idea for several years in
unpublished notes. [See The Mathematical Papers of Isaac Newton, edited by
D. T. Whiteside, 1 (1967), 490, 531; 2 (1968), 222.] Independently, a method
equivalent to Horner’s had in fact been used in 13th-century China by Ch’in
Chiu-Shao [see Y. Mikami, The Development of Mathematics in China and Japan
(1913), 73Ű77].

4.6.4 EVALUATION OF POLYNOMIALS 487

Several generalizations of Horner’s rule have been suggested. Let us Ąrst
consider evaluating u(z) when z is a complex number, while the coefficients uk
are real. In particular, when z = eiθ = cos θ + i sin θ, the polynomial u(z) is
essentially two Fourier series,

(u0 + u1 cos θ + · · ·+ un cosnθ) + i(u1 sin θ + · · ·+ un sinnθ).

Complex addition and multiplication can obviously be reduced to a sequence of
ordinary operations on real numbers:

real + complex requires 1 addition
complex + complex requires 2 additions
real × complex requires 2 multiplications
complex × complex requires 4 multiplications, 2 additions

or 3 multiplications, 5 additions

(See exercise 41. Subtraction is considered here as if it were equivalent to
addition.) Therefore Horner’s rule (2) uses either 4n − 2 multiplications and
3n− 2 additions or 3n− 1 multiplications and 6n− 5 additions to evaluate u(z)
when z = x+iy is complex. Actually 2n−4 of these additions can be saved, since
we are multiplying by the same number z each time. An alternative procedure
for evaluating u(x+ iy) is to let

a1 = un, b1 = un−1, r = x+ x, s = x2 + y2;

aj = bj−1 + raj−1, bj = un−j − saj−1, 1 < j ≤ n. (3)

Then it is easy to prove by induction that u(z) = zan + bn. This scheme [BIT 5
(1965), 142; see also G. Goertzel, AMM 65 (1958), 34Ű35] requires only 2n+ 2
multiplications and 2n+ 1 additions, so it is an improvement over Horner’s rule
when n ≥ 3. In the case of Fourier series, when z = eiθ, we have s = 1, so the
number of multiplications drops to n+ 1. The moral of this story is that a good
programmer does not make indiscriminate use of the built-in complex-arithmetic
features of high-level programming languages.

Consider the process of dividing the polynomial u(x) by x − x0, using
Algorithm 4.6.1D to obtain u(x) = (x− x0)q(x) + r(x); here deg(r) < 1, so r(x)
is a constant independent of x, and u(x0) = 0 · q(x0) + r = r. An examination
of this division process reveals that the computation is essentially the same as
Horner’s rule for evaluating u(x0). Similarly, if we divide u(z) by the polynomial
(z − z0)(z − z̄0) = z2 − 2x0z + x2

0 + y2
0 , the resulting computation turns out to

be equivalent to (3); we obtain u(z) = (z − z0)(z − z̄0)q(z) + anz + bn, hence
u(z0) = anz0 + bn.

In general, if we divide u(x) by f(x) to obtain u(x) = f(x)q(x) + r(x),
and if f(x0) = 0, we have u(x0) = r(x0); this observation leads to further
generalizations of Horner’s rule. For example, we may let f(x) = x2 − x2

0; this
yields the “second-orderŤ Horner’s rule

u(x) =

. . . (u2⌊n/2⌋x

2 + u2⌊n/2⌋−2)x2 + · · ·

x2 + u0

+

(. . . (u2⌈n/2⌉−1x

2 + u2⌈n/2⌉−3)x2 + · · ·)x2 + u1

x. (4)

488 ARITHMETIC 4.6.4

The second-order rule uses n+1 multiplications and n additions (see exercise 5);
so it is no improvement over Horner’s rule from this standpoint. But there are at
least two circumstances in which (4) is useful: If we want to evaluate both u(x)
and u(−x), this approach yields u(−x) with just one more addition operation;
two values can be obtained almost as cheaply as one. Moreover, if we have a
computer that allows parallel computations, the two lines of (4) may be evaluated
independently, so we save about half the running time.

When our computer allows parallel computation on k arithmetic units at
once, a “kth-orderŤ Horner’s rule

obtained in a similar manner from f(x) =

xk − xk0

may be used. Another attractive method for parallel computation has
been suggested by G. Estrin [Proc. Western Joint Computing Conf. 17 (1960),
33Ű40]; for n = 7, Estrin’s method is:

Processor 1

a1 = u7x+ u6

a2 = a1x
2 + b1

a3 = a2x
4 + c2

Processor 2

b1 = u5x+ u4

Processor 3

c1 = u3x+ u2

c2 = c1x
2 + d1

Processor 4

d1 = u1x+ u0

Processor 5

x2

x4

Here a3 = u(x). However, an interesting analysis by W. S. Dorn [IBM J. Res.
and Devel. 6 (1962), 239Ű245] shows that these methods might not actually be
an improvement over the second-order rule, if each arithmetic unit must access
a memory that communicates with only one processor at a time.

Tabulating polynomial values. If we wish to evaluate an nth degree polyno-
mial at many points in an arithmetic progression

that is, if we want to calculate

u(x0), u(x0 + h), u(x0 + 2h), . . .

, the process can be reduced to addition

only, after the Ąrst few steps. For if we start with any sequence of numbers
(α0, α1, . . . , αn) and apply the transformation

α0 ← α0 + α1, α1 ← α1 + α2, . . . , αn−1 ← αn−1 + αn, (5)

we Ąnd that k applications of (5) yields

α
(k)
j =

k

0

βj +

k

1

βj+1 +

k

2

βj+2 + · · · , 0 ≤ j ≤ n,

where βj denotes the initial value of αj and βj = 0 for j > n. In particular,

α
(k)
0 =

k

0

β0 +

k

1

β1 + · · ·+

k

n

βn (6)

is a polynomial of degree n in k. By properly choosing the β’s, as shown
in exercise 7, we can set things up so that this quantity α

(k)
0 is the desired

value u(x0 + kh), for all k. In other words, each execution of the n additions in
(5) will produce the next value of the given polynomial.

Caution: Rounding errors can accumulate after many repetitions of (5), and
an error in αj produces a corresponding error in the coefficients of x0, . . . , xj

in the polynomial being computed. Therefore the values of the α’s should be
“refreshedŤ after a large number of iterations.

4.6.4 EVALUATION OF POLYNOMIALS 489

Derivatives and changes of variable. Sometimes we want to Ąnd the coeffi-
cients of u(x+x0), given a constant x0 and the coefficients of u(x). For example,
if u(x) = 3x2 +2x−1, then u(x−2) = 3x2−10x+7. This is analogous to a radix
conversion problem, converting from base x to base x+ 2. By Taylor’s theorem,
the new coefficients are given by the derivatives of u(x) at x = x0, namely

u(x+ x0) = u(x0) + u′(x0)x+

u′′(x0)/2!

x2 + · · ·+

u(n)(x0)/n!

xn, (7)

so the problem is equivalent to evaluating u(x) and all its derivatives.
If we write u(x) = q(x)(x − x0) + r, then u(x + x0) = q(x + x0)x + r; so

r is the constant coefficient of u(x+ x0), and the problem reduces to Ąnding the
coefficients of q(x+x0), where q(x) is a known polynomial of degree n−1. Thus
the following algorithm is indicated:

H1. Set vj ← uj for 0 ≤ j ≤ n.
H2. For k = 0, 1, . . . , n− 1 (in this order), set vj ← vj + x0vj+1 for j = n− 1,

. . . , k + 1, k (in this order).

At the conclusion of step H2 we have u(x + x0) = vnx
n + · · · + v1x + v0. This

procedure was a principal part of Horner’s root-Ąnding method, and when k = 0
it is exactly rule (2) for evaluating u(x0).

Horner’s method requires (n2+n)/2 multiplications and (n2+n)/2 additions;
but notice that if x0 = 1 we avoid all of the multiplications. Fortunately we can
reduce the general problem to the case x0 = 1 by introducing comparatively few
multiplications and divisions:

S1. Compute and store the values x2
0, . . . , xn0.

S2. Set vj ← ujx
j
0 for 0 ≤ j ≤ n.

Now v(x) = u(x0x).

S3. Perform step H2 but with x0 = 1.

Now v(x) = u

x0(x+1)

= u(x0x+x0).

S4. Set vj ← vj/x
j
0 for 0 < j ≤ n.

Now v(x) = u(x+ x0) as desired.

This idea, due to M. Shaw and J. F. Traub [JACM 21 (1974), 161Ű167], has the
same number of additions and the same numerical stability as Horner’s method;
but it needs only 2n−1 multiplications and n−1 divisions, since vn = un. About
1
2n of these multiplications can, in turn, be avoided (see exercise 6).

If we want only the Ąrst few or the last few derivatives, Shaw and Traub
have observed that there are further ways to save time. For example, if we just
want to evaluate u(x) and u′(x), we can do the job with 2n − 1 additions and
about n+

√
2n multiplications/divisions as follows:

D1. Compute and store the values x2, x3, . . . , xt, x2t, where t =

n/2

.

D2. Set vj ← ujx
f(j) for 0 ≤ j ≤ n, where f(j) = t − 1 −

(n − 1 − j) mod 2t

for 0 ≤ j < n, and f(n) = t.
D3. Set vj ← vj +vj+1x

g(j) for j = n−1, . . . , 1, 0; here g(j) = 2t when n−1−j
is a positive multiple of 2t, otherwise g(j) = 0 and the multiplication by
xg(j) need not be done.

D4. Set vj ← vj + vj+1x
g(j) for j = n − 1, . . . , 2, 1. Now v0/x

f(0) = u(x) and
v1/xf(1) = u′(x).

490 ARITHMETIC 4.6.4

Adaptation of coefficients. Let us now return to our original problem of
evaluating a given polynomial u(x) as rapidly as possible, for “randomŤ values
of x. The importance of this problem is due partly to the fact that standard
functions such as sin x, cosx, ex, etc., are usually computed by subroutines that
rely on the evaluation of certain polynomials; such polynomials are evaluated so
often, it is desirable to Ąnd the fastest possible way to do the computation.

Arbitrary polynomials of degree Ąve and higher can be evaluated with fewer
operations than Horner’s rule requires, if we Ąrst “adaptŤ or “preconditionŤ
the coefficients u0, u1, . . . , un. This adaptation process might involve a lot of
work, as explained below; but the preliminary calculation is not wasted, since
it must be done only once while the polynomial will be evaluated many times.
For examples of “adaptedŤ polynomials for standard functions, see V. Y. Pan,
USSR Computational Math. and Math. Physics 2 (1963), 137Ű146.

The simplest case for which adaptation of coefficients is helpful occurs for a
fourth degree polynomial:

u(x) = u4x
4 + u3x

3 + u2x
2 + u1x+ u0, u4 ̸= 0. (8)

This equation can be rewritten in a form originally suggested by T. S. Motzkin,

y = (x+ α0)x+ α1, u(x) =

(y + x+ α2)y + α3

α4, (9)

for suitably “adaptedŤ coefficients α0, α1, α2, α3, α4. The computation in this
scheme involves three multiplications, Ąve additions, and (on a one-accumulator
machine like MIX) one instruction to store the partial result y into temporary
storage. By comparison with Horner’s rule, we have traded a multiplication for
an addition and a possible storage command. Even this comparatively small
change is worthwhile if the polynomial is to be evaluated often. (Of course, if
the time for multiplication is comparable to the time for addition, (9) gives no
improvement; we will see that a general fourth-degree polynomial always requires
at least eight arithmetic operations for its evaluation.)

By equating coefficients in (8) and (9), we obtain formulas for computing
the αj ’s in terms of the uk’s:

α0 = 1
2 (u3/u4 − 1), β = u2/u4 − α0(α0 + 1), α1 = u1/u4 − α0β,

α2 = β − 2α1, α3 = u0/u4 − α1(α1 + α2), α4 = u4. (10)

A similar scheme, which evaluates a fourth-degree polynomial in the same num-
ber of steps as (9), appears in exercise 18; this alternative method will give
greater numerical accuracy than (9) in certain cases, although it yields poorer
accuracy in others.

Polynomials that arise in practice often have a rather small leading coeffi-
cient, so that the division by u4 in (10) leads to instability. In such a case it
is usually preferable to replace x by |u4|1/4x as the Ąrst step, reducing (8) to a
polynomial whose leading coefficient is ±1. A similar transformation applies to
polynomials of higher degrees. This idea is due to C. T. Fike [CACM 10 (1967),
175Ű178], who has presented several interesting examples.

4.6.4 EVALUATION OF POLYNOMIALS 491

Any polynomial of the Ąfth degree may be evaluated using four multiplica-
tions, six additions, and one storing, by using the rule u(x) = U(x)x+u0, where
U(x) = u5x

4 +u4x
3 +u3x

2 +u2x+u1 is evaluated as in (9). Alternatively, we can
do the evaluation with four multiplications, Ąve additions, and three storings,
if the calculations take the form

y = (x+ α0)2, u(x) =

((y + α1)y + α2)(x+ α3) + α4

α5. (11)

The determination of the α’s this time requires the solution of a cubic equation
(see exercise 19).

On many computers the number of “storingŤ operations required by (11) is
less than 3; for example, we may be able to compute (x+ α0)2 without storing
x+α0. In fact, most computers nowadays have more than one arithmetic register
for Ćoating point calculations, so we can avoid storing altogether. Because of
the wide variety of features available for arithmetic on different computers, we
shall henceforth in this section count only the arithmetic operations, not the
operations of storing and loading an accumulator. The computation schemes
can usually be adapted to any particular computer in a straightforward manner,
so that very few of these auxiliary operations are necessary; on the other hand,
it must be remembered that overhead costs might well overshadow the fact that
we are saving a multiplication or two, especially if the machine code is being
produced by a compiler that does not optimize.

A polynomial u(x) = u6x
6 + · · · + u1x + u0 of degree six can always be

evaluated using four multiplications and seven additions, with the scheme

z = (x+ α0)x+ α1, w = (x+ α2)z + α3,

u(x) =

(w + z + α4)w + α5

α6. (12)

[See D. E. Knuth, CACM 5 (1962), 595Ű599.] This saves two of the six multi-
plications required by Horner’s rule. Here again we must solve a cubic equation:
Since α6 = u6, we may assume that u6 = 1. Under this assumption, let

β1 = (u5 − 1)/2, β2 = u4 − β1(β1 + 1),

β3 = u3 − β1β2, β4 = β1 − β2, β5 = u2 − β1β3.

Let β6 be a real root of the cubic equation

2y3 + (2β4 − β2 + 1)y2 + (2β5 − β2β4 − β3)y + (u1 − β2β5) = 0. (13)

(This equation always has a real root, since the polynomial on the left approaches
+∞ for large positive y, and it approaches −∞ for large negative y; it must
assume the value zero somewhere in between.) Now if we deĄne

β7 = β2
6 + β4β6 + β5, β8 = β3 − β6 − β7,

we have Ąnally

α0 = β2 − 2β6, α2 = β1 − α0, α1 = β6 − α0α2,

α3 = β7 − α1α2, α4 = β8 − β7 − α1, α5 = u0 − β7β8. (14)

492 ARITHMETIC 4.6.4

We can illustrate this procedure with a contrived example: Suppose that we
want to evaluate x6 + 13x5 + 49x4 + 33x3 − 61x2 − 37x+ 3. We obtain α6 = 1,
β1 = 6, β2 = 7, β3 = −9, β4 = −1, β5 = −7, and so we meet with the cubic
equation

2y3 − 8y2 + 2y + 12 = 0. (15)

This equation has β6 = 2 as a root, and we continue to Ąnd

β7 = −5, β8 = −6,

α0 = 3, α2 = 3, α1 = −7, α3 = 16, α4 = 6, α5 = −27.

The resulting scheme is therefore

z = (x+ 3)x− 7, w = (x+ 3)z + 16, u(x) = (w + z + 6)w − 27.

By sheer coincidence the quantity x+ 3 appears twice here, so we have found a
method that uses three multiplications and six additions.

Another method for handling sixth-degree equations has been suggested by
V. Y. Pan [Problemy Kibernetiki 5 (1961), 17Ű29]. His method requires one more
addition operation, but it involves only rational operations in the preliminary
steps; no cubic equation needs to be solved. We may proceed as follows:

z = (x+ α0)x+ α1, w = z + x+ α2,

u(x) =

((z − x+ α3)w + α4)z + α5

α6. (16)

To determine the α’s, we divide the polynomial once again by u6 = α6 so that
u(x) becomes monic. It can then be veriĄed that α0 = u5/3 and that

α1 = (u1 − α0u2 + α2
0u3 − α3

0u4 + 2α5
0)/(u3 − 2α0u4 + 5α3

0). (17)

Note that Pan’s method requires that the denominator in (17) does not vanish.
In other words, (16) can be used only when

27u3u
2
6 − 18u6u5u4 + 5u3

5 ̸= 0; (18)

in fact, this quantity should not be so small that α1 becomes too large. Once α1

has been determined, the remaining α’s may be determined from the equations

β1 = 2α0, β2 = u4 − α0β1 − α1,

β3 = u3 − α0β2 − α1β1, β4 = u2 − α0β3 − α1β2,

α3 = 1
2

β3 − (α0 − 1)β2 + (α0 − 1)(α2

0 − 1)

− α1,

α2 = β2 − (α2
0 − 1)− α3 − 2α1, α4 = β4 − (α2 + α1)(α3 + α1),

α5 = u0 − α1β4. (19)

We have discussed the cases of degree n = 4, 5, 6 in detail because the
smaller values of n arise most frequently in applications. Let us now consider
a general evaluation scheme for nth degree polynomials, a method that involves
at most ⌊n/2⌋+ 2 multiplications and n additions.

4.6.4 EVALUATION OF POLYNOMIALS 493

Theorem E. Every nth degree polynomial (1) with real coefficients, n ≥ 3,
can be evaluated by the scheme

y = x+ c, w = y2; z =

(uny + α0)y + β0, n even,
uny + β0, n odd,

u(x) =

. . . ((z(w − α1) + β1)(w − α2) + β2) . . .

(w − αm) + βm, (20)

for suitable real parameters c, αk and βk, where m = ⌈n/2⌉ − 1. In fact, it is
possible to select these parameters so that βm = 0.

Proof. Let us Ąrst examine the circumstances under which the α’s and β’s can
be chosen in (20), if c is Ąxed. Let

p(x) = u(x− c) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0. (21)

We want to show that p(x) has the form p1(x)(x2−αm)+βm for some polynomial
p1(x) and some constants αm, βm. If we divide p(x) by x2−αm, we can see that
the remainder βm is a constant only if the auxiliary polynomial

q(x) = a2m+1x
m + a2m−1x

m−1 + · · ·+ a1, (22)

formed from every odd-numbered coefficient of p(x), is a multiple of x − αm.
Conversely, if q(x) has x−αm as a factor, then p(x) = p1(x)(x2−αm) +βm, for
some constant βm that may be determined by division.

Similarly, we want p1(x) to have the form p2(x)(x2 − αm−1) + βm−1, and
this is the same as saying that q(x)/(x − αm) is a multiple of x − αm−1; for
if q1(x) is the polynomial corresponding to p1(x) as q(x) corresponds to p(x),
we have q1(x) = q(x)/(x − αm). Continuing in the same way, we Ąnd that the
parameters α1, β1, . . . , αm, βm will exist if and only if

q(x) = a2m+1(x− α1) . . . (x− αm). (23)

In other words, either q(x) is identically zero (and this can happen only when n
is even), or else q(x) is an mth degree polynomial having all real roots.

Now we have a surprising fact discovered by J. Eve [Numer. Math. 6 (1964),
17Ű21]: If p(x) has at least n− 1 complex roots whose real parts are all nonneg-
ative, or all nonpositive, then the corresponding polynomial q(x) is identically
zero or has all real roots. (See exercise 23.) Since u(x) = 0 if and only if
p(x+ c) = 0, we need merely choose the parameter c large enough that at least
n−1 of the roots of u(x) = 0 have a real part ≥ −c, and (20) will apply whenever
an−1 = un−1 − ncun ̸= 0.

We can also determine c so that these conditions are fulĄlled and also that
βm = 0. First the n roots of u(x) = 0 are determined. If a+ bi is a root having
the largest or the smallest real part, and if b ̸= 0, let c = −a and αm = −b2;
then x2−αm is a factor of u(x− c). If the root with smallest or largest real part
is real, but the root with second smallest (or second largest) real part is nonreal,
the same transformation applies. If the two roots with smallest (or largest) real
parts are both real, they can be expressed in the form a−b and a+b, respectively;
let c = −a and αm = b2. Again x2−αm is a factor of u(x−c). (Still other values

494 ARITHMETIC 4.6.4

of c are often possible; see exercise 24.) The coefficient an−1 will be nonzero for
at least one of these alternatives, unless q(x) is identically zero.

Note that this method of proof usually gives at least two values of c, and we
also have the chance to permute α1, . . . , αm−1 in (m− 1)! ways. Some of these
alternatives may give more desirable numerical accuracy than others.

Questions of numerical accuracy do not arise, of course, when we are working
with integers modulo m instead of with real numbers. Scheme (9) works for
n = 4 when m is relatively prime to 2u4, and (16) works for n = 6 when m
is relatively prime to 6u6 and to the denominator of (17). Exercise 44 shows
that n/2+O(logn) multiplications and O(n) additions suffice for any monic nth
degree polynomial modulo any m.

*Polynomial chains. Now let us consider questions of optimality. What are
the best possible schemes for evaluating polynomials of various degrees, in terms
of the minimum possible number of arithmetic operations? This question was
Ąrst analyzed by A. M. Ostrowski in the case that no preliminary adaptation
of coefficients is allowed [Studies in Mathematics and Mechanics Presented to
R. von Mises (New York: Academic Press, 1954), 40Ű48], and by T. S. Motzkin
in the case of adapted coefficients [see Bull. Amer. Math. Soc. 61 (1955), 163].

In order to investigate this question, we can extend Section 4.6.3’s concept
of addition chains to the notion of polynomial chains. A polynomial chain is a
sequence of the form

x = λ0, λ1, . . . , λr = u(x), (24)

where u(x) is some polynomial in x, and for 1 ≤ i ≤ r
either λi = (±λj) ◦ λk, 0 ≤ j, k < i,

or λi = αj ◦ λk, 0 ≤ k < i.
(25)

Here “◦Ť denotes any of the three operations “+Ť, “−Ť, or “×Ť, and αj denotes
a so-called parameter. Steps of the Ąrst kind are called chain steps, and steps
of the second kind are called parameter steps. We shall assume that a different
parameter αj is used in each parameter step; if there are s parameter steps, they
should involve α1, α2, . . . , αs in this order.

It follows that the polynomial u(x) at the end of the chain has the form

u(x) = qnx
n + · · ·+ q1x+ q0, (26)

where qn, . . . , q1, q0 are polynomials in α1, α2, . . . , αs with integer coefficients.
We shall interpret the parameters α1, α2, . . . , αs as real numbers, and we shall
therefore restrict ourselves to considering the evaluation of polynomials with
real coefficients. The result set R of a polynomial chain is deĄned to be the
set of all vectors (qn, . . . , q1, q0) of real numbers that occur as α1, α2, . . . , αs

independently assume all possible real values.
If for every choice of t + 1 distinct integers j0, . . . , jt ∈ {0, 1, . . . , n} there

is a nonzero multivariate polynomial fj0...jt with integer coefficients such that
fj0...jt(qj0

, . . . , qjt) = 0 for all (qn, . . . , q1, q0) in R, let us say that the result

4.6.4 EVALUATION OF POLYNOMIALS 495

set R has at most t degrees of freedom, and that the chain (24) has at most t
degrees of freedom. We also say that the chain (24) computes a given polynomial
u(x) = unx

n + · · · + u1x + u0 if (un, . . . , u1, u0) is in R. It follows that a
polynomial chain with at most n degrees of freedom cannot compute all nth
degree polynomials (see exercise 27).

As an example of a polynomial chain, consider the following chain corre-
sponding to Theorem E, when n is odd:

λ0 = x

λ1 = α1 + λ0

λ2 = λ1 × λ1

λ3 = α2 × λ1

λ1+3i

λ2+3i

λ3+3i

= α1+2i + λ3i

= α2+2i + λ2

= λ1+3i × λ2+3i

1 ≤ i < n/2.

(27)

There are ⌊n/2⌋+ 2 multiplications and n additions; ⌊n/2⌋+ 1 chain steps and
n + 1 parameter steps. By Theorem E, the result set R includes the set of all
(un, . . . , u1, u0) with un ̸= 0, so (27) computes all polynomials of degree n. We
cannot prove that R has at most n degrees of freedom, since the result set has
n+ 1 independent components.

A polynomial chain with s parameter steps has at most s degrees of freedom.
In a sense, this is obvious: We can’t compute a function with t degrees of freedom
using fewer than t arbitrary parameters. But this intuitive fact is not easy
to prove formally; for example, there are continuous functions (“space-Ąlling
curvesŤ) that map the real line onto a plane, and such functions map a single
parameter into two independent parameters. For our purposes, we need to verify
that no polynomial functions with integer coefficients can have such a property;
a proof appears in exercise 28.

Given this fact, we can proceed to prove the results we seek:

Theorem M (T. S. Motzkin, 1954). A polynomial chain with m > 0 multipli-
cations has at most 2m degrees of freedom.

Proof. Let µ1, µ2, . . . , µm be the λi’s of the chain that are multiplication
operations. Then

µi = S2i−1 × S2i for 1 ≤ i ≤ m and u(x) = S2m+1, (28)

where each Sj is a certain sum of µ’s, x’s, and α’s. Write Sj = Tj + βj , where
Tj is a sum of µ’s and x’s while βj is a sum of α’s.

Now u(x) is expressible as a polynomial in x, β1, . . . , β2m+1 with integer
coefficients. Since the β’s are expressible as linear functions of α1, . . . , αs, the
set of values represented by all real values of β1, . . . , β2m+1 contains the result
set of the chain. Therefore there are at most 2m+ 1 degrees of freedom; this can
be improved to 2m when m > 0, as shown in exercise 30.

496 ARITHMETIC 4.6.4

An example of the construction in the proof of Theorem M appears in
exercise 25. A similar result can be proved for additions:

Theorem A (É. G. Belaga, 1958). A polynomial chain containing q additions
and subtractions has at most q + 1 degrees of freedom.

Proof. [Problemy Kibernetiki 5 (1961), 7Ű15.] Let κ1, . . . , κq be the λi’s of the
chain that correspond to addition or subtraction operations. Then

κi = ±T2i−1 ± T2i for 1 ≤ i ≤ q and u(x) = T2q+1, (29)

where each Tj is a product of κ’s, x’s, and α’s. We may write Tj = AjBj ,
where Aj is a product of α’s and Bj is a product of κ’s and x’s. The following
transformation may now be made to the chain, successively for i = 1, 2, . . . , q:
Let βi = A2i/A2i−1, so that κi = A2i−1(±B2i−1 ± βiB2i). Then change κi
to ±B2i−1 ± βiB2i, and replace each occurrence of κi in future formulas T2i+1,
T2i+2, . . . , T2q+1 by A2i−1κi. (This replacement may change the values of A2i+1,
A2i+2, . . . , A2q+1.)

After the transformation has been done for all i, let βq+1 = A2q+1; then u(x)
can be expressed as a polynomial in β1, . . . , βq+1, and x, with integer coefficients.
We are almost ready to complete the proof, but we must be careful because the
polynomials obtained as β1, . . . , βq+1 range over all real values may not include
all polynomials representable by the original chain (see exercise 26); it is possible
to have A2i−1 = 0, for some values of the α’s, and this makes βi undeĄned.

To complete the proof, let us observe that the result set R of the original
chain can be written R = R1 ∪ R2 ∪ · · · ∪ Rq ∪ R′, where Ri is the set of result
vectors possible when A2i−1 = 0, and where R′ is the set of result vectors possible
when all α’s are nonzero. The discussion above proves that R′ has at most q+ 1
degrees of freedom. If A2i−1 = 0, then T2i−1 = 0, so addition step κi may be
dropped to obtain another chain computing the result set Ri; by induction we
see that each Ri has at most q degrees of freedom. Hence by exercise 29, R has
at most q + 1 degrees of freedom.

Theorem C. If a polynomial chain (24) computes all nth degree polynomials
u(x) = unx

n + · · · + u0, for some n ≥ 2, then it includes at least ⌊n/2⌋ + 1
multiplications and at least n addition-subtractions.

Proof. Let there be m multiplication steps. By Theorem M, the chain has at
most 2m degrees of freedom, so 2m ≥ n+ 1. Similarly, by Theorem A there are
≥ n addition-subtractions.

This theorem states that no single method having fewer than ⌊n/2⌋ + 1
multiplications or fewer than n additions can evaluate all possible nth degree
polynomials. The result of exercise 29 allows us to strengthen this and say that no
Ąnite collection of such polynomial chains will suffice for all polynomials of a given
degree. Some special polynomials can, of course, be evaluated more efficiently;
all we have really proved is that polynomials whose coefficients are algebraically

independent, in the sense that they satisfy no nontrivial polynomial equation,

4.6.4 EVALUATION OF POLYNOMIALS 497

require ⌊n/2⌋ + 1 multiplications and n additions. Unfortunately the coeffi-
cients we deal with in computers are always rational numbers, so the theorems
above don’t really apply; in fact, exercise 42 shows that we can always get by
with O(

√
n) multiplications (and a possibly huge number of additions). From a

practical standpoint, the bounds of Theorem C apply to “almost allŤ coefficients,
and they seem to apply to all reasonable schemes for evaluation. Furthermore
it is possible to obtain lower bounds corresponding to those of Theorem C even
in the rational case: By strengthening the proofs above, V. Strassen has shown,
for example, that the polynomial

u(x) =
n

k=0

22kn3

xk (30)

cannot be evaluated by any polynomial chain of length < n2/ lgn unless the
chain has at least 1

2n−2 multiplications and n−4 additions [SICOMP 3 (1974),
128Ű149]. The coefficients of (30) are very large; but it is also possible to Ąnd
polynomials whose coefficients are just 0s and 1s, such that every polynomial
chain computing them involves at least

√
n/(4 lgn) chain multiplications, for all

sufficiently large n, even when the parameters αj are allowed to be arbitrary
complex numbers. [See R. J. Lipton, SICOMP 7 (1978), 61Ű69; C.-P. Schnorr,
Lecture Notes in Comp. Sci. 53 (1977), 135Ű147.] Jean-Paul van de Wiele has
shown that the evaluation of certain 0Ű1 polynomials requires a total of at least
cn/logn arithmetic operations, for some c > 0 [FOCS 19 (1978), 159Ű165].

A gap still remains between the lower bounds of Theorem C and the actual
operation counts known to be achievable, except in the trivial case n = 2.
Theorem E gives ⌊n/2⌋ + 2 multiplications, not ⌊n/2⌋ + 1, although it does
achieve the minimum number of additions. Our special methods for n = 4 and
n = 6 have the minimum number of multiplications, but one extra addition.
When n is odd, it is not difficult to prove that the lower bounds of Theorem C
cannot be achieved simultaneously for both multiplications and additions; see
exercise 33. For n = 3, 5, and 7, it is possible to show that at least ⌊n/2⌋ + 2
multiplications are necessary. Exercises 35 and 36 show that the lower bounds
of Theorem C cannot both be achieved when n = 4 or n = 6; thus the methods
we have discussed are best possible, for n < 8. When n is even, Motzkin proved
that ⌊n/2⌋ + 1 multiplications are sufficient, but his construction involves an
indeterminate number of additions (see exercise 39). An optimal scheme for
n = 8 was found by V. Y. Pan, who showed that n + 1 additions are necessary
and sufficient for this case when there are ⌊n/2⌋ + 1 multiplications; he also
showed that ⌊n/2⌋ + 1 multiplications and n + 2 additions will suffice for all
even n ≥ 10. Pan’s paper [STOC 10 (1978), 162Ű172] also establishes the exact
minimum number of multiplications and additions needed when calculations are
done entirely with complex numbers instead of reals, for all degrees n. Exercise 40
discusses the interesting situation that arises for odd values of n ≥ 9.

It is clear that the results we have obtained about chains for polynomials in
a single variable can be extended without difficulty to multivariate polynomials.

498 ARITHMETIC 4.6.4

For example, if we want to Ąnd an optimum scheme for polynomial evaluation
without adaptation of coefficients, we can regard u(x) as a polynomial in the
n + 2 variables x, un, . . . , u1, u0; exercise 38 shows that n multiplications and
n additions are necessary in this case. Indeed, A. Borodin [Theory of Machines
and Computations, edited by Z. Kohavi and A. Paz (New York: Academic Press,
1971), 45Ű58] has proved that Horner’s rule (2) is essentially the only way to
compute u(x) in 2n operations without preconditioning.

With minor variations, the methods above can be extended to chains involv-
ing division, that is, to rational functions as well as polynomials. Curiously, the
continued-fraction analog of Horner’s rule now turns out to be optimal from an
operation-count standpoint, if multiplication and division speeds are equal, even
when preconditioning is allowed (see exercise 37).

Sometimes division is helpful during the evaluation of polynomials, even
though polynomials are deĄned only in terms of multiplication and addition;
we have seen examples of this in the ShawŰTraub algorithms for polynomial
derivatives. Another example is the polynomial

xn + · · ·+ x+ 1;

since this polynomial can be written (xn+1− 1)/(x− 1), we can evaluate it with
l(n + 1) multiplications (see Section 4.6.3), two subtractions, and one division,
while techniques that avoid division seem to require about three times as many
operations (see exercise 43).

Special multivariate polynomials. The determinant of an n×n matrix may
be considered to be a polynomial in n2 variables xij , 1 ≤ i, j ≤ n. If x11 ̸= 0, we
have

det

x11 x12 . . . x1n

x21 x22 . . . x2n

x31 x32 . . . x3n

...
...

...
xn1 xn2 . . . xnn

= x11 det

x22 − (x21/x11)x12 . . . x2n − (x21/x11)x1n

x32 − (x31/x11)x12 . . . x3n − (x31/x11)x1n

...
...

xn2 − (xn1/x11)x12 . . . xnn − (xn1/x11)x1n

. (31)

The determinant of an n × n matrix may therefore be evaluated by evaluating
the determinant of an (n − 1) × (n − 1) matrix and performing an additional
(n − 1)2 + 1 multiplications, (n − 1)2 additions, and n − 1 divisions. Since a
2 × 2 determinant can be evaluated with two multiplications and one addition,
we see that the determinant of almost all matrices (namely those for which no
division by zero is needed) can be computed with at most (2n3−3n2 +7n−6)/6
multiplications, (2n3 − 3n2 + n)/6 additions, and (n2 − n− 2)/2 divisions.

When zero occurs, the determinant is even easier to compute. For example,
if x11 = 0 but x21 ̸= 0, we have

det

0 x12 . . . x1n

x21 x22 . . . x2n

x31 x32 . . . x3n

...
...

...
xn1 xn2 . . . xnn

= −x21 det

x12 . . . x1n

x32 − (x31/x21)x22 . . . x3n − (x31/x21)x2n

...
...

xn2 − (xn1/x21)x22 . . . xnn − (xn1/x21)x2n

. (32)

4.6.4 EVALUATION OF POLYNOMIALS 499

Here the reduction to an (n − 1) × (n − 1) determinant saves n − 1 of the
multiplications and n−1 of the additions used in (31), in compensation for the ad-
ditional bookkeeping required to recognize this case. Thus any determinant can
be evaluated with roughly 2

3n
3 arithmetic operations (including division); this is

remarkable, since it is a polynomial with n! terms and n variables in each term.
If we want to evaluate the determinant of a matrix with integer elements, the

procedure of (31) and (32) appears to be unattractive since it requires rational
arithmetic. However, we can use the method to evaluate the determinant mod p,
for any prime p, since division mod p is possible (exercise 4.5.2Ű16). If this is
done for sufficiently many primes, the exact value of the determinant can be
found as explained in Section 4.3.2, since Hadamard’s inequality 4.6.1Ű(25) gives
an upper bound on the magnitude.

The coefficients of the characteristic polynomial det(xI−X) of an n×n ma-
trix X can also be computed in O(n3) steps; see J. H. Wilkinson, The Algebraic
Eigenvalue Problem (Oxford: Clarendon Press, 1965), 353Ű355, 410Ű411. Exer-
cise 70 discusses an interesting division-free method that involves O(n4) steps.

The permanent of a matrix is a polynomial that is very similar to the
determinant; the only difference is that all of its nonzero coefficients are +1.
Thus we have

per

x11 . . . x1n
...

...
xn1 . . . xnn

 =

x1j1x2j2 . . . xnjn , (33)

summed over all permutations j1 j2 . . . jn of {1, 2, . . . , n}. It would seem that
this function should be even easier to compute than its more complicated-looking
cousin, but no way to evaluate the permanent as efficiently as the determinant
is known. Exercises 9 and 10 show that substantially fewer than n! operations
will suffice, for large n, but the execution time of all known methods still grows
exponentially with the size of the matrix. In fact, Leslie G. Valiant has shown
that it is as difficult to compute the permanent of a given 0Ű1 matrix as it is to
count the number of accepting computations of a nondeterministic polynomial-
time Turing machine, if we ignore polynomial factors in the running time of the
calculation. Therefore a polynomial-time evaluation algorithm for permanents
would imply that scores of other well known problems that have resisted efficient
solution would be solvable in polynomial time. On the other hand, Valiant proved
that the permanent of an n × n integer matrix can be evaluated modulo 2k in
O(n4k−3) steps for all k ≥ 2. [See Theoretical Comp. Sci. 8 (1979), 189Ű201.]

Another fundamental operation involving matrices is, of course, matrix mul-

tiplication: If X = (xij) is an m× n matrix, Y = (yjk) is an n× s matrix, and
Z = (zik) is an m× s matrix, then the formula Z = XY means that

zik =
n

j=1

xijyjk, 1 ≤ i ≤ m, 1 ≤ k ≤ s. (34)

This equation may be regarded as the computation ofms simultaneous polynomi-
als in mn+ ns variables; each polynomial is the “inner productŤ of two n-place

500 ARITHMETIC 4.6.4

vectors. A straightforward calculation would involve mns multiplications and
ms(n− 1) additions; but S. Winograd discovered in 1967 that there is a way to
trade about half of the multiplications for additions:

zik =

1≤j≤n/2

(xi,2j + y 2j−1,k)(xi,2j−1 + y 2j,k)− ai − bk + xinynk[n odd];

ai =

1≤j≤n/2

xi,2jxi,2j−1; bk =

1≤j≤n/2

y 2j−1,ky 2j,k. (35)

This scheme uses ⌈n/2⌉ms + ⌊n/2⌋(m + s) multiplications and (n + 2)ms +
(⌊n/2⌋ − 1)(ms+m+ s) additions or subtractions; the total number of oper-
ations has increased slightly, but the number of multiplications has roughly
been halved. [See IEEE Trans. C-17 (1968), 693Ű694.] Winograd’s surprising
construction led many people to look more closely at the problem of matrix mul-
tiplication, and it touched off widespread speculation that n3/2 multiplications
might be necessary to multiply n× n matrices, because of the somewhat similar
lower bound that was known to hold for polynomials in one variable.

An even better scheme for large n was discovered by Volker Strassen in
1968; he found a way to compute the product of 2 × 2 matrices with only
seven multiplications, without relying on the commutativity of multiplication
as in (35). Since 2n × 2n matrices can be partitioned into four n × n matrices,
his idea can be used recursively to obtain the product of 2k × 2k matrices with
only 7k multiplications instead of (2k)3 = 8k. The number of additions also
grows as order 7k. Strassen’s original 2 × 2 identity [Numer. Math. 13 (1969),
354Ű356] used 7 multiplications and 18 additions; S. Winograd later discovered
the following more economical formula:

a

c

b

d

A

B

C

D

=

aA+bB
w+u+d(B+C−A−D)

w+v+(a+b−c−d)D
w+u+v

, (36)

where u = (c−a)(C−D), v = (c+d)(C−A), w = aA+ (c+d−a)(A+D−C).
If intermediate results are appropriately saved, this involves 7 multiplications
and only 15 additions; by induction on k, we can multiply 2k× 2k matrices with
7k multiplications and 5(7k − 4k) additions. The total number of operations
needed to multiply n × n matrices has therefore been reduced from order n3

to O(nlg 7) = O(n2.8074). A similar reduction applies also to the evaluation of
determinants and matrix inverses; see J. R. Bunch and J. E. Hopcroft, Math.
Comp. 28 (1974), 231Ű236.

Strassen’s exponent lg 7 resisted numerous attempts at improvement until
1978, when Viktor Pan discovered that it could be lowered to log70 143640 ≈
2.795 (see exercise 60). This new breakthrough led to further intensive analysis of
the problem, and the combined efforts of D. Bini, M. Capovani, D. Coppersmith,
G. Lotti, F. Romani, A. Schönhage, V. Pan, and S. Winograd, produced a
dramatic reduction in the asymptotic running time. Exercises 60Ű67 discuss
some of the interesting techniques by which such upper bounds have been estab-
lished; in particular, exercise 66 contains a reasonably simple proof that O(n2.55)

4.6.4 EVALUATION OF POLYNOMIALS 501

operations suffice. The best upper bound known as of 1997 is O(n2.376), due to
Coppersmith and Winograd [J. Symbolic Comp. 9 (1990), 251Ű280]. By contrast,
the best current lower bound is 2n2 − 1 (see exercise 12).

These theoretical results are quite striking, but from a practical standpoint
they are of little use because n must be very large before we overcome the effect of
additional bookkeeping costs. Richard Brent [Stanford Computer Science report
CS157 (March 1970), see also Numer. Math. 16 (1970), 145Ű156] found that
a careful implementation of Winograd’s scheme (35), with appropriate scaling
for numerical stability, became better than the conventional method only when
n ≥ 40, and it saved only about 7 percent of the running time when n = 100. For
complex arithmetic the situation was somewhat different; scheme (35) became
advantageous for n > 20, and saved 18 percent when n = 100. He estimated
that Strassen’s scheme (36) would not begin to excel over (35) until n ≈ 250;
and such enormous matrices rarely occur in practice unless they are very sparse,
when other techniques apply. Furthermore, the known methods of order nω

where ω < 2.7 have such large constants of proportionality that they require
more than 1023 multiplications before they start to beat (36).

By contrast, the methods we shall discuss next are eminently practical and
have found wide use. The discrete Fourier transform f of a complex-valued
function F of n variables, over respective domains of m1, . . . , mn elements, is
deĄned by the equation

f(s1, . . . , sn) =

0≤t1<m1· · ·
0≤tn<mn

exp

2πi

s1t1
m1

+ · · ·+ sntn
mn

F (t1, . . . , tn) (37)

for 0 ≤ s1 < m1, . . . , 0 ≤ sn < mn; the name “transformŤ is justiĄed because
we can recover the values F (t1, . . . , tn) from the values f(s1, . . . , sn), as shown
in exercise 13. In the important special case that all mj = 2, we have

f(s1, . . . , sn) =

0≤t1,...,tn≤1

(−1)s1t1+···+sntnF (t1, . . . , tn) (38)

for 0 ≤ s1, . . . , sn ≤ 1, and this may be regarded as a simultaneous evaluation of
2n linear polynomials in 2n variables F (t1, . . . , tn). A well-known technique due
to F. Yates [The Design and Analysis of Factorial Experiments (Harpenden:
Imperial Bureau of Soil Sciences, 1937)] can be used to reduce the number
of additions implied in (38) from 2n(2n − 1) to n2n. Yates’s method can be
understood by considering the case n = 3: Let Xt1t2t3 = F (t1, t2, t3).
Given First step Second step Third step

X000 X000+X001 X000+X001+X010+X011 X000+X001+X010+X011+X100+X101+X110+X111

X001 X010+X011 X100+X101+X110+X111 X000−X001+X010−X011+X100−X101+X110−X111

X010 X100+X101 X000−X001+X010−X011 X000+X001−X010−X011+X100+X101−X110−X111

X011 X110+X111 X100−X101+X110−X111 X000−X001−X010+X011+X100−X101−X110+X111

X100 X000−X001 X000+X001−X010−X011 X000+X001+X010+X011−X100−X101−X110−X111

X101 X010−X011 X100+X101−X110−X111 X000−X001+X010−X011−X100+X101−X110+X111

X110 X100−X101 X000−X001−X010+X011 X000+X001−X010−X011−X100−X101+X110+X111

X111 X110−X111 X100−X101−X110+X111 X000−X001−X010+X011−X100+X101+X110−X111

502 ARITHMETIC 4.6.4

To get from the “GivenŤ to the “First stepŤ requires four additions and four
subtractions; and the interesting feature of Yates’s method is that exactly the
same transformation that takes us from “GivenŤ to “First stepŤ will take us
from “First stepŤ to “Second stepŤ and from “Second stepŤ to “Third step.Ť In
each case we do four additions, then four subtractions; and after three steps we
magically have the desired Fourier transform f(s1, s2, s3) in the place originally
occupied by F (s1, s2, s3).

This special case is often called the Hadamard transform or the Walsh

transform of 2n data elements, since the corresponding pattern of signs was
studied by J. Hadamard [Bull. Sci. Math. (2) 17 (1893), 240Ű246] and by J. L.
Walsh [Amer. J. Math. 45 (1923), 5Ű24]. Notice that the number of sign changes
from left to right in the “Third stepŤ assumes the respective values

0, 7, 3, 4, 1, 6, 2, 5;

this is a permutation of the numbers {0, 1, 2, 3, 4, 5, 6, 7}. Walsh observed that
there will be exactly 0, 1, . . . , 2n − 1 sign changes in the general case, if
we permute the transformed elements appropriately, so the coefficients provide
discrete approximations to sine waves with various frequencies. (See Section
7.2.1.1 for further discussion of the HadamardŰWalsh coefficients.)

Yates’s method can be generalized to the evaluation of any discrete Fourier
transform, and, in fact, to the evaluation of any set of sums that can be written
in the general form

f(s1, s2, . . . , sn) =

0≤t1<m1· · ·
0≤tn<mn

g1(s1, s2, . . . , sn, t1)g2(s2, . . . , sn, t2) . . . gn(sn, tn)F (t1, t2, . . . , tn) (39)

for 0 ≤ sj < mj , given the functions gj(sj , . . . , sn, tj). We proceed as follows.

f0(t1, t2, t3, . . . , tn) = F (t1, t2, t3, . . . , tn);

f1(sn, t1, t2, . . . , tn−1) =

0≤tn<mn

gn(sn, tn)f0(t1, t2, . . . , tn);

f2(sn−1, sn, t1, . . . , tn−2) =

0≤tn−1<mn−1

gn−1(sn−1, sn, tn−1)f1(sn, t1, . . . , tn−1);

...

fn(s1, s2, s3, . . . , sn) =

0≤t1<m1

g1(s1, . . . , sn, t1)fn−1(s2, s3, . . . , sn, t1);

f(s1, s2, s3, . . . , sn) = fn(s1, s2, s3, . . . , sn). (40)

For Yates’s method as shown above, gj(sj , . . . , sn, tj) = (−1)sjtj ; f0(t1, t2, t3)
represents the “GivenŤ; f1(s3, t1, t2) represents the “First stepŤ; and so on.
Whenever a desired set of sums can be put into the form of (39), for reasonably

4.6.4 EVALUATION OF POLYNOMIALS 503

simple functions gj(sj , . . . , sn, tj), the scheme (40) will reduce the amount of com-
putation from order N2 to order N logN or thereabouts, where N = m1 . . .mn is
the number of data points. Furthermore this scheme is ideally suited to parallel
computation. The important special case of one-dimensional Fourier transforms
is discussed in exercises 14 and 53; we have considered the one-dimensional case
also in Section 4.3.3C.

Let us consider one more special case of polynomial evaluation. Lagrange’s

interpolation polynomial of order n, which we shall write as

u[n](x) = y0
(x−x1)(x−x2) . . . (x−xn)

(x0−x1)(x0−x2) . . . (x0−xn)
+y1

(x−x0)(x−x2) . . . (x−xn)
(x1−x0)(x1−x2) . . . (x1−xn)

+ · · · +yn
(x−x0)(x−x1) . . . (x−xn−1)

(xn−x0)(xn−x1) . . . (xn−xn−1)
, (41)

is the only polynomial of degree ≤ n in x that takes on the respective values
y0, y1, . . . , yn at the n+ 1 distinct points x = x0, x1, . . . , xn.

For it is evident

from (41) that u[n](xk) = yk for 0 ≤ k ≤ n. If f(x) is any such polynomial
of degree ≤ n, then g(x) = f(x) − u[n](x) is of degree ≤ n, and g(x) is zero
for x = x0, x1, . . . , xn; therefore g(x) must be a multiple of the polynomial
(x − x0)(x − x1) . . . (x − xn). The degree of the latter polynomial is greater
than n, so g(x) = 0.

If we assume that the values of a function in some table

are well approximated by a polynomial, formula (41) may therefore be used to
“interpolateŤ for values of the function at points x not appearing in the table.
Lagrange presented (41) to his class at the Paris École Normale in 1795 [see
his Œuvres 7 (Paris: 1877), 286]; but Edward Waring of Cambridge University
actually deserves the credit, because he had already presented the same formula
quite clearly and explicitly in Philosophical Transactions 69 (1779), 59Ű67.

There seem to be quite a few additions, subtractions, multiplications, and
divisions in Waring and Lagrange’s formula; in fact, there are exactly n additions,
2n2 + 2n subtractions, 2n2 + n − 1 multiplications, and n + 1 divisions. But
fortunately (as we might be conditioned to suspect by now), improvement is
possible.

The basic idea for simplifying (41) is to exploit the fact that

u[n](x)− u[n−1](x) = 0 for x = x0, . . . , xn−1;

thus u[n](x) − u[n−1](x) is a polynomial of degree n or less, and a multiple of
(x− x0) . . . (x− xn−1). We conclude that u[n](x) = αn(x− x0) . . . (x− xn−1) +
u[n−1](x), where αn is a constant. This leads us to Newton’s interpolation formula

u[n](x) = αn(x− x0)(x− x1) . . . (x− xn−1) + · · ·
+ α2(x− x0)(x− x1) + α1(x− x0) + α0, (42)

where the α’s are some coefficients that we want to determine from the given
numbers x0, x1, . . . , xn, y0, y1, . . . , yn. Notice that this formula holds for all n;
the coefficient αk does not depend on xk+1, . . . , xn, or on yk+1, . . . , yn. Once

504 ARITHMETIC 4.6.4

the α’s are known, Newton’s interpolation formula is convenient for calculation,
since we may generalize Horner’s rule once again and write

u[n](x) =

(. . . (αn(x−xn−1) + αn−1)(x−xn−2) + · · ·)(x−x0) + α0

. (43)

This requires n multiplications and 2n additions. Alternatively, we may evaluate
each of the individual terms of (42) from right to left; with 2n−1 multiplications
and 2n additions we thereby calculate all of the values u[0](x), u[1](x), . . . , u[n](x),
and this indicates whether or not an interpolation process is converging.

The coefficients αk in Newton’s formula may be found by computing the
divided differences in the following tableau (shown for n = 3):
y0

(y1−y0)/(x1−x0) = y′1
y1 (y′2−y′1)/(x2−x0) = y′′2(y2−y1)/(x2−x1) = y′2 (y′′3 −y′′2)/(x3−x0) = y′′′3
y2 (y′3−y′2)/(x3−x1) = y′′3(y3−y2)/(x3−x2) = y′3
y3 (44)

It is possible to prove that α0 = y0, α1 = y′1, α2 = y′′2 , etc., and to show
that the divided differences have important relations to the derivatives of the
function being interpolated; see exercise 15. Therefore the following calculation

corresponding to (44)

may be used to obtain the α’s:

Start with (α0, α1, . . . , αn)← (y0, y1, . . . , yn);
then, for k = 1, 2, . . . , n (in this order),

set αj ← (αj − αj−1)/(xj − xj−k) for j = n, n− 1, . . . , k (in this order).

This process requires 1
2 (n2 + n) divisions and n2 + n subtractions, so about

three-fourths of the work implied in (41) has been saved.
For example, suppose that we want to estimate 1.5! from the values of

0!, 1!, 2!, and 3!, using a cubic polynomial. The divided differences are

x y y′ y′′ y′′′

0 1
0

1 1 1
21 1

32 2 3
24

3 6

so u[0](x) = u[1](x) = 1, u[2](x) = 1
2x(x − 1) + 1, u[3](x) = 1

3x(x − 1)(x − 2) +
1
2x(x−1)+1. Setting x = 1.5 in u[3](x) gives −.125+.375+1 = 1.25; presumably
the “correctŤ value is Γ (2.5) = 3

4

√
π ≈ 1.33. (But there are of course many other

sequences that begin with the numbers 1, 1, 2, and 6.)
If we want to interpolate several polynomials that have the same interpola-

tion points x0, x1, . . . , xn but varying values y0, y1, . . . , yn, it is desirable to
rewrite (41) in a form suggested by W. J. Taylor [J. Research Nat. Bur. Standards
35 (1945), 151Ű155]:

u[n](x) =

y0w0

x− x0
+ · · ·+ ynwn

x− xn

w0

x− x0
+ · · ·+ wn

x− xn

, (45)

4.6.4 EVALUATION OF POLYNOMIALS 505

when x /∈ {x0, x1, . . . , xn}, where

wk = 1/(xk − x0) . . . (xk − xk−1)(xk − xk+1) . . . (xk − xn). (46)

This form is also recommended for its numerical stability [see P. Henrici, Essen-
tials of Numerical Analysis (New York: Wiley, 1982), 237Ű243]. The denominator
of (45) is the partial fraction expansion of 1/(x− x0)(x− x1) . . . (x− xn).

An important and somewhat surprising application of polynomial interpo-
lation was discovered by Adi Shamir [CACM 22 (1979), 612Ű613], who observed
that polynomials mod p can be used to “share a secret.Ť This means that we can
design a system of secret keys or passwords such that the knowledge of any n+1
of the keys enables efficient calculation of a magic number N that unlocks a door
(say), but the knowledge of any n of the keys gives no information whatsoever
about N. Shamir’s amazingly simple solution to this problem is to choose a
random polynomial u(x) = unx

n+· · ·+u1x+u0, where 0 ≤ ui < p and p is a large
prime number. Each part of the secret is an integer x in the range 0 < x < p,
together with the value of u(x) mod p; and the supersecret number N is the
constant term u0. Given n+ 1 values u(xi), we can deduce N by interpolation.
But if only n values of u(xi) are given, there is a unique polynomial u(x) having
a given constant term but the same values at x1, . . . , xn; thus the n values do
not make one particular N more likely than any other.

It is instructive to note that evaluation of the interpolation polynomial
is just a special case of the Chinese remainder algorithm of Section 4.3.2 and
exercise 4.6.2Ű3, since we know the values of u[n](x) modulo the relatively prime
polynomials x − x0, . . . , x − xn.

As we have seen in Section 4.6.2 and in the

discussion following (3), f(x) mod (x−x0) = f(x0).

Under this interpretation,
Newton’s formula (42) is precisely the “mixed-radix representationŤ of Eq. 4.3.2Ű
(25); and 4.3.2Ű(24) yields another way to compute α0, . . . , αn using the same
number of operations as (44).

By applying fast Fourier transforms, it is possible to reduce the running time
for interpolation to O

n (logn)2

, and a similar reduction can also be made for

related algorithms such as the solution to the Chinese remainder problem and the
evaluation of an nth degree polynomial at n different points. [See E. Horowitz,
Inf. Proc. Letters 1 (1972), 157Ű163; A. Borodin and R. Moenck, J. Comp.
Syst. Sci. 8 (1974), 336Ű385; A. Borodin, Complexity of Sequential and Parallel
Numerical Algorithms, edited by J. F. Traub (New York: Academic Press, 1973),
149Ű180; D. Bini and V. Pan, Polynomial and Matrix Computations 1 (Boston:
Birkhäuser, 1994), Chapter 1.] However, these observations are primarily of
theoretical interest, since the known algorithms have a rather large overhead
factor that makes them unattractive unless n is quite large.

A remarkable extension of the method of divided differences, which applies
to quotients of polynomials as well as to polynomials, was introduced by T. N.
Thiele in 1909. Thiele’s method of “reciprocal differencesŤ is discussed in L. M.
Milne-Thompson’s Calculus of Finite Differences (London: MacMillan, 1933),
Chapter 5; see also R. W. Floyd, CACM 3 (1960), 508.

506 ARITHMETIC 4.6.4

*Bilinear forms. Several of the problems we have considered in this section are
special cases of the general problem of evaluating a set of bilinear forms

zk =
m

i=1

n

j=1

tijkxiyj , for 1 ≤ k ≤ s, (47)

where the tijk are speciĄc coefficients belonging to some given Ąeld. The three-
dimensional array (tijk) is called an m× n× s tensor , and we can display it by
writing down s matrices of size m×n, one for each value of k. For example, the
problem of multiplying complex numbers, namely the problem of evaluating

z1 + iz2 = (x1 + ix2)(y1 + iy2) = (x1y1−x2y2) + i(x1y2+x2y1), (48)

is the problem of computing the bilinear form speciĄed by the 2× 2× 2 tensor

1 0
0 −1

0 1
1 0

.

Matrix multiplication as deĄned in (34) is the problem of evaluating a set of
bilinear forms corresponding to a particular mn × ns × ms tensor. Fourier
transforms (37) can also be cast in this mold, although they are linear instead
of bilinear, if we let the x’s be constant rather than variable.

The evaluation of bilinear forms is most easily studied if we restrict our-
selves to what might be called normal evaluation schemes, in which all chain
multiplications take place between a linear combination of the x’s and a linear
combination of the y’s. Thus, we form r products

wl = (a1lx1 + · · ·+ amlxm)(b1ly1 + · · ·+ bnlyn), for 1 ≤ l ≤ r, (49)

and obtain the z’s as linear combinations of these products,

zk = ck1w1 + · · ·+ ckrwr, for 1 ≤ k ≤ s. (50)

Here all the a’s, b’s, and c’s belong to a given Ąeld of coefficients. By comparing
(50) to (47), we see that a normal evaluation scheme is correct for the tensor
(tijk) if and only if

tijk = ai1bj1ck1 + · · ·+ airbjrckr (51)

for 1 ≤ i ≤ m, 1 ≤ j ≤ n, and 1 ≤ k ≤ s.
A nonzero tensor (tijk) is said to be of rank one if there are three vectors

(a1, . . . , am), (b1, . . . , bn), (c1, . . . , cs) such that tijk = aibj ck for all i, j, k. We
can extend this deĄnition to all tensors by saying that the rank of (tijk) is the
minimum number r such that (tijk) is expressible as the sum of r rank-one
tensors in the given Ąeld. Comparing this deĄnition with Eq. (51) shows that
the rank of a tensor is the minimum number of chain multiplications in a normal
evaluation of the corresponding bilinear forms. Incidentally, when s = 1 the
tensor (tijk) is just an ordinary matrix, and the rank of (tij1) as a tensor is the
same as its rank as a matrix (see exercise 49). The concept of tensor rank was
introduced by F. L. Hitchcock in J. Math. and Physics 6 (1927), 164Ű189; its

4.6.4 EVALUATION OF POLYNOMIALS 507

application to the complexity of polynomial evaluation was pointed out in an
important paper by V. Strassen, Crelle 264 (1973), 184Ű202.

Winograd’s scheme (35) for matrix multiplication is “abnormalŤ because it
mixes x’s and y’s before multiplying them. The StrassenŰWinograd scheme (36),
on the other hand, does not rely on the commutativity of multiplication, so it is
normal. In fact, (36) corresponds to the following way to represent the 4× 4× 4
tensor for 2× 2 matrix multiplication as a sum of seven rank-one tensors:
1 0 0 0

0 1 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

=

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

+

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

+

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 1 1
0 0 0 0
0 0 1 1
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 1 1
0 0 0 0
0 0 1 1
0 0 0 0

+

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
1 1 1 1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

+

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
1 0 1 0
1 0 1 0

0 0 0 0
0 0 0 0
1 0 1 0
1 0 1 0

+

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

+

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1 0 1 1
0 0 0 0
1 0 1 1
1 0 1 1

1 0 1 1
0 0 0 0
1 0 1 1
1 0 1 1

1 0 1 1
0 0 0 0
1 0 1 1
1 0 1 1

.

(52)
(Here 1 stands for −1.)

The fact that (51) is symmetric in i, j, k and invariant under a variety
of transformations makes the study of tensor rank mathematically tractable,
and it also leads to some surprising consequences about bilinear forms. We
can permute the indices i, j, k to obtain “transposedŤ bilinear forms, and the
transposed tensor clearly has the same rank; but the corresponding bilinear forms
are conceptually quite different. For example, a normal scheme for evaluating an
(m×n) times (n×s) matrix product implies the existence of a normal scheme to
evaluate an (n×s) times (s×m) matrix product, using the same number of chain
multiplications. In matrix terms these two problems hardly seem to be related
at all Ů they involve different numbers of dot products, on vectors of different
sizes Ů but in tensor terms they are equivalent. [See V. Y. Pan, Uspekhi Mat.
Nauk 27, 5 (SeptemberŰOctober 1972), 249Ű250; J. E. Hopcroft and J. Musinski,
SICOMP 2 (1973), 159Ű173.]

When the tensor (tijk) can be represented as a sum (51) of r rank-one
tensors, let A, B, C be the matrices (ail), (bjl), (ckl) of respective sizes m × r,
n× r, s× r; we shall say that (A,B,C) is a realization of the tensor (tijk). For
example, the realization of 2 × 2 matrix multiplication in (52) can be speciĄed
by the matrices

A =

1 0 1 0 0 1 1
0 1 0 0 0 1 0
0 0 1 0 1 1 1
0 0 0 1 1 1 1

, B =

1 0 0 1 1 0 1
0 1 0 1 0 0 0
0 0 1 1 1 0 1
0 0 1 1 0 1 1

, C =

1 1 0 0 0 0 0
1 0 1 1 0 0 1
1 0 0 0 1 1 1
1 0 1 0 1 0 1

. (53)

508 ARITHMETIC 4.6.4

An m× n× s tensor (tijk) can also be represented as a matrix by grouping
its subscripts together. We shall write (t(ij)k) for the mn× s matrix whose rows
are indexed by the pair of subscripts ⟨i, j⟩ and whose columns are indexed by k.
Similarly, (tk(ij)) stands for the s ×mn matrix that contains tijk in row k and
column ⟨i, j⟩; (t(ik)j) is an ms × n matrix, and so on. The indices of an array
need not be integers, and we are using ordered pairs as indices here. We can use
this notation to derive the following simple but useful lower bound on the rank
of a tensor.

Lemma T. Let (A,B,C) be a realization of an m× n× s tensor (tijk). Then
rank(A) ≥ rank(ti(jk)), rank(B) ≥ rank(tj(ik)), and rank(C) ≥ rank(tk(ij));
consequently

rank(tijk) ≥ max

rank(ti(jk)), rank(tj(ik)), rank(tk(ij))

.

Proof. It suffices by symmetry to show that r ≥ rank(A) ≥ rank(ti(jk)). Since
A is an m × r matrix, it is obvious that A cannot have rank greater than r.
Furthermore, according to (51), the matrix (ti(jk)) is equal to AQ, where Q is
the r × ns matrix deĄned by Ql⟨j,k⟩ = bjlckl . If x is any row vector such that
xA = 0 then xAQ = 0, hence all linear dependencies in A occur also in AQ. It
follows that rank(AQ) ≤ rank(A).

As an example of the use of Lemma T, let us consider the problem of
polynomial multiplication. Suppose we want to multiply a general polynomial
of degree 2 by a general polynomial of degree 3, obtaining the coefficients of the
product:

(x0 + x1u+ x2u
2)(y0 + y1u+ y2u

2 + y3u
3)

= z0 + z1u+ z2u
2 + z3u

3 + z4u
4 + z5u

5. (54)

This is the problem of evaluating six bilinear forms corresponding to the 3×4×6
tensor

1 0 0 0
0 0 0 0
0 0 0 0

0 1 0 0
1 0 0 0
0 0 0 0

0 0 1 0
0 1 0 0
1 0 0 0

0 0 0 1
0 0 1 0
0 1 0 0

0 0 0 0
0 0 0 1
0 0 1 0

0 0 0 0
0 0 0 0
0 0 0 1

. (55)

For brevity, we may write (54) as x(u)y(u) = z(u), letting x(u) denote the
polynomial x0 + x1u + x2u

2, etc. (We have come full circle from the way we
began this section, since Eq. (1) refers to u(x), not x(u); the notation has changed
because the coefficients of the polynomials are now the variables of interest to us.)

If each of the six matrices in (55) is regarded as a vector of length 12 indexed
by ⟨i, j⟩, it is clear that the vectors are linearly independent, since they are
nonzero in different positions; hence the rank of (55) is at least 6 by Lemma T.
Conversely, it is possible to obtain the coefficients z0, z1, . . . , z5 by making only
six chain multiplications, for example by computing

x(0)y(0), x(1)y(1), . . . , x(5)y(5); (56)

this gives the values of z(0), z(1), . . . , z(5), and the formulas developed above
for interpolation will yield the coefficients of z(u). The evaluation of x(j)

4.6.4 EVALUATION OF POLYNOMIALS 509

and y(j) can be carried out entirely in terms of additions and/or parameter
multiplications, and the interpolation formula merely takes linear combinations
of these values. Thus, all of the chain multiplications are shown in (56), and
the rank of (55) is 6. (We used essentially this same technique when multiplying
high-precision numbers in Algorithm 4.3.3T.)

The realization (A,B,C) of (55) sketched in the paragraph above turns out
to be

1 1 1 1 1 1
0 1 2 3 4 5
0 1 4 9 16 25

,

1 1 1 1 1 1
0 1 2 3 4 5
0 1 4 9 16 25
0 1 8 27 64 125

,

120 0 0 0 0 0
−274 600 −600 400 −150 24

225 −770 1070 −780 305 −50
−85 355 −590 490 −205 35

15 −70 130 −120 55 −10
−1 5 −10 10 −5 1

× 1

120 .

(57)

Thus, the scheme does indeed achieve the minimum number of chain multipli-
cations, but it is completely impractical because it involves so many additions
and parameter multiplications. We shall now study a practical approach to the
generation of more efficient schemes, introduced by S. Winograd.

In the Ąrst place, to evaluate the coefficients of x(u)y(u) when deg(x) = m
and deg(y) = n, we can use the identity

x(u)y(u) =

x(u)y(u) mod p(u)

+ xmynp(u), (58)

when p(u) is any monic polynomial of degree m+n. The polynomial p(u) should
be chosen so that the coefficients of x(u)y(u) mod p(u) are easy to evaluate.

In the second place, to evaluate the coefficients of x(u)y(u) mod p(u), when
the polynomial p(u) can be factored into q(u)r(u) where gcd

q(u), r(u)

= 1, we

can use the identity

x(u)y(u) mod q(u)r(u) =

a(u)r(u)(x(u)y(u) mod q(u))

+ b(u)q(u)(x(u)y(u) mod r(u))

mod q(u)r(u) (59)

where a(u)r(u)+b(u)q(u) = 1; this is essentially the Chinese remainder theorem
applied to polynomials.

In the third place, we can always evaluate the coefficients of the polynomial
x(u)y(u) mod p(u) by using the trivial identity

x(u)y(u) mod p(u) =

x(u) mod p(u)

y(u) mod p(u)

mod p(u). (60)

Repeated application of (58), (59), and (60) tends to produce efficient schemes,
as we shall see.

For our example problem (54), let us choose p(u) = u5−u and apply (58); the
reason for this choice of p(u) will appear as we proceed. Writing p(u) = u(u4−1),
rule (59) reduces to

x(u)y(u) mod u(u4 − 1) =

−(u4 − 1)x0y0 + u4(x(u)y(u) mod (u4 − 1))

mod (u5 − u). (61)

Here we have used the fact that x(u)y(u) mod u = x0y0; in general it is a good
idea to choose p(u) in such a way that p(0) = 0, so that this simpliĄcation can be

510 ARITHMETIC 4.6.4

used. If we could now determine the coefficients w0, w1, w2, w3 of the polynomial
x(u)y(u) mod (u4− 1) = w0 +w1u+w2u

2 +w3u
3, our problem would be solved,

since

u4

x(u)y(u) mod (u4 − 1)

mod (u5 − u) = w0u

4 + w1u+ w2u
2 + w3u

3,

and the combination of (58) and (61) would reduce to

x(u)y(u) = x0y0 + (w1−x2y3)u+w2u
2 +w3u

3 + (w0−x0y0)u4 +x2y3u
5. (62)

(This formula can, of course, be veriĄed directly.)
The problem remaining to be solved is to compute x(u)y(u) mod (u4 − 1);

and this subproblem is interesting in itself. Let us momentarily allow x(u) to be
of degree 3 instead of degree 2. Then the coefficients of x(u)y(u) mod (u4 − 1)
are respectively

x0y0 + x1y3 + x2y2 + x3y1, x0y1 + x1y0 + x2y3 + x3y2,

x0y2 + x1y1 + x2y0 + x3y3, x0y3 + x1y2 + x2y1 + x3y0,

and the corresponding tensor is

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 . (63)

In general when deg(x) = deg(y) = n−1, the coefficients of x(u)y(u) mod (un−1)
are called the cyclic convolution of (x0, x1, . . . , xn−1) and (y0, y1, . . . , yn−1). The
kth coefficient wk is the bilinear form

xiyj summed over all i and j with

i+ j ≡ k (modulo n).
The cyclic convolution of degree 4 can be obtained by applying rule (59).

The Ąrst step is to Ąnd the factors of u4 − 1, namely (u− 1)(u+ 1)(u2 + 1). We
could write this as (u2− 1)(u2 + 1), then apply rule (59), then use (59) again on
the part modulo (u2−1) = (u−1)(u+1); but it is easier to generalize the Chinese
remainder rule (59) directly to the case of several relatively prime factors. For
example, we have

x(u)y(u) mod q1(u)q2(u)q3(u)

=

a1(u)q2(u)q3(u)

x(u)y(u) mod q1(u)

+a2(u)q1(u)q3(u)

x(u)y(u) mod q2(u)

+ a3(u)q1(u)q2(u)

x(u)y(u) mod q3(u)

mod q1(u)q2(u)q3(u), (64)

where a1(u)q2(u)q3(u) + a2(u)q1(u)q3(u) + a3(u)q1(u)q2(u) = 1.

This equation

can also be understood in another way, by noting that the partial fraction expan-
sion of 1/q1(u)q2(u)q3(u) is a1(u)/q1(u)+a2(u)/q2(u)+a3(u)/q3(u).

From (64)

we obtain

x(u)y(u) mod (u4−1) =

1
4 (u3+u2+u+1)x(1)y(1)− 1

4 (u3−u2+u−1)x(−1)y(−1)

− 1
2 (u2−1)

x(u)y(u) mod (u2+1)

mod (u4−1). (65)

The remaining problem is to evaluate x(u)y(u) mod (u2 + 1), and it is time
to invoke rule (60). First we reduce x(u) and y(u) mod (u2 + 1), obtaining

4.6.4 EVALUATION OF POLYNOMIALS 511

X(u) = (x0 − x2) + (x1 − x3)u, Y (u) = (y0 − y2) + (y1 − y3)u. Then (60) tells
us to evaluate X(u)Y (u) = Z0 +Z1u+Z2u

2, and to reduce this in turn modulo
(u2 + 1), obtaining (Z0 −Z2) +Z1u. The job of computing X(u)Y (u) is simple;
we can use rule (58) with p(u) = u(u+ 1) and we get

Z0 = X0Y0, Z1 = X0Y0 − (X0−X1)(Y0−Y1) +X1Y1, Z2 = X1Y1.

(We have thereby rediscovered the trick of Eq. 4.3.3Ű(2) in a more systematic
way.) Putting everything together yields the following realization (A,B,C) of
degree-4 cyclic convolution:

1 1 1 0 1
1 1 0 1 1
1 1 1 0 1
1 1 0 1 1

 ,

1 1 1 0 1
1 1 0 1 1
1 1 1 0 1
1 1 0 1 1

 ,

1 1 2 2 0
1 1 2 2 2
1 1 2 2 0
1 1 2 2 2

× 1

4
. (66)

Here 1 stands for −1 and 2 stands for −2.
The tensor for cyclic convolution of degree n satisĄes

ti,j,k = tk,−j,i, (67)

treating the subscripts modulo n, since tijk = 1 if and only if i + j ≡ k
(modulo n). Thus if (ail), (bjl), (ckl) is a realization of the cyclic convolution, so
is (ckl), (b−j,l), (ail); in particular, we can realize (63) by transforming (66) into

1 1 2 2 0
1 1 2 2 2
1 1 2 2 0
1 1 2 2 2

× 1

4
,

1 1 1 0 1
1 1 0 1 1
1 1 1 0 1
1 1 0 1 1

 ,

1 1 1 0 1
1 1 0 1 1
1 1 1 0 1
1 1 0 1 1

 . (68)

Now all of the complicated scalars appear in the A matrix. This is important
in practice, since we often want to compute the convolution for many values of
y0, y1, y2, y3 but for a Ąxed choice of x0, x1, x2, x3. In such a situation, the
arithmetic on x’s can be done once and for all, and we need not count it. Thus
(68) leads to the following scheme for evaluating the cyclic convolution w0, w1,
w2, w3 when x0, x1, x2, x3 are known in advance:

s1 = y0 + y2, s2 = y1 + y3, s3 = s1 + s2, s4 = s1 − s2,

s5 = y0 − y2, s6 = y3 − y1, s7 = s5 − s6;

m1 = 1
4 (x0 + x1 + x2 + x3) · s3, m2 = 1

4 (x0 − x1 + x2 − x3) · s4,

m3 = 1
2 (x0+x1−x2−x3)·s5, m4 = 1

2 (−x0+x1+x2−x3)·s6, m5 = 1
2 (x3−x1)·s7;

t1 = m1 +m2, t2 = m3 +m5, t3 = m1 −m2, t4 = m4 −m5;

w0 = t1 + t2, w1 = t3 + t4, w2 = t1 − t2, w3 = t3 − t4. (69)

There are 5 multiplications and 15 additions, while the deĄnition of cyclic
convolution involves 16 multiplications and 12 additions. We will prove later
that 5 multiplications are necessary.

512 ARITHMETIC 4.6.4

Going back to our original multiplication problem (54), using (62), we have
derived the realization

4 0 1 1 2 2 0
0 0 1 1 2 2 2
0 4 1 1 2 2 0

× 1
4
,

1 0 1 1 1 0 1
0 0 1 1 0 1 1
0 0 1 1 1 0 1
0 1 1 1 0 1 1

 ,

1 0 0 0 0 0 0
0 1 1 1 0 1 1
0 0 1 1 1 0 1
0 0 1 1 0 1 1
1 0 1 1 1 0 1
0 1 0 0 0 0 0

. (70)

This scheme uses one more than the minimum number of chain multiplications,
but it requires far fewer parameter multiplications than (57). Of course, it
must be admitted that the scheme is still rather complicated: If our goal is
simply to compute the coefficients z0, z1, . . . , z5 of the product of two given
polynomials (x0 + x1u+ x2u

2)(y0 + y1u+ y2u
2 + y3u

3), as a one-shot problem,
our best bet may well be to use the obvious method that does 12 multiplications
and 6 additions Ů unless (say) the x’s and y’s are matrices. Another reasonably
attractive scheme, which requires 8 multiplications and 18 additions, appears in
exercise 58(b). Notice that if the x’s are Ąxed as the y’s vary, (70) does the
evaluation with 7 multiplications and 17 additions. Even though this scheme
isn’t especially useful as it stands, our derivation has illustrated important
techniques that are useful in a variety of other situations. For example, Winograd
has used this approach to compute Fourier transforms using signiĄcantly fewer
multiplications than the fast Fourier transform algorithm needs (see exercise 53).

Let us conclude this section by determining the exact rank of the n× n× n
tensor that corresponds to the multiplication of two polynomials modulo a third,

z0 + z1u+ · · ·+ zn−1u
n−1

= (x0 + x1u+ · · ·+ xn−1u
n−1)(y0 + y1u+ · · ·+ yn−1u

n−1) mod p(u). (71)

Here p(u) stands for any given monic polynomial of degree n; in particular, p(u)
might be un − 1, so one of the results of our investigation will be to deduce the
rank of the tensor corresponding to cyclic convolution of degree n. It will be
convenient to write p(u) in the form

p(u) = un − pn−1u
n−1 − · · · − p1u− p0, (72)

so that un ≡ p0 + p1u+ · · ·+ pn−1u
n−1

modulo p(u)

.

The tensor element tijk is the coefficient of uk in ui+j mod p(u); and this is
the element in row i, column k of the matrix P j, where

P =

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 0 . . . 1
p0 p1 p2 . . . pn−1

(73)

is called the companion matrix of p(u). (The indices i, j, k in our discussion will
run from 0 to n − 1 instead of from 1 to n.) It is convenient to transpose the

4.6.4 EVALUATION OF POLYNOMIALS 513

tensor, for if Tijk = tikj the individual layers of (Tijk) for k = 0, 1, 2, . . . , n− 1
are simply given by the matrices

I P P 2 . . . Pn−1. (74)

The Ąrst rows of the matrices in (74) are respectively the unit vectors
(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), (0, 0, 1, . . . , 0), . . . , (0, 0, 0, . . . , 1), hence a linear
combination

n−1
k=0 vkP

k will be the zero matrix if and only if the coefficients vk
are all zero. Furthermore, most of these linear combinations are actually non-
singular matrices, for we have

(w0, w1, . . . , wn−1)
n−1

k=0

vkP
k = (0, 0, . . . , 0)

if and only if v(u)w(u) ≡ 0

modulo p(u)

,

where v(u) = v0 + v1u+ · · ·+ vn−1u
n−1 and w(u) = w0 +w1u+ · · ·+wn−1u

n−1.
Thus,

n−1
k=0 vkP

k is a singular matrix if and only if the polynomial v(u) is a
multiple of some factor of p(u). We are now ready to prove the desired result.

Theorem W (S. Winograd, 1975). Let p(u) be a monic polynomial of degree n
whose complete factorization over a given inĄnite Ąeld is

p(u) = p1(u)e1 . . . pq(u)eq . (75)

Then the rank of the tensor (74) corresponding to the bilinear forms (71) is 2n−q
over this Ąeld.

Proof. The bilinear forms can be evaluated with only 2n−q chain multiplications
by using rules (58), (59), (60) in an appropriate fashion, so we must prove only
that the rank r is ≥ 2n − q. The discussion above establishes the fact that
rank(T(ij)k) = n; hence by Lemma T, any n × r realization (A,B,C) of (Tijk)
has rank(C) = n. Our strategy will be to use Lemma T again, by Ąnding a
vector (v0, v1, . . . , vn−1) that has the following two properties:

i) The vector (v0, v1, . . . , vn−1)C has at most q + r − n nonzero coefficients.
ii) The matrix v(P) =

n−1
k=0 vkP

k is nonsingular.

This and Lemma T will prove that q + r − n ≥ n, since the identity

r

l=1

ailbjl

 n−1

k=0

vkckl

= v(P)ij

shows how to realize the n × n × 1 tensor v(P) of rank n with q + r − n chain
multiplications.

We may assume for convenience that the Ąrst n columns of C are linearly
independent. Let D be the n×n matrix such that the Ąrst n columns of DC are
equal to the identity matrix. Our goal will be achieved if there is a linear combi-
nation (v0, v1, . . . , vn−1) of at most q rows of D, such that v(P) is nonsingular;
such a vector will satisfy conditions (i) and (ii).

514 ARITHMETIC 4.6.4

Since the rows of D are linearly independent, no irreducible factor pλ(u) can
divide the polynomials corresponding to every row. Given a vector

w = (w0, w1, . . . , wn−1),

let covered(w) be the set of all λ such that w(u) is not a multiple of pλ(u). From
two vectors v and w we can Ąnd a linear combination v + αw such that

covered(v + αw) = covered(v) ∪ covered(w), (76)

for some α in the Ąeld. The reason is that if λ is covered by v or w but not both,
then λ is covered by v + αw for all nonzero α; if λ is covered by both v and w
but λ is not covered by v + αw, then λ is covered by v + βw for all β ̸= α. By
trying q+1 different values of α, at least one must yield (76). In this way we can
systematically construct a linear combination of at most q rows of D, covering
all λ for 1 ≤ λ ≤ q.

One of the most important corollaries of Theorem W is that the rank of a
tensor can depend on the Ąeld from which we draw the elements of the realization
(A,B,C). For example, consider the tensor corresponding to cyclic convolution
of degree 5; this is equivalent to multiplication of polynomials mod p(u) = u5−1.
Over the Ąeld of rational numbers, the complete factorization of p(u) is (u− 1)×
(u4 + u3 + u2 + u+ 1) by exercise 4.6.2Ű32, so the tensor rank is 10− 2 = 8. On
the other hand, the complete factorization over the real numbers, in terms of
the number ϕ = 1

2 (1 +
√

5), is (u − 1)(u2 + ϕu + 1)(u2 − ϕ−1u + 1); thus, the
rank is only 7, if we allow arbitrary real numbers to appear in A, B, C. Over
the complex numbers the rank is 5. This phenomenon does not occur in two-
dimensional tensors (matrices), where the rank can be determined by evaluating
determinants of submatrices and testing for 0. The rank of a matrix does not
change when the Ąeld containing its elements is embedded in a larger Ąeld, but
the rank of a tensor can decrease when the Ąeld gets larger.

In the paper that introduced Theorem W [Math. Systems Theory 10 (1977),
169Ű180], Winograd went on to show that all realizations of (71) in 2n − q
chain multiplications correspond to the use of (59), when q is greater than 1.
Furthermore he has shown that the only way to evaluate the coefficients of
x(u)y(u) in deg(x) + deg(y) + 1 chain multiplications is to use interpolation
or to use (58) with a polynomial that splits into distinct linear factors in the
Ąeld. Finally he has proved that the only way to evaluate x(u)y(u) mod p(u) in
2n− 1 chain multiplications when q = 1 is essentially to use (60). These results
hold for all polynomial chains, not only “normalŤ ones. He has extended the
results to multivariate polynomials in SICOMP 9 (1980), 225Ű229.

The tensor rank of an arbitrary m × n × 2 tensor in a suitably large Ąeld
has been determined by Joseph Ja’Ja’, SICOMP 8 (1979), 443Ű462; JACM 27
(1980), 822Ű830. See also his interesting discussion of commutative bilinear
forms in SICOMP 9 (1980), 713Ű728. However, the problem of computing the
tensor rank of an arbitrary n× n× n tensor over any Ąnite Ąeld is NP-complete
[J. Håstad, Journal of Algorithms 11 (1990), 644Ű654].

4.6.4 EVALUATION OF POLYNOMIALS 515

For further reading. In this section we have barely scratched the surface of a
very large subject in which many beautiful theories are emerging. Considerably
more comprehensive treatments can be found in the books Computational Com-
plexity of Algebraic and Numeric Problems by A. Borodin and I. Munro (New
York: American Elsevier, 1975); Polynomial and Matrix Computations 1 by
D. Bini and V. Pan (Boston: Birkhäuser, 1994); Algebraic Complexity Theory by
P. Bürgisser, M. Clausen, and M. Amin Shokrollahi (Heidelberg: Springer, 1997).

EXERCISES

1. [15] What is a good way to evaluate an “oddŤ polynomial

u(x) = u2n+1x
2n+1 + u2n−1x

2n−1 + · · ·+ u1x?

x 2. [M20] Instead of computing u(x+ x0) by steps H1 and H2 as in the text, discuss
the application of Horner’s rule (2) when polynomial multiplication and addition are
used instead of arithmetic in the domain of coefficients.

3. [20] Give a method analogous to Horner’s rule, for evaluating a polynomial in
two variables

i+j≤n uijx

iyj. (This polynomial has (n+ 1)(n+ 2)/2 coefficients, and
its “total degreeŤ is n.) Count the number of additions and multiplications you use.

4. [M20] The text shows that scheme (3) is superior to Horner’s rule when we are
evaluating a polynomial with real coefficients at a complex point z. Compare (3) to
Horner’s rule when both the coefficients and the variable z are complex numbers; how
many (real) multiplications and addition-subtractions are required by each method?

5. [M15] Count the number of multiplications and additions required by the second-
order rule (4).

6. [22] (L. de Jong and J. van Leeuwen.) Show how to improve on steps S1, . . . , S4
of the ShawŰTraub algorithm by computing only about 1

2
n powers of x0.

7. [M25] How can β0, . . . , βn be calculated so that (6) has the value u(x0 + kh) for
all integers k?

8. [M20] The factorial power xk is deĄned to be k!

x
k

= x(x − 1) . . . (x − k + 1).

Explain how to evaluate unx
n + · · · + u1x

1 + u0 with at most n multiplications and
2n− 1 additions, starting with x and the n+ 3 constants un, . . . , u0, 1, n− 1.

9. [M25] (H. J. Ryser.) Show that if X = (xij) is an n× n matrix, then

per(X) =

(−1)n−ϵ1−···−ϵn

1≤i≤n

1≤j≤n

ϵjxij

summed over all 2n choices of ϵ1, . . . , ϵn equal to 0 or 1 independently. Count the
number of addition and multiplication operations required to evaluate per(X) by this
formula.

10. [M21] The permanent of an n×n matrix X = (xij) may be calculated as follows:
Start with the n quantities x11, x12, . . . , x1n. For 1 ≤ k < n, assume that the

n
k

quantities AkS have been computed, for all k-element subsets S of {1, 2, . . . , n}, where
AkS =

x1j1 . . . xkjk summed over all k! permutations j1 . . . jk of the elements of S;

then form all of the sums
A(k+1)S =

j∈S

Ak(S\{j})x(k+1)j .

We have per(X) = An{1,...,n}. How many additions and multiplications does this
method require? How much temporary storage is needed?

516 ARITHMETIC 4.6.4

11. [M46] Is there any way to evaluate the permanent of a general n×n matrix using
fewer than 2n arithmetic operations?

12. [M50] What is the minimum number of multiplications required to form the
product of two n × n matrices? What is the smallest exponent ω such that O(nω+ϵ)
multiplications are sufficient for all ϵ > 0? (Find good upper and lower bounds for
small n as well as large n.)

13. [M23] Find the inverse of the general discrete Fourier transform (37), by express-
ing F (t1, . . . , tn) in terms of the values of f(s1, . . . , sn). [Hint: See Eq. 1.2.9Ű(13).]

x 14. [HM28] (Fast Fourier transforms.) Show that the scheme (40) can be used to
evaluate the one-dimensional discrete Fourier transform

f(s) =

0≤t<2n

F (t)ωst, ω = e2πi/2n

, 0 ≤ s < 2n,

using arithmetic on complex numbers. Estimate the number of arithmetic operations
performed.

x 15. [HM28] The nth divided difference f(x0, x1, . . . , xn) of a function f(x) at n + 1
distinct points x0, x1, . . . , xn is deĄned by the formula

f(x0, x1, . . . , xn) = (f(x0, x1, . . . , xn−1)− f(x1, . . . , xn−1, xn))/(x0 − xn),

for n > 0. Thus f(x0, x1, . . . , xn) =
n

k=0 f(xk)/

0≤j≤n, j ̸=k(xk − xj) is a symmetric

function of its n+ 1 arguments. (a) Prove that f(x0, . . . , xn) = f (n)(θ)/n!, for some θ
between min(x0, . . . , xn) and max(x0, . . . , xn), if the nth derivative f (n)(x) exists and
is continuous. [Hint: Prove the identity

f(x0, x1, . . . , xn) =
 1

0

dt1

 t1

0

dt2 . . .

 tn−1

0

dtnf
(n)(x0(1− t1) + x1(t1 − t2) + · · ·

+ xn−1(tn−1 − tn) + xn(tn − 0)).

This formula also deĄnes f(x0, x1, . . . , xn) in a useful manner when the xj are not
distinct.] (b) If yj = f(xj), show that αj = f(x0, . . . , xj) in Newton’s interpolation
polynomial (42).

16. [M22] How can we readily compute the coefficients of u[n](x) = unx
n + · · ·+u0, if

we are given the values of x0, x1, . . . , xn−1, α0, α1, . . . , αn in Newton’s interpolation
polynomial (42)?

17. [M20] Show that the interpolation formula (45) reduces to a very simple expres-
sion involving binomial coefficients when xk = x0 + kh for 0 ≤ k ≤ n. [Hint: See
exercise 1.2.6Ű48.]

18. [M20] If the fourth-degree scheme (9) were changed to

y = (x+ α0)x+ α1, u(x) = ((y − x+ α2)y + α3)α4,

what formulas for computing the αj ’s in terms of the uk’s would take the place of (10)?

x 19. [M24] Explain how to determine the adapted coefficients α0, α1, . . . , α5 in (11)
from the coefficients u5, . . . , u1, u0 of u(x), and Ąnd the α’s for the particular poly-
nomial u(x) = x5 + 5x4 − 10x3 − 50x2 + 13x+ 60.

x 20. [21] Write a MIX program that evaluates a Ąfth-degree polynomial according to
scheme (11); try to make the program as efficient as possible, by making slight mod-
iĄcations to (11). Use MIX’s Ćoating point arithmetic operators FADD and FMUL, which
are described in Section 4.2.1.

4.6.4 EVALUATION OF POLYNOMIALS 517

21. [20] Find two additional ways to evaluate the polynomial x6 + 13x5 + 49x4 +
33x3 − 61x2 − 37x + 3 by scheme (12), using the two roots of (15) that were not
considered in the text.

22. [18] What is the scheme for evaluating x6 − 3x5 + x4 − 2x3 + x2 − 3x− 1, using
Pan’s method (16)?

23. [HM30] (J. Eve.) Let f(z) = anz
n + an−1z

n−1 + · · · + a0 be a polynomial of
degree n with real coefficients, having at least n−1 roots with a nonnegative real part.
Let

g(z) = anz
n + an−2z

n−2 + · · ·+ an mod 2z
n mod 2,

h(z) = an−1z
n−1 + an−3z

n−3 + · · ·+ a(n−1) mod 2z
(n−1) mod 2.

Assume that h(z) is not identically zero.

a) Show that g(z) has at least n−2 imaginary roots (that is, roots whose real part is
zero), and h(z) has at least n− 3 imaginary roots. [Hint: Consider the number of
times the path f(z) circles the origin as z goes around the path shown in Fig. 16,
for a sufficiently large radius R.]

b) Prove that the squares of the roots of g(z) = 0 and h(z) = 0 are all real.

0

iR

−R

−iR

Fig. 16. Proof of Eve’s theorem.

x 24. [M24] Find values of c and αk, βk satisfying the conditions of Theorem E, for the
polynomial u(x) = (x + 7)(x2 + 6x + 10)(x2 + 4x + 5)(x + 1). Choose these values so
that β2 = 0. Give two different solutions.

25. [M20] When the construction in the proof of Theorem M is applied to the (ineffi-
cient) polynomial chain

λ1 = α1 + λ0, λ2 = −λ0 − λ0, λ3 = λ1 + λ1, λ4 = α2 × λ3,

λ5 = λ0 − λ0, λ6 = α6 − λ5, λ7 = α7 × λ6, λ8 = λ7 × λ7,

λ9 = λ1 × λ4, λ10 = α8 − λ9, λ11 = λ3 − λ10,

how can β1, β2, . . . , β9 be expressed in terms of α1, . . . , α8?

x 26. [M21] (a) Give the polynomial chain corresponding to Horner’s rule for evaluating
polynomials of degree n = 3. (b) Using the construction that appears in the text’s proof
of Theorem A, express κ1, κ2, κ3, and the result polynomial u(x) in terms of β1, β2,
β3, β4, and x. (c) Show that the result set obtained in (b), as β1, β2, β3, and β4

independently assume all real values, omits certain vectors in the result set of (a).

27. [M22] Let R be a set that includes all (n+1)-tuples (qn, . . . , q1, q0) of real numbers
such that qn ̸= 0; prove that R does not have at most n degrees of freedom.

518 ARITHMETIC 4.6.4

28. [HM20] Show that if f0(α1, . . . , αs), . . . , fs(α1, . . . , αs) are multivariate polyno-
mials with integer coefficients, then there is a nonzero polynomial g(x0, . . . , xs) with
integer coefficients such that g(f0(α1, . . . , αs), . . . , fs(α1, . . . , αs)) = 0 for all real α1,
. . . , αs. (Hence any polynomial chain with s parameters has at most s degrees of
freedom.) [Hint: Use the theorems about “algebraic dependenceŤ that are found, for
example, in B. L. van der Waerden’s Modern Algebra, translated by Fred Blum (New
York: Ungar, 1949), Section 64.]

x 29. [M20] Let R1, R2, . . . , Rm all be sets of (n+ 1)-tuples of real numbers having at
most t degrees of freedom. Show that the union R1 ∪R2 ∪ · · · ∪Rm also has at most t
degrees of freedom.

x 30. [M28] Prove that a polynomial chain with mc chain multiplications and mp

parameter multiplications has at most 2mc + mp + δ0mc degrees of freedom. [Hint:

Generalize Theorem M, showing that the Ąrst chain multiplication and each parameter
multiplication can essentially introduce only one new parameter into the result set.]

31. [M23] Prove that a polynomial chain capable of computing all monic polynomials
of degree n has at least ⌊n/2⌋ multiplications and at least n addition-subtractions.

32. [M24] Find a polynomial chain of minimum possible length that can compute all
polynomials of the form u4x

4 + u2x
2 + u0; and prove that its length is minimal.

x 33. [M25] Let n ≥ 3 be odd. Prove that a polynomial chain with ⌊n/2⌋ + 1 multi-
plication steps cannot compute all polynomials of degree n unless it has at least n+ 2
addition-subtraction steps. [Hint: See exercise 30.]

34. [M26] Let λ0, λ1, . . . , λr be a polynomial chain in which all of the addition
and subtraction steps are parameter steps, and in which there is at least one parameter
multiplication. Assume that this scheme has m multiplications and k = r−m addition-
subtractions, and that the polynomial computed by the chain has maximum degree n.
Prove that all polynomials computable by this chain, for which the coefficient of xn is
not zero, can be computed by another chain that has at most m multiplications and
at most k additions, and no subtractions; furthermore the last step of the new chain
should be the only parameter multiplication.

x 35. [M25] Show that any polynomial chain that computes a general fourth-degree
polynomial using three multiplications must have at least Ąve addition-subtractions.
[Hint: Assume that there are only four addition-subtractions, and show that exer-
cise 34 applies; therefore the scheme must have a particular form that is incapable of
representing all fourth-degree polynomials.]

36. [M27] Continuing the previous exercise, show that any polynomial chain that
computes a general sixth-degree polynomial using only four multiplications must have
at least seven addition-subtractions.

37. [M21] (T. S. Motzkin.) Show that “almost allŤ rational functions of the form

(unx
n + un−1x

n−1 + · · ·+ u1x+ u0)/(xn + vn−1x
n−1 + · · ·+ v1x+ v0),

with coefficients in a Ąeld S, can be evaluated using the scheme

α1 + β1/(x+ α2 + β2/(x+ · · ·+ βn/(x+ αn+1) . . .)),

for suitable αj , βj in S. (This continued fraction scheme has n divisions and 2n
additions; by “almost allŤ rational functions we mean all except those whose coefficients
satisfy some nontrivial polynomial equation.) Determine the α’s and β’s for the rational
function (x2 + 10x+ 29)/(x2 + 8x+ 19).

4.6.4 EVALUATION OF POLYNOMIALS 519

x 38. [HM32] (V. Y. Pan, 1962.) The purpose of this exercise is to prove that Horner’s
rule is really optimal if no preliminary adaptation of coefficients is made; we need n
multiplications and n additions to compute unx

n + · · ·+ u1x+ u0, if the variables un,
. . . , u1, u0, x, and arbitrary constants are given. Consider chains that are as before
except that un, . . . , u1, u0, x are each considered to be variables; we may say, for
example, that λ−j−1 = uj , λ0 = x. In order to show that Horner’s rule is best, it is
convenient to prove a somewhat more general theorem: Let A = (aij), 0 ≤ i ≤ m,
0 ≤ j ≤ n, be an (m + 1) × (n + 1) matrix of real numbers, of rank n + 1; and let
B = (b0, . . . , bm) be a vector of real numbers. Prove that any polynomial chain that
computes

P (x;u0, . . . , un) =
m

i=0

(ai0u0 + · · ·+ ainun + bi)x
i

involves at least n chain multiplications. (Note that this does not mean only that
we are considering some Ąxed chain in which the parameters αj are assigned values
depending on A and B; it means that both the chain and the values of the α’s may
depend on the given matrix A and vector B. No matter how A, B, and the values
of αj are chosen, it is impossible to compute P (x;u0, . . . , un) without doing n “chain-
stepŤ multiplications.) The assumption that A has rank n + 1 implies that m ≥ n.
[Hint: Show that from any such scheme we can derive another that has fewer chain
multiplications and that has n decreased by one.]

39. [M29] (T. S. Motzkin, 1954.) Show that schemes of the form

w1 = x(x+ α1) + β1, wk = wk−1(w1 + γkx+ αk) + δkx+ βk for 1 < k ≤ m,

where the αk, βk are real and the γk, δk are integers, can be used to evaluate all monic
polynomials of degree 2m over the real numbers. (We may have to choose αk, βk, γk,
and δk differently for different polynomials.) Try to let δk = 0 whenever possible.

40. [M41] Can the lower bound in the number of multiplications in Theorem C be
raised from ⌊n/2⌋+ 1 to ⌈n/2⌉+ 1? (See exercise 33.)

41. [22] Show that the real and imaginary parts of (a + bi)(c + di) can be obtained
by doing 3 multiplications and 5 additions of real numbers, where two of the additions
involve a and b only.

42. [36] (M. Paterson and L. Stockmeyer.) (a) Prove that a polynomial chain with
m ≥ 2 chain multiplications has at most m2 + 1 degrees of freedom. (b) Show that for
all n ≥ 2 there exist polynomials of degree n, all of whose coefficients are 0 or 1, that
cannot be evaluated by any polynomial chain with fewer than ⌊√n⌋ multiplications, if
we require all parameters αj to be integers. (c) Show that any polynomial of degree n
with integer coefficients can be evaluated by an all-integer algorithm that performs at
most 2⌊√n⌋ multiplications, if we don’t care how many additions we do.

43. [22] Explain how to evaluate xn + · · ·+ x + 1 with 2l(n + 1)− 2 multiplications
and l(n+ 1) additions (no divisions or subtractions), where l(n) is the function studied
in Section 4.6.3.

x 44. [M25] Show that any monic polynomial u(x) = xn + un−1x
n−1 + · · ·+ u0 can be

evaluated with 1
2
n + O(logn) multiplications and ≤ 5

4
n additions, using parameters

α1, α2, . . . that are polynomials in un−1, un−2, . . . with integer coefficients. [Hint:

Consider Ąrst the case n = 2l.]

520 ARITHMETIC 4.6.4

x 45. [HM22] Let (tijk) be an m×n×s tensor, and let F, G, H be nonsingular matrices
of respective sizes m×m, n× n, s× s. If

Tijk =
m

i′=1

n
j′=1

s
k′=1 Fii′Gjj′Hkk′ ti′j′k′

for all i, j, k, prove that the tensor (Tijk) has the same rank as (tijk). [Hint: Consider
what happens when F−1, G−1, H−1 are applied in the same way to (Tijk).]

46. [M28] Prove that all pairs (z1, z2) of bilinear forms in (x1, x2) and (y1, y2) can be
evaluated with at most three chain multiplications. In other words, show that every
2× 2× 2 tensor has rank ≤ 3.

47. [M25] Prove that for all m, n, and s there exists an m× n× s tensor whose rank
is at least ⌈mns/(m+ n+ s)⌉. Conversely, show that every m× n× s tensor has rank
at most mns/max(m,n, s).

48. [M21] If (tijk) and (t′ijk) are tensors of sizes m×n×s and m′×n′×s′, respectively,
their direct sum (tijk) ⊕ (t′ijk) = (t′′ijk) is the (m + m′) × (n + n′) × (s + s′) tensor
deĄned by t′′ijk = tijk if i ≤ m, j ≤ n, k ≤ s; t′′ijk = t′i−m,j−n,k−s if i > m, j > n,
k > s; and t′′ijk = 0 otherwise. Their direct product (tijk) ⊗ (t′ijk) = (t′′′ijk) is the
mm′ × nn′ × ss′ tensor deĄned by t⟨ii′⟩⟨jj′⟩⟨kk′⟩ = tijkt

′
i′j′k′ . Derive the upper bounds

rank(t′′ijk) ≤ rank(tijk) + rank(t′ijk) and rank(t′′′ijk) ≤ rank(tijk) · rank(t′ijk).

x 49. [HM25] Show that the rank of an m× n× 1 tensor (tijk) is the same as its rank
as an m× n matrix (tij1), according to the traditional deĄnition of matrix rank as the
maximum number of linearly independent rows.

50. [HM20] (S. Winograd.) Let (tijk) be the mn × n × m tensor corresponding to
multiplication of an m× n matrix by an n× 1 column vector. Prove that the rank of
(tijk) is mn.

x 51. [M24] (S. Winograd.) Devise an algorithm for cyclic convolution of degree 2 that
uses 2 multiplications and 4 additions, not counting operations on the xi. Similarly,
devise an algorithm for degree 3, using 4 multiplications and 11 additions. (See (69),
which solves the analogous problem for degree 4.)

52. [M25] (S. Winograd.) Let n = n′n′′ where n′ ⊥ n′′. Given normal schemes for
cyclic convolutions of degrees n′ and n′′, using respectively (m′,m′′) chain multiplica-
tions, (p′, p′′) parameter multiplications, and (a′, a′′) additions, show how to construct
a normal scheme for cyclic convolution of degree n using m′m′′ chain multiplications,
p′n′′ +m′p′′ parameter multiplications, and a′n′′ +m′a′′ additions.

53. [HM40] (S. Winograd.) Let ω be a complex mth root of unity, and consider the
one-dimensional discrete Fourier transform

f(s) =
m

t=1

F (t)ωst, for 1 ≤ s ≤ m.

a) When m = pe is a power of an odd prime, show that efficient normal schemes
for computing cyclic convolutions of degrees (p− 1)pk, for 0 ≤ k < e, will lead to
efficient algorithms for computing the Fourier transform on m complex numbers.
Give a similar construction for the case p = 2.

b) When m = m′m′′ and m′ ⊥ m′′, show that Fourier transformation algorithms
for m′ and m′′ can be combined to yield a Fourier transformation algorithm for
m elements.

4.6.4 EVALUATION OF POLYNOMIALS 521

54. [M23] Theorem W refers to an inĄnite Ąeld. How many elements must a Ąnite
Ąeld have in order for the proof of Theorem W to be valid?

55. [HM22] Determine the rank of tensor (74) when P is an arbitrary n× n matrix.

56. [M32] (V. Strassen.) Show that any polynomial chain that evaluates a set of
quadratic forms

n
i=1

n
j=1 τijkxixj for 1 ≤ k ≤ s must use at least 1

2
rank(τijk + τjik)

chain multiplications altogether. [Hint: Show that the minimum number of chain
multiplications is the minimum rank of (tijk) taken over all tensors (tijk) such that
tijk + tjik = τijk + τjik for all i, j, k.] Conclude that if a polynomial chain evaluates a
set of bilinear forms (47) corresponding to a tensor (tijk), whether normal or abnormal,
it must use at least 1

2
rank(tijk) chain multiplications.

57. [M20] Show that fast Fourier transforms can be used to compute the coefficients of
the product x(u)y(u) of two given polynomials of degree n, using O(n logn) operations
of (exact) addition and multiplication of complex numbers. [Hint: Consider the product
of Fourier transforms of the coefficients.]

58. [HM28] (a) Show that any realization (A,B,C) of the polynomial multiplication
tensor (55) must have the following property: Any nonzero linear combination of the
three rows of A must be a vector with at least four nonzero elements; and any nonzero
linear combination of the four rows of B must have at least three nonzero elements.
(b) Find a realization (A,B,C) of (55) that uses only 0, +1, and −1 as elements, where
r = 8. Try to use as many 0s as possible.

x 59. [M40] (H. J. Nussbaumer, 1980.) The text deĄnes the cyclic convolution of two
sequences (x0, x1, . . . , xn−1) and (y0, y1, . . . , yn−1) to be the sequence (z0, z1, . . . , zn−1)
where zk = x0yk + · · ·+xky0 +xk+1yn−1 + · · ·+xn−1yk+1. Let us deĄne the negacyclic

convolution similarly, but with

zk = x0yk + · · ·+ xky0 − (xk+1yn−1 + · · ·+ xn−1yk+1).

Construct efficient algorithms for cyclic and negacyclic convolution over the integers
when n is a power of 2. Your algorithms should deal entirely with integers, and
they should perform at most O(n logn) multiplications and at most O(n logn log logn)
additions or subtractions or divisions of even numbers by 2. [Hint: A cyclic convolution
of order 2n can be reduced to cyclic and negacyclic convolutions of order n, using (59).]

60. [M27] (V. Y. Pan.) The problem of (m× n) times (n× s) matrix multiplication
corresponds to an mn × ns × sm tensor (t⟨i,j′⟩⟨j,k′⟩⟨k,i′⟩) where t⟨i,j′⟩⟨j,k′⟩⟨k,i′⟩ = 1 if
and only if i′ = i and j′ = j and k′ = k. The rank of this tensor T (m,n, s) is the
smallest number r such that numbers aij′l, bjk′l, cki′l exist satisfying

1≤i≤m

1≤j≤n

1≤k≤s

xijyjkzki =

1≤l≤r

1≤i≤m

1≤j′≤n

aij′lxij′

1≤j≤n

1≤k′≤s

bjk′lyjk′

1≤k≤s

1≤i′≤m

cki′lzki′

.

Let M(n) be the rank of T (n, n, n). The purpose of this exercise is to exploit the
symmetry of such a trilinear representation, obtaining efficient realizations of matrix
multiplication over the integers when m = n = s = 2ν. For convenience we divide
the indices {1, . . . , n} into two subsets O = {1, 3, . . . , n − 1} and E = {2, 4, . . . , n} of
ν elements each, and we set up a one-to-one correspondence between O and E by the
rule ı̃ = i+ 1 if i ∈ O; ı̃ = i− 1 if i ∈ E. Thus we have ˜̃ı = i for all indices i.

522 ARITHMETIC 4.6.4

a) The identity

abc+ABC = (a+A)(b+B)(c+ C)− (a+A)bC −A(b+B)c− aB(c+ C)

implies that

1≤i,j,k≤n

xijyjkzki =

(i,j,k)∈S

(xij + xκ̃ı̃)(yjk + yı̃ȷ̃)(zki + zȷ̃κ̃)−Σ1 −Σ2 −Σ3,

where S = E×E×E ∪ E×E×O ∪ E×O×E ∪ O×E×E is the set of all triples of
indices containing at most one odd index; Σ1 is the sum of all terms of the form
(xij + xκ̃ı̃)yjkzȷ̃κ̃ for (i, j, k) ∈ S; and Σ2, Σ3 similarly are sums of the terms
xκ̃ı̃(yjk + yı̃ȷ̃)zki, xijyı̃ȷ̃(zki + zȷ̃κ̃). Clearly S has 4ν3 = 1

2
n3 terms. Show that

each of Σ1, Σ2, Σ3 can be realized as the sum of 3ν2 trilinear terms; furthermore,
if the 3ν triples of the forms (i, i, ı̃) and (i, ı̃, i) and (̃ı, i, i) are removed from S, we
can modify Σ1, Σ2, and Σ3 in such a way that the identity is still valid, without
adding any new trilinear terms. Thus M(n) ≤ 1

2
n3 + 9

4
n2 − 3

2
n when n is even.

b) Apply the method of (a) to show that two independent matrix multiplication
problems of the respective sizes m× n× s and s×m× n can be performed with
mns+mn+ ns+ sm noncommutative multiplications.

61. [M26] Let (tijk) be a tensor over an arbitrary Ąeld. We deĄne rankd(tijk) as the
minimum value of r such that there is a realization of the form

r

l=1

ail(u)bjl(u)ckl(u) = tijku
d +O(ud+1),

where ail(u), bjl(u), ckl(u) are polynomials in u over the Ąeld. Thus rank0 is the
ordinary rank of a tensor. Prove that

a) rankd+1(tijk) ≤ rankd(tijk);
b) rank(tijk) ≤

d+2

2

rankd(tijk);

c) rankd((tijk)⊕ (t′ijk)) ≤ rankd(tijk) + rankd(t′ijk), in the sense of exercise 48;
d) rankd+d′((tijk)⊗ (t′ijk)) ≤ rankd(tijk) · rankd′(t′ijk);
e) rankd+d′((tijk) ⊗ (t′ijk)) ≤ rankd′(r(t′ijk)), where r = rankd(tijk) and rT denotes

the direct sum T ⊕ · · · ⊕ T of r copies of T .

62. [M24] The border rank of (tijk), denoted by rank(tijk), is mind≥0 rankd(tijk),
where rankd is deĄned in exercise 61. Prove that the tensor

1
0

0
1

0
0

1
0

has rank 3 but

border rank 2, over every Ąeld.

63. [HM30] Let T (m,n, s) be the tensor for matrix multiplication as in exercise 60,
and let M(N) be the rank of T (N,N,N).

a) Show that T (m,n, s)⊗ T (M,N, S) = T (mM,nN, sS).
b) Show that rankd(T (mN,nN, sN)) ≤ rankd(M(N)T (m,n, s)) (see exercise 61(e)).
c) If T (m,n, s) has rank ≤ r, show that M(N) = O(Nω(m,n,s,r)) as N → ∞, where

ω(m,n, s, r) = 3 log r/ logmns.
d) If T (m,n, s) has border rank ≤ r, show that M(N) = O(Nω(m,n,s,r)(logN)2).

64. [M30] (A. Schönhage.) Show that rank2(T (3, 3, 3)) ≤ 21, so M(N) = O(N2.78).

x 65. [M27] (A. Schönhage.) Show that rank2(T (m, 1, n) ⊕ T (1, (m−1)(n−1), 1)) =
mn+ 1. Hint: Consider the trilinear form

m

i=1

n

j=1

(xi + uXij)(yj + uYij)(Z + u2zij)− (x1 + · · ·+ xm)(y1 + · · ·+ yn)Z

4.6.4 EVALUATION OF POLYNOMIALS 523

when
m

i=1 Xij =
n

j=1 Yij = 0.

66. [HM33] We can now use the result of exercise 65 to sharpen the asymptotic bounds
of exercise 63.

a) Prove that the limit ω = limn→∞ logM(n)/logn exists.
b) Prove that (mns)ω/3 ≤ rank(T (m,n, s)).
c) Let t be the tensor T (m,n, s)⊕T (M,N, S). Prove that (mns)ω/3 + (MNS)ω/3 ≤

rank(t). Hint: Consider direct products of t with itself.
d) Therefore 16ω/3 + 9ω/3 ≤ 17, and we have ω < 2.55.

67. [HM40] (D. Coppersmith and S. Winograd.) By generalizing exercises 65 and 66
we can obtain even better upper bounds on ω.

a) Say that the tensor (tijk) is nondegenerate if rank(ti(jk)) = m, rank(tj(ki)) = n,
and rank(tk(ij)) = s, in the notation of Lemma T. Prove that the tensor T (m,n, s)
for mn× ns matrix multiplication is nondegenerate.

b) Show that the direct sum of nondegenerate tensors is nondegenerate.
c) An m × n × s tensor t with realization (A,B,C) of length r is called improv-

able if it is nondegenerate and there are nonzero elements d1, . . . , dr such thatr
l=1 ailbjldl = 0 for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Prove that in such a

case t ⊕ T (1, q, 1) has border rank ≤ r, where q = r − m − n. Hint: There
are q × r matrices V and W such that

r
l=1 vilbjldl =

r
l=1 ailwjldl = 0 andr

l=1 vilwjldl = δij for all relevant i and j.
d) Explain why the result of exercise 65 is a special of (c).
e) Prove that rank(T (m,n, s)) ≤ r implies

rank2(T (m,n, s)⊕ T (1, r − n(m+ s− 1), 1)) ≤ r + n.

f) Therefore ω is strictly less than logM(n)/logn for all n > 1.
g) Generalize (c) to the case where (A,B,C) realizes t only in the weaker sense of

exercise 61.
h) From (d) we have rank(T (3, 1, 3)⊕T (1, 4, 1)) ≤ 10; thus by exercise 61(d) we also

have rank(T (9, 1, 9) ⊕ 2T (3, 4, 3) ⊕ T (1, 16, 1)) ≤ 100. Prove that if we simply
delete the rows of A and B that correspond to the 16 + 16 variables of T (1, 16, 1),
we obtain a realization of T (9, 1, 9)⊕ 2T (3, 4, 3) that is improvable. Therefore we
have in fact rank(T (9, 1, 9)⊕ 2T (3, 4, 3)⊕ T (1, 34, 1)) ≤ 100.

i) Generalizing exercise 66(c), show that

t

p=1

(mpnpsp)ω/3 ≤ rank
 t

p=1

T (mp, np, sp)

.

j) Therefore ω < 2.5.

68. [M45] Is there a way to evaluate the polynomial

1≤i<j≤n

xixj = x1x2 + · · ·+ xn−1xn

with fewer than n− 1 multiplications and 2n− 4 additions? (There are

n
2

terms.)

x 69. [HM27] (V. Strassen, 1973.) Show that the determinant (31) of an n× n matrix
can be evaluated by doing O(n5) multiplications and O(n5) additions or subtractions,
and no divisions. [Hint: Consider det(I + Y) where Y = X − I.]

524 ARITHMETIC 4.6.4

x 70. [HM25] The characteristic polynomial fX(λ) of a matrix X is deĄned to be
det (λI −X). Prove that if X = (x

v
u
Y

), where X, u, v, and Y are respectively of
sizes n× n, 1× (n− 1), (n− 1)× 1, and (n− 1)× (n− 1), we have

fX(λ) = fY (λ)

λ− x− uv

λ
− uY v

λ2
− uY 2v

λ3
− · · ·

.

Show that this relation allows us to compute the coefficients of fX with about 1
4
n4

multiplications, 1
4
n4 addition-subtractions, and no divisions. Hint: Use the identity

A B
C D

=

I 0
0 D

A−BD−1C B

0 I

I 0

D−1C I

,

which holds for any matrices A, B, C, and D of respective sizes l× l, l×m, m× l, and
m×m when D is nonsingular.

x 71. [HM30] A quolynomial chain is like a polynomial chain except that it allows
division as well as addition, subtraction, and multiplication. Prove that if f(x1, . . . , xn)
can be computed by a quolynomial chain that has m chain multiplications and d di-
visions, then f(x1, . . . , xn) and all n of its partial derivatives ∂f(x1, . . . , xn)/∂xk for
1 ≤ k ≤ n can be computed by a single quolynomial chain that has at most 3m+d chain
multiplications and 2d divisions. (Consequently, for example, any efficient method for
calculating the determinant of a matrix leads to an efficient method for calculating all
of its cofactors, hence an efficient method for computing the inverse matrix.)

72. [M48] Is it possible to determine the rank of any given tensor (tijk) over, say, the
Ąeld of rational numbers, in a Ąnite number of steps?

73. [HM25] (J. Morgenstern, 1973.) Prove that any polynomial chain for the discrete
Fourier transform (37) has at least 1

2
m1 . . .mn lgm1 . . .mn addition-subtractions, if

there are no chain multiplications and if every parameter multiplication is by a complex-
valued constant with |αj | ≤ 1. Hint: Consider the matrices of the linear transforma-
tions computed by the Ąrst k steps. How big can their determinants be?

74. [HM35] (A. Nozaki, 1978.) Most of the theory of polynomial evaluation is con-
cerned with bounds on chain multiplications, but multiplication by noninteger constants
can also be essential. The purpose of this exercise is to develop an appropriate theory
of constants. Let us say that vectors v1, . . . , vs of real numbers are Z-dependent if
there are integers (k1, . . . , ks) such that gcd(k1, . . . , ks) = 1 and k1v1 + · · ·+ ksvs is an
all-integer vector. If no such (k1, . . . , ks) exist, the vectors v1, . . . , vs are Z-independent.

a) Prove that if the columns of an r × s matrix V are Z-independent, so are the
columns of V U , when U is any s × s unimodular matrix (a matrix of integers
whose determinant is ±1).

b) Let V be an r × s matrix with Z-independent columns. Prove that a poly-
nomial chain to evaluate the elements of Vx from inputs x1, . . . , xs, where
x = (x1, . . . , xs)T , needs at least s multiplications.

c) Let V be an r × t matrix having s columns that are Z-independent. Prove that
a polynomial chain to evaluate the elements of Vx from inputs x1, . . . , xt, where
x = (x1, . . . , xt)T , needs at least s multiplications.

d) Show how to compute the pair of values {x/2 + y, x + y/3} from x and y using
only one multiplication, although two multiplications are needed to compute the
pair {x/2 + y, x+ y/2}.

4.7 MANIPULATION OF POWER SERIES 525

*4.7. MANIPULATION OF POWER SERIES

If we are given two power series

U(z) = U0 + U1z + U2z
2 + · · · , V (z) = V0 + V1z + V2z

2 + · · · , (1)

whose coefficients belong to a Ąeld, we can form their sum, their product, and
sometimes their quotient, to obtain new power series. A polynomial is obviously
a special case of a power series, in which there are only Ąnitely many terms.

Of course, only a Ąnite number of terms can be represented and stored
within a computer, so it makes sense to ask whether power series arithmetic
is even possible on computers; and if it is possible, what makes it different
from polynomial arithmetic? The answer is that we work with only the Ąrst N
coefficients of the power series, where N is a parameter that may in principle be
arbitrarily large; instead of ordinary polynomial arithmetic, we are essentially
doing polynomial arithmetic modulo zN, and this often leads to a somewhat
different point of view. Furthermore, special operations like “reversionŤ can be
performed on power series but not on polynomials, since polynomials are not
closed under those operations.

Manipulation of power series has many applications to numerical analysis,
but perhaps its greatest use is the determination of asymptotic expansions (as we
have seen in Section 1.2.11.3), or the calculation of quantities deĄned by certain
generating functions. The latter applications make it desirable to calculate
the coefficients exactly, instead of with Ćoating point arithmetic. All of the
algorithms in this section, with obvious exceptions, can be done using rational
operations only, so the techniques of Section 4.5.1 can be used to obtain exact
results when desired.

The calculation of W (z) = U(z) ± V (z) is, of course, trivial, since we have
Wn = [zn]W (z) = Un ± Vn for n = 0, 1, 2, It is also easy to calculate the
coefficients of W (z) = U(z)V (z), using the familiar convolution rule

Wn =
n

k=0

UkVn−k = U0Vn + U1Vn−1 + · · ·+ UnV0. (2)

The quotient W (z) = U(z)/V (z), when V0 ̸= 0, can be obtained by inter-
changing U and W in (2); we obtain the rule

Wn =

Un −
n−1

k=0

WkVn−k

V0

= (Un −W0Vn −W1Vn−1 − · · · −Wn−1V1)/V0. (3)

This recurrence relation for the W ’s makes it easy to determine W0, W1, W2, . . .
successively, without inputting Un and Vn until after Wn−1 has been computed.
A power series manipulation algorithm with that property is traditionally called
online; with an online algorithm, we can determine N coefficients W0, W1, . . . ,
WN−1 of the result without knowing N in advance, so we could in principle run
the algorithm indeĄnitely and compute the entire power series. We can also run

526 ARITHMETIC 4.7

an online algorithm until any desired condition is met. (The opposite of “onlineŤ
is “offline.Ť)

If the coefficients Uk and Vk are integers but the Wk are not, the recurrence
relation (3) involves computation with fractions. This can be avoided by the
all-integer approach described in exercise 2.

Let us now consider the operation of computing W (z) = V (z)α, where α is
an “arbitraryŤ power. For example, we could calculate the square root of V (z)
by taking α = 1

2 , or we could Ąnd V (z)−10 or even V (z)π. If Vm is the Ąrst
nonzero coefficient of V (z), we have

V (z) = Vm z
m

1 + (Vm+1/Vm)z + (Vm+2/Vm)z2 + · · ·

,

V (z)α = V α
m z

αm

1 + (Vm+1/Vm)z + (Vm+2/Vm)z2 + · · ·

α
.

(4)

This will be a power series if and only if αm is a nonnegative integer. If α itself
is not an integer, there’s more than one possibility for V α

mz
αm here.

From (4) we can see that the problem of computing general powers can be
reduced to the case that V0 = 1; then the problem is to compute the coefficients of

W (z) = (1 + V1z + V2z
2 + V3z

3 + · · ·)α. (5)

Clearly W0 = 1α = 1.
The obvious way to Ąnd the coefficients of (5) is to use the binomial theorem,

Eq. 1.2.9Ű(19), or (if α is a positive integer) to try repeated squaring as in Section
4.6.3. But Leonhard Euler discovered a much simpler and more efficient way to
obtain power series powers [Introductio in Analysin InĄnitorum 1 (1748), §76]:
If W (z) = V (z)α, we have by differentiation

W1 + 2W2z + 3W3z
2 + · · · = W ′(z) = αV (z)α−1V ′(z); (6)

therefore
W ′(z)V (z) = αW (z)V ′(z). (7)

If we now equate the coefficients of zn−1 in (7), we Ąnd that
n

k=0

kWkVn−k = α

n

k=0

(n− k)WkVn−k, (8)

and this gives us a useful computational rule valid for all n ≥ 1:

Wn =
n

k=1

α+ 1
n

k − 1

VkWn−k

=

(α+1−n)V1Wn−1 + (2α+2−n)V2Wn−2 + · · ·+ nαVnW0

/n. (9)

Equation (9) leads to a simple online algorithm by which we can successively
determine W1, W2, . . . , using approximately 2n multiplications to compute the
nth coefficient. Notice the special case α = −1, in which (9) becomes the special
case U(z) = V0 = 1 of (3).

A similar technique can be used to form f

V (z)

when f is any function

that satisĄes a simple differential equation. (For example, see exercise 4.) A
comparatively straightforward “power series methodŤ is often used to obtain

4.7 MANIPULATION OF POWER SERIES 527

L1. Initialize

L2. Input Vn L3. Divide L4. Output Wn

n>N

Fig. 17. Power series reversion by Algorithm L.

the solution of differential equations; this technique is explained in nearly all
textbooks about differential equations.

Reversion of series. The transformation of power series that is perhaps of
greatest interest is called “reversion of series.Ť This problem is to solve the
equation

z = t+ V2t
2 + V3t

3 + V4t
4 + · · · (10)

for t, obtaining the coefficients of the power series

t = z +W2z
2 +W3z

3 +W4z
4 + · · · . (11)

Several interesting ways to achieve such a reversion are known. We might
say that the “classicalŤ method is one based on Lagrange’s remarkable inversion
formula [Mémoires Acad. Royale des Sciences et Belles-Lettres de Berlin 24
(1768), 251Ű326], which states that

Wn =
1
n

[tn−1] (1 + V2t+ V3t
2 + · · ·)−n. (12)

For example, we have (1−t)−5 =

4
4

+

5
4

t+

6
4

t2+· · · ; hence the Ąfth coefficient,

W5, in the reversion of z = t − t2 is equal to

8
4

/5 = 14. This checks with the

formulas for enumerating binary trees in Section 2.3.4.4.
Relation (12), which has a simple algorithmic proof (see exercise 16), shows

that we can revert the series (10) if we successively compute the negative powers
(1 + V2t + V3t

2 + · · ·)−n for n = 1, 2, 3, A straightforward application of
this idea would lead to an online reversion algorithm that uses approximately
N3/2 multiplications to Ąnd N coefficients, but Eq. (9) makes it possible to work
with only the Ąrst n coefficients of (1 + V2t+ V3t

2 + · · ·)−n, obtaining an online
algorithm that requires only about N3/6 multiplications.

Algorithm L (Lagrangian power series reversion). This online algorithm inputs
the value of Vn in (10) and outputs the value of Wn in (11), for n = 2, 3, 4,
. . . , N. (The number N need not be speciĄed in advance; any desired termination
criterion may be substituted.)

L1. [Initialize.] Set n← 1, U0 ← 1. (The relation

(1 + V2t+ V3t
2 + · · ·)−n = U0 + U1t+ · · ·+ Un−1t

n−1 +O(tn) (13)

will be maintained throughout this algorithm.)

528 ARITHMETIC 4.7

L2. [Input Vn.] Increase n by 1. If n > N, the algorithm terminates; otherwise
input the next coefficient, Vn.

L3. [Divide.] Set Uk ← Uk − Uk−1V2 − · · · − U1Vk − U0Vk+1, for k = 1, 2, . . . ,
n− 2 (in this order); then set

Un−1 ← −2Un−2V2 − 3Un−3V3 − · · · − (n− 1)U1Vn−1 − nU0Vn.

We have thereby divided U(z) by V (z)/z; see (3) and (9).

L4. [Output Wn.] Output Un−1/n (which is Wn) and return to L2.

When applied to the example z = t− t2, Algorithm L computes

n Vn U0 U1 U2 U3 U4 Wn

1 1 1 1
2 −1 1 2 1
3 0 1 3 6 2
4 0 1 4 10 20 5
5 0 1 5 15 35 70 14

Exercise 8 shows that a slight modiĄcation of Algorithm L will solve a consider-
ably more general problem with only a little more effort.

Let us now consider solving the equation

U1z + U2z
2 + U3z

3 + · · · = t+ V2t
2 + V3t

3 + · · · (14)

for t, obtaining the coefficients of the power series

t = W1z +W2z
2 +W3z

3 +W4z
4 + · · · . (15)

Eq. (10) is the special case U1 = 1, U2 = U3 = · · · = 0. If U1 ̸= 0, we may
assume that U1 = 1, if we replace z by (U1z); but we shall consider the general
equation (14), since U1 might equal zero.

Algorithm T (General power series reversion). This online algorithm inputs
the values of Un and Vn in (14) and outputs the value of Wn in (15), for n = 1, 2,
3, . . . , N. An auxiliary matrix Tmn, 1 ≤ m ≤ n ≤ N, is used in the calculations.
T1. [Initialize.] Set n ← 1. Let the Ąrst two inputs (namely, U1 and V1) be

stored in T11 and V1, respectively. (We must have V1 = 1.)
T2. [Output Wn.] Output the value of T1n (which is Wn).
T3. [Input Un, Vn.] Increase n by 1. If n > N, the algorithm terminates;

otherwise store the next two inputs (namely, Un and Vn) in T1n and Vn.
T4. [Multiply.] Set

Tmn ← T11Tm−1,n−1 + T12Tm−1,n−2 + · · ·+ T1,n−m+1Tm−1,m−1

and T1n ← T1n − VmTmn, for 2 ≤ m ≤ n.

After this step we have

tm = Tmmz
m + Tm,m+1z

m+1 + · · ·+ Tmnz
n +O(zn+1), (16)

for 1 ≤ m ≤ n. It is easy to verify (16) by induction for m ≥ 2, and when
m = 1, we have Un = T1n + V2T2n + · · ·+ VnTnn by (14) and (16).

Return

to step T2.

4.7 MANIPULATION OF POWER SERIES 529

Equation (16) explains the mechanism of this algorithm, which is due to
Henry C. Thacher, Jr. [CACM 9 (1966), 10Ű11]. The running time is essentially
the same as Algorithm L, but considerably more storage space is required. An
example of this algorithm is worked out in exercise 9.

Still another approach to power series reversion has been proposed by R. P.
Brent and H. T. Kung [JACM 25 (1978), 581Ű595], based on the fact that
standard iterative procedures used to Ąnd roots of equations over the real num-
bers can also be applied to equations over power series. In particular, we can
consider Newton’s method for computing approximations to a real number t
such that f(t) = 0, given a function f that is well-behaved near t: If x is a
good approximation to t, then ϕ(x) = x− f(x)/f ′(x) will be even better, for if
we write x = t + ϵ we have f(x) = f(t) + ϵf ′(t) + O(ϵ2), f ′(x) = f ′(t) + O(ϵ);
consequently ϕ(x) = t + ϵ −

0 + ϵf ′(t) + O(ϵ2)

/

f ′(t) + O(ϵ)

= t + O(ϵ2).

Applying this idea to power series, let f(x) = V (x)− U(z), where U and V are
the power series in Eq. (14). We wish to Ąnd the power series t in z such that
f(t) = 0. Let x = W1z + · · · + Wn−1z

n−1 = t + O(zn) be an “approximationŤ
to t of order n; then ϕ(x) = x−f(x)/f ′(x) will be an approximation of order 2n,
since the assumptions of Newton’s method hold for this f and t.

In other words, we can use the following procedure:

Algorithm N (General power series reversion by Newton’s method). This “semi-
onlineŤ algorithm inputs the values of Un and Vn in (14) for 2k ≤ n < 2k+1 and
then outputs the values of Wn in (15) for 2k ≤ n < 2k+1, thereby producing its
answers in batches of 2k at a time, for k = 0, 1, 2, . . . , K.

N1. [Initialize.] Set N ← 1. (We will have N = 2k.) Input the Ąrst coefficients
U1 and V1 (where V1 = 1), and set W1 ← U1.

N2. [Output.] Output Wn for N ≤ n < 2N.

N3. [Input.] Set N ← 2N. If N > 2K , the algorithm terminates; otherwise
input the values Un and Vn for N ≤ n < 2N.

N4. [Newtonian step.] Use an algorithm for power series composition (see exer-
cise 11) to evaluate the coefficients Qj and Rj (0 ≤ j < N) in the power
series

U1z + · · ·+ U2N−1z
2N−1 − V (W1z + · · ·+WN−1z

N−1)
= R0z

N +R1z
N+1 + · · ·+RN−1z

2N−1 +O(z2N),

V ′(W1z + · · ·+WN−1z
N−1) = Q0 +Q1z + · · ·+QN−1z

N−1 +O(zN),

where V (x) = x+V2x
2 + · · · and V ′(x) = 1+2V2x+ · · · . Then set WN, . . . ,

W2N−1 to the coefficients in the power series

R0+R1z+ · · ·+RN−1z
N−1

Q0+Q1z+ · · ·+QN−1zN−1
= WN + · · ·+W2N−1z

N−1 +O(zN)

and return to step N2.

530 ARITHMETIC 4.7

The running time for this algorithm to obtain the coefficients up to N = 2K

is T (N), where

T (2N) = T (N) + (time to do step N4) +O(N). (17)

Straightforward algorithms for composition and division in step N4 will take
order N3 steps, so Algorithm N will run slower than Algorithm T. However,
Brent and Kung have found a way to do the required composition of power
series with O(N logN)3/2 arithmetic operations, and exercise 6 gives an even
faster algorithm for division; hence (17) shows that power series reversion can
be achieved by doing only O(N logN)3/2 operations as N →∞. (On the other
hand the constant of proportionality is such that N must be really large before
Algorithms L and T lose out to this “high-speedŤ method.)

Historical note: J. N. Bramhall and M. A. Chapple published the ĄrstO(N3)
method for power series reversion in CACM 4 (1961), 317Ű318, 503. It was an
offline algorithm essentially equivalent to the method of exercise 16, with running
time approximately the same as that of Algorithms L and T.

Iteration of series. If we want to study the behavior of an iterative process
xn ← f(xn−1), we are interested in studying the n-fold composition of a given
function f with itself, namely xn = f

f(. . . f(x0) . . .)

. Let us deĄne f [0](x) = x

and f [n](x) = f

f [n−1](x)

, so that

f [m+n](x) = f [m]

f [n](x)

(18)

for all integers m, n ≥ 0. In many cases the notation f [n](x) makes sense
also when n is a negative integer, namely if f [n] and f [−n] are inverse functions
such that x = f [n]

f [−n](x)

; if inverse functions are unique, (18) holds for all

integers m and n. Reversion of series is essentially the operation of Ąnding the
inverse power series f [−1](x); for example, Eqs. (10) and (11) essentially state
that z = V

W (z)

and that t = W

V (t)

, so W = V [−1].

Suppose we are given two power series V (z) = z + V2z
2 + · · · and W (z) =

z+W2z
2 + · · · such that W = V [−1]. Let u be any nonzero constant, and consider

the function
U(z) = W

uV (z)

. (19)

It is easy to see that U

U(z)

= W

u2V (z)

, and in general that

U [n](z) = W

unV (z)

(20)

for all integers n. Therefore we have a simple expression for the nth iterate
U [n], which can be calculated with roughly the same amount of work for all n.
Furthermore, we can even use (20) to deĄne U [n] for noninteger values of n; the
“half iterateŤ U [1/2], for example, is a function such that U [1/2]

U [1/2](z)

=

U(z).

There are two such functions U [1/2], obtained by using

√
u and −√u as

the value of u1/2 in (20).

We obtained the simple state of affairs in (20) by starting with V and u, then
deĄning U. But in practice we generally want to go the other way: Starting with

4.7 MANIPULATION OF POWER SERIES 531

some given function U, we want to Ąnd V and u such that (19) holds, namely
such that

V

U(z)

= uV (z). (21)

Such a function V is called the Schröder function of U, because it was introduced
by Ernst Schröder in Math. Annalen 3 (1871), 296Ű322. Let us now look at the
problem of Ąnding the Schröder function V (z) = z+ V2z

2 + · · · of a given power
series U(z) = U1z + U2z

2 + · · · . Clearly u = U1 if (21) is to hold.
Expanding (21) with u = U1 and equating coefficients of z leads to a

sequence of equations that begins

U2
1V2 + U2 = U1V2 ,

U3
1V3 + 2U1U2V2 + U3 = U1V3 ,

U4
1V4 + 3U2

1U2V3 + 2U1U3V2 + U2
2V2 + U4 = U1V4 ,

and so on. Clearly there is no solution when U1 = 0 (unless trivially U2 = U3 =
· · · = 0); otherwise there is a unique solution unless U1 is a root of unity. We
might have expected that something funny would happen when Un

1 = 1, since
Eq. (20) tells us that U [n](z) = z if the Schröder function exists in that case.
For the moment let us assume that U1 is nonzero and not a root of unity; then
the Schröder function does exist, and the next question is how to compute it
without doing too much work.

The following procedure has been suggested by R. P. Brent and J. F. Traub.
Equation (21) leads to subproblems of a similar but more complicated form, so
we set ourselves a more general task whose subtasks have the same form: Let us
try to Ąnd V (z) = V0 + V1z + · · ·+ Vn−1z

n−1 such that

V

U(z)

= W (z)V (z) + S(z) +O(zn), (22)

given U(z), W (z), S(z), and n, where n is a power of 2 and U(0) = 0. If n = 1
we simply let V0 = S(0)

1 −W (0)

, with V0 = 1 if S(0) = 0 and W (0) = 1.

Furthermore it is possible to go from n to 2n: First we Ąnd R(z) such that

V

U(z)

= W (z)V (z) + S(z)− znR(z) +O(z2n). (23)

Then we compute

Ŵ (z) = W (z)

z/U(z)

n
+O(zn), Ŝ(z) = R(z)

z/U(z)

n
+O(zn), (24)

and Ąnd V̂ (z) = Vn + Vn+1z + · · ·+ V2n−1z
n−1 such that

V̂

U(z)

= Ŵ (z)V̂ (z) + Ŝ(z) +O(zn). (25)

It follows that the function V ∗(z) = V (z) + znV̂ (z) satisĄes

V ∗U(z)

= W (z)V ∗(z) + S(z) +O(z2n),

as desired.
The running time T (n) of this procedure satisĄes

T (2n) = 2T (n) + C(n), (26)

532 ARITHMETIC 4.7

where C(n) is the time to compute R(z), Ŵ (z), and Ŝ(z). The function C(n) is
dominated by the time to compute V

U(z)

modulo z2n, and C(n) presumably

grows faster than order n1+ϵ; therefore the solution T (n) to (26) will be of
order C(n). For example, if C(n) = cn3 we have T (n) ≈ 4

3cn
3; or if C(n) is

O(n logn)3/2 using “fastŤ composition, we have T (n) = O(n logn)3/2.
The procedure breaks down when W (0) = 1 and S(0) ̸= 0, so we need to

investigate when this can happen. It is easy to prove by induction on n that
the solution of (22) by the BrentŰTraub method entails consideration of exactly
n subproblems, in which the coefficient of V (z) on the right-hand side takes
the respective values W (z)

z/U(z)

j + O(zn) for 0 ≤ j < n in some order. If

W (0) = U1 and if U1 is not a root of unity, we therefore have W (0) = 1 only
when j = 1; the procedure will fail in this case only if (22) has no solution
for n = 2.

Consequently the Schröder function for U can be found by solving (22) for
n = 2, 4, 8, 16, . . . , with W (z) = U1 and S(z) = 0, whenever U1 is nonzero and
not a root of unity.

If U1 = 1, there is no Schröder function unless U(z) = z. But Brent and
Traub have found a fast way to compute U [n](z) even when U1 = 1, by making
use of a function V (z) such that

V

U(z)

= U ′(z)V (z). (27)

If two functions U(z) and Û(z) both satisfy (27), for the same V , it is easy to
check that their composition U

Û(z)

does too; therefore all iterates of U(z) are

solutions of (27). Suppose we have U(z) = z + Uk z
k + Uk+1z

k+1 + · · · where
k ≥ 2 and Uk ̸= 0. Then it can be shown that there is a unique power series
of the form V (z) = zk + Vk+1z

k+1 + Vk+2z
k+2 + · · · satisfying (27). Conversely

if such a function V (z) is given, and if k ≥ 2 and Uk are given, then there is a
unique power series of the form U(z) = z+Ukz

k +Uk+1z
k+1 + · · · satisfying (27).

The desired iterate U [n](z) is the unique power series P (z) satisfying

V

P (z)

= P ′(z)V (z) (28)

such that P (z) = z + nUk z
k + · · · . Both V (z) and P (z) can be found by

appropriate algorithms (see exercise 14).
If U1 is a kth root of unity, but not equal to 1, the same method can be

applied to the function U [k](z) = z+ · · · , and U [k](z) can be found from U(z) by
doing l(k) composition operations (see Section 4.6.3). We can also handle the
case U1 = 0: If U(z) = Uk z

k +Uk+1z
k+1 + · · · where k ≥ 2 and Uk ̸= 0, the idea

is to Ąnd a solution to the equation V

U(z)

= UkV (z)k; then

U [n](z) = V [−1]

U

[(kn−1)/(k−1)]
k V (z)k

n
. (29)

Finally, if U(z) = U0 + U1z + · · · where U0 ̸= 0, let α be a “Ąxed pointŤ such
that U(α) = α, and let

Û(z) = U(α+ z)− α = zU ′(α) + z2U ′′(α)/2! + · · · ; (30)

4.7 MANIPULATION OF POWER SERIES 533

then U [n](z) = Û [n](z−α)+α. Further details can be found in Brent and Traub’s
paper [SICOMP 9 (1980), 54Ű66]. The V function of (27) had previously been
considered by M. Kuczma, Functional Equations in a Single Variable (Warsaw:
PWNŰPolish ScientiĄc, 1968), Lemma 9.4, and implicitly by E. Jabotinsky a few
years earlier (see exercise 23).

Algebraic functions. The coefficients of each power series W (z) that satisĄes
a general equation of the form

An(z)W (z)n + · · ·+A1(z)W (z) +A0(z) = 0, (31)

where each Ai(z) is a polynomial, can be computed efficiently by using methods
due to H. T. Kung and J. F. Traub; see JACM 25 (1978), 245Ű260. See also
D. V. Chudnovsky and G. V. Chudnovsky, J. Complexity 2 (1986), 271Ű294;
3 (1987), 1Ű25.

EXERCISES

1. [M10] The text explains how to divide U(z) by V (z) when V0 ̸= 0; how should
the division be done when V0 = 0?

2. [20] If the coefficients of U(z) and V (z) are integers and V0 ̸= 0, Ąnd a recurrence
relation for the integers V n+1

0 Wn, where Wn is deĄned by (3). How could you use this
for power series division?

3. [M15] Does formula (9) give the right results when α = 0? When α = 1?

x 4. [HM23] Show that simple modiĄcations of (9) can be used to calculate eV (z) when
V0 = 0, and lnV (z) when V0 = 1.

5. [M00] What happens when a power series is reverted twice Ů that is, if the output
of Algorithm L or T is reverted again?

x 6. [M21] (H. T. Kung.) Apply Newton’s method to the computation of W (z) =
1/V (z), when V (0) ̸= 0, by Ąnding the power series root of the equation f(x) = 0,
where f(x) = x−1 − V (z).

7. [M23] Use Lagrange’s inversion formula (12) to Ąnd a simple expression for the
coefficient Wn in the reversion of z = t− tm.

x 8. [M25] If W (z) = W1z + W2z
2 + W3z

3 + · · · = G1t + G2t
2 + G3t

3 + · · · = G(t),
where z = V1t+ V2t

2 + V3t
3 + · · · and V1 ̸= 0, Lagrange proved that

Wn =
1
n

[tn−1]G′(t)/(V1 + V2t+ V3t
2 + · · ·)n .

(Equation (12) is the special case G1 = V1 = 1, G2 = G3 = · · · = 0.) Extend
Algorithm L so that it obtains the coefficients W1, W2, . . . in this more general situation,
without substantially increasing its running time.

9. [11] Find the values of Tmn computed by Algorithm T as it determines the Ąrst
Ąve coefficients in the reversion of z = t− t2.

10. [M20] Given that y = xα + a1x
α+1 + a2x

α+2 + · · · , α ̸= 0, show how to compute
the coefficients in the expansion x = y1/α + b2y

2/α + b3y
3/α + · · · .

x 11. [M25] (Composition of power series.) Let

U(z) = U0 + U1z + U2z
2 + · · · and V (z) = V1z + V2z

2 + V3z
3 + · · · .

Design an algorithm that computes the Ąrst N coefficients of U(V (z)).

534 ARITHMETIC 4.7

12. [M20] Find a connection between polynomial division and power series division:
Given polynomials u(x) and v(x) of respective degrees m and n over a Ąeld, show how
to Ąnd the polynomials q(x) and r(x) such that u(x) = q(x)v(x)+r(x) and deg(r) < n,
using only operations on power series.

13. [M27] (Rational function approximation.) It is occasionally desirable to Ąnd
polynomials whose quotient has the same initial terms as a given power series. For
example, if W (z) = 1 + z + 3z2 + 7z3 + · · · , there are essentially four different ways
to express W (z) as w1(z)/w2(z) +O(z4) where w1(z) and w2(z) are polynomials with
deg(w1) + deg(w2) < 4:

(1 + z + 3z2 + 7z3) / 1 = 1 + z + 3z2 + 7z3 + 0z4 + · · · ,
(3− 4z + 2z2) / (3− 7z) = 1 + z + 3z2 + 7z3 + 49

3
z4 + · · · ,

(1− z) / (1− 2z − z2) = 1 + z + 3z2 + 7z3 + 17z4 + · · · ,
1 / (1− z − 2z2 − 2z3) = 1 + z + 3z2 + 7z3 + 15z4 + · · · .

Rational functions of this kind are commonly called Padé approximations, since they
were studied extensively by H. E. Padé [Annales Scient. de l’École Normale Supérieure
(3) 9 (1892), S1ŰS93; (3) 16 (1899), 395Ű426].

Show that all Padé approximations W (z) = w1(z)/w2(z) +O(zN) with deg(w1) +
deg(w2) < N can be obtained by applying an extended Euclidean algorithm to the
polynomials zN and W0 +W1z+ · · ·+WN−1z

N−1; and design an all-integer algorithm
for the case that each Wi is an integer. [Hint: See exercise 4.6.1Ű26.]

x 14. [HM30] Fill in the details of Brent and Traub’s method for calculating U [n](z)
when U(z) = z + Uk z

k + · · · , using (27) and (28).

15. [HM20] For what functions U(z) does V (z) have the simple form zk in (27)?
What do you deduce about the iterates of U(z)?

16. [HM21] Let W (z) = G(t) as in exercise 8. The “obviousŤ way to Ąnd the
coefficients W1, W2, W3, . . . is to proceed as follows: Set n ← 1 and R1(t) ← G(t).
Then preserve the relation WnV (t) + Wn+1V (t)2 + · · · = Rn(t) by repeatedly setting
Wn ← [t]Rn(t)/V1, Rn+1(t)← Rn(t)/V (t)−Wn, n← n+ 1.

Prove Lagrange’s formula of exercise 8 by showing that

1
n

[tn−1]R′
k+1(t) tn/V (t)n =

1
n+ 1

[tn]R′
k(t) tn+1/V (t)n+1, for all n ≥ 1 and k ≥ 1.

x 17. [M20] Given the power series V (z) = V1z+V2z
2 +V3z

3 + · · · , we deĄne the power

matrix of V as the inĄnite array of coefficients vnk = n!
k!

[zn]V (z)k; the nth poweroid

of V is then deĄned to be Vn(x) = vn0 + vn1x + · · · + vnnx
n. Prove that poweroids

satisfy the general convolution law

Vn(x+ y) =

k

n

k

Vk(x)Vn−k(y) .

(For example, when V (z) = z we have Vn(x) = xn, and this is the binomial theorem.
When V (z) = ln(1/(1 − z)) we have vnk =

n
k

by Eq. 1.2.9Ű(26); hence the poweroid

Vn(x) is xn, and the identity is the result proved in exercise 1.2.6Ű33. When V (z) =
ez − 1 we have Vn(x) =

k

n
k

xk and the formula is equivalent to

l +m

m

n

l +m

=

k

n

k

k

l

n− k
m

,

4.7 MANIPULATION OF POWER SERIES 535

an identity we haven’t seen before. Several other triangular arrays of coefficients that
arise in combinatorial mathematics and the analysis of algorithms also turn out to be
the power matrices of power series.)

18. [HM22] Continuing exercise 17, prove that poweroids also satisfy

xVn(x+ y) = (x+ y)

k

n− 1
k − 1

Vk(x)Vn−k(y) .

[Hint: Consider the derivative of exV (z).]

19. [M25] Continuing exercise 17, express all the numbers vnk in terms of the numbers
vn = vn1 = n!Vn of the Ąrst column, and Ąnd a simple recurrence by which all columns
can be computed from the sequence v1, v2, Show in particular that if all the vn

are integers, then all the vnk are integers.

20. [HM20] Continuing exercise 17, suppose we have W (z) = U(V (z)) and U0 = 0.
Prove that the power matrix of W is the product of the power matrices of V and U :
wnk =

j vnjujk.

x 21. [HM27] Continuing the previous exercises, suppose V1 ̸= 0 and let W (z) =
−V [−1](−z). The purpose of this exercise is to show that the power matrices of V
and W are “dualŤ to each other; for example, when V (z) = ln(1/(1 − z)) we have
V [−1](z) = 1 − e−z, W (z) = ez − 1, and the corresponding power matrices are the
well-known Stirling triangles vnk =

n
k

, wnk =

n
k

.

a) Prove that the inversion formulas 1.2.6Ű(47) for Stirling numbers hold in general:

k

vnkwkm(−1)n−k =

k

wnkvkm(−1)n−k = δmn .

b) The relation vn(n−k) = nk [zk] (V (z)/z)n−k shows that, for Ąxed k, the quantity
vn(n−k)/V

n
1 is a polynomial in n of degree ≤ 2k. We can therefore deĄne

vα(α−k) = αk [zk] (V (z)/z)α−k

for arbitrary α when k is a nonnegative integer, as we did for Stirling numbers in
Section 1.2.6. Prove that v(−k)(−n) = wnk. (This generalizes Eq. 1.2.6Ű(58).)

x 22. [HM27] Given U(z) = U0 +U1z+U2z
2 +· · · with U0 ̸= 0, the αth induced function

U{α}(z) is the power series V (z) deĄned implicitly by the equation

V (z) = U(zV (z)α) .

a) Prove that U{0}(z) = U(z) and U{α}{β}(z) = U{α+β}(z).
b) Let B(z) be the simple binomial series 1 + z. Where have we seen B{2}(z) before?
c) Prove that [zn]U{α}(z)x = x

x+nα
[zn]U(z)x+nα. Hint: If W (z) = z/U(z)α, we

have U{α}(z) = (W [−1](z)/z)1/α.
d) Consequently any poweroid Vn(x) satisĄes not only the identities of exercises 17

and 18, but also

(x+ y)Vn(x+ y + nα)
x+ y + nα

=

k

n

k

xVk(x+ kα)
x+ kα

yVn−k(y + (n− k)α)
y + (n− k)α

;

Vn(x+ y)
y − nα = (x+ y)

k

n− 1
k − 1

Vk(x+ kα)
x+ kα

Vn−k(y − kα)
y − kα .

[Special cases include Abel’s binomial theorem, Eq. 1.2.6Ű(16); Rothe’s identities
1.2.6Ű(26) and 1.2.6Ű(30); Torelli’s sum, exercise 1.2.6Ű34.]

536 ARITHMETIC 4.7

23. [HM35] (E. Jabotinsky.) Continuing in the same vein, suppose that U = (unk) is
the power matrix of U(z) = z + U2z

2 + · · · . Let un = un1 = n!Un.

a) Explain how to compute a matrix lnU so that the power matrix of U [α](z) is
exp(α lnU) = I + α lnU + (α lnU)2/2! + · · · .

b) Let lnk be the entry in row n and column k of lnU , and let

ln = ln1, L(z) = l2
z2

2!
+ l3

z3

3!
+ l4

z4

4!
+ · · · .

Prove that lnk =

n
k−1

ln+1−k for 1 ≤ k ≤ n. [Hint: U [ϵ](z) = z + ϵL(z) +O(ϵ2).]

c) Considering U [α](z) as a function of both α and z, prove that

∂

∂α
U [α](z) = L(z)

∂

∂z
U [α](z) = L(U [α](z)) .

(Consequently L(z) = (lk/k!)V (z), where V (z) is the function in (27) and (28).)
d) Show that if u2 ̸= 0, the numbers ln can be computed from the recurrence

l2 = u2,

n

k=2

n

k

lkun+1−k =
n

k=2

lkunk .

How would you use this recurrence when u2 = 0?
e) Prove the identity

un =
n−1

m=0

n!
m!

k1+···+km=n+m−1
k1,...,km≥2

n0

k1!
n1

k2!
. . .

nm−1

km!
lk1 lk2 . . . lkm ,

where nj = 1 + k1 + · · ·+ kj − j.
24. [HM25] Given the power series U(z) = U1z + U2z

2 + · · · , where U1 is not a root
of unity, let U = (unk) be the power matrix of U(z).

a) Explain how to compute a matrix lnU so that the power matrix of U [α](z) is
exp(α lnU) = I + α lnU + (α lnU)2/2! + · · · .

b) Show that if W (z) is not identically zero and if U(W (z)) = W (U(z)), then W (z) =
U [α](z) for some complex number α.

25. [M24] If U(z) = z+Ukz
k +Uk+1z

k+1 + · · · and V (z) = z+Vlz
l +Vl+1z

l+1 + · · · ,
where k ≥ 2, l ≥ 2, Uk ̸= 0, Vl ̸= 0, and U(V (z)) = V (U(z)), prove that we must have
k = l and V (z) = U [α](z) for α = Vk/Uk.

26. [M22] Show that if U(z) = U0 + U1z + U2z
2 + · · · and V (z) = V1z + V2z

2 + · · ·
are power series with all coefficients 0 or 1, we can obtain the Ąrst N coefficients of
U(V (z)) mod 2 in O(N1+ϵ) steps, for any ϵ > 0.

27. [M22] (D. Zeilberger.) Find a recurrence analogous to (9) for computing the
coefficients of W (z) = V (z)V (qz) . . . V (qm−1z), given q, m, and the coefficients of
V (z) = 1 + V1z + V2z

2 + · · · . Assume that q is not a root of unity.

x 28. [HM26] A Dirichlet series is a sum of the form V (z) = V1/1z +V2/2z +V3/3z +· · · ;
the product U(z)V (z) of two such series is the Dirichlet series W (z) where

Wn =

d\n

UdVn/d .

4.7 MANIPULATION OF POWER SERIES 537

Ordinary power series are special cases of Dirichlet series, since we have V0 + V1z +
V2z

2 + V3z
3 + · · · = V0/1s + V1/2s + V2/4s + V3/8s + · · · when z = 2−s. In fact,

Dirichlet series are essentially equivalent to power series V (z1, z2, . . .) in arbitrarily
many variables, where zk = p−s

k and pk is the kth prime number.
Find recurrence relations that generalize (9) and the formulas of exercise 4, assum-

ing that a Dirichlet series V (z) is given and that we want to calculate (a) W (z) = V (z)α

when V1 = 1; (b) W (z) = expV (z) when V1 = 0; (c) W (z) = lnV (z) when V1 = 1.
[Hint: Let t(n) be the total number of prime factors of n, including multiplicity, and let
δ

n Vn/n
z =

n t(n)Vn/n

z. Show that δ is analogous to a derivative; for example,
δeV (z) = eV (z)δV (z).]

It seems impossible that any thing

should really alter the series of things,

without the same power which Ąrst produced them.

Ů EDWARD STILLINGFLEET, Origines Sacræ, 2:3:2 (1662)

This business of series, the most disagreeable thing in mathematics,

is no more than a game for the English;

Stirling’s book, and the one by de Moivre, are proof.

Ů PIERRE DE MAUPERTUIS, letter to d’Ortous de Mairan (30 Oct 1730)

He was daunted and bewildered by their almost inĄnite series.

Ů G. K. CHESTERTON, The Man Who Was Thursday (1907)

ANSWERS TO EXERCISES

This branch of mathematics is the only one, I believe,

in which good writers frequently get results entirely erroneous.

. . . It may be doubted if there is a single

extensive treatise on probabilities in existence

which does not contain solutions absolutely indefensible.

Ů C. S. PEIRCE, in Popular Science Monthly (1878)

NOTES ON THE EXERCISES

1. An average problem for a mathematically inclined reader.

3. (Solution by Roger Frye, after about 110 hours of computation on a Connection
Machine in 1987.) 958004 + 2175194 + 4145604 = 4224814 and (therefore) 1916004 +
4350384 + 8291204 = 8449624.

4. (One of the readers of the preliminary manuscript for this book reported that he
had found a truly remarkable proof. But unfortunately the margin of his copy was too
small to contain it.)

SECTION 3.1

1. (a) This will usually fail, since “roundŤ telephone numbers are often selected by
the telephone user when possible. In some communities, telephone numbers are perhaps
assigned randomly. But it would be a mistake in any case to try to get several successive
random numbers from the same page, since the same telephone number is often listed
several times in a row.

(b) But do you use the left-hand page or the right-hand page? Say, use the left-
hand page number, divide by 2, and take the units digit. The total number of pages
should be a multiple of 20; but even so, this method will have some bias.

(c) The markings on the faces will slightly bias the die, but for practical purposes
this method is quite satisfactory (and it has been used by the author in the preparation
of several examples in this set of books). See Math. Comp. 15 (1961), 94Ű95, for further
discussion of icosahedral dice.

(d) (This is a hard question thrown in purposely as a surprise.) The number is
not quite uniformly random. If the average number of emissions per minute is m, the
probability that the counter registers k is e−mmk/k! (the Poisson distribution); so the
digit 0 is selected with probability e−m

k≥0 m
10k/(10k)!, etc. In particular, the units

digit will be even with probability e−m coshm = 1
2

+ 1
2
e−2m, and this is never equal

to 1
2

(although the error is negligibly small when m is large).

538

3.1 ANSWERS TO EXERCISES 539

It is almost legitimate to take ten readings (m0, . . . ,m9) and then to output j if
mj is strictly less than mi for all i ̸= j; try again if the minimum value appears more
than once. (See (h).) However, the parameter m isn’t really constant in the real world.

(e) Okay, provided that the time since the previous digit selected in this way is
random. However, there is possible bias in borderline cases.

(f, g) No. People usually think of certain digits (like 7) with higher probability.
(h) Okay; your assignment of numbers to the horses had probability 1

10
of assigning

a given digit to the winning horse (unless you know, say, the jockey).

2. The number of such sequences is the multinomial coefficient 1000000!/(100000!)10;
the probability is this number divided by 101000000, the total number of sequences of
a million digits. By Stirling’s approximation we Ąnd that the probability is close to
1/(16π41022

√
2π) ≈ 2.56× 10−26, roughly one chance in 4× 1025.

3. 3040504030.

4. (a) Step K11 can be entered only from step K10 or step K2, and in either case we
Ąnd it impossible for X to be zero by a simple argument. If X could be zero at that
point, the algorithm would not terminate.

(b) If X is initially 3830951656, the computation is like many of the steps that
appear in Table 1 except that we reach step K11 with Y = 3 instead of Y = 5; hence
3830951656 → 5870802097. Similarly, 5870802097 → 1226919902 → 3172562687 →
3319967479→ 6065038420→ 6065038420→ · · · .

5. Since only 1010 ten-digit numbers are possible, some value of X must be repeated
during the Ąrst 1010 +1 steps; and as soon as a value is repeated, the sequence continues
to repeat its past behavior.

6. (a) Arguing as in the previous exercise, the sequence must eventually repeat a
value; let this repetition occur for the Ąrst time at step µ + λ, where Xµ+λ = Xµ.
(This condition deĄnes µ and λ.) We have 0 ≤ µ < m, 0 < λ ≤ m, µ + λ ≤ m. The
values µ = 0, λ = m are attained if and only if f is a cyclic permutation; and µ = m−1,
λ = 1 occurs, e.g., if X0 = 0, f(x) = x+ 1 for x < m− 1, and f(m− 1) = m− 1.

(b) We have, for r > n, Xr = Xn if and only if r−n is a multiple of λ and n ≥ µ.
Hence X2n = Xn if and only if n is a multiple of λ and n ≥ µ. The desired results now
follow immediately. [Note: Equivalently, the powers of an element in a Ąnite semigroup
include a unique idempotent element: Take X1 = a, f(x) = ax. See G. Frobenius,
Sitzungsberichte preußische Akademie der Wissenschaften (1895), 82Ű83.]

(c) Once n has been found, generate Xi and Xn+i for i ≥ 0 until Ąrst Ąnding
Xi = Xn+i; then µ = i. If none of the values of Xn+i for 0 < i < µ is equal to Xn, it
follows that λ = n, otherwise λ is the smallest such i.

7. (a) The least n > 0 such that n − (ℓ(n) − 1) is a multiple of λ and ℓ(n) − 1 ≥ µ
is n = 2⌈lg max(µ+1, λ)⌉ − 1 + λ. [This may be compared with the least n > 0 such that
X2n = Xn, namely λ(⌈µ/λ⌉+ δµ0).]

(b) Start with X = Y = X0, k = m = 1. (At key places in this algorithm we will
have X = X2m−k−1, Y = Xm−1, and m = ℓ(2m − k).) To generate the next random
number, do the following steps: Set X ← f(X) and k ← k − 1. If X = Y , stop (the
period length λ is equal to m− k). Otherwise if k = 0, set Y ← X, m← 2m, k ← m.
Output X.

Notes: Brent has also considered a more general method in which the successive
values of Y = Xni satisfy n1 = 0, ni+1 = 1 + ⌊pni⌋ where p is any number greater
than 1. He showed that the best choice of p, approximately 2.4771, saves about 3
percent of the iterations by comparison with p = 2. (See exercise 4.5.4Ű4.)

540 ANSWERS TO EXERCISES 3.1

The method in part (b) has a serious deĄciency, however, since it might generate
a lot of nonrandom numbers before shutting off. For example, we might have a
particularly bad case such as λ = 1, µ = 2k. A method based on Floyd’s idea in
exercise 6(b), namely one that maintains Y = X2n and X = Xn for n = 0, 1, 2,
. . . , will require a few more function evaluations than Brent’s method, but it will stop
before any number has been output twice.

On the other hand, if f is unknown (for example, if we are receiving the values X0,
X1, . . . online from an outside source) or if f is difficult to apply, the following cycle
detection algorithm due to R. W. Gosper will be preferable: Maintain an auxiliary
table T0, T1, . . . , Tm, where m = ⌊lgn⌋ when receiving Xn. Initially T0 ← X0. For
n = 1, 2, . . . , compare Xn with each of T0, . . . , T⌊lg n⌋; if no match is found, set
Te(n) ← Xn, where e(n) = ρ(n + 1) = max{e | 2e divides n + 1}. But if a match
Xn = Tk is found, then λ = n−max{ l | l < n and e(l) = k}. After Xn has been stored
in Te(n), it is subsequently compared with Xn+1, Xn+2, . . . , Xn+2e(n)+1 . Therefore the
procedure stops immediately after generating Xµ+λ+j , where j ≥ 0 is minimum with
e(µ+ j) ≥ ⌈lg λ⌉−1. With this method, no X value is generated more than twice, and
at most max(1, 2⌈lg λ⌉−1) values are generated more than once. [MIT AI Laboratory
Memo 239 (29 February 1972), Hack 132.]

R. Sedgewick, T. G. Szymanski, and A. C. Yao have analyzed a more complex
algorithm based on parameters m ≥ 2 and g ≥ 1: An auxiliary table of size m contains
X0, Xb, . . . , Xqb at the moment that Xn is computed, where b = 2⌈lg n/m⌉ and q =
⌈n/b⌉ − 1. If nmod gb < b, Xn is compared to the entries in the table; eventually
equality occurs, and we can reconstruct µ and λ after doing at most (g+1)2⌈lg(µ+λ)⌉+1

further evaluations of f . If the evaluation of f costs τ units of time, and if testing
Xn for membership in the table costs σ units, then g can be chosen so that the total
running time is (µ+ λ)(τ +O(στ

m
)1/2); this is optimum if σ/τ = O(m). Moreover, Xn

is not computed unless µ+λ > mn/(m+4g+2), so we can use this method “onlineŤ to
output elements that are guaranteed to be distinct, making only 2+O(m−1/2) function
evaluations per output. [SICOMP 11 (1982), 376Ű390.]

8. (a, b) 00, 00, . . . [62 starting values]; 10, 10, . . . [19]; 60, 60, . . . [15]; 50, 50, . . . [1];
24, 57, 24, 57, . . . [3]. (c) 42 or 69; these both lead to a set of Ąfteen distinct values,
namely (42 or 69), 76, 77, 92, 46, 11, 12, 14, 19, 36, 29, 84, 05, 02, 00.

9. Since X < bn, we have X2 < b2n, and the middle square is ⌊X2/bn⌋ ≤ X2/bn. If
X > 0, then X2/bn < Xbn/bn = X.

10. If X = abn, the next number of the sequence has the same form; it is equal to
(a2 mod bn)bn. If a is a multiple of all the prime factors of b, the sequence will soon
degenerate to zero; if not, the sequence will degenerate into a cycle of numbers having
the same general form as X.

Further facts about the middle-square method have been found by B. Jansson,
Random Number Generators (Stockholm: Almqvist & Wiksell, 1966), Section 3A.
Numerologists will be interested to learn that the number 3792 is self-reproducing in
the four-digit middle-square method, since 37922 = 14379264; furthermore (as Jansson
observed), it is “self-reproducingŤ in another sense, too, since its prime factorization is
3 · 79 · 24!

11. The probability that µ = 0 and λ = 1 is the probability that X1 = X0, namely
1/m. The probability that (µ, λ) = (1, 1) or that (µ, λ) = (0, 2) is the probability that
X1 ̸= X0 and that X2 has a certain value, so it is (1 − 1/m)(1/m). Similarly, the

3.1 ANSWERS TO EXERCISES 541

probability that the sequence has any given µ and λ is a function only of µ+λ, namely

P (µ, λ) =
1
m

1≤k<µ+λ

1− k

m

.

For the probability that λ = 1, we have

µ≥0

1
m

µ

k=1

1− k

m

=
1
m
Q(m),

where Q(m) is deĄned in Section 1.2.11.3, Eq. (2). By Eq. (25) in that section,
the probability is approximately

π/2m ≈ 1.25/

√
m. The chance of Algorithm K

converging as it did is only about one in 80000; the author was decidedly unlucky. But
see exercise 15 for further comments on the “colossalness.Ť

12.

1≤λ≤m
0≤µ<m

λP (µ, λ) =
1
m

1 + 3

1− 1
m

+ 6

1− 1
m

1− 2
m

+ · · ·

=
1 +Q(m)

2
.

(See the previous answer. In general if f(a0, a1, . . .) =

n≥0 an

n
k=1(1 − k/m) then

f(a0, a1, . . .) = a0 + f(a1, a2, . . .) − f(a1, 2a2, . . .)/m; apply this identity with an =
(n + 1)/2.) Therefore the average value of λ (and, by symmetry of P (µ, λ), also of
µ + 1) is approximately

πm/8 + 1

3
. The average value of µ + λ is exactly Q(m),

approximately

πm/2− 1

3
. [For alternative derivations and further results, including

asymptotic values for the moments, see A. Rapoport, Bull. Math. Biophysics 10 (1948),
145Ű157, and B. Harris, Annals Math. Stat. 31 (1960), 1045Ű1062; see also I. M.
Sobol, Theory of Probability and Its Applications 9 (1964), 333Ű338. Sobol discusses
the asymptotic period length for the more general sequence Xn+1 = f(Xn) if n ̸≡ 0
(modulo m), Xn+1 = g(Xn) if n ≡ 0 (modulo m), with both f and g random.]

13. [Paul Purdom and John Williams, Trans. Amer. Math. Soc. 133 (1968), 547Ű551.]
Let Tmn be the number of functions that have n one-cycles and no cycles of length
greater than one. Then

Tmn =

m− 1
n− 1

mm−n.

(This is

m
n

r(m,m−n) in exercise 2.3.4.4Ű25.) Any function is such a function followed

by a permutation of the n elements that were the one-cycles. Hence

n≥1 Tmn n! =
mm.

Let Pnk be the number of permutations of n elements in which the longest cycle
is of length k. Then the number of functions with a maximum cycle of length k is

n≥1 TmnPnk. To get the average value of k, we compute

k≥1

n≥1 kTmnPnk, which

by the result of exercise 1.3.3Ű23 is

n≥1 Tmn n!(cn+ 1
2
c+O(n−1)) where c ≈ .62433.

Summing, we get the average value cQ(m) + 1
2
c+O(m1/2). (This is not substantially

larger than the average value when X0 is selected at random. The average value of
maxµ is asymptotic to Q(m) ln 4, and the average value of max(µ + λ) is asymptotic
to 1.9268Q(m); see Flajolet and Odlyzko, Lecture Notes in Comp. Sci. 434 (1990),
329Ű354.)

14. Let cr(m) be the number of functions with exactly r different Ąnal cycles. From
the recurrence c1(m) = (m − 1)! −k>0

m
k

(−1)k(m − k)kc1(m − k), which comes

by counting the number of functions whose image contains at most m − k elements,
we Ąnd the solution c1(m) = mm−1Q(m). (See exercise 1.2.11.3Ű16.) Another way

542 ANSWERS TO EXERCISES 3.1

to obtain the value of c1(m), which is perhaps more elegant and revealing, is given in
exercise 2.3.4.4Ű17. The value of cr(m) may be determined as in exercise 13:

cr(m) =

n≥1

Tmn

n

r

= mm−1

1
0!

1
r

+
1
1!

2
r

m− 1
m

+
1
2!

3
r

m− 1
m

m− 2
m

+ · · ·

.

The desired average value can now be computed; it is (see exercise 12)

Em =
1
m

H1 + 2H2

m− 1
m

+ 3H3
m− 1
m

m− 2
m

+ · · ·

= 1 +
1
2
m− 1
m

+
1
3
m− 1
m

m− 2
m

+ · · · .

This latter formula was obtained by quite different means by Martin D. Kruskal, AMM
61 (1954), 392Ű397. Using the integral representation

Em =
 ∞

0

1 +

x

m

m

− 1

e−x dx

x
,

he proved the asymptotic relation limm→∞(Em − 1
2

lnm) = 1
2
(γ + ln 2). For further

results and references, see John Riordan, Annals Math. Stat. 33 (1962), 178Ű185.

15. The probability that f(x) ̸= x for all x is (m−1)m/mm, which is approximately 1/e.
The existence of a self-repeating value in an algorithm like Algorithm K is therefore
not “colossalŤ at all Ů it occurs with probability 1− 1/e ≈ .63212. The only “colossalŤ
thing was that the author happened to hit such a value when X0 was chosen at random
(see exercise 11).

16. The sequence will repeat when a pair of successive elements occurs for the second
time. The maximum period is m2. (See the next exercise.)

17. After selecting X0, . . . , Xk−1 arbitrarily, let Xn+1 = f(Xn, . . . , Xn−k+1), where
0 ≤ x1, . . . , xk < m implies that 0 ≤ f(x1, . . . , xk) < m. The maximum period is
mk. This is an obvious upper bound, but it is not obvious that it can be attained; for
constructive proofs that it can always be attained for suitable f , see exercises 3.2.2Ű17
and 3.2.2Ű21, and for the number of ways to attain it see exercise 2.3.4.2Ű23.

18. Same as exercise 7, but use the k-tuple of elements (Xn, . . . , Xn−k+1) in place of
the single element Xn.

19. Clearly Pr(no Ąnal cycle has length 1) = (m−1)m/mm. R. Pemantle [J. Algorithms
54 (2005), 72Ű84] has shown that Pr(λ = 1) = Θ(mk/2), and that Pr((µ+ λ)2 > 2mkx
and λ/(µ + λ) ≤ y) rapidly approaches ye−x, when x > 0, 0 < y < 1, and m → ∞.
The k-dimensional analogs of exercises 13 and 14 remain unsolved.

20. It suffices to consider the simpler mapping g(X) deĄned by steps K2ŰK13. Work-
ing backward from 6065038420, we obtain a total of 597 solutions; the smallest is
0009612809 and the largest is 9995371004.

21. We may work with g(X) as in the previous exercise, but now we want to run the
function forward instead of backward. There is an interesting tradeoff between time
and space. Notice that the mechanism of step K1 tends to make the period length
small. So does the existence of X’s with large in-degree; for example, 512 choices of
X = ∗6∗∗∗∗∗∗∗∗ in step K2 will go to K10 with X ← 0500000000.

Scott Fluhrer has discovered another Ąxed point of Algorithm K, namely the value
5008502835(!). He also found the 3-cycle 0225923640→ 2811514413→ 0590051662→

3.2.1.1 ANSWERS TO EXERCISES 543

0225923640, making a total of seven cycles in all. Only 128 starting numbers lead to
the repeating value 5008502835. Algorithm K is a terrible random number generator.

22. If f were truly random, this would be ideal; but how do we construct such f? The
function deĄned by Algorithm K would work much better under this scheme, although
it does have decidedly nonrandom properties (see the previous answer).

23. The function f permutes its cyclic elements; let (x0, . . . , xk−1) be the “unusualŤ
representation of the inverse of that permutation. Then proceed to deĄne xk, . . . , xm−1

as in exercise 2.3.4.4Ű18. [See J. Combinatorial Theory 8 (1970), 361Ű375.]
For example, if m = 10 and (f(0), . . . , f(9)) = (3, 1, 4, 1, 5, 9, 2, 6, 5, 4), we have

(x0, . . . , x9) = (4, 9, 5, 1, 1, 3, 4, 2, 6, 5); if (x0, . . . , x9) = (3, 1, 4, 1, 5, 9, 2, 6, 5, 4), we have
(f(0), . . . , f(9)) = (6, 4, 9, 3, 1, 1, 2, 5, 4, 5).

SECTION 3.2.1

1. Take X0 even, a even, c odd. Then Xn is odd for n > 0.

2. Let Xr be the Ąrst repeated value in the sequence. If Xr were equal to Xk for some
k where 0 < k < r, we could prove that Xr−1 = Xk−1, since Xn uniquely determines
Xn−1 when a is prime to m. Hence k = 0.

3. If d is the greatest common divisor of a and m, the quantity aXn can take on at
most m/d values. The situation can be even worse; for example, if m = 2e and if a is
even, Eq. (6) shows that the sequence is eventually constant.

4. Induction on k.

5. If a is relatively prime to m, there is a number a′ for which aa′ ≡ 1 (modulo m).
Then Xn−1 = (a′Xn − a′c) modm; and in general, if b = a− 1,

Xn−k = ((a′)kXn − c(a′ + · · ·+ (a′)k)) modm

=

(a′)kXn + ((a′)k − 1)c/b

modm

when k ≥ 0, n− k ≥ 0. If a is not relatively prime to m, it is not possible to determine
Xn−1 when Xn is given; multiples of m/gcd(a,m) may be added to Xn−1 without
changing the value of Xn. (See also exercise 3.2.1.3Ű7.)

SECTION 3.2.1.1

1. Let c′ be a solution to the congruence ac′ ≡ c (modulo m). (Thus, c′ = a′cmodm,
if a′ is the number in the answer to exercise 3.2.1Ű5.) Then we have

LDA X; ADD CPRIME; MUL A.

OverĆow is possible on this addition operation. (From results derived later in the
chapter, it is probably best to save a unit of time, taking c = a and replacing the ADD

instruction by ŚINCA 1’. Then if X0 = 0, overĆow will not occur until the end of the
period, so it won’t occur in practice.)

2. RANDM STJ 1F

LDA XRAND

MUL 2F

SLAX 5

ADD 3F (or, INCA c, if c is small)
STA XRAND

1H JNOV *

JMP *-1

XRAND CON X0

2H CON a
3H CON c

544 ANSWERS TO EXERCISES 3.2.1.1

3. Let a′ = aw modm, and let m′ be such that mm′ ≡ 1 (modulo w). Set y ←
lomult(a′, x), z ← himult(a′, x), t ← lomult(m′, y), u ← himult(m, t). Then we have
mt ≡ a′x (modulo w), hence a′x −mt = (z − u)w, hence ax ≡ z − u (modulo m); it
follows that axmodm = z − u+ [z <u]m.

4. DeĄne the operation x mod 2e = y if and only if x ≡ y (modulo 2e) and −2e−1 ≤
y < 2e−1. The congruential sequence ⟨Yn⟩ deĄned by

Y0 = X0 mod 232, Yn+1 = (aYn + c) mod 232

is easy to compute on 370-style machines, since the lower half of the product of y
and z is (yz) mod 232 for all two’s complement numbers y and z, and since addition
ignoring overĆow also delivers its result mod 232. This sequence has all the random-
ness properties of the standard linear congruential sequence ⟨Xn⟩, since Yn ≡ Xn

(modulo 232). Indeed, the two’s complement representation of Yn is identical to the
binary representation of Xn, for all n. [G. Marsaglia and T. A. Bray Ąrst pointed this
out in CACM 11 (1968), 757Ű759.]

5. (a) Subtraction: LDA X; SUB Y; JANN *+2; ADD M. (b) Addition: LDA X; SUB M;

ADD Y; JANN *+2; ADD M. (Note that if m is more than half the word size, the
instruction ŚSUB M’ must precede the instruction ŚADD Y’.)

6. The sequences are not essentially different, since adding the constant (m− c) has
the same effect as subtracting the constant c. The operation must be combined with
multiplication, so a subtractive process has little merit over the additive one (at least
in MIX’s case), except when it is necessary to avoid affecting the overĆow toggle.

7. The prime factors of zk − 1 appear in the factorization of zkr − 1. If r is odd,
the prime factors of zk + 1 appear in the factorization of zkr + 1. And z2k − 1 equals
(zk − 1)(zk + 1).

8. JOV *+1 (Ensure that overĆow is off.)
LDA X

MUL A

STX TEMP

ADD TEMP Add lower half to upper half.
JNOV *+2 If ≥ w, subtract w − 1.
INCA 1 (OverĆow is impossible in this step.)

Note: Since addition on an e-bit ones’-complement computer is mod (2e − 1), it is
possible to combine the techniques of exercises 4 and 8, producing (yz) mod (2e − 1)
by adding together the two e-bit halves of the product yz, for all ones’ complement
numbers y and z regardless of sign.

9. (a) Both sides equal aq⌊x/q⌋.
(b) Set t ← a(xmod q) − r⌊x/q⌋, where r = mmod a; the constants q and r can

be precomputed. Then axmodm = t + [t< 0]m, because we can prove that t > −m:
Clearly a(xmod q) ≤ a(q − 1) < m. Also r⌊x/q⌋ ≤ r⌊(m− 1)/q⌋ = r⌊a+ (r − 1)/q⌋ =
ra ≤ qa < m if 0 < r ≤ q; and a2 ≤ m implies r < a ≤ q. [This technique is implicit in
a program published by B. A. Wichmann and I. D. Hill, Applied Stat. 31 (1982), 190.]

10. If r > q and x = m−1 we have r⌊x/q⌋ ≥ (q+1)(a+1) > m. So the condition r ≤ q
is necessary and sufficient for method 9(b) to be valid; this means m

q
−1 ≤ a ≤ m

q
. Let

t = ⌊√m ⌋. The intervals [m
q
−1 . . m

q
] are disjoint for 1 ≤ q ≤ t, and they include exactly

1 or 2 integers, depending on whether q is a divisor of m. These intervals account for

3.2.1.1 ANSWERS TO EXERCISES 545

all solutions with a >
√
m; they also include the case a = t, if (

√
mmod 1) < 1

2
, and

the case a = t − 1 if m = t2. Thus the total number of “luckyŤ multipliers is exactly
2⌊√m ⌋+⌊d(m)/2⌋− [(

√
mmod 1)< 1

2
]−1, where d(m) is the number of divisors of m.

11. We can assume that a ≤ 1
2
m; otherwise we can obtain axmodm from (m− a)x

modm. Then we can represent a = a′a′′ − a′′′, where a′, a′′, and a′′′ are all less than√
m; for example, we can take a′ ≈ √m− 1 and a′′ = ⌈a/a′⌉. It follows that axmodm

is (a′(a′′xmodm) modm− (a′′′xmodm)) modm, and the inner three operations can
all be handled by exercise 9.

When m = 231 − 1 we can take advantage of the fact that m− 1 has 192 divisors
to Ąnd cases in which m = q′a′ + 1, simplifying the general method because r′ = 1. It
turns out that 86 of these divisors lead to lucky a′′ and a′′′, when a = 62089911; the
best such case is probably a′ = 3641, a′′ = 17053, a′′′ = 62, because 3641 and 62 both
divide m− 1. This decomposition yields the scheme

t← 17053(xmod 125929)− 16410⌊x/125929⌋ ,
t← 3641(tmod 589806)− ⌊t/589806⌋ ,
t← t− (62(xmod 34636833)− ⌊x/34636833⌋) ,

where “−Ť denotes subtraction modm. The mod operations count as one multiplication
and one subtraction, because xmod q = x−q⌊x/q⌋ and the operation ⌊x/q⌋ has already
been done; thus, we have performed seven multiplications, three divisions, and seven
subtractions. But it’s even better to notice that 62089911 itself has 24 divisors; they
lead to Ąve suitable factorizations with a′′′ = 0. For example, when a′ = 883 and
a′′ = 70317 we need only six multiplications, two divisions, four subtractions:

t← 883(xmod 2432031)− 274⌊x/2432031⌋ ,
t← 70317(tmod 30540)− 2467⌊t/30540⌋ .

[Can the worst-case number of multiplications plus divisions be reduced to at most 11,
for all a and m, or is 12 the best upper bound? Another way to achieve 12 appears in
exercise 4.3.3Ű19.]

12. (a) Let m = 9999998999 = 1010 − 103 − 1. To multiply (x9x8 . . . x0)10 by 10
modulo m, use the fact that 1010x9 ≡ 103x9 + x9: Add (x9000)10 to (x8x7 . . . x0x9)10.
And to avoid circular shifting, imagine that the digits are arranged on a wheel: Just
add the high-order digit x9 to the digit x2 three positions left, and point to x8 as
the new high-order digit. If x9 + x2 ≥ 10, a carry propagates to the left. And if
this carry ripples all the way to the left of x8, it propagates not only to x9 but also
to the x2 position; it may continue to propagate from both x9 and x2 before Ąnally
settling down. (The numbers might also become slightly larger than m. For example,
0999999900 goes to 9999999000 = m + 1, which goes to 9999999009 = m + 10. But a
redundant representation isn’t necessarily harmful.)

(b) This is the operation of dividing by 10, so we do the opposite of (a): Move
the high-order digit pointer cyclically left, and subtract the new high-order digit from
the digit three to its left. If the result of subtraction is negative, “borrowŤ in the usual
fashion (Algorithm 4.3.1S); that is, decrease the preceding digit by 1. Borrowing may
propagate as in (a), but never past the high-order digit position. This operation keeps
the numbers nonnegative and less than m. (Thus, division by 10 turns out to be easier
than multiplication by 10.)

(c) We can remember the borrow-bit instead of propagating it, because it can be
incorporated into the subtraction on the next step. Thus, if we deĄne digits xn and

546 ANSWERS TO EXERCISES 3.2.1.1

borrow-bits bn by the recurrence

xn = (xn−10 − xn−3 − bn) mod 10 = xn−10 − xn−3 − bn + 10bn+1,

we have 999999900n mod 9999998999 = Xn by induction on n, where

Xn = (xn−1xn−2xn−3xn−4xn−5xn−6xn−7xn+2xn+1xn)10 − 1000bn+3

= (xn−1xn−2 . . . xn−10)10 − (xn−1xn−2xn−3)10 − bn,

provided that the initial conditions are set up to make X0 = 1. Notice that 10Xn+1 =
(xnxn−1xn−2xn−3xn−4xn−5xn−6xn+3xn+2xn+10)10−10000bn+4 = mxn+Xn; it follows
that 0 ≤ Xn < m for all n ≥ 0.

(d) If 0 ≤ U < m, the Ąrst digit of the decimal representation of U/m is ⌊10U/m⌋,
and the subsequent digits are the decimal representation of (10U modm)/m; see, for
example, Method 2a in Section 4.4. Thus U/m = (.u1u2 . . .)10 if we set U0 = U and
Un = 10Un−1 modm = 10Un−1 −mun. Informally, the digits of 1/m are the leading
digits of 10n modm for n = 1, 2, . . . , a sequence that is eventually periodic; these are
the leading digits of 10−n modm in reverse order, so we have calculated them in (c).

A rigorous proof is, of course, preferable to handwaving. Let λ be the least positive
integer with 10λ ≡ 1 (modulo m), and deĄne xn = xn mod λ, bn = bn mod λ, Xn =
Xn mod λ for all n < 0. Then the recurrences for xn, bn, and Xn in (c) are valid for all
integers n. If U0 = 1 it follows that Un = X−n and un = x−n; hence

999999900n mod 9999998999
9999998999

= (.xn−1xn−2xn−3 . . .)10.

(e) Let w be the computer’s word size, and use the recurrence

xn = (xn−k − xn−l − bn) mod w = xn−k − xn−l − bn + wbn+1,

where 0 < l < k and k is large. Then (.xn−1xn−2xn−3 . . .)w = Xn/m, where m =
wk − wl − 1 and Xn+1 = (wk−1 − wl−1)Xn modm. The relation

Xn = (xn−1 . . . xn−k)w − (xn−1 . . . xn−l)w − bn

holds for n ≥ 0; the values of x−1, . . . , x−k, and b0 should be such that 0 ≤ X0 < m.
Such random number generators, and the similar ones in the following exercise,

were introduced by G. Marsaglia and A. Zaman [Annals of Applied Probability 1

(1991), 462Ű480], who called the method subtract-with-borrow. Their starting point
was the radix-w representation of fractions with denominator m. The relation to linear
congruential sequences was noticed by Shu Tezuka, and analyzed in detail by Tezuka,
L’Ecuyer, and Couture [ACM Trans. Modeling and Computer Simulation 3 (1993),
315Ű331]. The period length is discussed in exercise 3.2.1.2Ű22.

13. Multiplication by 10 now requires negating the digit that is added. For this
purpose it is convenient to represent a number with its last three digits negated;
for example, 9876543210 = (98765447̄9̄0̄)10. Then 10 times (x9 . . . x3x̄2x̄1x̄0)10 is
(x8 . . . x3x

′x̄1x̄0x̄9)10 where x′ = x9 − x2. Similarly, (x9 . . . x3x̄2x̄1x̄0)10 divided by 10
is (x0x9 . . . x4x̄

′′x̄2x̄1)10 where x′′ = x0 − x3. The recurrence

xn = (xn−3 − xn−10 − bn) mod 10 = xn−3 − xn−10 − bn + 10bn+1

yields 8999999101n mod 9999999001 = Xn where

Xn = (xn−1xn−2xn−3xn−4xn−5xn−6xn−7x̄n+2x̄n+1x̄n)10 + 1000bn+3

= (xn−1xn−2 . . . xn−10)10 − (xn−1xn−2xn−3)10 + bn.

3.2.1.2 ANSWERS TO EXERCISES 547

When the radix is generalized from 10 to w, we Ąnd that the inverse powers of w
modulo wk − wl + 1 are generated by

xn = (xn−l − xn−k − bn) mod w = xn−l − xn−k − bn + wbn+1

(the same as in exercise 12 but with k and l interchanged).

14. Mild generalization: We can effectively divide by b modulo bk − bl ± 1 for any b
less than or equal to the word size w, since the recurrence for xn is almost as efficient
when b < w as it is when b = w.

Strong generalization: The recurrence

xn = (a1xn−1 + · · ·+ akxn−k + cn) mod b, cn+1 =

a1xn−1 + · · ·+ akxn−k + cn

b

is equivalent to Xn = b−1Xn−1 mod |m| in the sense that Xn/|m| = (.xn−1xn−2 . . .)b,
if we deĄne

m = akb
k + · · ·+ a1b− 1 and Xn =

 k

j=1

aj(xn−1 . . . xn−j)b + cn

(signm) .

The initial values x−1 . . . x−k and c0 should be selected so that 0 ≤ X0 < |m|; we will
then have xn = (bXn+1 −Xn)/|m| for n ≥ 0. The values of xj for j < 0 that appear
in the formula Xn/|m| = (.xn−1xn−2 . . .)b are properly regarded as xj mod λ, where
bλ ≡ 1 (modulo m); these values may differ from the numbers x−1, . . . , x−k that were
initially supplied. The carry digits cn will satisfy

k

j=1

min(0, aj) ≤ cn <
k

j=1

max(0, aj)

if the initial carry c0 is in this range.
The special case m = bk + bl − 1, for which aj = δjl + δjk, is of particular interest

because it can be computed so easily; Marsaglia and Zaman called this the add-with-

carry generator:

xn = (xn−l + xn−k + cn) mod b = xn−l + xn−k + cn − b cn+1.

Another potentially attractive possibility is to use k = 2 in a generator with, say,
b = 231 and m = 65430b2 + b − 1. This modulus m is prime, and the period length
turns out to be (m− 1)/2. The spectral test of Section 3.3.4 indicates that the spacing
between planes is good (large ν values), although of course the multiplier b−1 is poor
in comparison with other multipliers for this particular modulus m.

Exercise 3.2.1.2Ű22 contains additional information about subtract-with-borrow
and add-with-carry moduli that lead to extremely long periods.

SECTION 3.2.1.2

1. Period length m, by Theorem A. (See exercise 3.)

2. Yes, these conditions imply the conditions in Theorem A, since the only prime
divisor of 2e is 2, and any odd number is relatively prime to 2e. (In fact, the conditions
of the exercise are necessary and sufficient.)

3. By Theorem A, we need a ≡ 1 (modulo 4) and a ≡ 1 (modulo 5). By Law D of
Section 1.2.4, this is equivalent to a ≡ 1 (modulo 20).

548 ANSWERS TO EXERCISES 3.2.1.2

4. We know X2e−1 ≡ 0 (modulo 2e−1) by using Theorem A in the case m = 2e−1.
Also using Theorem A for m = 2e, we know that X2e−1 ̸≡ 0 (modulo 2e). It follows
that X2e−1 = 2e−1. More generally, we can use Eq. 3.2.1Ű(6) to prove that the second
half of the period is essentially like the Ąrst half, since Xn+2e−1 = (Xn + 2e−1) mod 2e.
(The quarters are similar too, see exercise 21.)

5. We need a ≡ 1 (modulo p) for p = 3, 11, 43, 281, 86171. By Law D of Section 1.2.4,
this is equivalent to a ≡ 1 (modulo 3 · 11 · 43 · 281 · 86171), so the only solution is the
terrible multiplier a = 1.

6. (See the previous exercise.) The congruence a ≡ 1 (modulo 3 · 7 · 11 · 13 · 37)
implies that the solutions are a = 1 + 111111k, for 0 ≤ k ≤ 8.

7. Using the notation of the proof of Lemma Q, µ is the smallest value such that
Xµ+λ = Xµ; so it is the smallest value such that Yµ+λ = Yµ and Zµ+λ = Zµ. This
shows that µ = max(µ1, . . . , µt). The highest achievable µ is max(e1, . . . , et), but
nobody really wants to achieve it.

8. We have a2 ≡ 1 (modulo 8); so a4 ≡ 1 (modulo 16), a8 ≡ 1 (modulo 32), etc. If
amod 4 = 3, then a−1 is twice an odd number; so (a2e−1−1)/(a−1) ≡ 0 (modulo 2e)
if and only if (a2e−1− 1)/2 ≡ 0 (modulo 2e+1/2), which is true.

9. Substitute for Xn in terms of Yn and simplify. If X0 mod 4 = 3, the formulas
of the exercise do not apply; but they do apply to the sequence Zn = (−Xn) mod 2e,
which has essentially the same behavior.

10. Only when m = 1, 2, 4, pe, and 2pe, for odd primes p. In all other cases, the result
of Theorem B is an improvement over Euler’s theorem (exercise 1.2.4Ű28).

11. (a) Either x+1 or x−1 (not both) will be a multiple of 4, so x∓1 = q2f , where q
is odd and f is greater than 1. (b) In the given circumstances, f < e and so e ≥ 3. We
have ±x ≡ 1 (modulo 2f) and ±x ̸≡ 1 (modulo 2f+1) and f > 1. Hence, by applying

Lemma P, we Ąnd that (±x)2e−f−1 ̸≡ 1 (modulo 2e), while x2e−f

= (±x)2e−f ≡ 1
(modulo 2e). So the order is a divisor of 2e−f , but not a divisor of 2e−f−1. (c) 1 has
order 1; 2e − 1 has order 2; the maximum period when e ≥ 3 is therefore 2e−2, and for
e ≥ 4 it is necessary to have f = 2, that is, x ≡ 4± 1 (modulo 8).

12. If k is a proper divisor of p − 1 and if ak ≡ 1 (modulo p), then by Lemma P
we have akpe−1 ≡ 1 (modulo pe). Similarly, if ap−1 ≡ 1 (modulo p2), we Ąnd that
a(p−1)pe−2 ≡ 1 (modulo pe). So in these cases a is not primitive. Conversely, if ap−1 ̸≡ 1
(modulo p2), Theorem 1.2.4F and Lemma P tell us that a(p−1)pe−2 ̸≡ 1 (modulo pe),
but a(p−1)pe−1 ≡ 1 (modulo pe). So the order is a divisor of (p − 1)pe−1 but not of
(p−1)pe−2; it therefore has the form kpe−1, where k divides p−1. But if a is primitive
modulo p, the congruence akpe−1 ≡ ak ≡ 1 (modulo p) implies that k = p− 1.

13. Suppose amod p ̸= 0, and let λ be the order of a modulo p. By Theorem 1.2.4F,
λ is a divisor of p− 1. If λ < p− 1, then (p− 1)/λ has a prime factor, q.

14. Let 0 < k < p. If ap−1 ≡ 1 (modulo p2), then (a+ kp)p−1 ≡ ap−1 + (p− 1)ap−2kp
(modulo p2); and this is ̸≡ 1, since (p− 1)ap−2k is not a multiple of p. By exercise 12,
a+ kp is primitive modulo pe.

15. (a) If λ1 = pe1
1 . . . pet

t and λ2 = pf1
1 . . . pft

t , let κ1 = pg1
1 . . . pgt

t and κ2 = ph1
1 . . . pht

t ,
where

gj = ej and hj = 0, if ej < fj ,
gj = 0 and hj = fj , if ej ≥ fj .

3.2.1.2 ANSWERS TO EXERCISES 549

Now aκ1
1 and aκ2

2 have periods λ1/κ1 and λ2/κ2, and the latter are relatively prime.
Furthermore (λ1/κ1)(λ2/κ2) = λ, so it suffices to consider the case when λ1 is relatively
prime to λ2, that is, when λ = λ1λ2. Now let λ′ be the order of a1a2. Since (a1a2)λ′ ≡
1, we have 1 ≡ (a1a2)λ′λ1 ≡ aλ′λ1

2 ; hence λ′λ1 is a multiple of λ2. This implies that λ′

is a multiple of λ2, since λ1 is relatively prime to λ2. Similarly, λ′ is a multiple of λ1;
hence λ′ is a multiple of λ1λ2. But obviously (a1a2)λ1λ2 ≡ 1, so λ′ = λ1λ2.

(b) If a1 has order λ(m) and if a2 has order λ, by part (a) λ(m) must be a multiple
of λ, otherwise we could Ąnd an element of higher order, namely of order lcm(λ, λ(m)).

16. (a) f(x) = (x − a)(xn−1 + (a + c1)xn−2 + · · · + (an−1 + · · · + cn−1)) + f(a).
(b) The statement is clear when n = 0. If a is one root, f(x) ≡ (x− a)q(x); therefore,
if a′ is any other root,

0 ≡ f(a′) ≡ (a′ − a)q(a′),

and since a′ − a is not a multiple of p, a′ must be a root of q(x). So if f(x) has more
than n distinct roots, q(x) has more than n− 1 distinct roots. [J. L. Lagrange, Mém.
Acad. Roy. Sci. Berlin 24 (1768), 181Ű250, §10.] (c) λ(p) ≥ p− 1, since f(x) must have
degree ≥ p−1 in order to possess so many roots. But λ(p) ≤ p−1 by Theorem 1.2.4F.

17. By Lemma P, 115 ≡ 1 (modulo 25), 115 ̸≡ 1 (modulo 125), etc.; so the order of 11
is 5e−1 (modulo 5e), not the maximum value λ(5e) = 4 · 5e−1. But by Lemma Q the
total period length is the least common multiple of the period modulo 2e (namely 2e−2)
and the period modulo 5e (namely 5e−1), and this is 2e−25e−1 = λ(10e). The period
modulo 5e may be 5e−1 or 2 · 5e−1 or 4 · 5e−1, without affecting the length of period
modulo 10e, since the least common multiple is taken. The values that are primitive
modulo 5e are those congruent to 2, 3, 8, 12, 13, 17, 22, 23 modulo 25 (see exercise 12),
namely 3, 13, 27, 37, 53, 67, 77, 83, 117, 123, 133, 147, 163, 173, 187, 197.

18. According to Theorem C, amod 8 must be 3 or 5. Knowing the period of a
modulo 5 and modulo 25 allows us to apply Lemma P to determine admissible values
of a mod 25. Period = 4 · 5e−1: 2, 3, 8, 12, 13, 17, 22, 23; period = 2 · 5e−1: 4, 9,
14, 19; period = 5e−1: 6, 11, 16, 21. Each of these 16 values yields one value of a,
0 ≤ a < 200, with amod 8 = 3, and another value of a with amod 8 = 5.

19. Several examples appear in lines 17Ű20 of Table 3.3.4Ű1.

20. (a) We have AYn + X0 ≡ AYn+k + X0 (modulo m) if and only if Yn ≡ Yn+k

(modulo m′). (b)(i) Obvious. (ii) Theorem A. (iii) (an − 1)/(a − 1) ≡ 0 (modulo 2e)
if and only if an ≡ 1 (modulo 2e+1); if a ̸≡ −1, the order of a modulo 2e+1 is twice its
order modulo 2e. (iv) (an − 1)/(a− 1) ≡ 0 (modulo pe) if and only if an ≡ 1.

21. Xn+s ≡ Xn + Xs by Eq. 3.2.1Ű(6); and s is a divisor of m, since s is a power of
p when m is a power of p. Hence a given integer q is a multiple of m/s if and only if
Xqs ≡ 0, if and only if q is a multiple of m/gcd(Xs,m).

22. Algorithm 4.5.4P is able to test numbers of the form m = bk±bl±1 for primality in
a reasonable time when, say, b ≈ 232 and l < k ≈ 100; the calculations should be done
in radix b so that the special form of m speeds up the operation of squaring mod m.
(Consider, for example, squaring mod 9999998999 in decimal notation.) Algorithm
4.5.4P should, of course, be used only when m is known to have no small divisors.

Marsaglia and Zaman [Annals of Applied Probability 1 (1991), 474Ű475] showed
that m = b43−b22 +1 is prime with primitive root b when b is the prime number 232−5.
This required factoring m−1 = b22(b−1)(b6+b5+b4+b3+b2+b+1)(b14+b7+1) in order
to establish the primitivity of b; one of the 17 prime factors of m − 1 has 99 decimal
digits. As a result, we can be sure that the sequence xn = (xn−22−xn−43−cn) mod b =

550 ANSWERS TO EXERCISES 3.2.1.2

xn−22 − xn−43 − cn + bcn+1 has period length m− 1 ≈ 10414 for every nonzero choice
of seed values 0 ≤ x−1, . . . , x−43 < b when c0 = 0.

However, 43 is still a rather small value for k from the standpoint of the birthday
spacings test (see Section 3.3.2J), and 22 is rather near 43/2. Considerations of
“mixingŤ indicate that we prefer values of k and l for which the Ąrst few partial
quotients in the continued fraction of l/k are small. To avoid potential problems with
this generator, it’s a good idea to discard some of the numbers, as recommended by
Lüscher (see Section 3.2.2).

Here are some prime numbers of the form bk ± bl ± 1 that satisfy the mixing
constraint when b = 232 and 50 < k ≤ 100: For subtract-with-borrow, b57 − b17 − 1,
b73 − b17 − 1, b86 − b62 − 1, b88 − b52 − 1, b95 − b61 − 1; b58 − b33 + 1, b62 − b17 + 1,
b69− b24 + 1, b70− b57 + 1, b87− b24 + 1. For add-with-carry, b56 + b22− 1, b61 + b44− 1,
b74 + b27 − 1, b90 + b65 − 1. (Less desirable from a mixing standpoint are the primes
b56 − b5 − 1, b56 − b32 − 1, b66 − b57 − 1, b76 − b15 − 1, b84 − b26 − 1, b90 − b42 − 1,
b93−b18−1; b52−b8 +1, b60−b12 +1, b67−b8 +1, b67−b63 +1, b83−b14 +1; b65 +b2−1,
b76 + b11 − 1, b88 + b30 − 1, b92 + b48 − 1.)

To calculate the period of the resulting sequences, we need to know the factors
of m− 1; but this isn’t feasible for such large numbers unless we are extremely lucky.
Suppose we do succeed in Ąnding the prime factors q1, . . . , qt; then the probability that
b(m−1)/q modm = 1 is extremely small, only 1/q, except for the very small primes q.
Therefore we can be quite conĄdent that the period of bn modm is extremely long even
though we cannot factor m− 1.

Indeed, the period is almost certainly very long even if m is not prime. Consider,
for example, the case k = 10, l = 3, b = 10 (which is much too small for random
number generation but small enough that we can easily compute the exact results). In
this case ⟨10n modm⟩ has period length lcm(219, 11389520) = 2494304880 when m =
9999998999 = 439 · 22779041; 4999999500 when m = 9999999001; 5000000499 when
m = 10000000999; and lcm(1, 16, 2686, 12162) = 130668528 when m = 10000001001 =
3·17·2687·72973. Rare choices of the seed values may shorten the period when m is not
prime. But we can hardly go wrong if we choose, say, k = 1000, l = 619, and b = 216.

SECTION 3.2.1.3

1. c = 1 is always relatively prime to B5; and every prime dividing m = B5 is a
divisor of B, so it divides b = B2 to at least the second power.

2. Only 3, so the generator is not recommended in spite of its long period.

3. The potency is 18 in both cases (see the next exercise).

4. Since amod 4 = 1, we must have amod 8 = 1 or 5, so bmod 8 = 0 or 4. If b is an
odd multiple of 4, and if b1 is a multiple of 8, clearly bs ≡ 0 (modulo 2e) implies that
bs

1 ≡ 0 (modulo 2e), so b1 cannot have higher potency than b.

5. The potency is the smallest value of s such that fjs ≥ ej for all j.

6. The modulus must be divisible by 27 or by p4 (for odd prime p) in order to have
a potency as high as 4. The only values are m = 227 + 1 and 109 − 1.

7. a′ = (1− b+ b2 − · · ·) modm, where the terms in bs, bs+1, etc., are dropped (if s
is the potency).

8. Since Xn is always odd,

Xn+2 = (234 + 3 · 218 + 9)Xn mod 235 = (234 + 6Xn+1 − 9Xn) mod 235.

3.2.2 ANSWERS TO EXERCISES 551

Given Yn and Yn+1, the possibilities for

Yn+2 ≈ (10 + 6(Yn+1 + ϵ1)− 9(Yn + ϵ2)) mod 20,

with 0 ≤ ϵ1 < 1, 0 ≤ ϵ2 < 1, are limited and nonrandom.
Note: If the multiplier suggested in exercise 3 were, say, 233 + 218 + 22 + 1, instead

of 223 + 213 + 22 + 1, we would similarly Ąnd Xn+2 − 10Xn+1 + 25Xn ≡ constant
(modulo 235). In general, we do not want a ± δ to be divisible by high powers of 2
when δ is small, else we get “second-order impotency.Ť See Section 3.3.4 for a more
detailed discussion.

The generator that appears in this exercise is discussed in an article by MacLaren
and Marsaglia, JACM 12 (1965), 83Ű89. The deĄciencies of such generators were Ąrst
demonstrated by M. Greenberger, CACM 8 (1965), 177Ű179. Yet generators like this
were still in widespread use more than ten years later (see the discussion of RANDU in
Section 3.3.4).

SECTION 3.2.2

1. The method is useful only with great caution. In the Ąrst place, aUn is likely to be
so large that the addition of c/m that follows will lose almost all signiĄcance, and the
“mod 1Ť operation will nearly destroy any vestiges of signiĄcance that might remain.
We conclude that double-precision Ćoating point arithmetic is necessary. Even with
double precision, one must be sure that no rounding, etc., occurs to affect the numbers
of the sequence in any way, since that would destroy the theoretical grounds for the
good behavior of the sequence. (But see exercise 23.)

2. Xn+1 equals either Xn−1 +Xn or Xn−1 +Xn −m. If Xn+1 < Xn we must have
Xn+1 = Xn−1 +Xn −m; hence Xn+1 < Xn−1.

3. (a) The underlined numbers are V [j] after step M3.

Output: initial 0 4 5 6 2 0 3(2 7 4 1 6 3 0 5) and repeats.

V [0]: 0 4 7 7 7 7 7 7 7 4 7 7 7 7 7 7 7 4 7 . . .

V [1]: 3 3 3 3 3 3 3 2 5 5 5 5 5 5 5 2 5 5 5 . . .

V [2]: 2 2 2 2 2 0 3 3 3 3 3 3 3 0 3 3 3 3 3 . . .

V [3]: 5 5 5 6 1 1 1 1 1 1 1 6 1 1 1 1 1 1 1 . . .

X: 4 7 6 1 0 3 2 5 4 7 6 1 0 3 2 5 4 7 . . .

Y : 0 1 6 7 4 5 2 3 0 1 6 7 4 5 2 3 0 1 . . .

So the potency has been reduced to 1! (See further comments in the answer to
exercise 15.)

(b) The underlined numbers are V [j] after step B2.

Output: initial 2 3 6 5 7 0 0 5 3 . . . 4 6(3 0 . . . 4 7) . . .

V [0]: 0 0 0 0 0 0 0 5 4 4 . . . 1 1 1 1 . . . 1 1 . . .

V [1]: 3 3 6 1 1 1 1 1 1 1 . . . 0 0 0 4 . . . 0 0 . . .

V [2]: 2 7 7 7 7 3 3 3 3 7 . . . 6 2 2 2 . . . 7 2 . . .

V [3]: 5 5 5 5 0 0 2 2 2 2 . . . 3 3 5 5 . . . 3 3 . . .

X: 4 7 6 1 0 3 2 5 4 7 . . . 3 2 5 4 . . . 3 2 . . .

552 ANSWERS TO EXERCISES 3.2.2

In this case the output is considerably better than the input; it enters a repeating cycle
of length 40 after 46 steps: 236570 05314 72632 40110 37564 76025 12541 73625 03746
(30175 24061 52317 46203 74531 60425 16753 02647). The cycle can be found easily by
applying the method of exercise 3.1Ű7 to the array above until a column is repeated.

4. The low-order byte of many random sequences (e.g., linear congruential sequences
with m = word size) is much less random than the high-order byte. See Section 3.2.1.1.

5. The randomizing effect would be quite minimized, because V [j] would always
contain a number in a certain range, essentially j/k ≤ V [j]/m < (j + 1)/k. However,
some similar approaches could be used: We could take Yn = Xn−1, or we could choose j
from Xn by extracting some digits from the middle instead of at the extreme left.
None of these suggestions would produce a lengthening of the period analogous to
the behavior of Algorithm B. (Exercise 27 shows, however, that Algorithm B doesn’t
necessarily increase the period length.)

6. For example, if Xn/m < 1
2
, then Xn+1 = 2Xn.

7. [W. Mantel, Nieuw Archief voor Wiskunde (2) 1 (1897), 172Ű184.]

The subsequence of
X values:

00. . .01
00. . .10

. . .
10. . .00

CONTENTS(A)

becomes:

00. . .01
00. . .10

. . .
10. . .00
00. . .00

CONTENTS(A)

8. We may assume that X0 = 0 and m = pe, as in the proof of Theorem 3.2.1.2A.
First suppose that the sequence has period length pe; it follows that the period of
the sequence mod pf has length pf , for 1 ≤ f ≤ e, otherwise some residues mod pf

would never occur. Clearly, c is not a multiple of p, for otherwise each Xn would
be a multiple of p. If p ≤ 3, it is easy to establish the necessity of conditions (iii)
and (iv) by trial and error, so we may assume that p ≥ 5. If d ̸≡ 0 (modulo p) then
dx2 + ax + c ≡ d(x + a1)2 + c1 (modulo pe) for some integers a1 and c1 and for all
integers x; this quadratic takes the same value at the points x and −x − 2a1, so it
cannot assume all values modulo pe. Hence d ≡ 0 (modulo p); and if a ̸≡ 1, we would
have dx2 + ax+ c ≡ x (modulo p) for some x, contradicting the fact that the sequence
mod p has period length p.

To show the sufficiency of the conditions, we may assume by Theorem 3.2.1.2A and
consideration of some trivial cases that m = pe where e ≥ 2. If p = 2, we have Xn+2 ≡
Xn +2 (modulo 4), by trial; and if p = 3, we have Xn+3 ≡ Xn−d+3c (modulo 9), using
(i) and (ii). For p ≥ 5, we can prove that Xn+p ≡ Xn + pc (modulo p2): Let d = pr,
a = 1+ps. Then if Xn ≡ cn+pYn (modulo p2), we must have Yn+1 ≡ n2c2r+ncs+Yn

(modulo p); hence Yn ≡

n
3

2c2r +

n
2

(c2r + cs) (modulo p). Thus Yp mod p = 0, and

the desired relation has been proved.
Now we can prove that the sequence ⟨Xn⟩ of integers deĄned in the “hintŤ satisĄes

the relation
Xn+pf ≡ Xn + tpf (modulo pf+1), n ≥ 0,

for some t with tmod p ̸= 0, and for all f ≥ 1. This suffices to prove that the sequence
⟨Xn mod pe⟩ has period length pe, for the length of the period is a divisor of pe but
not a divisor of pe−1. The relation above has already been established for f = 1, and
for f > 1 it can be proved by induction in the following manner: Let

Xn+pf ≡ Xn + tpf + Znp
f+1 (modulo pf+2);

3.2.2 ANSWERS TO EXERCISES 553

then the quadratic law for generating the sequence, with d = pr, a = 1 + ps, yields
Zn+1 ≡ 2rtnc+ st+ Zn (modulo p). It follows that Zn+p ≡ Zn (modulo p); hence

Xn+kpf ≡ Xn + k(tpf + Znp
f+1) (modulo pf+2)

for k = 1, 2, 3, . . . ; setting k = p completes the proof.
Notes: If f(x) is a polynomial of degree higher than 2 and Xn+1 = f(Xn),

the analysis is more complicated, although we can use the fact that f(m + pk) =
f(m) + pkf ′(m) + p2kf ′′(m)/2! + · · · to prove that many polynomial recurrences give
the maximum period. For example, Coveyou has proved that the period is m = 2e if
f(0) is odd, f ′(j) ≡ 1, f ′′(j) ≡ 0, and f(j + 1) ≡ f(j) + 1 (modulo 4) for j = 0, 1, 2, 3.
[Studies in Applied Math. 3 (Philadelphia: SIAM, 1969), 70Ű111.]

9. Let Xn = 4Yn + 2; then the sequence Yn satisĄes the quadratic recurrence Yn+1 =
(4Y 2

n + 5Yn + 1) mod 2e−2.

10. Case 1: X0 = 0, X1 = 1; hence Xn ≡ Fn. We seek the smallest n for which Fn ≡ 0
and Fn+1 ≡ 1 (modulo 2e). Since F2n = Fn(Fn−1 +Fn+1), F2n+1 = F 2

n +F 2
n+1, we Ąnd

by induction on e that, for e > 1, F3·2e−1 ≡ 0 and F3·2e−1+1 ≡ 2e + 1 (modulo 2e+1).
This implies that the period is a divisor of 3 · 2e−1 but not a divisor of 3 · 2e−2, so it is
either 3 · 2e−1 or 2e−1. But F2e−1 is always odd (since only F3n is even).

Case 2: X0 = a, X1 = b. Then Xn ≡ aFn−1 + bFn; we need to Ąnd the smallest
positive n with a(Fn+1 − Fn) + bFn ≡ a and aFn + bFn+1 ≡ b. This implies that
(b2 − ab− a2)Fn ≡ 0, (b2 − ab − a2)(Fn+1 − 1) ≡ 0. And b2 − ab− a2 is odd (that is,
prime to m); so the condition is equivalent to Fn ≡ 0, Fn+1 ≡ 1.

Methods to determine the period of ⟨Fn⟩ for any modulus appear in an article by
D. D. Wall, AMM 67 (1960), 525Ű532. Further facts about the Fibonacci sequence
mod 2e have been derived by B. Jansson [Random Number Generators (Stockholm:
Almqvist & Wiksell, 1966), Section 3C1].

11. (a) We have zλ = 1 + f(z)u(z) + pev(z) for some u(z) and v(z), where v(z) ̸≡ 0
(modulo f(z) and p). By the binomial theorem,

zλp = 1 + pe+1v(z) + p2e+1v(z)2(p− 1)/2

plus further terms congruent to zero (modulo f(z) and pe+2). Since pe > 2, we have
zλp ≡ 1 + pe+1v(z) (modulo f(z) and pe+2). If pe+1v(z) ≡ 0 (modulo f(z) and pe+2),
there must exist polynomials a(z) and b(z) such that pe+1(v(z) + pa(z)) = f(z)b(z).
Since f(0) = 1, this implies that b(z) is a multiple of pe+1 (by Gauss’s Lemma 4.6.1G);
hence v(z) ≡ 0 (modulo f(z) and p), a contradiction.

(b) If zλ − 1 = f(z)u(z) + pev(z), then

G(z) = u(z)/(zλ − 1) + pev(z)/f(z)(zλ − 1);

hence An+λ ≡ An (modulo pe) for large n. Conversely, if ⟨An⟩ has the latter property
then G(z) = u(z) + v(z)/(1 − zλ) + peH(z), for some polynomials u(z) and v(z),
and some power series H(z), all with integer coefficients. This implies the identity
1− zλ = u(z)f(z)(1− zλ) + v(z)f(z) + peH(z)f(z)(1− zλ); and H(z)f(z)(1− zλ) is a
polynomial since the other terms of the equation are polynomials.

(c) It suffices to prove that λ(pe) ̸= λ(pe+1) implies that λ(pe+1) = pλ(pe) ̸=
λ(pe+2). Applying (a) and (b), we know that λ(pe+2) ̸= pλ(pe), and that λ(pe+1) is
a divisor of pλ(pe) but not of λ(pe). Hence if λ(pe) = pfq, where q mod p ̸= 0, then
λ(pe+1) must be pf+1d, where d is a divisor of q. But now Xn+pf+1d ≡ Xn (modulo pe);
hence pf+1d is a multiple of pfq, hence d = q. [Note: The hypothesis pe > 2 is

554 ANSWERS TO EXERCISES 3.2.2

necessary; for example, let a1 = 4, a2 = −1, k = 2; then ⟨An⟩ = 1, 4, 15, 56, 209, 780,
. . . ; λ(2) = 2, λ(4) = 4, λ(8) = 4.]

(d) g(z) = X0+(X1−a1X0)z+· · ·+(Xk−1−a1Xk−2−a2Xk−3−· · ·−ak−1X0)zk−1.
(e) The derivation in (b) can be generalized to the case G(z) = g(z)/f(z); then

the assumption of period length λ implies that g(z)(1− zλ) ≡ 0 (modulo f(z) and pe);
we treated only the special case g(z) = 1 above. But both sides of this congruence can
be multiplied by Hensel’s b(z), and we obtain 1− zλ ≡ 0 (modulo f(z) and pe).

Note: A more “elementaryŤ proof of the result in (c) can be given without using
generating functions, using methods analogous to those in the answer to exercise 8: If
Aλ+n = An + peBn, for n = r, r + 1, . . . , r + k − 1 and some integers Bn, then this
same relation holds for all n ≥ r if we deĄne Br+k, Br+k+1, . . . by the given recurrence
relation. Since the resulting sequence of B’s is some linear combination of shifts of
the sequence of A’s, we will have Bλ+n ≡ Bn (modulo pe) for all large enough values
of n. Now λ(pe+1) must be some multiple of λ = λ(pe); for all large enough n we have
An+jλ = An + pe(Bn +Bn+λ +Bn+2λ + · · ·+Bn+(j−1)λ) ≡ An + jpeBn (modulo p2e)
for j = 1, 2, 3, No k consecutive B’s are multiples of p; hence λ(pe+1) = pλ(pe) ̸=
λ(pe+2) follows immediately when e ≥ 2. We still must prove that λ(pe+2) ̸= pλ(pe)
when p is odd and e = 1; here we let Bλ+n = Bn + pCn, and observe that Cn+λ ≡ Cn

(modulo p) when n is large enough. Then An+p ≡ An +p2

Bn +

p
2

Cn

(modulo p3),

and the proof is readily completed.
For the history of this problem, see Morgan Ward, Trans. Amer. Math. Soc. 35

(1933), 600Ű628; see also D. W. Robinson, AMM 73 (1966), 619Ű621.

12. The period length mod 2 can be at most 4; and the period length mod 2e+1 is at
most twice the maximum length mod 2e, by the considerations of the previous exercise.
So the maximum conceivable period length is 2e+1; this is achievable, for example, in
the trivial case a = 0, b = c = 1.

13, 14. Clearly Zn+λ = Zn, so λ′ is certainly a divisor of λ. Let the least common
multiple of λ′ and λ1 be λ′

1, and deĄne λ′
2 similarly. We have Xn +Yn ≡ Zn ≡ Zn+λ′

1
≡

Xn + Yn+λ′
1
, so λ′

1 is a multiple of λ2. Similarly, λ′
2 is a multiple of λ1. This yields

the desired result. (The result is “best possibleŤ in the sense that sequences for which
λ′ = λ0 can be constructed, as well as sequences for which λ′ = λ.)

15. Algorithm M generates (Xn+k, Yn) in step M1 and outputs Zn = Xn+k−qn in step
M3, for all sufficiently large n. Thus ⟨Zn⟩ has a period of length λ′, where λ′ is the
least positive integer such that Xn+k−qn = Xn+λ′+k−qn+λ′ for all large n. Since λ is a
multiple of λ1 and λ2, it follows that λ′ is a divisor of λ. (These observations are due
to Alan G. Waterman.)

We also have n+ k − qn ≡ n+ λ′ + k − qn+λ′ (modulo λ1) for all large n, by the
distinctness of the X’s. The bound on ⟨qn⟩ implies that qn+λ′ = qn + c for all large n,
where c ≡ λ′ (modulo λ1) and |c| < 1

2
λ1. But c must be 0 since ⟨qn⟩ is bounded. Hence

λ′ ≡ 0 (modulo λ1), and qn+λ′ = qn for all large n; it follows that λ′ is a multiple of
λ2 and λ1, so λ′ = λ.

Note: The answer to exercise 3.2.1.2Ű4 implies that when ⟨Yn⟩ is a linear congru-
ential sequence of maximum period modulo m = 2e, the period length λ2 will be at
most 2e−2 when k is a power of 2.

16. There are several methods of proof.
(1) Using the theory of Ąnite Ąelds. In the Ąeld with 2k elements let ξ satisfy

ξk = a1ξ
k−1 + · · · + ak. Let f(b1ξ

k−1 + · · · + bk) = bk, where each bj is either zero

3.2.2 ANSWERS TO EXERCISES 555

or one; this is a linear function. If word X in the generation algorithm is (b1b2 . . . bk)2

before (10) is executed, and if b1ξ
k−1+· · ·+bkξ

0 = ξn, then word X represents ξn+1 after
(10) is executed. Hence the sequence is f(ξn), f(ξn+1), f(ξn+2), . . . ; and f(ξn+k) =
f(ξnξk) = f(a1ξ

n+k−1 + · · ·+ akξ
n) = a1f(ξn+k−1) + · · ·+ akf(ξn).

(2) Using brute force, or elementary ingenuity. We are given a sequence Xnj ,
n ≥ 0, 1 ≤ j ≤ k, satisfying

X(n+1)j ≡ Xn(j+1) + ajXn1, 1 ≤ j < k; X(n+1)k ≡ akXn1 (modulo 2).

We must show that this implies Xnk ≡ a1X(n−1)k + · · ·+akX(n−k)k, for n ≥ k. Indeed,
it implies Xnj ≡ a1X(n−1)j + · · · + akX(n−k)j when 1 ≤ j ≤ k ≤ n. This is clear for
j = 1, since Xn1 ≡ a1X(n−1)1 +X(n−1)2 ≡ a1X(n−1)1 + a2X(n−2)1 +X(n−2)3, etc. For
j > 1, we have by induction

Xnj ≡ X(n+1)(j−1) − aj−1Xn1

≡

1≤i≤k

aiX(n+1−i)(j−1) − aj−1

1≤i≤k

aiX(n−i)1

≡

1≤i≤k

ai(X(n+1−i)(j−1) − aj−1X(n−i)1)

≡ a1X(n−1)j + · · ·+ akX(n−k)j .

This proof does not depend on the fact that operations were done modulo 2, or modulo
any prime number.

17. (a) When the sequence terminates, the (k − 1)-tuple (Xn+1, . . . , Xn+k−1) occurs
for the (m + 1)st time. A given (k − 1)-tuple (Xr+1, . . . , Xr+k−1) can have only m
distinct predecessors Xr, so one of these occurrences must be for r = 0. (b) Since
the (k − 1)-tuple (0, . . . , 0) occurs (m + 1) times, each possible predecessor appears,
so the k-tuple (a1, 0, . . . , 0) appears for all a1, 0 ≤ a1 < m. Let 1 ≤ s < k and
suppose we have proved that all k-tuples (a1, . . . , as, 0, . . . , 0) appear in the sequence
when as ̸= 0. By the construction, this k-tuple would not be in the sequence unless
(a1, . . . , as, 0, . . . , 0, y) had appeared earlier for 1 ≤ y < m. Hence the (k − 1)-tuple
(a1, . . . , as, 0, . . . , 0) has appeared m times, and all m possible predecessors appear; this
means that (a, a1, . . . , as, 0, . . . , 0) appears for 0 ≤ a < m. The proof is now complete
by induction.

The result also follows from Theorem 2.3.4.2D, using the directed graph of exercise
2.3.4.2Ű23. The arcs from (x1, . . . , xj , 0, . . . , 0) to (x2, . . . , xj , 0, 0, . . . , 0), where xj ̸= 0
and 1 ≤ j ≤ k, form an oriented subtree related neatly to Dewey decimal notation.

18. By exercise 16, the most signiĄcant bit of Un+1 is completely determined by the
Ąrst and third bits of Un, so only 32 of the 64 possible pairs (⌊8Un⌋, ⌊8Un+1⌋) occur.
[Notes: If we had used, say, 11-bit numbers Un = (.X11nX11n+1 . . . X11n+10)2, the
sequence would be satisfactory for many applications. If another constant appears in
A having more 1 bits, the generalized spectral test might give some indication of its
suitability. See exercise 3.3.4Ű24; we could examine νt in dimensions t = 36, 37, 38,]

20. For k = 64 one can use CONTENTS(A) = (243F6A8885A308D3)16 (the bits of π!).

21. [J. London Math. Soc. 21 (1946), 169Ű172.] Any sequence of period length mk−1
with no k consecutive zeros leads to a sequence of period length mk by inserting a zero
in the appropriate place, as in exercise 7; conversely, we can start with a sequence of
period length mk and delete an appropriate zero from the period, to form a sequence of
the other type. Let us call these “(m, k) sequencesŤ of types A and B. The hypothesis

556 ANSWERS TO EXERCISES 3.2.2

assures us of the existence of (p, k) sequences of type A, for all primes p and all k ≥ 1;
hence we have (p, k) sequences of type B for all such p and k.

To get a (pe, k) sequence of type B, let e = qr, where q is a power of p and r is not
a multiple of p. Start with a (p, qrk) sequence of type A, namely X0, X1, X2, . . . ; then
(using the p-ary number system) the grouped digits (X0 . . . Xq−1)p, (Xq . . . X2q−1)p, . . .
form a (pq, rk) sequence of type A, since q is relatively prime to pqrk − 1 and the
sequence therefore has a period length of pqrk − 1. This leads to a (pq, rk) sequence
⟨Yn⟩ of type B; and (Y0Y1 . . . Yr−1)pq , (YrYr+1 . . . Y2r−1)pq , . . . is a (pqr, k) sequence of
type B by a similar argument, since r is relatively prime to pqk.

To get an (m, k) sequence of type B for arbitrary m, we can combine (pe, k)
sequences for each of the prime power factors of m using the Chinese remainder
theorem; but a simpler method is available. Let ⟨Xn⟩ be an (r, k) sequence of type B,
and let ⟨Yn⟩ be an (s, k) sequence of type B, where r and s are relatively prime; then
⟨(Xn + Yn) mod rs⟩ is an (rs, k) sequence of type B, by exercise 13.

A simple, uniform construction that yields (2, k) sequences for arbitrary k has
been discovered by A. Lempel [IEEE Trans. C-19 (1970), 1204Ű1209].

22. By the Chinese remainder theorem, we can Ąnd constants a1, . . . , ak having desired
residues modulo each prime divisor of m. If m = p1p2 . . . pt, the period length will be
lcm(pk

1−1, . . . , pk
t −1). In fact, we can achieve reasonably long periods for arbitrary m

(not necessarily squarefree), as shown in exercise 11.

23. Subtraction may be faster than addition, see exercise 3.2.1.1Ű5; the period length
is still 2e−1(255−1), by exercise 30. R. Brent has pointed out that the calculations can
be done exactly on Ćoating point numbers in [0 . . 1); see exercise 3.6Ű11.

24. Run the sequence backwards. In other words, if Zn = Y−n we have Zn =
(Zn−k+l − Zn−k) mod 2 = (Zn−k+l + Zn−k) mod 2.

25. This idea can save most of the overhead of subroutine calls. For example, suppose
Program A is invoked by calling JMP RANDM, where we have

RANDM STJ 1F

LDA Y,6
...

 Program A
ENT6 55

1H JMP *

The cost per random number is then 14 + 2
55

units of time. But suppose we generate
random numbers by saying ŚDEC6 1; J6Z RNGEN; LDA Y,6’ instead, with the subroutine

RNGEN STJ 1F

ENT6 24

LDA Y+31,6

ADD Y,6

STA Y+31,6

DEC6 1

J6P *-4

ENT6 31

LDA Y,6

ADD Y+24,6

STA Y,6

DEC6 1

J6P *-4

ENT6 55

1H JMP *

The cost is now only (12+ 6
55

)u. [A similar implementation, expressed in the C language,
is used in The Stanford GraphBase (New York: ACM Press, 1994), GB FLIP.] Indeed,
many applications Ąnd it preferable to generate an array of random numbers all at
once. Moreover, the latter approach is essentially mandatory when we enhance the
randomness with Lüscher’s method; see the C and FORTRAN routines in Section 3.6.

3.2.2 ANSWERS TO EXERCISES 557

27. Let Jn = ⌊kXn/m⌋. Lemma. After the (k2 + 7k − 2)/2 consecutive values

0k+2 1 0k+1 2 0k . . . (k − 1) 03

occur in the ⟨Jn⟩ sequence, Algorithm B will have V [j] < m/k for 0 ≤ j < k, and also
Y < m/k. Proof. Let Sn be the set of positions j such that V [j] < m/k just before Xn

is generated, and let jn be the index such that V [jn] ← Xn. If jn /∈ Sn and Jn = 0,
then Sn+1 = Sn ∪ {jn} and jn+1 > 0; if jn ∈ Sn and Jn = 0, then Sn+1 = Sn and
jn+1 = 0. After k+2 successive 0s, we must therefore have 0 ∈ Sn and jn+1 = 0. Then
after “1 0k+1Ť we must have {0, 1} ⊆ Sn and jn+1 = 0; after “2 0kŤ we must have
{0, 1, 2} ⊆ Sn and jn+1 = 0; and so on.

Corollary. Let l = (k2 + 7k−2)/2. If λ ≥ lkl, either Algorithm B yields a period
of length λ or the sequence ⟨Xn⟩ is poorly distributed. Proof. The probability that
any given length-l pattern of J ’s does not occur in a random sequence of length λ is
less than (1− k−l)λ/l < exp(−k−lλ/l) ≤ e−1; hence the stated pattern should appear.
After it does, the subsequent behavior of Algorithm B will be the same each time it
reaches this part of the period. (When k > 4, we are requiring λ > 1021, so this result
is purely academic. But smaller bounds may be possible.)

29. The following algorithm performs about k2 operations in the worst case, but its
average running time is much faster, perhaps O(log k) or even O(1):

X1. Set (a0, a1, . . . , ak)← (x1, . . . , xk,m−1).

X2. Let i be minimum with ai > 0 and i > 0. Do subroutine Y for j = i + 1,
. . . , k, while ak > 0.

X3. If a0 > ak, f(x1, . . . , xk) = a0; otherwise if a0 > 0, f(x1, . . . , xk) = a0 − 1;
otherwise f(x1, . . . , xk) = ak.

Y1. Set l← 0. (The subroutine in steps Y1ŰY3 essentially tests the lexicographic
relation (ai, . . . , ai+k−1) ≥ (aj , . . . , aj+k−1), decreasing ak if necessary to
make this inequality true. We assume that ak+1 = a1, ak+2 = a2, etc.)

Y2. If ai+l > aj+l, exit the subroutine. Otherwise if j + l = k, set ak ← ai+l.
Otherwise if ai+l = aj+l, go on to step Y3. Otherwise if j + l > k, decrease
ak by 1 and exit. Otherwise set ak ← 0 and exit.

Y3. Increase l by 1, and return to step Y2 if l < k.

This problem was Ąrst solved by H. Fredricksen when m = 2 [J. Combinatorial
Theory 9 (1970), 1Ű5; A12 (1972), 153Ű154]; in that special case the algorithm is
simpler and it can be done with k-bit registers. See also H. Fredricksen and J. Maiorana,
Discrete Math. 23 (1978), 207Ű210, who essentially discovered Algorithm 7.2.1.1F.

30. (a) By exercise 11, it suffices to show that the period length mod 8 is 4(2k−1); this
will be true if and only if x2(2k−1) ̸≡ 1 (modulo 8 and f(x)), if and only if x2k−1 ̸≡ 1
(modulo 4 and f(x)). Write f(x) = fe(x2)+xfo(x2), where fe(x2) = 1

2
(f(x)+f(−x)).

Then f(x)2 + f(−x)2 ≡ 2f(x2) (modulo 8) if and only if fe(x)2 + xfo(x)2 ≡ f(x)
(modulo 4); and the latter condition holds if and only if fe(x)2 ≡ −xfo(x)2 (modulo 4
and f(x)), because fe(x)2 +xfo(x)2 = f(x)+O(xk−1). Furthermore, working modulo 2
and f(x), we have fe(x)2 ≡ fe(x2) ≡ xfo(x2) ≡ x2kfo(x)2, hence fe(x) ≡ x2k−1fo(x).
Therefore fe(x)2 ≡ x2kfo(x)2 (modulo 4 and f(x)), and the hint follows. A similar
argument proves that x2k ≡ x (modulo 4 and f(x)) if and only if f(x)2 + f(−x)2 ≡
2(−1)kf(−x2) (modulo 8).

(b) The condition can hold only when l is odd and k = 2l. But then f(x) is
primitive modulo 2 only when k = 2. [Math. Comp. 63 (1994), 389Ű401.]

558 ANSWERS TO EXERCISES 3.2.2

31. We have Xn ≡ (−1)Yn3Zn mod 2e for some Yn and Zn, by Theorem 3.2.1.2C;
hence Yn = (Yn−24 + Yn−55) mod 2 and Zn = (Zn−24 + Zn−55) mod 2e−2. Since Zk is
odd if and only if Xk mod 8 = 3 or 5, the period length is 2e−3(255−1) by the previous
exercise.

32. We can ignore the Śmod m’ and put it back afterwards. The generating function
g(z) =

n Xnz

n is a polynomial multiple of 1/(1− z24 − z55); hence

n X2nz
2n =

1
2
(g(z) + g(−z)) is a polynomial divided by (1− z24 − z55)(1− z24 + z55) = 1− 2z24 +

z48 − z110. The Ąrst desired recurrence is therefore X2n = (2X2(n−12) − X2(n−24) +
X2(n−55)) modm. Similarly,

n X3nz3n = 1

3
(g(z) + g(ωz) + g(ω2z)) where ω = e2πi/3,

and we Ąnd X3n = (3X3(n−8) − 3X3(n−16) +X3(n−24) +X3(n−55)) modm.

33. (a) gn+t(z) ≡ ztgn(z) (modulo m and 1 + z31 − z55), by induction on t. (b) Since
z500 mod (1 + z31− z55) = 792z2 + z5 + 17z6 + 715z9 + 36z12 + z13 + 364z16 + 210z19 +
105z23+462z26+16z30+1287z33+9z36+18z37+1001z40+120z43+z44+455z47+462z50+
120z54 (see Algorithm 4.6.1D), we have X500 = (792X2 +X5 + · · ·+ 120X54) modm.

[It is interesting to compare the similar formula X165 = (X0 + 3X7 + X14 +
3X31 +4X38 +X45) modm to the sparser recurrence for ⟨X3n⟩ in the previous exercise.
Lüscher’s method of generating 165 numbers and using only the Ąrst 55 is clearly
superior to the idea of generating 165 and using only X3, X6, . . . , X165.]

34. Let q0 = 0, q1 = 1, qn+1 = cqn + aqn−1. Then we have (0
a

1
c
)n = (aqn−1

aqn

qn
qn+1

),
Xn = (qn+1X0 + aqn)/(qnX0 + aqn−1), and xn mod f(x) ≡ qnx + aqn−1, for n ≥ 1.
Thus if X0 = 0 we have Xn = 0 if and only if xn mod f(x) is a nonzero constant.

35. Conditions (i) and (ii) imply that f(x) is irreducible. For if f(x) = (x−r1)(x−r2)
and r1r2 ̸= 0 we have xp−1 ≡ 1 if r1 ̸= r2 and xp ≡ r1 if r1 = r2.

Let ξ be a primitive root of a Ąeld with p2 elements, and suppose ξ2k = ckξ
k +ak.

The quadratic polynomials we seek are precisely the polynomials fk(x) = x2− ckx−ak

where 1 ≤ k < p2 − 1 and k ⊥ p+ 1. (See exercise 4.6.2Ű16.) Each polynomial occurs
for two values of k; hence the number of solutions is 1

2
(p2 − 1)

q\p+1, q prime(1− 1/q).

36. In this case Xn is always odd, so X−1
n exists mod 2e. The sequence ⟨qn⟩ deĄned in

answer 34 is 0, 1, 2, 1, 0, 1, 2, 1, . . . modulo 4. We also have q2n = qn(qn+1 + aqn−1)
and q2n−1 = aq2

n−1 + q2
n; hence q2n+1 − aq2n−1 = (qn+1 − aqn−1)(qn+1 + aqn+1). Since

qn+1 + aqn+1 ≡ 2 (modulo 4) when n is even, we deduce that q2e is an odd multiple
of 2e and q2e+1 − aq2e−1 is an odd multiple of 2e+1, for all e ≥ 0. Therefore

q2e + aq2e−1 ≡ q2e+1 + aq2e + 2e+1 (modulo 2e+2) .

And X2e−2 ≡ (q2e−2+1 +aq2e−2)/(q2e−2 +aq2e−2−1) ̸≡ 1 (modulo 2e), while X2e−1 ≡ 1.
Conversely, we need amod 4 = 1 and cmod 4 = 2; otherwise X2n ≡ 1 (modulo 8).
[Eichenauer, Lehn, and Topuzoǧlu, Math. Comp. 51 (1988), 757Ű759.] The low-order
bits of this sequence have a short period, so inversive generators with prime modulus
are preferable.

37. We can assume that b1 = 0. By exercise 34, a typical vector in V is

(x, (s′2x+ as2)/(s2x+ as′′2), . . . , (s′dx+ asd)/(sdx+ as′′d)),

where sj = qbj , s′j = qbj+1, s′′j = qbj−1. This vector belongs to the hyperplane H if
and only if

r1x+
r2t2
x+ u2

+ · · ·+ rdtd
x+ ud

≡ r0 − r2s
′
2s

−1
2 − · · · − rds

′
ds

−1
d (modulo p) ,

3.3.1 ANSWERS TO EXERCISES 559

where tj = a−as′js′′j s−2
j = −(−a)bj s−2

j and uj = as′′j s
−1
j . But this relation is equivalent

to a polynomial congruence of degree ≤ d; so it cannot hold for d + 1 values of x
unless it holds for all x, including the distinct points x = u2, . . . , x = ud. Hence
r2 = · · · = rd ≡ 0, and r1 ≡ 0. [See J. Eichenauer-Herrmann, Math. Comp. 56 (1991),
297Ű301.]

Notes: If we consider the (p+1−d)× (d+1) matrix M with rows {(1, v1, . . . , vd) |
(v1, . . . , vd) ∈ V }, this exercise is equivalent to the assertion that any d+ 1 rows of M
are linearly independent modulo p. It is interesting to plot the points (Xn, Xn+1) for
p ≈ 1000 and 0 ≤ n ≤ p; traces of circles, rather than straight lines, meet the eye.

SECTION 3.3.1

1. There are k = 11 categories, so the line ν = 10 should be used.

2. 2
49

, 3
49

, 4
49

, 5
49

, 6
49

, 9
49

, 6
49

, 5
49

, 4
49

, 3
49

, 2
49

.

3. V = 7 173
240

, only very slightly higher than that obtained from the good dice!
There are two reasons why we do not detect the weighting: (a) The new probabilities
(see exercise 2) are not really very far from the old ones in Eq. (1). The sum of the two
dice tends to smooth out the probabilities; if we counted instead each of the 36 possible
pairs of values, we would probably detect the difference quite rapidly (assuming that
the two dice are distinguishable). (b) A far more important reason is that n is too
small for a signiĄcant difference to be detected. If the same experiment is done for
large enough n, the faulty dice will be discovered (see exercise 12).

4. ps = 1
12

for 2 ≤ s ≤ 12 and s ̸= 7; p7 = 1
6
. The value of V is 16 1

2
, which falls

between the 75% and 95% entries in Table 1; so it is reasonable, in spite of the fact
that not too many sevens actually turned up.

5. K+
20 = 1.15; K−

20 = 0.215; these values do not differ signiĄcantly from random
behavior (being at about the 94% and 86% levels), but they are mighty close. (The
data values in this exercise come from Appendix A, Table 1.)

6. The probability thatXj ≤ x is F (x), so we have the binomial distribution discussed
in Section 1.2.10: Fn(x) = s/n with probability

n
s

F (x)s(1 − F (x))n−s; the mean

is F (x); the standard deviation is

F (x)(1− F (x))/n. [See Eq. 1.2.10Ű(19). This

suggests that a slightly better statistic would be to deĄne

K+
n =

√
n max

−∞<x<∞
(Fn(x)− F (x))/

F (x)(1− F (x));

see exercise 22. We can calculate the mean and standard deviation of Fn(y) − Fn(x),
for x < y, and obtain the covariance of Fn(x) and Fn(y). Using these facts, it can be
shown that for large values of n the function Fn(x) behaves as a “Brownian motion,Ť
and techniques from this branch of probability theory may be used to study it. The
situation is exploited in articles by J. L. Doob and M. D. Donsker, Annals Math. Stat.
20 (1949), 393Ű403 and 23 (1952), 277Ű281; their approach is generally regarded as
the most enlightening way to study the KS tests.]

7. Set j = n in Eq. (13) to see that K+
n is never negative, and that it can get as high

as
√
n. Similarly, set j = 1 to make the same observations about K−

n .

8. The new KS statistic was computed for 20 observations. The distribution of K+
10

was used as F (x) when the KS statistic was computed.

9. The idea is erroneous, because all of the observations must be independent. There
is a relation between the statistics K+

n and K−
n on the same data, so each test should be

560 ANSWERS TO EXERCISES 3.3.1

judged separately. (A high value of one tends to give a low value of the other.) Similarly,
the entries in Figs. 2 and 5, which show 15 tests for each generator, do not show 15
independent observations, because the maximum-of-5 test is not independent of the
maximum-of-4 test. The three tests of each horizontal row are independent (because
they were done on different parts of the sequence), but the Ąve tests in a column are
somewhat correlated. The net effect of this is that the 95-percent probability levels,
etc., which apply to one test, cannot legitimately be applied to a whole group of tests
on the same data. Moral: When testing a random number generator, we may expect
it to “passŤ each of several tests, like the frequency test, maximum test, and run test;
but an array of data from several different tests should not be considered as a unit
since the tests themselves may not be independent. The K+

n and K−
n statistics should

be considered as two separate tests; a good source of random numbers will pass both.

10. Each Ys is doubled, and nps is doubled, so the numerators of (6) are quadrupled
while the denominators only double. Hence the new value of V is twice as high as the
old one.

11. The empirical distribution function stays the same; the values of K+
n and K−

n are
multiplied by

√
2.

12. Let Zs = (Ys − nqs)/
√
nqs. The value of V is n times

k

s=1

(qs − ps +

qs/nZs)2

/ps,

and the latter quantity stays bounded away from zero as n increases (since Zsn
−1/4

is bounded with probability 1). Hence the value of V will increase to a value that is
extremely improbable under the ps assumption.

For the KS test, let F (x) be the assumed distribution, G(x) the actual distribution,
and let h = max |G(x)− F (x)|. Take n large enough so that |Fn(x)−G(x)| > h/2
occurs with very small probability; then |Fn(x)− F (x)| will be improbably high under
the assumed distribution F (x).

13. (The “maxŤ notation should really be replaced by “supŤ since a least upper bound
is meant; however, “maxŤ was used in the text to avoid confusing too many readers by
the less familiar “supŤ notation.) For convenience, let X0 = −∞, Xn+1 = +∞. When
Xj ≤ x < Xj+1, we have Fn(x) = j/n; therefore max(Fn(x)− F (x)) = j/n− F (Xj)
and max(F (x)− Fn(x)) = F (Xj+1)− j/n in this interval. As j varies from 0 to n, all
real values of x are considered; this proves that

K+
n =

√
n max

0≤j≤n

j

n
− F (Xj)

;

K−

n =
√
n max

1≤j≤n+1

F (Xj)− j − 1
n

.

These equalities are equivalent to (13), since the extra term under the maximum signs
is nonpositive and it must be redundant by exercise 7.

14. The logarithm of the left-hand side simpliĄes to

−
k

s=1

Ys ln

1+
Zs√
nps

+

1−k
2

ln(2πn)− 1
2

k

s=1

ln ps− 1
2

k

s=1

ln

1+
Zs√
nps

+O
 1
n

,

3.3.1 ANSWERS TO EXERCISES 561

and this quantity simpliĄes further (upon expanding ln(1 + Zs/
√
nps) and realizing

that
k

s=1 Zs

√
nps = 0) to

−1
2

k

s=1

Z2
s +

1− k
2

ln(2πn)− 1
2

ln(p1 . . . pk) +O

1√
n

.

15. The corresponding Jacobian determinant is easily evaluated by (i) removing the
factor rn−1 from the determinant, (ii) expanding the resulting determinant by the co-
factors of the row containing “cos θ1 − sin θ1 0 . . . 0Ť (each of the cofactor determinants
may be evaluated by induction), and (iii) recalling that sin2 θ1 + cos2 θ1 = 1.

16.

 z
√

2x+y

0

exp

−u
2

2x
+ · · ·

du = ye−z2

+ O

1√
x

+
 z

√
2x

0

exp

−u
2

2x
+ · · ·

du.

The latter integral is

 z
√

2x

0

e−u2/2x du+
1

3x2

 z
√

2x

0

e−u2/2xu3 du+O

1√
x

.

When all is put together, the Ąnal result is

γ(x+ 1, x+ z
√

2x+ y)
Γ (x+ 1)

=
1√
2π

 z
√

2

−∞
e−u2/2 du+

e−z2

√
2πx

(y − 2
3
− 2

3
z2) +O

 1
x

.

If we set z
√

2 = xp and write

1√
2π

 z
√

2

−∞
e−u2/2 du = p, x+ 1 =

ν

2
, γ

ν

2
,
t

2

Γ

ν

2

= p,

where t/2 = x + z
√

2x + y, we can solve for y to obtain y = 2
3
(1 + z2) + O(1/

√
x),

which is consistent with the analysis above. The solution is therefore t = ν + 2
√
νz +

4
3
z2 − 2

3
+O(1/

√
ν).

17. (a) Change of variable, xj ← xj + t.
(b) Induction on n; by deĄnition, Pn0(x− t) =

 x

n

P(n−1)0(xn − t) dxn.

(c) The left-hand side is
 x+t

n

dxn . . .

 xk+2

k+1

dxk+1 times
 k

t

dxk

 xk

t

dxk−1 . . .

 x2

t

dx1.

(d) From (b) and (c) we have Pnk(x) =
k

r=0

(r − t)r

r!
(x+ t− r)n−r−1

(n− r)! (x+ t− n).

The numerator in (24) is Pn⌊t⌋(n).

18. We may assume that F (x) = x for 0 ≤ x ≤ 1, as remarked in the text’s derivation
of (24). If 0 ≤ X1 ≤ · · · ≤ Xn ≤ 1, let Zj = 1 − Xn+1−j . We have 0 ≤ Z1 ≤ · · · ≤
Zn ≤ 1; and K+

n evaluated for X1, . . . , Xn equals K−
n evaluated for Z1, . . . , Zn. This

symmetrical relation gives a one-to-one correspondence between sets of equal volume
for which K+

n and K−
n fall in a given range.

20. For example, the term O(1/n) is−(4
9
s4− 2

3
s2)/n+O(n−3/2). A complete expansion

has been obtained by H. A. Lauwerier, Zeitschrift für Wahrscheinlichkeitstheorie und
verwandte Gebiete 2 (1963), 61Ű68.

562 ANSWERS TO EXERCISES 3.3.1

23. Let m be any number ≥ n. (a) If ⌊mF (Xi)⌋ = ⌊mF (Xj)⌋ and i > j, then
i/n − F (Xi) > j/n − F (Xj). (b) Start with ak = 1.0, bk = 0.0, and ck = 0 for
0 ≤ k < m. Then do the following for each observation Xj : Set Y ← F (Xj), k ←
⌊mY ⌋, ak ← min(ak, Y), bk ← max(bk, Y), ck ← ck + 1. (Assume that F (Xj) < 1 so
that k < m.) Then set j ← 0, r+ ← r− ← 0, and for k = 0, 1, . . . , m − 1 (in this
order) do the following whenever ck > 0: Set r− ← max(r−, ak − j/n), j ← j + ck,
r+ ← max(r+, j/n − bk). Finally set K+

n ←
√
n r+, K−

n ←
√
n r−. The time required

is O(m+n), and the precise value of n need not be known in advance. (If the estimate
(k + 1

2
)/m is used for ak and bk, so that only the values ck are actually computed for

each k, we obtain estimates of K+
n and K−

n good to within 1
2

√
n/m, even when m < n.)

[ACM Trans. Math. Software 3 (1977), 60Ű64.]

25. (a) Since cij = E(
n

k=1 aikXk

n
l=1 ajlXl) =

n
k=1 aikajk, we have C = AAT.

(b) Consider the singular value decomposition A = UDV T, where U and V are
orthogonal of sizes m × m and n × n, and D is m × n with entries dij = [i= j]σj ;
the singular values σj are all positive. [See, for example, Golub and Van Loan, Matrix
Computations (1996), §2.5.3.] If CCC = C we have SBS = S, where S = DDT

and B = UTCU . Thus sij = [i= j]σ2
j , where we let σn+1 = · · · = σm = 0, and

sij =

k,l sikbklslj = σ2
i σ

2
j bij . Consequently bij = [i= j]/σ2

j if i, j ≤ n, and we deduce
that DTBD is the n× n identity matrix. Let Y = (Y1 − µ1, . . . , Ym − µm)T and X =
(X1, . . . , Xn)T; it follows that W = Y TCY = XTATCAX = XTV DTBDV TX = XTX.

SECTION 3.3.2

1. The observations for a chi-square test must be independent. In the second se-
quence, successive observations are manifestly dependent, since the second component
of one equals the Ąrst component of the next.

2. Form t-tuples (Yjt, . . . , Yjt+t−1), for 0 ≤ j < n, and count how many of them are
equal to each possible value. Apply the chi-square test with k = dt and with probability
1/dt in each category. The number of observations, n, should be at least 5dt.

3. The probability that exactly j values are examined, namely the probability that
Uj−1 is the nth element that lies in the range α ≤ Uj−1 < β, is easily seen to be

j − 1
n− 1

pn(1− p)j−n,

by enumeration of the possible places in which the other n− 1 occurrences can appear
and by evaluation of the probability of such a pattern. The generating function is
G(z) = (pz/(1 − (1 − p)z))n, which makes sense since the given distribution is the
n-fold convolution of the same thing for n = 1. Hence the mean and variance are
proportional to n; the number of U ’s to be examined is now easily found to have the
characteristics (min n, ave n/p, max∞, dev

n(1− p)/p). A more detailed discussion

of this probability distribution when n = 1 may be found in the answer to exercise
3.4.1Ű17; see also the considerably more general results of exercise 2.3.4.2Ű26.

4. The probability of a gap of length ≥ r is the probability that r consecutive U ’s lie
outside the given range, namely (1− p)r. The probability of a gap of length exactly r
is the probability for length ≥ r minus the probability for length ≥ (r + 1).

5. As N goes to inĄnity, so does n (with probability 1), hence this test is just the
same as the gap test described in the text except for the length of the very last gap.
And the text’s gap test certainly is asymptotic to the chi-square distribution stated,

3.3.2 ANSWERS TO EXERCISES 563

since the length of each gap is independent of the length of the others. [Notes: A quite
complicated proof of this result by E. BoĄnger and V. J. BoĄnger appears in Annals
Math. Stat. 32 (1961), 524Ű534. Their paper is noteworthy because it discusses several
interesting variations of the gap test; they show, for example, that the quantity

0≤r≤t

(Yr − (Np)pr)2

(Np)pr

does not approach a chi-square distribution, although others had suggested this statistic
as a “strongerŤ test because Np is the expected value of n.]

7. 5, 3, 5, 6, 5, 5, 4.

8. See exercise 10, with w = d.

9. (Change d to w in steps C1 and C4.) We have

pr =
d(d− 1) . . . (d− w + 1)

dr

r − 1
w − 1

, for w ≤ r < t;

pt = 1− d!
dt−1

1
0!

t− 1
d

+ · · ·+ 1
(d− w)!

t− 1
w

.

10. As in exercise 3, we really need consider only the case n = 1. The generating
function for the probability that a coupon set has length r is

G(z) =
d!

(d− w)!

r>0

r − 1
w − 1

z
d

r

= zw

d− 1
d− z

. . .

d− w + 1
d− (w − 1)z

by the previous exercise and Eq. 1.2.9Ű(28). The mean and variance are readily
computed using Theorem 1.2.10A and exercise 3.4.1Ű17. We Ąnd that

mean(G) = w +

d

d− 1
− 1

+ · · ·+

d

d− w + 1
− 1

= d(Hd −Hd−w) = µ;

var(G) = d2(H(2)
d −H(2)

d−w)− d(Hd −Hd−w) = σ2.

The number of U ’s examined, as the search for a coupon set is repeated n times,
therefore has the characteristics (min wn, ave µn, max ∞, dev σ

√
n).

11. 1 2 9 8 5 3 6 7 0 4 .

12. Algorithm R (Data for run test).

R1. [Initialize.] Set j ← −1, and set COUNT[1]← COUNT[2]← · · · ← COUNT[6]← 0.
Also set Un ← Un−1, for convenience in terminating the algorithm.

R2. [Set r zero.] Set r ← 0.

R3. [Is Uj < Uj+1?] Increase r and j by 1. If Uj < Uj+1, repeat this step.

R4. [Record the length.] If r ≥ 6, increase COUNT[6] by one, otherwise increase
COUNT[r] by one.

R5. [Done?] If j < n− 1, return to step R2.

13. There are (p+ q+ 1)

p+q
p

ways to have Ui−1

>
< Ui < · · · < Ui+p−1

>
< Ui+p < · · · <

Ui+p+q−1; subtract

p+q+1
p+1

for those ways in which Ui−1 < Ui, and subtract

p+q+1

1

for those in which Ui+p−1 < Ui+p; then add in 1 for the case that both Ui−1 < Ui and
Ui+p−1 < Ui+p, since this case has been subtracted out twice. (This is a special case
of the inclusion-exclusion principle, which is explained further in Section 1.3.3.)

564 ANSWERS TO EXERCISES 3.3.2

14. A run of length r occurs with probability 1/r!− 1/(r+ 1)!, assuming distinct U ’s.
Therefore we use pr = 1/r!− 1/(r + 1)! for r < t and pt = 1/t! for runs of length ≥ t.
15. This is always true of F (X) when F is continuous and X has distribution F ; see
the remarks following Eq. 3.3.1Ű(23).

16. (a) Zjt = max(Zj(t−1), Z(j+1)(t−1)). If the Zj(t−1) are stored in memory, it is
therefore a simple matter to transform this array into the set of Zjt with no auxiliary
storage required. (b) With his “improvement,Ť each of the V ’s should indeed have the
stated distribution, but the observations are no longer independent. In fact, when Uj

is a relatively large value, all of Zjt, Z(j−1)t, . . . , Z(j−t+1)t will be equal to Uj ; so we
almost have the effect of repeating the same data t times (and that would multiply V
by t, as in exercise 3.3.1Ű10).

17. (b) By Binet’s identity, the difference is

0≤k<j<n(U ′
kV

′
j − U ′

jV
′

k)2, and this is
certainly nonnegative. (c) Therefore if D2 = N2, we must have U ′

kV
′

j − U ′
jV

′
k = 0, for

all pairs j, k. This means that the matrix

U ′

0 U ′
1 . . . U ′

n−1

V ′
0 V ′

1 . . . V ′
n−1

has rank < 2, so its rows are linearly dependent. (A more elementary proof can be
given, using the fact that U ′

0V
′

j − U ′
jV

′
0 = 0 for 1 ≤ j < n implies the existence of

constants α, β such that αU ′
j +βV ′

j = 0 for all j, provided that U ′
0 and V ′

0 are not both
zero; the latter case can be avoided by a suitable renumbering.)

18. (a) The numerator is −(U0 − U1)2, the denominator is (U0 − U1)2. (b) The nu-
merator in this case is −(U2

0 + U2
1 + U2

2 − U0U1 − U1U2 − U2U0); the denominator
is 2(U2

0 + · · · − U2U0). (c) The denominator always equals

0≤j<k<n(Uj − Uk)2, by
exercise 1.2.3Ű30 or 1.2.3Ű31.

19. The stated result holds, in fact, whenever the joint distribution of U0, . . . , Un−1

is symmetrical (unchanged under permutations). Let S1 = U0 + · · · + Un−1, S2 =
U2

0 + · · · + U2
n−1, X = U0U1 + · · · + Un−2Un−1 + Un−1U0, and D = nS2 − S2

1 . Also
let E f(U0, . . . , Un−1) denote the expected value of f(U0, . . . , Un−1) subject to the
condition D ̸= 0. Since D is a symmetric function, we have E f(U0, . . . , Un−1) =
E f(Up(0), . . . , Up(n−1)) for all permutations p of {0, . . . , n − 1}. Therefore ES2/D =
nEU2

0 /D, ES2
1/D = n(n − 1) E(U0U1/D) + nEU2

0 /D, and EX/D = nE(U0U1/D).
It follows that 1 = E (nS2 − S2

1)/D = −(n − 1) E (nX − S2
1)/D. (Strictly speaking,

ES2/D and ES2
1/D might be inĄnite, so we should be careful to work only with linear

combinations of expected values that are known to exist.)

20. Let E1111, E211, E22, E31, and E4 denote the respective values E(U0U1U2U3/D
2),

E(U2
0U1U2/D

2), E(U2
0U

2
1 /D

2), E(U3
0U1/D

2), E(U4
0 /D

2). Then we have ES2
2/D

2 =
n(n−1)E22+nE4, E(S2S

2
1/D

2) = n(n−1)(n−2)E211+n(n−1)E22+2n(n−1)E31+nE4,
ES4

1/D
2 = n(n − 1)(n − 2)(n − 3)E1111 + 6n(n − 1)(n − 2)E211 + 3n(n − 1)E22 +

4n(n − 1)E31 + nE4, EX2/D2 = n(n − 3)E1111 + 2nE211 + nE22, E(XS2
1/D

2) =
n(n− 2)(n− 3)E1111 + 5n(n − 2)E211 + 2nE22 + 2nE31, E((U0 − U1)4/D2) = 6E22 −
8E31 + 2E4, and the Ąrst result follows.

Let δ = α((lnn)/n)1/3, M = α3/2 + 1/3, and m = ⌈1/δ⌉. If we divide the
range of the distribution into m equiprobable parts, we can show that each part will
contain between nδ(1 − δ) and nδ(1 + δ) points, with probability ≥ 1 − O(n−M),
using the tail inequalities 1.2.10Ű(24) and (25). Hence, if the distribution is uniform,
D = 1

12
n2(1 + O(δ)) with at least this probability. If D is not in that range, we have

3.3.2 ANSWERS TO EXERCISES 565

0 ≤ (U0 − U1)4/D2 ≤ 1. Since E((U0 − U1)4) =
 1

0

 1

0
(x − y)4 dx dy = 1

15
, we may

conclude that E((U0 − U1)4/D2) = 48
5
n−4(1 +O(δ)) +O(n−M).

Note: Let N be the numerator of (23). When the variables all have the normal
distribution, W. J. Dixon proved that the expected value of e(wN+zD)/n is

(1− 2z − 2w)1/2(1− 2z +

(1− 2z)2 − 4w2)−n/2 +O(wn).

Differentiating with respect to w and integrating with respect to z, he found the
moments E(N/D)2k−1 = (− 1

2
)k/(n− 1

2
)k, E(N/D)2k = (+ 1

2
)k/(n+ 1

2
)k, when n > 2k.

In particular, the variance in this case is exactly 1/(n + 1) − 1/(n − 1)2. [Annals of
Math. Stat. 15 (1944), 119Ű144.]

21. The successive values of cr−1 = s− 1 in step P2 are 2, 3, 7, 6, 4, 2, 2, 1, 0; hence
f = 886862.

22. 1024 = 6! + 2 · 5! + 2 · 4! + 2 · 3! + 2 · 2! + 0 · 1!, so we want the successive values
of s − 1 in step P2 to be 0, 0, 0, 1, 2, 2, 2, 2, 0; working backwards, the permutation
is (9, 6, 5, 2, 3, 4, 0, 1, 7, 8).

23. Let P ′(x1, . . . , xt) = 1
λ′

λ′−1
n=0 [(Y ′

n, . . . , Y
′

n+t−1) = (x1, . . . , xt)]. Then we have

Q(x1, . . . , xt) =

(y1,...,yt)

P ′(y1, . . . , yt)P ((x1 − y1) mod d, . . . , (xt − yt) mod d) ;

more compactly, Q(x) =

y P
′(y)P (x − y). Hence, using the general inequality

(EX)2 ≤ EX2, we have

x(Q(x) − d−t)2 =

x(

y P
′(y)(P (x− y)− d−t))2 ≤

x

y P

′(y)(P (x − y) − d−t)2 =

y P
′(y)

x(P (x) − d−t)2 =

x(P (x) − d−t)2.

[See G. Marsaglia, Comp. Sci. and Statistics: Symp. on the Interface 16 (1984), 5Ű6.
The result is of interest only when dt ≤ 2λ, since each P (x) is a multiple of 1/λ.]

24. Write k : α and α : k for the Ąrst k and last k elements of string α. Let K(α, β) =
[α=β]/P (α), and let C be the dt×dt matrix with entries c̄αβ = K(α, β)−K(t−1 : α,
t − 1 : β). Let C be the covariance matrix of the random variables N(α) for |α| = t,
divided by n. These variables are subject to the constraint

d−1
a=0 N(αa) =

d−1
a=0 N(aα)

for each of dt−1 strings α, and we also have

|α|=t N(α) = n; but all other linear
constraints are derivable from these (see Theorem 2.3.4.2G). Therefore C has rank
dt − dt−1, and by exercise 3.3.1Ű25 we need only show that CCC = C.

It is not difficult to verify that cαβ = P (αβ)

|k|<t Tk(α, β), where Tk(α, β) is a
term corresponding to the overlap that might occur when we superimpose β on α and
slide it k positions to the right:

Tk(α, β) =

K(t+ k : α, β : t+ k)− 1, if k ≤ 0;
K(α : t− k, t− k : β)− 1, if k ≥ 0.

For example, if d = 2, t = 5, α = 01101, and β = 10101, we have cαβ = P (0)4P (1)6×
(P (01)−1 + P (101)−1 + P (1)−1 − 9). Entry αβ of CCC is therefore P (αβ) times

|γ|=t−1

d−1

a,b=0

P (γab)

|k|<t

|l|<t

Tk(α, γa)(K(a, b)− 1)Tl(γb, β) .

Given k and l, the product Tk(α, γa)(K(a, b)−1)Tl(γb, β) expands to eight terms, each
of which usually sums to ±1 when multiplied by P (γab) and summed over all γab. For
example, the sum of P (γab)K(2 : α, γa : 2)K(a, b)K(3 : γb, β : 3), when α = a1 . . . at,

566 ANSWERS TO EXERCISES 3.3.2

β = b1 . . . bt, γ = c1 . . . ct−1, and t ≥ 5, is the sum of P (c4 . . . ct−2), which is 1. If t = 4,
the same sum would be K(a1, b4), but it would cancel with the sum of P (γab)K(2 : α,
γa : 2)(−1)K(3 : γb, β : 3). The net result is therefore 0 unless k ≤ 0 ≤ l; otherwise it
turns out to be K(i : (α : i− k), i : (β : i+ l))−K(i− 1 : (α : i− k), i− 1 : (β : i+ l)),
where i = min(t+ k, t− l). The sum over k and l telescopes to cαβ .

25. Empirical tests show, in fact, that when (22) is generalized to arbitrary t the ratios
of corresponding elements of C−1

1 and C−1
1 C2C

−1
1 are very nearly −t, when t ≥ 5. For

example, when t = 6 they all lie between −6.039 and −6.111; when t = 20 they all lie
between −20.039 and −20.045. This phenomenon demands an explanation.

26. (a) The vectors (S1, . . . , Sn) are uniformly distributed points in the (n − 1)-
dimensional polyhedron deĄned by the inequalities S1 ≥ 0, . . . , Sn ≥ 0 in the hyper-
plane S1 + · · ·+ Sn = 1. An easy induction proves that

 ∞

s1

dt1

 ∞

s2

dt2 · · ·
 ∞

sn−1

dtn−1 [1− t1 − · · · − tn−1≥ sn] =
(1− s1 − s2 − · · · − sn)n−1

+

(n− 1)!
.

To get the probability, divide this integral by its value in the special case s1 = · · · =
sn = 0. [Bruno de Finetti, Giornale Istituto Italiano degli Attuari 27 (1964), 151Ű173.]

(b) The probability that S(1) ≥ s is the probability that S1 ≥ s, . . . , Sn ≥ s.
(c) The probability that S(k) ≥ s is the probability that at most k − 1 of the

Sj are < s; hence 1 − Fk(s) = G1(s) + · · · + Gk−1(s), where Gj(s) is the probability
that exactly j spacings are < s. By symmetry, Gj(s) is

n
j

times the probability that

S1 < s, . . . , Sj < s, Sj+1 ≥ s, . . . , Sn ≥ s; and the latter is Pr(S1 < s, . . . , Sj−1 < s,
Sj ≥ 0, Sj+1 ≥ s, . . . , Sn ≥ s)−Pr(S1 < s, . . . , Sj−1 < s, Sj ≥ s, . . . , Sn ≥ s). Repeated
application of (a) shows that Gj(s) =

n
j

l

j
l

(−1)j−l(1− (n− l)s)n−1

+ ; hence

1− Fk(s) =

l

n

l

n− l − 1
k − l − 1

(−1)k−l−1(1− (n− l)s)n−1

+ .

In particular, the largest spacing S(n) has distribution

Fn(s) = 1−

l

n

l

n−l−1
n−l−1

(−1)n−l−1(1− (n− l)s)n−1

+ =

l

n

l

(−1)l(1− ls)n−1
+ .

[Incidentally, the similar quantity xn−1(n − 1)!−1Fn(x−1) turns out to be the density

function for the sum U1 + · · ·+ Un of uniform deviates.]
(d) From the formulas E sr = r

 1

0
(1 − F (s))sr−1 ds and

 1

0
sr(1 − ks)n−1

+ ds =
k−r−1n−1

n+r

r

−1, we Ąnd ES(k) = n−1(Hn−Hn−k) and, with a bit of algebra, ES2
(k) =

n−1(n + 1)−1(H(2)
n − H(2)

n−k + (Hn − Hn−k)2). Thus the variance of S(k) is equal to

n−1(n+ 1)−1(H(2)
n −H(2)

n−k − (Hn −Hn−k)2/n).
[The distributions Fk(s) were Ąrst found by W. A. Whitworth, in problem 667 of

DCC Exercises in Choice and Chance (Cambridge, 1897). Whitworth also discovered
an elegant way to compute the expected value of any polynomial in the functions
Gk(s) = Fk(s)− Fk+1(s); this was published in a booklet entitled The Expectation of
Parts (Cambridge, 1898), and incorporated into the Ąfth edition of Choice and Chance
(1901). SimpliĄed expressions for the mean and variance and for a variety of more
general spacing statistics were found by Barton and David, J. Royal Stat. Soc. B18

(1956), 79Ű94. See R. Pyke, J. Royal Stat. Soc. B27 (1965), 395Ű449, for a survey of

3.3.2 ANSWERS TO EXERCISES 567

the ways in which statisticians have traditionally analyzed spacings as clues to potential
biases in data.]

27. Consider the polyhedron in the hyperplane S1 + · · · + Sn = 1 deĄned by the
inequalities S1 ≥ 0, . . . , Sn ≥ 0. This polyhedron consists of n! congruent subpolyhedra
deĄned by the ordering of the S’s (assuming that the S’s are distinct), and the operation
of sorting is an n!-to-1 folding of the large polyhedron to the subpolyhedron in which
S1 ≤ · · · ≤ Sn. The transformation that takes (S(1), . . . , S(n)) to (S′

1, . . . , S
′
n) is

a 1-to-1 mapping that expands differential volumes by the factor n!. It takes the
vertices (1

n
, . . . , 1

n
), (0, 1

n−1
, . . . , 1

n−1
), . . . , (0, . . . , 0, 1) of the subpolyhedron into the

respective vertices (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1), linearly stretching and
distorting the overall shape in the process. (The Euclidean distance between vertices
(0, . . . , 0, 1

j
, . . . , 1

j
) and (0, . . . , 0, 1

k
, . . . , 1

k
) in the subpolyhedron is |j−1 − k−1|1/2; the

transformation produces a regular simplex in which all n vertices are
√

2 apart.)

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

x < z

x > z y > z

y < z

x > y x < y

55

54

53

52

5150

45

44

43

42

41 40

35

34

33

32

31

30

25

24

23

22

21

20

15

14

13

12

11

10

05

04

03

02

01

00

The behavior of iterated spacings
is easiest to understand if we examine
the details graphically when n = 3.
In this case the polyhedron is simply
an equilateral triangle, whose points
are represented with barycentric coor-
dinates (x, y, z), x + y + z = 1. The
accompanying diagram illustrates the
Ąrst two levels of a recursive decom-
position of this triangle. Each of the
62 subtriangles has been labeled with
a two-digit code pq, where p repre-
sents the applicable permutation when
(x, y, z) = (S1, S2, S3) is sorted into
(S(1), S(2), S(3)), and q represents the
permutation in the next stage when S′

1,
S′

2, and S′
3 are sorted, according to the following code:

0 : x<y<z, 1: x<z<y, 2: y<x<z, 3: y<z<x, 4: z<x<y, 5: z<y<x.

For example, the points of subtriangle 34 have S2 < S3 < S1 and S′
3 < S′

1 < S′
2.

We can continue this process to inĄnitely many levels; all points of the triangle with
irrational barycentric coordinates thereby acquire a unique representation as an inĄnite
radix-6 expansion. A tetrahedron can be subdivided similarly into 24, 242, 243, . . .
subtetrahedra, and in general this procedure constructs a radix-n! expansion for the
points of any (n− 1)-dimensional simplex.

When n = 2 the process is especially simple: If x /∈ {0, 1
2
, 1}, the transforma-

tion takes spacings (x, 1 − x) = (x, y) into either (2xmod 1, 2y mod 1) or (2y mod 1,
2xmod 1), depending on whether x < y or x > y. Repeated tests therefore essentially
shift the binary representation left one bit, possibly complementing the result. After at
most e+1 iterations on e-bit numbers the process must converge to the Ąxed point (0, 1).
Permutation coding in the case n = 2 corresponds simply to folding and stretching a
line; the Ąrst four levels of subdivision have the following four-bit codes:

(0, 1) (1, 0)
0000 0001 0011 0010 0110 0111 0101 0100 1100 1101 1111 1110 1010 1011 1001 1000

568 ANSWERS TO EXERCISES 3.3.2

This sequence is exactly the Gray binary code studied in Section 7.2.1. In general, the
radix-n! permutation code for an n-simplex has the property that adjacent regions have
identical codes except in one digit position. Each iteration of the spacing transformation
shifts off the leftmost digit of the representation of each point. Note that equal birthday
spacings are points near the boundary of the Ąrst-level decomposition.

This fundamental transformation from (S1, . . . , Sn) to (S′
1, . . . , S

′
n) is implicit in

Whitworth’s proof of Proposition LVI in the Ąfth edition of Choice and Chance (see
the reference in answer 26). It was Ąrst studied explicitly by J. Durbin [Biometrika
48 (1961), 41Ű55], who was inspired by a similar construction of P. V. Sukhatme
[Annals of Eugenics 8 (1937), 52Ű56]. The permutation coding for iterated spacings
was introduced by H. E. Daniels [Biometrika 49 (1962), 139Ű149].

28. (a) The number of partitions of m into n distinct positive parts is pn(m−

n+1
2

),

by exercise 5.1.1Ű16. These partitions can be permuted in n! ways to yield n-tuples
(y1, . . . , yn) with 0 = y1 < y2 < · · · < yn < m; and each of these n-tuples leads to
(n−1)! n-tuples that have y1 = 0 and 0 < y2, . . . , yn < m. Now add a constant mod m
to each yj ; this preserves the spacings. Hence bn00(m) = mn! (n− 1)!pn(m−

n+1

2

).

(b) Zero spacings correspond to balls in the same urn, and they contribute s− 1
to the count of equal spacings. Therefore bnrs(m) =

n

n−s

b(n−s)(r+1−s)0(m).

(c) Since

n
n−1

=

n
2

, the probability is

n! (n− 1)!m1−n

pn

m−

n+ 1

2

− 1
2
pn−1

m−

n

2

.

29. By the previous answer and exercise 5.1.1Ű15 we have bn0(z) = n! (n− 1)! z(n+1
2)/

(1− z) . . . (1 − zn). When r = 1, the n! in our previous derivation becomes n!/2, and
the number of solutions to 0 < s1 < · · · < sk ≤ sk+1 < · · · < sn with s1 + · · ·+ sn = m
is the number of solutions to 0 ≤ s1 − 1 ≤ · · · ≤ sk − k ≤ sk+1 − k ≤ · · · ≤ sn − n+ 1
with (s1 − 1) + · · ·+ (sk − k) + (sk+1 − k) + · · ·+ (sn − n+ 1) = m−

n
2

− k. Hence

bn1(z) = 1
2
n! (n−1)!

n
k=1(zk− zn) z(n2)/(1− z) . . . (1− zn). A similar argument shows

that

bn2(z)
n! (n−1)!

=

1

2!2!

1≤j<k<n

(zj−zn)(zk−zn−1)+
1
3!

1≤k<n

(zk−zn)(zk−zn−1)

× z(n−1
2)

(1−z) . . . (1−zn)
.

We can obtain bnr(z) for general r from the formula

r bnr(z)wr

n! (n− 1)! zn
=

0≤b1,...,bn−1≤1

(z − b1z
n) . . . (zn−1 − bn−1z

n)
c1 . . . cn−1(1− z) . . . (1− zn)

w

zn−1

b1

. . .

w

z1

bn−1

where ck = 1 + bk + bkbk−1 + · · ·+ bk . . . b2b1 = 1 + bkck−1. (The special case w = 1 is
interesting because the left side sums to (1− z)−n/n! in that case.)

30. This is a good problem for the saddle point method [N. G. de Bruijn, Asymp-
totic Methods in Analysis (North-Holland, 1961), Chapter 5]. We have pn(m) =

1
2πi

ef(z) dz

z
, where f(z) = −m ln z −n

k=1 ln(1− zk). Let ρ = n/m and δ =
√
n/m;

integrating on the path z = e−ρ+itδ gives pn(m) = δ
2π

 π/δ

−π/δ
exp(f(e−ρ+itδ)) dt. It is

3.3.2 ANSWERS TO EXERCISES 569

convenient to use the identity

g(set) =
n

j=0

tj

j!
ϑjg(s) +

 t

0

un

n!
ϑn+1g(set−u) du ,

where g = g(z) is any analytic function and ϑ is the operator z d
dz

. When the function
ϑjg is evaluated at ez the result is the same as when g(ez) is differentiated j times with
respect to z. This principle leads to the formula

ϑjf(e−ρ) = −m[j= 1] +
j!n
ρj

+ (−1)j
n

k=1

l≥j

ljBl

l · l! k
lρl−j ,

because of another handy identity,

ln
1− e−z

z

=

n≥1

Bnz
n

n · n!
.

Therefore we obtain an asymptotic expansion of the integrand,

exp f(e−ρ+itδ) = exp

j≥0

ijδjtj

j!
ϑjf(e−ρ)

= e−t2/2+f(e−ρ) exp(ic1t−c2t
2− ic3t

3+ · · ·),

where c1 = (n(n+1)
2

B1 + n(n+1/2)(n+1)
6

B2ρ)δ + O(n−3), etc.; and it turns out that
cj = O(n−3) for j ≥ 3. Factoring out the constant term

δ

2π
ef(e−ρ) =

δ

2π n! ρne−mρ
exp

−
n

k=1

l≥1

Bl

l · l!k
lρl

=
√
nmn−1en+α/4

2π n!nn

1 +

18α− α2

72n
+

108α2 − 36α3 + α4

10368n2
+O(n−3)

leaves us with an integral whose integrand is exponentially small when |t| ≥ nϵ. We can
ignore larger values of t, because partial fraction expansion shows that the integrand
is O((m/n)n/2); none of the other roots of unity occurs more than n/2 times as a
pole of the denominator. Hence we are allowed to “trade tailsŤ [CMath, §9.4] and
integrate over all t. The formulas

∞
−∞ e−t2/2tj dt = (j − 1)(j − 3) . . . (1)

√
2π [j even]

and n! = (n/e)n
√

2πn exp(1
12
n−1 +O(n−3)) suffice to complete the evaluation.

With qn(m) = pn(m −

n+1
2

) in place of pn(m) the calculation proceeds in the

same way but with c1 increased by 1
2
α(n1/2 − n−1/2) and with the additional factor

exp(−ρ

n+1
2

). We get

qn(m) =
mn−1e−α/4

n! (n− 1)!

1− 13α2

288n
+

169α4 − 2016α3 − 1728α2 + 41472α
165888n2

+O(n−3)

;

this matches the formula for pn(m) except that α has been changed to −α. (In fact,
if we deĄne pn(m) = rn(2m +

n+1

2

) and qn(m) = rn(2m −

n+1

2

), the generating

function Rn(z) =

m rn(zm) =
n

k=1(z−k − zk)−1 satisĄes Rn(1/z) = (−1)nRn(z).
This implies a duality formula rn(−m) = (−1)n−1rn(m), in the sense that this equation
is identically true when we express rn(m) as a polynomial in m and roots of unity.
Therefore we may say that qn(m) = pn(−m). A general treatment of such duality
can be found in G. Pólya, Math. Zeitschrift 29 (1928), 549Ű640, §44.) For further

570 ANSWERS TO EXERCISES 3.3.2

information see G. Szekeres, Quarterly J. Math. Oxford 2 (1951), 85Ű108; 4 (1953),
96Ű111.

The exact value of qn(m) when m = 225 and n = 512 is 7.08069 34695 90264
094 . . .× 101514; our approximation gives the estimate 7.080693501× 101514.

The probability that the birthday test Ąnds R = 0 spacings is bn00(m)/mn =
n! (n− 1)!m1−nqn(m) = e−α/4 + O(n−1), by exercise 28, because the contribution
from bn01(m) is ≈ α

2n
e−α/4 = O(n−1). Inserting the factor gn(z) =

n−1
k=1 (z−k − 1)

into the integrand for qn(m) has the effect of multiplying the result by α
2

+ O(n−1),
because gn(e−ρ+itδ) =

n
2

ρ + O(n3ρ2) + itO(n2δ) − 1

2
t2O(n3δ2) + · · · . Similarly, the

extra factor

1≤j<k<n(z−j − 1)(z−k − 1) essentially multiplies by 1
8
n4ρ2 = 1

8
α2, plus

O(n−1); other contributions to the probability that R = 2 are O(n−1). In this way
we Ąnd that the probability of r equal spacings is e−α/4(α/4)r/r! +O(n−1), a Poisson
distribution; more complicated terms arise if we carry the expansion out to O(n−2).

31. The 79 bits consist of 24 sets of three, {Yn, Yn+31, Yn+55}, {Yn+1, Yn+32, Yn+56},
. . . , {Yn+23, Yn+54, Yn+78}, plus 7 additional bits Yn+24, . . . , Yn+30. The latter bits are
equally likely to be 0 or 1, but in each group of three the probability is 1

4
that the bits

will be {0, 0, 0} and 3
4

that they will be {0, 1, 1}. Therefore the probability generating

function for the sum of bits is f(z) = (1+z
2

)7(1+3z2

4
)24, a polynomial of degree 55.

(Well, not quite; strictly speaking, it is (255f(z)− 1)/(255 − 1), because the all-0 case
is excluded.) The coefficients of 255f(z) are easily computed by machine, and we Ąnd
that the probability of more 1s than 0s is 18509401282464000/(255 − 1) ≈ 0.51374.

Notes: This exercise is based on the discovery by Vattulainen, Ala-Nissila, and
Kankaala [Physical Review Letters 73 (1994), 2513Ű2516] that a lagged Fibonacci
generator fails a more complicated two-dimensional random walk test. Notice that the
sequence Y2n, Y2n+2, . . . will fail the test too, because it satisĄes the same recurrence.
The bias toward 1s also carries over into the subsequence consisting of the even-
valued elements generated by Xn = (Xn−55 ± Xn−24) mod 2e; we tend to have more
occurrences of (. . . 10)2 than (. . . 00)2 in binary notation.

There’s nothing magic about the number 79 in this test; experiments show that a
signiĄcant bias towards a majority of 1s is present also in random walks of length 101 or
1001 or 10001. But a formal proof seems to be difficult. After 86 steps the generating
function is (1+3z2

4
)17(1+2z2+4z3+z4

8
)7; then we get the factors (1 + 2z2 + 5z3 + 5z4 +

10z5+8z6+z7)/32; then (1+2z2+7z3+7z4+15z5+25z6+29z7+28z8+13z9+z10)/128,
etc. The analysis becomes more and more complicated as the walks get longer.

Intuitively, the preponderance of 1s that arise in the Ąrst 79 steps ought to persist
as long as the subsequent numbers are reasonably balanced between 0 and 1. The
accompanying diagram shows the results of a much smaller case, the generator Yn =
(Yn−2 +Yn−11) mod 2, which is easy to analyze exhaustively. In this case random walks
of length 445 have a 64% chance of Ąnishing to the right of the starting point; this bias
disappears only when the length of the walk increases to half the period length (after
which, of course, 0s are more likely, although the full period does lack one 0).

0.3

0.4

0.5

0.6

0.7

m=0 256 512 768 1024 1280 1536 1792 2047

The probability that 1s outnumber 0s in random m-tuples when Yn = Yn−2 ⊕ Yn−11.

3.3.2 ANSWERS TO EXERCISES 571

Lüscher’s discarding technique can be used to avoid the bias toward 1s (see the
end of Section 3.2.2). For example, with lags 55 and 24, no deviation for randomness is
observed for random walks of length 1001 when the numbers are generated in batches
of 165, if only the Ąrst 55 numbers of each batch are used.

32. Not if, say, X and Y each take the values (−n,m) with the respective probabilities
(m/(m+n), n/(m+n)), where m < n < (1 +

√
2)m. [Suppose two competitors differ

by X after playing one round of golf. Then they are of equal strength based on their
mean scores, but one might be more likely to win a one-round tournament while the
other will more often win in two rounds. See T. M. Cover, Amer. Statistician 43 (1989),
277Ű278, for a discussion of similar phenomena.]

33. We essentially want [z(k+l−1)/2] (1+z
2

)k−2l(1+3z2

4
)l/(1 − z). Let m = k − 2l and

n = l; the desired coefficient is 1
2πi

eg(z) dz

z(1−z)
, where g(z) = m ln(1+z

2
)+n ln(1+3z2

4
)−

(m+3n−1
2

) ln z. It is convenient (and saddle-wise) to integrate along the path z = eϵu

where ϵ2 = 4/(m + 3n) and u = −1 + it for −∞ < t < ∞. We have g(eϵu) =
−ϵu/2+u2/2+c3ϵu

3 +c4ϵ
2u4 +· · · , where ck = ϵ2ϑkg(1)/k! = O(1). Also 1/(1− eϵu) =

−1
ϵu

+ 1
2
− B2ϵu/2! − · · · . Multiplying out the integrand and using the facts that

1
2πi

 1+i∞
1−i∞ eu2/2 du

u
= 1

2
and 1

2πi

 a+i∞
a−i∞ eu2/2u2k du = (−1)k(2k − 1)(2k − 3) . . . (1)

√
2π

yields the asymptotic formula 1
2

+ (2π)−1/2n(m + 3n)−3/2 + O((m + 3n)−3/2). If
m + 3n is even, the same asymptotic formula holds, provided that we give half of the
coefficient of z(m+3n)/2 to the 1s and half to the 0s. (This coefficient is (2

π(m+3n)
)1/2 +

O((m−3n)−3/2).)
34. The number of strings of length n that exclude a given two-letter substring or pair
of substrings is the coefficient of zn in an appropriate generating function, and it can
be written cenτmn +O(1) where c and τ have series expansions in powers of ϵ = 1/m:

Case Excluded Generating function c τ

1 aa (1+z)/p(z) 1+ϵ2−2ϵ3+ · · · −ϵ2+ϵ3− 5
2
ϵ4+ · · ·

2 ab 1/(1−mz+z2) 1+ϵ2+3ϵ4+ · · · −ϵ2− 3
2
ϵ4+ · · ·

3 aa, bb (1+z)/(p(z)+z2) 1+2ϵ2−4ϵ3+ · · · −2ϵ2+2ϵ3−8ϵ4+ · · ·
4 aa, bc (1+z)/(p(z)+z2+z3) 1+2ϵ2−2ϵ3+ · · · −2ϵ2+ϵ3−7ϵ4+ · · ·
5 ab, bc (1+z)/(1−mz+2z2−z3) 1+2ϵ2−2ϵ3+ · · · −2ϵ2+ϵ3−6ϵ4+ · · ·
6 ab, cd 1/(1−mz+2z2) 1+2ϵ2+12ϵ4+ · · · −2ϵ2−6ϵ4+ · · ·

(Here a, b, c, d denote distinct letters and p(z) = 1− (m− 1)(z + z2). It turns out that
the effect of excluding {ab, ba} or {aa, ab} is equivalent to excluding {aa, bb}; excluding
{ab, ac} is equivalent to excluding {ab, cd}.) Let S (j)

n be the coefficient of zn in Case j
and let X be the total number of two-letter combinations that do not appear. Then
EX = (mS (1)

n +m2S
(2)
n)/mn and

EX2 = (mS (1)
n +m2(S (2)

n + 6S (3)
n) + 2m3(S (4)

n + S (5)
n + S (6)

n) +m4S (6)
n)/mn.

35. (a) ESm = N−1N−1
n=0

m−1
j=0 Zn+j = N−1m−1

j=0

N−1
n=0 Zn+j = m/N , because

N−1
n=0 Zn+j = 2k−1 − (2k−1 − 1) = 1.

(b) Let ξk = a1ξ
k−1 + · · · + ak, and deĄne the linear function f as in the

Ąrst solution to exercise 3.2.2Ű16. Then Yn = f(ξn), and it follows that Yn+i +
Yn+j = f(ξn+i) + f(ξn+j) ≡ f(ξn+i + ξn+j) = f(ξnα) (modulo 2), where α is
nonzero when i ̸≡ j (modulo N). Hence ES2

m = N−1m−1
i=0

m−1
j=0

N−1
n=0 Zn+iZn+j =

N−1(
m−1

i=0

N−1
n=0 Z

2
n+i − 2

0≤i<j<m

N−1
n=0 Zn) = m−m(m− 1)/N .

572 ANSWERS TO EXERCISES 3.3.2

(c) E
m−1

j=0 Zn+j =
m−1

j=0 EZn+j = 0 and E(
m−1

j=0 Zn+j)2 =
m−1

j=0 EZ2
n+j +

0≤i<j<m(EZn+i)(EZn+j) = m when each Zn is truly random. Thus the mean and

variance of Sm are very close to the correct values when m≪ N .
(d) ES3

m = N−1m−1
h=0

m−1
i=0

m−1
j=0

N−1
n=0 Zn+hZn+iZn+j . If any of h, i, or j

are equal, the sum on n is 1; hence

ES3
m =

1
N

m3 −m3 + 6

0≤h<i<j<m

N−1

n=0

Zn+hZn+iZn+j

.

Arguing as in (b), we Ąnd that the sum on n will be 1 if ξh +ξi +ξj ̸= 0; otherwise it will
be −N . Thus ES3

m = m3−6B(N+1)/N , where B =

0≤h<i<j<m[ξh + ξi + ξj = 0] =
0<i<j<m[1 + ξi + ξj = 0] (m− j). Finally observe that 1 + ξi = ξj in the Ąeld if and

only if f(ξi+l) = f(ξj+l) for 0 < l < k, assuming that 0 < i < j < N .
(e) The only nonzero term occurs for i = 31 and j = 55; hence B = 79− 55 = 24.

(The next nonzero term occurs when i = 62 and j = 110.) In a truly random situation,
ES3

m should be zero, so this value ES3
79 ≈ −144 is distinctly nonrandom. Curiously it

is negative, although exercise 31 showed that S79 is usually positive. The value of S79

tends to be more seriously negative when it does dip below zero.
Reference: IEEE Trans. IT-14 (1968), 569Ű576. Experiments by M. Matsumoto

and Y. Kurita [ACM Trans. Modeling and Comp. Simul. 2 (1992), 179Ű194; 4 (1994),
254Ű266] conĄrm that trinomial-based generators fail such distribution tests even when
the lags are quite large. See also ACM Trans. Modeling and Comp. Simul. 6 (1996),
99Ű106, where they exhibit exponentially long subsequences of low density.

SECTION 3.3.3

1. y((x/y)) + 1
2
y − 1

2
yδ(x/y).

2. ((x)) = −n≥1
1

nπ
sin 2πnx, which converges for all x. (The representation in

Eq. (24) may be considered a “ĄniteŤ Fourier series, for the case when x is rational.)

3. The sum is ((2nx))− ((x)). [See Trans. Amer. Math. Soc. 65 (1949), 401.]

4. dmax = 210 · 5. Note that we have Xn+1 < Xn with probability 1
2

+ ϵ, where

|ϵ| < d/(2 · 1010) ≤ 1/(2 · 59);

hence every potency-10 generator is respectable from the standpoint of Theorem P.

5. An intermediate result:

0≤x<m

x

m

s(x)
m

=
1
12
σ(a,m, c) +

m

4
− c

2m
− x′

2m
.

6. (a) Use induction and the formula

hj + c

k

−

hj + c− 1
k

=

1
k
− 1

2
δ

hj + c

k

− 1

2
δ

hj + c− 1

k

.

(b) Use the fact that −

h′j

k

= −

j

hk
− k

′j

h

=

k′j

h

− j

hk
+

1
2
δ

k′j

h

.

7. Take m = h, n = k, k = 2 in the second formula of exercise 1.2.4Ű45:

0<j<k

hj

k
−

hj

k

+
1
2

hj

k
−

hj

k

− 1
2

+2

0<j<h

kj

h
−

kj

h

+
1
2

j = kh(h−1).

3.3.3 ANSWERS TO EXERCISES 573

The sums on the left simplify, and by standard manipulations we get

h2k − hk − h

2
+
h2

6k
+

k

12
+

1
4
− h

6
σ(h, k, 0)− h

6
σ(k, h, 0) +

1
12
σ(1, k, 0) = h2k − hk.

Since σ(1, k, 0) = (k − 1)(k − 2)/k, this reduces to the reciprocity law.

8. See Duke Math. J. 21 (1954), 391Ű397.

9. Begin with the interesting identity
r−1

k=0⌊kp/r⌋⌊kq/r⌋ +
p−1

k=0⌊kq/p⌋⌊kr/p⌋ +q−1
k=0⌊kr/q⌋⌊kp/q⌋ = (p − 1)(q − 1)(r − 1), for which a simple geometric proof is

possible, assuming that p ⊥ q, q ⊥ r, and r ⊥ p. [U. Dieter, Abh. Math. Sem. Univ.
Hamburg 21 (1957), 109Ű125.]

10. Obviously σ(k − h, k, c) = −σ(h, k,−c), by (8). Replace j by k − j in deĄnition
(16), to deduce that σ(h, k, c) = σ(h, k,−c).

11. (a)

0≤j<dk

j

dk

hj+c

k

=

0≤i<d
0≤j<k

ik+j

dk

hj+c

k

; use (10) to sum on i.

(b)

hj + c+ θ

k

=

hj + c

k

+
θ

k
− 1

2
δ

hj + c

k

; now sum.

12. Since ((hj+c
k

)) runs through the same values as ((j
k
)) in some order, Cauchy’s

inequality implies that σ(h, k, c)2 ≤ σ(h, k, 0)2; and σ(1, k, 0) may be summed directly,
see exercise 7.

13. σ(h, k, c) +
3(k − 1)

k
=

12
k

0<j<k

ω−cj

(ω−hj − 1)(ωj − 1)
+

6
k

(cmod k)− 6

h′c

k

,

if hh′ ≡ 1 (modulo k).

14. (238−3 ·220 +5)/(270−1) ≈ 2−32. An extremely satisfactory global value, in spite
of the local nonrandomness!

15. Replace c2 where it appears in (19) by ⌊c⌋⌈c⌉.
16. The hinted identity is equivalent to m1 = prmr+1 + pr−1mr+2 for 1 ≤ r ≤ t; this
follows by induction. (See also exercise 4.5.3Ű32.) Now replace cj by

j≤r≤t brmr+1

and compare coefficients of bibj on both sides of the identity to be proved.
Note: For all exponents e ≥ 1, a similar argument gives

1≤j≤t

(−1)j+1 ce
j

mjmj+1
=

1
m1

1≤j≤t

(−1)j+1bj
ce

j − ce
j+1

cj − cj+1
pj−1.

17. During this algorithm we will have k = mj , h = mj+1, c = cj , p = pj−1, p′ = pj−2,
s = (−1)j+1 for j = 1, 2, . . . , t+ 1.

D1. [Initialize.] Set A← 0, B ← h, p← 1, p′ ← 0, s← 1.

D2. [Divide.] Set a ← ⌊k/h⌋, b ← ⌊c/h⌋, r ← cmod h. (Now a = aj , b = bj , and
r = cj+1.)

D3. [Accumulate.] Set A← A+ (a−6b)s, B ← B+ 6bp(c+ r)s. If r ̸= 0 or c = 0,
set A← A− 3s. If h = 1, set B ← B + ps. (This subtracts 3e(mj+1, cj) and
also takes care of the

(−1)j+1/mjmj+1 terms.)

D4. [Prepare for next iteration.] Set c ← r, s ← −s; set r ← k − ah, k ← h,
h← r; set r ← ap+ p′, p′ ← p, p← r. If h > 0, return to D2.

574 ANSWERS TO EXERCISES 3.3.3

At the conclusion of this algorithm, p will be equal to the original value k0 of k, so
the desired answer will be A+B/p. The Ąnal value of p′ will be h′ if s < 0, otherwise p′

will be k0−h′. It would be possible to maintain B in the range 0 ≤ B < k0, by making
appropriate adjustments to A, thereby requiring only single-precision operations (with
double-precision products and dividends) if k0 is a single-precision number.

18. A moment’s thought shows that the formula

S(h, k, c, z) =

0≤j<k(⌊j/k⌋ − ⌊(j − z)/k⌋) (((hj + c)/k))

is in fact valid for all z ≥ 0, not only when k ≥ z. Writing ⌊j/k⌋ − ⌊(j − z)/k⌋ =
z
k

+ ((j−z
k

))− ((j
k
)) + 1

2
δj0 − 1

2
δ(j−z

k
) and carrying out the sums yields

S(h, k, c, z) =
zd

k

c

d

+
1
12
σ(h, k, hz + c)− 1

12
σ(h, k, c) +

1
2

c

k

− 1
2

hz + c

k

,

where d = gcd(h, k). [This formula allows us to express the probability that Xn+1 <
Xn < α in terms of generalized Dedekind sums, given α.]

19. The desired probability is

m−1
m−1

x=0

x− α
m

−

x− β
m

s(x)− α′

m

−

s(x)− β′

m

= m−1
m−1

x=0

β − α
m

+

x− β
m

−

x− α
m

+
1
2
δ

x− α
m

− 1
2
δ

x− β
m

×

β′−α′

m
+

s(x)−β′

m

−

s(x)−α′

m

+
1
2
δ

s(x)−α′

m

− 1
2
δ

s(x)−β′

m

=
β − α
m

β′ − α′

m
+

1
12m

σ(a,m, c+ aα− α′)− σ(a,m, c+ aα− β′)

+ σ(a,m, c+ aβ − β′)− σ(a,m, c+ aβ − α′)

+ ϵ,

where |ϵ| ≤ 2.5/m.
[This approach is due to U. Dieter. The discrepancy between the true probability

and the ideal value β−α
m

β′−α′

m
is bounded by

t
j=1 aj/4m, according to Theorem K;

conversely, by choosing α, β, α′, β′ appropriately we will obtain a discrepancy of at least
half this bound when there are large partial quotients, using the fact that Theorem K
is “best possible.Ť Note that when a ≈ √m the discrepancy cannot exceed O(1/

√
m),

so even the locally nonrandom generator of exercise 14 will look good on the serial test
over the full period; it appears that we should insist on an extremely small discrepancy.]

20.

0≤x<m⌈(x − s(x))/m⌉⌈(s(x) − s(s(x)))/m⌉/m =

0≤x<m((x − s(x))/m +
(((bx+c)/m))+ 1

2
)((s(x)−s(s(x)))/m+((a(bx+c)/m))+ 1

2
)/m; and x/m = ((x/m))+

1
2
− 1

2
δ(x/m), s(x)/m = (((ax+ c)/m)) + 1

2
− 1

2
δ((ax+ c)/m), s(s(x))/m = (((a2x+

ac+ c)/m)) + 1
2
− 1

2
δ((a2x+ ac+ c)/m). Let s(x′) = s(s(x′′)) = 0 and d = gcd(b,m).

The sum now reduces to

1
4

+
1

12m
(S1 − S2 + S3 − S4 + S5 − S6 + S7 − S8 + S9) +

d

m

c

d

+
1

2m

x′ − x′′
m

−

x′

m

+

x′′

m

+

ac+ c

m

−

ac

m

−

c

m

−1
2

,

3.3.3 ANSWERS TO EXERCISES 575

where S1 = σ(a,m, c), S2 = σ(a2,m, ac + c), S3 = σ(ab,m, ac), S4 = σ(1,m, 0) =
(m− 1)(m − 2)/m, S5 = σ(a,m, c), S6 = σ(b,m, c), S7 = −σ(a′ − 1,m, a′c), and
S8 = −σ(a′(a′ − 1),m, (a′)2c), if a′a ≡ 1 (modulo m); and Ąnally

S9 = 12

0≤x<m

bx+ c

m

a(bx+ c)

m

= 12d

0≤x<m/d

x+ c0/d

m/d

a(x+ c0/d)

m/d

= 12d

0≤x<m/d

x

m/d

+
c0

m
− 1

2
δx0

a(x+ c0/d)

m/d

= d

σ(ad,m, ac0) + 12

c0

m

ac0

d

− 6

ac0

m

where c0 = cmod d. The grand total will be near 1
6

when d is small and when the
fractions a/m, (a2 modm)/m, (abmodm)/m, b/m, (a′−1)/m, (a′(a′−1) modm)/m,
((ad) modm)/m all have small partial quotients. (Note that a′ − 1 ≡ −b + b2 − · · · ,
as in exercise 3.2.1.3Ű7.)

21. Notice Ąrst that the main integral decomposes nicely:

sn =
 xn+1

xn

x{ax+θ} dx=
1
a2

1
3
− θ

2
+
n

2

, if xn =
n−θ
a

;

s=
 1

0

x{ax+θ} dx= s0 +s1 + · · ·+sa−1 +
 0

−θ/a

(ax+θ) dx=
1
3a
− θ

2a
+
a−1
4a

+
θ2

2a
.

Therefore C = (s− (1
2
)2)/(1

3
− (1

2
)2) = (1− 6θ + 6θ2)/a.

22. We have s(x) < x in the disjoint intervals [1−θ
a
. . 1−θ

a−1
), [2−θ

a
. . 2−θ

a−1
), . . . , [a−θ

a
. . 1),

which have total length

1 +

0<j≤a−1

j − θ
a− 1

−

0<j≤a

j − θ
a

= 1 +
a

2
− θ − a+ 1

2
+ θ =

1
2
.

23. We have s(s(x)) < s(x) < x when x is in [k−θ
a
. . k−θ

a−1
) and ax + θ − k is in

[j−θ
a
. . j−θ

a−1
), for 0 < j ≤ k < a; or when x is in [a−θ

a
. . 1) and ax + θ − a is either in

[j−θ
a
. . j−θ

a−1
) for 0 < j ≤ ⌊aθ⌋ or in [⌊aθ⌋+1−θ

a
. . θ). The desired probability is

0<j≤k<a

j − θ
a2(a− 1)

+

0<j≤⌊aθ⌋

j − θ
a2(a− 1)

+
1
a2

max(0, {aθ}+ θ − 1)

=
1
6

+
1
6a
− θ

2a
+

1
a2

⌊aθ⌋(⌊aθ⌋+ 1− 2θ)
2(a− 1)

+ max(0, {aθ}+ θ − 1)

,

which is 1
6

+ (1− 3θ+ 3θ2)/6a+O(1/a2) for large a. Note that 1− 3θ+ 3θ2 ≥ 1
4
, so θ

can’t be chosen to make this probability come out right.

24. Proceed as in the previous exercise; the sum of the interval lengths is

0<j1≤···≤jt−1<a

j1

at−1(a− 1)
=

1
at−1(a− 1)

a+ t− 2

t

.

576 ANSWERS TO EXERCISES 3.3.3

213

321

312

123

Fig. A–1. Permutation regions
for the Fibonacci generator.

1

2

3

4
5

≥6

Fig. A–2. Run-length regions
for the Fibonacci generator.

To compute the average length, let pk be the probability of a run of length ≥ k; the
average is

k≥1

pk =

k≥1

a+ k − 2

k

 1
ak−1(a− 1)

=

a

a− 1

a

− a

a− 1
.

The value for a truly random sequence would be e − 1; and our value is e − 1 +
(e/2 − 1)/a + O(1/a2). [Note: The same result holds for an ascending run, since we
have Un > Un+1 if and only if 1− Un < 1− Un+1. This would lead us to suspect that
runs in linear congruential sequences might be slightly longer than normal, so the run
test should be applied to such generators.]

25. x must be in the interval [(k + α′ − θ)/a . . (k + β′ − θ)/a) for some k, and also in
the interval [α . . β). Let k0 = ⌈aα + θ − β′⌉, k1 = ⌈aβ + θ − β′⌉. With due regard to
boundary conditions, we get the probability

(k1 − k0)(β′ − α′)/a+ max(0, β − (k1 + α′ − θ)/a)−max(0, α− (k0 + α′ − θ)/a).
This is (β − α)(β′ − α′) + ϵ, where |ϵ| < 2(β′ − α′)/a.

26. See Fig. AŰ1. The orderings U1 < U3 < U2 and U2 < U3 < U1 are impossible; the
other four each have probability 1

4
.

27. Un = {Fn−1U0 + FnU1}. We need to have both Fk−1U0 + FkU1 < 1 and FkU0 +
Fk+1U1 > 1. The half-unit-square in which U0 > U1 is broken up as shown in Fig. AŰ2,
with various values of k indicated. The probability for a run of length k is 1

2
, if k = 1;

it is 1/Fk−1 Fk+1 − 1/Fk Fk+2, if k > 1. The corresponding probabilities for a random
sequence are 2k/(k+ 1)!− 2(k+ 1)/(k+ 2)!; the following table compares the Ąrst few
values.

k: 1 2 3 4 5

Probability in Fibonacci case: 1
2

1
3

1
10

1
24

1
65

Probability in random case: 1
3

5
12

11
60

19
360

29
2520

28. Fig. AŰ3 shows the various regions in the general case. The “213Ť region means
U2 < U1 < U3, if U1 and U2 are chosen at random; the “321Ť region means that
U3 < U2 < U1, etc. The probabilities for 123 and 321 are 1

4
− α/2 + α2/2; the

probabilities for all other cases are 1
8

+α/4−α2/4. To have all equal to 1
6
, we must have

3.3.4 ANSWERS TO EXERCISES 577

(0, 0)

(1, 1)

y=x

(

α

2
, 0

)

(

1, 1−
α

2

)

y=x−
α

2

(α, 0)

(1, 1−α)

y=x−α

(

1,
1

2
−

α

2

)

y=
1

2
x−

α

2

(

1

2
+

α

2
, 0

)

y=x−
1

2
−

α

2

(1, 0)

(

0,
1

2
−

α

2

)

y=
1

2
x+

1

2
−

α

2

(1−α, 1−α)

(

1

2
+

α

2
, 1

)

y=x+
1

2
−

α

2

(0, 1−α)

(α, 1)

y=x+1−α

(

0, 1−
α

2

)

y=
1

2
x+1−

α

2

(

α

2
, 1

)

y=x+1−
α

2

(0, 1)

132 312

123 132 312

321

123 213 231 321

213
231

Fig. A–3. Permutation regions for a generator with potency 2; α = (a− 1)c/m.

1 − 6α + 6α2 = 0. [This exercise establishes a theorem due to J. N. Franklin, Math.
Comp. 17 (1963), 28Ű59, Theorem 13; other results of Franklin’s paper are related to
exercises 22 and 23.]

SECTION 3.3.4

1. For generators of maximum period, the 1-D accuracy ν1 is always m, and µ1 = 2.

2. Let V be the matrix whose rows are V1, . . . , Vt. To minimize Y ·Y , subject to the
condition that Y ̸= (0, . . . , 0) and V Y is an integer column vector X, is equivalent
to minimizing (V −1X) · (V −1X), subject to the condition that X is a nonzero integer
column vector. The columns of V −1 are U1, . . . , Ut.

3. a2 ≡ 2a−1 and a3 ≡ 3a−2 (modulo m). By considering all short solutions of (15),
we Ąnd that ν2

3 = 6 and ν2
4 = 4, for the respective vectors (1,−2, 1) and (1,−1,−1, 1),

except in the following cases:

m = 9, a = 4 or 7, ν2
2 = ν2

3 = 5;

m = 9q, a = 3q + 1 or 6q + 1, ν2
4 = 2.

578 ANSWERS TO EXERCISES 3.3.4

4. (a) The unique choice for (x1, x2) is 1
m

(y1u22 − y2u21,−y1u12 + y2u11), and this
is ≡ 1

m
(y1u22 + y2au22,−y1u12 − y2au12) ≡ (0, 0) (modulo 1); that is, x1 and x2 are

integers. (b) When (x1, x2) ̸= (0, 0), we have (x1u11 + x2u21)2 + (x1u12 + x2u22)2 =
x2

1(u2
11 + u2

12) + x2
2(u2

21 + u2
22) + 2x1x2(u11u21 + u12u22), and by hypothesis this is

≥ (x2
1 + x2

2 − |x1x2|)(u2
11 + u2

12) ≥ u2
11 + u2

12.
[Note that this is a stronger result than Lemma A, which tells us only that

x2
1 ≤ (u2

11 + u2
12)(u2

21 + u2
22)/m2 and that x2

2 ≤ (u2
11 + u2

12)2/m2, where the latter
can be ≥ 1. The idea is essentially Gauss’s notion of a reduced binary quadratic form,
Disquisitiones Arithmeticæ (Leipzig: 1801), §171.]

5. Conditions (30) remain invariant; hence h cannot be zero in step S2, when a is
relatively prime to m. Since h always decreases in that step, S2 eventually terminates
with u2 + v2 ≥ s. Notice that pp′ ≤ 0 throughout the calculation.

The hinted inequality surely holds the Ąrst time step S2 is encountered. The
integer q′ that minimizes (h′ − q′h)2 + (p′ − q′p)2 is q′ = round((h′h+ p′p)/(h2 + p2)),
by Eq. (24). If (h′ − q′h)2 + (p′ − q′p)2 < h2 + p2 we must have q′ ̸= 0, q′ ̸= −1, hence
(p′−q′p)2 ≥ p2, hence (h′−q′h)2 < h2, i.e., |h′−q′h| < h, i.e., q′ is q or q+1. We have
hu+pv ≥ h(h′−q′h)+p(p′−q′p) ≥ − 1

2
(h2 +p2), so if u2 +v2 < s the next iteration of

step S2 will preserve the assumption in the hint. If u2 +v2 ≥ s > (u−h)2 +(v−p)2, we
have 2 |h(u−h)+p(v−p)| = 2(h(h−u)+p(p−v)) = (u−h)2+(v−p)2+h2+p2−(u2+v2) ≤
(u−h)2 +(v−p)2 ≤ h2 +p2, hence (u−h)2 +(v−p)2 is minimal by exercise 4. Finally
if both u2 + v2 and (u − h)2 + (v − p)2 are ≥ s, let u′ = h′ − q′h, v′ = p′ − q′p; then
2 |hu′ + pv′| ≤ h2 + p2 ≤ u′2 + v′

2, and h2 + p2 is minimal by exercise 4.
[Generalizations to Ąnding the shortest 2-D vector with respect to other metrics

are discussed by Kaib and Schnorr, J. Algorithms 21 (1996), 565Ű578.]

6. If u2 + v2 ≥ s > (u−h)2 + (v− p)2 in the previous answer, we have (v− p)2 > v2,
hence (u − h)2 < u2; and if q = aj , so that h′ = ajh + u, we must have aj+1 = 1. It
follows that ν2

2 = min0≤j<t(m2
j + p2

j−1), in the notation of exercise 3.3.3Ű16.
Now we have m0 = mjpj + mj+1pj−1 = ajmjpj−1 + mjpj−2 + mj+1pj−1 <

(aj + 1 + 1/aj)mjpj−1 ≤ (A + 1 + 1/A)mjpj−1, and m2
j + p2

j−1 ≥ 2mjpj−1, hence
the result.

7. We shall prove, using condition (19), that Uj · Uk = 0 for all k ̸= j if and only if
Vj ·Vk = 0 for all k ̸= j. Assume that Uj · Uk = 0 for all k ̸= j, and let Uj = α1V1 +
· · ·+αtVt. Then Uj · Uk = αk for all k, hence Uj = αjVj , and Vj ·Vk = α−1

j (Uj ·Vk) = 0
for all k ̸= j. A symmetric argument proves the converse.

8. Clearly νt+1 ≤ νt (a fact used implicitly in Algorithm S, since s is not changed
when t increases). For t = 2 this is equivalent to (mµ2/π)1/2 ≥ (3

4
mµ3/π)1/3, i.e.,

µ3≤ 4
3

m/π µ

3/2
2 . This bound reduces to 4

3
10−4/

√
π with the given parameters, but

for large m and Ąxed µ2 the bound (40) is better.

9. Let f(y1, . . . , yt) = θ; then gcd(y1, . . . , yt) = 1, so there is an integer matrix W of
determinant 1 having (y1, . . . , yt) as its Ąrst row. (Prove the latter fact by induction
on the magnitude of the smallest nonzero entry in the row.) Now if X = (x1, . . . , xt)
is a row vector, we have XW = X ′ if and only if X = X ′W−1, and W−1 is an integer
matrix of determinant 1, hence the form g deĄned by WU satisĄes g(x1, . . . , xt) =
f(x′1, . . . , x

′
t); furthermore g(1, 0, . . . , 0) = θ.

Without loss of generality, assume that f = g. If now S is any orthogonal matrix,
the matrix US deĄnes the same form as U, since (XUS)(XUS)T = (XU)(XU)T.
Choosing S so that its Ąrst column is a multiple of UT

1 and its other columns are any

3.3.4 ANSWERS TO EXERCISES 579

suitable vectors, we have

US =

α1 0 . . . 0
α2

... U ′

αt

for some α1, α2, . . . , αt and some (t − 1) × (t − 1) matrix U ′. Hence f(x1, . . . , xt) =
(α1x1 + · · ·+αtxt)2 +h(x2, . . . , xt). It follows that α1 =

√
θ [in fact, αj = (U1 · Uj)/

√
θ

for 1 ≤ j ≤ t] and that h is a positive deĄnite quadratic form deĄned by U ′, where
detU ′ = (detU)/

√
θ. By induction on t, there are integers (x2, . . . , xt) with

h(x2, . . . , xt) ≤ (4
3
)(t−2)/2 |detU |2/(t−1)/θ1/(t−1),

and for these integer values we can choose x1 so that |x1 +(α2x2 + · · ·+αtxt)/α1| ≤ 1
2
;

equivalently, (α1x1 + · · ·+ αtxt)2 ≤ 1
4
θ. Hence

θ ≤ f(x1, . . . , xt) ≤ 1
4
θ + (4

3
)(t−2)/2 |detU |2/(t−1)/θ1/(t−1)

and the desired inequality follows immediately.
[Note: For t = 2 the result is best possible. For general t, Hermite’s theorem

implies that µt ≤ πt/2(4/3)t(t−1)/4/(t/2)! . A fundamental theorem due to Minkowski
(“Every t-dimensional convex set symmetric about the origin with volume ≥ 2t contains
a nonzero integer pointŤ) gives µt ≤ 2t; this is stronger than Hermite’s theorem for
t ≥ 9. Even stronger results are known, see (41).]

10. Since y1 and y2 are relatively prime, we can solve u1y2 − u2y1 = m; furthermore
(u1+qy1)y2−(u2+qy2)y1 = m for all q, so we can ensure that 2 |u1y1+u2y2| ≤ y2

1+y2
2 by

choosing an appropriate integer q. Now y2(u1+au2) ≡ y2u1−y1u2 ≡ 0 (modulo m), and
y2 must be relatively prime to m, hence u1 + au2 ≡ 0. Finally let |u1y1 + u2y2| = αm,
u2

1 + u2
2 = βm, y2

1 + y2
2 = γm; we have 0 ≤ α ≤ 1

2
γ, and it remains to be shown that

α ≤ 1
2
β and βγ ≥ 1. The identity (u1y2−u2y1)2 + (u1y1 +u2y2)2 = (u2

1 +u2
2)(y2

1 + y2
2)

implies that 1 + α2 = βγ. If α > 1
2
β, we have 2αγ > 1 + α2, that is, γ − √γ2 − 1 <

α ≤ 1
2
γ. But 1

2
γ <
√
γ2 − 1 implies that γ2 > 4

3
, a contradiction.

11. Since a is odd, y1 +y2 must be even. To avoid solutions with y1 and y2 both even,
let y1 = x1 + x2, y2 = x1 − x2, and solve x2

1 + x2
2 = m/

√
3 − ϵ, with x1 ⊥ x2 and

x1 even; the corresponding multiplier a will be the solution to (x2 − x1)a ≡ x2 + x1

(modulo 2e). It is not difficult to prove that a ≡ 1 (modulo 2k+1) if and only if x1 ≡ 0
(modulo 2k), so we get the best potency when x1 mod 4 = 2. The problem reduces to
Ąnding relatively prime solutions to x2

1 +x2
2 = N where N is a large integer of the form

4k + 1. By factoring N over the Gaussian integers, we can see that solutions exist if
and only if each prime factor of N (over the usual integers) has the form 4k + 1.

According to a famous theorem of Fermat, every prime p of the form 4k + 1 can
be written p = u2 + v2 = (u+ iv)(u− iv), v even, in a unique way except for the signs
of u and v. The numbers u and v can be calculated efficiently by solving x2 ≡ −1
(modulo p), then calculating u + iv = gcd(x + i, p) by Euclid’s algorithm over the
Gaussian integers. [We can take x = n(p−1)/4 mod p for almost half of all integers n.
This application of a Euclidean algorithm is essentially the same as Ąnding the least
nonzero u2 + v2 such that u ± xv ≡ 0 (modulo p). The values of u and v also appear
when Euclid’s algorithm for integers is applied in the ordinary way to p and x; see J. A.
Serret and C. Hermite, J. de Math. Pures et Appl. 13 (1848), 12Ű15.] If the prime

580 ANSWERS TO EXERCISES 3.3.4

factorization of N is pe1
1 . . . per

r = (u1 + iv1)e1 (u1− iv1)e1 . . . (ur + ivr)er (ur− ivr)er , we
get 2r−1 distinct solutions to x2

1 + x2
2 = N, x1 ⊥ x2, x1 even, by letting |x2| + i|x1| =

(u1 + iv1)e1 (u2± iv2)e2 . . . (ur ± ivr)er ; and all such solutions are obtained in this way.
Note: When m = 10e, a similar procedure can be used, but it is Ąve times as

much work since we must keep trying until Ąnding a solution with x1 ≡ 0 (modulo 10).
For example, when m = 1010 we have ⌊m/

√
3⌋ = 5773502691, and 5773502689 =

53 · 108934013 = (7 + 2i)(7− 2i)(2203 + 10202i)(2203− 10202i). Of the two solutions
|x2| + i|x1| = (7 + 2i)(2203 + 10202i) or (7 + 2i)(2203 − 10202i), the former gives
|x1| = 67008 (no good) and the latter gives |x1| = 75820, |x2| = 4983 (which is usable).
Line 9 of Table 1 was obtained by taking x1 = 75820, x2 = −4983.

Line 14 of the table was obtained as follows: ⌊232/
√

3⌋ = 2479700524; we drop
down to N = 2479700521, which equals 37 · 797 · 84089 and has four solutions N =
43642 + 496052 = 263642 + 422452 = 386402 + 314112 = 119602 + 483392. The
corresponding multipliers are 2974037721, 2254986297, 4246248609, and 956772177.
We try also N − 4, but it is ineligible because it is divisible by 3. On the other
hand the prime number N − 8 = 450882 + 211372 leads to the multiplier 3825140801.
Similarly, we get additional multipliers from N−20, N−44, N−48, etc. The multiplier
on line 14 is the best of the Ąrst sixteen multipliers found by this procedure; it’s one
of the four obtained from N − 68.

12. Uj
′ ·Uj

′ = Uj ·Uj + 2

i̸=j qi(Ui ·Uj) +

i̸=j

k ̸=j qiqk(Ui ·Uk). The partial

derivative with respect to qk is twice the left-hand side of (26). If the minimum can be
achieved, these partial derivatives must all vanish.

13. u11 = 1, u21 = irrational, u12 = u22 = 0.

14. After three Euclidean steps we Ąnd ν2
2 = 52 + 52, then S4 produces

U =

−5 5 0
−18 −2 0

1 −2 1

 , V =

−2 18 38
−5 −5 −5

0 0 100

 .

Transformations (j, q1, q2, q3) = (1, ∗, 0, 2), (2,−4, ∗, 1), (3, 0, 0, ∗), (1, ∗, 0, 0) result in

U =

−3 1 2
−5 −8 −7

1 −2 1

 , V =

−22 −2 18
−5 −5 −5

9 −31 29

 , Z = (0 0 1).

Thus ν3 =
√

6, as we already knew from exercise 3.

15. The largest achievable q in (11), minus the smallest achievable, plus 1, is |u1| +
· · ·+ |ut| − δ, where δ = 1 if uiuj < 0 for some i and j, otherwise δ = 0. For example
if t = 5, u1 > 0, u2 > 0, u3 > 0, u4 = 0, and u5 < 0, the largest achievable value is
q = u1 + u2 + u3 − 1 and the smallest is q = u5 + 1 = −|u5|+ 1.

[Note that the number of hyperplanes is unchanged when c varies, hence the
same answer applies to the problem of covering L instead of L0. However, the stated
formula is not always exact for covering L0, since the hyperplanes that intersect the
unit hypercube may not all contain points of L0. In the example above, we can never
achieve the value q = u1 + u2 + u3 − 1 in L0 if u1 + u2 + u3 > m; it is achievable if
and only if there is a solution to m − u1 − u2 − u3 = x1u1 + x2u2 + x3u3 + x4|u5| in
nonnegative integers (x1, x2, x3, x4). It may be true that the stated limits are always
achievable when |u1|+ · · ·+ |ut| is minimal, but this does not appear to be obvious.]

16. It suffices to determine all solutions to (15) having minimum |u1| + · · · + |ut|,
subtracting 1 if any one of these solutions has components of opposite sign.

3.3.4 ANSWERS TO EXERCISES 581

Instead of positive deĄnite quadratic forms, we work with the somewhat similar
function f(x1, . . . , xt) = |x1U1 + · · ·+ xtUt|, deĄning |Y | = |y1|+ · · ·+ |yt|. Inequality
(21) can be replaced by |xk| ≤ f(y1, . . . , yt) (max1≤j≤t |vkj |).

Thus a workable algorithm can be obtained as follows. Replace steps S1 through
S3 by: “Set U ← (m), V ← (1), r ← 1, s ← m, t ← 1.Ť (Here U and V are
1× 1 matrices; thus the two-dimensional case will be handled by the general method.
A special procedure for t = 2 could, of course, be used; see the reference following
the answer to exercise 5.) In steps S4 and S7, set s ← min(s, |Uk|). In step S7, set
zk ← ⌊max1≤j≤t |vkj | s/m⌋. In step S9, set s ← min(s, |Y | − δ); and in step S10,
output s = Nt. Otherwise leave the algorithm as it stands, since it already produces
suitably short vectors. [Math. Comp. 29 (1975), 827Ű833.]

17. When k > t in S9, and if Y ·Y ≤ s, output Y and −Y ; furthermore if Y ·Y < s,
take back the previous output of vectors for this t. [In the author’s experience preparing
Table 1, there was exactly one vector (and its negative) output for each νt, except when
y1 = 0 or yt = 0.]

18. (a) Let x = m, y = (1 − m)/3, vij = y + xδij , uij = −y + δij . Then Vj ·Vk =
1
3
(m2 − 1) for j ̸= k, Vk ·Vk = 2

3
(m2 + 1

2
), Uj · Uj = 1

3
(m2 + 2), zk ≈

2
9
m. (This

example satisĄes (28) with a = 1 and works for all m ≡ 1 (modulo 3).)
(b) Interchange the roles of U and V in step S5. Also set s ← min(s, Ui · Ui) for

all Ui that change. For example, when m = 64 this transformation with j = 1, applied
to the matrices of (a), reduces

V =

43 −21 −21
−21 43 −21
−21 −21 43

 , U =

22 21 21
21 22 21
21 21 22

to

V =

1 1 1

−21 43 −21
−21 −21 43

 , U =

22 21 21
−1 1 0
−1 0 1

 .

[Since the transformation can increase the length of Vj , an algorithm that incorporates
both transformations must be careful to avoid inĄnite looping. See also exercise 23.]

19. No, since a product of non-identity matrices with all off-diagonal elements non-
negative and all diagonal elements 1 cannot be the identity.

[However, looping would be possible if a subsequent transformation with q = −1
were performed when −2Vi ·Vj = Vj ·Vj ; the rounding rule must be asymmetric with
respect to sign if non-shortening transformations are allowed.]

20. When amod 8 = 5, the points 2−e(x, s(x), . . . , s[t−1](x)) for x in the period are
the same as the points 22−e(y, σ(y), . . . , σt−1(y)) for 0 ≤ y < 2e−2, plus 2−e(t, . . . , t),
where σ(y) = (ay+ ⌊a/4⌋t) mod 2e−2 and t = X0 mod 4. So in this case we should use
Algorithm S with m = 2e−2.

When amod 8 = 3, the maximum distance between parallel hyperplanes that
cover the points 2−e(x, s(x), . . . , s[t−1](x)) modulo 1 is the same as the maximum
distance covering the points 2−e(x,−s(x), . . . , (−1)t−1s[t−1](x)), because the negation
of coordinates doesn’t change distance. The latter points are 22−e(y, σ(y), . . . , σt−1(y))
where σ(y) = (−ay − ⌈a/4⌉t) mod 2e−2, plus a constant offset. Again we apply
Algorithm S with m = 2e−2; changing a to m− a has no effect on the result.

21. X4n+4 ≡ X4n (modulo 4), so it is now appropriate to let V1 = (4, 4a2, 4a3)/m,
V2 = (0, 1, 0), V3 = (0, 0, 1) deĄne the corresponding lattice L0.

582 ANSWERS TO EXERCISES 3.3.4

24. Let m = p; an analysis paralleling the text can be given. For example, when
t = 4 we have Xn+3 = ((a2 + b)Xn+1 + abXn) modm, and we want to minimize
u2

1 + u2
2 + u2

3 + u2
4 ̸= 0 such that u1 + bu3 + abu4 ≡ u2 + au3 + (a2 + b)u4 ≡ 0

(modulo m).
Replace steps S1 through S3 by the operations of setting

U ←

m

0
0
m

, V ←

1 0
0 1

, R←

1 0
0 1

, s← m2, t← 2,

and outputting ν2 = m. Replace step S4 by

S4′. [Advance t.] If t = T, the algorithm terminates. Otherwise set t ← t + 1
and R ← R(0

1
b
a
) modm. Set Ut to the new row (−r12,−r22, 0, . . . , 0, 1) of t

elements, and set uit ← 0 for 1 ≤ i < t. Set Vt to the new row (0, . . . , 0,m).
For 1 ≤ i < t, set q ← round((vi1r12 + vi2r22)/m), vit ← vi1r12 + vi2r22− qm,
and Ut ← Ut + qUi. Finally set s← min(s, Ut · Ut), k ← t, j ← 1.

[A similar generalization applies to all sequences of length pk− 1 that satisfy the linear
recurrence 3.2.2Ű(8). Additional numerical examples have been given by A. Grube,
Zeitschrift für angewandte Math. und Mechanik 53 (1973), T223ŰT225; L’Ecuyer,
Blouin, and Couture, ACM Trans. Modeling and Comp. Simul. 3 (1993), 87Ű98.]

25. The given sum is at most twice the quantity

0≤k≤m/(2d) r(dk) = 1 + 1
d
f(m/d),

where

f(m) =
1
m

1≤k≤m/2

csc(πk/m)

=
1
m

 m/2

1

csc(πx/m) dx+O
 1
m

=
1
π

ln tan
 π

2m
x

m/2

1

+O
 1
m

.

[When d = 1, we have

0≤k<m r(k) = (2/π) lnm+ 1 + (2/π) ln(2e/π) +O(1/m).]
26. If gcd(q,m) = d, the same derivation goes through with m replaced by m/d.
Suppose we have m = pe1

1 . . . per
r and gcd(a− 1,m) = pf1

1 . . . pfr
r and d = pd1

1 . . . pdr
r . If

m is replaced by m/d, then s is replaced by pmax(0,e1−f1−d1)
1 . . . p

max(0,er−fr−dr)
r . Since

m/d > 1, we can also replace N by N mod (m/d).

27. It is convenient to use the following functions: ρ(x) = 1 if x = 0, ρ(x) = x if
0 < x ≤ m/2, ρ(x) = m − x if m/2 < x < m; trunc(x) = ⌊x/2⌋ if 0 ≤ x ≤ m/2,
trunc(x) = m − ⌊(m − x)/2⌋ if m/2 < x < m; L(x) = 0 if x = 0, L(x) = ⌊lg x⌋ + 1 if
0 < x ≤ m/2, L(x) = −(⌊lg(m− x)⌋+ 1) if m/2 < x < m; and l(x) = max(1, 2|x|−1).
Note that l(L(x)) ≤ ρ(x) < 2l(L(x)) and 2ρ(x) ≤ 1/r(x) = m sin(πx/m) < πρ(x), for
0 < x < m.

Say that a vector (u1, . . . , ut) is bad if it is nonzero and satisĄes (15); and let ρmin be
the minimum value of ρ(u1) . . . ρ(ut) over all bad (u1, . . . , ut). The vector (u1, . . . , ut) is
said to be in class (L(u1), . . . , L(ut)). Thus there are at most (2 lgm+ 1)t classes, and
class (L1, . . . , Lt) contains at most l(L1) . . . l(Lt) vectors. Our proof is based on showing
that the bad vectors in each Ąxed class contribute at most 2/ρmin to

r(u1, . . . , ut);

this establishes the desired bound, since 1/ρmin < πtrmax.
Let µ = ⌊lg ρmin⌋. The µ-fold truncation operator on a vector is deĄned to be

the following operation repeated µ times: “Let j be minimal such that ρ(uj) > 1,
and replace uj by trunc(uj); but do nothing if ρ(uj) = 1 for all j.Ť (This operation
essentially throws away one bit of information about (u1, . . . , ut).) If (u′

1, . . . , u
′
t) and

(u′′
1 , . . . , u

′′
t) are two vectors of the same class having the same µ-fold truncation, we say

3.3.4 ANSWERS TO EXERCISES 583

they are similar ; in this case it follows that ρ(u′
1 − u′′

1) . . . ρ(u′
t − u′′

t) < 2µ ≤ ρmin. For
example, any two vectors of the form ((1x2x1)2, 0, m−(1x3)2, (101x5x4)2, (1101)2) are
similar when m is large and µ = 5; the µ-fold truncation operator successively removes
x1, x2, x3, x4, x5. Since the difference of two bad vectors satisĄes (15), it is impossible
for two unequal bad vectors to be similar. Therefore class (L1, . . . , Lt) can contain
at most max(1, l(L1) . . . l(Lt)/2µ) bad vectors. If class (L1, . . . , Lt) contains exactly
one bad vector (u1, . . . , ut), we have r(u1, . . . , ut) ≤ rmax ≤ 1/ρmin; if it contains
≤ l(L1) . . . l(Lt)/2µ bad vectors, each of them has r(u1, . . . , ut) ≤ 1/ρ(u1) . . . ρ(ut) ≤
1/l(L1) . . . l(Lt), and we have 1/2µ < 2/ρmin.

28. Let ζ = e2πi/(m−1) and let Skl =

0≤j<m−1 ω
xj+lζjk. The analog of (51) is

|Sk0| =
√
m, hence the analog of (53) is

N−1

0≤n<N

ωxn

= O((
√
m logm)/N).

The analogous theorem now states that

D
(t)
N = O

√
m (logm)t+1

N

+O

(logm)trmax

, D

(t)
m−1 = O((logm)trmax).

In fact, D(t)
m−1 ≤ m−2

m−1

r(u1, . . . , ut) [summed over nonzero solutions of (15)] +

1
m−1

r(u1, . . . , ut) [summed over all nonzero (u1, . . . , ut)]. The latter sum is O(logm)t

by exercise 25 with d = 1, and the former sum is treated as in exercise 27.
Let us now consider the quantity R(a) =

r(u1, . . . , ut) summed over nonzero

solutions of (15). Since m is prime, each (u1, . . . , ut) can be a solution to (15) for at
most t − 1 values of a, hence

0<a<m R(a) ≤ (t − 1)

r(u1, . . . , ut) = O(t(logm)t).

It follows that the average value of R(a) taken over all φ(m − 1) primitive roots is
O(t(logm)t/φ(m− 1)).

Note: In general 1/φ(n) = O(log logn/n); we have therefore proved that for all
prime m and for all T there exists a primitive root a modulo m such that the linear
congruential sequence (1, a, 0,m) has discrepancy D(t)

m−1 = O(m−1T (logm)T log logm)
for 1 ≤ t ≤ T . This method of proof does not extend to a similar result for linear con-
gruential generators of period 2e modulo 2e, since for example the vector (1,−3, 3,−1)
solves (15) for about 22e/3 values of a.

29. To get an upper bound, allow the nonzero components of u = (u1, . . . , ut) to be
any real values 1 ≤ |uj | ≤ 1

2
m. If k components are nonzero, we have r(u) ≤ 1/(2kρ(u))

in the notation of the answer to exercise 27. And if u2
1 + · · ·+ u2

t has a given value ν2,
we minimize ρ(u) by taking u1 = · · · = uk−1 = 1 and u2

k = ν2 − k + 1. Thus
r(u) ≤ 1/(2k

√
ν2 − k + 1). But 2k

√
ν2 − k + 1 ≥

√
8ν, since ν ≥ k ≥ 2.

30. Let’s Ąrst minimize q |aq −mp| for 1 ≤ q < m and 0 ≤ p < a. In the notation
of exercise 4.5.3Ű42, we have aqn −mpn = (−1)nKs−n−1(an+2, . . . , as) for 0 ≤ n ≤ s.
In the range qn−1 ≤ q < qn we have |aq − mp| ≥ |aqn−1 − mpn−1|; consequently
q |aq −mp| ≥ qn−1|aqn−1 −mpn−1|, and the minimum is min0≤n<s qn|aqn −mpn| =
min0≤n<s Kn(a1, . . . , an)Ks−n−1(an+2, . . . , as). By exercise 4.5.3Ű32 we have m =
Kn(a1, . . . , an)an+1Ks−n−1(an+2, . . . , as) + Kn(a1, . . . , an)Ks−n−2(an+3, . . . , as) +
Kn−1(a1, . . . , an−1)Ks−n−1(an+2, . . . , as); and our problem is essentially that of max-
imizing the quantity m/Kn(a1, . . . , an)Ks−n−1(an+2, . . . , as), which lies between an+1

and an+1 + 2.

584 ANSWERS TO EXERCISES 3.3.4

Now let A = max(a1, . . . , as). Since r(m − u) = r(u), we can assume that
rmax = r(u)r(aumodm) for some u with 1 ≤ u ≤ 1

2
m. Setting u′ = min(aumodm,

(−au) modm), we have rmax = r(u)r(u′). We know from the previous paragraph that
uu′ ≥ qq′, where A/m ≤ 1/qq′ ≤ (A + 2)/m. Furthermore 2u ≤ r(u)−1 ≤ πu for
0 < u ≤ 1

2
m, so rmax ≤ 1/(4uu′). Hence we have rmax ≤ (A + 2)/(4m). (There is a

similar lower bound, namely rmax > A/(π2m).)

31. Equivalently, the conjecture is that all large m can be written m = Kn(a1, . . . , an)
for some n and some ai ∈ {1, 2, 3}. For Ąxed n the 3n numbers Kn(a1, . . . , an) have an
average value of order (1+

√
2)n, and their standard deviation is of order (2.51527)n; so

the conjecture is almost surely true. S. K. Zaremba conjectured in 1972 that all m can
be represented with ai ≤ 5; T. W. Cusick made some early progress on this problem
in Mathematika 24 (1977), 166Ű172, and an excellent survey of later work has been
prepared by A. Kontorovich in Bull. Amer. Math. Soc. 50 (2013), 187Ű228. It appears
that only the cases m = 54 and m = 150 require ai = 5, and the largest m’s that require
4s are 2052, 2370, 5052, and 6234; at least, the author has found representations with
ai ≤ 3 for all other integers less than 2000000. When we require ai ≤ 2, the average of
Kn(a1, . . . , an) is 4

5
2n + 1

5
(−2)−n, while the standard deviation grows as (2.04033)n.

The density of such numbers in the author’s experiments (which considered 26 blocks
of 214 numbers each, for m ≤ 220) appears to vary between .50 and .65.

[See I. Borosh and H. Niederreiter, BIT 23 (1983), 65Ű74, for a computational
method that Ąnds multipliers with small partial quotients. They have found 2-bounded
solutions with m = 2e for 25 ≤ e ≤ 35.]

32. (a) Un−Zn/m1 ≡ (m2−m1)Yn/m1m2 (modulo 1), and (m1−m2)/m1m2 ≈ 2−54.
(Therefore we can analyze the high-order bits of Zn by analyzing Un. The low-order
bits are probably random too, but this argument does not apply to them.) (b) We have
Un = Wn/m for all n. The Chinese remainder theorem tells us that we need only verify
the congruences Wn ≡ Xnm2 (modulo m1) and Wn ≡ −Ynm1 (modulo m2), because
m1 ⊥ m2. [Pierre L’Ecuyer and Shu Tezuka, Math. Comp. 57 (1991), 735Ű746.]

SECTION 3.4.1

1. α+ (β − α)U.

2. Let U = X/m; then ⌊kU⌋ = r ⇐⇒ r ≤ kX/m < r + 1 ⇐⇒ mr/k ≤ X <
m(r + 1)/k ⇐⇒ ⌈mr/k⌉ ≤ X < ⌈m(r + 1)/k⌉. The exact probability is given by the
formula (1/m)(⌈m(r + 1)/k⌉ − ⌈mr/k⌉) = 1/k + ϵ, where |ϵ| < 1/m.

3. If full-word random numbers are given, the result will deviate from the correct
distribution by at most 1/m, as in exercise 2; but all of the excess is given to the smallest
results. Thus if k ≈ m/3, the result will be less than k/2 about 2

3
of the time. It is

much better to obtain a perfectly uniform distribution by rejecting U if U ≥ k⌊m/k⌋;
see D. E. Knuth, The Stanford GraphBase (New York: ACM Press, 1994), 221.

On the other hand, if a linear congruential sequence is used, k must be relatively
prime to the modulus m, lest the numbers have a very short period, by the results
of Section 3.2.1.1. For example, if k = 2 and m is even, the numbers will at best be
alternately 0 and 1. The method is slower than (1) in nearly every case, so it is not
recommended.

Unfortunately, however, the “himultŤ operation in (1) is not supported in many
high-level languages; see exercise 3.2.1.1Ű3. Division by m/k may be best when himult
is unavailable.

3.4.1 ANSWERS TO EXERCISES 585

Fig. A–4. Region of “acceptanceŤ for
the algorithm of exercise 6.

0
1U x

1

V
A1

A2

Circle U2+V 2 =1

4. max(X1, X2) ≤ x if and only if X1 ≤ x and X2 ≤ x; min(X1, X2) ≥ x if and only
if X1 ≥ x and X2 ≥ x. The probability that two independent events both happen is
the product of the individual probabilities.

5. Obtain independent uniform deviates U1 and U2. Set X ← U2. If U1 ≥ p,
set X ← max(X,U3), where U3 is a third uniform deviate. If U1 ≥ p + q, also set
X ← max(X,U4), where U4 is a fourth uniform deviate. This method can obviously
be generalized to any polynomial, and indeed even to inĄnite power series (as shown
for example in Algorithm S, which uses minimization instead of maximization).

We could also proceed as follows (suggested by M. D. MacLaren): If U1 < p, set
X ← U1/p; otherwise if U1 < p + q, set X ← max((U1 − p)/q, U2); otherwise set
X ← max((U1 − p − q)/r, U2, U3). This method requires less time than the other to
obtain the uniform deviates, although it involves further arithmetical operations and
it is slightly less stable numerically.

6. F (x) = A1/(A1 +A2), where A1 and A2 are the areas in Fig. AŰ4; so

F (x) =

 x

0

√
1− y2 dy

 1

0

√
1− y2 dy

=
2
π

arcsinx+
2
π
x
√

1− x2.

The probability of termination at step 2 is p = π/4, each time step 2 is encountered, so
the number of executions of step 2 has the geometric distribution. The characteristics
of this number are (min 1, ave 4/π, max ∞, dev (4/π)

1− π/4), by exercise 17.

7. If k = 1, then n1 = n and the problem is trivial. Otherwise it is always possible
to Ąnd i ̸= j such that ni ≤ n ≤ nj . Fill Bi with ni cubes of color Ci and n − ni of
color Cj , then decrease nj by n−ni and eliminate color Ci. We are left with the same
sort of problem but with k reduced by 1; by induction, it’s possible.

The following algorithm can be used to compute the P and Y tables: Form a list of
pairs (p1, 1) . . . (pk, k) and sort it by Ąrst components, obtaining a list (q1, a1) . . . (qk, ak)
where q1 ≤ · · · ≤ qk. Set n← k; then repeat the following operations until n = 0: Set
P [a1− 1]← kq1 and Y [a1− 1]← xan . Delete (q1, a1) and (qn, an), then insert the new
entry (qn − (1/k − q1), an) into its proper place in the list and decrease n by 1.

(If pj < 1/k the algorithm will never put xj in the Y table; this fact is used
implicitly in Algorithm M. The algorithm attempts to maximize the probability that
V < PK in (3), by always robbing from the richest remaining element and giving it to
the poorest. However, it is very difficult to determine the absolute maximum of this
probability, since such a task is at least as difficult as the “bin-packing problemŤ; see
Section 7.9.)

586 ANSWERS TO EXERCISES 3.4.1

8. Replace Pj by (j + Pj)/k for 0 ≤ j < k.

9. Consider the sign of f ′′(x) =

2/π (x2 − 1)e−x2/2.

10. Let Sj = (j−1)/5 for 1 ≤ j ≤ 16 and pj+15 = F (Sj+1)−F (Sj)−pj for 1 ≤ j ≤ 15;
also let p31 = 1 − F (3) and p32 = 0. (Eq. (15) deĄnes p1, . . . , p15.) The algorithm
of exercise 7 can now be used with k = 32 to compute Pj and Yj , after which we will
have 1 ≤ Yj ≤ 15 for 1 ≤ j ≤ 32. Set P0 ← P32 (which is 0) and Y0 ← Y32. Then set
Zj ← 1/(5− 5Pj) and Yj ← 1

5
Yj − Zj for 0 ≤ j < 32; Qj ← 1/(5Pj) for 1 ≤ j ≤ 15.

Let h = 1
5

and fj+15(x) =

2/π(e−x2/2 − e−j2/50)/pj+15 for Sj ≤ x ≤ Sj + h.
Then let aj = fj+15(Sj) for 1 ≤ j ≤ 5, bj = fj+15(Sj) for 6 ≤ j ≤ 15; also bj =
−hf ′

j+15(Sj + h) for 1 ≤ j ≤ 5, and aj = fj+15(xj) + (xj − Sj)bj/h for 6 ≤ j ≤ 15,
where xj is the root of the equation f ′

j+15(xj) = −bj/h. Finally set Dj+15 ← aj/bj for
1 ≤ j ≤ 15 and Ej+15 ← 25/j for 1 ≤ j ≤ 5, Ej+15 ← 1/(e(2j−1)/50−1) for 6 ≤ j ≤ 15.

Table 1 was computed while making use of the following intermediate values:
(p1, . . . , p31) = (.156, .147, .133, .116, .097, .078, .060, .044, .032, .022, .014, .009, .005,
.003, .002, .002, .005, .007, .009, .010, .009, .009, .008, .006, .005, .004, .002, .002, .001, .001,
.003); (x6, . . . , x15) = (1.115, 1.304, 1.502, 1.700, 1.899, 2.099, 2.298, 2.497, 2.697, 2.896);
(a1, . . . , a15) = (7.5,9.1,9.5,9.8,9.9,10.0,10.0,10.1,10.1,10.1,10.1,10.2,10.2,10.2,10.2);
(b1, . . . , b15) = (14.9, 11.7, 10.9, 10.4, 10.1, 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.7, 10.8,
10.9).

11. Let g(t) = e9/2te−t2/2 for t ≥ 3. Since G(x) =
 x

3
g(t) dt = 1−e−(x2−9)/2, a random

variable X with density g can be computed by setting X ← G[−1](1−V) =
√

9− 2 lnV .
Now e−t2/2 ≤ (t/3)e−t2/2 for t ≥ 3, so we obtain a valid rejection method if we accept
X with probability f(X)/cg(X) = 3/X.

12. We have f ′(x) = xf(x)− 1 < 0 for x ≥ 0, since f(x) = x−1 − ex2/2
∞

x
e−t2/2 dt/t2

for x > 0. Let x = aj−1 and y2 = x2 + 2 ln 2; then

2/π
∞

y
e−t2/2 dt = 1

2

2/π e−x2/2f(y) < 1

2

2/π e−x2/2f(x) = 2−j ,

hence y > aj .

13. Take bj = µj ; consider now the problem with µj = 0 for each j. In matrix
notation, if Y = AX, where A = (aij), we need AAT = C = (cij). (In other notation, if
Yj =

ajkXk, then the average value of YiYj is

aikajk.) If this matrix equation can

be solved for A, it can be solved when A is triangular, sinceA = BU for some orthogonal
matrix U and some triangular B, and BBT = C. The desired triangular solution can be
obtained by solving the equations a2

11 = c11, a11a21 = c12, a2
21+a2

22 = c22, a11a31 = c13,
a21a31 + a22a32 = c23, . . . , successively for a11, a21, a22, a31, a32, etc. [Note: The
covariance matrix must be positive semideĄnite, since the average value of (

yjYj)

2

is

cijyiyj , which must be nonnegative. And there is always a solution when C is

positive semideĄnite, since C = U−1diag(λ1, . . . , λn)U, where the eigenvalues λj are
nonnegative, and U−1diag(

√
λ1, . . . ,

√
λn)U is a solution.]

14. F (x/c) if c > 0; the step function [x≥ 0] if c = 0; or 1− F (x/c) if c < 0.

15. Distribution
∞
−∞ F1(x − t) dF2(t). Density

∞
−∞ f1(x − t)f2(t) dt. This is called

the convolution of the given distributions.

16. It is clear that f(t) ≤ cg(t) for all t as required. Since
∞

0
g(t) dt = 1 we have

g(t) = Cta−1 for 0 ≤ t < 1, Ce−t for t ≥ 1, where C = ae/(a+ e). A random variable
with density g is easy to obtain as a mixture of two distributions, G1(x) = xa for
0 ≤ x < 1, and G2(x) = 1− e1−x for x ≥ 1:

3.4.1 ANSWERS TO EXERCISES 587

G1. [Initialize.] Set p ← e/(a + e). (This is the probability that G1 should be
used.)

G2. [Generate G deviate.] Generate independent uniform deviates U and V , where
V ̸= 0. If U < p, set X ← V 1/a and q ← e−X ; otherwise set X ← 1 − lnV
and q ← Xa−1. (Now X has density g, and q = f(X)/cg(X).)

G3. [Reject?] Generate a new uniform deviate U. If U ≥ q, return to G2.

The average number of iterations is c = (a+ e)/(eΓ (a+ 1)) < 1.4.
It is possible to streamline this procedure in several ways. First, we can replace

V by an exponential deviate Y of mean 1, generated by Algorithm S, say, and then we
set X ← e−Y/a or X ← 1 + Y in the two cases. Moreover, if we set q ← pe−X in the
Ąrst case and q ← p+ (1− p)Xa−1 in the second, we can use the original U instead of
a newly generated one in step G3. Finally if U < p/e we can accept V 1/a immediately,
avoiding the calculation of q about 30 percent of the time.

17. (a) F (x) = 1 − (1 − p)⌊x⌋, for x ≥ 0. (b) G(z) = pz/(1 − (1 − p)z). (c) Mean
1/p, standard deviation

√
1− p/p. To do the latter calculation, observe that if H(z) =

q+ (1− q)z, then H ′(1) = 1− q and H ′′(1) +H ′(1)− (H ′(1))2 = q(1− q), so the mean
and variance of 1/H(z) are q − 1 and q(q − 1), respectively. (See Section 1.2.10.) In
this case, q = 1/p; the extra factor z in the numerator of G(z) adds 1 to the mean.

18. Set N ← N1 + N2 − 1, where N1 and N2 independently have the geometric
distribution for probability p. (Consider the generating function.)

19. Set N ← N1 + · · · + Nt − t, where the Nj have the geometric distribution for p.
(This is the number of failures before the tth success, when a sequence of independent
trials are made each of which succeeds with probability p.)

For t = p = 1
2
, and in general when the mean value (namely t(1 − p)/p) of the

distribution is small, we can simply evaluate the probabilities pn =

t−1+n
n

pt(1− p)n

consecutively for n = 0, 1, 2, . . . as in the following algorithm:

N1. [Initialize.] Set N ← 0, q ← pt, r ← q, and generate a random uniform
deviate U. (We will have q = pN and r = p0 + · · ·+ pN during this algorithm,
which stops as soon as U < r.)

N2. [Iterate.] If U ≥ r, set N ← N + 1, q ← q(1 − p)(t − 1 + N)/N, r ← r + q,
and repeat this step. Otherwise return N and terminate.

[An interesting technique for the negative binomial distribution, for arbitrarily
large real values of t, has been suggested by R. Léger: First generate a random gamma
deviate X of order t, then let N be a random Poisson deviate of mean X(1− p)/p.]
20. R1 = 1 + (1 − A/R) · R1. When R2 is performed, the algorithm terminates with
probability I/R; when R3 is performed, it goes to R1 with probability E/R. We have

R1 R/A R/A R/A R/A
R2 0 R/A 0 R/A
R3 0 0 R/A R/A− I/A
R4 R/A R/A− I/A R/A− E/A R/A− I/A− E/A

21. R =

8/e ≈ 1.71553; A =
√

2Γ (3/2) =

π/2 ≈ 1.25331. Since

u
√
a− bu du = (a− bu)3/2

2
5
(a− bu)− 2

3
a

/b2,

588 ANSWERS TO EXERCISES 3.4.1

we have I = 2
 a/b

0
u
√
a− bu du = 8

15
a5/2/b2 where a = 4(1 + ln c) and b = 4c; when

c = e1/4, I has its maximum value 5
6

5/e ≈ 1.13020. Finally the following integration

formulas are needed for E:
√

bu−au2 du= 1
8
b2a−3/2 arcsin(2ua/b−1)+ 1

4
ba−1
√
bu−au2 (2ua/b−1),

√
bu+au2 du=− 1

8
b2a−3/2 ln(

√
bu+au2+u

√
a+b/2

√
a)+ 1

4
ba−1
√
bu+au2(2ua/b+1),

where a, b > 0. Let the test in step R3 be “X2 ≥ 4ex−1/U−4xŤ; then the exterior region
hits the top of the rectangle when u = r(x) = (ex −

√
e2x − 2ex)/2ex. (Incidentally,

r(x) reaches its maximum value at x = 1/2, a point where it is not differentiable!) We
have E = 2

 r(x)

0
(

2/e−
√
bu− au2) du where b = 4ex−1 and a = 4x. The maximum

value of E occurs near x = −.35, where we have E ≈ .29410.

22. (Solution by G. Marsaglia.) Consider the “continuous Poisson distributionŤ de-
Ąned by G(x) =

∞
µ
e−ttx−1 dt/Γ (x), for x > 0; if X has this distribution then

⌊X⌋ is Poisson distributed, since G(x + 1) − G(x) = e−µµx/x!. If µ is large, G is
approximately normal, hence G[−1](Fµ(x)) is approximately linear, where Fµ(x) is
the distribution function for a normal deviate with mean and variance µ; that is,
Fµ(x) = F ((x− µ)/

√
µ), where F (x) is the normal distribution function (10). Let

g(x) be an efficiently computable function such that |G[−1](Fµ(x)) − g(x)| < ϵ for
−∞ < x <∞; we can now generate Poisson deviates efficiently as follows: Generate
a normal deviate X, and set Y ← g(µ +

√
µX), N ← ⌊Y ⌋, M ← ⌊Y + 1

2
⌋. Then if

|Y −M | > ϵ, output N; otherwise output M − [G[−1](F (X)) < M].
This approach applies also to the binomial distribution, with

G(x) =
 1

p

ux−1(1− u)n−x du
Γ (t+ 1)

Γ (x)Γ (t+ 1− x)
,

since ⌊G[−1](U)⌋ is binomial with parameters (t, p) and G is approximately normal.
[See also the alternative method proposed by Ahrens and Dieter in Computing 25

(1980), 193Ű208.]

23. Yes. The second method calculates |cos 2θ|, where θ is uniformly distributed
between 0 and π/2. (Let U = r cos θ, V = r sin θ.)

25. 21
32

= (.10101)2. In general, the binary representation is formed by using 1 for |
and 0 for &, from left to right, then suffixing 1. This technique [see K. D. Tocher,
J. Roy. Stat. Soc. B16 (1954), 49] can lead to efficient generation of independent bits
having a given probability p, and it can also be applied to the geometric and binomial
distributions.

26. (a) True:

k Pr(N1 = k) Pr(N2 = n − k) = e−µ1−µ2 (µ1 + µ2)n/n!. (b) False,
unless µ2 = 0; otherwise N1 −N2 might be negative.

27. Let the binary representation of p be (.b1b2b3 . . .)2, and proceed according to the
following rules:

B1. [Initialize.] Set m ← t, N ← 0, j ← 1. (During this algorithm, m represents
the number of simulated uniform deviates whose relation to p is still unknown,
since they match p in their leading j−1 bits; and N is the number of simulated
deviates known to be less than p.)

B2. [Look at next column of bits.] Generate a random integerM with the binomial
distribution (m, 1

2
). (Now M represents the number of unknown deviates that

fail to match bj .) Set m← m−M, and if bj = 1 set N ← N +M.

3.4.1 ANSWERS TO EXERCISES 589

B3. [Done?] If m = 0, or if the remaining bits (.bj+1bj+2 . . .)2 of p are all zero,
the algorithm terminates. Otherwise, set j ← j+1 and return to step B2.

[When bj = 1 for inĄnitely many j, the average number of iterations At satisĄes

A0 = 0; An = 1 +
1

2n

k

n

k

Ak, for n ≥ 1.

Letting A(z) =

Anz

n/n!, we have A(z) = ez − 1 +A(1
2
z)ez/2. Therefore A(z)e−z =

1− e−z +A(1
2
z)e−z/2 =

k≥0(1− e−z/2k

) = 1− e−z −n≥1(−z)n/(n!(2n − 1)), and

Am = 1 +

k≥1

n

k

 (−1)k+1

2k − 1
= 1 +

Vn+1

n+ 1
= lgn+

γ

ln 2
+

1
2

+ f0(n) +O(n−1)

in the notation of exercise 5.2.2Ű48.]

28. Generate a random point (y1, . . . , yn) on the unit sphere, and let ρ =

aky
2
k.

Generate an independent uniform deviate U, and if ρn+1U < K

a2
ky

2
k, output the

point (y1/ρ, . . . , yn/ρ); otherwise start over. Here K2 = min{(aky
2
k)n+1

/(

a2

ky
2
k) |

y2

k = 1} = an−1
n if nan ≥ a1, ((n+ 1)/(a1 + an))n+1(a1an/n)n otherwise.

29. Let Xn+1 = 1, then set Xk ← Xk+1U
1/k

k or Xk ← Xk+1e
−Yk/k for k = n, n − 1,

. . . , 1, where Uk is uniform or Yk is exponential. [ACM Trans. Math. Software 6 (1980),
359Ű364. This technique was introduced in the 1960s by David Seneschal; see Amer.
Statistician 26, 4 (October 1972), 56Ű57. The alternative of generating n uniform
numbers and sorting them is probably faster, with an appropriate sorting method, but
the method suggested here is particularly valuable if only a few of the largest or smallest
X’s are desired. Notice that (F [−1](X1), . . . , F [−1](Xn)) will be sorted deviates having
distribution F.]

30. Generate random numbers Z1 = −µ−1 lnU1, Z2 = Z1 − µ−1 lnU2, . . . , until
Zm+1 ≥ 1. Output (Xj , Yj) = f(Zj) for 1 ≤ j ≤ m, where f((.b1b2 . . . b2r)2) =
((.b1b2 . . . br)2, (.br+1br+2 . . . b2r)2). If the less signiĄcant bits are signiĄcantly less
random than the more signiĄcant bits, it’s safer (but slower) to let f((.b1b2 . . . b2r)2) =
((.b1b3 . . . b2r−1)2, (.b2b4 . . . b2r)2).

31. (a) It suffices to consider the case k = 2, since a1X1 +· · ·+akXk = X cos θ+Y sin θ
when X = X1, cos θ = a1, and Y = (a2X2 + · · ·+ akXk)/ sin θ. And

Pr(X cos θ + Y sin θ ≤ x) =
1

2π

s,t

e−s2/2−t2/2ds dt [s cos θ + t sin θ≤x]

=
1

2π

u,v

e−u2/2−v2/2du dv [u≤x] = (10),

from the substitution u = s cos θ + t sin θ, v = −s sin θ + t cos θ.
(b) There are numbers α > 1 and β > 1 such that (α−24 + α−55)/

√
2 = 1 and

3
5
β−24+ 4

5
β−55 = 1; so the numbersXn will grow exponentially with n, by the properties

of linear recurrences.
If we break out of the linear recurrence mold by, say, using the recurrence Xn =

Xn−24 cos θn +Xn−55 sin θn, where θn is chosen uniformly in [0 . . 2π), we probably will
obtain decent results; but this alternative would involve much more computation.

(c) Start with, say, 2048 normal deviates X0, . . . , X1023, Y0, . . . , Y1023. After
having used about 1/3 of them, generate 2048 more as follows: Choose integers a, b, c,

590 ANSWERS TO EXERCISES 3.4.1

and d uniformly in [0 . . 1024), with a and c odd; then set

X ′
j ← X(aj+b) mod 1024 cos θ + Y(cj+d) mod 1024 sin θ,

Y ′
j ← −X(aj+b) mod 1024 sin θ + Y(cj+d) mod 1024 cos θ,

for 0 ≤ j < 1024, where cos θ and sin θ are random ratios (U2 − V 2)/(U2 + V 2) and
2UV/(U2 + V 2), chosen as in exercise 23. We can reject U and V unless | cos θ | ≥ 1

2

and | sin θ | ≥ 1
2
. The 2048 new deviates now replace the old ones. Notice that only a

few operations were needed per new deviate.
This method does not diverge like the sequences considered in (b), because the sum

of squares

(X2
j + Y 2

j) =

((X ′
j)2 + (Y ′

j)2) remains at the constant value S ≈ 2048,
except for a slight roundoff error. On the other hand, the constancy of S is actually a
defect of the method, because the sum of squares should really have the χ2 distribution
with 2048 degrees of freedom. To overcome this problem, the normal deviates actually
delivered to the user should be not Xj but αXj , where α2 = 1

2
(Y1023 +

√
4095)2/S

is a precomputed scale factor. (The quantity 1
2
(Y1023 +

√
4095)2 will be a reasonable

approximation to the χ2 deviate desired.)
References: C. S. Wallace [ACM Trans. on Math. Software 22 (1996), 119Ű127];

R. P. Brent [Lecture Notes in Comp. Sci. 1470 (1998), 1Ű20].

32. (a) This mapping (X ′, Y ′) = f(X,Y) is a one-to-one correspondence from the set
{x, y ≥ 0} to itself such that x′ + y′ = x+ y and dx′ dy′ = dx dy. We have

X ′

X ′ + Y ′ =

X

X + Y
− λ

mod 1,
Y ′

X ′ + Y ′ =

Y

X + Y
+ λ

mod 1.

(b) This mapping is a two-to-one correspondence such that x′ + y′ = x + y and
dx′ dy′ = 2 dx dy.

(c) It suffices to consider the “j-ĆipŤ transformation

X ′ = (. . . xj+2xj+1xjyj−1yj−2yj−3 . . .)2,

Y ′ = (. . . yj+2yj+1yjxj−1xj−2xj−3 . . .)2,

for a Ąxed integer j, and then to compose j-Ćips for j = 0, 1, −1, 2, −2, . . . , noticing
that the joint probability distribution of X ′ and Y ′ converges as |j | → ∞. Each j-Ćip
is one-to-one, with x′ + y′ = x+ y and dx′ dy′ = dx dy.

33. Use U1 as the seed for another random number generator (perhaps a linear con-
gruential generator with a different multiplier); take U2, U3, . . . from that one.

SECTION 3.4.2

1. There are

N−t
n−m

ways to pick n −m records from the last N − t, and

N−t−1
n−m−1

ways to pick n−m− 1 from N − t− 1 after selecting the (t+ 1)st item.

2. Step S3 will never go to step S5 when the number of records left to be examined
is equal to n−m.

3. We should not confuse conditional and unconditional probabilities. The quan-
tity m depends randomly on the selections that took place among the Ąrst t elements;
if we take the average over all possible choices that could have occurred among these
elements, we will Ąnd that (n − m)/(N − t) is exactly n/N on the average. For
example, consider the second element; if the Ąrst element was selected in the sample
(this happens with probability n/N), the second element is selected with probability
(n − 1)/(N − 1); if the Ąrst element was not selected, the second is selected with

3.4.2 ANSWERS TO EXERCISES 591

probability n/(N − 1). The overall probability of selecting the second element is
(n/N)((n− 1)/(N − 1)) + (1− n/N)(n/(N − 1)) = n/N.

4. From the algorithm,

p(m, t+ 1) =

1− n−m
N − t

p(m, t) +
n− (m− 1)

N − t p(m− 1, t).

The desired formula can be proved by induction on t. In particular, p(n,N) = 1.

5. In the notation of exercise 4, the probability that t = k at termination is qk =
p(n, k)− p(n, k − 1) =

k−1
n−1

/

N
n

. The average is

N
k=0 kqk = (N + 1)n/(n+ 1).

6. Similarly,
N

k=0 k(k + 1)qk = (N + 2)(N + 1)n/(n + 2); the variance is therefore
(N + 1)(N − n)n/(n+ 2)(n+ 1)2.

7. Suppose the choice is 1 ≤ x1 < x2 < · · · < xn ≤ N. Let x0 = 0, xn+1 = N + 1.
The choice is obtained with probability p =

1≤t≤N pt, where

pt =

(N − (t− 1)− n+m)/(N − (t− 1)), for xm < t < xm+1;
(n−m)/(N − (t− 1)), for t = xm+1.

The denominator of the product p is N !; the numerator contains the terms N − n,
N − n− 1, . . . , 1 for those t’s that are not x’s, and the terms n, n− 1, . . . , 1 for those
t’s that are x’s. Hence p = (N − n)!n!/N !.

Example: n = 3, N = 8, (x1, x2, x3) = (2, 3, 7); p = 5
8

3
7

2
6

4
5

3
4

2
3

1
2

1
1
.

8. (a) p(0, k) =

N−k
n

/

N
n

=

N−n
k

/

N
k

of the

N
n

samples omit the Ąrst k records.

(b) Set X ← k − 1, where k is minimum with U ≥ Pr(X ≥ k). Thus, start with
X ← 0, p ← N − n, q ← N , R ← p/q, and while U < R set X ← X + 1, p ← p − 1,
q ← q− 1, R← Rp/q. (This method is good when n/N is, say, ≥ 1/5. We can assume
that n/N ≤ 1/2; otherwise it’s better to select N − n unsampled items.)

(c) Pr(min(YN , . . . , YN−n+1) ≥ k) =
n−1

j=0 Pr(YN−j ≥ k) =
n−1

j=0 ((N−j−k)/
(N − j)). (This method is good if, say, n ≤ 5.)

(d) (See exercise 3.4.1Ű29.) The value X ← ⌊N(1 − U1/n)⌋ needs to be rejected
with probability only O(n/N). Precise details are worked out carefully in CACM
27 (1984), 703Ű718, and a practical implementation appears in ACM Trans. Math.
Software 13 (1987), 58Ű67. (This method is good when, say, 5 < n < 1

5
N .)

After skipping X records and selecting the next, we set n← n−1, N ← N−X−1,
and repeat the process until n = 0. A similar approach speeds up the reservoir method;
see ACM Trans. Math. Software 11 (1985), 37Ű57.

9. The reservoir gets seven records: 1, 2, 3, 5, 9, 13, 16. The Ąnal sample consists of
records 2, 5, 16.

10. Delete step R6 and the variable m. Replace the I table by a table of records,
initialized to the Ąrst n records in step R1, and with the new record replacing the Mth
table entry in step R4.

11. Arguing as in Section 1.2.10, which considers the special case n = 1, we see that
the generating function is

G(z) = zn
 1
n+ 1

+
n

n+ 1
z
 2

n+ 2
+

n

n+ 2
z

. . .

N − n
N

+
n

N
z

.

The mean is n +

n<t≤N (n/t) = n(1 + HN −Hn); and the variance turns out to be

n(HN −Hn)− n2(H(2)
N −H(2)

n).

592 ANSWERS TO EXERCISES 3.4.2

12. (Note that π−1 = (btt) . . . (b33)(b22), so we seek an algorithm that goes from the
representation of π to that for π−1.) Set bj ← j for 1 ≤ j ≤ t. Then for j = 2, 3, . . . , t
(in this order), interchange bj ↔ baj . Finally for j = t, . . . , 3, 2 (in this order), set
baj ← bj . (The algorithm is based on the fact that (att)π1 = π1(btt).)

13. Renumbering the deck 0, 1, . . . , 2n − 2, we Ąnd that s takes card number x into
card number (2x) mod (2n−1), while c takes card x into (x−1) mod (2n−1). We have
(c followed by s) = cs = sc2. Therefore any product of c’s and s’s can be transformed
into the form sick. Also 2φ(2n−1) ≡ 1 modulo (2n−1); since sφ(2n−1) and c2n−1 are the
identity permutation, at most (2n−1)φ(2n−1) arrangements are possible. (The exact

number of different arrangements is (2n−1)k, where k is the order of 2 modulo (2n−1).
For if sk = cj , then cj Ąxes the card 0, so sk = cj = identity.) For further details, see
SIAM Review 3 (1961), 293Ű297.

14. (a) Q
♡

. We could have deduced this regardless of where he had moved it, unless
he had put it into one of the Ąrst three or last two positions. (b) 5

♦. Three cut-and-
riffles will produce an intermixture of at most eight cyclically increasing subsequences
axj a(xj+1) mod n . . . a(xj+1−1) mod n; hence the subsequence 6

♦
5
♦

4
♦ is a dead giveaway.

[Several magic tricks are based on the fact that three cut-and-riffles are highly non-
random; see Martin Gardner, Mathematical Magic Show (Knopf, 1977), Chapter 7.]

15. Set Yj ← j for t− n < j ≤ t. Then for j = t, t− 1, . . . , t− n+ 1 do the following
operations: Set k ← ⌊jU⌋+ 1. If k > t−n then set Xj ← Yk and Yk ← Yj ; otherwise if
k = Xi for some i > j (a symbol table algorithm could be used), then set Xj ← Yi and
Yi ← Yj ; otherwise set Xj ← k. (The idea is to let Yt−n+1, . . . , Yj represent Xt−n+1,
. . . , Xj , and if i > j and Xi ≤ t − n also to let Yi represent XXi , in the execution of
Algorithm P. It is interesting to prove the correctness of Dahl’s algorithm. One basic
observation is that, in step P2, Xk ̸= k implies Xk > j, for 1 ≤ k ≤ j.)
16. We may assume that n ≤ 1

2
N, otherwise it suffices to Ąnd the N − n elements not

in the sample. Using a hash table of size 2n, the idea is to generate random numbers
between 1 and N, storing them in the table and discarding duplicates, until n distinct
numbers have been generated. The average number of random numbers generated is
N/N +N/(N − 1) + · · ·+N/(N − n+ 1) < 2n, by exercise 3.3.2Ű10, and the average
time to process each number is O(1). We want to output the results in increasing
order, and this can be done as follows: Using an ordered hash table (exercise 6.4Ű66)
with linear probing, the hash table will appear as if the values had been inserted in
increasing order and the average total number of probes will be less than 5

2
n. Thus

if we use a monotonic hash address such as ⌊2n(k − 1)/N⌋ for the key k, it will be a
simple matter to output the keys in sorted order by making at most two passes over
the table. [See CACM 29 (1986), 366Ű367.]

17. Show inductively that before step j, the set S is a random sample of j−N −1 +n
integers from {1, . . . , j − 1}. [CACM 30 (1987), 754Ű757. Floyd’s method can be used
to speed up the solution to exercise 16. It is essentially dual to Dahl’s algorithm in
exercise 15, which operates for decreasing values of j; see exercise 12.]

18. (a) Oriented trees that essentially merge (1, 2, . . .) with (n, n− 1, . . .), such as

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1617181920212223242526
15

3.5 ANSWERS TO EXERCISES 593

(b) Collections of 1-cycles and 2-cycles. (c) Binary search trees on the keys (1, 2, . . . , n),
with kj the parent of j (or j, at the root); see Section 6.2.2. The number of (k1, . . . , kn)
in each case is (a) 2n−1; (b) tn ≥

√
n!, see 5.1.4Ű(40); (c)

2n
n

1

n+1
. [Case (a) represents

the least common permutation; case (b) represents the most common, when n ≥ 18.
See D. P. Robbins and E. D. Bolker, Æquationes Mathematicæ 22 (1981), 268Ű292;
D. Goldstein and D. Moews, Æquationes Mathematicæ 65 (2003), 3Ű30.]

19. See N. Duffield, C. Lund, and M. Thorup, JACM 54 (2007), 32:1Ű32:37.

SECTION 3.5

1. A b-ary sequence, yes (see exercise 2); a [0 . . 1) sequence, no (since only Ąnitely
many values are assumed by the elements).

2. It is 1-distributed and 2-distributed, but not 3-distributed (the binary number 111
never appears).

3. Repeat the sequence in exercise 3.2.2Ű17, with a period of length 27.

4. If ν1(n), ν2(n), ν3(n), ν4(n) are the counts for the four probabilities, we have
ν1(n)+ν2(n) = ν3(n)+ν4(n) for all n. So the desired result follows by addition of limits.

5. The sequence begins 1
3
, 2

3
, 2

3
, 1

3
, 1

3
, 1

3
, 1

3
, 2

3
, 2

3
, 2

3
, 2

3
, 2

3
, 2

3
, 2

3
, 2

3
, etc. When n = 1, 3,

7, 15, . . . we have ν(n) = 1, 1, 5, 5, . . . so that ν(22k−1− 1) = ν(22k − 1) = (22k− 1)/3;
hence ν(n)/n oscillates between 1

3
and approximately 2

3
, and no limit exists. The

probability is undeĄned. [The methods of Section 4.2.4 show, however, that a numerical
value can meaningfully be assigned to Pr(Un < 1

2
) = Pr(leading digit of the radix-4

representation of n+ 1 is 1), namely log4 2 = 1
2
.]

6. By exercise 4 and induction, Pr(Sj(n) for some j, 1 ≤ j ≤ k) =
k

j=1 Pr(Sj(n)).
As k → ∞, the latter is a monotone sequence bounded by 1, so it converges; and
Pr(Sj(n) for some j ≥ 1) ≥k

j=1 Pr(Sj(n)) for all k. For a counterexample to equal-
ity, it is not hard to arrange things so that Sj(n) is always true for some j, yet
Pr(Sj(n)) = 0 for all j.

7. Let pi =

j≥1 Pr(Sij(n)). The result of the preceding exercise can be generalized
to Pr(Sj(n) for some j ≥ 1) ≥

j≥1 Pr(Sj(n)), for any disjoint statements Sj(n).
So we have 1 = Pr(Sij(n) for some i, j ≥ 1) ≥

i≥1 Pr(Sij(n) for some j ≥ 1) ≥
i≥1 pi = 1, and hence Pr(Sij(n) for some j ≥ 1) = pi. Given ϵ > 0, let I be large

enough so that
I

i=1 pi ≥ 1− ϵ. Let

ϕi(N) = (number of n < N with Sij(n) true for some j ≥ 1)/N.

Clearly
I

i=1 ϕi(N) ≤ 1, and for all large enough N we have
I

i=2 ϕi(N) ≥I
i=2 pi−ϵ;

hence ϕ1(N) ≤ 1−ϕ2(N)−· · ·−ϕI(N) ≤ 1−p2−· · ·−pI +ϵ ≤ 1−(1−ϵ−p1)+ϵ = p1+2ϵ.
This proves that Pr(S1j(n) for some j ≥ 1) ≤ p1 + 2ϵ; hence Pr(S1j(n) for some
j ≥ 1) = p1, and the desired result holds for i = 1. By symmetry of the hypotheses, it
holds for any value of i.

8. Add together the probabilities for j, j + d, j + 2d, . . . , m+ j − d in DeĄnition E.

9. lim supn→∞(an + bn) ≤ lim supn→∞ an + lim supn→∞ bn; hence we Ąnd that

lim sup
n→∞

((y1n − α)2 + · · ·+ (ymn − α)2) ≤ mα2 − 2mα2 +mα2 = 0,

and this can happen only if each (yjn − α) tends to zero.

10. In the evaluation of the sum in Eq. (22).

594 ANSWERS TO EXERCISES 3.5

11. ⟨U2n⟩ is k-distributed if ⟨Un⟩ is (2, 2k − 1)-distributed.

12. Apply Theorem B with f(x1, . . . , xk) = [u≤max(x1, . . . , xk)<v].

13. Let

pk = Pr(Un begins a gap of length k − 1)

= Pr(Un−1 ∈ [α . . β), Un /∈ [α . . β), . . . , Un+k−2 /∈ [α . . β), Un+k−1 ∈ [α . . β))
= p2(1− p)k−1.

It remains to translate this into the probability that f(n)− f(n− 1) = k. Let νk(n) =
(number of j ≤ n with f(j)− f(j − 1) = k); let µk(n) =(number of j ≤ n with Uj the
beginning of a gap of length k−1); and let µ(n) similarly count the number of 1 ≤ j ≤ n
with Uj ∈ [α . . β). We have µk(f(n)) = νk(n), µ(f(n)) = n. As n→∞, we must have
f(n)→∞, hence

νk(n)/n = (µk(f(n))/f(n)) · (f(n)/µ(f(n)))→ pk/p = p(1− p)k−1.

[We have only made use of the fact that the sequence is (k + 1)-distributed.]

14. Let pk = Pr(Un begins a run of length k)

= Pr(Un−1 > Un < · · · < Un+k−1 > Un+k)

=
1

(k+2)!

k+2

1

k+1

1

−

k+2

1

−

k+2

1

+ 1

=
k

(k+1)!
− k+1

(k+2)!

(see exercise 3.3.2Ű13). Now proceed as in the previous exercise to transfer this to
Pr(f(n)−f(n−1) = k). [We have assumed only that the sequence is (k+2)-distributed.]

15. For s, t ≥ 0 let

pst = Pr(Xn−2t−3 =Xn−2t−2 ̸=Xn−2t−1 ̸= · · · ̸=Xn−1 and Xn = · · ·=Xn+s ̸=Xn+s+1)

= 2−s−2t−3;

for t ≥ 0 let qt = Pr(Xn−2t−2 = Xn−2t−1 ̸= · · · ̸= Xn−1) = 2−2t−1. By exercise 7,

Pr(Xn is not the beginning of a coupon set) =

t≥0 qt = 2
3
;

Pr(Xn is the beginning of coupon set of length s+ 2) =

t≥0 pst = 1
3
· 2−s−1.

Now proceed as in exercise 13.

16. (Solution by R. P. Stanley.) Whenever the subsequence S = (b− 1), (b− 2), . . . ,
1, 0, 0, 1, . . . , (b− 2), (b− 1) appears, a coupon set must end at the right of S, since
some coupon set is completed in the Ąrst half of S. We now proceed to calculate the
probability that a coupon set begins at position n by manipulating the probabilities
that the last prior appearance of S ends at position n− 1, n− 2, etc., as in exercise 15.

18. Proceed as in the proof of Theorem A to calculate Pr and Pr.

19. (Solution by T. Herzog.) Yes. For example, apply exercise 33 to the sequence
⟨U⌊n/2⌋⟩, when ⟨Un⟩ satisĄes R4 (or even its weaker version).

20. (a) 2 and 1
2
. (When n increases, we break l(1)

n in half.)
(b) Each new point breaks a single interval into two parts. Let ρ be equal to

maxn−1
k=0 ((n+ k)l(1)

n+k). Then 1 =
n

k=1 l
(k)
n ≤n−1

k=0 l
(1)
n+k ≤

n−1
k=0 ρ/(n+ k) = ρ ln 2 +

O(1/n). So inĄnitely many m have ml(1)
m ≥ 1/ ln 2 +O(1/m).

(c) To verify the hint, let l(k)
2n come from the interval with endpoints Um and Um′ ,

and set ak = max(m−n,m′−n, 1). Then ρ = min2n
m=n+1 ml

(m)
m implies 1 =

2n
k=1 l

(k)
2n ≥2n

k=1 ρ/(n+ ak) ≥ 2ρ
n

k=1 1/(n+ k); hence 2ρ ≤ 1/(H2n −Hn) = 1/ ln 2 +O(1/n).

3.5 ANSWERS TO EXERCISES 595

(d) We have (l(1)
n , . . . , l

(n)
n) = (lg n+1

n
, lg n+2

n+1
, . . . , lg 2n

2n−1
), because the (n + 1)st

point always breaks the largest interval into intervals of length lg 2n+1
2n

and lg 2n+2
2n+1

.
[Indagationes Math. 11 (1949), 14Ű17.]

21. (a) No! We have Pr(Wn < 1
2
) ≥ lim supn→∞ ν(⌈2n−1/2⌉)/⌈2n−1/2⌉ = 2 −

√
2,

and Pr(Wn < 1
2
) ≤ lim infn→∞ ν(2n)/2n =

√
2 − 1, because ν(⌈2n−1/2⌉) = ν(2n) =

1
2

n
k=0(2k+1/2 − 2k) +O(n).
(b, c) See Indagationes Math. 40 (1978), 527Ű541.

22. If the sequence is k-distributed, the limit is zero by integration and Theorem B.
Conversely, note that if f(x1, . . . , xk) has an absolutely convergent Fourier series

f(x1, . . . , xk) =

−∞<c1,...,ck<∞
a(c1, . . . , ck) exp(2πi(c1x1 + · · ·+ ckxk)),

we have limN→∞
1
N

0≤n<N f(Un, . . . , Un+k−1) = a(0, . . . , 0) + ϵr, where

|ϵr| ≤

max{|c1|,...,|ck|}>r

|a(c1, . . . , ck)|,

so ϵr can be made arbitrarily small. Hence this limit is equal to

a(0, . . . , 0) =
 1

0

· · ·
 1

0

f(x1, . . . , xk) dx1 . . . dxk,

and Eq. (8) holds for all sufficiently smooth functions f . The remainder of the proof
shows that the function in (9) can be approximated by smooth functions to any desired
accuracy.

23. (a) This follows immediately from exercise 22. (b) Use a discrete Fourier transform
in an analogous way; see D. E. Knuth, AMM 75 (1968), 260Ű264.

24. (a) Let c be any nonzero integer; we must show, by exercise 22, that

1
N

N−1

n=0

e2πicUn → 0 as N →∞.

This follows because, if K is any positive integer, we have
K−1

k=0

N−1
n=0 e

2πicUn+k =
K
N−1

n=0 e
2πicUn +O(K2). Hence, by Cauchy’s inequality,

1
N2

N−1

n=0

e2πicUn

2

=
1

K2N2

N−1

n=0

K−1

k=0

e2πicUn+k

2

+O

K

N

≤ 1
K2N

N−1

n=0

K−1

k=0

e2πicUn+k

2

+O

K

N

=
1
K

+
2

K2N
ℜ

0≤j<k<K

N−1

n=0

e2πic(Un+k−Un+j)

+O

K

N

→ 1
K
.

(b) When d = 1, exercise 22 tells us that ⟨(α1n + α0) mod 1⟩ is equidistributed
if and only if α1 is irrational. When d > 1, we can use (a) and induction on d.
[Acta Math. 56 (1931), 373Ű456. The result in (b) had previously been obtained in a

596 ANSWERS TO EXERCISES 3.5

more complicated way by H. Weyl, Nachr. Gesellschaft der Wiss. Göttingen, Math.-
Phys. Kl. (1914), 234Ű244. A similar argument proves that the polynomial sequence is
equidistributed if at least one of the coefficients αd, . . . , α1 is irrational.]

25. If the sequence is equidistributed, the denominator in Corollary S approaches 1
12

,
and the numerator approaches the quantity in this exercise.

26. See Math. Comp. 17 (1963), 50Ű54. [Consider also the following example by A. G.
Waterman: Let ⟨Un⟩ be an equidistributed [0 . . 1) sequence and ⟨Xn⟩ an∞-distributed
binary sequence. Let Vn = U⌈√n ⌉ or 1−U⌈√n ⌉ according as Xn is 0 or 1. Then ⟨Vn⟩ is
equidistributed and white, but Pr(Vn = Vn+1) = 1

2
. Let Wn = (Vn − ϵn) mod 1 where

⟨ϵn⟩ is any sequence that decreases monotonically to 0; then ⟨Wn⟩ is equidistributed
and white, yet Pr(Wn < Wn+1) = 3

4
.]

28. Let ⟨Un⟩ be ∞-distributed, and consider the sequence ⟨ 1
2
(Xn + Un)⟩. This is

3-distributed, using the fact that ⟨Un⟩ is (16, 3)-distributed.

29. If x = x1x2 . . . xt is any binary number, we can consider the number νE
x (n) of

times Xp . . . Xp+t−1 = x, where 1 ≤ p ≤ n and p is even. Similarly, let νO
x (n) count

the number of times when p is odd. Let νE
x (n) + νO

x (n) = νx(n). Now

νE
0 (n) =

νE

0∗∗...∗(n) ≈

νO
∗0∗...∗(n) ≈

νE
∗∗0...∗(n) ≈ · · · ≈

νO
∗∗∗...0(n)

where the ν’s in these summations have 2k subscripts, 2k − 1 of which are asterisks
(meaning that they are being summed over Ů each sum is taken over 22k−1 combina-
tions of zeros and ones), and where “≈Ť denotes approximate equality (except for an
error of at most 2k due to end conditions). Therefore we Ąnd that

1
n

2kνE
0 (n) = 1

n
(

ν∗0∗...∗(n) + · · ·+ ν∗∗∗...0(n)) 1

n

x(r(x)− s(x))νE

x (n) +O

1
n

,

where x = x1 . . . x2k contains r(x) zeros in odd positions and s(x) zeros in even posi-
tions. By (2k)-distribution, the parenthesized quantity tends to k(22k−1)/22k = k/2.
The remaining sum is clearly a maximum if νE

x (n) = νx(n) when r(x) > s(x), and
νE

x (n) = 0 when r(x) < s(x). So the maximum of the right-hand side becomes

k

2
+

0≤s<r≤k

(r − s)

k

r

k

s

22k =
k

2
+ k
2k − 1

k

22k.

Now Pr(X2n = 0) ≤ lim supn→∞ νE
0 (2n)/n, so the proof is complete. Note that we

have

r,s

n

r

n

s

max(r, s) = 2n22n−2 + n
2n− 1

n

;

r,s

n

r

n

s

min(r, s) = 2n22n−2 − n
2n− 1

n

.

30. Construct a digraph with 22k nodes labeled (Ex1 . . . x2k−1) and (Ox1 . . . x2k−1),
where each xj is either 0 or 1. Let there be 1 + f(x1, x2, . . . , x2k) directed arcs from
(Ex1 . . . x2k−1) to (Ox2 . . . x2k), and 1 − f(x1, x2, . . . , x2k) directed arcs leading from
(Ox1 . . . x2k−1) to (Ex2 . . . x2k), where f(x1, x2, . . . , x2k) = sign(x1 − x2 + x3 − x4 +
· · · − x2k). We Ąnd that each node has the same number of arcs leading into it
as there are leading out; for example, (Ex1 . . . x2k−1) has 1− f(0, x1, . . . , x2k−1) +
1− f(1, x1, . . . , x2k−1) leading in and 1 + f(x1, . . . , x2k−1, 0) + 1 + f(x1, . . . , x2k−1, 1)
leading out, and f(x, x1, . . . , x2k−1) = −f(x1, . . . , x2k−1, x). Drop all nodes that have
no paths leading either in or out, namely (Ex1 . . . x2k−1) if f(0, x1, . . . , x2k−1) = +1,

3.5 ANSWERS TO EXERCISES 597

E 0 0 0

O 0 0 0

O 1 0 0 E 0 0 1 O 0 1 0 E 1 0 0 O 0 0 1

E 0 1 1O 1 1 0E 1 0 1O 0 1 1E 1 1 0

E 1 1 1

O 1 1 1

1
32

2

6

10

7

3

11

4

16

17

5

31

18

19
20

24

30
21

25

8

26

22

9

27
28

29

23

12 14
13 15

Fig. A–5. Directed graph for the construction in exercise 30.

or (Ox1 . . . x2k−1) if f(1, x1, . . . , x2k−1) = −1. The resulting directed graph is seen to
be connected, since we can get from any node to (E1010 . . . 1) and from this to any
desired node. By Theorem 2.3.4.2G, there is a cyclic path traversing each arc; this path
has length 22k+1, and we may assume that it starts at node (E00 . . . 0). Construct a
cyclic sequence with X1 = · · · = X2k−1 = 0, and Xn+2k−1 = x2k if the nth arc of the
path is from (Ex1 . . . x2k−1) to (Ox2 . . . x2k) or from (Ox1 . . . x2k−1) to (Ex2 . . . x2k).
For example, the graph for k = 2 is shown in Fig. AŰ5; the arcs of the cyclic path are
numbered from 1 to 32, and the cyclic sequence is

(00001000110010101001101110111110)(00001 . . .).

Notice that Pr(X2n = 0) = 11
16

in this sequence. The sequence is clearly (2k)-distrib-
uted, since each (2k)-tuple x1x2 . . . x2k occurs

1 + f(x1, . . . , x2k) + 1− f(x1, . . . , x2k) = 2

times in the cycle. The fact that Pr(X2n = 0) has the desired value comes from the fact
that the maximum value on the right-hand side in the proof of the preceding exercise
has been achieved by this construction.

31. Use Algorithm W with rule R1 selecting the entire sequence. [For a generalization
of this type of nonrandom behavior in R5-sequences, see Jean Ville, Étude Critique de
la Notion de Collectif (Paris: 1939), 55Ű62. Perhaps R6 is also too weak, from this
standpoint, but no such counterexample is presently known.]

32. IfR,R′ are computable subsequence rules, so isR′′ = RR′ deĄned by the following
functions: f ′′

n (x0, . . . , xn−1) = 1 if and only if R deĄnes the subsequence xr1 , . . . , xrk

of x0, . . . , xn−1, where k ≥ 0 and 0 ≤ r1 < · · · < rk < n and f ′
k(xr1 , . . . , xrk) = 1.

Now ⟨Xn⟩RR′ is (⟨Xn⟩R)R′. The result follows immediately.

33. Given ϵ > 0, Ąnd N0 such that N > N0 implies that both |νr(N)/N − p| < ϵ and
|νs(N)/N − p| < ϵ. Then Ąnd N1 such that N > N1 implies that tN is rM or sM for

598 ANSWERS TO EXERCISES 3.5

some M > N0. Now N > N1 implies that

νt(N)
N

− p
 =

νr(Nr) + νs(Ns)

N
− p
 =

νr(Nr)− pNr + νs(Ns)− pNs

Nr +Ns

 < ϵ.

34. For example, if the binary representation of t is (1 0b−2 1 0a1 1 1 0a2 1 . . . 1 0ak)2,
where “0aŤ stands for a sequence of a consecutive zeros, let the rule Rt accept Un if
and only if ⌊bUn−k⌋ = a1, . . . , ⌊bUn−1⌋ = ak.

35. Let a0 = s0 and am+1 = max{sk | 0 ≤ k < 2am}. Construct a subsequence rule
that selects element Xn if and only if n = sk for some k < 2am , when n is in the range
am ≤ n < am+1. Then limm→∞ ν(am)/am = 1

2
.

36. Let b and k be arbitrary but Ąxed integers greater than 1. Let Yn = ⌊bUn⌋. An
arbitrary inĄnite subsequence ⟨Zn⟩ = ⟨Ysn⟩R determined by algorithms S and R (as
in the proof of Theorem M) corresponds in a straightforward but notationally hopeless
manner to algorithms S ′ and R′ that inspect Xt, Xt+1, . . . , Xt+s and/or select Xt,
Xt+1, . . . , Xt+min(k−1,s) of ⟨Xn⟩ if and only if S and R inspect and/or select Ys, where
Us = (0.XtXt+1 . . . Xt+s)2. Algorithms S ′ and R′ determine an inĄnite 1-distributed
subsequence of ⟨Xn⟩ and in fact (as in exercise 32) this subsequence is ∞-distributed
so it is (k, 1)-distributed. Hence we Ąnd that Pr(Zn = a) and Pr(Zn = a) differ from
1/b by less than 1/2k.

[The result of this exercise is true if “R6Ť is replaced consistently by “R4Ť or “R5Ť;
but it is false if “R1Ť is used, since X(n2) might be identically zero.]

37. For n ≥ 2 replace Un2 by 1
2
(Un2 + δn), where δn = 0 or 1 according as the

set {U(n−1)2+1, . . . , Un2−1} contains an even or odd number of elements less than 1
2
.

[Advances in Math. 14 (1974), 333Ű334; see also the Ph.D. thesis of Thomas N. Herzog,
Univ. of Maryland (1975).]

39. See Acta Arithmetica 21 (1972), 45Ű50. The best possible value of c is unknown.

40. Since Fk depends only on B1 . . . Bk, we have P (AP
k , $N) = 1

2
. Let q(B1 . . . Bk) =

Pr(Bk+1 = 1 | B1 . . . Bk), where the probability is taken over all elements of S having
B1 . . . Bk as the Ąrst k bits. Similarly, let qb(B1 . . . Bk) = Pr(Fk = 1 and B′

k+1 = b |
B1 . . . Bk). Then we have Pr(AP

k = 1 | B1 . . . Bk) = Pr((Fk+Bk+1+B′
k+1) mod 2 = 1 |

B1 . . . Bk) = q ·(1
2
−q0 +q1)+(1−q) ·(q0 + 1

2
−q1) = 1

2
−(q0 +q1)+2(qq1 +(1− q)q0) =

1
2
− Pr(Fk = 1 | B1 . . . Bk) + 2 Pr(Fk = 1 and B′

k+1 = Bk+1 | B1 . . . Bk). Hence
Pr(AP

k = 1) =

B1...Bk
Pr(B1 . . . Bk) Pr(AP

k = 1 | B1 . . . Bk) = 1
2
− Pr(Fk = 1) +

Pr(Fk+1 = 1). [See Theorem 4 of Goldreich, Goldwasser, and Micali in JACM 33

(1986), 792Ű807.]

41. Choose k uniformly from {0, . . . , N − 1} and use the construction in the proof of
Lemma P1. Then the proof of P1 shows that A′ will be equal to 1 with probabilityN−1

k=0 (1
2
− pk + pk+1)/N.

42. (a) Let X = X1 + · · · + Xn. Clearly E(X) = nµ; and we have E((X − nµ)2) =
EX2 − n2µ2 = nEX2

j + 2

1≤i<j≤n(EXi)(EXj) − n2µ2 = nEX2
j − nµ2 = nσ2.

Also E((X − nµ)2) =

x≥0 xPr((X − nµ)2 = x) ≥ x≥tnσ2 xPr((X − nµ)2 = x) ≥
x≥tnσ2 tnσ

2 Pr((X − nµ)2 = x) = tnσ2 Pr((X − nµ)2 ≥ tnσ2).
(b) There is a position i where ci ̸= c′i, say ci = 0 and c′i = 1. Then there’s a

position j where cj = 1. For any Ąxed setting of B in the k− 2 rows other than i or j,
we have (cB, c′B) = (d, d′) if and only if rows i and j have particular values; this occurs
with probability 1/22R.

3.6 ANSWERS TO EXERCISES 599

(c) In the notation of Algorithm L, take n = 2k − 1 and Xc = (−1)G(cB+ei); then
µ = s and σ2 = 1− s2. The probability that X =

c ̸=0 Xc is negative is at most the

probability that (X − nµ)2 ≥ n2µ2. By (a) this is at most σ2/(nµ2).

43. The conclusion for Ąxed M would be of no interest, since there obviously exists an
algorithm to factor any Ąxed M (namely, an algorithm that knows the factors). The
theory applies to all algorithms that have short running time, not only to algorithms
that are effectively discoverable.

44. If every one-digit change to a random table yields a random table, all tables are
random (or none are). If we don’t allow degrees of randomness, the answer must
therefore be, “Not always.Ť

SECTION 3.6

1. RANDI STJ 9F Store exit location.
STA 8F Store value of k.
LDA XRAND rA← X.
MUL 7F rAX← aX.
INCX 1009 rX← (aX + c) modm.
JOV *+1 Ensure that overĆow is off.
SLAX 5 rA← (aX + c) modm.
STA XRAND Store X.
MUL 8F rA← ⌊kX/m⌋.
INCA 1 Add 1, so that 1 ≤ Y ≤ k.

9H JMP * Return.
XRAND CON 1 Value of X; X0 = 1.
8H CON 0 Temp storage of k.
7H CON 3141592621 The multiplier a.

2. Putting a random number generator into a program makes the results essentially
unpredictable to the programmer. If the behavior of the machine on each problem were
known in advance, few programs would ever be written. As Turing has said, the actions
of a computer quite often do surprise its programmer, especially when a program is
being debugged.

So the world had better watch out.

7. In fact, you only need the 2-bit values ⌊Xn/216⌋mod 4; see D. E. Knuth, IEEE
Trans. IT-31 (1985), 49Ű52. J. Reeds, Cryptologia 1 (1977), 20Ű26, 3 (1979), 83Ű95,
initiated the study of related problems; see also J. Boyar, J. Cryptology 1 (1989), 177Ű
184. In SICOMP 17 (1988), 262Ű280, Frieze, Håstad, Kannan, Lagarias, and Shamir
discuss general techniques that are useful in problems like this.

8. We can, say, generate X1000000 by making one million successive calls, and compare
it to the correct value (a1000000X0 + (a1000000 − 1)c/(a − 1)) modm, which can also
be expressed as ((a1000000(X0(a − 1) + c) − c) mod (a − 1)m)/(a − 1). The latter can
be evaluated quickly by an independent method (see Algorithm 4.6.3A). For example,
482711000000 mod 2147483647 = 1263606197. Most errors will be detected, because
recurrence (1) is not self-correcting.

9. (a) The values of X0, X1, . . . , X99 are not all even. The polynomial z100 + z37 + 1
is primitive (see Section 3.2.2); hence there is a number h(s) such that P0(z) ≡ zh(s)

600 ANSWERS TO EXERCISES 3.6

(modulo 2 and z100 + z37 + 1). Now zPn+1(z) = Pn(z)−Xnz
37−Xn+63 +Xn+63z

100 +
Xn+100z

37 ≡ Pn(z)+Xn+63(z100 +z37 +1) (modulo 2), so the result holds by induction.
(b) The operations “squareŤ and “multiply by zŤ in ran start change p(z) =

x99z
99 + · · ·+ x1z + x0 to p(z)2 and zp(z), respectively, modulo 2 and z100 + z37 + 1,

because p(z)2 ≡ p(z2). (We consider here only the low-order bits. The other bits are
manipulated in an ad hoc way that tends to preserve and/or enhance whatever disorder
they already have.) Therefore if s = (1sj . . . s1s0)2 we have h(s) = (1s0s1 . . . sj1)2 ·269.

(c) zh(s)−n ≡ zh(s′)−n′

(modulo 2 and z100 + z37 + 1) implies that h(s) − n ≡
h(s′) − n′ (modulo 2100 − 1). Since 269 ≤ h(s) < 2100 − 269, we have |n − n′| ≥
|h(s)− h(s′)| ≥ 270.

[This method of initialization was inspired by comments of R. P. Brent, Proc.
Australian Supercomputer Conf. 5 (1992), 95Ű104, although Brent’s algorithm was
completely different. In general if the lags are k > l, if 0 ≤ s < 2e, and if the separation
parameter t satisĄes t+ e ≤ k, this method of proof shows that |n− n′| ≥ 2t − 1, with
2t − 1 occurring only if {s, s′} = {0, 2e − 1}.]
10. The following code belongs to the simpliĄed language Subset FORTRAN, as de-
Ąned by the American National Standards Institute, except for its use of PARAMETER
statements for readability.

SUBROUTINE RNARRY(AA,N)

IMPLICIT INTEGER (A-Z)

DIMENSION AA(*)

PARAMETER (KK=100)

PARAMETER (LL=37)

PARAMETER (MM=2**30)

COMMON /RSTATE/ RANX(KK)

SAVE /RSTATE/

DO 1 J=1,KK

1 AA(J)=RANX(J)

DO 2 J=KK+1,N

AA(J)=AA(J-KK)-AA(J-LL)

IF (AA(J) .LT. 0) AA(J)=AA(J)+MM

2 CONTINUE

DO 3 J=1,LL

RANX(J)=AA(N+J-KK)-AA(N+J-LL)

IF (RANX(J) .LT. 0) RANX(J)=RANX(J)+MM

3 CONTINUE

DO 4 J=LL+1,KK

RANX(J)=AA(N+J-KK)-RANX(J-LL)

IF (RANX(J) .LT. 0) RANX(J)=RANX(J)+MM

4 CONTINUE

END

SUBROUTINE RNSTRT(SEED)

IMPLICIT INTEGER (A-Z)

PARAMETER (KK=100)

PARAMETER (LL=37)

PARAMETER (MM=2**30)

PARAMETER (TT=70)

3.6 ANSWERS TO EXERCISES 601

PARAMETER (KKK=KK+KK-1)

DIMENSION X(KKK)

COMMON /RSTATE/ RANX(KK)

SAVE /RSTATE/

IF (SEED .LT. 0) THEN

SSEED=MM-1-MOD(-1-SEED,MM)

ELSE

SSEED=MOD(SEED,MM)

END IF

SS=SSEED-MOD(SSEED,2)+2

DO 1 J=1,KK

X(J)=SS

SS=SS+SS

IF (SS .GE. MM) SS=SS-MM+2

1 CONTINUE

X(2)=X(2)+1

SS=SSEED

T=TT-1

10 DO 12 J=KK,2,-1

X(J+J-1)=X(J)

12 X(J+J-2)=0

DO 14 J=KKK,KK+1,-1

X(J-(KK-LL))=X(J-(KK-LL))-X(J)

IF (X(J-(KK-LL)) .LT. 0) X(J-(KK-LL))=X(J-(KK-LL))+MM

X(J-KK)=X(J-KK)-X(J)

IF (X(J-KK) .LT. 0) X(J-KK)=X(J-KK)+MM

14 CONTINUE

IF (MOD(SS,2) .EQ. 1) THEN

DO 16 J=KK,1,-1

16 X(J+1)=X(J)

X(1)=X(KK+1)

X(LL+1)=X(LL+1)-X(KK+1)

IF (X(LL+1) .LT. 0) X(LL+1)=X(LL+1)+MM

END IF

IF (SS .NE. 0) THEN

SS=SS/2

ELSE

T=T-1

END IF

IF (T .GT. 0) GO TO 10

DO 20 J=1,LL

20 RANX(J+KK-LL)=X(J)

DO 21 J=LL+1,KK

21 RANX(J-LL)=X(J)

DO 22 J=1,10

22 CALL RNARRY(X,KKK)

END

602 ANSWERS TO EXERCISES 3.6

11. Floating point arithmetic on 64-bit operands conforming to ANSI/IEEE Standard
754 allows us to compute Un = (Un−100 − Un−37) mod 1 with perfect accuracy for
fractions Un that are integer multiples of 2−53. However, the following program uses
the additive recurrence Un = (Un−100 + Un−37) mod 1 on integer multiples of 2−52

instead, because pipelined computers can subtract an integer part more quickly than
they can branch conditionally on the sign of an intermediate result. The theory of
exercise 9 applies equally well to this sequence.

A FORTRAN translation similar to the code in exercise 10 will generate exactly
the same numbers as this C routine.

#define KK 100 /* the long lag */

#define LL 37 /* the short lag */

#define mod_sum(x,y) (((x)+(y))-(int)((x)+(y))) /* (x+y) mod 1.0 */

double ran_u[KK]; /* the generator state */

void ranf_array(double aa[],int n) { /* aa gets n random fractions */

register int i,j;

for (j=0;j<KK;j++) aa[j]=ran_u[j];

for (;j<n;j++) aa[j]=mod_sum(aa[j-KK],aa[j-LL]);

for (i=0;i<LL;i++,j++) ran_u[i]=mod_sum(aa[j-KK],aa[j-LL]);

for (;i<KK;i++,j++) ran_u[i]=mod_sum(aa[j-KK],ran_u[i-LL]);

}

#define TT 70 /* guaranteed separation between streams */

#define is_odd(s) ((s)&1)

void ranf_start(long seed) { /* do this before using ranf_array */

register int t,s,j;

double u[KK+KK-1];

double ulp=(1.0/(1L<<30))/(1L<<22); /* 2 to the -52 */

double ss=2.0*ulp*((seed&0x3fffffff)+2);

for (j=0;j<KK;j++) {

u[j]=ss; /* bootstrap the buffer */

ss+=ss;

if (ss>=1.0) ss-=1.0-2*ulp; /* cyclic shift of 51 bits */

}

u[1]+=ulp; /* make u[1] (and only u[1]) "odd" */

for (s=seed&0x3fffffff,t=TT-1; t;) {

for (j=KK-1;j>0;j--)

u[j+j]=u[j],u[j+j-1]=0.0; /* "square" */

for (j=KK+KK-2;j>=KK;j--) {

u[j-(KK-LL)]=mod_sum(u[j-(KK-LL)],u[j]);

u[j-KK]=mod_sum(u[j-KK],u[j]);

}

if (is_odd(s)) { /* "multiply by z" */

for (j=KK;j>0;j--) u[j]=u[j-1];

u[0]=u[KK]; /* shift the buffer cyclically */

u[LL]=mod_sum(u[LL],u[KK]);

}

if (s) s>>=1; else t--;

}

3.6 ANSWERS TO EXERCISES 603

for (j=0;j<LL;j++) ran_u[j+KK-LL]=u[j];

for (;j<KK;j++) ran_u[j-LL]=u[j];

for (j=0;j<10;j++) ranf_array(u,KK+KK-1); /* warm everything up */

}

int main() { /* a rudimentary test */

register int m;

double a[2009];

ranf_start(310952);

for (m=0;m<2009;m++)

ranf_array(a,1009);

printf("%.20f\n", ran_u[0]); /* 0.36410514377569680455 */

ranf_start(310952);

for (m=0;m<1009;m++)

ranf_array(a,2009);

printf("%.20f\n", ran_u[0]); /* 0.36410514377569680455 */

return 0;

}

12. A simple linear congruential generator like (1) would fail, becausem would be much
too small. Good results are possible by combining three (not two) such generators,
with multipliers and moduli (157, 32363), (146, 31727), (142, 31657), as suggested by
P. L’Ecuyer in CACM 31 (1988), 747Ű748. However, the best method is probably to
use the C programs ran array and ran start, with the following changes to keep all
numbers in range: Ślong’ becomes Śint’; ŚMM’ is deĄned to be Ś(1U<<15)’; and the type
of variable ss should be unsigned int. This generates 15-bit integers, all of whose bits
are usable. The seed is now restricted to the range [0 . . 32765]. The “rudimentary test
routineŤ will print X1009×2009 = 24130, given the seed 12509.

13. A program for subtract-with-borrow would be very similar to ran array, but slower
because of the carry maintenance. As in exercise 11, Ćoating point arithmetic could
be used with perfect accuracy. It is possible to guarantee disjointness of the sequences
produced from different seeds s by initializing the generator with the (−n)th element
of the sequence, where n = 270s; this requires computing bn mod (bk−bl±1). Squaring
a radix-b number mod bk − bl ± 1 is, however, considerably more complicated than the
analogous operation in program ran start, and for k in a practical range it takes about
k1.6 operations instead of O(k).

Both methods probably generate sequences of the same quality in practice, when
they have roughly the same value of k. The only signiĄcant difference between them
is a better theoretical guarantee and a provably immense period for the subtract-with-
borrow method; the analysis of lagged Fibonacci generators is less complete. Experience
shows that we should not reduce the value of k in subtract-with-borrow just because of
these theoretical advantages. When all is said and done, lagged Fibonacci generators
seem preferable from a practical standpoint; the subtract-with-borrow method is then
valuable chieĆy because of the insight it gives us into the excellent behavior of the
simpler approach.

14. We have Xn+200 ≡ (Xn + Xn+126) (modulo 2); see exercise 3.2.2Ű32. Hence
Yn+100 ≡ Yn +Yn+26 when nmod 100 > 73. Similarly Xn+200 ≡ Xn +Xn+26 +Xn+89;
hence Yn+100 ≡ Yn +Yn+26 +Yn+89 when nmod 100 < 11. Thus Yn+100 is a sum of only
two or three elements of {Yn, . . . , Yn+99}, in 26% + 11% of all cases; a preponderance
of 0s will then tend to make Yn+100 = 0.

604 ANSWERS TO EXERCISES 3.6

More precisely, consider the sequence ⟨u1, u2, . . . ⟩ = ⟨126, 89, 152, 115, 78, . . . , 100,
63, 126, . . . ⟩ where un+1 = un − 37 + 100[un < 100]. Then we have

Xn+200 = (Xn +Xn+v1 + · · ·+Xn+vk−2 +Xuk−1) mod 2,

where vj = uj + (−1)[uj≥100]100; for example, Xn+200 ≡ Xn + Xn+26 + Xn+189 +
Xn+152 ≡ Xn + Xn+26 + Xn+189 + Xn+52 + Xn+115. If the subscripts are all < n + t
and ≥ n+100+ t, we obtain a k-term expression for Yn+100 when nmod 100 = 100− t,
for 1 ≤ t ≤ 100. The case t = 63 is an exception, because Xn + Xn+1 + · · · +
Xn+62 + Xn+163 + Xn+164 + · · · + Xn+199 ≡ 0; in this case Yn+100 is independent of
{Yn, . . . , Yn+99}. The case t = 64 is interesting because it gives the 99-term relation
Yn+100 ≡ Yn+1 + Yn+2 + · · ·+ Yn+99; this tends to be 0 in spite of the large number of
terms, because most of the 100-tuples that have 40 or fewer 1s have even parity.

When there is a k-term relation, the probability that Yn+100 = 1 is

pk =
40

l=0

k

j=1

100− k
l − j

k

j

[j odd]

 40

l=0

100
l

.

The quantity t takes the values 100, 99, . . . , 1, 100, 99, . . . , 1, . . . as bits are printed;
so we Ąnd that the expected number of 1s printed is 106(26p2 + 11p3 + 26p4 + 11p6 +
11p9 +4p12 +4p20 +3p28 +p47 +p74 +p99 +1/2)/100 ≈ 14043. The expected number of
digits printed is 10640

l=0

100

l

/2100 ≈ 28444, so the expected number of 0s is ≈ 14401.

The detectable bias goes away if more elements are discarded. For example, if we
use only 100 elements of ran array(a,300), the probability can be shown to be (26p5 +
22p6+19p10+· · ·)/100; with ran array(a,400) it is worse, (15p3+37p6+15p9+· · ·)/100,
because Xn+400 ≡ Xn +Xn+252. With ran array(a,1009) as recommended in the text
we have (17p7+10p11+2p12+· · ·)/100, which can only be detected by such experiments
if the threshold for printing is raised from 60 to, say, 75; but then the expected number
of outputs is only about 0.28 per million trials.

[This exercise is based on ideas of Y. Kurita, H. Leeb, and M. Matsumoto, com-
municated to the author in 1997.]

15. The following program makes it possible to obtain a new random integer quickly
with the expression ran arr next(), once ran start has been called to get things started:

#define QUALITY 1009 /* recommended quality level for high-res use */

#define KK 100 /* the long lag */

long ran_arr_buf[QUALITY];

long ran_arr_sentinel=-1;

long *ran_arr_ptr=&ran_arr_sentinel; /* the next random number, or -1 */

#define ran_arr_next() (*ran_arr_ptr>=0? *ran_arr_ptr++: ran_arr_cycle())

long ran_arr_cycle()

{

ran_array(ran_arr_buf,QUALITY);

ran_arr_buf[KK]=-1; ran_arr_ptr=ran_arr_buf+1;

return ran_arr_buf[0];

}

Reset ran arr ptr = &ran arr sentinel if ran start is used again.

SECTION 4.1

1. (1010)−2, (1011)−2, (1000)−2, . . . , (11000)−2, (11001)−2, (11110)−2.

4.1 ANSWERS TO EXERCISES 605

2. (a) −(110001)2, −(11.001001001001 . . .)2, (11.00100100001111110110101 . . .)2.
(b) (11010011)−2, (1101.001011001011 . . .)−2, (111.0110010001000000101 . . .)−2.
(c) (11111)3, (10.011011011011 . . .)3, (10.0111111100010111110111111110 . . .)3.
(d) −(9.4)1/10, −(. . . 7582417582413)1/10, (. . . 3462648323979853562951413)1/10.

3. (1010113.2)2i.

4. (a) Between rA and rX. (b) The remainder in rX has radix point between bytes
3 and 4; the quotient in rA has radix point one byte to the right of the least signiĄcant
portion of the register.

5. It has been subtracted from 999 . . . 9 = 10p − 1, instead of from 1000 . . . 0 = 10p.

6. (a, c) 2p−1 − 1, −(2p−1 − 1); (b) 2p−1 − 1, −2p−1.

7. A ten’s complement representation for a negative number x can be obtained by
considering 10n + x (where n is large enough for this to be positive) and extending it
on the left with inĄnitely many nines. The nines’ complement representation can be
obtained in the usual manner. (These two representations are equal for nonterminating
decimals, otherwise the nines’ complement representation has the form . . . (a)99999 . . .
while the ten’s complement representation has the form . . . (a + 1)0000) The
representations may be considered sensible if we regard the value of the inĄnite sum
N = 9 + 90 + 900 + 9000 + · · · as −1, since N − 10N = 9.

See also exercise 31, which considers p-adic number systems. The latter agree with
the p’s complement notations considered here, for numbers whose radix-p representation
is terminating, but there is no simple relation between the Ąeld of p-adic numbers and
the Ąeld of real numbers.

8.

j ajb
j =

j(akj+k−1b

k−1 + · · ·+ akj)bkj .

9. A BAD AD0BE FACADE FADED. [Note: Other possible “number sentencesŤ would be
D0 A DEED A DECADE; A CAD FED A BABE BEEF, C0C0A, C0FFEE; B0B FACED A DEAD D0D0.]

10.
 . . . , a3, a2, a1, a0; a−1, a−2, . . .
. . . , b3, b2, b1, b0; b−1, b−2, . . .

=

. . . , A3, A2, A1, A0; A−1, A−2, . . .
. . . , B3, B2, B1, B0; B−1, B−2, . . .

, if

Aj =

akj+1−1, akj+1−2, . . . , akj

bkj+1−2, . . . , bkj

, Bj = bkj+1−1 . . . bkj ,

where ⟨kn⟩ is any doubly inĄnite sequence of integers with kj+1 > kj and k0 = 0.

11. (The following algorithm works both for addition or subtraction, depending on
whether the plus or minus sign is chosen.)

Start by setting k ← an+1 ← an+2 ← bn+1 ← bn+2 ← 0; then for m = 0, 1,
. . . , n + 2 do the following: Set cm ← am ± bm + k; then if cm ≥ 2, set k ← −1 and
cm ← cm − 2; otherwise if cm < 0, set k ← 1 and cm ← cm + 2; otherwise (namely if
0 ≤ cm ≤ 1), set k ← 0.

12. (a) Subtract ±(. . . a30a10)−2 from ±(. . . a40a20a0)−2 in the negabinary system.
(See also exercise 7.1.3Ű7 for a trickier solution that uses full-word bitwise operations.)
(b) Subtract (. . . b30b10)2 from (. . . b40b20b0)2 in the binary system.

13. (1.909090 . . .)−10 = (0.090909 . . .)−10 = 1
11

.

606 ANSWERS TO EXERCISES 4.1

14. 1 1 3 2 1 [5− 4i]
1 1 3 2 1 [5− 4i]
1 1 3 2 1

1 1 2 0 2
1 2 1 2 3

1 1 3 2 1
1 1 3 2 1

0 1 0 3 1 1 2 0 1 [9− 40i]

15. [− 10
11
. . 1

11
], and the rectangle on the right.

1+2i

5

−4+2i

5

−4−8i

5

1−8i

5

Fig. A–6. Fundamental region
for quater-imaginary numbers.

16. It is tempting to try to do this in a very simple way, by using the rule 2 = (1100)i−1

to take care of carries; but that leads to a nonterminating method if, for example, we
try to add 1 to (11101)i−1 = −1.

The following solution does the job by providing four related algorithms (namely
for adding or subtracting 1 or i). If α is a string of zeros and ones, let αP be a string
of zeros and ones such that (αP)i−1 = (α)i−1 + 1; and let α−P , αQ, α−Q be deĄned
similarly, with −1, +i, and −i respectively in place of +1. Then

(α0)P = α1;

(αx0)−P = α−Qx1;

(αx1)P = αQx0.

(α1)−P = α0.

(α0)Q = αP 1;

(α0)−Q = αQ1;

(α1)Q = α−Q0.

(α1)−Q = α−P 0.

Here x stands for either 0 or 1, and the strings are extended on the left with zeros
if necessary. The processes will clearly always terminate. Hence every number of the
form a+ bi with a and b integers is representable in the i− 1 system.

17. No (in spite of exercise 28); the number −1 cannot be so represented. This can
be proved by constructing a set S as in Fig. 1. We do have the representations −i =
(0.1111 . . .)1+i, i = (100.1111 . . .)1+i.

18. Let S0 be the set of points (a7a6a5a4a3a2a1a0)i−1, where each ak is 0 or 1. (Thus,
S0 is given by the 256 interior dots shown in Fig. 1, if that picture is multiplied by 16.)
We Ąrst show that S is closed: If {y1, y2, . . . } is an inĄnite subset of S, we have
yn =

∞
k=1 ank16−k, where each ank is in S0. Construct a tree whose nodes are

(an1, . . . , anr), for 1 ≤ r ≤ n, and let a node of this tree be an ancestor of another node
if it is an initial subsequence of that node. By the inĄnity lemma (Theorem 2.3.4.3K)
this tree has an inĄnite path (a1, a2, a3, . . .); consequently

k≥1 ak16−k is a limit point

of {y1, y2, . . .} in S.
By the answer to exercise 16, all numbers of the form (a+bi)/16k are representable,

when a and b are integers. Therefore if x and y are arbitrary reals and k ≥ 1, the
number zk = (⌊16kx⌋ + ⌊16ky⌋i)/16k is in S + m + ni for some integers m and n. It
can be shown that S + m + ni is bounded away from the origin when (m,n) ̸= (0, 0).
Consequently if |x| and |y| are sufficiently small and k is sufficiently large, we have
zk ∈ S, and limk→∞ zk = x+ yi is in S.

[B. Mandelbrot named S the “twindragonŤ because he noticed that it is essentially
obtained by joining two “dragon curvesŤ belly-to-belly; see his book Fractals: Form,
Chance, and Dimension (San Francisco: Freeman, 1977), 313Ű314, where he also stated
that the dimension of the boundary is 2 lg x ≈ 1.523627, where x = 1+2x−2 ≈ 1.69562.
Other properties of the dragon curve are described in C. Davis and D. E. Knuth, J. Recr.

4.1 ANSWERS TO EXERCISES 607

Math. 3 (1970), 66Ű81, 133Ű149. The sets S for digits {0, 1} and other complex bases
are illustrated and analyzed by D. Goffinet in AMM 98 (1991), 249Ű255.]

I. Kátai and J. Szabó have shown that the radix −d+i yields a number system with
digits {0, 1, . . . , d2}; see Acta Scient. Math. 37 (1975), 255Ű260. Further properties of
such systems have been investigated by W. J. Gilbert, Canadian J. Math. 34 (1982),
1335Ű1348; Math. Magazine 57 (1984), 77Ű81. Another interesting case, with digits
{0, 1, i,−1,−i} and radix 2 + i, has been suggested by V. Norton [Math. Magazine
57 (1984), 250Ű251]. For studies of number systems based on more general algebraic
integers, see I. Kátai and B. Kovács, Acta Math. Acad. Sci. Hung. 37 (1981), 159Ű164,
405Ű407; B. Kovács, Acta Math. Hung. 58 (1991), 113Ű120; B. Kovács and A. Pethő,
Studia Scient. Math. Hung. 27 (1992), 169Ű172.

19. If m > u or m < l, Ąnd a ∈ D such that m ≡ a (modulo b); the desired
representation will be a representation of m′ = (m − a)/b followed by a. Note that
m > u implies l < m′ < m; m < l implies m < m′ < u; so the algorithm terminates.

[There are no solutions when b = 2. The representation will be unique if and only
if 0 ∈ D; nonunique representation occurs for example when D = {−3,−1, 7}, b = 3,
since (α)3 = (3773α)3. When b ≥ 3 it is not difficult to show that there are exactly
2b−3 solution sets D in which |a| < b for all a ∈ D. Furthermore the set D = {0, 1,
2− ϵ2b

n, 3− ϵ3b
n, . . . , b− 2− ϵb−2b

n, b− 1− bn} gives unique representations, for all
b ≥ 3 and n ≥ 1, when each ϵj is 0 or 1. References: Proc. IEEE Symp. Comp. Arith.
4 (1978), 1Ű9; JACM 29 (1982), 1131Ű1143.]

20. (a) 0.111 . . . = 1.888 . . . = 18. 111
777 . . . = 18 1

7 .
222
666 . . . = · · · = 18 123456

765432 .
777
111 . . .

has nine representations. (b) A “D-fractionŤ .a1a2 . . . always lies between −1/9 and
+71/9. Suppose x has ten or more D-decimal representations. Then for sufficiently
large k, 10kx has ten representations that differ to the left of the decimal point: 10kx =
n1 + f1 = · · · = n10 + f10 where each fj is a D-fraction. By uniqueness of integer
representations, the nj are distinct, say n1 < · · · < n10, hence n10 − n1 ≥ 9; but this
implies f1 − f10 ≥ 9 > 71/9 − (−1/9), a contradiction. (c) Any number of the form
0.a1a2 . . . , where each aj is −1 or 8, equals 1.a′1a

′
2 . . . where a′j = aj + 9 (and it even

has six more representations 18.a′′1a
′′
2 . . . , etc.).

21. We can convert to such a representation by using a method like that suggested in
the text for converting to balanced ternary.

In contrast to the system of exercise 20, zero can be represented in inĄnitely
many ways, all obtained from 1

2
+

k≥1(−4 1
2
) · 10−k (or from the negative of this

representation) by multiplying it by a power of ten. The representations of unity are
1 1

2
− 1

2
∗, 1

2
+ 1

2
∗, 5− 3 1

2
− 1

2
∗, 5− 4 1

2
+ 1

2
∗, 50− 45− 3 1

2
− 1

2
∗, 50− 45− 4 1

2
+ 1

2
∗, etc.,

where ± 1
2
∗ = (±4 1

2
)(10−1 + 10−2 + · · ·). [AMM 57 (1950), 90Ű93.]

22. Given some approximation bn . . . b1b0 with error
n

k=0 bk10k−x > 10−t for t > 0,
we will show how to reduce the error by approximately 10−t. (The process can be
started by Ąnding a suitable

n
k=0 bk10k > x; then a Ąnite number of reductions of

this type will make the error less than ϵ.) Simply choose m > n so large that the
decimal representation of −10mα has a one in position 10−t and no ones in positions
10−t+1, 10−t+2, . . . , 10n. Then 10mα + (a suitable sum of powers of 10 between 10m

and 10n) +
n

k=0 bk10k ≈n
k=0 bk10k − 10−t.

23. The set S = {k≥1 akb
−k | ak ∈ D} is closed as in exercise 18, hence it is

measurable, and in fact it has positive measure. Since bS =

a∈D(a + S), we have
bµ(S) = µ(bS) ≤ a∈D µ(a + S) =

a∈D µ(S) = bµ(S), and we must therefore have

608 ANSWERS TO EXERCISES 4.1

µ((a + S) ∩ (a′ + S)) = 0 when a ̸= a′ ∈ D. Now T has measure zero if 0 ∈ D, since
T is a union of countably many sets of the form bk(n + ((a + S) ∩ (a′ + S))), a ̸= a′,
each of measure zero. On the other hand, as pointed out by K. A. Brakke, every real
number has inĄnitely many representations in the number system of exercise 21.

[The set T cannot be empty, since the real numbers cannot be written as a
countable union of disjoint, closed, bounded sets; see AMM 84 (1977), 827Ű828, and the
more detailed analysis by Petkovšek in AMM 97 (1990), 408Ű411. If D has fewer than b
elements, the set of numbers representable with radix b and digits from D has measure
zero. If D has more than b elements and represents all reals, T has inĄnite measure.]

24. {2a · 10k + a′ | 0 ≤ a < 5, 0 ≤ a′ < 2} or {5a′ · 10k + a | 0 ≤ a < 5, 0 ≤ a′ < 2},
for k ≥ 0. [R. L. Graham has shown that there are no more sets of integer digits
with these properties. And Andrew Odlyzko has shown that the restriction to integers
is superĆuous, in the sense that if the smallest two elements of D are 0 and 1, all
the digits must be integers. Proof. Let S = {k<0 akb

k | ak ∈ D} be the set of
“fractions,Ť and let X = {(an . . . a0)b | ak ∈ D} be the set of “whole numbersŤ; then
[0 . .∞) =

x∈X(x+ S), and (x+ S) ∩ (x′ + S) has measure zero for x ̸= x′ ∈ X. We

have (0 . . 1) ⊆ S, and by induction on m we will prove that (m. .m+ 1) ⊆ xm + S for
some xm ∈ X. Let xm ∈ X be such that (m. .m+ ϵ) ∩ (xm + S) has positive measure
for all ϵ > 0. Then xm ≤ m, and xm must be an integer lest x⌊xm⌋ +S overlap xm +S
too much. If xm > 0, the fact that (m − xm . .m − xm + 1) ∩ S has positive measure
implies by induction that this measure is 1, and (m. .m+1) ⊆ xm +S since S is closed.
If xm = 0 and (m. .m + 1) ̸⊆ S, we must have m < x′m < m + 1 for some x′m ∈ X,
where (m. . x′m) ⊆ S; but then 1 + S overlaps x′m + S. See Proc. London Math. Soc.
(3) 18 (1978), 581Ű595.]

Note: If we drop the restriction 0 ∈ D, there are many other cases, some of which
are quite interesting, especially {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, {1, 2, 3, 4, 5, 51, 52, 53, 54, 55},
and {2, 3, 4, 5, 6, 52, 53, 54, 55, 56}. Alternatively if we allow negative digits we obtain
many other solutions by the method of exercise 19, plus further sets of unusual digits
like {−1, 0, 1, 2, 3, 4, 5, 6, 7, 18} that don’t meet the conditions stated there. It appears
hopeless to Ąnd a nice characterization of all solutions with negative digits.

25. A positive number whose radix-b representation has m consecutive (b− 1)’s to the
right of the radix point must have the form c/bn + (bm − θ)/bn+m, where c and n are
nonnegative integers and 0 < θ ≤ 1. So if u/v has this form, we Ąnd that bm+nu =
bmcv+ bmv− θv. Therefore θv is an integer that is a multiple of bm. But 0 < θv ≤ v <
bm. [There can be arbitrarily long runs of other digits a, if 0 ≤ a < b− 1, for example
in the representation of a/(b− 1).]

26. The proof of “sufficiencyŤ is a straightforward generalization of the usual proof for
base b, by successively constructing the desired representation. The proof of “necessityŤ
breaks into two parts: If βn+1 is greater than

k≤n ckβk for some n, then βn+1 − ϵ

has no representation for small ϵ. If βn+1 ≤

k≤n ckβk for all n, but equality does
not always hold, we can show that there are two representations for certain x. [See
Transactions of the Royal Society of Canada, series III, 46 (1952), 45Ű55.]

27. Proof by induction on |n|: If n is even we must take e0 > 0, and the result follows by
induction, since n/2 has a unique such representation. If n is odd, we must take e0 = 0,
and the problem reduces to representing −(n−1)/2; if the latter quantity is either zero
or one, there is obviously only one way to proceed, otherwise it has a unique reversing
representation by induction. [A. D. Booth, in Quarterly J. Mechanics and Applied
Math. 4 (1951), 236Ű240, applied this principle to two’s complement multiplication.]

4.1 ANSWERS TO EXERCISES 609

[It follows that every positive integer has exactly two such representations with
decreasing exponents e0 > e1 > · · · > et: one with t even and the other with t odd.]

28. A proof like that of exercise 27 may be given. Note that a + bi is a multiple of
1 + i by a complex integer if and only if a+ b is even. This representation is intimately
related to the dragon curve discussed in the answer to exercise 18.

29. It suffices to prove that any collection {T0, T1, T2, . . .} satisfying Property B may
be obtained by collapsing some collection {S0, S1, S2, . . .}, where S0 = {0, 1, . . . , b− 1}
and all elements of S1, S2, . . . are multiples of b.

To prove the latter statement, we may assume that 1 ∈ T0 and that there is a
least element b > 1 such that b /∈ T0. We will prove, by induction on n, that if nb /∈ T0,
then nb + 1, nb + 2, . . . , nb + b − 1 are not in any of the Tj ’s; but if nb ∈ T0, then so
are nb+ 1, . . . , nb+ b− 1. The result then follows with S1 = {nb | nb ∈ T0}, S2 = T1,
S3 = T2, etc.

If nb /∈ T0, then nb = t0 + t1 + · · · , where t1, t2, . . . are multiples of b; hence
t0 < nb is a multiple of b. By induction, (t0 + k) + t1 + t2 + · · · is the representation of
nb+ k, for 0 < k < b; hence nb+ k /∈ Tj for any j.

If nb ∈ T0 and 0 < k < b, let the representation of nb + k be t0 + t1 + · · · . We
cannot have tj = nb+ k for j ≥ 1, lest nb+ b have two representations (b− k) + · · ·+
(nb+k)+ · · · = (nb)+ · · ·+ b+ · · · . By induction, t0 mod b = k; and the representation
nb = (t0 − k) + t1 + · · · implies that t0 = nb+ k.

[Reference: Nieuw Archief voor Wiskunde (3) 4 (1956), 15Ű17. A Ąnite analog of
this result was derived by P. A. MacMahon, Combinatory Analysis 1 (1915), 217Ű223.]

30. (a) Let Aj be the set of numbers n whose representation does not involve bj ; then
by the uniqueness property, n ∈ Aj if and only if n + bj /∈ Aj . Consequently we have
n ∈ Aj if and only if n + 2bj ∈ Aj . It follows that, for j ̸= k, n ∈ Aj ∩ Ak if and
only if n + 2bjbk ∈ Aj ∩ Ak. Let m be the number of integers n ∈ Aj ∩ Ak such
that 0 ≤ n < 2bjbk. Then this interval contains exactly m integers that are in Aj

but not Ak, exactly m in Ak but not Aj , and exactly m in neither Aj nor Ak; hence
4m = 2bjbk. Therefore bj and bk cannot both be odd. But at least one bj is odd, of
course, since odd numbers can be represented.

(b) According to (a) we can renumber the b’s so that b0 is odd and b1, b2, . . . are
even; then 1

2
b1, 1

2
b2, . . . must also be a binary basis, and the process can be iterated.

(c) If it is a binary basis, we must have positive and negative dk’s for arbitrarily
large k, in order to represent ±2n when n is large. Conversely, the following algorithm
may be used:

S1. [Initialize.] Set k ← 0.

S2. [Done?] If n = 0, terminate.

S3. [Choose.] If n is even, set n ← n/2. Otherwise include 2kdk in the represen-
tation, and set n← (n− dk)/2.

S4. [Advance k.] Increase k by 1 and return to S2.

At each step the choice is forced; furthermore step S3 always decreases |n| unless
n = −dk, hence the algorithm must terminate.

(d) Two iterations of steps S2ŰS4 in the preceding algorithm will change 4m→ m,
4m + 1 → m + 5, 4m + 2 → m + 7, 4m + 3 → m − 1. Arguing as in exercise 19, we
need only show that the algorithm terminates for −2 ≤ n ≤ 8; all other values of n are
moved toward this interval. In this range 3 → −1 → −2 → 6 → 8 → 2 → 7 → 0 and
4→ 1→ 5→ 6. Thus 1 = 7 · 20 − 13 · 21 + 7 · 22 − 13 · 23 − 13 · 25 − 13 · 29 + 7 · 210.

610 ANSWERS TO EXERCISES 4.1

Note: The choice d0, d1, d2, . . . = 5, −3, 3, 5, −3, 3, . . . also yields a binary basis.
For further details see Math. Comp. 18 (1964), 537Ű546; A. D. Sands, Acta Math.
Acad. Sci. Hung. 8 (1957), 65Ű86.

31. (See also the related exercises 3.2.2Ű11, 4.3.2Ű13, 4.6.2Ű22.)
(a) By multiplying numerator and denominator by suitable powers of 2, we may

assume that u = (. . . u2u1u0)2 and v = (. . . v2v1v0)2 are 2-adic integers, where v0 = 1.
The following computational method now determines w, using the notation u(n) to
stand for the integer (un−1 . . . u0)2 = umod 2n when n > 0:

Let w0 = u0 and w(1) = w0. For n = 1, 2, . . . , assume that we have found
an integer w(n) = (wn−1 . . . w0)2 such that u(n) ≡ v(n)w(n) (modulo 2n). Then we
have u(n+1) ≡ v(n+1)w(n) (modulo 2n), hence wn = 0 or 1 according as the quantity
(u(n+1) − v(n+1)w(n)) mod 2n+1 is 0 or 2n.

(b) Find the smallest integer k such that 2k ≡ 1 (modulo 2n+ 1). Then we have
1/(2n+ 1) = m/(2k − 1) for some integer m, 1 ≤ m < 2k−1. Let α be the k-bit binary
representation of m; then (0.ααα . . .)2 times 2n + 1 is (0.111 . . .)2 = 1 in the binary
system, and (. . . ααα)2 times 2n+ 1 is (. . . 111)2 = −1 in the 2-adic system.

(c) If u is rational, say u = m/(2en) where n is odd and positive, the 2-adic
representation of u is periodic, because the set of numbers with periodic expansions
includes −1/n and is closed under the operations of negation, division by 2, and
addition. Conversely, if uN+λ = uN for all sufficiently large N , the 2-adic number
(2λ − 1)2ru is an integer for all sufficiently large r.

(d) The square of any number of the form (. . . u2u11)2 has the form (. . . 001)2,
hence the condition is necessary. To show the sufficiency, we can use the following
procedure to compute v =

√
n when nmod 8 = 1:

H1. [Initialize.] Set m ← (n− 1)/8, k ← 2, v0 ← 1, v1 ← 0, v ← 1. (During this
algorithm we will have v = (vk−1 . . . v1v0)2 and v2 = n− 2k+1m.)

H2. [Transform.] If m is even, set vk ← 0, m ← m/2. Otherwise set vk ← 1,
m← (m− v − 2k−1)/2, v ← v + 2k.

H3. [Advance k.] Increase k by 1 and return to H2.

32. A more general result appears in Math. Comp. 29 (1975), 84Ű86.

33. Let Kn be the set of all such n-digit numbers, so that kn = |Kn|. If S and T are
any Ąnite sets of integers, we shall say S ∼ T if S = T + x for some integer x, and we
shall write kn(S) = |Kn(S)|, where Kn(S) is the family of all subsets of Kn that are
∼ S. When n = 0, we have kn(S) = 0 unless |S| ≤ 1, since zero is the only “0-digitŤ
number. When n ≥ 1 and S = {s1, . . . , sr}, we have

Kn(S) =

0≤j<b

(a1,...,ar)

{{t1b+ a1, . . . , trb+ ar}

{t1, . . . , tr} ∈ Kn−1({(si + j − ai)/b | 1 ≤ i ≤ r})},
where the inner union is over all sequences of digits (a1, . . . , ar) satisfying the con-
dition ai ≡ si + j (modulo b) for 1 ≤ i ≤ r. In this formula we require ti − ti′ =
(si − ai)/b− (si′ − ai′)/b for 1 ≤ i < i′ ≤ r, so that the naming of subscripts is
uniquely determined. By the principle of inclusion and exclusion, therefore, we have
kn(S) =

0≤j<b

m≥1(−1)m−1f(S,m, j), where f(S,m, j) is the number of sets of

integers that can be expressed as {t1b + a1, . . . , trb + ar} in the manner above for
m different sequences (a1, . . . , ar), summed over all choices of m different sequences
(a1, . . . , ar). Given m different sequences (a(l)

1 , . . . , a
(l)
r) for 1 ≤ l ≤ m, the number of

4.2.1 ANSWERS TO EXERCISES 611

such sets is kn−1({(si + j − a(l)
i)/b | 1 ≤ i ≤ r, 1 ≤ l ≤ m}). Thus there is a collection

of sets T (S) such that

kn(S) =

T∈T (S)

cT kn−1(T),

where each cT is an integer. Furthermore if T ∈ T (S), its elements are near those
of S; we have minT ≥ (minS − maxD)/b and max T ≤ (maxS + b − 1 − minD)/b.
Thus we obtain simultaneous recurrence relations for the sequences ⟨kn(S)⟩, where S
runs through the nonempty integer subsets of [l . . u+ 1], in the notation of exercise 19.
Since kn = kn(S) for any one-element set S, the sequence ⟨kn⟩ appears among these
recurrences. The coefficients cT can be computed from the Ąrst few values of kn(S),
so we can obtain a system of equations deĄning the generating functions kS(z) =
kn(S)zn = [|S| ≤ 1] + z

T∈T (S) cT kT (z). [See J. Algorithms 2 (1981), 31Ű43.]

For example, when D = {−1, 0, 3} and b = 3 we have l = − 3
2

and u = 1
2
, so the

relevant sets S are {0}, {0, 1}, {−1, 1}, and {−1, 0, 1}. The corresponding sequences
for n ≤ 3 are ⟨1, 3, 8, 21⟩, ⟨0, 1, 3, 8⟩, ⟨0, 0, 1, 4⟩, and ⟨0, 0, 0, 0⟩; so we obtain

k0(z) = 1 + z(3k0(z)− k01(z)),
k01(z) = zk0(z),

k02(z) = z(k01(z) + k02(z)),
k012(z) = 0,

and k(z) = 1/(1− 3z + z2). In this case kn = F2n+2 and kn({0, 2}) = F2n−1 − 1.

34. There is exactly one string αn on the symbols {1, 0, 1} such that n = (αn)2 and
αn has no leading zeros or consecutive nonzeros: α0 is empty, otherwise α2n = αn0,
α4n+1 = αn01, α4n−1 = αn01. Any string that represents n can be converted to
this “canonical signed bit representationŤ by using the reductions 11 → 01, 11 → 01,
01 . . . 11 → 10 . . . 01, 01 . . . 11 → 10 . . . 01, and inserting or deleting leading zeros.
Since these reductions do not increase the number of nonzero digits, αn has the fewest.
[Advances in Computers 1 (1960), 244Ű260.] The number of nonzero digits in αn,
denoted by ν(n), is the number of 1s in the ordinary representation that are immediately
preceded by 0 or by the substring 00(10)k1 for some k ≥ 0. (See exercise 7.1.3Ű35.)

A generalization to radix b > 2 has been given by J. von zur Gathen, Computa-
tional Complexity 1 (1991), 360Ű394.

SECTION 4.2.1

1. N = (62,+.60 22 14 00); h = (37,+.66 26 10 00). Note that the quantity 10h
would be (38,+.06 62 61 00).

2. bE−q(1− b−p), b−q−p; bE−q(1− b−p), b−q−1.

3. When e does not have its smallest value, the most signiĄcant “oneŤ bit (which
appears in all such normalized numbers) need not appear in the computer word.

4. (51,+.10209877); (50,+.12346000); (53,+.99999999). The third answer would be
(54,+.10000000) if the Ąrst operand had been (45,−.50000000), since b/2 is odd.

5. If x ∼ y and m is an integer then mb + x ∼ mb + y. Furthermore x ∼ y implies
x/b ∼ y/b, by considering all possible cases. Another crucial property is that x and y
will round to the same integer, whenever bx ∼ by.

Now if b−p−2Fv ̸= fv we must have (bp+2fv) mod b ̸= 0; hence the transformation
leaves fv unchanged unless eu − ev ≥ 2. Since u was normalized, it is nonzero and
|fu + fv| > b−1 − b−2 ≥ b−2: The leading nonzero digit of fu + fv must be at most
two places to the right of the radix point, and the rounding operation will convert

612 ANSWERS TO EXERCISES 4.2.1

bp+j(fu + fv) to an integer, where j ≤ 1. The proof will be complete if we can show
that bp+j+1(fu + fv) ∼ bp+j+1(fu + b−p−2Fv). By the previous paragraph, we have
bp+2(fu + fv) ∼ bp+2fu + Fv = bp+2(fu + b−p−2Fv), which implies the desired result
for all j ≤ 1. Similar remarks apply to step M2 of Algorithm M.

Note that, when b > 2 is even, such an integer Fv always exists; but when b = 2
we require p+3 bits (let 2Fv be an integer). When b is odd, an integer Fv always exists
except in the case of division by Algorithm M, when a remainder of 1

2
b is possible.

6. (Consider the case eu = ev, fu = −fv in Program A.) Register A retains its
previous sign, as in ADD.

7. Say that a number is normalized if and only if it is zero or its fraction part lies in the
range 1

6
< |f | < 1

2
. A (p + 1)-place accumulator suffices for addition and subtraction;

rounding (except during division) is equivalent to truncation. A very pleasant system
indeed! We might represent numbers with excess-zero exponent, inserted between the
Ąrst and subsequent digits of the fraction, and complemented if the fraction is negative,
so that the order of Ąxed point numbers is preserved.

8. (a) (06,+.12345679) ⊕ (06,−.12345678), (01,+.10345678) ⊕ (00,−.94000000);
(b) (99,+.87654321)⊕ itself, (99,+.99999999)⊕ (91,+.50000000).

9. a = c = (−50,+.10000000), b = (−41,+.20000000), d = (−41,+.80000000), y =
(11,+.10000000).

10. (50,+.99999000)⊕ (55,+.99999000).

11. (50,+.10000001)⊗ (50,+.99999990).

12. If 0 < |fu| < |fv|, then |fu| ≤ |fv| − b−p; hence 1/b < |fu/fv| ≤ 1 − b−p/|fv| <
1− b−p. If 0 < |fv| ≤ |fu|, we have 1/b ≤ |fu/fv|/b ≤ ((1− b−p)/(1/b))/b = 1− b−p.

13. See J. Michael Yohe, IEEE Trans. C-22 (1973), 577Ű586; see also exercise 4.2.2Ű24.

14. FIX STJ 9F Float-to-Ąx subroutine:
STA TEMP

LD1 TEMP(EXP) rI1← e.
SLA 1 rA← ± f f f f 0.
JAZ 9F Is input zero?
DEC1 1

CMPA =0=(1:1) If leading byte is zero,
JE *-4 shift left again.
ENN1 -Q-4,1

J1N FIXOVFLO Is magnitude too large?
ENTX 0

SRAX 0,1

CMPX =1//2=

JL 9F

JG *+2

JAO 9F The ambiguous case becomes odd, since b/2 is even.
STA *+1(0:0) Round, if necessary.
INCA 1 Add ±1 (overĆow is impossible).

9H JMP * Exit from subroutine.

15. FP STJ EXITF Fractional part subroutine:
JOV OFLO Ensure that overĆow is off.
STA TEMP TEMP← u.

4.2.2 ANSWERS TO EXERCISES 613

ENTX 0

SLA 1 rA← fu.
LD2 TEMP(EXP) rI2← eu.
DEC2 Q

J2NP *+3

SLA 0,2 Remove integer part of u.
ENT2 0

JANN 1F

ENN2 0,2 Fraction is negative: Find
SRAX 0,2 its complement.
ENT2 0

JXNZ *+3

JAZ *+2

INCA 1

ADD WM1 Add word size minus one.
1H INC2 Q Prepare to normalize the answer.

JMP NORM Normalize, round, and exit.
8H EQU 1(1:1)

WM1 CON 8B-1,8B-1(1:4) Word size minus one

16. If |c| ≥ |d|, then set r ← d ⊘ c, s ← c ⊕ (r ⊗ d); x ← (a ⊕ (b ⊗ r)) ⊘ s, y ←
(b ⊖ (a ⊗ r)) ⊘ s. Otherwise set r ← c ⊘ d, s ← d ⊕ (r ⊗ c); x ← ((a ⊗ r) ⊕ b) ⊘ s,
y ← ((b ⊗ r) ⊖ a) ⊘ s. Then x + iy is the desired approximation to (a + bi)/(c + di).
Computing s′ ← 1⊘ s and multiplying twice by s′ may be better than dividing twice
by s. As with (11), gradual underĆow is recommended for the calculation of r unless
special precautions are taken. [CACM 5 (1962), 435. Other algorithms for complex
arithmetic and function evaluation are given by P. Wynn, BIT 2 (1962), 232Ű255. For
|a+ bi|, see Paul Friedland, CACM 10 (1967), 665.]

17. See Robert Morris, IEEE Trans. C-20 (1971), 1578Ű1579. Error analysis is more
difficult with such systems, so interval arithmetic is correspondingly more desirable.

18. For positive numbers: Shift fraction left until f1 = 1, then round, then if the
fraction is zero (rounding overĆow) shift it right again. For negative numbers: Shift
fraction left until f1 = 0, then round, then if the fraction is zero (rounding underĆow)
shift it right again.

19. (73−(5−[rounding digits are b
2

0 . . . 0])(6−[magnitude is rounded up])+[ev<eu]+
[Ąrst rounding digit is b

2
]−[fraction overĆow]−10[result zero]+7[rounding overĆow]+

7N + (3 + (16 + [result negative])[opposite signs])X)u, where N is the number of left
shifts during normalization, and X is the condition that rX receives nonzero digits and
there is no fraction overĆow. The maximum time of 84u occurs for example when

u = −50 01 00 00 00, v = +45 49 99 99 99, b = 100.

[The average time, considering the data in Section 4.2.4, will be less than 47u.]

SECTION 4.2.2

1. u⊖ v = u⊕−v = −v ⊕ u = −(v ⊕−u) = −(v ⊖ u).

2. u ⊕ x ≥ u ⊕ 0 = u, by (8), (2), (6); hence by (8) again, (u ⊕ x) ⊕ v ≥ u ⊕ v.
Similarly, (8) and (6) together with (2) imply that (u⊕ x)⊕ (v ⊕ y) ≥ (u⊕ x)⊕ v.

3. u = 8.0000001, v = 1.2500008, w = 8.0000008; (u ⊗ v) ⊗ w = 80.000064, yet
u⊗ (v ⊗ w) = 80.000057.

614 ANSWERS TO EXERCISES 4.2.2

4. Yes; let 1/u ≈ v = w, where v is large.

5. Not always; in decimal arithmetic take u = v = 9.

6. (a) Yes. (b) Only for b+ p ≤ 4 (try u = 1− b−p). But see exercise 27.

7. If u and v are consecutive Ćoating binary numbers, u⊕ v = 2u or 2v. When it is
2v we often have u 2⃝⊕ v 2⃝ < 2v 2⃝. For example, u = (.10 . . . 001)2, v = (.10 . . . 010)2,
u⊕ v = 2v, and u 2⃝+ v 2⃝ = (.10 . . . 011)2.

8. (a) ∼, ≈; (b) ∼, ≈; (c) ∼, ≈; (d) ∼; (e) ∼.

9. |u−w| ≤ |u−v|+|v−w| ≤ ϵ1 min(beu−q, bev−q)+ϵ2 min(bev−q, bew−q) ≤ ϵ1b
eu−q +

ϵ2b
ew−q ≤ (ϵ1 + ϵ2) max(beu−q, bew−q). The result cannot be strengthened in general,

since for example we might have eu very small compared to both ev and ew, and this
means that u− w might be fairly large under the hypotheses.

10. We have (.a1 . . . ap−1ap)b⊗(.9 . . . 99)b = (.a1 . . . ap−1(ap−1))b if ap ≥ 1 and a1 ≥ b
2
;

here “9Ť stands for b−1. Furthermore, (.a1 . . . ap−1ap)b⊗(1.0 . . . 0)b = (.a1 . . . ap−10)b,
so the multiplication is not monotone if b > 2 and ap ≥ 1 + [a1≥ b

2
]. But when b = 2,

this argument can be extended to show that multiplication is monotone; obviously the
“certain computerŤ had b > 2.

11. Without loss of generality, let x be an integer, 0 ≤ x < bp. If e ≤ 0, then t = 0. If
0 < e ≤ p, then x− t has at most p+ 1 digits, the least signiĄcant being zero. If e > p,
then x − t = 0. [The result holds also under the weaker hypothesis |t| < be; in that
case we might have x− t = be when e > p.]

12. Assume that eu = p, ev ≤ 0, u > 0. Case 1, u > bp−1. Case (1a), w = u + 1,
v ≥ 1

2
, ev = 0. Then u′ = u or u + 1, v′ = 1, u′′ = u, v′′ = 1 or 0. Case (1b),

w = u, |v| ≤ 1
2
. Then u′ = u, v′ = 0, u′′ = u, v′′ = 0. If |v| = 1

2
and more general

rounding is permitted we might also have u′ = u± 1, v′′ = ∓1. Case (1c), w = u− 1,
v ≤ − 1

2
, ev = 0. Then u′ = u or u − 1, v′ = −1, u′′ = u, v′′ = −1 or 0. Case 2,

u = bp−1. Case (2a), w = u + 1, v ≥ 1
2
, ev = 0. Like (1a). Case (2b), w = u, |v| ≤ 1

2
,

u′ ≥ u. Like (1b). Case (2c), w = u, |v| ≤ 1
2
, u′ < u. Then u′ = u − j/b where

v = j/b+ v1 and |v1| ≤ 1
2
b−1 for some positive integer j ≤ 1

2
b; we have v′ = 0, u′′ = u,

v′′ = j/b. Case (2d), w < u. Then w = u− j/b where v = −j/b + v1 and |v1| ≤ 1
2
b−1

for some positive integer j ≤ b; we have (v′, u′′) = (−j/b, u), and (u′, v′′) = (u,−j/b)
or (u−1/b, (1− j)/b), the latter case only when v1 = 1

2
b−1. In all cases u⊖u′ = u−u′,

v ⊖ v′ = v − v′, u⊖ u′′ = u− u′′, v ⊖ v′′ = v − v′′, round(w − u− v) = w − u− v.

13. Since round(x) = 0 if and only if x = 0, we want to Ąnd a large set of integer
pairs (m,n) with the property that m⊘ n is an integer if and only if m/n is. Assume
that |m|, |n| < bp. If m/n is an integer, then m ⊘ n = m/n is also. Conversely if
m/n is not an integer, but m ⊘ n is, we have 1/|n| ≤ |m ⊘ n −m/n| < 1

2
|m/n|b1−p,

hence |m| > 2bp−1. Our answer is therefore to require |m| ≤ 2bp−1 and 0 < |n| < bp.
(Slightly weaker hypotheses are also possible.)

14. |(u ⊗ v) ⊗ w − uvw| ≤ |(u ⊗ v) ⊗ w − (u ⊗ v)w| + |w| |u ⊗ v − uv| ≤ δ(u⊗v)⊗w +
bew−q−lwδu⊗v ≤ (1 + b)δ(u⊗v)⊗w. Now |e(u⊗v)⊗w − eu⊗(v⊗w)| ≤ 2, so we may take
ϵ = 1

2
(1 + b)(1 + b2)b−p.

15. u ≤ v implies that (u⊕ u)⊘ 2 ≤ (u⊕ v)⊘ 2 ≤ (v ⊕ v)⊘ 2, so the condition holds
for all u and v if and only if it holds whenever u = v. For base b = 2, the condition
is therefore always satisĄed (barring overĆow); but for b > 2 there are numbers v ̸= w
such that v ⊕ v = w ⊕ w, hence the condition fails. [On the other hand, the formula
u ⊕ ((v ⊖ u) ⊘ 2) does give a midpoint in the correct range. Proof. It suffices to

4.2.2 ANSWERS TO EXERCISES 615

show that u + (v ⊖ u) ⊘ 2 ≤ v, i.e., (v ⊖ u) ⊘ 2 ≤ v − u; and it is easy to verify that
round(1

2
round(x)) ≤ x for all x ≥ 0.]

16. (a) Exponent changes occur at

10 = 11.111111,

91 = 101.11110,

901 =
1001.1102,

9001 = 10001.020,

90009 = 100000.91,

900819 = 1000000.0; therefore

1000000 = 1109099.1.
(b) After calculating

n
k=1 1.2345679 = 1224782.1, (14) tries to take the square

root of −.0053187053. But (15) and (16) are exact in this case. [If, however, xk =
1+⌊(k−1)/2⌋10−7, (15) and (16) have errors of order n. See Chan and Lewis, CACM 22

(1979), 526Ű531, for further results on the accuracy of standard deviation calculations.]
(c) We need to show that u⊕ ((v ⊖ u)⊘ k) lies between u and v; see exercise 15.

17. FCMP STJ 9F Floating point comparison subroutine:
JOV OFLO Ensure that overĆow is off.
STA TEMP

LDAN TEMP v ← −v.
(Copy here lines 07Ű20 of Program 4.2.1A.)
LDX FV(0:0) Set rX to zero with the sign of fv.
DEC1 5

J1N *+2

ENT1 0 Replace large difference in exponents
SRAX 5,1 by a smaller one.
ADD FU rA← difference of operands.
JOV 7F Fraction overĆow: not ∼.
CMPA EPSILON(1:5)

JG 8F Jump if not ∼.
JL 6F Jump if ∼.
JXZ 9F Jump if ∼.
JXP 1F If |rA| = ϵ, check sign of rA× rX.
JAP 9F Jump if ∼. (rA ̸= 0)
JMP 8F

7H ENTX 1

SRC 1 Make rA nonzero with same sign.
JMP 8F

1H JAP 8F Jump if not ∼. (rA ̸= 0)
6H ENTA 0

8H CMPA =0= Set comparison indicator.
9H JMP * Exit from subroutine.

19. Let γk = δk = ηk = σk = 0 for k > n. It suffices to Ąnd the coefficient of x1,
since the coefficient of xk will be just the same except with all subscripts increased
by k − 1. Let (fk, gk) denote the coefficient of x1 in (sk − ck, ck) respectively. Then
f1 = (1+η1)(1−γ1−γ1δ1−γ1σ1−δ1σ1−γ1δ1σ1), g1 = (1+δ1)(1+η1)(γ1+σ1+γ1σ1), and
fk = (1−γkσk−δkσk−γkδkσk)fk−1+(γk−ηk+γkδk+γkηk+γkδkηk+γkηkσk+δkηkσk+
γkδkηkσk)gk−1, gk = σk(1+γk)(1+δk)fk−1− (1+δk)(γk +γkηk +ηkσk +γkηkσk)gk−1,
for 1 < k ≤ n. Thus fn = 1 + η1 − γ1 + (4n terms of 2nd order) + (higher order
terms) = 1 + η1 − γ1 + O(nϵ2) is sufficiently small. [The Kahan summation formula
was Ąrst published in CACM 8 (1965), 40; see also Proc. IFIP Congress (1971), 2,
1232, and further developments by K. Ozawa, J. Information Proc. 6 (1983), 226Ű230.
Kahan observed that sn⊖cn =

n
k=1(1+ϕk)xk where |ϕk| ≤ 2ϵ+O((n+1−k)ϵ2). For

another approach to accurate summation, see R. J. Hanson, CACM 18 (1975), 57Ű58.

616 ANSWERS TO EXERCISES 4.2.2

When some x’s are negative and others are positive, we may be able to match them
advantageously, as explained by T. O. Espelid, SIAM Review 37 (1995), 603Ű607. See
also G. Bohlender, IEEE Trans. C-26 (1977), 621Ű632, for algorithms that compute
round(x1 + · · ·+ xn) and round(x1 . . . xn) exactly, given {x1, . . . , xn}.]
20. By the proof of Theorem C, (47) fails for ew = p only if |v| + 1

2
≥ |w − u| ≥

bp−1 + b−1; hence |fu| ≥ |fv| ≥ 1 − (1
2
b − 1)b−p. We now Ąnd that a necessary

and sufficient condition for failure is that |fw| is essentially rounded to 2 during the
normalization process (actually to 2/b after scaling right for fraction overĆow) Ů a very
rare case indeed!

21. (Solution by G. W. Veltkamp.) Let c = 2⌈p/2⌉ + 1; we may assume that p ≥ 2,
so c is representable. First compute u′ = u ⊗ c, u1 = (u ⊖ u′) ⊕ u′, u2 = u ⊖ u1;
similarly, v′ = v ⊗ c, v1 = (v ⊖ v′) ⊕ v′, v2 = v ⊖ v1. Then set w ← u ⊗ v, w′ ←
(((u1 ⊗ v1 ⊖ w)⊕ (u1 ⊗ v2))⊕ (u2 ⊗ v1))⊕ (u2 ⊗ v2).

It suffices to prove this when u, v > 0 and eu = ev = p, so that u and v are
integers ∈ [2p−1 . . 2p). Then u = u1 + u2 where 2p−1 ≤ u1 ≤ 2p, u1 mod 2⌈p/2⌉ = 0,
and |u2| ≤ 2⌈p/2⌉−1; similarly v = v1 + v2. The operations during the calculation of w′

are exact, because w − u1v1 is a multiple of 2p−1 such that |w − u1v1| ≤ |w − uv| +
|u2v1 + u1v2 + u2v2| ≤ 2p−1 + 2p+⌈p/2⌉ + 2p−1; and similarly |w − u1v1 − u1v2| ≤
|w − uv|+ |u2v| < 2p−1 + 2⌈p/2⌉−1+p, where w − u1v1 − u1v2 is a multiple of 2⌈p/2⌉.

22. We may assume that bp−1 ≤ u, v < bp. If uv ≤ b2p−1, then x1 = uv − r where
|r| ≤ 1

2
bp−1, hence x2 = round(u − r/v) = x0 (since |r/v| ≤ 1

2
bp−1/bp−1 ≤ 1

2
, and

equality implies v = bp−1 hence r = 0). If uv > b2p−1, then x1 = uv − r where
|r| ≤ 1

2
bp, hence x1/v = u − r/v < bp + 1

2
b and x2 ≤ bp. If x2 = bp, then x3 = x1

(since the condition (bp − 1
2
)v ≤ x1 implies that x1 is a multiple of bp, and we have

x1 < bp(v + 1
2
)). If x2 < bp and x1 > b2p−1, then let x2 = x1/v + q where |q| ≤ 1

2
; we

have x3 = round(x1 + qv) = x1. Finally if x2 < bp, x1 = b2p−1, and x3 < b2p−1, then
x4 = x2 by the Ąrst case above. This situation arises, for example, when b = 10, p = 2,
u = 19, v = 55, x1 = 1000, x2 = 18, x3 = 990.

23. If u ≥ 0 or u ≤ −1 we have u
X
mod 1 = umod 1, so the identity holds. If

−1 < u < 0, then u
X
mod 1 = u⊕ 1 = u+ 1 + r where |r| ≤ 1

2
b−p; the identity holds if

and only if round(1 + r) = 1, so it always holds if we round to even. With the text’s
rounding rule the identity fails if and only if b is a multiple of 4 and −1 < u < 0 and
umod 2b−p = 3

2
b−p (for example, p = 3, b = 8, u = −(.0124)8).

24. Let u = [ul . . ur], v = [vl . . vr]. Then u⊕v = [ul▽+ vl . . ur△+ vr], where x△+ y = y△+ x,
x△+ +0 = x for all x, x△+ −0 = x for all x ̸= +0, x△+ +∞ = +∞ for all x ̸= −∞,
and x△+ −∞ needn’t be deĄned; x▽+ y = −((−x)△+ (−y)). If x ⊕ y would overĆow
in normal Ćoating point arithmetic because x + y is too large, then x△+ y is +∞ and
x▽+ y is the largest representable number.

For subtraction, let u⊖ v = u⊕ (−v), where −v = [−vr . .−vl].
Multiplication is somewhat more complicated. The correct procedure is to let

u⊗v = [min(ul▽× vl, ul▽× vr, ur▽× vl, ur▽× vr) . . max(ul△× vl, ul△× vr, ur△× vl, ur△× vr)],
where x△× y = y △× x, x△× (−y) = −(x▽× y) = (−x)△× y; x△× +0 = (+0 for x > 0,
−0 for x < 0); x△× −0 = −(x△× +0); x△× +∞ = (+∞ for x > +0, −∞ for x < −0).
(It is possible to determine the min and max simply by looking at the signs of ul, ur,
vl, and vr, thereby computing only two of the eight products, except when ul < 0 < ur

and vl < 0 < vr; in the latter case we compute four products, and the answer is
[min(ul▽× vr, ur ▽× vl) . . max(ul△× vl, ur △× vr)].)

4.2.3 ANSWERS TO EXERCISES 617

Finally, u ⊘ v is undeĄned if vl < 0 < vr; otherwise we use the formulas for
multiplication with vl and vr replaced respectively by v−1

r and v−1
l , where x△× y−1 =

x△/ y, x▽× y−1 = x▽/ y, (±0)−1 = ±∞, (±∞)−1 = ±0.
[See E. R. Hansen, Math. Comp. 22 (1968), 374Ű384. An alternative scheme, in

which division by 0 gives no error messages and intervals may be neighborhoods of ∞,
has been proposed by W. M. Kahan. In Kahan’s scheme, for example, the reciprocal
of [−1 . .+1] is [+1 . .−1], and an attempt to multiply an interval containing 0 by
an interval containing ∞ yields [−∞ . .+∞], the set of all numbers. See Numerical
Analysis, Univ. Michigan Engineering Summer Conf. Notes No. 6818 (1968).]

25. Cancellation reveals previous errors in the computation of u and v. For example,
if ϵ is small, we often get poor accuracy when computing f(x + ϵ) ⊖ f(x), because
the rounded calculation of f(x + ϵ) destroys much of the information about ϵ. It is
desirable to rewrite such formulas as ϵ⊗ g(x, ϵ), where g(x, ϵ) = (f(x+ ϵ)− f(x))/ϵ is
Ąrst computed symbolically. Thus, if f(x) = x2 then g(x, ϵ) = 2x + ϵ; if f(x) =

√
x

then g(x, ϵ) = 1/(
√
x+ ϵ+

√
x).

26. Let e = max(eu, eu′), e′ = max(ev, ev′), e′′ = max(eu⊕v, eu′⊕v′), and assume that
q = 0. Then (u⊕v)− (u′⊕v′) ≤ u+v+ 1

2
be′′−p−u′−v′ + 1

2
be′′−p ≤ ϵbe + ϵbe′ + be′′−p,

and e′′ ≥ max(e, e′). Hence u⊕ v ∼ u′ ⊕ v′ (2ϵ+ b−p).
If b = 2 this estimate can be improved to 1.5ϵ + b−p. For ϵ + b−p is an upper

bound if u − u′ and v − v′ have opposite signs, and in the other case we cannot have
e = e′ = e′′.

27. The stated identity is a consequence of the fact that 1 ⊘ (1 ⊘ u) = u whenever
b−1 ≤ fu ≤ b−1/2. If the latter were false, there would be integers x and y such that
bp−1 < x < bp−1/2 and either y− 1

2
≤ b2p−1/x < b2p−1/(x− 1

2
) ≤ y or y ≤ b2p−1/(x+ 1

2
) <

b2p−1/x ≤ y + 1
2
. But that is clearly impossible unless we have x(x + 1

2
) > b2p−1, yet

the latter condition implies y = ⌊bp−1/2⌋ = x.

28. See Math. Comp. 32 (1978), 227Ű232.

29. When b = 2 and p = 1 and x > 0, we have round(x) = 2e(x) where e(x) = ⌊lg 4
3
x⌋.

Let f(x) = xα and let t(n) = ⌊⌊αn+lg 4
3
⌋/α+lg 4

3
⌋. Then ĥ(2e) = 2t(e). When α = .99

we Ąnd ĥ(2e) = 2e−1 for 41 < e ≤ 58.

31. According to the theory in Section 4.5.3, the convergents to the continued frac-
tion

√
3 = 1 + //1, 2, 1, 2, . . . // are pn/qn = Kn+1(1, 1, 2, 1, 2, . . .)/Kn(1, 2, 1, 2, . . .).

These convergents are excellent approximations to
√

3, hence 3q2
n ≈ p2

n; in fact,
3q2

n − p2
n = 2 − 3(nmod 2). The example given is 2p2

31 + (3q2
31 − p2

31)(3q2
31 + p2

31) =
2p2

31 − (p2
31 − 1 + p2

31) = 1. Floating point subtraction of p2
31 from 3q2

31 yields zero,
unless we can represent 3q2

31 almost perfectly; subtracting p4
31 from 9q4

31 generally gives
rounding errors much larger than 2p2

31. Similar examples can be based on continued
fraction approximations to any algebraic number.

32. (J. Ziegler Hunts, 2014.) a = 1/2 and bmod 1 = 1/4.

SECTION 4.2.3

1. First, (wm, wl) = (.573, .248); then wmvl/vm = .290; so the answer is (.572, .958).
This in fact is the correct result to six decimals.

2. The answer is not affected, since the normalization routine truncates to eight
places and can never look at this particular byte position. (Scaling to the left occurs
at most once during normalization, since the inputs are normalized.)

618 ANSWERS TO EXERCISES 4.2.3

3. OverĆow obviously cannot occur at line 09, since we are adding two-byte quantities,
or at line 22, since we are adding four-byte quantities. In line 30 we are computing the
sum of three four-byte quantities, so this cannot overĆow. Finally, in line 32, overĆow
is impossible because the product fufv must be less than unity.

4. Insert ŚJOV OFLO; ENT1 0’ between lines 03 and 04. Also replace lines 21Ű22 by
ŚADD TEMP(ABS); JNOV *+2; INC1 1’, and change lines 28Ű31 to ŚSLAX 5; ADD TEMP;

JNOV *+2; INC1 1; ENTX 0,1; SRC 5’. This adds Ąve lines of code and only 1, 2, or 3
units of execution time.

5. Insert ŚJOV OFLO’ after line 06. Change lines 23, 31, 39 respectively to ŚSRAX 0,1’,
ŚSLAX 5’, ŚADD ACC’. Between lines 40 and 41, insert ŚDEC2 1; JNOV DNORM; INC2 1;

INCX 1; SRC 1’. (It’s tempting to remove the ŚDEC2 1’ in favor of ŚSTZ EXPO’, but then
ŚINC2 1’ might overĆow rI2!) This adds six lines of code; the running time decreases

by 3u, unless there is fraction overĆow, when it increases by 7u.

6. DOUBLE STJ EXITDF Convert to double precision:
ENTX 0 Clear rX.
STA TEMP

LD2 TEMP(EXP) rI2← e.
INC2 QQ-Q Correct for difference in excess.
STZ EXPO EXPO← 0.
SLAX 1 Remove exponent.
JMP DNORM Normalize and exit.

SINGLE STJ EXITF Convert to single precision:
JOV OFLO Ensure that overĆow is off.
STA TEMP

LD2 TEMP(EXPD) rI2← e.
DEC2 QQ-Q Correct for difference in excess.
SLAX 2 Remove exponent.
JMP NORM Normalize, round, and exit.

7. All three routines give zero as the answer if and only if the exact result would
be zero, so we need not worry about zero denominators in the expressions for relative
error. The worst case of the addition routine is pretty bad: Visualized in decimal
notation, if the inputs are 1.0000000 and −.99999999, the answer is b−7 instead of b−8;
thus the maximum relative error δ1 is b− 1, where b is the byte size.

For multiplication and division, we may assume that both operands are positive
and have the same exponent QQ. The maximum error in multiplication is readily
bounded by considering Fig. 4: When uv ≥ 1/b, we have 0 ≤ uv − u ⊗ v < 3b−9 +
(b − 1)b−9, so the relative error is bounded by (b + 2)b−8. When 1/b2 ≤ uv < 1/b,
we have 0 ≤ uv − u ⊗ v < 3b−9, so the relative error in this case is bounded by
3b−9/uv ≤ 3b−7. We take δ2 to be the larger of the two estimates, namely 3b−7.

Division requires a more careful analysis of Program D. The quantity actually
computed by the subroutine is α − δ − bϵ((α − δ′′)(β − δ′) − δ′′′) − δn where α =
(um + ϵul)/bvm, β = vl/bvm, and the nonnegative truncation errors (δ, δ′, δ′′, δ′′′) are
respectively less than (b−10, b−5, b−5, b−6); Ąnally δn (the truncation during normal-
ization) is nonnegative and less than either b−9 or b−8, depending on whether scaling
occurs or not. The actual value of the quotient is α/(1 + bϵβ) = α− bϵαβ + b2αβ2δ′′′′,
where δ′′′′ is the nonnegative error due to truncation of the inĄnite series (2); here
δ′′′′ < ϵ2 = b−10, since it is an alternating series. The relative error is therefore the
absolute value of (bϵδ′ + bϵδ′′β/α+ bϵδ′′′/α)− (δ/α+ bϵδ′δ′′/α+ b2β2δ′′′′ + δn/α), times

4.2.4 ANSWERS TO EXERCISES 619

(1 + bϵβ). The positive terms in this expression are bounded by b−9 + b−8 + b−8,
and the negative terms are bounded by b−8 + b−12 + b−8 plus the contribution by the
normalizing phase, which can be about b−7 in magnitude. It is therefore clear that the
potentially greatest part of the relative error comes during the normalization phase,
and that δ3 = (b+ 2)b−8 is a safe upper bound for the relative error.

8. Addition: If eu ≤ ev + 1, the entire relative error occurs during the normalization
phase, so it is bounded above by b−7. If eu ≥ ev +2, and if the signs are the same, again
the entire error may be ascribed to normalization; if the signs are opposite, the error
due to shifting digits out of the register is in the opposite direction from the subsequent
error introduced during normalization. Both of these errors are bounded by b−7, hence
δ1 = b−7. (This is substantially better than the result in exercise 7.)

Multiplication: An analysis as in exercise 7 gives δ2 = (b+ 2)b−8.

SECTION 4.2.4

1. Since fraction overĆow can occur only when the operands have the same sign,
this is the probability that fraction overĆow occurs divided by the probability that the
operands have the same sign, namely, 7%/(1

2
(91%)) ≈ 15%.

3. log10 2.4− log10 2.3 ≈ 1.84834%.

4. The pages would be uniformly gray.

5. The probability that 10fU ≤ r is (r − 1)/10 + (r − 1)/100 + · · · = (r − 1)/9. So
in this case the leading digits are uniformly distributed; for example, the leading digit
is 1 with probability 1

9
.

6. The probability that there are three leading zero bits is log16 2 = 1
4
; the probability

that there are two leading zero bits is log16 4− log16 2 = 1
4
; and similarly for the other

two cases. The “averageŤ number of leading zero bits is 1 1
2
, so the “averageŤ number of

“signiĄcant bitsŤ is p+ 1
2
. The worst case, p− 1 bits, occurs however with rather high

probability. In practice, it is usually necessary to base error estimates on the worst case,
since a chain of calculations is only as strong as its weakest link. In the error analysis of
Section 4.2.2, the upper bound on relative rounding error for Ćoating hex is 21−p. In the
binary case we can have p + 1 signiĄcant bits in all normalized numbers (see exercise
4.2.1Ű3), with relative rounding errors bounded by 2−1−p. Extensive computational
experience conĄrms that Ćoating binary produces signiĄcantly more accurate results
than the equivalent Ćoating hex, even when the binary numbers have a precision of
p bits instead of p+ 1.

Tables 1 and 2 show that hexadecimal arithmetic can be done a little faster, since
fewer cycles are needed when scaling to the right or normalizing to the left. But this
fact is insigniĄcant compared to the substantial advantages of b = 2 over other radices
(see also Theorem 4.2.2C and exercises 4.2.2Ű13, 15, 21), especially since Ćoating binary
can be made as fast as Ćoating hex with only a tiny increase in total processor cost.

7. For example, suppose that

m(F (10km ·5k)−F (10km)) = log 5k/ log 10k and also
that

m(F (10km · 4k)− F (10km)) = log 4k/ log 10k; then

m

(F (10km · 5k)− F (10km · 4k)) = log10

5
4

for all k. But now let ϵ be a small positive number, and choose δ > 0 so that F (x) < ϵ
for 0 < x < δ, and choose M > 0 so that F (x) > 1 − ϵ for x > M. We can take k so

620 ANSWERS TO EXERCISES 4.2.4

large that 10−k · 5k < δ and 4k > M ; hence by the monotonicity of F,

m

(F (10km·5k)−F (10km·4k))

≤

m<0

(F (10km·5k)−F (10k(m−1)·5k))+

m≥0

(F (10k(m+1)·4k)−F (10km·4k))

= F (10−k ·5k)+1−F (4k) < 2ϵ.

8. When s > r, P0(10ns) is 1 for small n, and 0 when ⌊10ns⌋ > ⌊10nr⌋. The least n
for which this happens may be arbitrarily large, so no uniform bound can be given
for N0(ϵ) independent of s. (In general, calculus textbooks prove that such a uniform
bound would imply that the limit function S0(s) would be continuous, and it isn’t.)

9. Let q1, q2, . . . be such that P0(n) = q1

n−1

0

+ q2

n−1

1

+ · · · for all n. It follows

that Pm(n) = 1−mq1

n−1

0

+ 2−mq2

n−1

1

+ · · · for all m and n.

10. When 1 < r < 10 the generating function C(z) has simple poles at the points
1 + wn, where wn = 2πni/ln 10, hence

C(z) =
log10 r − 1

1− z +

n̸=0

1 + wn

wn

e−wn ln r − 1
(ln 10)(z − 1− wn)

+ E(z)

where E(z) is analytic in the entire plane. Thus if θ = arctan(2π/ln 10),

cm = log10 r − 1− 2
ln 10

n>0

ℜ

e−wn ln r − 1
wn(1 + wn)m

+ em

= log10 r − 1 +
sin(mθ + 2π log10 r)− sin(mθ)

π(1 + 4π2/(ln 10)2)m/2
+O

1

(1 + 16π2/(ln 10)2)m/2

.

11. When (logb U) mod 1 is uniformly distributed in [0 . . 1), so is (logb 1/U) mod 1 =
(1− logb U) mod 1.

12. We have

h(z) =
 z

1/b

f(x) dx g(z/bx)/bx+
 1

z

f(x) dx g(z/x)/x;

consequently

h(z)− l(z)
l(z)

=
 z

1/b

f(x) dx
g(z/bx)− l(z/bx)

l(z/bx)
+
 1

z

f(x) dx
g(z/x)− l(z/x)

l(z/x)
.

Since f(x) ≥ 0, |(h(z) − l(z))/l(z)| ≤ z

1/b
f(x) dxA(g) +

 1

z
f(x) dxA(g) for all z,

hence A(h) ≤ A(g). By symmetry, A(h) ≤ A(f). [Bell System Tech. J. 49 (1970),
1609Ű1625.]

13. Let X = (logb U) mod 1 and Y = (logb V) mod 1, so that X and Y are inde-
pendently and uniformly distributed in [0 . . 1). No left shift is needed if and only if
X + Y ≥ 1, and that occurs with probability 1/2.

(Similarly, the probability is 1/2 that Ćoating point division by Algorithm 4.2.1M
needs no normalization shifts; this analysis needs only the weaker assumption that both
of the operands independently have the same distribution.)

4.2.4 ANSWERS TO EXERCISES 621

14. For convenience, the calculations are shown here
for b = 10. If k = 0, the probability of a carry is

 1
ln 10

2

1≤x,y≤10

x+y≥10

dx

x

dy

y
.

(See Fig. AŰ7.) The value of the integral is
 10

0

dy

y

 10

10−y

dx

x
− 2

 1

0

dy

y

 10

10−y

dx

x
,

and

0
0 10

0

1

10

0 1

Fig. A–7.

 t

0

dy

y
ln
 1

1− y/10

=
 t

0

 1
10

+
y

200
+

y2

3000
+ · · ·

dy =
t

10
+

t2

400
+

t3

9000
+ · · · .

(The latter integral is essentially a “dilogarithm.Ť) Hence the probability of a carry
when k = 0 is (1/ln 10)2(π2/6 − 2

n≥1 1/n210n) ≈ .27154. [Note: When b = 2 and

k = 0, fraction overĆow always occurs, so this derivation proves that

n≥1 1/n22n =
π2/12− (ln 2)2/2.]

When k > 0, the probability is

 1
ln 10

2
 101−k

10−k

dy

y

 10

10−y

dx

x
=
 1

ln 10

2

n≥1

1
n210nk

−

n≥1

1
n210n(k+1)

.

Thus when b = 10, fraction overĆow should occur with approximate probability .272p0+
.017p1 + .002p2 + · · · . When b = 2 the corresponding Ągures are p0 + .655p1 + .288p2 +
.137p3 + .067p4 + .033p5 + .016p6 + .008p7 + .004p8 + .002p9 + .001p10 + · · · .

Now if we use the probabilities from Table 1, dividing by .91 to eliminate zero
operands and assuming that the probabilities are independent of the operand signs, we
predict a probability of about 14 percent when b = 10, instead of the 15 percent in
exercise 1. For b = 2, we predict about 48 percent, while the table yields 44 percent.
These results are certainly in agreement within the limits of experimental error.

15. When k = 0, the leading digit is 1 if and only if there is a carry. (It is possible
for fraction overĆow and subsequent rounding to yield a leading digit of 2, when b ≥ 4,
but we are ignoring rounding in this exercise.) The probability of fraction overĆow is
approximately .272, as shown in the previous exercise, and .272 < log10 2.

When k > 0, the leading digit is 1 with probability

 1
ln 10

2
 101−k

10−k

dy

y

1≤x<2−y

or 10−y≤x<10

dx

x

<
 1

ln 10

2
 101−k

10−k

dy

y

1≤x≤2

dx

x

= log10 2.

16. To prove the hint [which is due to Landau, Prace Matematyczno-Fizyczne 21

(1910), 103Ű113], assume Ąrst that lim sup an = λ > 0. Let ϵ = λ/(λ+4M) and choose
N so that |a1 + · · · + an| < 1

10
ϵλn for all n > N. Let n > N/(1 − ϵ), n > 5/ϵ be such

that an > 1
2
λ. Then, by induction, an−k ≥ an − kM/(n − ϵn) > 1

4
λ for 0 ≤ k < ϵn,

and

n−ϵn<k≤n ak ≥ 1
4
λ(ϵn− 1) > 1

5
λϵn. But

n−ϵn<k≤n ak

 =

1≤k≤n ak −

1≤k≤n−ϵn ak

 ≤ 1

5
ϵλn

since n− ϵn > N. A similar contradiction applies if lim inf an < 0.

622 ANSWERS TO EXERCISES 4.2.4

Assuming that Pm+1(n) → λ as n → ∞, let ak = Pm(k) − λ. If m > 0, the ak

satisfy the hypotheses of the hint (see Eq. 4.2.2Ű(15)), since 0 ≤ Pm(k) ≤ 1; hence
Pm(n)→ λ.

17. See J. Math. Soc. Japan 4 (1952), 313Ű322. (The fact that harmonic prob-
ability extends ordinary probability follows from a theorem of Cesàro, [Atti della
Reale Accademia dei Lincei, Rendiconti (4) 4 (1888), 452Ű457]. Persi Diaconis [Ph.D.
thesis, Harvard University, 1974] has shown among other things that the deĄnition of
probability by repeated averaging is weaker than harmonic probability, in the following
precise sense: If limm→∞ lim infn→∞ Pm(n) = limm→∞ lim supn→∞ Pm(n) = λ then
the harmonic probability is λ. On the other hand the statement “10k2 ≤ n < 10k2+k

for some integer k > 0Ť has harmonic probability 1
2
, while repeated averaging never

settles down to give it any particular probability.)

18. Let p(a) = P (La) and p(a, b) =

a≤k<b p(k) for 1 ≤ a < b. Since La = L10a ∪
L10a+1 ∪ · · · ∪ L10a+9 for all a, we have p(a) = p(10a, 10(a + 1)) by (i). Furthermore
since P (S) = P (2S) + P (2S + 1) by (i), (ii), (iii), we have p(a) = p(2a, 2(a + 1)). It
follows that p(a, b) = p(2m10na, 2m10nb) for all m,n ≥ 0.

If 1 < b/a < b′/a′, then p(a, b) ≤ p(a′, b′). The reason is that there exist integers
m, n, m′, n′ such that 2m′

10n′

a′ ≤ 2m10na < 2m10nb ≤ 2m′

10n′

b′ as a consequence
of the fact that log 2/log 10 is irrational, hence we can apply (v). (See exercise 3.5Ű22
with k = 1 and Un = n log 2/log 10.) In particular, p(a) ≥ p(a+ 1), and it follows that
p(a, b)/p(a, b+ 1) ≥ (b− a)/(b+ 1− a). (See Eq. 4.2.2Ű(15).)

Now we can prove that p(a, b) = p(a′, b′) whenever b/a = b′/a′; for p(a, b) =
p(10na, 10nb) ≤ cnp(10na, 10nb − 1) ≤ cnp(a′, b′), for arbitrarily large values of n,
where cn = 10n(b− a)/(10n(b− a)− 1) = 1 +O(10−n).

For any positive integer n we have p(an, bn) = p(an, ban−1) + p(ban−1, b2an−2) +
· · · + p(bn−1a, bn) = np(a, b). If 10m ≤ an ≤ 10m+1 and 10m′ ≤ bn ≤ 10m′+1, then
p(10m+1, 10m′

) ≤ p(an, bn) ≤ p(10m, 10m′+1) by (v). But p(1, 10) = 1 by (iv), hence
p(10m, 10m′

) = m′ −m for all m′ ≥ m. We conclude that ⌊log10 b
n⌋ − ⌊log10 a

n⌋ − 1 ≤
np(a, b) ≤ ⌊log10 b

n⌋+ ⌊log10 a
n⌋+ 1 for all n, and p(a, b) = log10(b/a).

[This exercise was inspired by D. I. A. Cohen, who proved a slightly weaker result
in J. Combinatorial Theory A20 (1976), 367Ű370.]

19. Equivalently, ⟨(log10 Fn) mod 1⟩ is equidistributed in the sense of DeĄnition 3.5B.
Since log10 Fn = n log10 ϕ − log10

√
5 + O(ϕ−2n) by 1.2.8Ű(14), this is equivalent to

equidistribution of ⟨n log10 ϕ⟩, which follows from ex. 3.5Ű22. [Fibonacci Quarterly 5

(1967), 137Ű140.] The same proof shows that the sequences ⟨bn⟩ obey the logarithmic
law for all integers b > 1 that aren’t powers of 10 [Yaglom and Yaglom, Challeng-
ing Problems with Elementary Solutions (Moscow: 1954; English translation, 1964),
Problem 91b].

Notes: Many other sequences of integers have this property. For example, Persi
Diaconis [Annals of Probability 5 (1977), 72Ű81] showed that ⟨n!⟩ is one such sequence,
and that binomial coefficients obey the logarithmic law too, in the sense that

lim
n→∞

1
n+ 1

n

k=0

[10f(nk)<r] = log10 r .

P. Schatte [Math. Nachrichten 148 (1990), 137Ű144] proved that the denominators
of continued fraction approximations have logarithmic fraction parts, whenever the
partial quotients have a repeating pattern with polynomial variation as in exercise

4.3.1 ANSWERS TO EXERCISES 623

4.5.3Ű16. One interesting open question is whether the sequence ⟨2!, (2!)!, ((2!)!)!, . . . ⟩
has logarithmic fraction parts; see J. H. Conway and M. J. T. Guy, Eureka 25 (1962),
18Ű19.

SECTION 4.3.1

2. If the ith number to be added is ui = (ui(n−1) . . . ui1ui0)b, use Algorithm A with
step A2 changed to the following:

A2′. [Add digits.] Set

wj ← (u1j + · · ·+ umj + k) mod b, and k ← ⌊(u1j + · · ·+ umj + k)/b⌋.

(The maximum value of k is m− 1, so step A3 would have to be altered if m > b.)

3. ENN1 N 1
JOV OFLO 1 Ensure that overĆow is off.
ENTX 0 1 k ← 0.

2H SLAX 5 N (rX ≡ next value of k)
ENT3 M*N,1 N (LOC(uij) ≡ U + n(i− 1) + j)

3H ADD U,3 MN rA← rA + uij .
JNOV *+2 MN
INCX 1 K Carry one.
DEC3 N MN Repeat for m ≥ i ≥ 1.
J3NN 3B MN (rI3 ≡ n(i− 1) + j)
STA W+N,1 N wj ← rA.
INC1 1 N
J1N 2B N Repeat for 0 ≤ j < n.
STX W+N 1 Store Ąnal carry in wn.

Running time, assuming that K = 1
2
MN, is 5.5MN + 7N + 4 cycles.

4. We may make the following assertion before A1: “n ≥ 1; and 0 ≤ ui, vi < b for
0 ≤ i < n.Ť Before A2, we assert: “0 ≤ j < n; 0 ≤ ui, vi < b for 0 ≤ i < n; 0 ≤ wi < b
for 0 ≤ i < j; 0 ≤ k ≤ 1; and (uj−1 . . . u0)b + (vj−1 . . . v0)b = (kwj−1 . . . w0)b.Ť The
latter statement means more precisely that

0≤l<j

ulb
l +

0≤l<j

vlb
l = kbj +

0≤l<j

wlb
l.

Before A3, we assert: “0 ≤ j < n; 0 ≤ ui, vi < b for 0 ≤ i < n; 0 ≤ wi < b for 0 ≤ i ≤ j;
0 ≤ k ≤ 1; and (uj . . . u0)b + (vj . . . v0)b = (kwj . . . w0)b.Ť After A3, we assert that
0 ≤ wi < b for 0 ≤ i < n; 0 ≤ wn ≤ 1; and (un−1 . . . u0)b +(vn−1 . . . v0)b = (wn . . . w0)b.

It is a simple matter to complete the proof by verifying the necessary implications
between the assertions and by showing that the algorithm always terminates.

5. B1. Set j ← n− 1, wn ← 0.

B2. Set t← uj + vj , wj ← tmod b, i← j.

B3. If t ≥ b, set i ← i + 1, t ← wi + 1, wi ← tmod b, and repeat this step until
t < b.

B4. Decrease j by one, and if j ≥ 0 go back to B2.

6. C1. Set j ← n− 1, i← n, r ← 0.

624 ANSWERS TO EXERCISES 4.3.1

C2. Set t← uj + vj . If t ≥ b, set wi ← r + 1 and wk ← 0 for i > k > j; then set
i ← j and r ← tmod b. Otherwise if t < b − 1, set wi ← r and wk ← b − 1
for i > k > j; then set i← j and r ← t.

C3. Decrease j by one. If j ≥ 0, go back to C2; otherwise set wi ← r, and
wk ← b− 1 for i > k ≥ 0.

7. When j = n − 3, for example, we have k = 0 with probability (b + 1)/2b; k = 1
with probability ((b− 1)/2b)(1− 1/b), namely the probability that a carry occurs and
that the preceding digit wasn’t b− 1; k = 2 with probability ((b− 1)/2b)(1/b)(1− 1/b);
and k = 3 with probability ((b − 1)/2b)(1/b)(1/b)(1). For Ąxed k we may add the
probabilities as j varies from n− 1 to 0; this gives the mean number of times the carry
propagates back k places,

mk =
b− 1
2bk

(n+ 1− k)

1− 1
b

+
1
b

.

As a check, we Ąnd that the average number of carries is

m1 + 2m2 + · · ·+ nmn =
1
2

n− 1

b− 1

1−
1
b

n

,

in agreement with (6).

8. ENT1 N-1 1
JOV OFLO 1
STZ W+N 1

2H LDA U,1 N
ADD V,1 N
STA W,1 N
JNOV 4F N
ENT2 1,1 L

3H LDA W,2 K
INCA 1 K
STA W,2 K
INC2 1 K
JOV 3B K

4H DEC1 1 N
J1NN 2B N

The running time depends on L, the number of positions in which uj + vj ≥ b; and on
K, the total number of carries. It is not difficult to see that K is the same quantity
that appears in Program A. The analysis in the text shows that L has the average
value N((b− 1)/2b), and K has the average value 1

2
(N − b−1 − b−2 − · · · − b−n). So if

we ignore terms of order 1/b, the running time is 9N + L+ 7K + 3 ≈ 13N + 3 cycles.

9. Replace “bŤ by “bjŤ everywhere in step A2.

10. If lines 06 and 07 were interchanged, we would almost always have overĆow, but
register A might have a negative value at line 08, so this would not work. If the
instructions on lines 05 and 06 were interchanged, the sequence of overĆows occurring
in the program would be slightly different in some cases, but the program would still
be right.

11. This is equivalent to lexicographic comparison of strings: (i) Set j ← n− 1; (ii) if
uj < vj , terminate [u < v]; if uj = vj and j = 0, terminate [u = v]; if uj = vj and
j > 0, set j ← j−1 and repeat (ii); if uj > vj , terminate [u > v]. This algorithm tends
to be quite fast, since there is usually low probability that j will have to decrease very
much before we encounter a case with uj ̸= vj .

12. Use Algorithm S with uj = 0 and vj = wj . Another borrow will occur at the end
of the algorithm; this time it should be ignored.

4.3.1 ANSWERS TO EXERCISES 625

13. ENN1 N 1
JOV OFLO 1
ENTX 0 1

2H STX CARRY N
LDA U+N,1 N

MUL V N
SLC 5 N
ADD CARRY N
JNOV *+2 N
INCX 1 K

STA W+N,1 N
INC1 1 N
J1N 2B N
STX W+N 1

The running time is 23N +K + 5 cycles, and K is roughly 1
2
N.

14. The key inductive assertion is the one that should be valid at the beginning of
step M4; all others are readily Ąlled in from this one, which is as follows: 0 ≤ i < m;
0 ≤ j < n; 0 ≤ ul < b for 0 ≤ l < m; 0 ≤ vl < b for 0 ≤ l < n; 0 ≤ wl < b for
0 ≤ l < j +m; 0 ≤ k < b; and, in the notation of the answer to exercise 4,

(wj+m−1 . . . w0)b + kbi+j = u× (vj−1 . . . v0)b + (ui−1 . . . u0)b × vjb
j .

15. The error is nonnegative and less than (n − 2)b−n−1. [Similarly, if we ignore the
products with i+ j > n+ 3, the error is bounded by (n− 3)b−n−2, etc.; but, in some
cases, we must compute all of the products if we want to get the true rounded result.
Further analysis shows that correctly rounded results of multiprecision Ćoating point
fractions can almost always be obtained by doing only about half the work needed to
compute the full double-length product; moreover, a simple test will identify the rare
cases for which full precision is needed. See W. Krandick and J. R. Johnson, Proc.
IEEE Symp. Computer Arithmetic 11 (1993), 228Ű233.]

16. Q1. Set r ← 0, j ← n− 1.

Q2. Set wj ← ⌊(rb+ uj)/v⌋, r ← (rb+ uj) mod v.

Q3. Decrease j by 1, and return to Q2 if j ≥ 0.

17. u/v > unb
n/(vn−1 + 1)bn−1 = b(1− 1/(vn−1 + 1)) > b(1− 1/(b/2)) = b− 2.

18. (unb+ un−1)/(vn−1 + 1) ≤ u/(vn−1 + 1)bn−1 < u/v.

19. u− q̂v ≤ u− q̂vn−1b
n−1− q̂vn−2b

n−2 = un−2b
n−2 + · · ·+u0 + r̂bn−1− q̂vn−2b

n−2 <
bn−2(un−2 + 1 + r̂b− q̂vn−2) ≤ 0. Since u− q̂v < 0, q < q̂.

20. If q ≤ q̂−2, then u < (q̂−1)v < q̂(vn−1b
n−1 + (vn−2 + 1)bn−2)−v < q̂vn−1b

n−1 +
q̂vn−2b

n−2 + bn−1− v ≤ q̂vn−1b
n−1 + (br̂+un−2)bn−2 + bn−1− v = unb

n +un−1b
n−1 +

un−2b
n−2 + bn−1 − v ≤ unb

n + un−1b
n−1 + un−2b

n−2 ≤ u. In other words, u < u, and
this is a contradiction.

21. (Solution by G. K. Goyal.) The inequality q̂vn−2 ≤ br̂ + un−2 implies that
we have q̂ ≤ (unb

2 + un−1b + un−2)/(vn−1b + vn−2) ≤ u/((vn−1b + vn−2)bn−2).
Now umod v = u − qv = v(1 − α) where 0 < α = 1 + q − u/v ≤ q̂ − u/v ≤
u(1/((vn−1b + vn−2)bn−2) − 1/v) = u(vn−3b

n−3 + · · ·)/((vn−1b + vn−2)bn−2v) <
u/(vn−1bv) ≤ q̂/(vn−1b) ≤ (b−1)/(vn−1b), and this is at most 2/b since vn−1 ≥ 1

2
(b−1).

22. Let u = 4100, v = 588. We Ąrst try q̂ = ⌊ 41
5
⌋ = 8, but 8 ·8 > 10(41−40)+0. Then

we set q̂ = 7, and now we Ąnd 7 · 8 < 10(41− 35) + 0. But 7 times 588 equals 4116, so
the true quotient is q = 6. (Incidentally, this example shows that Theorem B cannot
be improved under the given hypotheses, when b = 10. Similarly, when b = 216 we can
let u = (7fff800100000000)16, v = (800080020005)16.)

23. Obviously v⌊b/(v + 1)⌋ < (v + 1)⌊b/(v + 1)⌋ ≤ b; and the lower bound certainly
holds if v ≥ b/2. Otherwise v⌊b/(v + 1)⌋ ≥ v(b− v)/(v + 1) ≥ (b− 1)/2 > ⌊b/2⌋ − 1.

24. The approximate probability is only logb 2, not 1
2
. (For example, if b = 232, the

probability that vn−1 ≥ 231 is approximately 1
32

; this is still high enough to warrant
the special test for d = 1 in steps D1 and D8.)

626 ANSWERS TO EXERCISES 4.3.1

25. 002 ENTA 1 1
003 ADD V+N-1 1
004 STA TEMP 1
005 ENTA 1 1
006 JOV 1F 1 Jump if vn−1 = b− 1.
007 ENTX 0 1
008 DIV TEMP 1 Otherwise compute ⌊b/(vn−1 + 1)⌋.
009 JOV DIVBYZERO 1 Jump if vn−1 = 0.
010 1H STA D 1
011 DECA 1 1
012 JANZ *+3 1 Jump if d ̸= 1.
013 STZ U+M+N 1−A Set um+n ← 0.
014 JMP D2 1−A
015 ENN1 N A Multiply v by d.
016 ENTX 0 A
017 2H STX CARRY AN
018 LDA V+N,1 AN
019 MUL D AN
· · · (as in exercise 13)

026 J1N 2B AN
027 ENN1 M+N A (Now rX = 0.)
028 2H STX CARRY A(M +N) Multiply u by d.
029 LDA U+M+N,1 A(M +N)
· · · (as in exercise 13)

037 J1N 2B A(M +N)
038 STX U+M+N A

26. (See the algorithm of exercise 16.)

101 D8 LDA D 1 (Remainder will be left in
102 DECA 1 1 locations U through U+N-1)
103 JAZ DONE 1 Terminate if d = 1.
104 ENT1 N-1 A rI1 ≡ j; j ← n− 1.
105 ENTA 0 A r ← 0.
106 1H LDX U,1 AN rAX← rb+ uj .
107 DIV D AN
108 STA U,1 AN
109 SLAX 5 AN (uj , r)← (⌊rAX/d⌋, rAX mod d).
110 DEC1 1 AN j ← j − 1.
111 J1NN 1B AN Repeat for n > j ≥ 0.

At this point, the division routine is complete; and by the next exercise, rAX = 0.

27. It is dumod dv = d(umod v).

28. For convenience, let us assume that v has a decimal point at the left, i.e., v =
(vn.vn−1vn−2 . . .)b. After step N1 we have 1

2
≤ v < 1 + 1/b: For

v

b+ 1

vn−1 + 1

≤ v(b+ 1)
vn−1 + 1

=
v(1 + 1/b)

(1/b)(vn−1 + 1)
< 1 +

1
b
,

and

v

b+ 1

vn−1 + 1

≥ v(b+ 1− vn−1)

vn−1 + 1
≥ 1
b

vn−1(b+ 1− vn−1)
vn−1 + 1

.

4.3.1 ANSWERS TO EXERCISES 627

The latter quantity takes its smallest value when vn−1 = 1, since it is a concave function
and the other extreme value is greater.

The formula in step N2 may be written v ←

b(b+ 1)
vn−1 + 1

v

b
, so we see as above

that v will never become ≥ 1 + 1/b.
The minimum value of v after one iteration of step N2 is ≥

b(b+ 1)− vn−1

vn−1 + 1

v

b
≥

b(b+ 1)− vn−1

vn−1 + 1

vn−1

b2
=

b(b+ 1) + 1− t

t

t− 1
b2

= 1 +
1
b

+
2
b2
− 1
b2

t+
b(b+ 1) + 1

t

,

if t = vn−1 + 1. The minimum of this quantity occurs for t = b/2 + 1; a lower bound
is 1 − 3/2b. Hence vn−1 ≥ b − 2, after one iteration of step N2. Finally, we have
(1− 3/2b)(1 + 1/b)2 > 1, when b ≥ 5, so at most two more iterations are needed. The
assertion is easily veriĄed when b < 5.

29. True, since (uj+n . . . uj)b < v.

30. In Algorithms A and S, such overlap is possible if the algorithms are rewritten
slightly; for example, in Algorithm A we could rewrite step A2 thus: “Set t← uj+vj+k,
wj ← tmod b, k ← ⌊t/b⌋.Ť

In Algorithm M, vj may be in the same location as wj+n. In Algorithm D, it
is most convenient (as in Program D, exercise 26) to let rn−1 . . . r0 be the same as
un−1 . . . u0; and we can also let qm . . . q0 be the same as um+n . . . un, provided that no
alteration of uj+n is made in step D6. (Line 098 of Program D can safely be changed
to ŚJ1N 2B’, since uj+n isn’t used in the subsequent calculation.)

31. Consider the situation of Fig. 6 with u = (uj+n . . . uj+1uj)3 as in Algorithm D.
If the leading nonzero digits of u and v have the same sign, set r ← u − v, q ← 1;
otherwise set r ← u+ v, q ← −1. Now if |r| > |u|, or if |r| = |u| and the Ąrst nonzero
digit of uj−1 . . . u0 has the same sign as the Ąrst nonzero digit of r, set q ← 0; otherwise
set uj+n . . . uj equal to the digits of r.

32. See M. Nadler, CACM 4 (1961), 192Ű193; Z. Pawlak and A. Wakulicz, Bull. de
l’Acad. Polonaise des Sciences, Classe III, 5 (1957), 233Ű236 (see also pages 803Ű804);
and exercise 4.1Ű15.

34. See, for example, R. E. Maeder, The Mathematica Journal 6, 2 (Spring 1996),
32Ű40; 6, 3 (Summer 1996), 37Ű43.

36. Given ϕ with an accuracy of ±2−2n, we can successively compute ϕ−1, ϕ−2, . . .
by subtraction until ϕ−k < 2−n; the accumulated error will not exceed 21−n. Then
we can use the series lnϕ = ln((1 + ϕ−3)/(1− ϕ−3)) = 2(ϕ−3 + 1

3
ϕ−9 + 1

5
ϕ−15 + · · ·).

[See William Schooling’s article in Napier Tercentenary Memorial, edited by C. G.
Knott (London: Longmans, 1915), 337Ű344.] An even better procedure, suggested in
1965 by J. W. Wrench, Jr., is to evaluate

lnϕ = 1
2

ln((1 + 5−1/2)/(1− 5−1/2)) = (2ϕ− 1)(5−1 + 1
3
5−2 + 1

5
5−3 + · · ·).

37. Let d = 2e so that b > dvn−1 ≥ b/2. Instead of normalizing u and v in step D1,
simply compute the two leading digits v′v′′ of 2e(vn−1vn−2vn−3)b by shifting left
e bits. In step D3, use (v′, v′′) instead of (vn−1, vn−2) and (u′, u′′, u′′′) instead of
(uj+n, uj+n−1, uj+n−2), where the digits u′u′′u′′′ are obtained from (uj+n . . . uj+n−3)b

by shifting left e bits. Omit division by d in step D8. (In essence, u and v are being
“virtuallyŤ shifted. This method saves computation when m is small compared to n.)

628 ANSWERS TO EXERCISES 4.3.1

38. Set k ← n, r ← 0, s ← 1, t ← 0, w ← u; we will preserve the invariant relation
uv = 22k(r + s2 − s) + 22k−nt + 22k−2nvw with 0 ≤ t, w < 2n, and with 0 < r ≤ 2s
unless (r, s) = (0, 1). While k > 0, let 4w = 2nw′ +w′′ and 4t+w′v = 2nt′ + t′′, where
0 ≤ w′′, t′′ < 2n and 0 ≤ t′ ≤ 6; then set t ← t′′, w ← w′′, s ← 2s, r ← 4r + t′ − s,
k ← k − 1. If r ≤ 0, set s← s− 1 and r ← r + 2s; otherwise, if r > 2s, set r ← r − 2s
and s← s+ 1 (this correction might need to be done twice). Repeat until k = 0. Then
uv = r+ s2− s, since w is always a multiple of 22n−2k. Consequently r = 0 if and only
if uv = 0; otherwise the answer is s, because uv − s ≤ s2 < uv + s.

39. Let Sj =

k≥0 16−k/(8k+j). We want to know whether or not 2n−1π mod 1 < 1
2
.

Since π = 4S1−2S4−S5−S6, it suffices to have good estimates of 2n−1Sj mod 1. Now
2n−1Sj is congruent (modulo 1) to

0≤k<n/4 anjk/(8k+j)+

k≥n/4 2n−1−4k/(8k+j),

where anjk = 2n−1−4k mod (8k + j). Each term in the Ąrst sum can be approximated
within 2−m by computing anjk in O(logn) operations (Section 4.6.3) and then Ąnding
the scaled quotient ⌊2manjk/(8k + j)⌋. The second sum can be approximated within
2−m by computing 2m times its Ąrst m/4 terms. If m ≈ 2 lgn, the range of uncertainty
will be ≈ 1/n, and this will almost always be accurate enough. [Math. Comp. 66

(1997), 903Ű913.]
Notes: Let ζ = eπi/4 = (1 + i)/

√
2 be an 8th root of unity, and consider the

values lj = ln(1 − ζj/
√

2). Then l0 = ln(1 − 1/
√

2), l1 = l7 = 1
2

ln 1
2
− i arctan 1,

l2 = l6 = 1
2

ln 3
2
− i arctan(1/

√
2), l3 = l5 = 1

2
ln 5

2
− i arctan(1/3), l4 = ln(1 + 1/

√
2).

Also −Sj/2j/2 = 1
8
(l0 + ζ−j l1 + · · · + ζ−7j l7) for 1 ≤ j ≤ 8 by 1.2.9Ű(13). Therefore

4S1−2S4−S5−S6 = 2l0− (2−2i)2l1 +2l4 +(2+2i)l7 = π. Other identities of interest
are:

ln 2 = S2 + 1
2
S4 + 1

4
S6 + 1

8
S8;

ln 3 = 2S2 + 1
2
S6;

ln 5 = 2S2 + 2S4 + 1
2
S6;

√
2 ln(

√
2 + 1) = S1 + 1

2
S3 + 1

4
S5 + 1

8
S7;

√
2 arctan(1/

√
2) = S1 − 1

2
S3 + 1

4
S5 − 1

8
S7;

arctan(1/3) = S1 − S2 − 1
2
S4 − 1

4
S5;

0 = 8S1 − 8S2 − 4S3 − 8S4 − 2S5 − 2S6 + S7.

In general we have

k≥0

z8k+1

8k + 1
= A+B + C +D,

k≥0

z8k+3

8k + 3
= A−B − C +D,

k≥0

z8k+5

8k + 5
= A−B + C −D,

k≥0

z8k+7

8k + 7
= A+B − C −D,

where

A =
1
8

ln
1 + z

1− z ,

C =
1
4

arctan z,

B =
1

27/2
ln

1 +
√

2z + z2

1−
√

2z + z2
,

D =
1

25/2
arctan

√
2z

1− z2
;

4.3.1 ANSWERS TO EXERCISES 629

and

k≥0

zmk+a

mk + a
= − 1

m

ln(1− z) + (−1)a [m even] ln(1 + z) + fam(z)

,

fam(z) =
⌊(m−1)/2⌋

k=1

cos

2πka
m

ln

1− 2z cos
2πk
m

+ z2

− 2 sin
2πka
m

arctan
z sin(2πk/m)

1− z cos(2πk/m)

.

40. To get the most signiĄcant n/2 places, we need about
n/2

k=1 ≈ 1
8
n2 basic operations

(see exercise 15). And we can get the least signiĄcant n/2 places by using a b-adic
method when b is a power of 2 (see exercise 4.1Ű31): The problem is easily reduced to the
case where v is odd. Let u = (. . . u2u1u0)b, v = (. . . v2v1v0)b, and w = (. . . w2w1w0)b,
where we want to solve u = vw (modulo bn/2). Compute v′ such that v′v mod b = 1
(see exercise 4.5.2Ű17). Then w0 = v′u0 mod b, and we can compute u′ = u − w0v,
w1 = v′u′

0 mod b, etc. The rightmost n/2 places are found after about 1
8
n2 basic

operations. So the total is 1
4
n2 +O(n), while Algorithm D needs about n2 +O(n). A

pure right-to-left method for all n digits would require 1
2
n2 +O(n). [See A. Schönhage

and E. Vetter, Lecture Notes in Comp. Sci. 855 (1994), 448Ű459; W. Krandick and
T. Jebelean, J. Symbolic Computation 21 (1996), 441Ű455.]

41. (a) If m = 0, let v = u. Otherwise subtract xw from (um+n−1 . . . u1u0)b, where
x = u0w

′ mod b; this zeroes out the units digit, so we have effectively reduced m
by 1. (This operation is closely related to the computation of u/w in b-adic arithmetic,
since u/w = q + bmv/w for some integer q; see exercise 4.1Ű31. It wins over ordinary
division because we never have to correct a trial divisor. To compute w′ when b is a
power of 2, notice that if w0w

′ ≡ 1 (modulo 2e) then w0w
′′ ≡ 1 (modulo 22e) when

w′′ = (2− w0w
′)w′, by the 2-adic analog of “Newton’s method.Ť)

(b) Apply (a) to the product uv. Memory space is conserved if we interlace
multiplication and modulation as follows: Set k ← 0, t ← 0. Then while k < n,
preserve the invariant relation bkt ≡ (uk−1 . . . u0)v (modulo w) by setting t← t+ ukv,
t← (t−xw)/b, k ← k+1, where x = t0w

′ mod b is chosen to make t−xw a multiple of b.
This solution assumes that t, u, and v have a signed magnitude representation; we can
work also with nonnegative numbers < 2w or with complement notations, as discussed
by Shand and Vuillemin and by Kornerup, [IEEE Symp. Computer Arithmetic 11

(1993), 252Ű259, 277Ű283]. If n is large, the techniques of Section 4.3.3 speed up the
multiplication.

(c) Represent all numbers congruent to u (modulo w) by an internal value r(u)
where r(u) ≡ bnu. Then addition and subtraction are handled as usual, while mul-
tiplication is r(uv) = bmult(r(u), r(v)), where bmult is the operation of (b). At the
beginning of the computation, replace each operand u by r(u) = bmult(u, a), using
the precomputed constant a = b2n mod w. At the end, replace each r(u) by u =
bmult(r(u), 1). [In the application to RSA encryption, Section 4.5.4, we could redeĄne
the coding scheme so that precomputation and postcomputation are unnecessary.]

42. An interesting analysis by J. M. Holte in AMM 104 (1997), 138Ű149, establishes
the exact formula

Pnk =
1
m!

j

m

m− j

b−jn
k

r=0

m+ 1
r

(k + 1− r)m−j .

630 ANSWERS TO EXERCISES 4.3.1

The inner sum is
k

r=0(−1)r

m+1
r

(k + 1− r)m =

m
k

when j = 0. (Exercise 5.1.3Ű25

explains why Eulerian numbers arise in this connection.)

43. By exercise 1.2.4Ű35 we have w = ⌊W/216⌋, whereW = (28+1)t = (28+1)(uv+27).
Therefore if uv/255 > c+ 1

2
, we have c < 28, hence w ≥ ⌊(216(c+1)+28−c)/216⌋ ≥ c+1;

if uv/255 < c+ 1
2
, we have w ≤ ⌊(216(c+ 1)− c− 1)/216⌋ = c. [See J. F. Blinn, IEEE

Computer Graphics and Applic. 14, 6 (November 1994), 78Ű82.]

SECTION 4.3.2

1. The solution is unique since 7·11·13 = 1001. The constructive proof of Theorem C
tells us that the answer is ((11·13)6+6·(7·13)10+5·(7·11)12) mod 1001. But this answer
is perhaps not explicit enough! By (24) we have v1 = 1, v2 = (6 − 1) · 8 mod 11 = 7,
v3 = ((5− 1) · 2− 7) · 6 mod 13 = 6, so u = 6 · 7 · 11 + 7 · 7 + 1 = 512.

2. No. There is at most one such u; the additional condition u1 ≡ · · · ≡ ur

(modulo 1) is necessary and sufficient, and it follows that such a generalization is not
very interesting.

3. u ≡ ui (modulo mi) implies that u ≡ ui (modulo gcd(mi,mj)), so the condition
ui ≡ uj (modulo gcd(mi,mj)) must surely hold if there is a solution. Furthermore if
u ≡ v (modulo mj) for all j, then u − v is a multiple of lcm(m1, . . . ,mr) = m; hence
there is at most one solution.

The proof can now be completed in a nonconstructive manner by counting the
number of different r-tuples (u1, . . . , ur) satisfying the conditions 0 ≤ uj < mj and
ui ≡ uj (modulo gcd(mi,mj)). If this number is m, there must be a solution since
(umodm1, . . . , umodmr) takes on m distinct values as u goes from a to a + m − 1.
Assume that u1, . . . , ur−1 have been chosen satisfying the given conditions; we must
now pick ur ≡ uj (modulo gcd(mj ,mr)) for 1 ≤ j < r, and by the generalized Chinese
remainder theorem for r − 1 elements there are

mr/lcm(gcd(m1,mr), . . . , gcd(mr−1,mr)) = mr/gcd(lcm(m1, . . . ,mr−1),mr)
= lcm(m1, . . . ,mr)/lcm(m1, . . . ,mr−1)

ways to do this. [This proof is based on identities (10), (11), (12), and (14) of
Section 4.5.2.]

A constructive proof [A. S. Fraenkel, Proc. Amer. Math. Soc. 14 (1963), 790Ű791]
generalizing (25) can be given as follows. Let Mj = lcm(m1, . . . ,mj); we wish to Ąnd
u = vrMr−1 + · · ·+ v2M1 + v1, where 0 ≤ vj < Mj/Mj−1. Assume that v1, . . . , vj−1

have already been determined; then we must solve the congruence

vjMj−1 + vj−1Mj−2 + · · ·+ v1 ≡ uj (modulo mj).

Here vj−1Mj−2 + · · ·+ v1 ≡ ui ≡ uj (modulo gcd(mi,mj)) for i < j by hypothesis, so
c = uj − (vj−1Mj−2 + · · ·+ v1) is a multiple of

lcm(gcd(m1,mj), . . . , gcd(mj−1,mj)) = gcd(Mj−1,mj) = dj .

We therefore must solve vjMj−1 ≡ c (modulo mj). By Euclid’s algorithm there is a
number cj such that cjMj−1 ≡ dj (modulo mj); hence we may take

vj = (cj c)/dj mod (mj/dj).

Notice that, as in the nonconstructive proof, we have mj/dj = Mj/Mj−1.

4.3.2 ANSWERS TO EXERCISES 631

4. (After m4 = 91 = 7 · 13, we have used up all products of two or more odd primes
that can be less than 100, so m5, . . . must all be prime.) We Ąnd

m7 = 79, m8 = 73, m9 = 71, m10 = 67, m11 = 61,
m12 = 59, m13 = 53, m14 = 47, m15 = 43, m16 = 41,
m17 = 37, m18 = 31, m19 = 29, m20 = 23, m21 = 17,

and then we are stuck (m22 = 1 does no good).

5. (a) No. The obvious upper bound,

345272111 . . . =

p odd
p prime

p⌊logp 100⌋,

is attained if we choose m1 = 34, m2 = 52, etc. (It is more difficult, however, to
maximize m1 . . .mr when r is Ąxed, or to maximize e1 +· · ·+er with relatively prime ej

as we would attempt to do when using moduli 2ej − 1.) (b) Replacing 100 by 256 and
allowing even moduli gives 283553 . . . 2511 ≈ 1.67 · 10109.

6. (a) If e = f + kg, then 2e = 2f (2g)k ≡ 2f · 1k (modulo 2g − 1). So if 2e ≡ 2f

(modulo 2g − 1), we have 2e mod g ≡ 2f mod g (modulo 2g − 1); and since the latter
quantities lie between zero and 2g − 1 we must have emod g = f mod g. (b) By
part (a), (1 + 2d + · · ·+ 2(c−1)d) · (2e−1) ≡ (1 + 2d + · · ·+ 2(c−1)d) · (2d−1) = 2cd−1 ≡
2ce − 1 ≡ 21 − 1 = 1 (modulo 2f − 1).

7. We have vjmj−1 . . .m1 ≡ uj−(vj−1mj−2 . . .m1 + · · ·+v1) and Cjmj−1 . . .m1 ≡ 1
(modulo mj) by (23), (25), and (26); see P. A. Pritchard, CACM 27 (1984), 57.

This method of rewriting the formulas uses the same number of arithmetic oper-
ations and fewer constants; but the number of constants is fewer only if we order the
moduli so that m1 < m2 < · · · < mr, otherwise we would need a table of mi modmj .
This ordering of the moduli might seem to require more computation than if we made
m1 the largest, m2 the next largest, etc., since there are many more operations to be
done modulo mr than modulo m1; but since vj can be as large as mj−1, we are better
off with m1 < m2 < · · · < mr in (24) also. So this idea appears to be preferable to the
formulas in the text, although Section 4.3.3B shows that the formulas in the text are
advantageous when the moduli have the form (14).

8. Modulo mj : mj−1 . . .m1vj ≡ mj−1 . . .m1(. . . ((uj−v1)c1j−v2)c2j−· · ·−vj−1)×
c(j−1)j ≡ mj−2 . . .m1(. . . (uj − v1)c1j − · · · − vj−2)c(j−2)j − vj−1mj−2 . . .m1 ≡ · · · ≡
uj − v1 − v2m1 − · · · − vj−1mj−2 . . .m1.

9. ur ← ((. . . (vrmr−1 + vr−1)mr−2 + · · ·)m1 + v1) modmr, . . . ,
u2 ← (v2m1 + v1) modm2, u1 ← v1 modm1.

(The computation should be done in this order, if we want to let uj and vj share the
same memory locations, as they can in (24).)
10. If we redeĄne the “modŤ operator so that it produces residues in the symmetrical
range, the basic formulas (2), (3), (4) for arithmetic and (24), (25) for conversion
remain the same, and the number u in (25) lies in the desired range (10). (Here (25) is
a balanced mixed-radix notation, generalizing balanced ternary notation.) The compar-
ison of two numbers may still be done from left to right, in the simple manner described
in the text. Furthermore, it is possible to retain the value uj in a single computer word,
if we have signed magnitude representation within the computer, even if mj is almost
twice the word size. But the arithmetic operations analogous to (11) and (12) are more

632 ANSWERS TO EXERCISES 4.3.2

difficult, so it appears that this idea would result in slightly slower operation on most
computers.

11. Multiply by 1
2
(m + 1) = (1

2
(m1 + 1), . . . , 1

2
(mr + 1)). Note that 2t · m+1

2
≡ t

(modulo m). In general if v is relatively prime to m, then we can Ąnd (by Euclid’s
algorithm) a number v′ = (v′1, . . . , v

′
r) such that vv′ ≡ 1 (modulo m); and then if u

is known to be a multiple of v we have u/v = uv′, where the latter is computed with
modular multiplication. When v is not relatively prime to m, division is much harder.

12. Replace mj by m in (11). [Another way to test for overĆow, if m is odd, is to
maintain extra bits u0 = umod 2 and v0 = v mod 2. Then overĆow has occurred if and
only if u0 + v0 ̸≡ w1 + · · · + wr (modulo 2), where (w1, . . . , wr) are the mixed-radix
digits corresponding to u+ v.]

13. (a) x2−x = (x− 1)x ≡ 0 (modulo 10n) is equivalent to (x− 1)x ≡ 0 (modulo pn)
for p = 2 and 5. Either x or x−1 must be a multiple of p, and then the other is relatively
prime to pn; so either x or x− 1 must be a multiple of pn. If xmod 2n = xmod 5n = 0
or 1, we must have xmod 10n = 0 or 1; hence automorphs have xmod 2n ̸= xmod 5n.
(b) If x = qpn + r, where r = 0 or 1, then r ≡ r2 ≡ r3, so 3x2 − 2x3 ≡ (6qpnr + 3r)−
(6qpnr + 2r) ≡ r (modulo p2n). (c) Let c′ be (3(cx)2 − 2(cx)3)/x2 = 3c2 − 2c3x.

Note: Since the last k digits of an n-digit automorph form a k-digit automorph,
it makes sense to speak of the two ∞-digit automorphs, x and 1−x, which are 10-adic
numbers (see exercise 4.1Ű31). The set of 10-adic numbers is equivalent under modular
arithmetic to the set of ordered pairs (u1, u2), where u1 is a 2-adic number and u2 is a
5-adic number.

14. Find the cyclic convolution (z0, z1, . . . , zn−1) of Ćoating point approximations to
(a0u0, a1u1, . . . , an−1un−1) and (a0v0, a1v1, . . . , an−1vn−1), where the constants ak =
2−(kq mod n)/n have been precomputed. The identities u =

n−1
k=0 ukak2kq/n and v =n−1

k=0 vkak2kq/n now imply that w =
n−1

k=0 tkak2kq/n where tk ≈ zk/ak. If sufficient
accuracy has been maintained, each tk will be very close to an integer. The represen-
tation of w can readily be found from those integers. [R. Crandall and B. Fagin, Math.
Comp. 62 (1994), 305Ű324. For improved error bounds, and extensions to moduli of
the form k · 2n ± 1, see Colin Percival, Math. Comp. 72 (2002), 387Ű395.]

SECTION 4.3.3

1. 12× 23 : 34× 41 : 22× 18 : 1234× 2341 :
02 12 02 0276
02 12 02 0276

− 01 +03 +00 −0396
06 04 16 1394
06 04 16 1394

0276 1394 0396 2888794

2.

Q+ ⌊

√
Q⌋ ≤

Q+

√
Q<

Q+ 2

√
Q+ 1 =

√
Q+1, so ⌊

√
Q+R⌋ ≤ ⌊

√
Q⌋+1.

3. The result is true when k ≤ 2, so assume that k > 2. Let qk = 2Qk , rk = 2Rk , so
that Rk = ⌊

√
Qk⌋ and Qk = Qk−1+Rk−1. We must show that 1+(Rk+1)2Rk ≤ 2Qk−1 ;

this inequality isn’t close at all. One way is to observe that 1 + (Rk + 1)2Rk ≤ 1 + 22Rk

and 2Rk < Qk−1 when k > 2. (The fact that 2Rk < Qk−1 is readily proved by
induction since Rk+1 −Rk ≤ 1 and Qk −Qk−1 ≥ 2.)

4.3.3 ANSWERS TO EXERCISES 633

4. For j = 1, . . . , r, calculate Ue(j2), jUo(j2), Ve(j2), jVo(j2); and by recursively
calling the multiplication algorithm, calculate

W (j) = (Ue(j2) + jUo(j2))(Ve(j2) + jVo(j2)),
W (−j) = (Ue(j2)− jUo(j2))(Ve(j2)− jVo(j2)).

Then we have We(j2) = (W (j) + W (−j))/2, Wo(j2) = (W (j) −W (−j))/(2j). Also
calculate We(0) = U(0)V (0). Now construct difference tables for We and Wo, which
are polynomials whose respective degrees are r and r − 1.

This method reduces the size of the numbers being handled, and reduces the
number of additions and multiplications. Its only disadvantage is a longer program
(since the control is somewhat more complex, and some of the calculations must be
done with signed numbers).

Another possibility would perhaps be to evaluate We and Wo at 12, 22, 42, . . . ,
(2r)2; although the numbers involved are larger, the calculations are faster, since all
multiplications are replaced by shifting and all divisions are by binary numbers of the
form 2j(2k − 1). (Simple procedures are available for dividing by such numbers.)

5. Start the q and r sequences out with q0 and q1 large enough so that the inequality
in exercise 3 is valid. Then we will Ąnd in the formulas like those preceding Theorem B
that we have η1 → 0 and η2 = (1 + 1/(2rk))21+

√
2Qk−

√
2Qk+1 (Qk/Qk+1). The factor

Qk/Qk+1 → 1 as k → ∞, so we can ignore it if we want to show that η2 < 1 − ϵ

for all large k. Now
√

2Qk+1 =

2Qk + 2⌈
√

2Qk ⌉+ 2 ≥

(2Qk + 2
√

2Qk + 1) + 1 ≥√
2Qk + 1 + 1/(3Rk). Hence η2 ≤ (1 + 1/(2rk))2−1/(3Rk), and lg η2 < 0 for large

enough k.
Note: Algorithm T can also be modiĄed to deĄne a sequence q0, q1, . . . of a similar

type that is based on n, so that n ≈ qk + qk+1 after step T1. This modiĄcation leads
to the estimate (21).

6. Any common divisor of 6q+d1 and 6q+d2 must also divide their difference d2−d1.
The

6
2

differences are 2, 3, 4, 6, 8, 1, 2, 4, 6, 1, 3, 5, 2, 4, 2, so we must only show

that at most one of the given numbers is divisible by each of the primes 2, 3, 5. Clearly
only 6q+ 2 is even, and only 6q+ 3 is a multiple of 3; and there is at most one multiple
of 5, since qk ̸≡ 3 (modulo 5).

7. Let pk−1 < n ≤ pk. We have tk ≤ 6tk−1 + ck3k for some constant c; so tk/6k ≤
tk−1/6k−1 + ck/2k ≤ t0 + c

j≥1 j/2

j = M. Thus tk ≤M · 6k = O(plog3 6
k).

8. False. To see the fallacy, try it with k = 2.

9. ũs = û(qs) mod K . In particular, if q = −1 we get û(−r) mod K , which avoids data-
Ćipping when computing inverse transforms.

10. A[j](sk−1, . . . , sk−j , tk−j−1, . . . , t0) can be written

0≤tk−1,...,tk−j≤1

ω2k−j(sk−j ...sk−1)2·(tk−1...tk−j)2

0≤p<K

ωtpup

0≤q<K

ωtqvq

,

and this is

p,q upvqS(p, q), where |S(p, q)| = 0 or 2j . We have |S(p, q)| = 2j for
exactly 22k/2j values of p and q.

11. An automaton cannot have z2 = 1 until it has c ≥ 2, and this occurs Ąrst for
Mj at time 3j − 1. It follows that Mj cannot have z2z1z0 ̸= 000 until time 3(j − 1).
Furthermore, if Mj has z0 ̸= 0 at time t, we cannot change this to z0 = 0 without

634 ANSWERS TO EXERCISES 4.3.3

affecting the output; but the output cannot be affected by this value of z0 until at least
time t+ j− 1, so we must have t+ j− 1 ≤ 2n. Since the Ąrst argument we gave proves
that 3(j − 1) ≤ t, we must have 4(j − 1) ≤ 2n, that is, j − 1 ≤ n/2, i.e., j ≤ ⌊n/2⌋+ 1.
This is the best possible bound, since the inputs u = v = 2n − 1 require the use of
Mj for all j ≤ ⌊n/2⌋+ 1. (For example, Table 2 shows that M2 is needed to multiply
two-bit numbers, at time 3.)

12. We can “sweep throughŤ K lists of MIX-like instructions, executing the Ąrst instruc-
tion on each list, in O(K + (N logN)2) steps as follows: (i) A radix list sort (Section
5.2.5) will group together all identical instructions, in time O(K+N). (ii) Each set of j
identical instructions can be performed in O(logN)2 +O(j) steps, and there are O(N2)
sets. A bounded number of sweeps will Ąnish all the lists. The remaining details are
straightforward; for example, arithmetic operations can be simulated by converting p
and q to binary. [SICOMP 9 (1980), 490Ű508.]

13. If it takes T (n) steps to multiply n-bit numbers, we can accomplish m-bit times
n-bit multiplication by breaking the n-bit number into ⌈n/m⌉ m-bit groups, using
⌈n/m⌉T (m) + O(n + m) operations. The results cited in the text therefore give an
estimated running time of O(n logm log logm) on Turing machines, or O(n logm) on
machines with random access to words of bounded size, or O(n) on pointer machines.

15. The best upper bound known is O(n(logn)2 log logn), due to M. J. Fischer and
L. J. Stockmeyer [J. Comp. and Syst. Sci. 9 (1974), 317Ű331]; their construction works
on multitape Turing machines, and is O(n logn) on pointer machines. The best lower
bound known is of order n logn/log logn, due to M. S. Paterson, M. J. Fischer, and
A. R. Meyer [SIAM/AMS Proceedings 7 (1974), 97Ű111]; this applies to multitape
Turing machines but not to pointer machines.

16. Let 2k be the smallest power of 2 that exceeds 2K. Set at ← ω−t2/2ut and
bt ← ω(2K−2−t)2/2, where ut = 0 for t ≥ K. We want to evaluate the convolutions
cr =

r
j=0 ajbr−j for r = 2K− 2− s, when 0 ≤ s < K. The convolutions can be found

by using three fast Fourier transformations of order 2k, as in the text’s multiplication
procedure. [Note that this technique, sometimes called the “chirp transform,Ť works for
any complex number ω, not necessarily a root of unity. See L. I. Bluestein, Northeast
Electronics Res. and Eng. Meeting Record 10 (1968), 218Ű219; D. H. Bailey and P. N.
Swarztrauber, SIAM Review 33 (1991), 389Ű404.]

17. The quantity Dn = Kn+1 − Kn satisĄes D1 = 2, D2n = 2Dn, and D2n+1 =
Dn; hence Dn = 2e1−t+2 when n has the stated form. It follows that Kn = 3e1 +t

l=2 3el2e1−el−l+3, by induction on n.
Incidentally, Kn is odd, and we can multiply an n-place integer by an (n + 1)-

place integer with (Kn + Kn+1)/2 1-place multiplications. The generating function
K(z) =

n≥1 Knz

n satisĄes zK(z) + z2 = K(z2)(z + 1)(z + 2); hence K(−1) = 1 and
K(1) = 1

5
.

18. The following scheme uses 3N + SN places of working storage, where S1 = 0,
S2n = Sn, and S2n−1 = Sn + 1, hence Sn = e1 − et − t+ 2− [t= 1] in the notation of
the previous exercise. Let N = 2n−ϵ, where ϵ is 0 or 1, and assume that N > 1. Given
N -place numbers u = 2nU1 +U0 and v = 2nV1 +V0, we Ąrst form |U0−U1| and |V0−V1|
in two n-place areas starting at positions 0 and n of the (3N +SN)-place working area.
Then we place their product into the working area starting at position 3n + Sn. The
next step is to form the 2(n − ϵ)-place product U1V1, starting in position 0; using
that product, we change the 3n− 2ϵ places starting at position 3n+Sn to the value of

4.4 ANSWERS TO EXERCISES 635

U1V1−(U0−U1)(V0−V1)+2nU1V1. (Notice that 3n−2ϵ+3n+Sn = 3N+SN .) Finally,
we form the 2n-place product U0V0 starting at position 0, and add it to the partial
result starting at positions 2n + Sn and 3n + Sn. We must also move the 2N -place
answer to its Ąnal position by shifting it down 2n+ Sn positions.

The Ąnal move could be avoided by a trickier variation that cyclically rotates its
output by a given amount within a designated working area. If the 2N -place product is
not allowed to be adjacent to the auxiliary working space, we need about N more places
of memory (that is, a total of about 6N instead of 5N places, for the input, output, and
temporary storage); see R. Maeder, Lecture Notes in Comp. Sci. 722 (1993), 59Ű65.

19. Let m = s2 +r where −s < r ≤ s. We can use (2) with U1 = ⌊u/s⌋, U0 = umod s,
V1 = ⌊v/s⌋, V0 = v mod s, and with s playing the role of 2n. If we know the signs
of U1 − U0 and V1 − V0 we know how to compute the product |U1 − U0| |V1 − V0|,
which is < m, and whether to add or subtract it. It remains to multiply by s and
by s2 ≡ −r. Each of these can be done with four multiplication/divisions, using
exercise 3.2.1.1Ű9, but only seven are needed because one of the multiplications needed
to compute sxmodm is by r or r+s. Thus 14 multiplication/divisions are sufficient (or
12, in case u = v or u is constant). Without the ability to compare operands, we can
still do the job with one more multiplication, by computing U0V1 and U1V0 separately.

SECTION 4.4

1. We compute (. . . (ambm−1+am−1)bm−2+· · ·+a1)b0+a0 by adding and multiplying
in the BJ system.

T. = 20(cwt. = 8(st. = 14(lb. = 16 oz.)))
Start with zero 0 0 0 0 0
Add 3 0 0 0 0 3
Multiply by 24 0 0 0 4 8
Add 9 0 0 0 5 1
Multiply by 60 0 2 5 9 12
Add 12 0 2 5 10 8
Multiply by 60 8 3 1 0 0
Add 37 8 3 1 2 5

(Addition and multiplication by a constant in a mixed-radix system are readily done
using a simple generalization of the usual carry rule; see exercise 4.3.1Ű9.)

2. We compute ⌊u/B0⌋, ⌊⌊u/B0⌋/B1⌋, etc., and the remainders are A0, A1, etc. The
division is done in the bj system.

d. = 24(h. = 60(m. = 60 s.))
Start with u 3 9 12 37
Divide by 16 0 5 4 32 Remainder = 5
Divide by 14 0 0 21 45 Remainder = 2
Divide by 8 0 0 2 43 Remainder = 1
Divide by 20 0 0 0 8 Remainder = 3
Divide by ∞ 0 0 0 0 Remainder = 8

Answer: 8 T. 3 cwt. 1 st. 2 lb. 5 oz.

3. The following procedure due to G. L. Steele Jr. and Jon L White generalizes
Taranto’s algorithm for B = 2 originally published in CACM 2, 7 (July 1959), 27.

636 ANSWERS TO EXERCISES 4.4

A1. [Initialize.] Set M ← 0, U0 ← 0.

A2. [Done?] If u < ϵ or u > 1− ϵ, go to step A4. (Otherwise no M -place fraction
will satisfy the given conditions.)

A3. [Transform.] Set M ← M + 1, U−M ← ⌊Bu⌋, u ← Bumod 1, ϵ ← Bϵ, and
return to A2. (This transformation returns us to essentially the same state
we were in before; the remaining problem is to convert u to U with fewest
radix-B places so that |U − u| < ϵ. Note, however, that ϵ may now be ≥ 1;
in this case we could go immediately to step A4 instead of storing the new
value of ϵ.)

A4. [Round.] If u ≥ 1
2
, increase U−M by 1. (If u = 1

2
exactly, another rounding

rule such as “increase U−M by 1 only when it is oddŤ might be preferred; see
Section 4.2.2.)

Step A4 will never increase U−M from B − 1 to B; for if U−M = B − 1 we must have
M > 0, but no (M − 1)-place fraction was sufficiently accurate. Steele and White go
on to consider Ćoating point conversions in their paper [SIGPLAN Notices 25, 6 (June
1990), 112Ű126]. See also D. E. Knuth in Beauty is Our Business, edited by W. H. J.
Feijen et al. (New York: Springer, 1990), 233Ű242.

4. (a) 1/2k = 5k/10k. (b) Every prime divisor of b divides B.

5. If and only if 10n − 1 ≤ c < w; see (3).

7. αu ≤ ux ≤ αu+ u/w ≤ αu+ 1, hence ⌊αu⌋ ≤ ⌊ux⌋ ≤ ⌊αu+ 1⌋. Furthermore, in
the special case cited we have ux < αu+ α and ⌊αu⌋ = ⌊αu+ α− ϵ⌋ for 0 < ϵ ≤ α.

8. ENT1 0

LDA U

1H MUL =1//10=

3H STA TEMP

MUL =-10=

SLAX 5

ADD U

JANN 2F

LDA TEMP (Can occur only on
DECA 1 the Ąrst iteration,
JMP 3B by exercise 7.)

2H STA ANSWER,1 (May be minus zero.)
LDA TEMP

INC1 1

JAP 1B

9. Let pk = 22k+2

. By induction on k we have vk(u) ≤ 16
5

(1 − 1/pk)(⌊u/2⌋ + 1);
hence ⌊vk(u)/16⌋ ≤ ⌊⌊u/2⌋/5⌋ = ⌊u/10⌋ for all integers u ≥ 0. Furthermore, since
vk(u + 1) ≥ vk(u), the smallest counterexample to ⌊vk(u)/16⌋ = ⌊u/10⌋ must occur
when u is a multiple of 10.

Now let u = 10m be Ąxed, and suppose vk(u) mod pk = rk so that vk+1(u) =
vk(u) + (vk(u)− rk)/pk. The fact that p2

k = pk+1 implies that there exist integers m0,
m1, m2, . . . such that m0 = m, vk(u) = (pk− 1)mk +xk, and mk = mk+1pk +xk− rk,
where xk+1 = (pk + 1)xk − pkrk. Unwinding this recurrence yields

vk(u) = (pk − 1)mk + ck −
k−1

j=0

pjrj

k−1

i=j+1

(pi + 1), ck = 3
pk − 1
p0 − 1

.

Furthermore vk(u) + mk = vk+1(u) + mk+1 is independent of k, and it follows that
vk(u)/16 = m+ (3−mk)/16. So the minimal counterexample u = 10yk is obtained for
0 ≤ k ≤ 4 by setting mk = 4 and rj = pj − 1 in the formula yk = 1

16
(vk +mk − c0). In

hexadecimal notation, yk turns out to be the Ąnal 2k digits of 434243414342434.
Since v4(10y4) is less than 264, the same counterexample is also minimal for all

k > 4. One way to work with larger operands is to modify the method by starting with

4.4 ANSWERS TO EXERCISES 637

v0(u) = 6⌊u/2⌋ + 6 and letting ck = 6(pk − 1)/(p0 − 1), m0 = 2m. (In effect, we are
truncating one bit further to the right than before.) Then ⌊vk(u)/32⌋ = ⌊u/10⌋ when
u is less than 10zk, for 1 ≤ k ≤ 7, where zk = 1

32
(vk +mk − 6) when mk = 7, r0 = 14,

and rj = pj − 1 for j > 0. For example, z4 = 1c342c3424342c34. [This exercise is
based on ideas of R. A. Vowels, Australian Comp. J. 24 (1992), 81Ű85.]

10. (i) Shift right one; (ii) Extract the left bit of each group; (iii) Shift the result
of (ii) right two; (iv) Shift the result of (iii) right one, and add it to the result of (iii);
(v) Subtract the result of (iv) from the result of (i).

11. 5.7 7 2 1

− 1 0
4 7.7 2 1

− 9 4
3 8 3.2 1

− 7 6 6
3 0 6 6.1

− 6 1 3 2

2 4 5 2 9 Answer: (24529)10.

12. First convert the ternary number to nonary (radix 9) notation, then proceed as
in octal-to-decimal conversion but without doubling. Decimal to nonary is similar. In
the given example, we have

1.7 6 4 7 2 3
− 1

1 6.6 4 7 2 3
− 1 6

1 5 0.4 7 2 3
− 1 5 0

1 3 5 4.7 2 3
− 1 3 5 4

1 2 1 9 3.2 3
− 1 2 1 9 3

1 0 9 7 3 9.3
− 1 0 9 7 3 9

9 8 7 6 5 4 Answer: (987654)10.

9 .8 7 6 5 4
+ 9

1 1 8.7 6 5 4
+ 1 1 8

1 3 1 6.6 5 4
+ 1 3 1 6

1 4 4 8 3.5 4
+ 1 4 4 8 3

1 6 0 4 2 8.4
+ 1 6 0 4 2 8

1 7 6 4 7 2 3 Answer: (1764723)9.

13. BUF ALF .␣␣␣␣ (Radix point on Ąrst line)
ORIG *+39

START JOV OFLO Ensure that overĆow is off.
ENT2 -40 Set buffer pointer.

8H ENT3 10 Set loop counter.
1H ENT1 m Begin multiplication routine.

ENTX 0

2H STX CARRY

· · · (See exercise 4.3.1Ű13, with
J1P 2B v = 109 and W = U.)
SLAX 5 rA← next nine digits.
CHAR

STA BUF+40,2(2:5) Store next nine digits.

638 ANSWERS TO EXERCISES 4.4

STX BUF+41,2

INC2 2 Increase buffer pointer.
DEC3 1

J3P 1B Repeat ten times.
OUT BUF+20,2(PRINTER)

J2N 8B Repeat until both lines are printed.

14. Let K(n) be the number of steps required to convert an n-digit decimal number
to binary and at the same time to compute the binary representation of 10n. Then
we have K(2n) ≤ 2K(n) + O(M(n)). Proof. Given the number U = (u2n−1 . . . u0)10,
compute U1 = (u2n−1 . . . un)10 and U0 = (un−1 . . . u0)10 and 10n, in 2K(n) steps, then
compute U = 10nU1 + U0 and 102n = 10n · 10n in O(M(n)) steps. It follows that
K(2n) = O(M(2n) + 2M(2n−1) + 4M(2n−2) + · · ·) = O(nM(2n)).

[Similarly, Schönhage has observed that we can convert a (2n lg 10)-bit number U
from binary to decimal, in O(nM(2n)) steps. First form V = 102n−1 in O(M(2n−1) +
M(2n−2) + · · ·) = O(M(2n)) steps, then compute U0 = (U mod V) and U1 = ⌊U/V ⌋
in O(M(2n)) further steps, then convert U0 and U1.]

17. See W. D. Clinger, SIGPLAN Notices 25, 6 (June 1990), 92Ű101, and the paper
by Steele and White cited in the answer to exercise 3.

18. Let U = roundB(u, P) and v = roundb(U, p). We may assume that u > 0, so that
U > 0 and v > 0. Case 1: v < u. Determine e and E such that be−1 < u ≤ be,
BE−1 ≤ U < BE. Then u ≤ U + 1

2
BE−P and U ≤ u − 1

2
be−p; hence BP−1 ≤

BP−EU < BP−Eu ≤ bp−eu ≤ bp. Case 2: v > u. Determine e and E such that
be−1 ≤ u < be, BE−1 < U ≤ BE. Then u ≥ U − 1

2
BE−P and U ≥ u + 1

2
be−p; hence

BP−1 ≤ BP−E(U − BE−P) < BP−Eu ≤ bp−eu < bp. Thus we have proved that
BP−1 < bp whenever v ̸= u.

Conversely, if BP−1 < bp, the proof above suggests that the most likely example
for which u ̸= v will occur when u is a power of b and at the same time it is close to a
power of B. We have BP−1bp < BP−1bp + 1

2
bp − 1

2
BP−1 − 1

4
= (BP−1 + 1

2
)(bp − 1

2
);

hence 1 < α = 1/(1− 1
2
b−p) < 1 + 1

2
B1−P = β. There are integers e and E such that

logB α < e logB b−E < logB β, by exercise 4.5.3Ű50. Hence α < be/BE < β, for some e
and E. Now we have roundB(be, P) = BE, and roundb(BE, p) < be. [CACM 11 (1968),
47Ű50; Proc. Amer. Math. Soc. 19 (1968), 716Ű723.]

For example, if bp = 210 and BP = 104, the number u = 26408 ≈ .100049 · 101930

rounds down to U = .1 · 101930 ≈ (.111111111101111111111)2 · 26408, which rounds
down to 26408−26398. (The smallest example is actually round((.1111111001)2 ·2784) =
.1011 · 10236, round(.1011 · 10235) = (.11111110010)2 · 2784, found by Fred J. Tydeman.)

19. m1 = (F0F0F0F0)16, c1 = 1 − 10/16 makes U = ((u7u6)10 . . . (u1u0)10)
256

; then
m2 = (FF00FF00)16, c2 = 1 − 102/162 makes U = ((u7u6u5u4)10(u3u2u1u0)10)

65536
;

and m3 = (FFFF0000)16, c3 = 1− 104/164 Ąnishes the job. [Compare with Schönhage’s
algorithm in exercise 14. This technique is due to Roy A. Keir, circa 1958.]

SECTION 4.5.1

1. Test whether or not uv′ < u′v, since the denominators are positive. (See also the
answer to exercise 4.5.3Ű39.)

2. If c > 1 divides both u/d and v/d, then cd divides both u and v.

3. Let p be prime. If pe is a divisor of uv and u′v′ for e ≥ 1, then either pe\u
and pe\v′ or pe\u′ and pe\v; hence pe\ gcd(u, v′) gcd(u′, v). The converse follows by
reversing the argument.

4.5.1 ANSWERS TO EXERCISES 639

4. Let d1 = gcd(u, v), d2 = gcd(u′, v′); the answer is w = (u/d1)(v′/d2)sign(v),
w′ = |(u′/d2)(v/d1)|, with a “divide by zeroŤ error message if v = 0.

5. d1 = 10, t = 17 · 7− 27 · 12 = −205, d2 = 5, w = −41, w′ = 168.

6. Let u′′ = u′/d1, v′′ = v′/d1; our goal is to show that gcd(uv′′ + u′′v, d1) =
gcd(uv′′ + u′′v, d1u

′′v′′). If p is a prime that divides u′′, then p does not divide u or v′′,
so p does not divide uv′′ + u′′v. A similar argument holds for prime divisors of v′′, so
no prime divisors of u′′v′′ affect the given gcd.

7. (N − 1)2 + (N − 2)2 = 2N2 − (6N − 5). If the inputs are n-bit binary numbers,
2n+ 1 bits may be necessary to represent t.

8. For multiplication and division these quantities obey the rules x/0 = sign(x)∞,
(±∞)×x = x× (±∞) = (±∞)/x = ±sign(x)∞, x/(±∞) = 0, provided that x is Ąnite
and nonzero, without change to the algorithms described. Furthermore, the algorithms
can readily be modiĄed so that 0/0 = 0×(±∞) = (±∞)×0 = “(0/0)Ť, where the latter
is a representation of “undeĄned.Ť If either operand is undeĄned the result should be
undeĄned also.

Since the multiplication and division subroutines can yield these fairly natural
rules of extended arithmetic, it is sometimes worthwhile to modify the addition and
subtraction operations so that they satisfy the rules x ±∞ = ±∞, x ± (−∞) = ∓∞,
for x Ąnite; (±∞) + (±∞) = ±∞ − (∓∞) = ±∞; furthermore (±∞) + (∓∞) =
(±∞)− (±∞) = (0/0); and if either or both operands are (0/0), the result should also
be (0/0). Equality tests and comparisons may be treated in a similar manner.

The remarks above are independent of “overĆowŤ indications. If ∞ is being used
to suggest overĆow, it is incorrect to let 1/∞ be equal to zero, lest inaccurate results
be regarded as true answers. It is far better to represent overĆow by (0/0), and to
adhere to the convention that the result of any operation is undeĄned if at least one of
the inputs is undeĄned. This type of overĆow indication has the advantage that Ąnal
results of an extended calculation reveal exactly which answers are deĄned and which
are not.

9. If u/u′ ̸= v/v′, then 1 ≤ |uv′− u′v| = u′v′ |u/u′− v/v′| < |22nu/u′− 22nv/v′|; two
quantities differing by more than unity cannot have the same “Ćoor.Ť (In other words,
the Ąrst 2n bits to the right of the binary point are enough to characterize the value
of a binary fraction, when there are n-bit denominators. We cannot improve this to
2n− 1 bits, for if n = 4 we have 1

13
= (.00010011 . . .)2, 1

14
= (.00010010 . . .)2.)

11. To divide by (v + v′
√

5)/v′′, when v and v′ are not both zero, multiply by the
reciprocal, (v − v′

√
5)v′′/(v2 − 5v′2), and reduce to lowest terms.

12. ((2q−1 − 1)/1); round(x) = (0/1) if and only if |x| ≤ 21−q. Similarly, round(x) =
(1/0) if and only if x ≥ 2q−1.

13. One idea is to limit numerator and denominator to a total of 27 bits, where we
need only store 26 of these bits (since the leading bit of the denominator is 1 unless
the denominator has length 0). This leaves room for a sign and Ąve bits to indicate
the denominator size. Another idea is to use 28 bits for numerator and denominator,
which are to have a total of at most seven hexadecimal digits, together with a sign and
a 3-bit Ąeld to indicate the number of hexadecimal digits in the denominator.

[Using the formulas in the next exercise, the Ąrst alternative leads to exactly
2140040119 Ąnite representable numbers, while the second leads to 1830986459. The
Ąrst alternative is preferable because it represents more values, and because it is cleaner

640 ANSWERS TO EXERCISES 4.5.1

and makes smoother transitions between ranges. With 64-bit words we would, similarly,
limit numerator and denominator to a total of at most 64− 6 = 58 bits.]

14. The number of multiples of n in the interval (a . . b] is ⌊b/n⌋ − ⌊a/n⌋. Hence, by
inclusion and exclusion, the answer to this problem is S0 − S1 + S2 − · · · , where Sk is

(⌊M2/P ⌋ − ⌊M1/P ⌋)(⌊N2/P ⌋ − ⌊N1/P ⌋), summed over all products P of k distinct
primes. We can also express the answer as

min(M2,N2)

n=1

µ(n) (⌊M2/n⌋ − ⌊M1/n⌋) (⌊N2/n⌋ − ⌊N1/n⌋).

SECTION 4.5.2

1. Substitute min, max, + consistently for gcd, lcm, ×, respectively (after making
sure that the identities are correct when any variable is zero).

2. For prime p, let up, v1p, . . . , vnp be the exponents of p in the canonical factor-
izations of u, v1, . . . , vn. By hypothesis, up ≤ v1p + · · · + vnp. We must show that
up ≤ min(up, v1p) + · · · + min(up, vnp), and this is certainly true if up is greater than
or equal to each vjp, or if up is less than some vjp.

3. Solution 1: If n = pe1
1 . . . per

r , the number in each case is (2e1 + 1) . . . (2er + 1).
Solution 2: A one-to-one correspondence is obtained if we set u = gcd(d, n) and v =
n2/ lcm(d, n) for each divisor d of n2. [E. Cesàro, Annali di Matematica Pura ed Ap-
plicata (2) 13 (1885), 235Ű250, §12.]

4. See exercise 3.2.1.2Ű15(a).

5. Shift u and v right until neither is a multiple of 3, remembering the proper power
of 3 that will appear in the gcd. Each subsequent iteration sets t← u+ v or t← u− v
(whichever is a multiple of 3), shifts t right until it is not a multiple of 3, then replaces
max(u, v) by the result.

u v t

13634 24140 10506, 3502;
13634 3502 17136, 5712, 1904;
1904 3502 5406, 1802;
1904 1802 102, 34;

34 1802 1836, 612, 204, 68;
34 68 102, 34;
34 34 0.

The evidence that gcd(40902, 24140) = 34 is now overwhelming.

6. The probability that both u and v are even is 1
4
; the probability that both are

multiples of four is 1
16

; etc. Thus A has the distribution given by the generating function

3
4

+
3
16
z +

3
64
z2 + · · · = 3/4

1− z/4 .

The mean is 1
3
, and the standard deviation is

2
9

+ 1
3
− 1

9
= 2

3
. If u and v are

independently and uniformly distributed with 1 ≤ u, v < 2N, some small correction
terms are needed; the mean is then actually

(2N − 1)−2
N

k=1

(2N−k − 1)2 =
1
3
− 4

3
(2N − 1)−1 +N(2N − 1)−2.

4.5.2 ANSWERS TO EXERCISES 641

7. When u and v are not both even, each of the cases (even, odd), (odd, even), (odd,
odd) is equally probable, and B = 1, 0, 0 in these cases. Hence B = 1

3
on the average.

Actually, as in exercise 6, a small correction should be given to be strictly accurate
when 1 ≤ u, v < 2N ; the probability that B = 1 is actually

(2N − 1)−2
N

k=1

(2N−k − 1)2N−k =
1
3
− 1

3
(2N − 1)−1.

8. Let F be the number of subtraction steps in which u > v; then E = F + B. If
we change the inputs from (u, v) to (v, u), the value of C stays unchanged, while F
becomes C − 1− F . Hence Eave = 1

2
(Cave − 1) +Bave.

9. The binary algorithm Ąrst gets to B6 with u = 1963, v = 1359; then t← 604, 302,
151, etc. The gcd is 302. Using Algorithm X we Ąnd that 2 · 31408− 23 · 2718 = 302.

10. (a) Two integers are relatively prime if and only if they are not both divisible by
any prime number. (b) Rearrange the sum in (a), with denominators k = p1 . . . pr.
(Each of the sums in (a) and (b) is actually Ąnite.) (c) Since (n/k)2 − ⌊n/k⌋2 =
O(n/k), we have qn −

n
k=1 µ(k)(n/k)2 =

n
k=1 O(n/k) = O(nHn). Furthermore

k>n(n/k)2 = O(n). (d)

d\n µ(d) = δ1n. [In fact, we have the more general result

d\n

µ(d)
n
d

s

= ns −

n

p

s

+

n

pq

s

− · · · ,

as in part (b), where the sums on the right are over the prime divisors of n, and this
is equal to ns(1− 1/ps

1) . . . (1− 1/ps
r) if n = pe1

1 . . . per
r .]

Notes: Similarly, we Ąnd that a set of k integers is relatively prime with probability
1/ζ(k) = 1/(

n≥1 1/nk). This proof of Theorem D is due to F. Mertens, Crelle 77

(1874), 289Ű291. The technique actually gives a much stronger result, namely that
6π−2mn + O(n logm) pairs of integers u ∈ [f(m) . . f(m) + m), v ∈ [g(n) . . g(n) + n)
are relatively prime, when m ≤ n, f(m) = O(m), and g(n) = O(n).

11. (a) 6/π2 times 1 + 1
4

+ 1
9
, namely 49/(6π2) ≈ .82746. (b) 6/π2 times 1/1 + 2/4 +

3/9 + · · · , namely ∞. (This is true in spite of the results of exercises 12 and 14.)
12. [Annali di Mat. (2) 13 (1885), 235Ű250, §3.] Let σ(n) be the number of positive
divisors of n. The answer is

k≥1

σ(k) · 6
π2k2

=
6
π2

k≥1

1
k2

2

=
π2

6
.

[Thus, the average is less than 2, although there are always at least two common
divisors when u and v are not relatively prime.]

13. 1 + 1
9

+ 1
25

+ · · · = 1 + 1
4

+ 1
9

+ · · · − 1
4
(1 + 1

4
+ 1

9
+ · · ·).

14. (a) L = (6/π2)

d≥1 d
−2 ln d = −ζ′(2)/ζ(2) =

p prime(ln p)/(p2 − 1) ≈ 0.56996.

(b) (8/π2)

d≥1[d odd] d−2 ln d = L− 1
3

ln 2 ≈ 0.33891.

15. v1 = ±v/u3, v2 = ∓u/u3 (the sign depends on whether the number of iterations
is even or odd). This follows from the fact that v1 and v2 are relatively prime to each
other (throughout the algorithm), and that v1u = −v2v. [Hence v1u = lcm(u, v) at the
close of the algorithm, but this is not an especially efficient way to compute the least
common multiple. For a generalization, see exercise 4.6.1Ű18.]

Further details can be found in exercise 4.5.3Ű48.

642 ANSWERS TO EXERCISES 4.5.2

16. Apply Algorithm X to v and m, thus obtaining a value x such that xv ≡ 1
(modulo m). (This can be done by simplifying Algorithm X so that u2, v2, and t2 are
not computed, since they are never used in the answer.) Then set w ← uxmodm. [It
follows, as in exercise 4.5.3Ű45, that this process requires O(n2) units of time, when it is
applied to large n-bit numbers. See exercises 17 and 39 for alternatives to Algorithm X.]

17. We can let u′ = (2u − vu2) mod 22e, as in Newton’s method (see the end of Sec-
tion 4.3.1). Equivalently, if uv ≡ 1 + 2ew (modulo 22e), let u′ = u+ 2e((−uw) mod 2e).

18. Let u1, u2, u3, v1, v2, v3 be multiprecision variables, in addition to u and v. The
extended algorithm will act the same on u3 and v3 as Algorithm L does on u and v. New
multiprecision operations are to set t ← Auj , t ← t + Bvj , w ← Cuj , w ← w + Dvj ,
uj ← t, vj ← w for all j, in step L4; also if B = 0 in that step to set t ← uj − qvj ,
uj ← vj , vj ← t for all j and for q = ⌊u3/v3⌋. A similar modiĄcation is made to step L1
if v3 is small. The inner loop (steps L2 and L3) is unchanged.

19. (a) Set t1 = x+2y+3z; then 3t1 +y+2z = 1, 5t1−3y−20z = 3. Eliminate y, then
14t1 − 14z = 6: No solution. (b) This time 14t1 − 14z = 0. Divide by 14, eliminate t1;
the general solution is x = 8z − 2, y = 1− 5z, z arbitrary.

20. We can assume that m ≥ n. If m > n = 0 we get to (m − t, 0) with probability
2−t for 1 ≤ t < m, to (0, 0) with probability 21−m. Valida vi, the following values can
be obtained for n > 0:

Case 1, m = n. From (n, n) we go to (n−t, n) with probability t/2t−5/2t+1+3/22t,
for 2 ≤ t < n. (These values are 1

16
, 7

64
, 27

256
,) To (0, n) the probability is

n/2n−1 − 1/2n−2 + 1/22n−2. To (n, k) the probability is the same as to (k, n). The
algorithm terminates with probability 1/2n−1.

Case 2, m = n+1. From (n+1, n) we get to (n, n) with probability 1
8

when n > 1,
or 0 when n = 1; to (n − t, n) with probability 11/2t+3 − 3/22t+1, for 1 ≤ t < n − 1.
(These values are 5

16
, 1

4
, 19

128
,) We get to (1, n) with probability 5/2n+1− 3/22n−1,

for n > 1; to (0, n) with probability 3/2n − 1/22n−1.

Case 3, m ≥ n+ 2. The probabilities are given by the following table:

(m− 1, n) : 1/2− 3/2m−n+2 − δn1/2m+1;
(m− t, n) : 1/2t + 3/2m−n+t+1, 1 < t < n;
(m− n, n) : 1/2n + 1/2m, n > 1;
(m− n− t, n) : 1/2n+t + δt1/2m−1, 1 ≤ t < m− n;
(0, n) : 1/2m−1.

The only thing interesting about these results is that they are so messy; but that
makes them uninteresting.

21. Show that for Ąxed v and for 2m < u < 2m+1, when m is large, each subtract-
and-shift cycle of the algorithm reduces ⌊lg u⌋ by two, on the average.

22. Exactly (N −m)2m−1+δm0 integers u in the range 1 ≤ u < 2N have ⌊lg u⌋ = m,
after u has been shifted right until it is odd. Thus

(2N − 1)2C = N2C00 + 2N

1≤n≤N

(N − n)2n−1Cn0

+ 2

1≤n<m≤N

(N −m)(N − n)2m+n−2Cmn +

1≤n≤N

(N − n)222n−2Cnn.

(The same formula holds for D in terms of Dmn.)

4.5.2 ANSWERS TO EXERCISES 643

The middle sum is 22N−2
0≤m<n<N mn2−m−n((α+β)N + γ−αm−βn). Since

0≤m<n

m2−m = 2− (n+ 1)21−n and

0≤m<n

m(m− 1)2−m = 4− (n2 + n+ 2)21−n,

the sum on m is

22N−2

0≤n<N

n2−n

(γ−α−βn+(α+β)N)(2−(n+1)21−n)−α(4−(n2+n+2)21−n)

= 22N−2

(α+β)N

n≥0

n2−n(2−(n+1)21−n)+O(1)

.

Thus the coefficient of (α + β)N in the answer is found to be 2−2(4 − (4
3
)3) = 11

27
.

A similar argument applies to the other sums.
Note: The exact value of the sums may be obtained after some tedious calculation

by means of the general summation-by-parts formula

0≤k<n

km zk =
m! zm

(1− z)m+1
−

m

k=0

mk nm−k zn+k

(1− z)k+1
.

23. If x ≤ 1 it is Pr(u ≥ v and v/u ≤ x) = 1
2
(1−Gn(x)). And if x ≥ 1 it is 1

2
+Pr(u ≤ v

and v/u ≥ 1/x) = 1
2

+ 1
2
Gn(1/x); this also equals 1

2
(1−Gn(x)) by (40).

24.

k≥1 2−kG(1/(2k + 1)) = S(1). This value, which has no obvious connection to
classical constants, is approximately 0.5432582959.

25. Richard Brent has noted that G(e−y) is an odd function that is analytic for all
real values of y. If we let G(e−y) = λ1y + λ3y

3 + λ5y
5 + · · · = ρ(e−y − 1), we have

−ρ1 = λ1 = λ, ρ2 = 1
2
λ, −ρ3 = 1

3
λ+ λ3, ρ4 = 1

4
λ+ 3

2
λ3, −ρ5 = 1

5
λ+ 7

4
λ3 + λ5;

(−1)nρn =

k

n

k

k!
n!
λk; λn = −

k

n

k

k!
n!
ρk.

The Ąrst few values are λ1 ≈ .3979226812, λ3 ≈ −.0210096400, λ5 ≈ .0013749841,
λ7 ≈ −.0000960351. Wild conjecture: limk→∞(−λ2k+1/λ2k−1) = 1/π2.

26. The left side is 2S(1/x)−5S(1/2x)+2S(1/4x)−2S(x)+5S(2x)−2S(4x) by (39); the
right side is S(2x)−2S(4x)+2S(1/x)−S(1/2x)−2S(x)+4S(2x)−4S(1/2x)+2S(1/4x)
by (44). The cases x = 1, x = 1/

√
2, and x = ϕ are perhaps the most interesting; for

example, x = ϕ gives 2G(4ϕ)− 5G(2ϕ) +G(ϕ2/2)−G(ϕ3) = 2G(2ϕ2).

27. 2ψn = [zn] z

k≥0 2−2k2k−1
j=0

l≥0(jz/2k)l =

k≥1 2−k(n+1)2k−1

j=0 jn−1 =

k≥1 2−k(n+1)n−1
l=0

n
l

Bl2k(n−l)/n by exercise 1.2.11.2Ű4, when n > 1; and of course

k≥1 2−k(l+1) = 1/(2l+1 − 1).

28. Letting Sn(m) =
m−1

k=1 (1 − k/m)n and Tn(m) = 1/(en/m − 1) as in exercise
6.3Ű34(b), we Ąnd Sn(m) = Tn(m) +O(e−n/mn/m2) and 2ψn+1 =

j≥1 2−2jSn(2j) =

τn +O(n−3), where τn =

j≥1 2−2jTn(2j). Since τn+1 < τn and 4τ2n−τn = 1/(en−1)
is positive but exponentially small, it follows that τn = Θ(n−2). More detailed
information can be obtained by writing

j≥1

1
22j

1
en/2j−1

=
1

2πi

j≥1

 3/2+i∞

3/2−i∞

ζ(z)Γ (z)n−z

2j(2−z)
dz =

1
2πi

 3/2+i∞

3/2−i∞

ζ(z)Γ (z)n−z

22−z−1
dz.

644 ANSWERS TO EXERCISES 4.5.2

The integral is the sum of the residues at the poles 2 + 2πik/ ln 2, namely n−2 times
π2/(6 ln 2) + f(n), where

f(n) = 2

k≥1

ℜ(ζ(2 + 2πik/ ln 2)Γ (2 + 2πik/ ln 2) exp(−2πik lgn)/ ln 2)

is a periodic function of lgn whose “averageŤ value is zero.

29. (Solution by P. Flajolet and B. Vallée.) If f(x) =

k≥1 2−kg(2kx) and g∗(s) =∞
0
g(x)xs−1dx, then f∗(s) =

k≥1 2−k(s+1)g∗(s) = g∗(s)/(2s+1 − 1), and f(x) =

1
2πi

 c+i∞
c−i∞ f∗(s)x−sds under appropriate conditions. Letting g(x) = 1/(1 + x), we Ąnd

that the transform in this case is g∗(s) = π/sinπs when 0 < ℜs < 1; hence

f(x) =
∞

k=1

1
2k

1
1 + 2kx

=
1

2πi

 1/2+i∞

1/2−i∞

πx−s ds

(2s+1 − 1) sinπs
.

It follows that f(x) is the sum of the residues of π
sin πs

x−s/(2s+1−1) for ℜs ≤ 0, namely
1 + x lg x+ 1

2
x+ xP (lg x)− 2

1
x2 + 4

3
x3 − 8

7
x4 + · · · , where

P (t) =
2π
ln 2

∞

m=1

sin 2πmt
sinh(2mπ2/ ln 2)

is a periodic function whose absolute value never exceeds 8 × 10−12. (The fact that
P (t) is so small caused Brent to overlook it in his original paper.)

The Mellin transform of f(1/x) is f∗(−s) = π/((1−21−s) sinπs) for −1 < ℜs < 0;
thus f(1/x) = 1

2πi

 −1/2+i∞
−1/2−i∞

π
sin πs

x−sds/(1 − 21−s), and we now want the residues of

the integrand with ℜs ≤ −1: f(1/x) = 1
3
x− 1

7
x2 + · · · . [This formula could also have

been obtained directly.] We have S1(x) = 1− f(x), and it follows that

G1(x) = f(x)− f(1/x) = x lg x+
1
2
x+ xP (lg x)− x2

1 + x
+ (1− x2)ϕ(x),

where ϕ(x) =
∞

k=0(−1)kxk/(2k+1 − 1).

30. We have G2(x) = Σ1(x)−Σ1(1/x) +Σ2(x)−Σ2(1/x), where

Σ1(x) =

k,l≥1

1
2k+l

1
1 + 2l(1 + 2kx)

, Σ2(x) =

k,l≥1

1
2k

1
1 + 2l + 2kx

.

The Mellin transforms are Σ∗
1 (s) = π

sin πs
a(s)/(2s+1−1), Σ∗

2 (s) = π
sin πs

b(s)/(2s+1−1),
where

a(s) =

l≥1

(1 + 2−l)s−1

22l
=

k≥0

s− 1
k

 1
2k+2 − 1

,

b(s) =

l≥1

(2l + 1)s−1 =

k≥0

s− 1
k

 1
2k+1−s − 1

.

Therefore we obtain the following expansions for 0 ≤ x ≤ 1:

Σ1(x) = a(0) + a(−1)x(lg x+ 1
2
)− a′(1)x/ ln 2 + xA(lg x)−

k≥2

2k−1

2k−1−1
a(−k)(−x)k,

Σ2(x) = b(0) + b(−1)x(lg x+ 1
2
)− b′(1)x/ ln 2 + xB(lg x)−

k≥2

2k−1

2k−1−1
b(−k)(−x)k,

4.5.2 ANSWERS TO EXERCISES 645

Σ1(1/x) =

k≥1

−a(k)(−x)k

2k+1 − 1
,

Σ2(1/x) =

k≥1

(−x)k

2k+1 − 1

lg x− b̂(k)− 1
2
− 1

2k+1 − 1
+
Hk−1

ln 2
+ Pk(lg x)

,

b̂(s) =
s−2

k=0

s− 1
k

 1
2k+1−s − 1

;

A(t) =
1

ln 2

m≥1

ℜ

2πi
sinh(2mπ2/ ln 2)

a(−1 + 2mπi/ ln 2) e−2mπit

,

B(t) =
1

ln 2

m≥1

ℜ

2πi
sinh(2mπ2/ ln 2)

b(−1 + 2mπi/ ln 2) e−2mπit

,

Pk(t) =
1

ln 2

m≥1

ℜ

2πi
sinh(2mπ2/ ln 2)

k − 1− 2mπi/ ln 2

k − 1

e−2mπit

.

32. Yes: See G. Maze, J. Discrete Algorithms 5 (2007), 176Ű186.

34. Brigitte Vallée [Algorithmica 22 (1998), 660Ű685] has found an elegant and rig-
orous analysis of Algorithm B, using an approach quite different from that of Brent.
Indeed, her methods are sufficiently different that they are not yet known to predict the
same behavior as Brent’s heuristic model. Thus the problem of analyzing the binary
gcd algorithm, now solved rigorously for the Ąrst time, continues to lead to ever more
tantalizing questions of higher mathematics.

35. By induction, the length is m+⌊n/2⌋+1−[m=n= 1] when m ≥ n. But exercise 37
shows that the algorithm cannot go as slowly as this.

36. Let an = (2n − (−1)n)/3; then a0, a1, a2, . . . = 0, 1, 1, 3, 5, 11, 21,
(This sequence of numbers has an interesting pattern of zeros and ones in its binary
representation. Notice that an = an−1 + 2an−2, and an + an+1 = 2n.) For m > n, let
u = 2m+1−an+2, v = an+2. For m = n > 0, let u = an+2 and v = u+ (−1)n. Another
example for the case m = n > 0 is u = 2n+1 − 2, v = 2n+1 − 1; this choice takes more
shifts, and gives B = 1, C = n+ 1, D = 2n, E = n, the worst case for Program B.

37. (Solution by J. O. Shallit.) This is a problem where it appears to be necessary to
prove more than was asked just to prove what was asked. Let S(u, v) be the number
of subtraction steps taken by Algorithm B on inputs u and v. We will prove that
S(u, v) ≤ lg(u + v). This will imply that S(u, v) ≤ ⌊lg(u + v)⌋ ≤ ⌊lg 2 max(u, v)⌋ =
1 + ⌊lg max(u, v)⌋ as desired.

Notice that S(u, v) = S(v, u). If u is even, S(u, v) = S(u/2, v); hence we may
assume that u and v are odd. We may also assume that u > v, since S(u, u) = 1. Then
S(u, v) = 1 + S((u− v)/2, v) ≤ 1 + lg((u− v)/2 + v) = lg(u+ v) by induction.

It follows, incidentally, that the smallest case requiring n subtraction steps is
u = 2n−1 + 1, v = 2n−1 − 1.

38. Keep track of the most signiĄcant and least signiĄcant words of the operands (the
most signiĄcant is used to guess the sign of t and the least signiĄcant is to determine the
amount of right shift), while building a 2× 2 matrix A of single-precision integers such
that A

u
v

=

u′w
v′w

, where w is the computer word size and where u′ and v′ are smaller

than u and v. (Instead of dividing the simulated even operand by 2, multiply the other
one by 2, until obtaining multiples of w after exactly lgw shifts.) Experiments show

646 ANSWERS TO EXERCISES 4.5.2

this algorithm running four times as fast as Algorithm L, on at least one computer.
With the similar algorithm of exercise 40 we don’t need the most signiĄcant words.

A possibly faster binary algorithm has been described by J. Sorenson, J. Algo-
rithms 16 (1994), 110Ű144; Shallit and Sorenson, Lecture Notes in Comp. Sci. 877

(1994), 169Ű183.

39. (Solution by Michael Penk.) Assume that u and v are positive.

Y1. [Find power of 2.] Same as step B1.

Y2. [Initialize.] Set (u1, u2, u3) ← (1, 0, u) and (v1, v2, v3) ← (v, 1 − u, v). If u is
odd, set (t1, t2, t3) ← (0,−1,−v) and go to Y4. Otherwise set (t1, t2, t3) ←
(1, 0, u).

Y3. [Halve t3.] If t1 and t2 are both even, set (t1, t2, t3)← (t1, t2, t3)/2; otherwise
set (t1, t2, t3)← (t1 + v, t2−u, t3)/2. (In the latter case, t1 + v and t2−u will
both be even.)

Y4. [Is t3 even?] If t3 is even, go back to Y3.

Y5. [Reset max(u3, v3).] If t3 is positive, set (u1, u2, u3) ← (t1, t2, t3); otherwise
set (v1, v2, v3)← (v − t1,−u− t2,−t3).

Y6. [Subtract.] Set (t1, t2, t3) ← (u1, u2, u3) − (v1, v2, v3). Then if t1 ≤ 0, set
(t1, t2)← (t1 + v, t2 − u). If t3 ̸= 0, go back to Y3. Otherwise the algorithm
terminates with (u1, u2, u3 · 2k) as the output.

It is clear that the relations in (16) are preserved, and that 0 ≤ u1, v1, t1 ≤ v,
0 ≥ u2, v2, t2 ≥ −u, 0 < u3 ≤ u, 0 < v3 ≤ v after each of steps Y2ŰY6. If u is odd
after step Y1, then step Y3 can be simpliĄed, since t1 and t2 are both even if and only
if t2 is even; similarly, if v is odd, then t1 and t2 are both even if and only if t1 is even.
Thus, as in Algorithm X, it is possible to suppress all calculations involving u2, v2, and
t2, provided that v is odd after step Y1. This condition is often known in advance (for
example, it holds when v is prime and we are trying to compute u−1 modulo v).

See also A. W. Bojanczyk and R. P. Brent, Computers and Math. 14 (1987), 233,
for a similar extension of the algorithm in exercise 40.

40. Let m = lg max(|u|, |v|). We can show inductively that |u| ≤ 2m−(s−c)/2, |v| ≤
2m−(s+c)/2 after we have performed the operation c ← c + 1 in step K3 s times.
Therefore s ≤ 2m. If K2 is executed t times, we have t ≤ s + 2, because s increases
every time except the Ąrst and last. [See VLSI ’83 (North-Holland, 1983), 145Ű154.]

Notes: When u = 1 and v = 3 · 2k − 1 and k ≥ 2, we have m = k + 2, s = 2k,
t = k + 4. When u = uj and v = 2uj−1 in the sequence deĄned by u0 = 3, u1 = 1,
uj+1 = min(|3uj − 16uj−1|, |5uj − 16uj−1|), we have s = 2j + 2, t = 2j + 3, and
(empirically) m ≈ ϕj. Can t be asymptotically larger than 2m/ϕ?

41. In general, since (au− 1) mod (av − 1) = au mod v − 1 (see Eq. 4.3.2Ű(20)), we Ąnd
that gcd(am − 1, an − 1) = agcd(m,n) − 1 for all positive integers a.

42. Subtract the kth column from the 2kth, 3kth, 4kth, etc., for k = 1, 2, 3, The
result is a triangular matrix with xk on the diagonal in column k, where m =

d\m xd.

It follows that xm = φ(m), so the determinant is φ(1)φ(2) . . . φ(n).
[In general, “Smith’s determinant,Ť in which the (i, j) element is f(gcd(i, j)) for

an arbitrary function f , is equal to
n

m=1

d\m µ(m/d)f(d), by the same argument.

See L. E. Dickson, History of the Theory of Numbers 1 (Carnegie Inst. of Washington,
1919), 122Ű123.]

4.5.3 ANSWERS TO EXERCISES 647

SECTION 4.5.3

1. The running time is about 19.02T + 6, just a triĆe slower than Program 4.5.2A.

2.

Kn(x1, x2, . . . , xn−1, xn)
Kn−1(x2, . . . , xn−1, xn)

Kn−1(x1, x2, . . . , xn−1)
Kn−2(x2, . . . , xn−1)

.

3. Kn(x1, . . . , xn).

4. By induction, or by taking the determinant of the matrix product in exercise 2.

5. When the x’s are positive, the q’s of (9) are positive, and qn+1 > qn−1; hence (9)
is an alternating series of decreasing terms, and it converges if and only if qnqn+1 →∞.
By induction, if the x’s are greater than ϵ, we have qn ≥ (1 + ϵ/2)nc, where c is chosen
small enough to make this inequality valid for n = 1 and 2. But if xn = 1/2n, we have
qn ≤ 2− 1/2n.

6. It suffices to prove that A1 = B1; and from the fact that 0 ≤ //x1, . . . , xn// < 1
whenever x1, . . . , xn are positive integers, we have B1 = ⌊1/X⌋ = A1.

7. Only 1 2 . . . n and n . . . 2 1. (The variable xk appears in exactly Fk Fn+1−k terms;
hence x1 and xn can only be permuted into x1 and xn. If x1 and xn are Ąxed by the
permutation, it follows by induction that x2, . . . , xn−1 are also Ąxed.)

8. This is equivalent to

Kn−2(An−1, . . . , A2)−XKn−1(An−1, . . . , A1)
Kn−1(An, . . . , A2)−XKn(An, . . . , A1)

= − 1
Xn

,

and by (6) it is equivalent to

X =
Kn−1(A2, . . . , An) +XnKn−2(A2, . . . , An−1)
Kn(A1, . . . , An) +XnKn−1(A1, . . . , An−1)

.

9. (a) By deĄnition. (b, d) Prove this when n = 1, then apply (a) to get the result
for general n. (c) Prove it when n = k + 1, then apply (a).

10. If A0 > 0, then B0 = 0, B1 = A0, B2 = A1, B3 = A2, B4 = A3, B5 = A4, m = 5.
If A0 = 0, then B0 = A1, B1 = A2, B2 = A3, B3 = A4, m = 3. If A0 = −1 and A1 = 1,
then B0 = −(A2 + 2), B1 = 1, B2 = A3 − 1, B3 = A4, m = 3. If A0 = −1 and A1 > 1,
then B0 = −2, B1 = 1, B2 = A1− 2, B3 = A2, B4 = A3, B5 = A4, m = 5. If A0 < −1,
then B0 = −1, B1 = 1, B2 = −A0 − 2, B3 = 1, B4 = A1 − 1, B5 = A2, B6 = A3,
B7 = A4, m = 7. [Actually, the last three cases involve eight subcases; if any of the B’s
is set to zero, the values should be “collapsed togetherŤ by using the rule of exercise
9(c). For example, if A0 = −1 and A1 = A3 = 1, we actually have B0 = −(A2 + 2),
B1 = A4 + 1, m = 1. Double collapsing occurs when A0 = −2 and A1 = 1.]

11. Let qn = Kn(A1, . . . , An), q′n = Kn(B1, . . . , Bn), pn = Kn+1(A0, . . . , An), p′n =
Kn+1(B0, . . . , Bn). By (5) and (11) we have X = (pm + pm−1Xm)/(qm + qm−1Xm),
Y = (p′n + p′n−1Yn)/(q′n + q′n−1Yn); therefore if Xm = Yn, the stated relation between
X and Y holds by (8). Conversely, if X = (qY + r)/(sY + t) and |qt − rs| = 1,
we may assume that s ≥ 0, and we can show that the partial quotients of X and Y
eventually agree, by induction on s. The result is clear when s = 0, by exercise 9(d).
If s > 0, let q = as+ s′, where 0 ≤ s′ < s. Then X = a+ 1/((sY + t)/(s′Y + r − at));
since s(r − at) − ts′ = sr − tq, and s′ < s, we know by induction and exercise 10
that the partial quotients of X and Y eventually agree. [J. de Math. Pures et Appl.
15 (1850), 153Ű155. The fact that m is always odd in exercise 10 shows, by a close
inspection of this proof, that Xm = Yn if and only if X = (qY + r)/(sY + t), where
qt− rs = (−1)m−n.]

648 ANSWERS TO EXERCISES 4.5.3

12. (a) Since VnVn+1 = D−U2
n, we know that D−U2

n+1 is a multiple of Vn+1; hence
by induction Xn = (

√
D−Un)/Vn, where Un and Vn are integers. [Notes: An algorithm

based on this process has many applications to the solution of quadratic equations in
integers; see, for example, H. Davenport, The Higher Arithmetic (London: Hutchinson,
1952); W. J. LeVeque, Topics in Number Theory (Reading, Mass.: AddisonŰWesley,
1956); and see also Section 4.5.4. By exercise 1.2.4Ű35, we have

An+1 =

⌊(⌊
√
D⌋+ Un)/Vn+1⌋, if Vn+1 > 0,

⌊(⌊
√
D⌋+ 1 + Un)/Vn+1⌋, if Vn+1 < 0;

hence such an algorithm need only work with the positive integer ⌊
√
D⌋. Moreover,

the identity Vn+1 = An(Un−1 −Un) + Vn−1 makes it unnecessary to divide when Vn+1

is being determined.]
(b) Let Y = (−

√
D−U)/V , Yn = (−

√
D−Un)/Vn. The stated identity obviously

holds by replacing
√
D by −

√
D in the proof of (a). We have

Y = (pn/Yn + pn−1)/(qn/Yn + qn−1),

where pn and qn are deĄned in part (c) of this exercise; hence

Yn = (−qn/qn−1)(Y − pn/qn)/(Y − pn−1/qn−1).

But by (12), pn−1/qn−1 and pn/qn are extremely close to X; since X ̸= Y , Y − pn/qn

and Y − pn−1/qn−1 will have the same sign as Y −X for all large n. This proves that
Yn < 0 for all large n; hence 0 < Xn < Xn−Yn = 2

√
D/Vn; Vn must be positive. Also

Un <
√
D, since Xn > 0. Hence Vn < 2

√
D, since Vn ≤ AnVn <

√
D + Un−1.

Finally, we want to show that Un > 0. Since Xn < 1, we have Un >
√
D − Vn, so

we need only consider the case Vn >
√
D. Then Un = AnVn − Un−1 ≥ Vn − Un−1 >√

D − Un−1, and this is positive as we have already observed.
Notes: In the repeating cycle,

√
D + Un = AnVn + (

√
D − Un−1) > Vn; hence

⌊(
√
D + Un+1)/Vn+1⌋ = ⌊An+1 + Vn/(

√
D + Un)⌋ = An+1 = ⌊(

√
D + Un)/Vn+1⌋.

In other words An+1 is determined by Un+1 and Vn+1; we can determine (Un, Vn)
from its successor (Un+1, Vn+1) in the period. In fact, when 0 < Vn <

√
D + Un

and 0 < Un <
√
D, the arguments above prove that 0 < Vn+1 <

√
D + Un+1 and

0 < Un+1 <
√
D ; moreover, if the pair (Un+1, Vn+1) follows (U ′, V ′) with 0 < V ′ <√

D+U ′ and 0 < U ′ <
√
D, then U ′ = Un and V ′ = Vn. Hence (Un, Vn) is part of the

cycle if and only if 0 < Vn <
√
D + Un and 0 < Un <

√
D.

(c)
−Vn+1

Vn
= XnYn =

(qnX − pn)(qnY − pn)
(qn−1X − pn−1)(qn−1Y − pn−1)

.

There is also a companion identity, namely

V pnpn−1 + U(pnqn−1 + pn−1qn) + ((U2 −D)/V)qnqn−1 = (−1)nUn.

(d) If Xn = Xm for some n ̸= m, then X is an irrational number that satisĄes
the quadratic equation (qnX − pn)/(qn−1X − pn−1) = (qmX − pm)/(qm−1X − pm−1).

The ideas underlying this exercise go back at least to Jayadeva in India, prior to
A.D. 1073; see K. S. Shukla, Gan. ita 5 (1954), 1Ű20; C.-O. Selenius, Historia Math. 2

(1975), 167Ű184. Some of its aspects had also been discovered in Japan before 1750;
see Y. Mikami, The Development of Mathematics in China and Japan (1913), 223Ű229.
But the main principles of the theory of continued fractions for quadratics are largely

4.5.3 ANSWERS TO EXERCISES 649

due to Euler [Novi Comment. Acad. Sci. Petrop. 11 (1765), 28Ű66] and Lagrange [Hist.
Acad. Sci. 24 (Berlin: 1768), 111Ű180].

14. As in exercise 9, we need only verify the stated identities when c is the last
partial quotient, and this veriĄcation is trivial. Now Hurwitz’s rule gives 2/e =
//1, 2, 1, 2, 0, 1, 1, 1, 1, 1, 0, 2, 3, 2, 0, 1, 1, 3, 1, 1, 0, 2, 5, . . . //. Taking the reciprocal, col-
lapsing out the zeros as in exercise 9, and taking note of the pattern that appears,
we Ąnd (see exercise 16) that e/2 = 1 + // 2, 2m+ 1, 3, 1, 2m+ 1, 1, 3//, m ≥ 0.
[Schriften der phys.-ökon. Gesellschaft zu Königsberg 32 (1891), 59Ű62. Hurwitz also
explained how to multiply by an arbitrary positive integer, in Vierteljahrsschrift der
Naturforschenden Gesellschaft in Zürich 41 (1896), Jubelband II, 34Ű64, §2.]

15. (This procedure maintains four integers (A,B,C,D) with the invariant meaning
that “our remaining job is to output the continued fraction for (Ay+B)/(Cy+D), where
y is the input yet to come.Ť) Initially set j ← k ← 0, (A,B,C,D) ← (a, b, c, d); then
input xj and set (A,B,C,D)← (Axj +B, A, Cxj +D, C), j ← j+1, one or more times
until C + D has the same sign as C. (When j ≥ 1 and the input has not terminated,
we know that 1 < y <∞; and when C +D has the same sign as C we know therefore
that (Ay + B)/(Cy + D) lies between (A + B)/(C + D) and A/C.) Now comes the
general step: If no integer lies strictly between (A+B)/(C+D) and A/C, output Xk ←
min(⌊A/C⌋, ⌊(A+B)/(C+D)⌋), and set (A,B,C,D)← (C, D, A−XkC, B−XkD),
k ← k + 1; otherwise input xj and set (A,B,C,D) ← (Axj + B, A, Cxj + D, C),
j ← j + 1. The general step is repeated ad inĄnitum. However, if at any time the
Ąnal xj is input, the algorithm immediately switches gears: It outputs the continued
fraction for (Axj +B)/(Cxj +D), using Euclid’s algorithm, and terminates.

The following tableau solves the requested example, where the matrix (B
D

A
C

)
begins at the upper left corner, then shifts right one on input, down one on output:

xj −1 5 1 1 1 2 1 2 ∞
Xk 39 97 −58 −193
−2 −25 −62 37 123

2 16 53
3 5 17 22
7 1 2 3 5
1 3 1 4 5 14
1 2 1 3 7
1 2 7 9 25

12 1 0 1 2
2 1
∞ 0

M. Mendès France has shown that the number of quotients output per quotient input
is asymptotically bounded between 1/r and r, where r = 2⌊L(|ad − bc|)/2⌋ + 1 and
L is the function deĄned in exercise 38; this bound is best possible. [Topics in Number
Theory, edited by P. Turán, Colloquia Math. Soc. János Bolyai 13 (1976), 183Ű194.]

Gosper has also shown that the algorithm above can be generalized to compute
the continued fraction for (axy + bx + cy + d)/(Axy + Bx + Cy + D) from those of
x and y (in particular, to compute sums and products). [MIT AI Laboratory Memo
239 (29 February 1972), Hack 101.] For further developments, see J. Vuillemin, ACM
Conf. LISP and Functional Programming 5 (1988), 14Ű27.

650 ANSWERS TO EXERCISES 4.5.3

16. It is not difficult to prove by induction that fn(z) = z/(2n+ 1) +O(z3) is an odd
function with a convergent power series in a neighborhood of the origin, and that it
satisĄes the given differential equation. Hence

f0(z) = //z−1 + f1(z)// = · · · = //z−1, 3z−1, . . . , (2n+ 1)z−1 + fn+1(z)//.

It remains to prove that limn→∞ //z−1, 3z−1, . . . , (2n + 1)z−1// = f0(z). [Actually
Euler, age 24, obtained continued fraction expansions for the considerably more general
differential equation f ′

n(z) = azm + bfn(z)zm−1 + cfn(z)2; but he did not bother to
prove convergence, since formal manipulation and intuition were good enough in the
eighteenth century.]

There are several ways to prove the desired limiting equation. First, letting fn(z) =
k ankz

k, we can argue from the equation

(2n+ 1)an1 + (2n+ 3)an3z
2 + (2n+ 5)an5z

4 + · · · = 1− (an1z+ an3z
3 + an5z

5 + · · ·)2

that (−1)kan(2k+1) is a sum of terms of the form ck/(2n+1)k+1(2n+bk1) . . . (2n+bkk),
where the ck and bkm are positive integers independent of n. For example, we have
−an7 = 4/(2n + 1)4(2n + 3)(2n + 5)(2n + 7) + 1/(2n + 1)4(2n + 3)2(2n + 7). Thus
|a(n+1)k| ≤ |ank|, and |fn(z)| ≤ tan |z| for |z| < π/2. This uniform bound on fn(z)
makes the convergence proof very simple. Careful study of this argument reveals that
the power series for fn(z) actually converges for |z| < π

√
2n+ 1/2; therefore the

singularities of fn(z) get farther and farther away from the origin as n grows, and
the continued fraction actually represents tanh z throughout the complex plane.

Another proof gives further information of a different kind: If we let

An(z) = n!
n

k=0

2n− k
n

zk

k!
=

k≥0

(n+ k)! zn−k

k! (n− k)!
= zn

2F0(n+ 1,−n ; ;−1/z),

then

An+1(z) =

k≥0

(n+ k − 1)! ((4n+ 2)k + (n+ 1− k)(n− k))
k! (n+ 1− k)!

zn+1−k

= (4n+ 2)An(z) + z2An−1(z).

It follows, by induction, that

Kn

1
z
,

3
z
, . . . ,

2n− 1
z

=
An(2z) +An(−2z)

2n+1zn
,

Kn−1

3
z
, . . . ,

2n− 1
z

=
An(2z)−An(−2z)

2n+1zn
.

Hence
//z−1, 3z−1, . . . , (2n− 1)z−1// =

An(2z)−An(−2z)
An(2z) +An(−2z)

,

and we want to show that this ratio approaches tanh z. By Equations 1.2.9Ű(11) and
1.2.6Ű(24),

ezAn(−z) = n!

m≥0

zm

m!

 n

k=0

m

k

2n− k
n

(−1)k

=

m≥0

2n−m
n

zm n!
m!
.

Hence

ezAn(−z)−An(z) = Rn(z) = (−1)nz2n+1

k≥0

(n+ k)! zk

(2n+ k + 1)! k!
.

4.5.3 ANSWERS TO EXERCISES 651

We now have (e2z − 1)(An(2z) +An(−2z))− (e2z + 1)(An(2z)−An(−2z)) = 2Rn(2z);
hence

tanh z − //z−1, 3z−1, . . . , (2n− 1)z−1// =
2Rn(2z)

(An(2z) +An(−2z))(e2z + 1)
,

and we have an exact formula for the difference. When |2z| ≤ 1, the factor e2z + 1 is
bounded away from zero, |Rn(2z)| ≤ e n!/(2n+ 1)!, and

1
2
|An(2z) +An(−2z)| ≥ n!

2n
n

−
2n− 2

n

−
2n− 4

n

−
2n− 6

n

− · · ·

≥ (2n)!
n!

1− 1
4
− 1

16
− 1

64
− · · ·

=
2
3

(2n)!
n!

.

Thus convergence is very rapid, even for complex values of z.
To go from this continued fraction to the continued fraction for ez, we have

tanh z = 1 − 2/(e2z + 1); hence we get the continued-fraction representation for
(e2z + 1)/2 by simple manipulations. Hurwitz’s rule gives the expansion of e2z + 1,
from which we may subtract unity. For n odd,

e−2/n = // 1, 3mn+ ⌊n/2⌋, (12m+ 6)n, (3m+ 2)n+ ⌊n/2⌋, 1//, m ≥ 0.

Another derivation has been given by C. S. Davis, J. London Math. Soc. 20 (1945),
194Ű198. The continued fraction for e was Ąrst found empirically by Roger Cotes,
Philosophical Transactions 29 (1714), 5Ű45, Proposition 1, Scholium 3. Euler com-
municated his results in a letter to Goldbach on November 25, 1731 [Correspondance
Mathématique et Physique, edited by P. H. Fuss, 1 (St. Petersburg: 1843), 56Ű60], and
he eventually published fuller descriptions in Commentarii Acad. Sci. Petropolitanæ 9

(1737), 98Ű137; 11 (1739), 32Ű81.

17. (b) //x1 − 1, 1, x2 − 2, 1, x3 − 2, 1, . . . , 1, x2n−1 − 2, 1, x2n − 1//. [Note: One can
remove negative parameters from continuants by using the identity

Km+n+1(x1, . . . , xm,−x, yn, . . . , y1)

= (−1)n−1Km+n+2(x1, . . . , xm−1, xm − 1, 1, x− 1,−yn, . . . ,−y1),

from which we obtain

Km+n+1(x1, . . . , xm,−x, yn, . . . , y1)

= −Km+n+3(x1, . . . , xm−1, xm − 1, 1, x− 2, 1, yn − 1, yn−1, . . . , y1)

after a second application. A similar identity appears in exercise 41.]
(c) 1 + //1, 1, 3, 1, 5, 1, . . . // = 1 + //2m+ 1, 1//, m ≥ 0.

18. Since we have Km(a1, a2, . . . , am) //a1, a2, . . . , am, x// = Km−1(a2, . . . , am) +
(−1)m/(Km−1(a1, . . . , am−1) +Km(a1, a2, . . . , am)x) by Eqs. (5) and (8), we also have
Km(a1, a2, . . . , am) //a1, a2, . . . , am, x1, a1, a2, . . . , am, x2, a1, a2, . . . , am, x3, a1, . . . // =
Km−1(a2, . . . , am) + //(−1)m(C + Ax1), C + Ax2, (−1)m(C + Ax3), . . . //, where A =
Km(a1, a2, . . . , am) and C = Km−1(a2, . . . , am) + Km−1(a1, . . . , am−1). Consequently
the stated difference is (Km−1(a2, . . . , am)−Km−1(a1, . . . , am−1))/Km(a1, a2, . . . , am),
by (6). [The case m = 2 was discussed by Euler in Commentarii Acad. Sci. Petropoli-
tanæ 9 (1737), 98Ű137, §24Ű26.]

19. The sum for 1 ≤ k ≤ N is logb((1 + x)(N + 1)/(N + 1 + x)).

652 ANSWERS TO EXERCISES 4.5.3

20. Let H = SG, g(x) = (1 + x)G′(x), h(x) = (1 + x)H ′(x). Then (37) implies that
h(x+ 1)/(x+ 2)− h(x)/(x+ 1) = −(1 + x)−2g(1/(1 + x))/(1 + 1/(1 + x)).

21. φ(x) = c/(cx+ 1)2 + (2− c)/((c− 1)x+ 1)2, Uφ(x) = 1/(x+ c)2. When c ≤ 1, the
minimum of φ(x)/Uφ(x) occurs at x = 0 and is 2c2 ≤ 2. When c ≥ ϕ, the minimum
occurs at x = 1 and is ≤ ϕ2. When c ≈ 1.31266 the values at x = 0 and x = 1 are
nearly equal and the minimum is > 3.2; the bounds (0.29)nφ ≤ Unφ ≤ (0.31)nφ are
obtained. Still better bounds come from well-chosen linear combinations of the form
Tg(x) =

aj/(x+ cj).

23. By the interpolation formula of exercise 4.6.4Ű15 with x0 = 0, x1 = x, x2 = x+ ϵ,
letting ϵ→ 0, we have the general identity R′

n(x) = (Rn(x)−Rn(0))/x+ 1
2
xR′′

n(θn(x))
for some θn(x) between 0 and x, whenever Rn is a function with continuous second
derivative. Hence in this case R′

n(x) = O(2−n).

24. ∞. [A. Khinchin, in Compos. Math. 1 (1935), 361Ű382, proved that the sum
A1 + · · ·+An of the Ąrst n partial quotients of a real number X will be asymptotically
n lgn, for almost all X. Exercise 35 shows that the behavior is different for rational X.]

25. Any union of intervals can be written as a union of disjoint intervals, since we have
k≥1 Ik =

k≥1(Ik \

1≤j<k Ij), and this is a disjoint union in which Ik \

1≤j<k Ij

can be expressed as a Ąnite union of disjoint intervals. Therefore we may take I =

Ik,

where Ik is an interval of length ϵ/2k containing the kth rational number in [0 . . 1],
using some enumeration of the rationals. In this case µ(I) ≤ ϵ, but |I ∩ Pn| = n for
all n.

26. The continued fractions //A1, . . . , At// that appear are precisely those for which
A1 > 1, At > 1, and Kt(A1, A2, . . . , At) is a divisor of n. Therefore (6) completes
the proof. [Note: If m1/n = //A1, . . . , At// and m2/n = //At, . . . , A1//, where m1

and m2 are relatively prime to n, then m1m2 ≡ ±1 (modulo n); this rule deĄnes the
correspondence. When A1 = 1 an analogous symmetry is valid, according to (46).]

27. First prove the result for n = pe, then for n = rs, where r and s are relatively
prime. Alternatively, use the formulas in the next exercise.

28. (a) The left-hand side is multiplicative (see exercise 1.2.4Ű31), and it is easily
evaluated when n is a power of a prime. (c) From (a), we have Möbius’s inversion

formula: If f(n) =

d\n g(d), then g(n) =

d\n µ(n/d)f(d).

29. We have
N

n=1 n lnn = 1
2
N2 lnN + O(N2) by Euler’s summation formula (see

exercise 1.2.11.2Ű7). Also
N

n=1 n

d\n Λ(d)/d =
N

d=1 Λ(d)

1≤k≤N/d k, and this is

O(
N

d=1 Λ(d)N2/d2) = O(N2). Indeed,

d≥1 Λ(d)/d2 = −ζ′(2)/ζ(2).

30. The modiĄed algorithm affects the calculation if and only if the following division
step in the unmodiĄed algorithm would have the quotient 1, and in this case it avoids
the following division step. The probability that a given division step is avoided is
the probability that Ak = 1 and that this quotient is preceded by an even number of
quotients equal to 1. By the symmetry condition, this is the probability that Ak = 1
and is followed by an even number of quotients equal to 1. The latter happens if and
only if Xk−1 > ϕ−1 = 0.618 . . . , where ϕ is the golden ratio: For Ak = 1 and Ak+1 > 1
if and only if 2

3
≤ Xk−1 < 1; Ak = Ak+1 = Ak+2 = 1 and Ak+3 > 1 if and only if 5

8
≤

Xk−1 <
2
3
; etc. Thus we save approximately Fk−1(1)− Fk−1(ϕ− 1) ≈ 1− lgϕ ≈ 0.306

of the division steps. The average number of steps is approximately ((12 lnϕ)/π2) lnn,
when v = n and u is relatively prime to n.

4.5.3 ANSWERS TO EXERCISES 653

K. Vahlen [Crelle 115 (1895), 221Ű233] considered all algorithms that replace
(u, v) by (v, (±u) mod v) at each iteration when umod v ̸= 0. If u ⊥ v there are
exactly v such algorithms, and they can be represented as a binary tree with v leaves.
The shallowest leaves, which correspond to the shortest possible number of iterations
over all such gcd algorithms, occur when the least remainder is taken at each step; the
deepest leaves occur when the greatest remainder is always chosen. [Similar ideas had
been considered by Lagrange in Hist. Acad. Sci. 23 (Berlin: 1768), 111Ű180, §58.] For
further results see N. G. de Bruijn and W. M. Zaring, Nieuw Archief voor Wiskunde
(3) 1 (1953), 105Ű112; G. J. Rieger, Math. Nachr. 82 (1978), 157Ű180.

On many computers, the modiĄed algorithm makes each division step longer; the
idea of exercise 1, which saves all division steps when the quotient is unity, would be
preferable in such cases.

31. Let a0 = 0, a1 = 1, an+1 = 2an + an−1; then an = ((1 +
√

2)n − (1−
√

2)n)/2
√

2,
and the worst case (in the sense of Theorem F) occurs when u = an + an−1, v = an,
n ≥ 2. This result is due to A. Dupré [J. de Math. 11 (1846), 41Ű64], who also
investigated more general “look-aheadŤ procedures suggested by J. Binet.

32. (b) Km−1(x1, . . . , xm−1)Kn−1(xm+2, . . . , xm+n) corresponds to those Morse code
sequences of length m+ n in which a dash occupies positions m and m+ 1; the other
term corresponds to the opposite case. (Alternatively, use exercise 2. The more general
identity

Km+n(x1, . . . , xm+n)Kk(xm+1, . . . , xm+k) =

Km+k(x1, . . . , xm+k)Kn(xm+1, . . . , xm+n)

+ (−1)kKm−1(x1, . . . , xm−1)Kn−k−1(xm+k+2, . . . , xm+n)

also appeared in Euler’s paper. Incidentally, “Morse codeŤ was really invented by F. C.
Gerke in 1848; Morse’s prototypes were quite different.)

33. (a) The new representations are x = m/d, y = (n − m)/d, x′ = y′ = d =
gcd(m, n −m), for 1

2
n < m < n. (b) The relation (n/x′) − y ≤ x < n/x′ deĄnes x.

(c) Count the x′ satisfying (b). (d) A pair of integers x > y > 0 with x ⊥ y can
be uniquely written in the form x = Km(x1, . . . , xm), y = Km−1(x1, . . . , xm−1),
where x1 ≥ 2 and m ≥ 1; here y/x = //xm, . . . , x1//. (e) It suffices to show that

1≤k≤n/2 T (k, n) = 2⌊n/2⌋+ h(n); this follows from exercise 26.

34. (a) Dividing x and y by gcd(x, y) yields g(n) =

d\n h(n/d); apply exercise 28(c),
and use the symmetry between primed and unprimed variables. (b) For Ąxed y and t,
the representations with xd ≥ x′ have x′ <

√
nd; hence there are O(

√
nd/y) such

representations. Now sum for 0 < t ≤ y <

n/d. (c) If s(y) is the given sum, then

d\y s(d) = y(H2y − Hy) = k(y), say; hence s(y) =

d\y µ(d)k(y/d). Now k(y) =
y ln 2 − 1/4 + O(1/y). (d)

n
y=1 φ(y)/y2 =

n
y=1

d\y µ(d)/yd =

cd≤n µ(d)/cd2.

(Similarly,
n

y=1 σ−1(y)/y2 = O(1).) (e)
n

k=1 µ(k)/k2 = 6/π2 +O(1/n) (see exercise
4.5.2Ű10(d)); and

n
k=1 µ(k) log k/k2 = O(1). Hence hd(n) = n((3 ln 2)/π2) ln(n/d) +

O(n) for d ≥ 1. Finally h(n) = 2

cd\n µ(d)hc(n/cd) = ((6 ln 2)/π2)n(lnn−−′)+
O(nσ−1(n)2), where the remaining sums are

=

cd\n µ(d) ln(cd)/cd = 0 and
′ =

cd\n µ(d) ln c/cd =

d\n Λ(d)/d. [It is well known that σ−1(n) = O(log logn); see
Hardy and Wright, An Introduction to the Theory of Numbers, §22.9.]

35. See Proc. Nat. Acad. Sci. 72 (1975), 4720Ű4722. M. L. V. Pitteway and C. M. A.
Castle [Bull. Inst. Math. and Its Applications 24 (1988), 17Ű20] have found strong and

654 ANSWERS TO EXERCISES 4.5.3

tantalizing empirical evidence that the sum of all partial quotients is actually

π2

24(ln 2)2

Tn +

1
2
− 18(ln 2)2

π2

2

+
6
π2

p prime
pr\n

4r
pr
− p+ 1

p2r

pr − 1
p− 1

(ln p)2

− 2.542875 +O(n−1/2).

36. Working the algorithm backwards, assuming that tk−1 divisions occur in step C2
for a given value of k, we obtain minimum un when gcd(uk+1, . . . , un) = Ft1 . . . Ftk

and uk ≡ Ft1 . . . Ftk−1Ftk−1 (modulo gcd(uk+1, . . . , un)); here the t’s are ≥ 2, t1 ≥ 3,
and t1 + · · ·+ tn−1 = N + n− 1. One way to minimize un = Ft1 . . . Ftn−1 under these
conditions is to take t1 = 3, t2 = · · · = tn−2 = 2, un = 2FN−n+2. If we stipulate also
that u1 ≥ u2 ≥ · · · ≥ un, the solution u1 = 2FN−n+3 + 1, u2 = · · · = un−1 = 2FN−n+3,
un = 2FN−n+2 has minimum u1. [See CACM 13 (1970), 433Ű436, 447Ű448.]

37. See Proc. Amer. Math. Soc. 7 (1956), 1014Ű1021; see also exercise 6.1Ű18.

38. Let m = ⌈n/ϕ⌉, so that m/n = ϕ−1 + ϵ = //a1, a2, . . . // where 0 < ϵ < 1/n. Let k
be minimal such that ak ≥ 2; then (ϕ1−k + (−1)kFk−1ϵ)/(ϕ−k − (−1)kFkϵ) ≥ 2, hence
k is even and ϕ−2 = 2 − ϕ ≤ ϕkFk+2ϵ = (ϕ2k+2 − ϕ−2)ϵ/

√
5. [Ann. Polon. Math. 1

(1954), 203Ű206.]

39. At least 287 at bats; //2, 1, 95// = 96/287 ≈ .33449477, and no fraction with
denominator < 287 lies in the interval

[.3335 . . .3345] = [//2, 1, 666// . . //2, 1, 94, 1, 1, 3//].

To solve the general question of the fraction in [a . . b] with smallest denominator,
where 0 < a < b < 1, note that in terms of regular continued-fraction representations
we have //x1, x2, . . . // < //y1, y2, . . . // if and only if (−1)jxj < (−1)jyj for the smallest
j with xj ̸= yj , where we place “∞Ť after the last partial quotient of a rational
number. Thus if a = //x1, x2, . . . // and b = //y1, y2, . . . //, and if j is minimal with
xj ̸= yj , the fractions in [a . . b] have the form c = //x1, . . . , xj−1, zj , . . . , zm// where
//zj , . . . , zm// lies between //xj , xj+1, . . . // and //yj , yj+1, . . . // inclusive. Let K−1 = 0.
The denominator

Kj−1(x1, . . . , xj−1)Km−j+1(zj , . . . , zm) +Kj−2(x1, . . . , xj−2)Km−j(zj+1, . . . , zm)

of c is minimized when m = j and zj = (j odd ⇒ yj + [yj+1 ̸=∞]; xj + [xj+1 ̸=∞]).
[Another way to derive this method comes from the theory in the following exercise.]

40. One can prove by induction that prql − plqr = 1 at each node, hence pl and ql

are relatively prime. Since p/q < p′/q′ implies that p/q < (p + p′)/(q + q′) < p′/q′, it
is also clear that the labels on all left descendants of p/q are less than p/q, while the
labels on all its right descendants are greater. Therefore each rational number occurs
at most once as a label.

It remains to show that each rational does appear. If p/q = //a1, . . . , ar, 1//, where
each ai is a positive integer, one can show by induction that the node labeled p/q is
found by going left a1 times, then right a2 times, then left a3 times, etc.

[The sequence of labels on successive levels of this tree was Ąrst studied by M. A.
Stern, Crelle 55 (1858), 193Ű220, although the relation to binary trees is not explicit in
his paper. The notion of obtaining all possible fractions by successively interpolating
(p + p′)/(q + q′) between adjacent elements p/q and p′/q′ goes back much further:
The essential ideas were published by Daniel Schwenter [Deliciæ Physico-Mathematicæ

4.5.3 ANSWERS TO EXERCISES 655

(Nürnberg: 1636), Part 1, Problem 87; Geometria Practica, 3rd edition (1641), 68;
see M. Cantor, Geschichte der Math. 2 (1900), 763Ű765], and by John Wallis in his
Treatise of Algebra (1685), Chapters 10Ű11. C. Huygens put such ideas to good use
when designing the gear-wheels of his planetarium [see Descriptio Automati Planetarii
(1703), published after his death]. Lagrange gave a full description in Hist. Acad. Sci.
23 (Berlin: 1767), 311Ű352, §24, and in his additions to the French translation of Euler’s
algebra (1774), §18Ű§20. See also exercise 1.3.2Ű19; A. Brocot, Revue Chronométrique
3 (1861), 186Ű194; D. H. Lehmer, AMM 36 (1929), 59Ű67.]

41. In fact, the regular continued fractions for numbers of the general form

1
l1

+
(−1)e1

l21l2
+

(−1)e2

l41l
2
2l3

+ · · ·

have an interesting pattern, based on the continuant identity

Km+n+1(x1, . . . , xm−1, xm − 1, 1, yn − 1, yn−1, . . . , y1) =

xmKm−1(x1, . . . , xm−1)Kn(yn, . . . , y1)

+ (−1)nKm+n(x1, . . . , xm−1, 0,−yn,−yn−1, . . . ,−y1).

This identity is most interesting when yn = xm−1, yn−1 = xm−2, etc., since

Kn+1(z1, . . . , zk, 0, zk+1, . . . , zn) = Kn−1(z1, . . . , zk−1, zk + zk+1, zk+2, . . . , zn).

In particular we Ąnd that if pn/qn =Kn−1(x2, . . . , xn)/Kn(x1, . . . , xn) = //x1, . . . , xn//,
then pn/qn + (−1)n/q2

nr = //x1, . . . , xn, r − 1, 1, xn − 1, xn−1, . . . , x1//. By changing
//x1, . . . , xn// to //x1, . . . , xn−1, xn − 1, 1//, we can control the sign (−1)n as desired.

For example, the partial sums of the Ąrst series have the following continued frac-
tions of even length: //1, 1//; //1, 1, 1, 1, 0, 1// = //1, 1, 1, 2//; //1, 1, 1, 2, 1, 1, 1, 1, 1, 1//;
//1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1// = //1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1,
1, 2, 1, 1, 1//; and from this point on the sequence settles down and obeys a simple
reĆecting pattern. We Ąnd that the nth partial quotient an can be computed rapidly
as follows, if n− 1 = 20q + r where 0 ≤ r < 20:

an =

1, if r = 0, 2, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 17, or 19;

2, if r = 3 or 16;

1 + (q + r) mod 2, if r = 8 or 11;

2− dq, if r = 1;

1 + dq+1, if r = 18.

Here dn is the “dragon sequenceŤ deĄned by the rules d0 = 1, d2n = dn, d4n+1 = 0,
d4n+3 = 1; the Jacobi symbol (−1

n
) is 1− 2dn. The dragon curve discussed in exercise

4.1Ű18 turns right at its nth step if and only if dn = 1.
Liouville’s numbers with l ≥ 3 are equal to //l−1, l+1, l2−1, 1, l, l−1, l12−1, 1,

l− 2, l, 1, l2− 1, l+ 1, l− 1, l72− 1, . . . //. The nth partial quotient an depends on the
dragon sequence on nmod 4 as follows: If nmod 4 = 1 it is l−2+dn−1 +(⌊n/2⌋mod 4)
and if nmod 4 = 2 it is l+2−dn+2−(⌊n/2⌋mod 4); if nmod 4 = 0 it is 1 or lk!(k−1)−1,
depending on whether or not dn = 0 or 1, where k is the largest power of 2 dividing n;
and if nmod 4 = 3 it is lk!(k−1)− 1 or 1, depending on whether dn+1 = 0 or 1, where k
is the largest power of 2 dividing n+ 1. When l = 2 the same rules apply, except that
0s must be removed, so there is a more complicated pattern depending on nmod 24.

656 ANSWERS TO EXERCISES 4.5.3

[References: J. O. Shallit, J. Number Theory 11 (1979), 209Ű217; Allouche, Lubiw,
Mendès France, van der Poorten, and Shallit, Acta Arithmetica 77 (1996), 77Ű96.]

42. Suppose that ∥qX∥ = |qX − p|. We can always Ąnd integers u and v such
that q = uqn−1 + vqn and p = upn−1 + vpn, where pn = Kn−1(A2, . . . , An), since
qnpn−1 − qn−1pn = ±1. The result is clear if v = 0. Otherwise we must have uv < 0,
hence u(qn−1X − pn−1) has the same sign as v(qnX − pn), and |qX − p| is equal
to |u| |qn−1X − pn−1| + |v| |qnX − pn|. This completes the proof, since u ̸= 0. See
Theorem 6.4S for a generalization.

43. If x is representable, so is the parent of x in the SternŰBrocot tree of exercise 40;
thus the representable numbers form a subtree of that binary tree. Let (u/u′) and
(v/v′) be adjacent representable numbers. Then one is an ancestor of the other; say
(u/u′) is an ancestor of (v/v′), since the other case is similar. Then (u/u′) is the nearest
left ancestor of (v/v′), so all numbers between u/u′ and v/v′ are left descendants of
(v/v′) and the mediant ((u + v)/(u′ + v′)) is its left child. According to the relation
between regular continued fractions and the binary tree, the mediant and all of its left
descendants will have (u/u′) as their last representable pi/qi, while all of the mediant’s
right descendants will have (v/v′) as one of the pi/qi. (The numbers pi/qi label the
parents of the “turning-pointŤ nodes on the path to x.)

44. A counterexample for M = N = 100 is (u/u′) = 1
3
, (v/v′) = 67

99
. However, the

identity is almost always true, because of (12); it fails only when u/u′ + v/v′ is very
nearly equal to a fraction that is simpler than (u/u′).

45. To determine A and r such that u = Av+r, 0 ≤ r < v, using ordinary long division,
takes O((1 + logA)(log u)) units of time. If the quotients during the algorithm are A1,
A2, . . . , Am, then A1A2 . . . Am ≤ u, so logA1 +· · ·+logAm ≤ log u. Also m = O(log u)
by Corollary L.

46. Yes, to O(n(logn)2(log logn)), even if we also need to compute the sequence of
partial quotients that would be computed by Euclid’s algorithm; see A. Schönhage, Acta
Informatica 1 (1971), 139Ű144. Moreover, Schönhage’s algorithm is asymptotically op-
timal for computing a continued fraction expansion, with respect to the multiplications
and divisions it performs [V. Strassen, SICOMP 12 (1983), 1Ű27]. Algorithm 4.5.2L is
better in practice unless n is quite large, but an efficient implementation for numbers
exceeding about 1800 bits is sketched in the book Fast Algorithms by A. Schönhage,
A. F. W. Grotefeld, and E. Vetter (Heidelberg: Spektrum Akademischer Verlag, 1994),
§7.2.

48. Tj = (Kj−2(−a2, . . . ,−aj−1), Kj−1(−a1, . . . ,−aj−1), Kn−j(aj+1, . . . , an)d) =
((−1)jKj−2(a2, . . . , aj−1), (−1)j−1Kj−1(a1, . . . , aj−1),Kn−j(aj+1, . . . , an)d).

49. Since λx1 + µz1 = µv and λxn+1 + µzn+1 = −λv/d, there is an odd value
of j such that λxj + µzj ≥ 0 and λxj+2 + µzj+2 ≤ 0. If λxj + µzj > θ and
λxj+2 + µzj+2 < −θ we have µ > θ/zj and λ > −θ/xj+2. It follows that 0 <
λxj+1 + µzj+1 < λµxj+1zj/θ − λµzj+1xj+2/θ ≤ 2λµv/θ = 2θ, because we have
|xk+1zk| = Kk−1(a2, . . . , ak)Kn−k(ak+1, . . . , an) ≤ Kn−1(a2, . . . , an) = v/d for all k.
[H. W. Lenstra, Jr., Math. Comp. 42 (1984), 331Ű340.]

50. Let k = ⌈β/α⌉. If kα < γ, the answer is k; otherwise it is

k − 1 +

f((1/α) mod 1, k − γ/α, k − β/α)

α

.

51. If ax −mz = y and x ⊥ y we have x ⊥ mz. Consider the SternŰBrocot tree of
exercise 40, with an additional node labeled 0/1. Attach the tag value y = ax −mz

4.5.4 ANSWERS TO EXERCISES 657

together with each node label z/x. We want to Ąnd all nodes z/x whose tag y is at most
θ =
√
m/2 in absolute value and whose denominator x is also ≤ θ. The only possible

path to such nodes keeps a positive tag to the left and a negative tag to the right. This
rule deĄnes a unique path, which moves to the right when the tag is positive and to the
left when the tag is negative, stopping when the tag becomes zero. The same path is
followed implicitly when Algorithm 4.5.2X is performed with u = m and v = a, except
that the algorithm skips ahead Ů it visits only nodes of the path just before the tag
changes sign (the parents of the “turning pointŤ nodes as in exercise 43).

Let z/x be the Ąrst node of the path whose tag y satisĄes |y| ≤ θ. If x > θ, there
is no solution, since subsequent values on the path have even larger denominators.
Otherwise (±x,∓y) is a solution, provided that x ⊥ y.

It is easy to see that there is no solution if y = 0, and that if y ̸= 0 the tag
on the next node of the path will not have the same sign as y. Therefore node z/x
will be visited by Algorithm 4.5.2X, and we will have x = xj = Kj−1(a1, . . . , aj−1),
y = yj = (−1)(j−1)Kn−j(aj+1, . . . , an)d, z = zj = Kj−2(a2, . . . , aj−1) for some j
(see exercise 48). The next possibility for a solution will be the node labeled z′/x′ =
(zj−1 +kzj)/(xj−1 +kxj) with tag y′ = yj−1 +kyj , where k is as small as possible such
that |y′| ≤ θ; we have y′y < 0. However, x′ must now exceed θ; otherwise we would
have m = Kn(a1, . . . , an)d = x′|y|+ x|y′| ≤ θ2 + θ2 = m, and equality cannot hold.

This discussion proves that the problem can be solved efficiently by applying
Algorithm 4.5.2X with u = m and v = a, but with the following replacement for
step X2: “If v3 ≤

√
m/2, the algorithm terminates. The pair (x, y) = (|v2|, v3 sign(v2))

is then the unique solution, provided that x ⊥ y and x ≤
√
m/2; otherwise there is no

solution.Ť [P. S. Wang, Lecture Notes in Comp. Sci. 162 (1983), 225Ű235; P. Kornerup
and R. T. Gregory, BIT 23 (1983), 9Ű20.]

A similar method works if we require 0 < x ≤ θ1 and |y| ≤ θ2, whenever 2θ1θ2 ≤ m.

SECTION 4.5.4

1. If dk isn’t prime, its prime factors are cast out before dk is tried.

2. No; the algorithm would fail if pt−1 = pt, giving “1Ť as a spurious prime factor.

3. Let P be the product of the Ąrst 168 primes. [Note: Although P = 19590 . . . 5910
is a 416-digit number, such a gcd can be computed in much less time than it would
take to do 168 divisions, if we just want to test whether or not n is prime.]

4. In the notation of exercise 3.1Ű11,

µ, λ

2⌈lg max(µ+1,λ)⌉P (µ, λ) =
1
m

l≥1

f(l)
l−1

k=1

1− k

m

,

where f(l) =

1≤λ≤l 2⌈lg max(l+1−λ,λ)⌉. If l = 2k+θ, where 0 < θ ≤ 1, we have

f(l) = l2(3 · 2−θ − 2 · 2−2θ),

where the function 3 · 2−θ − 2 · 2−2θ reaches a maximum of 9
8

at θ = lg(4/3) and has
a minimum of 1 at θ = 0 and 1. Therefore the average value of 2⌈lg max(µ+1,λ)⌉ lies
between 1.0 and 1.125 times the average value of µ+ λ, and the result follows.

Notes: Richard Brent has observed that, as m→∞, the density
l−1

k=1(1−k/m) =
exp(−l(l − 1)/2m+ O(l3/m2)) approaches a normal distribution, and we may assume
that θ is uniformly distributed. Then 3·2−θ − 2·2−2θ takes the average value 3/(4 ln 2),
and the average number of iterations needed by Algorithm B comes to approximately

658 ANSWERS TO EXERCISES 4.5.4

(3/(4 ln 2) + 1
2
)
√
πm/2 = 1.98277

√
m. A similar analysis of the more general method

in the answer to exercise 3.1Ű7 gives ∼ 1.92600
√
m, when p ≈ 2.4771366 is chosen

“optimallyŤ as the root of (p2 − 1) ln p = p2 − p+ 1. See BIT 20 (1980), 176Ű184.
Algorithm B is a reĄnement of Pollard’s original algorithm, which was based on

exercise 3.1Ű6(b) instead of the yet undiscovered result in exercise 3.1Ű7. He showed
that the least n such that X2n = Xn has average value ∼ (π2/12)Q(m) ≈ 1.0308

√
m;

this constant π2/12 is explained by Eq. 4.5.3Ű(21). Hence the average amount of work
needed by his original algorithm is about 1.03081

√
m gcds (or multiplications mod m)

and 3.09243
√
m squarings. This will actually be better than Algorithm B when the

cost of gcd is more than about 1.17 times the cost of squaring Ů as it usually is with
large numbers.

Brent noticed, however, that Algorithm B can be improved by not checking the gcd
when k > l/2; if step B4 is repeated until k ≤ l/2, we will still detect the cycle, after
λ⌊ℓ(µ)/λ⌋ = ℓ(µ) − (ℓ(µ) mod λ) further iterations. The average cost now becomes
approximately (3/(4 ln 2))

√
πm/2 ≈ 1.35611

√
m iterations when we square without

taking the gcd, plus ((lnπ − γ)/(4 ln 2) + 1
2
)
√
πm/2 ≈ .88319

√
m iterations when we

do both. [See the analysis by Henri Cohen in A Course in Computational Algebraic
Number Theory (Berlin: Springer, 1993), §8.5.]

5. Remarkably, 11111 ≡ 8616460799 (modulo 3 · 7 · 8 · 11), so (14) is correct also for
N = 11111 except with respect to the modulus 5. Since the residues (x2 − N) mod 5
are 4, 0, 3, 3, 0, we must have xmod 5 = 0, 1, or 4. The Ąrst x ≥ ⌈

√
N ⌉ = 106

that satisĄes all the conditions is x = 144; but the square root of 1442− 11111 = 9625
is not an integer. The next case, however, gives 1562 − 11111 = 13225 = 1152, and
11111 = (156− 115) · (156 + 115) = 41 · 271.

6. Let us count the number of solutions (x, y) of the congruence N ≡ (x− y)(x+ y)
(modulo p), where 0 ≤ x, y < p. Since N ̸≡ 0 and p is prime, x + y ̸≡ 0. For each
v ̸≡ 0 there is a unique u (modulo p) such that N ≡ uv. The congruences x − y ≡ u,
x+y ≡ v now uniquely determine xmod p and y mod p, since p is odd. Thus the stated
congruence has exactly p − 1 solutions (x, y). If (x, y) is a solution, so is (x, p − y) if
y ̸= 0, since (p− y)2 ≡ y2; and if (x, y1) and (x, y2) are solutions with y1 ̸= y2, we have
y2

1 ≡ y2
2 ; hence y1 = p− y2. Thus the number of different x values among the solutions

(x, y) is (p− 1)/2 if N ≡ x2 has no solutions, or (p+ 1)/2 if N ≡ x2 has solutions.

7. One procedure is to keep two indices for each modulus, one for the current word
position and one for the current bit position; loading two words of the table and doing
an indexed shift command will bring the table entries into proper alignment. (Many
computers have special facilities for such bit manipulation.)

8. (We may assume that N = 2M is even.) The following algorithm uses an auxiliary
table X[1], X[2], . . . , X[M − 1], where X[k] represents the primality of 2k + 1.

S1. Set X[k] ← 1 for 1 ≤ k < M. Also set j ← 1, k ← 1, p ← 3, q ← 4. (During
this algorithm p = 2j + 1 and q = 2j + 2j2.)

S2. If X[j] = 0, go to S4. Otherwise output p, which is prime, and set k ← q.

S3. If k < M, then set X[k]← 0, k ← k + p, and repeat this step.

S4. Set j ← j + 1, p← p+ 2, q ← q + 2p− 2. If j < M, return to S2.

A major part of this calculation could be made noticeably faster if q (instead of j) were
tested against M in step S4, and if a new loop were appended that outputs 2j + 1 for
all remaining X[j] that equal 1, suppressing the manipulation of p and q.

4.5.4 ANSWERS TO EXERCISES 659

Notes: The original sieve of Eratosthenes was described in Book 1, Chapter 13 of
Nicomachus’s Introduction to Arithmetic. It is well known that

p prime[p≤N]/p =

ln lnN + M + O((logN)−10000), where M = γ +

k≥2 µ(k) ln ζ(k)/k is Mertens’s
constant 0.26149 72128 47642 78375 54268 38608 69585 90516−; see F. Mertens, Crelle
76 (1874), 46Ű62; Greene and Knuth, Mathematics for the Analysis of Algorithms
(Boston: Birkhäuser, 1981), §4.2.3. In particular, the number of operations in the
original algorithm described by Nicomachus is N ln lnN +O(N). Improvements in the
efficiency of sieve methods for generating primes are discussed in exercise 5.2.3Ű15 and
in Section 7.1.3.

9. If p2 is a divisor of n for some prime p, then p is a divisor of λ(n), but not of n−1.
If n = p1p2, where p1 < p2 are primes, then p2 − 1 is a divisor of λ(n) and therefore
p1p2 − 1 ≡ 0 (modulo p2 − 1). Since p2 ≡ 1, this means p1 − 1 is a multiple of p2 − 1,
contradicting the assumption p1 < p2. [Values of n for which λ(n) properly divides
n − 1 are called Carmichael numbers. For example, here are some small Carmichael
numbers with up to six prime factors: 3 ·11 ·17, 5 ·13 ·17, 7 ·11 ·13 ·41, 5 ·7 ·17 ·19 ·73,
5 · 7 · 17 · 73 · 89 · 107. There are 8241 Carmichael numbers less than 1012, and there
are at least Ω(N2/7) Carmichael numbers less than N ; see W. R. Alford, A. Granville,
and C. Pomerance, Annals of Math. (2) 139 (1994), 703Ű722.]

10. Let kp be the order of xp modulo n, and let λ be the least common multiple of all
the kp’s. Then λ is a divisor of n − 1 but not of any (n − 1)/p, so λ = n − 1. Since
x

φ(n)
p mod n = 1, φ(n) is a multiple of kp for all p, so φ(n) ≥ λ. But φ(n) < n − 1

when n is not prime. (Another way to carry out the proof is to construct an element x
of order n− 1 from the xp’s, by the method of exercise 3.2.1.2Ű15.)

11. U V A P S T Output
1984 1 0 992 0 Ů
1981 1981 1 992 1 1981
1983 4 495 993 0 1 9932 ≡ +22

1983 991 2 98109 1 991
1981 4 495 2 0 1 22 ≡ +22

1984 1981 1 99099 1 1981
1984 1 1984 99101 0 1 991012 ≡ +20

The factorization 199 ·991 is evident from the Ąrst or last outputs. The shortness of the
cycle, and the appearance of the notorious number 1984, are probably just coincidences.

12. The following algorithm makes use of an auxiliary (m + 1) × (m + 1) matrix of
integers Ejk, 0 ≤ j, k ≤ m; a single-precision vector (b0, b1, . . . , bm); and a multiple-
precision vector (x0, x1, . . . , xm) with entries in the range 0 ≤ xk < N.

F1. [Initialize.] Set bi ← −1 for 0 ≤ i ≤ m; then set j ← 0.

F2. [Next solution.] Get the next output (x, e0, e1, . . . , em) from Algorithm E. (It
is convenient to regard Algorithms E and F as coroutines.) Set k ← m.

F3. [Search for odd.] If k < 0 go to step F5. Otherwise if ek is even, set k ← k−1
and repeat this step.

F4. [Linear dependence?] If bk ≥ 0, then set i ← bk, x ← (xix) modN, er ←
er +Eir for 0 ≤ r ≤ m; set k ← k−1 and return to F3. Otherwise set bk ← j,
xj ← x, Ejr ← er for 0 ≤ r ≤ m; set j ← j + 1 and return to F2. (In the
latter case we have a new linearly independent solution, modulo 2, whose Ąrst

660 ANSWERS TO EXERCISES 4.5.4

odd component is ek. The values Ejr are not guaranteed to remain single-
precision, but they tend to remain small when k decreases from m to 0 as
recommended by Morrison and Brillhart.)

F5. [Try to factor.] (Now e0, e1, . . . , em are even.) Set

y ← ((−1)e0/2p
e1/2
1 . . . pem/2

m) modN.

If x = y or if x + y = N, return to F2. Otherwise compute gcd(x − y, N),
which is a proper factor of N, and terminate the algorithm.

This algorithm Ąnds a factor whenever it is possible to deduce one from the given
outputs of Algorithm E. [Proof. Let the outputs of Algorithm E be (Xi, Ei0, . . . , Eim)
for 1 ≤ i ≤ t, and suppose that we could Ąnd a factorization N = N1N2 when x ≡
Xa1

1 . . . Xat
t and y ≡ (−1)e0/2p

e1/2
1 . . . p

em/2
m (modulo N), where ej = a1E1j +· · ·+atEtj

is even for all j. Then x ≡ ±y (modulo N1) and x ≡ ∓y (modulo N2). It is not difficult
to see that this solution can be transformed into a pair (x, y) that appears in step F5,
by a series of steps that systematically replace (x, y) by (xx′, yy′) where x′ ≡ ±y′
(modulo N).]

13. There are 2d values of x having the same exponents (e0, . . . , em), since we can
choose the sign of x modulo qfi

i arbitrarily when N = qf1
1 . . . q

fd
d . Exactly two of these

2d values will fail to yield a factor.

14. Since P 2 ≡ kNQ2 (modulo p) for any prime divisor p of V , we get 1 ≡ P 2(p−1)/2 ≡
(kNQ2)(p−1)/2 ≡ (kN)(p−1)/2 (modulo p), if P ̸≡ 0.

15. Un = (an− bn)/
√
D, where a = 1

2
(P +

√
D), b = 1

2
(P −

√
D), D = P 2−4Q. Then

2n−1Un =

k

n

2k+1

Pn−2k−1Dk; so Up ≡ D(p−1)/2 (modulo p) if p is an odd prime.

Similarly, if Vn = an + bn = Un+1 − QUn−1, then 2n−1Vn =

k

n
2k

Pn−2kDk, and

Vp ≡ P p ≡ P . Thus if Up ≡ −1, we Ąnd that Up+1 mod p = 0. If Up ≡ 1, we Ąnd that
(QUp−1) mod p = 0; here if Q is a multiple of p, Un ≡ Pn−1 (modulo p) for n > 0, so
Un is never a multiple of p; if Q is not a multiple of p, Up−1 mod p = 0. Therefore as in
Theorem L, Ut modN = 0 if N = pe1

1 . . . per
r , N ⊥ Q, and t = lcm1≤j≤r(pej−1

j (pj +ϵj)).
Under the assumptions of this exercise, the rank of apparition of N is N + 1; hence N
is prime to Q and t is a multiple of N + 1. Also, the assumptions of this exercise imply
that each pj is odd and each ϵj is ±1, so t ≤ 21−r p

ej−1

j (pj + 1
3
pj) = 2(2

3
)rN; hence

r = 1 and t = pe1
1 + ϵ1p

e1−1
1 . Finally, therefore, e1 = 1 and ϵ1 = 1.

Note: If this test for primality is to be any good, we must choose P and Q in
such a way that the test will probably work. Lehmer suggests taking P = 1 so that
D = 1− 4Q, and choosing Q so that N ⊥ QD. (If the latter condition fails, we know
already that N is not prime, unless |QD| ≥ N.) Furthermore, the derivation above
shows that we will want ϵ1 = 1, that is, D(N−1)/2 ≡ −1 (modulo N). This is another
condition that determines the choice of Q. Furthermore, if D satisĄes this condition,
and if UN+1 modN ̸= 0, we know that N is not prime.

Example: If P = 1 and Q = −1, we have the Fibonacci sequence, with D = 5.
Since 511 ≡ −1 (modulo 23), we might attempt to prove that 23 is prime by using the
Fibonacci sequence:

⟨Fn mod 23⟩ = 0, 1, 1, 2, 3, 5, 8, 13, 21, 11, 9, 20, 6, 3, 9, 12, 21, 10, 8, 18, 3, 21, 1, 22, 0, . . . ,

so 24 is the rank of apparition of 23 and the test works. However, the Fibonacci
sequence cannot be used in this way to prove the primality of 13 or 17, since F7 mod

4.5.4 ANSWERS TO EXERCISES 661

13 = 0 and F9 mod 17 = 0. When p ≡ ±1 (modulo 10), we have 5(p−1)/2 mod p = 1, so
Fp−1 (not Fp+1) is divisible by p.

17. Let f(q) = 2 lg q − 1. When q = 2 or 3, the tree has at most f(q) nodes. When
q > 3 is prime, let q = 1 + q1 . . . qt where t ≥ 2 and q1, . . . , qt are prime. The size of
the tree is ≤ 1 +

f(qk) = 2 + f(q − 1)− t < f(q). [SICOMP 4 (1975), 214Ű220.]

18. x(G(α)−F (α)) is the number of n ≤ x whose second-largest prime factor is ≤ xα

and whose largest prime factor is > xα. Hence

xG′(t) dt = (π(xt+dt)− π(xt)) · x1−t(G(t/(1− t))− F (t/(1− t))).

The probability that pt−1 ≤
√
pt is

 1

0
F (t/2(1− t))t−1 dt. [Curiously, it can be shown

that this also equals
 1

0
F (t/(1 − t)) dt, the average value of log pt/ log x, and it also

equals the DickmanŰGolomb constant .62433 of exercises 1.3.3Ű23 and 3.1Ű13. The
derivative G′(0) can be shown to equal

 1

0
F (t/(1− t))t−2 dt = F (1) + 2F (1

2
) + 3F (1

3
) + · · · = eγ .

The third-largest prime factor has H(α) =
 α

0
(H(t/(1− t))−G(t/(1− t)))t−1 dt and

H ′(0) =∞. See P. Billingsley, Period. Math. Hungar. 2 (1972), 283Ű289; J. Galambos,
Acta Arith. 31 (1976), 213Ű218; D. E. Knuth and L. Trabb Pardo, Theoretical Comp.
Sci. 3 (1976), 321Ű348; J. L. Hafner and K. S. McCurley, J. Algorithms 10 (1989),
531Ű556.]

19. M = 2D − 1 is a multiple of all p for which the order of 2 modulo p divides D. To
extend this idea, let a1 = 2 and aj+1 = a

qj
j modN, where qj = p

ej
j , pj is the jth prime,

and ej = ⌊log 1000/log pj⌋; let A = a169. Now compute bq = gcd(Aq − 1, N) for all
primes q between 103 and 105. One way to do this is to start with A1009 modN and
then to multiply alternately by A4 modN and A2 modN. (A similar method was used
in the 1920s by D. N. Lehmer, but he didn’t publish it.) As with Algorithm B we can
avoid most of the gcds by batching; for example, since b30r−k = gcd(A30r−Ak, N), we
might try batches of 8, computing cr = (A30r−A29)(A30r−A23) . . . (A30r−A) modN,
then gcd(cr, N) for 33 < r ≤ 3334.

20. See H. C. Williams, Math. Comp. 39 (1982), 225Ű234.

21. Some interesting theory relevant to this conjecture has been introduced by Eric
Bach, Information and Computation 90 (1991), 139Ű155.

22. Algorithm P fails only when the random number x does not reveal the fact that
n is nonprime. Say x is bad if xq mod n = 1 or if one of the numbers x2jq is ≡ −1
(modulo n) for 0 ≤ j < k. Since 1 is bad, we have pn = [nnonprime](bn−1)/(n−2) <
[nnonprime]bn/(n− 1), where bn is the number of bad x such that 1 ≤ x < n.

Every bad x satisĄes xn−1 ≡ 1 (modulo n). When p is prime, the number of
solutions to the congruence xq ≡ 1 (modulo pe) for 1 ≤ x < pe is the same as the
number of solutions of qy ≡ 0 (modulo pe−1(p − 1)) for 0 ≤ y < pe−1(p − 1), namely
gcd(q, pe−1(p− 1)), since we may replace x by ay where a is a primitive root.

Let n = ne1
1 . . . ner

r , where the ni are distinct primes. According to the Chinese
remainder theorem, the number of solutions to the congruence xn−1 ≡ 1 (modulo n) isr

i=1 gcd(n− 1, nei−1
i (ni − 1)), and this is at most

r
i=1(ni − 1) since ni is relatively

prime to n− 1. If some ei > 1, we have ni − 1 ≤ 2
9
nei

i , hence the number of solutions
is at most 2

9
n; in this case bn ≤ 2

9
n ≤ 1

4
(n− 1), since n ≥ 9.

Therefore we may assume that n is the product n1 . . . nr of distinct primes. Let
ni = 1 + 2kiqi, where k1 ≤ · · · ≤ kr. Then gcd(n − 1, ni − 1) = 2k′

iq′i, where k′i =

662 ANSWERS TO EXERCISES 4.5.4

min(k, ki) and q′i = gcd(q, qi). Modulo ni, the number of x such that xq ≡ 1 is q′i; and
the number of x such that x2jq ≡ −1 is 2jq′i for 0 ≤ j < k′i, otherwise 0. Since k ≥ k1,
we have bn = q′1 . . . q

′
r (1 +

0≤j<k1

2jr).
To complete the proof, it suffices to show that bn ≤ 1

4
q1 . . . qr2k1+···+kr = 1

4
φ(n),

since φ(n) < n− 1. We have

(1 +

0≤j<k1
2jr)/2k1+···+kr ≤ (1 +

0≤j<k1

2jr)/2k1r

= 1/(2r − 1) + (2r − 2)/(2k1r(2r − 1)) ≤ 1/2r−1,

so the result follows unless r = 2 and k1 = k2. If r = 2, exercise 9 shows that n− 1 is
not a multiple of both n1− 1 and n2− 1. Thus if k1 = k2 we cannot have both q′1 = q1

and q′2 = q2; it follows that q′1q
′
2 ≤ 1

3
q1q2 and bn ≤ 1

6
φ(n) in this case.

[Reference: J. Number Theory 12 (1980), 128Ű138.] This proof shows that pn

is near 1
4

in only two cases, when n is (1 + 2q1)(1 + 4q1) or a Carmichael number of
the special form (1 + 2q1)(1 + 2q2)(1 + 2q3). For example, when n = 49939 · 99877 we
have bn = 1

4
(49938 · 99876) and pn ≈ .24999; when n = 1667 · 2143 · 4523, we have

bn = 1
4
(1666 · 2142 · 4522), pn ≈ .24968. See the next answer for further remarks.]

23. (a) The proofs are simple except perhaps for the reciprocity law. Let p = p1 . . . ps

and q = q1 . . . qr, where the pi and qj are prime. Then

p

q

=

i,j

pi

qj

=

i,j

(−1)(pi−1)(qj−1)/4

qj

pi

= (−1)

i,j(pi−1)(qj−1)/4

q

p

,

so we need only verify that

i,j (pi − 1)(qj − 1)/4 ≡ (p− 1)(q− 1)/4 (modulo 2). But
i,j (pi − 1)(qj − 1)/4 = (

i(pi − 1)/2)(

j(qj − 1)/2) is odd if and only if an odd

number of the pi and an odd number of the qj are ≡ 3 (modulo 4), and this holds if
and only if (p−1)(q−1)/4 is odd. [C. G. J. Jacobi, Bericht Königl. Preuß. Akad. Wiss.
Berlin 2 (1837), 127Ű136; V. A. Lebesgue, J. Math. Pures Appl. 12 (1847), 497Ű520,
discussed the efficiency.]

(b) As in exercise 22, we may assume that n = n1 . . . nr where the ni = 1 + 2kiqi

are distinct primes, and k1 ≤ · · · ≤ kr; we let gcd(n− 1, ni − 1) = 2k′
iq′i and we call x

bad if it falsely makes n look prime. Let Πn =
r

i=1 q
′
i 2min(ki,k−1) be the number of

solutions of x(n−1)/2 ≡ 1. The number of bad x with (x
n

) = 1 is Πn, times an extra
factor of 1

2
if k1 < k. (This factor 1

2
is needed to ensure that (x

ni
) = −1 for an even

number of the ni with ki < k.) The number of bad x with (x
n

) = −1 is Πn if k1 = k,
otherwise 0. [If x(n−1)/2 ≡ −1 (modulo ni), we have (x

ni
) = −1 if ki = k, (x

ni
) = +1

if ki > k, and a contradiction if ki < k. If k1 = k, there are an odd number of ki

equal to k.]
Notes: The probability of a bad guess is > 1

4
only if n is a Carmichael number with

kr < k; for example, n = 7 · 13 · 19 = 1729, a number made famous by Ramanujan in
another context. Louis Monier has extended the analyses above to obtain the following
closed formulas for the number of bad x in general:

bn =

1 +
2rk1 − 1
2r − 1

 r

i=1

q′i ; b′n = δn

r

i=1

gcd

n− 1

2
, ni − 1

.

Here b′n is the number of bad x in this exercise, and δn is either 2 (if k1 = k), or 1
2

(if
ki < k and ei is odd for some i), or 1 (otherwise).

(c) If xq mod n = 1, then 1 = (xq

n
) = (x

n
)q = (x

n
). If x2jq ≡ −1 (modulo n), then

the order of x modulo ni must be an odd multiple of 2j+1 for all prime divisors ni

4.5.4 ANSWERS TO EXERCISES 663

of n. Let n = ne1
1 . . . ner

r and ni = 1 + 2j+1q′′i ; then (x
ni

) = (−1)q′′
i , so (x

n
) = +1 or −1

according as

eiq

′′
i is even or odd. Since n ≡ (1 + 2j+1 eiq

′′
i) (modulo 2j+2), the

sum

eiq

′′
i is odd if and only if j+ 1 = k. [Theoretical Comp. Sci. 12 (1980), 97Ű108.]

24. Let M1 be a matrix having one row for each nonprime odd number n in the range
1 ≤ n ≤ N and having N−1 columns numbered from 2 to N; the entry in row n column
x is 1 if n fails the x test of Algorithm P, otherwise it is zero. When N = qn+ r and
0 ≤ r < n, we know that row n contains at most −1 + q(bn + 1) + min(bn + 1, r) <
q(1

4
(n − 1) + 1) + min(bn + 1, r) ≤ 1

3
qn + min(1

4
n, r) = 1

3
N + min(1

4
n − 1

3
r, 2

3
r) ≤

1
3
N + 1

6
n ≤ 1

2
N entries equal to 0, so at least half of the entries in the matrix are 1.

Thus, some column x1 of M1 has at least half of its entries equal to 1. Removing
column x1 and all rows in which this column contains 1 leaves a matrix M2 having
similar properties; a repetition of this construction produces matrix Mr with N − r
columns and fewer than N/2r rows, and with at least 1

2
(N − 1) entries per row equal

to 1. [See FOCS 19 (1978), 78.]
[A similar proof implies the existence of a single inĄnite sequence x1 < x2 < · · ·

such that the number n > 1 is prime if and only if it passes the x test of Algorithm P
for x = x1, . . . , x = xm, where m = 1

2
⌊lgn⌋(⌊lgn⌋ − 1). Does there exist a sequence

x1 < x2 < · · · having this property but with m = O(logn)?]

25. This theorem was Ąrst proved rigorously by von Mangoldt [Crelle 114 (1895), 255Ű
305], who showed in fact that the O(1) term is C+

∞
x
dt/((t2−1)t ln t), minus 1/2k if x

is the kth power of a prime. The constant C is li 2−ln 2 = γ+ln ln 2+

n≥2(ln 2)n/nn! =
0.35201 65995 57547 47542 73567 67736 43656 84471+.

[For a summary of developments during the 100 years following von Mangoldt’s
paper, see A. A. Karatsuba, Complex Analysis in Number Theory (CRC Press, 1995).
See also Eric Bach and Jeffrey Shallit, Algorithmic Number Theory 1 (MIT Press,
1996), Chapter 8, for an excellent introduction to the connection between Riemann’s
hypothesis and concrete problems about integers.]

26. If N is not prime, it has a prime factor q ≤
√
N. By hypothesis, every prime

divisor p of f has an integer xp such that the order of xp modulo q is a divisor of N −1
but not of (N − 1)/p. Therefore if pk divides f , the order of xp modulo q is a multiple
of pk. Exercise 3.2.1.2Ű15 now tells us that there is an element x of order f modulo q.
But this is impossible, since it implies that q2 ≥ (f + 1)2 ≥ (f + 1) r ≥ N, and equality
cannot hold. [Proc. Camb. Phil. Soc. 18 (1914), 29Ű30.]

27. If k is not divisible by 3 and if k ≤ 2n + 1, the number k·2n + 1 is prime if and
only if 32n−1k ≡ −1 (modulo k·2n + 1). For if this condition holds, k·2n + 1 is prime
by exercise 26; and if k·2n + 1 is prime, the number 3 is a quadratic nonresidue mod
k·2n +1 by the law of quadratic reciprocity, since (k·2n +1) mod 12 = 5. [This test was
stated without proof by Proth in Comptes Rendus Acad. Sci. 87 (Paris, 1878), 926.]

To implement Proth’s test with the necessary efficiency, we need to be able to
compute x2 mod (k·2n + 1) with about the same speed as we can compute the quantity
x2 mod (2n − 1). Let x2 = A·2n + B; then x2 ≡ B − ⌊A/k⌋ + 2n(Amod k), so the
remainder is easily obtained when k is small. (See also exercise 4.3.2Ű14.)

[To test numbers of the form 3·2n + 1 for primality, the job is only slightly
more difficult; we Ąrst try random single-precision numbers until Ąnding one that is a
quadratic nonresidue mod 3·2n + 1 by the law of quadratic reciprocity, then use this
number in place of “3Ť in the test above. If nmod 4 ̸= 0, the number 5 can be used.
It turns out that 3·2n + 1 is prime when n = 1, 2, 5, 6, 8, 12, 18, 30, 36, 41, 66, 189,
201, 209, 276, 353, 408, 438, 534, 2208, 2816, 3168, 3189, 3912, 20909, 34350, 42294,

664 ANSWERS TO EXERCISES 4.5.4

42665, 44685, 48150, 55182, 59973, 80190, 157169, 213321, and no other n ≤ 300000;
and 5·2n + 1 is prime when n = 1, 3, 7, 13, 15, 25, 39, 55, 75, 85, 127, 1947, 3313,
4687, 5947, 13165, 23473, 26607, 125413, 209787, 240937, and no other n ≤ 300000.
See R. M. Robinson, Proc. Amer. Math. Soc. 9 (1958), 673Ű681; G. V. Cormack and
H. C. Williams, Math. Comp. 35 (1980), 1419Ű1421; H. Dubner and W. Keller, Math.
Comp. 64 (1995), 397Ű405; J. S. Young, Math. Comp. 67 (1998), 1735Ű1738.]

28. f(p, p2d) = 2/(p + 1) + f(p, d)/p, since 1/(p + 1) is the probability that A is
a multiple of p. f(p, pd) = 1/(p + 1) when dmod p ̸= 0. f(2, 4k + 3) = 1

3
since

A2−(4k+3)B2 cannot be a multiple of 4; f(2, 8k+5) = 2
3

since A2−(8k+5)B2 cannot
be a multiple of 8; f(2, 8k+1) = 1

3
+ 1

3
+ 1

3
+ 1

6
+ 1

12
+ · · · = 4

3
. f(p, d) = (2p/(p2−1), 0)

if d(p−1)/2 mod p = (1, p− 1), respectively, for odd p.

29. The number of solutions to the inequality x1 + · · ·+xm ≤ r in nonnegative integers
xi is

m+r

r

≥ mr/r!, and each of these corresponds to a unique integer px1

1 . . . pxm
m ≤ n.

[For sharper estimates, in the special case that pj is the jth prime for all j, see N. G.
de Bruijn, Indag. Math. 28 (1966), 240Ű247; H. Halberstam, Proc. London Math. Soc.
(3) 21 (1970), 102Ű107.]

30. If pe1
1 . . . pem

m ≡ x2
i (modulo qi), we can Ąnd yi such that pe1

1 . . . pem
m ≡ (±yi)2

(modulo qdi
i), hence by the Chinese remainder theorem we obtain 2d values of X such

that X2 ≡ pe1
1 . . . pem

m (modulo N). Such (e1, . . . , em) correspond to at most

r
r/2

pairs

(e′1, . . . , e
′
m; e′′1, . . . , e

′′
m) having the hinted properties. Now for each of the 2d binary

numbers a = (a1 . . . ad)2, let na be the number of exponents (e′1, . . . , e
′
m) such that

(pe′1
1 . . . p

e′m
m)(qi−1)/2 ≡ (−1)ai (modulo qi); we have proved that the required number of

integers X is ≥ 2d(

a n
2
a)/

r
r/2

. Since

a na is the number of ways to choose at most

r/2 objects from a set of m objects with repetitions permitted, namely

m+r/2
r/2

, we

have

a n
2
a ≥

m+r/2

r/2

2/2d ≥ mr/(2d(r/2)!2). [See J. Algorithms 3 (1982), 101Ű127,

where Schnorr presents many further reĄnements of Theorem D.]

31. Set n = M, pM = 4m, and ϵM = 2m to show that Pr(X ≤ 2m) ≤ e−m/2.

32. Let M = ⌊ 3√
N⌋, and let the places xi of each message be restricted to the range

0 ≤ x < M3 − M 2. If x ≥ M, encode it as x3 modN as before, but if x < M
change the encoding to (x + yM)3 modN, where y is a random number in the range
M2 −M ≤ y < M2. To decode, Ąrst take the cube root; and if the result is M3 −M2

or more, take the remainder mod M.

34. Let P be the probability that xm mod p = 1 and let Q be the probability that
xm mod q = 1. The probability that gcd(xm−1, N) = p or q is P (1−Q) +Q(1− P) =
P +Q− 2PQ. If P ≤ 1

2
or Q ≤ 1

2
, this probability is ≥ 2(10−6 − 10−12), so we have a

good chance of Ąnding a factor after about 106 logm arithmetic operations modulo N.
On the other hand if P > 1

2
and Q > 1

2
then P ≈ Q ≈ 1, since we have the general

formula P = gcd(m, p−1)/p; thus m is a multiple of lcm(p−1, q−1) in this case. Let
m = 2kr where r is odd, and form the sequence xr modN, x2r modN , . . . , x2kr modN;
we Ąnd as in Algorithm P that the Ąrst appearance of 1 is preceded by a value y other
than N − 1 with probability ≥ 1

2
, hence gcd(y − 1, N) = p or q.

35. Let f = (pq−1 − qp−1) modN. Since pmod 4 = q mod 4 = 3, we have (−1
p

) =

(−1
q

) = (f
p

) = −(f
q

) = −1, and we also have (2
p

) = −(2
q
) = −1. Given a message x in

the range 0 ≤ x ≤ 1
8
(N −5), let x̄ = 4x+ 2 or 8x+ 4, whichever satisĄes (x̄

N
) ≥ 0; then

transmit the message x̄2 modN.

4.5.4 ANSWERS TO EXERCISES 665

To decode this message, we Ąrst use a SQRT box to Ąnd the unique number y such
that y2 ≡ x̄2 modN and

 y
N

≥ 0 and y is even. Then y = x̄, since the other square

roots of x̄2 are N − x̄ and (±fx̄) modN; the Ąrst of these is odd, and the other two
either have negative Jacobi symbols or are simply x̄ and N − x̄. The decoding is now
completed by setting x← ⌊y/4⌋ if y mod 4 = 2, otherwise x← ⌊y/8⌋.

Anybody who can decode such encodings can also Ąnd the factors of N, because
the decoding of a false message x̄2 modN when (x̄

N
) = −1 reveals (±f) modN, and

((±f) modN)− 1 has a nontrivial gcd with N. [Reference: IEEE Transactions IT-26

(1980), 726Ű729.]

36. The mth prime equals m lnm + m ln lnm − m + m ln lnm/lnm − 2m/lnm +
O(m(log logm)2(logm)−2), by (4), although for this problem we need only the weaker
estimate pm = m lnm + O(m log logm). (We will assume that pm is the mth prime,
since this corresponds to the assumption that V is uniformly distributed.) If we choose
lnm = 1

2
c
√

lnN ln lnN , where c = O(1), we Ąnd that r = c−1
√

lnN/ln lnN −
c−2− c−2(ln ln lnN/ln lnN)−2c−2(ln 1

2
c)/ln lnN +O(

√
ln lnN/lnN). The estimated

running time (22) now simpliĄes somewhat surprisingly to exp(f(c,N)
√

lnN ln lnN +
O(log logN)), where we have f(c,N) = c+ (1− (1 + ln 2)/ln lnN)c−1. The value of c
that minimizes f(c,N) is

√
1− (1 + ln 2)/ln lnN , so we obtain the estimate

exp(2
√

lnN ln lnN
√

1− (1 + ln 2)/ln lnN +O(log logN)).

When N = 1050 this gives ϵ(N) ≈ .33, which is still much larger than the observed
behavior.

Note: The partial quotients of
√
D seem to behave according to the distribution

obtained for random real numbers in Section 4.5.3. For example, the Ąrst million partial
quotients of the square root of the number 1018 + 314159 include exactly (415236,
169719, 93180, 58606) cases where An is respectively (1, 2, 3, 4). Moreover, we have
Vn+1 = |p2

n − Dq2
n| = 2

√
Dqn |pn −

√
Dqn| + O(q−2

n) by exercise 4.5.3Ű12(c) and
Eq. 4.5.3Ű(12). Therefore we can expect Vn/2

√
D to behave essentially like the quantity

θn(x) = qn |pn − xqn|, where x is a random real number. The random variable θn is
known to have the approximate density min(1, θ−1 − 1)/ln 2 for 0 ≤ θ ≤ 1 [see Bosma,
Jager, and Wiedijk, Indag. Math. 45 (1983), 281Ű299], which is uniform when θ ≤ 1/2.
So something besides the size of Vn must account for the unreasonable effectiveness of
Algorithm E.

37. Apply exercise 4.5.3Ű12 to the number
√
D + R, to see that the periodic part

begins immediately, and run the period backwards to verify the palindromic property.
[It follows that the second half of the period gives the same V ’s as the Ąrst, and
Algorithm E could be shut down earlier by terminating it when U = U ′ or V = V ′ in
step E5. However, the period is generally so long, we never even get close to halfway
through it, so there is no point in making the algorithm more complicated.]

38. Let r = (1050− 1)/9. Then P0 = 1049 + 9; P1 = r+ 3 · 1046; P2 = 2r+ 3 · 1047 + 7;
P3 = 3r + 2 · 1049; P4 = 4r + 2 · 1049 − 3; P5 = 5r + 3 · 1049 + 4; P6 = 6r + 2 · 1048 + 3;
P7 = 7r + 2 · 1025 (very pretty); P8 = 8r + 1038 − 7; P9 = 9r − 8000.

39. Notice that it’s easy to prove the primality of q when q − 1 has just 2 and p
as prime factors. The only successors of 2 are Fermat primes, and the existence or
nonexistence of a sixth Fermat prime is one of the most famous unsolved problems of
number theory. Thus we probably will never know how to determine whether or not
an arbitrary integer has any successors. In some cases, however, this is possible; for
example, John Selfridge proved in 1962 that 78557 and 271129 have none [see AMM 70

666 ANSWERS TO EXERCISES 4.5.4

(1963), 101Ű102], after W. Sierpiński had proved the existence of inĄnitely many odd
numbers without a successor [Elemente der Math. 15 (1960), 73Ű74]. Perhaps 78557 is
the smallest of these, although 69 other contenders for that honor still existed in 1983,
according to G. Jaeschke and W. Keller [Math. Comp. 40 (1983), 381Ű384, 661Ű673;
45 (1985), 637].

For information on the more traditional “CunninghamŤ form of prime chain, in
which the transitions are p→ 2p±1, see Günter Löh, Math. Comp. 53 (1989), 751Ű759.
In particular, Löh found that 554688278430 · 2k − 1 is prime for 0 ≤ k < 12.

40. [Inf. Proc. Letters 8 (1979), 28Ű31.] Notice that xmod y = x − y ⌊x/y⌋ can be
computed easily on such a machine, and we can get simple constants like 0 = x − x,
1 = ⌊x/x⌋, 2 = 1 + 1; we can test x > 0 by testing whether x = 1 or ⌊x/(x− 1)⌋ ̸= 0.

(a) First compute l = ⌊lgn⌋ in O(logn) steps, by repeatedly dividing by 2; at the
same time compute k = 2l and A = 22l+1 in O(logn) steps by repeatedly setting k ←
2k, A← A2. For the main computation, suppose we know that t = Am, u = (A+ 1)m,
and v = m!; then we can increase the value of m by 1 by setting m← m+ 1, t← At,
u← (A+ 1)u, v ← vm; and we can double the value of m by setting m← 2m, u← u2,
v ← (⌊u/t⌋modA)v2, t ← t2, provided that A is sufficiently large. (Consider the
number u in radix-A notation; A must be greater than

2m
m

.) Now if n = (al . . . a0)2,

let nj = (al . . . aj)2; if m = nj and k = 2j and j > 0 we can decrease j by 1 by
setting k ← ⌊k/2⌋, m ← 2m + (⌊n/k⌋mod 2). Hence we can compute nj ! for j = l,
l− 1, . . . , 0 in O(logn) steps. [Another solution, due to Julia Robinson, is to compute
n! = ⌊Bn/

B
n

⌋ when B > (2n)n+1; see AMM 80 (1973), 250Ű251, 266.]

(b) First compute A = 22l+2

as in (a), then Ąnd the least k ≥ 0 such that
2k+1! mod n = 0. If gcd(n, 2k!) ̸= 1, let f(n) be this value; note that this gcd can
be computed in O(logn) steps by Euclid’s algorithm. Otherwise we will Ąnd the least
integer m such that

m

⌊m/2⌋

mod n = 0, and let f(n) = gcd(m,n). (Note that in this

case 2k < m ≤ 2k+1, hence ⌈m/2⌉ ≤ 2k and ⌈m/2⌉! is relatively prime to n; therefore
m

⌊m/2⌋

mod n = 0 if and only if m! mod n = 0. Furthermore n ̸= 4.)

To compute m with a bounded number of registers, we can use Fibonacci numbers
(see Algorithm 6.2.1F). Suppose we know that s = Fj , s′ = Fj+1, t = AFj , t′ = AFj+1 ,
u = (A + 1)2Fj , u′ = (A + 1)2Fj+1 , v = Am, w = (A + 1)2m,

2m
m

mod n ̸= 0, and

2(m+s)
m+s

mod n = 0. It is easy to reach this state of affairs with m = Fj+1, for suitably

large j, in O(logn) steps; furthermore A will be larger than 22(m+s). If s = 1, we set
f(n) = gcd(2m+1, n) or gcd(2m+2, n), whichever is ̸= 1, and terminate the algorithm.
Otherwise we reduce j by 1 as follows: Set r ← s, s← s′− s, s′ ← r, r ← t, t← ⌊t′/t⌋,
t′ ← r, r ← u, u← ⌊u′/u⌋, u′ ← r; then if (⌊wu/vt⌋modA) mod n ̸= 0, set m← m+s,
w ← wu, v ← vt.

[Can this problem be solved with fewer than O(logn) operations? Can the small-
est, or the largest, prime factor of n be computed in O(logn) operations?]

41. (a) Clearly π(x) = π(m) + f1(x,m) = π(m) + f(x,m) − f0(x,m) − f2(x,m) −
f3(x,m)− · · · when 1 ≤ m ≤ x. Set x = N3, m = N , and note that fk(N3, N) = 0 for
k > 2.

(b) We have f2(N3, N) =

N<p≤q[pq≤N3] =

N<p≤N3/2(π(N3/p)−π(p)+1) =

N<p≤N3/2 π(N3/p) −

π(N3/2)
2

+

π(N)
2

, where p and q range over primes. Hence

f2(1000, 10) = π(1000
11

) + π(1000
13

) + π(1000
17

) + π(1000
19

) + π(1000
23

) + π(1000
29

) + π(1000
31

)−
π(31)

2

+

π(10)
2

= 24 + 21 + 16 + 15 + 14 + 11 + 11− 55 + 6 = 63.

4.5.4 ANSWERS TO EXERCISES 667

(c) The hinted identity says simply that a pj-survivor is a pj−1-survivor that isn’t
a multiple of pj . Clearly f(N3, N) = f(N3, pπ(N)). Apply the identity until reaching
terms f(x, pj) where either j = 0 or x ≤ N2; the result is

f(N3, N) =
N−1

k=1

µ(k)f

N3

k
, 1

−
π(N)

j=1

N/pj≤k<N

µ(k)f

N3

kpj
, pj−1

[k is a pj-survivor].

Now f(x, 1) = ⌊x⌋, so the Ąrst sum is 1000 − 500 − 333 − 200 + 166 − 142 = −9
when N = 10. The second sum is −f(1000

10
, 1) − f(1000

14
, 1) − f(1000

15
, 2) − f(1000

21
, 2) −

f(1000
35

, 3) = −100 − 71 − 33 − 24 − 9 = −237. Hence f(1000, 10) = −9 + 237 = 228,
and π(1000) = 4 + 228− 1− 63 = 168.

(d) If N2 ≤ 2m we can construct an array in which a2m−1+n = [n + 1 is a pj-
survivor] for 1 ≤ n ≤ N2 represents a sieve after j passes, and an = a2n + a2n+1

for 1 ≤ n < 2m. Then it is easy to compute f(x, pj) in O(m) steps when x ≤ N2,
and to remove multiples of p from the sieve in O(N2m/p) steps. The total running
time to compute f(N3, N) will come to O(N2 logN log logN), because

π(N)
j=1 1/pj =

O(log logN).
The storage requirement can be reduced from 2N2m to 2Nm if we break the sieve

into N parts of size N and work on each part separately. Auxiliary tables of pj for
1 ≤ j ≤ π(N), and of µ(k) and the least prime factor of k for 1 ≤ k ≤ N , are helpful
and easily constructed before the main computation begins.

[See Math. Comp. 44 (1985), 537Ű560. A similar procedure was Ąrst introduced
by D. F. E. Meissel, Math. Annalen 2 (1870), 636Ű642; 3 (1871), 523Ű525; 21 (1883),
304; 25 (1885), 251Ű257. D. H. Lehmer made several reĄnements in Illinois J. Math.
3 (1959), 381Ű388. Neither Meissel nor Lehmer had a stopping rule for the recurrence
that was as efficient as the method described above. Further reĄnements due to Marc
Deléglise, Joël Rivat, Xavier Gourdon, and Tomás Oliveira e Silva have made it possible
to deduce that π(1023) = 1925320391606803968923; see Revista do DETUA 4 (2006),
759Ű768. Lagarias and Odlyzko also developed a completely different approach whereby
π(N) can be evaluated in O(N1/2+ϵ) steps, using principles of analytic number theory;
see J. Algorithms 8 (1987), 173Ű191. But the constant in that O is impracticably large.

42. L1. [Initialize.] Find r̄ such that rr̄ ≡ 1 (modulo s); then set r′ ← nr̄ mod s,
u ← r′r̄ mod s, v ← s, w ← (n − rr′)r̄/smod s, θ ← ⌊N/s⌋, (u1, u3) ←
(1, u), (v1, v3)← (0, v). (We want to Ąnd all pairs of integers (λ, µ) such that
(λs + r)(µs + r′) = N; this implies λu + µ ≡ w (modulo s) and

√
λµv ≤ θ.

We will perform Algorithm 4.5.2X with t2, u2, v2 suppressed; the relations

λt3 + µt1 ≡ wt1, λu3 + µu1 ≡ wu1, λv3 + µv1 ≡ wv1 (modulo s)

will remain invariant.)

L2. [Try for divisors.] If v1 = 0, output λs + r whenever λs + r divides N and
0 ≤ λ ≤ θ/s. If v3 = 0, output N/(µs + r′) whenever µs + r′ divides N
and 0 ≤ µ ≤ θ/s. Otherwise, for all k such that |wv1 + ks| ≤ θ if v1 < 0,
or 0 < wv1 + ks ≤ 2θ if v1 > 0, and for σ = +1 and −1, output λs + r if
d = (wv1s+ks2 +v3r+v1r

′)2−4v1v3N is a perfect square and if the numbers

λ =
wv1s+ ks2 − v3r + v1r

′ + σ
√
d

2v3s
, µ =

wv1s+ ks2 + v3r − v1r
′ − σ

√
d

2v3s

are positive integers. (These are the solutions to λv3 + µv1 = wv1 + ks,
(λs+ r)(µs+ r′) = N.)

668 ANSWERS TO EXERCISES 4.5.4

L3. [Done?] If v3 = 0, the algorithm terminates.

L4. [Divide and subtract.] Set q ← ⌊u3/v3⌋. If u3 = qv3 and v1 < 0, decrease q
by 1. Then set

(t1, t3)← (u1, u3)− (v1, v3)q, (u1, u3)← (v1, v3), (v1, v3)← (t1, t3)

and return to step L2.

[See Math. Comp. 42 (1984), 331Ű340. The bounds in step L2 can be sharpened, for
example to ensure that d ≥ 0. Some factors may be output more than once.]

43. (a) First make sure that the Jacobi symbol
 y

m

is +1. (If it’s 0, the task is easy;

if it’s −1, then y /∈ Qm.) Then choose random integers x1, . . . , xn in [0 . .m) and
let Xj = [G(y2x4

j modm) = (yx2
j modm) mod 2]. If y ∈ Qm we have EXj ≥ 1

2
+ ϵ;

otherwise m− y ∈ Qm and EXj ≤ 1
2
− ϵ. Report that y ∈ Qm if X1 + · · ·+Xn ≥ 1

2
n.

The probability of failure is at most e−2ϵ2n, by exercise 1.2.10Ű21. Therefore we choose
n = ⌈ 1

2
ϵ−2 ln δ−1⌉.

(b) Find an x with Jacobi symbol

x
m

= −1, and set y ← x2 modm. Then the

prime factors of m are gcd(x +
√
y,m) and gcd(x − √y,m), so our task is to Ąnd

±√y when y ∈ Qm is given. If we can Ąnd τv for any nonzero v, we are done, since√
y = (v−1τv) modm unless gcd(v,m) is a factor of m.

Assume that ϵ = 2−e for some e ≥ 1. Choose random integers a and b in [0 . .m),
and assume that we know the binary fractions α0 and β0 such that

τa

m
− α0

 <
ϵ

64
,

τb

m
− β0

 <
ϵ3

64
;

here α0 is an odd multiple of ϵ/64, while β0 is an odd multiple of ϵ3/64. Assume also
that we know λa and λb. Of course we don’t really know α0, β0, λa, or λb, but we will
try all 32ϵ−1 × 32ϵ−3 × 2 × 2 possibilities. Spurious branches of the program, which
operate under incorrect assumptions, will cause no harm.

DeĄne the numbers utj = 2−t(a+(j+ 1
2
)b) modm and vtj = 2−t−1(a+jb) modm.

Both utj and vtj are uniformly distributed in [0 . .m), because a and b were chosen at
random. Furthermore, for Ąxed t, the numbers utj for j0 ≤ j < j0 + l are pairwise

independent, and so are the numbers vtj for j0 ≤ j < j0 + l, as long as l does not
exceed the smallest prime factor of m. We will make use of utj and vtj only for
−2rϵ−2 ≤ j < 2rϵ−2; if any of these values has a nonzero factor in common with m,
we’re done.

For all v ⊥ m we deĄne χv = +1 if v ∈ Qm, χv = −1 if −v ∈ Qm, and χv = 0
if

v
m

= −1. Notice that χu(t+2)j = χutj , since utj = (22u(t+2)j) modm. Therefore

we can determine χutj and χvtj for all t and j by applying algorithm A to utj and vtj

for 0 ≤ t ≤ 1 and −2rϵ−2 ≤ j < 2rϵ−2. Setting δ = 1
1440

ϵ2r−1 in that algorithm will
ensure that all χ values are correct with probability ≥ 1− 1

90
.

The algorithm works in at most r stages. At the beginning of stage t, for 0 ≤ t < r,
we assume that we know λ2−ta, λ2−tb, and fractions αt, βt such that

τ2−ta

m
− αt

 <
ϵ

2t+6
,

τ2−tb

m
− βt

 <
ϵ3

2t+6
.

DeĄne αt+1 = 1
2
(αt +λ2−ta) and βt+1 = 1

2
(βt +λ2−tb); this preserves the inequalities.

The next step is to Ąnd λ2−t−1b, which satisĄes

λutj + λ2−ta+ jλ2−tb+ λ2−t−1b+

τ2−ta+ jτ2−tb+ τ2−t−1b

m

≡ 0 (modulo 2) .

4.5.4 ANSWERS TO EXERCISES 669

Let n = 4 min(r, 2t)ϵ−2; then when |j| ≤ n
2

we have

τ2−ta

m
+ j

τ2−tb

m
+
τ2−t−1b

m
− (αt + jβt + βt+1)

<

ϵ

16
.

Therefore if χutj = 1 it is likely that λ2−t−1b = Gj , where Gj = (G(u2
tjy modm) +

λ2−ta+ jλ2−tb+ ⌊αtjβt + βt+1⌋) mod 2. More precisely, we will have

⌊(τ2−ta+ jτ2−tb+ τ2−t−1b)/m⌋ = ⌊αt + jβt + βt+1⌋

unless τutj <
ϵ

16
m or τutj > (1 − ϵ

16
)m. Let Yj = (2Gj − 1)χutj . If Yj = +1, it is

a vote for λ2−t−1b = 1; if Yj = −1, it is a vote for λ2−t−1b = 0; if Yj = 0, it is an
abstention. We will be democratic and set λ2−t−1b = [

n/2−1

j=−n/2 Yj ≥ 0].
What is the probability that λ2−t−1b is correct? Let Zj = −1 if χutj ̸= 0 and

(τutj <
ϵ

16
m or τutj > (1− ϵ

16
)m or G(u2

tjy modm) ̸= λutj); otherwise let Zj = |χutj |.
Since Zj is a function of utj , the random variables Zj are pairwise independent and
have the same distribution. Let Z =

n/2−1

j=−n/2 Zj ; if Z > 0, the value of λ2−t−1b will
be correct. The probability that Zj = 0 is 1

2
, and the probability that Zj = +1 is

≥ 1
4

+ ϵ
2
− ϵ

8
; therefore EZj ≥ 3

4
ϵ. Clearly var(Zj) ≤ 1

2
. So the chance of error, in

the branch of the program that has the correct assumptions, is at most Pr(Z ≤ 0) ≤
Pr((Z − nEZj)2 ≥ 9

16
n2ϵ2) ≤ 8

9
n−1ϵ2 = 2

9
min(r, 2t)−1, by Chebyshev’s inequality

(exercise 3.5Ű42).
A similar method, with vtj in place of utj , can be used to determine λ2−t−1a with

error ≤ 2
9

min(r, 2t)−1. Eventually we will have ϵ3/2t+6 < 1/(2m), so τ2−tb will be the
nearest integer to mβt. Then we can compute

√
y = (2tb−1τ2−tb) modm; squaring

this quantity will tell us if we are correct.
The total chance of making a mistake is bounded by 4

9

t≥1 2−t = 4

9
in stages

t < lgn, and by 4
9

t≤r r

−1 = 4
9

in subsequent stages. So the total chance of error,
including the possibility that the χ values were not all correct, is at most 4

9
+ 4

9
+ 1

90
= 9

10
.

At least 1
10

of all runs of the program will succeed in Ąnding
√
y; hence the factors of m

will be found after repeating the process at most 10 times, on the average.
The total running time is dominated by O(rϵ−4 log(rϵ−2)T (G)) for the χ compu-

tation, plus O(r2ϵ−2T (G)) for subsequent guessing, plus O(r2ϵ−6) for the calculations
of αt, βt, λ2−ta, and λ2−tb in all branches.

This procedure, which nicely illustrates many of the basic paradigms of randomized
algorithms, is due to R. Fischlin and C. P. Schnorr [J. Cryptology 13 (2000), 221Ű
244], who derived it from earlier approaches by Alexi, Chor, Goldreich, and Schnorr
[SICOMP 17 (1988), 194Ű209] and by Ben-Or, Chor, and Shamir [STOC 15 (1983),
421Ű430]. When we combine it with Lemma 3.5P4, we get a theorem analogous to
Theorem 3.5P, but with the sequence 3.2.2Ű(16) instead of 3.2.2Ű(17). Fischlin and
Schnorr showed how to streamline the calculations so that their factoring algorithm
takes O(rϵ−4 log(rϵ−1)T (G)) steps; the resulting time bound for “crackingŤ 3.2.2Ű(16)
is T (F) = O(RN4ϵ−4 log(RNϵ−1)(T (G) + R2)). The constant factor implied by this
O is rather large, but not enormous. A similar method Ąnds x from the RSA function
y = xa modm when a ⊥ φ(m), if we can guess y1/a mod 2 with probability ≥ 1

2
+ ϵ.

44. Suppose
d−1

j=0 aijx
j ≡ 0 (modulo mi), gcd(ai0, ai1, . . . , ai(d−1),mi) = 1, and

|x| < mi for 1 ≤ i ≤ k = d(d − 1)/2 + 1, where mi ⊥ mj for 1 ≤ i < j ≤ k.
Also assume that m = min{m1, . . . ,mk} > nn/22n2/2dd, where n = d + k. First Ąnd

670 ANSWERS TO EXERCISES 4.5.4

u1, . . . , uk such that uj modmi = δij . Then set up the n× n matrix

L =

M
0 mM
...

...
. . .

0 0 . . . md−1M
a10u1 ma11u1 . . . md−1a1(d−1)u1 M/m1d
a20u2 ma21u2 . . . md−1a2(d−1)u2 0 M/m2d

...
...

...
...

...
. . .

ak0uk mak1uk . . . md−1ak(d−1)uk 0 0 . . . M/mkd

where M = m1m2 . . . mk; all entries above the diagonal are zero, hence detL =
Mn−1mk−1d−k. Now let v = (t0, . . . , td−1, v1, . . . , vk) be a nonzero integer vector
with length(vL) ≤

√
n2nM (n−1)/nm(k−1)/nd−k/n. Since M (n−1)/n < M/mk/n, we

have length(vL) < M/d. Let cj = tjM +
k

i=1 aijuivi and P (x) = c0 + c1x + · · · +
cd−1x

d−1. Then P (x) ≡ vi(ai0 + ai1x + · · · + ai(d−1)x
d−1) ≡ 0 (modulo mi), for

1 ≤ i ≤ k; hence P (x) ≡ 0 (modulo M). Also |mjcj | < M/d; it follows that P (x) = 0.
But P (x) is not identically zero, because the conditions viaij ≡ 0 (modulo mi) and
gcd(ai0, . . . , ai(d−1),mi) = 1 imply vi ≡ 0 (modulo mi), while | viM/mid | < M/d
implies |vi| < mi; we cannot have v1 = · · · = vk = 0. Thus we can Ąnd x (more
precisely, at most d − 1 possibilities for x), and the total running time is polynomial
in lgM. [Lecture Notes in Comp. Sci. 218 (1985), 403Ű408.]

45. Fact 1. A solution always exists. Suppose Ąrst that n is prime. If (b
n

) = 1,
there is a solution with y = 0. If (b

n
) = −1, let j > 0 be minimum such that we have−ja

n

= −1; then x2

0 − a ≡ −ja and b ≡ −ja(y0)2 for some x0 and y0 (modulo n),
hence (x0y0)2 − ay2

0 ≡ b. Suppose next that we have found a solution x2 − ay2 ≡ b
(modulo n) and we want to extend this to a solution modulo n2. We can always Ąnd c
and d such that (x+cn)2−a(y+dn)2 ≡ b (modulo n2), because (x+cn)2−a(y+dn)2 ≡
x2 − ay2 + (2cx − 2ayd)n and gcd(2x, 2ay) ⊥ n. Thus a solution always exists when
n is a power of an odd prime. (We need to assume that n is odd because, for example,
there is no solution to x2± y2 ≡ 3 (modulo 8).) Finally, a solution exists for all odd n,
by the Chinese remainder theorem.

Fact 2. The number of solutions, given a and n with a ⊥ n, is the same for
all b ⊥ n. This follows from the hinted identity and Fact 1, for if x2

1 − ay2
1 ≡ b then

(x1x2 − ay1y2, x1y2 + x2y1) runs through all solutions of x2 − ay2 ≡ b as (x2, y2) runs
through all solutions of x2 − ay2 ≡ 1. In other words, (x2, y2) is uniquely determined
by (x1, y1) and (x, y), when x2

1 − ay2
1 ⊥ n.

Fact 3. Given integers (a, s, z) such that z2 ≡ a (modulo s), we can Ąnd integers
(x, y,m, t) with x2−ay2 = m2st, where (x, y) ̸= (0, 0) and t2 ≤ 4

3
|a|. For if z2 = a+ms,

let (u, v) be a nonzero pair of integers that minimizes (zu+mv)2 + |a|u2. We can Ąnd
(u, v) efficiently using the methods of Section 3.3.4, and (zu+mv)2 + |a|u2 ≤ (4

3
|a|)1/2

by exercise 3.3.4Ű9. Therefore (zu + mv)2 − au2 = mt where t2 ≤ 4
3
|a|. The hinted

identity now solves x2 − ay2 = (ms)(mt).
Fact 4. It is easy to solve x2−y2 ≡ b (modulo n): Let x = (b+1)/2, y = (b−1)/2.
Fact 5. It is not difficult to solve x2 + y2 ≡ b (modulo n), because the method

in exercise 3.3.4Ű11 solves x2 + y2 = p when p is prime and pmod 4 = 1; one of the
numbers b, b+ n, b+ 2n, . . . will be such a prime.

Now to solve the stated problem when |a| > 1 we can proceed as follows. Choose
u and v at random between 1 and n − 1, then compute w = (u2 − av2) mod n and

4.6 ANSWERS TO EXERCISES 671

d = gcd(w, n). If 1 < d < n or if gcd(v, n) > 1 we can reduce n; the methods used
to prove Fact 1 will lift solutions for factors of n to solutions for n itself. If d = n
and v ⊥ n, we have (u/v)2 ≡ a (modulo n), hence we can reduce a to 1. Otherwise
d = 1; let s = bw mod n. This number s is uniformly distributed among the numbers
prime to n, by Fact 2. If (a

s
) = 1, try to solve z2 ≡ a (modulo s), assuming that s is

prime (exercise 4.6.2Ű15). If unsuccessful, start over with another random choice of u
and v. If successful, let z2 = a + ms and compute d = gcd(ms, n). If d > 1, reduce
the problem as before. Otherwise use Fact 3 to Ąnd x2 − ay2 = m2st with t2 ≤ 4

3
|a|;

this makes (x/m)2 − a(y/m)2 ≡ st (modulo n). If t = 0, reduce a to 1. Otherwise
apply the algorithm recursively to solve X2 − tY 2 ≡ a (modulo n). (Since t is much
smaller than a, only O(log logn) levels of recursion will be necessary.) If gcd(Y, n) > 1
we can reduce n or a; otherwise (X/Y)2− a(1/Y)2 ≡ t (modulo n). Finally the hinted
identity yields a solution to x′2 − ay′2 ≡ s (see Fact 2), which leads in turn to the
desired solution because u2 − av2 ≡ s/b.

In practice only O(logn) random trials are needed before the assumptions about
prime numbers made in this algorithm turn out to be true. But a formal proof would re-
quire us to assume the Extended Riemann Hypothesis [IEEE Trans. IT-33 (1987), 702Ű
709]. Adleman, Estes, and McCurley [Math. Comp. 48 (1987), 17Ű28] have developed a
slower and more complicated algorithm that does not rely on any unproved hypotheses.

46. [FOCS 20 (1979), 55Ű60.] After Ąnding ani mod p =
m

j=1 p
eij
j for enough ni,

we can solve

i xijkeij + (p − 1)tjk = δjk in integers xijk, tjk for 1 ≤ j, k ≤ m (for
example, as in 4.5.2Ű(23)), thereby knowing the solutions Nj = (

i xijkejk) mod (p−1)

to aNj mod p = pj . Then if ban′ mod p =
m

j=1 pȷ
e′j , we have n + n′ ≡ m

j=1 e
′
jNj

(modulo p − 1). [Improved algorithms are known; see, for example, Coppersmith,
Odlyzko, and Schroeppel, Algorithmica 1 (1986), 1Ű15.]

47. Earlier printings of this book had a 211-digit N , which was cracked in 2012 using
the elliptic curve method and the general number Ąeld method by Greg Childers and
about 500 volunteers(!).

SECTION 4.6

1. 9x2 + 7x+ 7; 5x3 + 7x2 + 2x+ 6.

2. (a) True. (b) False if the algebraic system S contains zero divisors, that is, nonzero
numbers whose product is zero, as in exercise 1; otherwise true. (c) True when m ̸= n,
but false in general when m = n, since the leading coefficients might cancel.

3. Assume that r ≤ s. For 0 ≤ k ≤ r the maximum is m1m2(k + 1); for r ≤ k ≤ s it
is m1m2(r + 1); for s ≤ k ≤ r + s it is m1m2(r + s + 1 − k). The least upper bound
valid for all k is m1m2(r + 1). (The solver of this exercise will know how to factor the
polynomial x7 + 2x6 + 3x5 + 3x4 + 3x3 + 3x2 + 2x+ 1.)

4. If one of the polynomials has fewer than 2t nonzero coefficients, the product can be
formed by putting exactly t−1 zeros between each of the coefficients, then multiplying
in the binary number system, and Ąnally using a bitwise AND instruction (present on
most binary computers, see Algorithm 4.5.4D) to zero out the extra bits. For example,
if t = 3, the multiplication in the text would become (1001000001)2× (1000001001)2 =
(1001001011001001001)2; the desired answer is obtained if we AND this result with the
constant (1001001 . . . 1001)2. A similar technique can be used to multiply polynomials
with nonnegative coefficients that are not too large.

5. Polynomials of degree ≤ 2n can be written U1(x)xn + U0(x) where deg(U1) ≤ n
and deg(U0) ≤ n; and (U1(x)xn + U0(x))(V1(x)xn + V0(x)) = U1(x)V1(x)(x2n + xn) +

672 ANSWERS TO EXERCISES 4.6

(U1(x) +U0(x))(V1(x) + V0(x))xn +U0(x)V0(x)(xn + 1). (This equation assumes that
arithmetic is being done modulo 2.) Thus Eqs. 4.3.3Ű(3) and 4.3.3Ű(5) hold.

Notes: S. A. Cook has shown that Algorithm 4.3.3T can be extended in a similar
way; and A. Schönhage [Acta Informatica 7 (1977), 395Ű398] has explained how to
multiply polynomials mod 2 with only O(n logn log logn) bit operations. In fact,
polynomials over any ring S can be multiplied with only O(n logn log logn) algebraic
operations, even when S is an algebraic system in which multiplication need not be
commutative or associative [D. G. Cantor and E. Kaltofen, Acta Informatica 28 (1991),
693Ű701]. See also exercises 4.6.4Ű57 and 4.6.4Ű58. But these ideas are not useful for
sparse polynomials (having mostly zero coefficients).

SECTION 4.6.1

1. q(x) = 1 · 23x3 + 0 · 22x2 − 2 · 2x+ 8 = 8x3 − 4x+ 8; r(x) = 28x2 + 4x+ 8.

2. The monic sequence of polynomials produced during Euclid’s algorithm has the
coefficients (1, 5, 6, 6, 1, 6, 3), (1, 2, 5, 2, 2, 4, 5), (1, 5, 6, 2, 3, 4), (1, 3, 4, 6), 0. Hence the
greatest common divisor is x3 + 3x2 + 4x + 6. (The greatest common divisor of a
polynomial and its reverse is always symmetric, in the sense that it is a unit multiple
of its own reverse.)

3. The procedure of Algorithm 4.5.2X is valid, with polynomials over S substituted
for integers. When the algorithm terminates, we have U(x) = u2(x), V (x) = u1(x). Let
m = deg(u), n = deg(v). It is easy to prove by induction that deg(u3) + deg(v1) = n,
deg(u3) + deg(v2) = m, after step X3, throughout the execution of the algorithm,
provided that m ≥ n. Hence if m and n are greater than d = deg(gcd(u, v)) we have
deg(U) < m − d, deg(V) < n − d; the exact degrees are m − d1 and n − d1, where d1

is the degree of the next-to-last nonzero remainder. If d = min(m,n), say d = n, we
have U(x) = 0 and V (x) = 1.

When u(x) = xm − 1 and v(x) = xn − 1, the identity (xm − 1) mod (xn − 1) =
xm mod n − 1 shows that all polynomials occurring during the calculation are monic,
with integer coefficients. When u(x) = x21 − 1 and v(x) = x13 − 1, we have V (x) =
x11 +x8 +x6 +x3 + 1 and U(x) = −(x19 +x16 +x14 +x11 +x8 +x6 +x3 +x). [See also
Eq. 3.3.3Ű(29), which gives an alternative formula for U(x) and V (x). See also exercise
4.3.2Ű6, with 2 replaced by x.]

4. Since the quotient q(x) depends only on v(x) and the Ąrst m−n coefficients of u(x),
the remainder r(x) = u(x)−q(x)v(x) is uniformly distributed and independent of v(x).
Hence each step of the algorithm may be regarded as independent of the others; this
algorithm is much more well-behaved than Euclid’s algorithm over the integers.

The probability that n1 = n− k is p1−k(1− 1/p), and t = 0 with probability p−n.
Each succeeding step has essentially the same behavior; hence we can see that any given
sequence of degrees n, n1, . . . , nt, −∞ occurs with probability (p − 1)t/pn. To Ąnd
the average value of f(n1, . . . , nt), let St be the sum of f(n1, . . . , nt) over all sequences
n > n1 > · · · > nt ≥ 0 having a given value of t; then the average is

t St(p− 1)t/pn.

Let f(n1, . . . , nt) = t; then St =

n
t

t, so the average is n(1 − 1/p). Similarly, if

f(n1, . . . , nt) = n1 + · · · + nt, then St =

n
2

n−1
t−1

, and the average is

n
2

(1 − 1/p).

Finally, if f(n1, . . . , nt) = (n− n1)n1 + · · ·+ (nt−1 − nt)nt, then

St =

n+2
t+2

− (n+ 1)

n+1
t+1

+

n+1
2

n
t

,

and the average is

n+1
2

− (n+ 1)p/(p− 1) + (p/(p− 1))2(1− 1/pn+1).

4.6.1 ANSWERS TO EXERCISES 673

(The probability that nj+1 = nj − 1 for 1 ≤ j ≤ t = n is (1 − 1/p)n, obtained
by setting St = [t=n]; so this probability approaches 1 as p → ∞. As a consequence
we have further evidence for the text’s claim that Algorithm C almost always Ąnds
δ2 = δ3 = · · · = 1, because any polynomials that fail the latter condition will fail the
former condition modulo p for all p.)

5. Using the formulas developed in exercise 4, with f(n1, . . . , nt) = [nt = 0], we Ąnd
that the probability is 1− 1/p if n > 0, 1 if n = 0.

6. Assuming that the constant terms u(0) and v(0) are nonzero, imagine a “right-
to-leftŤ division algorithm, u(x) = v(x)q(x) + xm−nr(x), where deg(r) < deg(v). We
obtain a gcd algorithm analogous to Algorithm 4.5.2B, which is essentially Euclid’s
algorithm applied to the “reverseŤ of the original inputs (see exercise 2), afterwards
reversing the answer and multiplying by an appropriate power of x.

There is a similar algorithm analogous to the method of exercise 4.5.2Ű40. The
average number of iterations for both algorithms has been found by G. H. Norton,
SICOMP 18 (1989), 608Ű624; K. Ma and J. von zur Gathen, J. Symbolic Comp. 9

(1990), 429Ű455.

7. The units of S (as polynomials of degree zero).

8. If u(x) = v(x)w(x), where u(x) has integer coefficients while v(x) and w(x) have
rational coefficients, there are nonzero integers m and n such that m · v(x) and n ·w(x)
have integer coefficients. Now u(x) is primitive, so Eq. (4) implies that

u(x) = pp((m · v(x))(n · w(x))) = ± pp(m · v(x)) pp(n · w(x)).

9. We can extend Algorithm E as follows: Let (u1(x), u2(x), u3, u4(x)) and (v1(x),
v2(x), v3, v4(x)) be quadruples that satisfy the relations u1(x)u(x)+u2(x)v(x) = u3u4(x)
and v1(x)u(x) + v2(x)v(x) = v3v4(x). The extended algorithm starts with the quadru-
ples (1, 0, cont(u), pp(u(x))) and (0, 1, cont(v), pp(v(x))) and manipulates them in such
a way as to preserve the conditions above, where u4(x) and v4(x) run through the
same sequence as u(x) and v(x) do in Algorithm E. If au4(x) = q(x)v4(x) + br(x),
we have av3(u1(x), u2(x)) − q(x)u3(v1(x), v2(x)) = (r1(x), r2(x)), where r1(x)u(x) +
r2(x)v(x) = bu3v3r(x), so the extended algorithm can preserve the desired relations.
If u(x) and v(x) are relatively prime, the extended algorithm eventually Ąnds r(x) of
degree zero, and we obtain U(x) = r2(x), V (x) = r1(x) as desired. (In practice we
would divide r1(x), r2(x), and bu3v3 by gcd(cont(r1), cont(r2)).) Conversely, if such
U(x) and V (x) exist, then u(x) and v(x) have no common prime divisors, since they
are primitive and have no common divisors of positive degree.

10. By successively factoring reducible polynomials into polynomials of smaller de-
gree, we must obtain a Ąnite factorization of any polynomial into irreducibles. The
factorization of the content is unique. To show that there is at most one factorization
of the primitive part, the key result is to prove that if u(x) is an irreducible factor of
v(x)w(x), but not a unit multiple of the irreducible polynomial v(x), then u(x) is a
factor of w(x). This can be proved by observing that u(x) is a factor of v(x)w(x)U(x) =
rw(x)− w(x)u(x)V (x) by the result of exercise 9, where r is a nonzero constant.

11. The only row names needed would be A1, A0, B4, B3, B2, B1, B0, C1, C0, D0. In
general, let uj+2(x) = 0; then the rows needed for the proof are An2−nj through A0,
Bn1−nj through B0, Cn2−nj through C0, Dn3−nj through D0, etc.

12. If nk = 0, the text’s proof of (24) shows that the value of the determinant is ±hk,

and this equals ±ℓnk−1

k /

1<j<k ℓ
δj−1(δj−1)

j . If the polynomials have a factor of positive

674 ANSWERS TO EXERCISES 4.6.1

degree, we can artiĄcially assume that the polynomial zero has degree zero and use the
same formula with ℓk = 0.

Notes: The value R(u, v) of Sylvester’s determinant is called the resultant of u
and v, and the quantity (−1)deg(u)(deg(u)−1)/2ℓ(u)−1R(u, u′) is called the discriminant

of u, where u′ is the derivative of u. If u(x) has the factored form a(x− α1) . . . (x− αm),
and if v(x) = b(x − β1) . . . (x − βn), the resultant R(u, v) is anv(α1) . . . v(αm) =
(−1)mnbmu(β1) . . . u(βn) = anbmm

i=1

n
j=1(αi − βj). It follows that the polynomials

of degree mn in y deĄned as the respective resultants with v(x) of u(y − x), u(y + x),
xmu(y/x), and u(yx) have as respective roots the sums αi + βj , differences αi − βj ,
products αiβj , and quotients αi/βj (when v(0) ̸= 0). This idea has been used by
R. G. K. Loos to construct algorithms for arithmetic on algebraic numbers [Computing,
Supplement 4 (1982), 173Ű187].

If we replace each row Ai in Sylvester’s matrix by

(b0Ai + b1Ai+1 + · · ·+ bn2−1−iAn2−1)− (a0Bi + a1Bi+1 + · · ·+ an2−1−iBn2−1),

and then delete rows Bn2−1 through B0 and the last n2 columns, we obtain an n1×n1

determinant for the resultant instead of the original (n1 +n2)× (n1 +n2) determinant.
In some cases the resultant can be evaluated efficiently by means of this determinant;
see CACM 12 (1969), 23Ű30, 302Ű303.

J. T. Schwartz has shown that it is possible to evaluate resultants and Sturm
sequences for polynomials of degree n with a total of O(n(logn)2) arithmetic operations
as n→∞. [See JACM 27 (1980), 701Ű717.]

13. One can show by induction on j that the values of (uj+1(x), gj+1, hj) are replaced
respectively by (ℓ1+pj w(x)uj(x), ℓ2+pjgj , ℓ

pjhj) for j ≥ 2, where pj = n1 + n2 − 2nj .
[In spite of this growth, the bound (26) remains valid.]

14. Let p be a prime of the domain, and let j, k be maximum such that pk\vn = ℓ(v),
pj\vn−1. Let P = pk. By Algorithm R we may write q(x) = a0 +Pa1x+ · · ·+P sasx

s,
where s = m−n ≥ 2. Let us look at the coefficients of xn+1, xn, and xn−1 in v(x)q(x),
namely Pa1vn + P 2a2vn−1 + · · · , a0vn + Pa1vn−1 + · · · , and a0vn−1 + Pa1vn−2 + · · · ,
each of which is a multiple of P 3. We conclude from the Ąrst that pj\a1, from the
second that pmin(k,2j)\a0, then from the third that P\a0. Hence P\r(x). [If m were
only n + 1, the best we could prove would be that p⌈k/2⌉ divides r(x); for example,
consider u(x) = x3 + 1, v(x) = 4x2 + 2x + 1, r(x) = 18. On the other hand, an
argument based on determinants of matrices like (21) and (22) can be used to show
that ℓ(r)deg(v)−deg(r)−1r(x) is always a multiple of ℓ(v)(deg(u)−deg(v))(deg(v)−deg(r)−1).]

15. Let cij = ai1aj1 + · · ·+ ainajn; we may assume that cii > 0 for all i. If cij ̸= 0 for
some i ̸= j, we can replace row i and column i by (ci1 − tcj1, . . . , cin − tcjn), where
t = cij/cjj ; this does not change the value of detC, and it decreases the value of the
upper bound we wish to prove, since cii is replaced by cii− c2

ij/cjj . Such replacements
can be done in a systematic way for increasing i and for j < i, until cij = 0 for all
i ̸= j. [The latter algorithm is called the GramŰSchmidt orthogonalization process: See
Crelle 94 (1883), 41Ű73; Math. Annalen 63 (1907), 442.] Then det(A)2 = det(AAT) =
c11 . . . cnn.

16. A univariate polynomial of degree d over any unique factorization domain has at
most d roots (see exercise 3.2.1.2Ű16(b)); so if n = 1 it is clear that |r(S1)| ≤ d1. If n > 1
we have f(x1, . . . , xn) = g0(x2, . . . , xn) + x1g1(x2, . . . , xn) + · · · + xd1

1 gd1 (x2, . . . , xn)
where gk is nonzero for at least one k. Given (x2, . . . , xn), it follows that f(x1, . . . , xn)
is zero for at most d1 choices of x1, unless gk(x2, . . . , xn) = 0; hence |r(S1, . . . , Sn)| ≤

4.6.1 ANSWERS TO EXERCISES 675

d1(|S2|−d2) . . . (|Sn|−dn)+|S1|(|S2| . . . |Sn|−(|S2|−d2) . . . (|Sn|−dn)). [R. A. DeMillo
and R. J. Lipton, Inf. Proc. Letters 7 (1978), 193Ű195.]

Notes: The stated upper bound is best possible, because equality occurs for the
polynomial f(x1, . . . , xn) =

{xj − sk | sk ∈ Sj , 1 ≤ k ≤ dj , 1 ≤ j ≤ n}. But
there is another sense in which the upper bound can be signiĄcantly improved: Let
f1(x1, . . . , xn) = f(x1, . . . , xn), and let fj+1(xj+1, . . . , xn) be any nonzero coefficient of
a power of xj in fj(xj , . . . , xn). Then we can let dj be the degree of xj in fj instead
of the (often much larger) degree of xj in f . For example, we could let d1 = 3 and
d2 = 1 in the polynomial x3

1x
9
2 − 3x2

1x2 + x100
2 + 5. This observation ensures that

d1 + · · · + dn ≤ d when each term of f has total degree ≤ d; hence the probability in
such cases is

|r(S, . . . , S)|
|S| ≤ 1−

1− d1

|S|

. . .

1− dn

|S|

≤ d1 + · · ·+ dn

|S| ≤ d

|S|

when all sets Sj are equal. If this probability is ≤ 1
2
, and if f(x1, . . . , xn) turns out to

be zero for 50 randomly selected vectors (x1, . . . , xn), then f(x1, . . . , xn) is identically
zero with probability at least 1− 2−50.

Moreover, if fj(xj , . . . , xn) has the special form x
ej
j fj+1(xj+1, . . . , xn) with ej > 0

we can take dj = 1, because xj must then be 0 when fj+1(xj+1, . . . , xn) ̸= 0. A sparse
polynomial with only m nonzero terms will therefore have dj ≤ 1 for at least n− lgm
values of j.

Applications of this inequality to gcd calculation and other operations on sparse
multivariate polynomials were introduced by R. Zippel, Lecture Notes in Comp. Sci. 72

(1979), 216Ű226. J. T. Schwartz [JACM 27 (1980), 701Ű717] gave further extensions,
including a way to avoid large numbers by means of modular arithmetic: If the coeffi-
cients of f are integers, if P is a set of prime numbers all ≥ q, and if |f(x1, . . . , xn)| ≤ L
whenever each xj ∈ Sj , then the number of solutions to f(x1, . . . , xn) ≡ 0 (modulo p)
for p ∈ P is at most

|S1| . . . |Sn||P | − (|S1| − d1) . . . (|Sn| − dn)(|P | − logq L).

17. (a) For convenience, let us describe the algorithm only for A = {a, b}. The hy-
potheses imply that deg(Q1U) = deg(Q2V) ≥ 0, deg(Q1) ≤ deg(Q2). If deg(Q1) = 0,
then Q1 is just a nonzero rational number, so we set Q = Q2/Q1. Otherwise we let
Q1 = aQ11 + bQ12 + r1, Q2 = aQ21 + bQ22 + r2, where r1 and r2 are rational numbers;
it follows that

Q1U −Q2V = a(Q11U −Q21V) + b(Q12U −Q22V) + r1U − r2V.

We must have either deg(Q11) = deg(Q1)−1 or deg(Q12) = deg(Q1)−1. In the former
case, deg(Q11U −Q21V) < deg(Q11U), by considering the terms of highest degree that
start with a; so we may replace Q1 by Q11, Q2 by Q21, and repeat the process. Similarly
in the latter case, we may replace (Q1, Q2) by (Q12, Q22) and repeat the process.

(b) We may assume that deg(U) ≥ deg(V). If deg(R) ≥ deg(V), note that Q1U−
Q2V = Q1R−(Q2 −Q1Q)V has degree less than deg(V) ≤ deg(Q1R), so we can repeat
the process with U replaced by R; we obtain R = Q′V + R′, U = (Q + Q′)V + R′,
where deg(R′) < deg(R), so eventually a solution will be obtained.

(c) The algorithm of (b) gives V1 = UV2 +R, deg(R) < deg(V2); by homogeneity,
R = 0 and U is homogeneous.

676 ANSWERS TO EXERCISES 4.6.1

(d) We may assume that deg(V) ≤ deg(U). If deg(V) = 0, set W ← U; otherwise
use (c) to Ąnd U = QV , so that QV V = V QV , (QV − V Q)V = 0. This implies that
QV = V Q, so we can set U ← V , V ← Q and repeat the process.

For further details about the subject of this exercise, see P. M. Cohn, Proc.
Cambridge Phil. Soc. 57 (1961), 18Ű30. The considerably more difficult problem of
characterizing all string polynomials such that UV = V U has been solved by G. M.
Bergman [Ph.D. thesis, Harvard University, 1967].

18. [P. M. Cohn, Transactions of the Amer. Math. Soc. 109 (1963), 332Ű356.]

S1. Set u1 ← U1, u2 ← U2, v1 ← V1, v2 ← V2, z1 ← z′2 ← w1 ← w′
2 ← 1,

z′1 ← z2 ← w′
1 ← w2 ← 0, n← 0.

S2. (At this point the identities given in the exercise hold, and u1v1 = u2v2;
v2 = 0 if and only if u1 = 0.) If v2 = 0, the algorithm terminates with
gcrd(V1, V2) = v1, lclm(V1, V2) = z′1V1 = −z′2V2. (Also, by symmetry, we have
gcld(U1, U2) = u2 and lcrm(U1, U2) = U1w1 = −U2w2.)

S3. Find Q and R such that v1 = Qv2 + R, where deg(R) < deg(v2). (We have
u1(Qv2 +R) = u2v2, so u1R = (u2 − u1Q)v2 = R′v2.)

S4. Set (w1, w2, w′
1, w′

2, z1, z2, z′1, z′2, u1, u2, v1, v2) ← (w′
1 − w1Q, w′

2 − w2Q,
w1, w2, z′1, z′2, z1−Qz′1, z2−Qz′2, u2−u1Q, u1, v2, v1−Qv2) and n← n+ 1.
Go back to S2.

This extension of Euclid’s algorithm includes most of the features we have seen
in previous extensions, all at the same time, so it provides new insight into the special
cases already considered. To prove that it is valid, note Ąrst that deg(v2) decreases in
step S4, so the algorithm certainly terminates. At the conclusion of the algorithm, v1 is
a common right divisor of V1 and V2, since w1v1 = (−1)nV1 and −w2v1 = (−1)nV2; also
if d is any common right divisor of V1 and V2, it is a right divisor of z1V1 + z2V2 = v1.
Hence v1 = gcrd(V1, V2). Also if m is any common left multiple of V1 and V2, we may
assume without loss of generality that m = U1V1 = U2V2, since the sequence of values
of Q does not depend on U1 and U2. Hence m = (−1)n(−u2z

′
1)V1 = (−1)n(u2z

′
2)V2 is

a multiple of z′1V1.
In practice, if we just want to calculate gcrd(V1, V2), we may suppress the compu-

tation of n, w1, w2, w′
1, w′

2, z1, z2, z′1, z′2. These additional quantities were added to
the algorithm primarily to make its validity more readily established.

Note: Nontrivial factorizations of string polynomials, such as the example given
with this exercise, can be found from matrix identities such as

a

1
1
0

b

1
1
0

c

1
1
0

0
1

1
−c

0
1

1
−b

0
1

1
−a

=

1 0
0 1

,

since these identities hold even when multiplication is not commutative. For example,

(abc+ a+ c)(1 + ba) = (ab+ 1)(cba+ a+ c).

(Compare this with the continuant polynomials of Section 4.5.3.)

19. [See Eugène Cahen, Théorie des Nombres 1 (Paris: 1914), 336Ű338.] If such an
algorithm exists, D is a gcrd by the argument in exercise 18. Let us regard A and
B as a single 2n × n matrix C whose Ąrst n rows are those of A, and whose second
n rows are those of B. Similarly, P and Q can be combined into a 2n × n matrix
R; X and Y can be combined into an n × 2n matrix Z. The desired conditions now
reduce to two equations C = RD, D = ZC. If we can Ąnd a 2n× 2n integer matrix U

4.6.1 ANSWERS TO EXERCISES 677

with determinant ±1 such that the last n rows of U−1C are all zero, then R = (Ąrst n
columns of U), D = (Ąrst n rows of U−1C), Z = (Ąrst n rows of U−1) solves the desired
conditions. Hence, for example, the following algorithm may be used (with m = 2n):

Algorithm T (Triangularization). Let C be an m × n matrix of integers. This
algorithm Ąnds m ×m integer matrices U and V such that UV = I and V C is upper

triangular. (This means that the entry in row i and column j of V C is zero if i > j.)

T1. [Initialize.] Set U ← V ← I, the m × m identity matrix; and set T ← C.
(Throughout the algorithm we will have T = V C and UV = I.)

T2. [Iterate on j.] Do step T3 for j = 1, 2, . . . , min(m,n), then terminate the
algorithm.

T3. [Zero out column j.] Perform the following actions zero or more times until
Tij is zero for all i > j: Let Tkj be a nonzero element of {Tij , T(i+1)j , . . . , Tmj}
having the smallest absolute value. Interchange rows k and j of T and of V ;
interchange columns k and j of U. Then subtract ⌊Tij/Tjj⌋ times row j from
row i, in matrices T and V , and add the same multiple of column i to column j
in matrix U, for j < i ≤ m.

For the stated example, the algorithm yields (1
3

2
4
) = (1

3
0
2
)(1

0
2

−1
), (4

2
3
1
) = (4

2
5
3
)(1

0
2

−1
),

(1
0

2
−1

) = (1
2

0
−2

)(1
3

2
4
) + (0

1
0
0
)(4

2
3
1
). (Actually any matrix with determinant ±1 would

be a gcrd in this particular case.)

20. See V. Y. Pan, Information and Computation 167 (2001), 71Ű85.

21. To get an upper bound, we may assume that Algorithm R is used only when
m− n ≤ 1; furthermore, the coefficients are bounded by (26) with m = n. [The stated
formula is, in fact, the execution time observed in practice, not merely an upper bound.
For more detailed information see G. E. Collins, Proc. 1968 Summer Inst. on Symbolic
Mathematical Computation, edited by Robert G. Tobey (IBM Federal Systems Center:
June 1969), 195Ű231.]

22. A sequence of signs cannot contain two consecutive zeros, since uk+1(x) is a
nonzero constant in (29). Moreover we cannot have “+, 0, +Ť or “−, 0, −Ť as
subsequences. The formula V (u, a) − V (u, b) is clearly valid when b = a, so we must
only verify it as b increases. The polynomials uj(x) have Ąnitely many roots, and
V (u, b) changes only when b encounters or passes such roots. Let x be a root of some
(possibly several) uj . When b increases from x− ϵ to x, the sign sequence near j goes
from “+, ±, −Ť to “+, 0, −Ť or from “−, ±, +Ť to “−, 0, +Ť if j > 0; and from “+,
−Ť to “0, −Ť or from “−, +Ť to “0, +Ť if j = 0. (Since u′(x) is the derivative, u′(x) is
negative when u(x) is decreasing.) Thus the net change in V is −δj0. When b increases
from x to x+ ϵ, a similar argument shows that V remains unchanged.

[L. E. Heindel, JACM 18 (1971), 533Ű548, has applied these ideas to construct
algorithms for isolating the real zeros of a given polynomial u(x), in time bounded by
a polynomial in deg(u) and log N, where all coefficients yj are integers with |uj | ≤ N,
and all operations are guaranteed to be exact.]

23. If v has n−1 real roots occurring between the n real roots of u, then (by considering
sign changes) u(x) mod v(x) has n− 2 real roots lying between the n− 1 roots of v.

24. First show that hj = g
δj−1

j g
δj−2(1−δj−1)

j−1 . . . g
δ1(1−δ2)...(1−δj−1)

2 . Then show that
the exponent of g2 on the left-hand side of (18) has the form δ2 + δ1x, where x =

678 ANSWERS TO EXERCISES 4.6.1

δ2 + · · · + δj−1 + 1 − δ2(δ3 + · · · + δj−1 + 1) − δ3(1 − δ2)(δ4 + · · · + δj−1 + 1) − · · · −
δj−1(1− δ2) . . . (1− δj−2)(1). But x = 1, since it is seen to be independent of δj−1

and we can set δj−1 = 0, etc. A similar derivation works for g3, g4, . . . , and a simpler
derivation works for (23).

25. Each coefficient of uj(x) can be expressed as a determinant in which one column
contains only ℓ(u), ℓ(v), and zeros. To use this fact, modify Algorithm C as follows:
In step C1, set g ← gcd(ℓ(u), ℓ(v)) and h ← 0. In step C3, if h = 0, set u(x) ← v(x),
v(x) ← r(x)/g, h ← ℓ(u)δ/g, g ← ℓ(u), and return to C2; otherwise proceed as in the
unmodiĄed algorithm. The effect of this new initialization is simply to replace uj(x)
by uj(x)/gcd(ℓ(u), ℓ(v)) for all j ≥ 3; thus, ℓ2j−4 will become ℓ2j−5 in (28).

26. In fact, even more is true. Note that the algorithm in exercise 3 computes ±pn(x)
and∓qn(x) for n ≥ −1. Let en = deg(qn) and dn = deg(pnu−qnv); we observed in exer-
cise 3 that dn−1+en = deg(u) for n ≥ 0. We shall prove that the conditions deg(q) < en

and deg(pu−qv) < dn−2 imply that p(x) = c(x)pn−1(x) and q(x) = c(x)qn−1(x): Given
such p and q, we can Ąnd c(x) and d(x) such that p(x) = c(x)pn−1(x) + d(x)pn(x) and
q(x) = c(x)qn−1(x) + d(x)qn(x), since pn−1(x)qn(x) − pn(x)qn−1(x) = ±1. Hence
pu− qv = c(pn−1u− qn−1v) +d(pnu− qnv). If d(x) ̸= 0, we must have deg(c) + en−1 =
deg(d) + en, since deg(q) < deg(qn); it follows that deg(c) + dn−1 > deg(d) + dn, since
this is surely true if dn = −∞ and otherwise we have dn−1+en = dn+en+1 > dn+en−1.
Therefore deg(pu − qv) = deg(c) + dn−1. But we have assumed that deg(pu − qv) <
dn−2 = dn−1 + en − en−1; so deg(c) < en − en−1 and deg(d) < 0, a contradiction.

[This result is essentially due to L. Kronecker, Monatsberichte Königl. preuß. Akad.
Wiss. (Berlin: 1881), 535Ű600. It implies the following theorem: “Let u(x) and v(x)
be relatively prime polynomials over a Ąeld and let d ≤ deg(v) < deg(u). If q(x)
is a polynomial of least degree such that there exist polynomials p(x) and r(x) with
p(x)u(x)−q(x)v(x) = r(x) and deg(r) = d, then p(x)/q(x) = pn(x)/qn(x) for some n.Ť
For if dn−2 > d ≥ dn−1, there are solutions q(x) with deg(q) = en−1 + d− dn−1 < en,
and we have proved that all solutions of such low degree have the stated property.]

27. The ideas of answer 4.3.1Ű40 apply, but in simpler fashion because polynomial
arithmetic is carry-free; right-to-left division uses 4.7Ű(3). Alternatively, with large
values of n, we could divide Fourier transforms of the coefficients, using exercise 4.6.4Ű
57 in reverse.

SECTION 4.6.2

1. For any choice of k ≤ n distinct roots, there are pn−k monic polynomials having
those roots at least once. Therefore by the principle of inclusion and exclusion (Section
1.3.3), the number of polynomials without linear factors is

k≤n

p
k

pn−k(−1)k, and it

is alternately ≤ and ≥ the partial sums of this series. The stated bounds correspond
to k ≤ 2 and k ≤ 3. When n ≥ p the probability of at least one linear factor is
1− (1− 1/p)p. The average number of linear factors is p times the average number of
times x divides u(x), so it is 1 + p−1 + · · ·+ p1−n = p

p−1
(1− p−n).

[In a similar way, we Ąnd that there is an irreducible factor of degree 2 with
probability

k≤n/2

p(p−1)/2

k

(−1)kp−2k; this probability lies between 3

8
− 1

4
p−1 and

1
2
− 1

2
p−1 when n ≥ 2 and it approaches 1− e−1/2(1 + 1

2
p−1) +O(p−2) as n→∞. The

average number of such factors is 1
2
− 1

2
p−2⌊n/2⌋.]

Note: Let u(x) be a Ąxed polynomial with integer coefficients. Peter Weinberger
has observed that, if u(x) is irreducible over the integers, the average number of linear

4.6.2 ANSWERS TO EXERCISES 679

factors of u(x) modulo p approaches 1 as p → ∞, because the Galois group of u(x)
is transitive and the average number of 1-cycles in a randomly chosen element of any
transitive permutation group is 1. Thus, the average number of linear factors of u(x)
modulo p is the number of irreducible factors of u(x) over the integers, as p → ∞.
[See the remarks in the answer to exercise 37, and Proc. Symp. Pure Math. 24 (Amer.
Math. Soc., 1972), 321Ű332.]

2. (a) We know that u(x) has a representation as a product of irreducible polynomi-
als; and the leading coefficients of these polynomials must be units, since they divide the
leading coefficient of u(x). Therefore we may assume that u(x) has a representation as
a product of monic irreducible polynomials p1(x)e1 . . . pr(x)er , where p1(x), . . . , pr(x)
are distinct. This representation is unique, except for the order of the factors, so the
conditions on u(x), v(x), w(x) are satisĄed if and only if

v(x) = p1(x)⌊e1/2⌋ . . . pr(x)⌊er/2⌋, w(x) = p1(x)e1 mod 2 . . . pr(x)er mod 2.

(b) The generating function for the number of monic polynomials of degree n is
1+pz+p2z2+· · · = 1/(1−pz). The generating function for the number of polynomials of
degree n having the form v(x)2, where v(x) is monic, is 1+pz2+p2z4+· · · = 1/(1−pz2).
If the generating function for the number of monic squarefree polynomials of degree
n is g(z), then we must have 1/(1 − pz) = g(z)/(1 − pz2) by part (a). Hence g(z) =
(1−pz2)/(1−pz) = 1 +pz+ (p2−p)z2 + (p3−p2)z3 + · · · . The answer is pn−pn−1 for
n ≥ 2. [Curiously, this proves that u(x) ⊥ u′(x) with probability 1−1/p; it is the same
as the probability that u(x) ⊥ v(x) when u(x) and v(x) are independent, by exercise
4.6.1Ű5.]

Note: By a similar argument, every u(x) has a unique representation v(x)w(x)r,
where v(x) is not divisible by the rth power of any irreducible; the number of such
monic polynomials v(x) is pn − pn−r+1 for n ≥ r.

3. Let u(x) = u1(x) . . . ur(x). There is at most one such v(x), by the argument of
Theorem 4.3.2C. There is at least one if, for each j, we can solve the system with
wj(x) = 1 and wk(x) = 0 for k ̸= j. A solution to the latter is v1(x)

k ̸=j uk(x), where

v1(x) and v2(x) can be found satisfying

v1(x)

k ̸=j uk(x) + v2(x)uj(x) = 1, deg(v1) < deg(uj),

by the extension of Euclid’s algorithm (exercise 4.6.1Ű3).
Over the integers we cannot make v(x) ≡ 1 (modulo x) and v(x) ≡ 0 (modulo x−2)

when deg(v) < 2.

4. By unique factorization, we have (1 − pz)−1 =

n≥1(1 − zn)−anp ; after taking
logarithms, this can be rewritten

ln(1/(1− pz)) =

k,j≥1 akpz
kj/j =

j≥1 Gp(zj)/j.

The stated identity now yields the answer Gp(z) =

m≥1 µ(m)m−1 ln(1/(1 − pzm)),
from which we obtain anp =

d\nµ(n/d)pd/n; thus limp→∞ anp/p

n = 1/n.

To prove the stated identity, note that

n,j≥1 µ(n)g(znj)n−tj−t =

m≥1 g(zm)m−t
n\m µ(n) = g(z).

[The numbers anp were Ąrst found by Gauss; see his Werke 2, 219Ű222.]

680 ANSWERS TO EXERCISES 4.6.2

5. Let anpr be the number of monic polynomials of degree n modulo p having exactly
r irreducible factors. Then Gp(z, w) =

n,r≥0 anprz

nwr = exp(

k≥1 Gp(zk)wk/k) =
exp(

m≥1 amw ln(1/(1− pz−m))); see Eq. 1.2.9Ű(38). We have

n≥0 Anpz

n = dGp(z/p, w)/dw |w=1 = (

k≥1 Gp(zk/pk))Gp(z/p, 1)

= (

n≥1 ln(1/(1− p1−nzn))φ(n)/n)/(1− z),

hence Anp = Hn +1/2p+O(p−2) for n ≥ 2. The average value of 2r is [zn]Gp(z/p, 2) =
n+ 1 + (n− 1)/p+O(np−2). (The variance is of order n3, however: Set w = 4.)

6. For 0 ≤ s < p, x−s is a factor of xp−x (modulo p) by Fermat’s theorem. So xp−x
is a multiple of lcm(x − 0, x − 1, . . . , x − (p − 1)) = xp. [Note: Therefore the Stirling
numbers

p
k

are multiples of p except when k = 1 or k = p. Equation 1.2.6Ű(45) shows

that the same statement is valid for Stirling numbers

p
k

of the other kind.]

7. The factors on the right are relatively prime, and each is a divisor of u(x), so their
product divides u(x). On the other hand, u(x) divides

v(x)p − v(x) =

0≤s<p(v(x)− s),

so it divides the right-hand side by exercise 4.5.2Ű2.

8. The vector (18) is the only output whose kth component is nonzero.

9. For example, start with x ← 1 and y ← 1; then repeatedly set R[x] ← y,
x← 2xmod 101, y ← 51y mod 101, one hundred times.

10. The matrix Q − I below has a null space generated by the two vectors v[1] =
(1, 0, 0, 0, 0, 0, 0, 0), v[2] = (0, 1, 1, 0, 0, 1, 1, 1). The factorization is

(x6 + x5 + x4 + x+ 1)(x2 + x+ 1).
p = 2

0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0
1 0 1 1 1 0 0 0
0 0 1 0 1 1 0 1
1 1 0 1 1 1 0 1

p = 5

0 0 0 0 0 0 0
0 4 0 0 0 1 0
0 2 2 0 4 3 4
0 1 4 4 4 2 1
2 2 2 3 4 3 2
0 0 4 0 1 3 2
3 0 2 1 4 2 1

11. Removing the trivial factor x, the matrix Q− I above has a null space generated
by (1, 0, 0, 0, 0, 0, 0) and (0, 3, 1, 4, 1, 2, 1). The factorization is

x(x2 + 3x+ 4)(x5 + 2x4 + x3 + 4x2 + x+ 3).

12. If p = 2, (x + 1)4 = x4 + 1. If p = 8k + 1, Q − I is the zero matrix, so there are
four factors. For other values of p we have

Q− I =

p = 8k + 3

0 0 0 0
0 −1 0 1
0 0 −2 0
0 1 0 −1

p = 8k + 5

0 0 0 0
0 −2 0 0
0 0 0 0
0 0 0 −2

p = 8k + 7

0 0 0 0
0 −1 0 −1
0 0 −2 0
0 −1 0 −1

 .

4.6.2 ANSWERS TO EXERCISES 681

Here Q−I has rank 2, so there are 4−2 = 2 factors. [But it is easy to prove that x4 +1
is irreducible over the integers, since it has no linear factors and the coefficient of x in
any factor of degree two must be less than or equal to 2 in absolute value by exercise 20.
(See also exercise 32, since x4 + 1 = Ψ8(x).) For all k ≥ 2, H. P. F. Swinnerton-Dyer
has exhibited polynomials of degree 2k that are irreducible over the integers, but they
split completely into linear and quadratic factors modulo every prime. For degree 8, his
example is x8−16x6 +88x4 +192x2 +144, having roots ±

√
2±
√

3±i [see Math. Comp.
24 (1970), 733Ű734]. According to the theorem of Frobenius cited in exercise 37, any
irreducible polynomial of degree n whose Galois group contains no n-cycles will have
factors modulo almost all primes.]

13. Case p = 8k+1: (x+ (1 +
√
−1)/

√
2)(x+ (1−

√
−1)/

√
2)(x− (1 +

√
−1)/

√
2)×

(x− (1−
√
−1)/

√
2). Case p = 8k + 3: (x2 +

√
−2x− 1)(x2 −

√
−2x− 1). Case

p = 8k+ 5: (x2 +
√
−1)(x2 −

√
−1). Case p = 8k+ 7: (x2 +

√
2x+ 1)(x2 −

√
2x+ 1).

The factorization for p = 8k + 7 also holds over the Ąeld of real numbers.

14. Algorithm N can be adapted to Ąnd the coefficients of w: Let A be the (r+ 1)×n
matrix whose kth row contains the coefficients of v(x)k mod u(x), for 0 ≤ k ≤ r. Apply
the method of Algorithm N until the Ąrst dependence is found in step N3; then the
algorithm terminates with w(x) = v0 + v1x + · · · + vkx

k, where vj is deĄned in (18).
At this point 2 ≤ k ≤ r; it is not necessary to know r in advance, since we can check
for dependency after generating each row of A.

15. We may assume that u ̸= 0 and that p is odd. Berlekamp’s method applied to
the polynomial x2 − u tells us that a square root exists if and only if Q − I = O if
and only if u(p−1)/2 mod p = 1; but we already knew that. The method of Cantor
and Zassenhaus suggests that gcd(x2 − u, (sx+ t)(p−1)/2 − 1) will often be a nontrivial
factor; and indeed one can show that (p− 1)/2 + (0, 1, or 2) values of s will succeed. In
practice, sequential choices seem to work just as well as random choices, so we obtain the
following algorithm: “Evaluate gcd(x2−u, x(p−1)/2−1), gcd(x2−u, (x+1)(p−1)/2−1),
gcd(x2 − u, (x + 2)(p−1)/2 − 1), . . . , until Ąnding the Ąrst case where the gcd has the
form x + v. Then

√
u = ±v.Ť The expected running time (with random s) will be

O(log p)3 for large p.
A closer look shows that the Ąrst step of this algorithm succeeds if and only if

pmod 4 = 3. For if p = 2q + 1 where q is odd, we have xq mod (x2 − u) = u(q−1)/2x,
and gcd(x2−u, xq−1) ≡ x−u(q+1)/2 since uq ≡ 1 (modulo p). In fact, we see that the
formula

√
u = ±u(p+1)/4 mod p gives the square root directly whenever pmod 4 = 3.

But when pmod 4 = 1, we will have x(p−1)/2 mod (x2−u) = u(p−1)/4, and the gcd
will be 1. The algorithm above should therefore be used only when pmod 4 = 1, and
the Ąrst gcd should then be omitted.

A direct method that works nicely when pmod 8 = 5 was discovered in the 1990s
by A. O. L. Atkin, based on the fact that 2(p−1)/2 ≡ −1 in that case: Set v ←
(2u)(p−5)/8 mod p and i ← (2uv2) mod p; then

√
u = ±(uv(i − 1)) mod p, and we also

have
√
−1 = ±i. [Computational Perspectives on Number Theory (Cambridge, Mass.:

International Press, 1998), 1Ű11; see also H. C. Pocklington, Proc. Camb. Phil. Soc.
19 (1917), 57Ű59.]

When pmod 8 = 1, a trial-and-error method seems to be necessary. The following
procedure due to Daniel Shanks often outperforms all other known algorithms in such
cases: Suppose p = 2eq + 1 where e ≥ 3.

S1. Choose x at random in the range 1 < x < p, and set z = xq mod p. If
z2e−1 mod p = 1, repeat this step. (The average number of repetitions will

682 ANSWERS TO EXERCISES 4.6.2

be less than 2. Random numbers will not be needed in steps S2 and S3. In
practice we can save time by trying small odd prime numbers x, and stopping
with z = xq mod p when p(x−1)/2 mod x = x− 1; see exercise 1.2.4Ű47.)

S2. Set y ← z, r ← e, x← u(q−1)/2 mod p, v ← uxmod p, w ← ux2 mod p.

S3. If w = 1, stop; v is the answer. Otherwise Ąnd the smallest k such that
w2k mod p is equal to 1. If k = r, stop (there is no answer); otherwise set
(y, r, v, w)← (y2r−k

, k, vy2r−k−1
, wy2r−k) and repeat step S3.

The validity of this algorithm follows from the invariant congruences uw ≡ v2,
y2r−1 ≡ −1, w2r−1 ≡ 1 (modulo p). When w ̸= 1, step S3 performs r+2 multiplications
mod p; hence the maximum number of multiplications in that step is less than

e+3

2

,

and the average number is less than 1
2

e+4

2

. Thus the running time is O(log p)3 for

steps S1 and S2 plus order e2(log p)2 for step S3, compared to just O(log p)3 for the
randomized method based on (21). But the constant factors in Shanks’s method are
small. [Congressus Numerantium 7(1972), 58Ű62. A related but less efficient method
was published by A. Tonelli, Göttinger Nachrichten (1891), 344Ű346. The Ąrst person to
discover a square root algorithm with expected running time O(log p)3 was M. Cipolla,
Rendiconti Accad. Sci. Fis. Mat. Napoli 9 (1903), 154Ű163.]

16. (a) Substitute polynomials modulo p for integers, in the proof for n = 1. (b) The
proof for n = 1 carries over to any Ąnite Ąeld. (c) Since x = ξk for some k, xpn = x
in the Ąeld deĄned by f(x). Furthermore, the elements y that satisfy the equation
ypm = y in the Ąeld are closed under addition, and closed under multiplication; so if
xpm = x, then ξ (being a polynomial in x with integer coefficients) satisĄes ξpm = ξ.

17. If ξ is a primitive root, each nonzero element is some power of ξ. Hence the order
must be a divisor of 132 − 1 = 23 · 3 · 7, and φ(f) elements have order f .

f φ(f) f φ(f) f φ(f) f φ(f)

1 1 3 2 7 6 21 12
2 1 6 2 14 6 42 12
4 2 12 4 28 12 84 24
8 4 24 8 56 24 168 48

18. (a) pp(p1(unx)) . . . pp(pr(unx)), by Gauss’s lemma. For example, let

u(x) = 6x3 − 3x2 + 2x− 1, v(x) = x3 − 3x2 + 12x− 36 = (x2 + 12)(x− 3);

then pp(36x2 + 12) = 3x2 + 1, pp(6x − 3) = 2x − 1. (This is a modern version of a
fourteenth-century trick used for many years to help solve algebraic equations.)

(b) Let pp(w(unx)) = w̄mx
m + · · · + w̄0 = w(unx)/c, where c is the content of

w(unx) as a polynomial in x. Then w(x) = (cw̄/um
n)xm + · · ·+ cw̄0, hence cw̄m = um

n ;
since w̄m is a divisor of un, c is a multiple of um−1

n .

19. If u(x) = v(x)w(x) with deg(v) deg(w) ≥ 1, then unx
n ≡ v(x)w(x) (modulo p).

By unique factorization modulo p, all but the leading coefficients of v and w are
multiples of p, and p2 divides v0w0 = u0.

20. (a)

(αuj − uj−1)(ᾱūj − ūj−1) =

(uj − ᾱuj−1)(ūj − αūj−1). (b) We may
assume that u0 ̸= 0. Let m(u) =

n
j=1 min(1, |αj |) = |u0|/M(u). Whenever |αj | < 1,

change the factor x − αj to ᾱjx − 1 in u(x); this doesn’t affect ∥u∥, but it changes
|u0| to M(u). (c) uj = ±un

αi1 . . . αin−j , an elementary symmetric function, hence

|uj | ≤ |un|

βi1 . . . βin−j where βi = max(1, |αi|). We complete the proof by showing

that when x1 ≥ 1, . . . , xn ≥ 1, and x1 . . . xn = M, the elementary symmetric function

4.6.2 ANSWERS TO EXERCISES 683

σnk =

xi1 . . . xik is ≤

n−1
k−1

M +

n−1

k

, the value assumed when x1 = · · · = xn−1 =

1 and xn = M. (For if x1 ≤ · · · ≤ xn < M, the transformation xn ← xn−1xn,
xn−1 ← 1 increases σnk by σ(n−2)(k−1)(xn−1)(xn−1−1), which is positive.) (d) |vj | ≤

m−1
j

M(v)+

m−1
j−1

|vm| ≤

m−1

j

M(u)+

m−1
j−1

|un| sinceM(v) ≤M(u) and |vm| ≤ |un|.

[M. Mignotte, Math. Comp. 28 (1974), 1153Ű1157.]
Notes: This solution shows that

m−1

j

M(u)+

m−1
j−1

|un| is an upper bound, so we

would like to have a better estimate of M(u). Several methods are known [W. Specht,
Math. Zeit. 53 (1950), 357Ű363; Cerlienco, Mignotte, and Piras, J. Symbolic Comp.
4 (1987), 21Ű33]. The simplest and most rapidly convergent is perhaps the following
procedure [see C. H. Graeffe, Auflösung der höheren numerischen Gleichungen (Zürich:
1837)]: Assuming that u(x) = un(x − α1) . . . (x − αn), let û(x) = u(

√
x)u(−√x) =

(−1)nu2
n(x−α2

1) . . . (x−α2
n). Then M(u)2 = M(û) ≤ ∥û∥. Hence we may set c← ∥u∥,

v ← u/c, t ← 0, and then repeatedly set t ← t + 1, c ← ∥v̂∥1/2t

c, v ← v̂/∥v̂∥.
The invariant relations M(u) = cM(v)1/2t and ∥v∥ = 1 guarantee that M(u) ≤ c
at each step of the iteration. Notice that when v(x) = v0(x2) + xv1(x2), we have
v̂(x) = v0(x)2 − xv1(x)2. It can be shown that if each |αj | is ≤ ρ or ≥ 1/ρ, then
M(u) = ∥u∥(1 +O(ρ)); hence c will be M(u)(1 +O(ρ2t)) after t steps.

For example, if u(x) is the polynomial of (22), the successive values of c for t = 0,
1, 2, . . . turn out to be 10.63, 12.42, 6.85, 6.64, 6.65, 6.6228, 6.62246, 6.62246,
In this example ρ ≈ .90982. Notice that convergence is not monotonic. Eventually
v(x) will converge to the monomial xm, where m is the number of roots with |αj | < 1,
assuming that |αj | ≠ 1 for all j; in general, if there are k roots with |αj | = 1, the
coefficients of xm and xm+k will not approach zero, while the coefficients of higher and
lower powers of x will.

A famous formula due to Jensen [Acta Math. 22 (1899), 359Ű364] proves that M(u)
is the geometric mean of |u(x)| on the unit circle, namely exp(1

2π

 2π

0
ln|f(eiθ)| dθ).

Exercise 21(a) will show, similarly, that ∥u∥ is the root-mean-square of |u(x)| on the
unit circle. The inequality M(u) ≤ ∥u∥, which goes back to E. Landau [Bull. Soc. Math.
de France 33 (1905), 251Ű261], can therefore be understood as a relation between mean
values. The number M(u) is often called the Mahler measure of a polynomial, because
Kurt Mahler used it in Mathematika 7 (1960), 98Ű100. Incidentally, Jensen also proved
that 1

2π

 2π

0
eimθ ln|f(eiθ)| dθ = −n

j=1 α
m
j /(2mmax(|αj |, 1)2m) when m > 0.

21. (a) The coefficient of apbqcrds is zero on both sides unless p + s = q + r. And
when this condition holds, the coefficient on the right is (p + s)!; on the left it is

j

p

j

s

r− j

q! r! =

p + s

r

q! r! = (q + r)! .

[B. Beauzamy and J. Dégot, Trans. Amer. Math. Soc. 345 (1995), 2607Ű2619; D. Zeil-
berger, AMM 101 (1994), 894Ű896.]

(b) Let ap = vp, bq = wq, cr = vr, ds = ws. Then the right side of (a) is B(u),
and the left side is a sum of nonnegative terms for each j and k. If we consider only
the terms where Σ j is the degree of v, the terms vp/(p− j)! vanish except when p = j.
Those terms therefore reduce to

j,k

1
j! k!
|vjwk j! k!|2 = B(v)B(w) .

[B. Beauzamy, E. Bombieri, P. EnĆo, and H. Montgomery, J. Number Theory 36

(1990), 219Ű245.]

684 ANSWERS TO EXERCISES 4.6.2

(c) Adding a new variable, if needed to make everything homogeneous, does not
change the relation u = vw. Thus if v and w have total degrees m and n, respectively,
we have (m+ n)! [u]2 ≥ m! [v]2 n! [w]2; in other words, [v][w] ≤

m+n

m

1/2 [u].

Incidentally, one nice way to think of the Bombieri norm is to imagine that the
variables are noncommutative. For example, instead of 3xy3 − z2w2 we could write
3
4
xyyy+ 3

4
yxyy+ 3

4
yyxy+ 3

4
yyyx− 1

6
zzww− 1

6
zwzw− 1

6
zwwz− 1

6
wzzw− 1

6
wzwz− 1

6
wwzz.

Then the Bombieri norm is the ∥ ∥ norm on the new coefficients. Another interesting
formula, when u is homogeneous of degree n, is

[u]2 =
1

n!πn

x

y

e−x2
1−···−x2

t−y2
1−···−y2

t |u(x + iy)|2 dx dy .

(d) The one-variable case corresponds to t = 2. Suppose u = vw where v is
homogeneous of degree m in t variables. Then |vk|2 k!/m! ≤ [v]2 for all k, and k! ≥
(m/t)!t since logΓ (x) is convex for x > 0; therefore |vk|2 ≤ m! [v]2/(m/t)!t. We can
assume that m! [v]2/(m/t)!t ≤ m′! [w]2/(m′/t)!t, where m′ = n−m is the degree of w.
Then

|vk|2 ≤ m! [v]2/(m/t)!t ≤ m!1/2m′!1/2 [v][w]/(m/t)!t/2(m′/t)!t/2 ≤ n!1/2 [u]/(n/2t)!t .

(A better bound is obtained if we maximize the next-to-last expression over all de-
grees m for which a factor has not been ruled out.) The quantity n!1/4/(n/2t)!t/2 is
ct(2t)n/4n−(2t−1)/8(1 +O(1

n
)), where ct = 21/8π−(2t−1)/8tt/4 is ≈ 1.004 when t = 2.

Notice that we have not demonstrated the existence of an irreducible factor with
such small coefficients; further splitting may be needed. See exercise 41.

(e) [u]2 =

k

n
k

2/

2n
2k

=

k

2k
k

2n−2k

n−k

/

2n
n

= 4n/

2n
n

=
√
πn + O(n−1/2). If

v(x) = (x − 1)n and w(x) = (x + 1)n, we have [v]2 = [w]2 = 2n; hence the inequality
of (c) is an equality in this case.

(f) Let u and v be homogeneous of degree m and n. Then

[uv]2 ≤

k

(

j
|ujvk−j|)2

m+n

k

 ≤

k

j

|uj|2
m
j

 |vk−j|2
n

k−j

j

m
j

n

k−j

m+n
k

= [u]2[v]2

by Cauchy’s inequality. [B. Beauzamy, J. Symbolic Comp. 13 (1992), 465Ű472, Propo-
sition 5.]

(g) By exercise 20,

n
⌊n/2⌋

−1M(u)2 ≤

n
⌊n/2⌋

−1∥u∥2 =

n
⌊n/2⌋

−1
j |uj |2 ≤

[u]2 =

j

n
j

−1|uj |2 ≤

j

n
j

M(u)2 = 2nM(u)2. The upper inequality also follows

from (f), for if u(x) = un

n
j=1(x − αj) we have [u]2 ≤ |un|2

n
j=1[x − αj]2 =

|un|2
n

j=1(1 + |αj |2) ≤ |un|2
n

j=1(2 max(1, |αj |)2) = 2nM(u)2.

22. More generally, assume that u(x) ≡ v(x)w(x) (modulo q), a(x)v(x)+b(x)w(x) ≡ 1
(modulo p), c · ℓ(v) ≡ 1 (modulo r), deg(a) < deg(w), deg(b) < deg(v), and deg(u) =
deg(v) + deg(w), where r = gcd(p, q) and p, q needn’t be prime. We shall construct
polynomials V (x) ≡ v(x) and W (x) ≡ w(x) (modulo q) such that u(x) ≡ V (x)W (x)
(modulo qr), ℓ(V) = ℓ(v), deg(V) = deg(v), deg(W) = deg(w); furthermore, if r is
prime, the results will be unique modulo qr.

The problem asks us to Ąnd v̄(x) and w̄(x) with V (x) = v(x) + qv̄(x), W (x) =
w(x) + qw̄(x), deg(v̄) < deg(v), deg(w̄) ≤ deg(w); and the other condition

(v(x) + qv̄(x))(w(x) + qw̄(x)) ≡ u(x) (modulo qr)

4.6.2 ANSWERS TO EXERCISES 685

is equivalent to w̄(x)v(x) + v̄(x)w(x) ≡ f(x) (modulo r), where f(x) satisĄes u(x) ≡
v(x)w(x) + qf(x) (modulo qr). We have

(a(x)f(x) + t(x)w(x))v(x) + (b(x)f(x)− t(x)v(x))w(x) ≡ f(x) (modulo r)

for all t(x). Since ℓ(v) has an inverse modulo r, we can Ąnd a quotient t(x) by
Algorithm 4.6.1D such that deg(bf−tv) < deg(v); for this t(x), deg(af+tw) ≤ deg(w),
since we have deg(f) ≤ deg(u) = deg(v) + deg(w). Thus the desired solution is
v̄(x) = b(x)f(x) − t(x)v(x) = b(x)f(x) mod v(x), w̄(x) = a(x)f(x) + t(x)w(x). If
(¯̄v(x), ¯̄w(x)) is another solution, we have (w̄(x) − ¯̄w(x))v(x) ≡ (¯̄v(x) − v̄(x))w(x)
(modulo r). Thus if r is prime, v(x) must divide ¯̄v(x)− v̄(x); but deg(¯̄v− v̄) < deg(v),
so ¯̄v(x) = v̄(x) and ¯̄w(x) = w̄(x).

If p divides q, so that r = p, our choices of V (x) and W (x) also satisfy a(x)V (x)+
b(x)W (x) ≡ 1 (modulo p), as required by Hensel’s Lemma.

For p = 2, the factorization proceeds as follows (writing only the coefficients,
and using bars for negative digits): Exercise 10 says that v1(x) = (1 1 1), w1(x) =
(1 1 1 0 0 1 1) in one-bit two’s complement notation. Euclid’s extended algorithm yields
a(x) = (1 0 0 0 0 1), b(x) = (1 0). The factor v(x) = x2 + c1x + c0 must have |c1| ≤
⌊1 +

√
113⌋ = 11, |c0| ≤ 10, by exercise 20. Three applications of Hensel’s lemma

yield v4(x) = (1 3 1), w4(x) = (1 3 5 4 4 3 5). Thus c1 ≡ 3 and c0 ≡ −1 (modulo 16);
the only possible quadratic factor of u(x) is x2 + 3x − 1. Division fails, so u(x) is
irreducible. (Since we have now proved the irreducibility of this beloved polynomial by
four separate methods, it is unlikely that it has any factors.)

Hans Zassenhaus has observed that we can often speed up such calculations by
increasing p as well as q: When r = p in the notation above, we can Ąnd A(x), B(x) such
that A(x)V (x) +B(x)W (x) ≡ 1 (modulo p2), namely by taking A(x) = a(x) + pā(x),
B(x) = b(x) + pb̄(x), where ā(x)V (x) + b̄(x)W (x) ≡ g(x) (modulo p), a(x)V (x) +
b(x)W (x) ≡ 1−pg(x) (modulo p2). We can also Ąnd C with ℓ(V)C ≡ 1 (modulo p2). In
this way we can lift a squarefree factorization u(x) ≡ v(x)w(x) (modulo p) to its unique
extensions modulo p2, p4, p8, p16, etc. However, this “acceleratedŤ procedure reaches a
point of diminishing returns in practice, as soon as we get to double-precision moduli,
since the time for multiplying multiprecision numbers in practical ranges outweighs the
advantage of squaring the modulus directly. From a computational standpoint it seems
best to work with the successive moduli p, p2, p4, p8, . . . , pE, pE+e, pE+2e, pE+3e, . . . ,
where E is the smallest power of 2 with pE greater than single precision and e is the
largest integer such that pe has single precision.

“Hensel’s LemmaŤ was actually invented by C. F. Gauss about 1799, in the draft
of an unĄnished book called Analysis Residuorum, §373Ű374. Gauss incorporated
most of the material from that manuscript into his Disquisitiones Arithmeticæ (1801),
but his ideas about polynomial factorization were not published until after his death
[see his Werke 2 (Göttingen, 1863), 238]. Meanwhile T. Schönemann had indepen-
dently discovered the lemma and proved uniqueness [Crelle 32 (1846), 93Ű105, §59].
Hensel’s name was attached to the method because it is basic to the theory of p-
adic numbers (see exercise 4.1Ű31). The lemma can be generalized in several ways.
First, if there are more factors, say u(x) ≡ v1(x)v2(x)v3(x) (modulo p), we can Ąnd
a1(x), a2(x), a3(x) such that a1(x)v2(x)v3(x) + a2(x)v1(x)v3(x) + a3(x)v1(x)v2(x) ≡
1 (modulo p) and deg(ai) < deg(vi). (In essence, 1/u(x) is expanded in partial
fractions as

ai(x)/vi(x).) An exactly analogous construction now allows us to

lift the factorization without changing the leading coefficients of v1 and v2; we take
v̄1(x) = a1(x)f(x) mod v1(x), v̄2(x) = a2(x)f(x) mod v2(x), etc. Another important

686 ANSWERS TO EXERCISES 4.6.2

generalization is to several simultaneous moduli, of the respective forms pe, (x2−a2)n2 ,
. . . , (xt − at)nt , when performing multivariate gcds and factorizations. See D. Y. Y.
Yun, Ph.D. Thesis (M.I.T., 1974).

23. The discriminant of pp(u(x)) is a nonzero integer (see exercise 4.6.1Ű12), and
there are multiple factors modulo p if and only if p divides the discriminant. [The
factorization of (22) modulo 3 is (x+ 1)(x2 − x− 1)2(x3 + x2 − x+ 1); squared factors
for this polynomial occur only for p = 3, 23, 233, and 121702457. It is not difficult to
prove that the smallest prime that is not unlucky is at most O(n logNn), if n = deg(u)
and if N bounds the coefficients of u(x).]

24. Multiply a monic polynomial with rational coefficients by a suitable nonzero inte-
ger, to get a primitive polynomial over the integers. Factor this polynomial over the
integers, and then convert the factors back to monic. (No factorizations are lost in this
way; see exercise 4.6.1Ű8.)

25. Consideration of the constant term shows there are no factors of degree 1, so if
the polynomial is reducible, it must have one factor of degree 2 and one of degree 3.
Modulo 2 the factors are x(x + 1)2(x2 + x + 1); this is not much help. Modulo 3 the
factors are (x+ 2)2(x3 + 2x+ 2). Modulo 5 they are (x2 + x+ 1)(x3 + 4x+ 2). So we
see that the answer is (x2 + x+ 1)(x3 − x+ 2).

26. Begin with D ← (0 . . . 01), representing the set {0}. Then for 1 ≤ j ≤ r, set
D ← D | (D ≪ dj), where | denotes bitwise “orŤ and D ≪ d denotes D shifted left
d bit positions. (Actually we need only work with a bit vector of length ⌈(n + 1)/2⌉,
since n−m is in the set if and only if m is.)
27. Exercise 4 says that a random polynomial of degree n is irreducible modulo p with
rather low probability, about 1/n. But the Chinese remainder theorem implies that a
random monic polynomial of degree n over the integers will be reducible with respect
to each of k distinct primes with probability about (1−1/n)k, and this approaches zero
as k →∞. Hence almost all polynomials over the integers are irreducible with respect
to inĄnitely many primes; and almost all primitive polynomials over the integers are
irreducible. [Another proof has been given by W. S. Brown, AMM 70 (1963), 965Ű969.]

28. See exercise 4; the probability is [zn] (1+a1pz/p)(1+a2pz
2/p2)(1+a3pz

3/p3) . . . ,
which has the limiting value g(z) = (1 + z)(1 + 1

2
z2)(1 + 1

3
z3) For 1 ≤ n ≤ 10 the

answers are 1, 1
2
, 5

6
, 7

12
, 37

60
, 79

120
, 173

280
, 101

168
, 127

210
, 1033

1680
. [Let f(y) = ln(1 + y)− y = O(y2).

We have
g(z) = exp(

n≥1 z

n/n+

n≥1 f(zn/n)) = h(z)/(1− z),

and it can be shown that the limiting probability is h(1) = exp(

n≥1 f(1/n)) =
e−γ ≈ .56146 as n → ∞. Indeed, N. G. de Bruijn has established the asymptotic
formula limp→∞ anp = e−γ + e−γ/n+O(n−2 logn). [See D. H. Lehmer, Acta Arith. 21

(1972), 379Ű388; D. H. Greene and D. E. Knuth, Math. for the Analysis of Algorithms
(Boston: Birkhäuser, 1981), §4.1.6.] On the other hand the answers for 1 ≤ n ≤ 10
when p = 2 are smaller: 1, 1

4
, 1

2
, 7

16
, 7

16
, 7

16
, 27

64
, 111

256
, 109

256
, 109

256
. A. Knopfmacher and

R. Warlimont [Trans. Amer. Math. Soc. 347 (1995), 2235Ű2243] have shown that for
Ąxed p the probability is cp +O(1/n), where cp =

m≥1 e

−1/m(1+amp/p
m), c2 ≈ .397.]

29. Let q1(x) and q2(x) be any two of the irreducible divisors of g(x). By the Chinese
remainder theorem (exercise 3), choosing a random polynomial t(x) of degree < 2d is
equivalent to choosing two random polynomials t1(x) and t2(x) of degrees < d, where
ti(x) = t(x) mod qi(x). The gcd will be a proper factor if t1(x)(pd−1)/2 mod q1(x) = 1

4.6.2 ANSWERS TO EXERCISES 687

and t2(x)(pd−1)/2 mod q1(x) ̸= 1, or vice versa, and this condition holds for exactly
2((pd − 1)/2)((pd + 1)/2) = (p2d − 1)/2 choices of t1(x) and t2(x).

Notes: We are considering here only the behavior with respect to two irreducible
factors, but the true behavior is probably much better. Suppose that each irreducible
factor qi(x) has probability 1

2
of dividing t(x)(pd−1)/2− 1 for each t(x), independent of

the behavior for other qj(x) and t(x); and assume that g(x) has r irreducible factors in
all. Then if we encode each qi(x) by a sequence of 0s and 1s according as qi(x) does or
doesn’t divide t(x)(pd−1)/2 − 1 for the successive t’s tried, we obtain a random binary
trie with r lieves (see Section 6.3). The cost associated with an internal node of this
trie, having m lieves as descendants, is O(m2(log p)); and the solution to the recurrence
An =

n
2

+ 21−n

n
k

Ak is An = 2

n
2

, by exercise 5.2.2Ű36. Hence the sum of costs

in the given random trie Ů representing the expected time to factor g(x) completely Ů
is O(r2(log p)3) under this plausible assumption. The plausible assumption becomes
rigorously true if we choose t(x) at random of degree < rd instead of restricting it to
degree < 2d.

30. Let T (x) = x+xp + · · ·+xpd−1 be the trace of x and let v(x) = T (t(x)) mod q(x).
Since t(x)pd = t(x) in the Ąeld of polynomial remainders modulo q(x), we have v(x)p =
v(x) in that Ąeld; in other words, v(x) is one of the p roots of the equation yp − y = 0.
Hence v(x) is an integer.

It follows that
p−1

s=0 gcd(gd(x), T (t(x))−s) = gd(x). In particular, when p = 2 we
can argue as in exercise 29 that gcd(gd(x), T (t(x))) will be a proper factor of gd(x) with
probability ≥ 1

2
when gd(x) has at least two irreducible factors and t(x) is a random

binary polynomial of degree < 2d.
[Note that T (t(x)) mod g(x) can be computed by starting with u(x) ← t(x) and

setting u(x) ← (t(x) + u(x)p) mod g(x) repeatedly, d − 1 times. The method of this
exercise is based on the polynomial factorization xpd − x =

p−1
s=0 (T (x) − s), which

holds for any p, while formula (21) is based on the polynomial factorization xpd − x =
x(x(pd−1)/2 + 1)(x(pd−1)/2− 1) for odd p.]

The trace was introduced by Richard Dedekind, Abhandlungen der Königl. Gesell-
schaft der Wissenschaften zu Göttingen 29 (1882), 1Ű56. The technique of calculating
gcd(f(x), T (x)− s) to Ąnd factors of f(x) can be traced to A. Arwin, Arkiv för Mat.,
Astr. och Fys. 14, 7 (1918), 1Ű46; but his method was incomplete because he did not
consider T (t(x)) for t(x) ̸= x. A complete factorization algorithm using traces was
devised later by R. J. McEliece, Math. Comp. 23 (1969), 861Ű867; see also von zur
Gathen and Shoup, Computational Complexity 2 (1992), 187Ű224, Algorithm 3.6, for
asymptotically fast results.

Henri Cohen has observed that for p = 2 it suffices to test at most d special
cases t(x) = x, x3, . . . , x2d−1 when applying this method. One of these choices of
t(x) is guaranteed to split gd(x) whenever gd is reducible, because we can obtain the
effects of all polynomials t(x) of degree < 2d from these special cases using the facts that
T (t(x)p) ≡ T (t(x)) and T (u(x)+t(x)) ≡ T (u(x))+T (t(x)) (modulo gd(x)). [A Course
in Computational Algebraic Number Theory (Springer, 1993), Algorithm 3.4.8.]

31. If α is an element of the Ąeld of pd elements, let d(α) be the degree of α, namely
the smallest exponent e such that αpe = α. Then consider the polynomial

Pα(x) = (x− α)(x− αp) . . . (x− αpd−1) = qα(x)d/d(α),

where qα(x) is an irreducible polynomial of degree d(α). As α runs through all elements
of the Ąeld, the corresponding qα(x) runs through every irreducible polynomial of

688 ANSWERS TO EXERCISES 4.6.2

degree e dividing d, where every such irreducible occurs exactly e times. We have
(x + t)(pd−1)/2 mod qα(x) = 1 if and only if (α + t)(pd−1)/2 = 1 in the Ąeld. If t is an
integer, we have d(α+ t) = d(α), hence n(p, d) is d−1 times the number of elements α
of degree d such that α(pd−1)/2 = 1. Similarly, if t1 ̸= t2 we want to count the number
of elements of degree d such that (α + t1)(pd−1)/2 = (α + t2)(pd−1)/2, or equivalently
((α+ t1)/(α+ t2))(pd−1)/2 = 1. As α runs through all the elements of degree d, so does
the quantity (α+ t1)/(α+ t2) = 1 + (t1 − t2)/(α+ t2).

[We have n(p, d) = 1
4
d−1

c\d(3 + (−1)c)µ(c)(pd/c − 1), which is about half the
total number of irreducibles Ů exactly half, in fact, when d is odd. This proves that
gcd(gd(x), (x + t)(pd−1)/2 − 1) has a good chance of Ąnding factors of gd(x) when t is
Ąxed and gd(x) is chosen at random; but a randomized algorithm is supposed to work
with guaranteed probability for Ąxed gd(x) and random t, as in exercise 29.]

32. (a) Clearly xn − 1 =

d\nΨd(x), since every complex nth root of unity is a
primitive dth root for some unique d\n. The second identity follows from the Ąrst; and
Ψn(x) has integer coefficients since it is expressed in terms of products and quotients
of monic polynomials with integer coefficients.

(b) The condition in the hint suffices to prove that f(x) = Ψn(x), so we shall take
the hint. When p does not divide n, we have xn − 1 ⊥ nxn−1 modulo p, hence xn − 1
is squarefree modulo p. Given f(x) and ζ as in the hint, let g(x) be the irreducible
factor of Ψn(x) such that g(ζp) = 0. If g(x) ̸= f(x) then f(x) and g(x) are distinct
factors of Ψn(x), hence they are distinct factors of xn−1, hence they have no irreducible
factors in common modulo p. However, ζ is a root of g(xp), so gcd(f(x), g(xp)) ̸= 1
over the integers, hence f(x) is a divisor of g(xp). By (5), f(x) is a divisor of g(x)p,
modulo p, contradicting the assumption that f(x) and g(x) have no irreducible factors
in common. Therefore f(x) = g(x). [The irreducibility of Ψn(x) was Ąrst proved for
prime n by C. F. Gauss in Disquisitiones Arithmeticæ (Leipzig: 1801), Art. 341, and
for general n by L. Kronecker, J. de Math. Pures et Appliquées 19 (1854), 177Ű192.]

(c) Ψ1(x) = x − 1; and when p is prime, Ψp(x) = 1 + x + · · · + xp−1. If n > 1
is odd, it is not difficult to prove that Ψ2n(x) = Ψn(−x). If p divides n, the second
identity in (a) shows that Ψpn(x) = Ψn(xp). If p does not divide n, we have Ψpn(x) =
Ψn(xp)/Ψn(x). For nonprime n ≤ 15 we have Ψ4(x) = x2 + 1, Ψ6(x) = x2 − x + 1,
Ψ8(x) = x4 +1, Ψ9(x) = x6 +x3 +1, Ψ10(x) = x4−x3 +x2−x+1, Ψ12(x) = x4−x2 +1,
Ψ14(x) = x6 − x5 + x4 − x3 + x2 − x + 1, Ψ15(x) = x8 − x7 + x5 − x4 + x3 − x + 1.
[The formula Ψpq(x) = (1 + xp + · · · + x(q−1)p)(x − 1)/(xq − 1) can be used to show
that Ψpq(x) has all coefficients ±1 or 0 when p and q are prime; but the coefficients of
Ψpqr(x) can be arbitrarily large.]

33. False; we lose all pj with ej divisible by p. True if p > deg(u). [See exercise 36.]

34. [D. Y. Y. Yun, Proc. ACM Symp. Symbolic and Algebraic Comp. (1976), 26Ű35.]
Set (t(x), v1(x), w1(x)) ← GCD(u(x), u′(x)). If t(x) = 1, set e ← 1; otherwise set
(ui(x), vi+1(x), wi+1(x)) ← GCD(vi(x), wi(x) − v′i(x)) for i = 1, 2, . . . , e − 1, until
Ąnding we(x)− v′e(x) = 0. Finally set ue(x)← ve(x).

To prove the validity of this algorithm, we observe that it computes the polyno-
mials t(x) = u2(x)u3(x)2u4(x)3 . . . , vi(x) = ui(x)ui+1(x)ui+2(x) . . . , and

wi(x) =u′
i(x)ui+1(x)ui+2(x) . . .+2ui(x)u

′
i+1(x)ui+2(x) . . .+3ui(x)ui+1(x)u

′
i+2(x) . . .+· · · .

We have t(x) ⊥ w1(x), since an irreducible factor of ui(x) divides all but the ith
term of w1(x), and it is relatively prime to that term. Furthermore we clearly have
ui(x) ⊥ vi+1(x).

4.6.2 ANSWERS TO EXERCISES 689

[Although exercise 2(b) proves that most polynomials are squarefree, nonsquarefree
polynomials actually occur often in practice; hence this method turns out to be quite
important. See Paul S. Wang and Barry M. Trager, SICOMP 8 (1979), 300Ű305,
for suggestions on how to improve the efficiency. Squarefree factorization modulo p
is discussed by Bach and Shallit, Algorithmic Number Theory 1 (MIT Press, 1996),
answer to exercise 7.27.]

35. We have wj(x) = gcd(uj(x), v∗j (x)) · gcd(u∗
j+1(x), vj(x)), where

u∗
j (x) = uj(x)uj+1(x) . . . and v∗j (x) = vj(x)vj+1(x)

[Yun notes that the running time for squarefree factorization by the method of exer-
cise 34 is at most about twice the running time to calculate gcd(u(x), u′(x)). Further-
more if we are given an arbitrary method for discovering squarefree factorization, the
method of this exercise leads to a gcd procedure. (When u(x) and v(x) are squarefree,
their gcd is simply w2(x) where w(x) = u(x)v(x) = w1(x)w2(x)2; the polynomials
uj(x), vj(x), u∗

j (x), and v∗j (x) are all squarefree.) Hence the problem of converting
a primitive polynomial of degree n to its squarefree representation is computationally
equivalent to the problem of calculating the gcd of two nth degree polynomials, in the
sense of asymptotic worst-case running time.]

36. Let Uj(x) be the value computed for “uj(x)Ť by the procedure of exercise 34. If
deg(U1)+2 deg(U2)+ · · · = deg(u), then uj(x) = Uj(x) for all j. But in general we will
have e < p and Uj(x) =

k≥0 uj+pk(x) for 1 ≤ j < p. To separate these factors further,

we can calculate t(x)/(U2(x)U3(x)2 . . . Up−1(x)p−2) =

j≥p uj(x)p⌊j/p⌋ = z(xp). After
recursively Ąnding the squarefree representation of z(x) = (z1(x), z2(x), . . .), we will
have zk(x) =

0≤j<p uj+pk(x), so we can calculate the individual ui(x) by the formula

gcd(Uj(x), zk(x)) = uj+pk(x) for 1 ≤ j < p. The polynomial upk(x) will be left when
the other factors of zk(x) have been removed.

Note: This procedure is fairly simple but the program is lengthy. If one’s goal is
to have a short program for complete factorization modulo p, rather than an extremely
efficient one, it is probably easiest to modify the distinct-degree factorization routine
so that it casts out gcd(xpd − x, u(x)) several times for the same value of d until the
gcd is 1. In this case you needn’t begin by calculating gcd(u(x), u′(x)) and removing
multiple factors as suggested in the text, since the polynomial xpd − x is squarefree.

37. The exact probability is

j≥1(ajp/p
j)kj/kj !, where kj is the number of di that are

equal to j. Since ajp/p
j ≈ 1/j by exercise 4, we get the formula of exercise 1.3.3Ű21.

Notes: This exercise says that if we Ąx the prime p and let the polynomial u(x)
be random, it will have a certain probability of splitting in a given way modulo p.
A much harder problem is to Ąx the polynomial u(x) and to let p be “randomŤ; it
turns out that the same asymptotic result holds for almost all u(x). G. Frobenius
proved in 1880 that the integer polynomial u(x) splits modulo p into factors of degrees
d1, . . . , dr, when p is a large prime chosen at random, with probability equal to the
number of permutations in the Galois group G of u(x) having cycle lengths {d1, . . . , dr}
divided by the total number of permutations in G. [If u(x) has rational coefficients and
distinct roots ξ1, . . . , ξn over the complex numbers, its Galois group is the (unique)
group G of permutations such that the polynomial

p(1)...p(n)∈G(z + ξp(1)y1 + · · · +

ξp(n)yn) = U(z, y1, . . . , yn) has rational coefficients and is irreducible over the rationals;
see G. Frobenius, Sitzungsberichte Königl. preuß. Akad. Wiss. (Berlin: 1896), 689Ű703.
The linear mapping x →→ xp is traditionally called the Frobenius automorphism because

690 ANSWERS TO EXERCISES 4.6.2

of this famous paper.] Furthermore B. L. van der Waerden proved in 1934 that almost
all polynomials of degree n have the set of all n! permutations as their Galois group
[Math. Annalen 109 (1934), 13Ű16]. Therefore almost all Ąxed irreducible polynomials
u(x) will factor as we might expect them to, with respect to randomly chosen large
primes p. See also N. Chebotarev, Math. Annalen 95 (1926), for a generalization of
Frobenius’s theorem to conjugacy classes of the Galois group.

38. The conditions imply that when |z| = 1 we have either |un−2z
n−2 + · · · + u0| <

|un−1| − 1 ≤ |zn + un−1z
n−1| or |un−3z

n−3 + · · ·+ u0| < un−2 − 1 ≤ |zn + un−2z
n−2|.

Therefore by Rouché’s theorem [J. École Polytechnique 21, 37 (1858), 1Ű34], u(z) has
at least n − 1 or n − 2 roots inside the circle |z| = 1. If u(z) is reducible, it can be
written v(z)w(z) where v and w are monic integer polynomials. The products of the
roots of v and of w are nonzero integers, so each factor has a root of absolute value ≥ 1.
Hence the only possibility is that v and w both have exactly one such root and that
un−1 = 0. These roots must be real, since the complex conjugates are roots; hence
u(z) has a real root z0 with |z0| ≥ 1. But this cannot be, for if r = 1/z0 we have
0 = |1 + un−2r

2 + · · ·+ u0r
n| ≥ 1 + un−2r

2 − |un−3|r3 − · · · − |u0|rn > 1. [O. Perron,
Crelle 132 (1907), 288Ű307; for generalizations, see A. Brauer, Amer. J. Math. 70

(1948), 423Ű432, 73 (1951), 717Ű720.]

39. First we prove the hint: Let u(x) = a(x−α1) . . . (x−αn) have integer coefficients.
The resultant of u(x) with the polynomial y−t(x) is a determinant, so it is a polynomial
rt(y) = adeg(t)(y− t(α1)) . . . (y− t(αn)) with integer coefficients (see exercise 4.6.1Ű12).
If u(x) divides v(t(x)) then v(t(α1)) = 0, hence rt(y) has a factor in common with
v(y). So if v is irreducible, we have deg(u) = deg(rt) ≥ deg(v).

Given an irreducible polynomial u(x) for which a short proof of irreducibility is
desired, we may assume that u(x) is monic, by exercise 18, and that deg(u) ≥ 3. The
idea is to show the existence of a polynomial t(x) such that v(y) = rt(y) is irreducible
by the criterion of exercise 38. Then all factors of u(x) divide the polynomial v(t(x)),
and this will prove that u(x) is irreducible. The proof will be succinct if the coefficients
of t(x) are suitably small.

The polynomial v(y) = (y−β1) . . . (y−βn) can be shown to satisfy the criterion of
exercise 38 if n ≥ 3 and β1 . . . βn ̸= 0, and if the following “smallness conditionŤ holds:
|βj | ≤ 1/(4n) except when j = n or when βj = βn and |ℜβj | ≤ 1/(4n). The calculations
are straightforward, using the fact that |v0|+ · · ·+ |vn| ≤ (1 + |β1|) . . . (1 + |βn|).

Let α1, . . . , αr be real and αr+1, . . . , αr+s be complex, where n = r + 2s and
αr+s+j = αr+j for 1 ≤ j ≤ s. Consider the linear expressions Sj(a0, . . . , an−1) deĄned
to be ℜ(

n−1
i=0 aiα

i
j) for 1 ≤ j ≤ r + s and ℑ(

n−1
i=0 aiα

i
j) for r + s < j ≤ n. If

0 ≤ ai < b and B = ⌈maxn−1
j=1

n−1
i=0 |αi|j⌉, we have |Sj(a1, . . . , an−1)| < bB. Thus if we

choose b > (16nB)n−1, there must be distinct vectors (a0, . . . , an−1) and (a′0, . . . , a
′
n−1)

such that ⌊8nSj(a0, . . . , an−1)⌋ = ⌊8nSj(a′0, . . . , a
′
n−1)⌋ for 1 ≤ j < n, since there

are bn vectors but at most (16nbB)n−1 < bn possible (n − 1)-tuples of values. Let
t(x) = (a0−a′0)+· · ·+(an−1−a′n−1)xn−1 and βj = t(αj). Then the smallness condition
is satisĄed. Furthermore βj ̸= 0; otherwise t(x) would divide u(x). [J. Algorithms 2

(1981), 385Ű392.]

40. Given a candidate factor v(x) = xd + ad−1x
d−1 + · · · + a0, change each aj to a

rational fraction (modulo pe), with numerators and denominators ≤ B. Then multiply
by the least common denominator, and see if the resulting polynomial divides u(x)
over the integers. If not, no factor of u(x) with coefficients bounded by B is congruent
modulo pe to a multiple of v(x).

4.6.3 ANSWERS TO EXERCISES 691

41. David Boyd notes that 4x8 + 4x6 + x4 + 4x2 + 4 = (2x4 + 4x3 + 5x2 + 4x+ 2)×
(2x4 − 4x3 + 5x2 − 4x+ 2), and he has found examples of higher degree to prove that
c must be > 2 if it exists.

SECTION 4.6.3

1. xm, where m = 2⌊lg n⌋ is the highest power of 2 less than or equal to n.

2. Assume that x is input in register A, and n in location NN; the output is in
register X.

01 A1 ENTX 1 1 A1. Initialize.
02 STX Y 1 Y ← 1.
03 STA Z 1 Z ← x.
04 LDA NN 1 N ← n.
05 JAP 2F 1 To A2.
06 JMP DONE 0 Otherwise the answer is 1.
07 5H SRB 1 L+ 1−K
08 STA N L+ 1−K N ← ⌊N/2⌋.
09 A5 LDA Z L A5. Square Z.
10 MUL Z L
11 STX Z L Z ← Z × Z mod w.
12 A2 LDA N L A2. Halve N.
13 2H JAE 5B L+ 1 To A5 if N is even.
14 SRB 1 K
15 A4 JAZ 4F K Jump if N = 1.
16 STA N K − 1 N ← ⌊N/2⌋.
17 A3 LDA Z K − 1 A3. Multiply Y by Z.
18 MUL Y K − 1
19 STX Y K − 1 Y ← Z × Y mod w.
20 JMP A5 K − 1 To A5.
21 4H LDA Z 1
22 MUL Y 1 Do the Ąnal multiplication.

The running time is 21L + 16K + 8, where L = λ(n) is one less than the number of
bits in the binary representation of n, and K = ν(n) is the number of 1-bits in that
representation.

For the serial program, we may assume that n is small enough to Ąt in an index
register; otherwise serial exponentiation is out of the question. The following program
leaves the output in register A:

01 S1 LD1 NN 1 rI1← n.
02 STA X 1 X ← x.
03 JMP 2F 1
04 1H MUL X N − 1 rA×X mod w
05 SLAX 5 N − 1 → rA.
06 2H DEC1 1 N rI1← rI1− 1.
07 J1P 1B N Multiply again if rI1 > 0.

The running time for this program is 14N − 7; it is faster than the previous program
when n ≤ 7, slower when n ≥ 8.

692 ANSWERS TO EXERCISES 4.6.3

3. The sequences of exponents are: (a) 1, 2, 3, 6, 7, 14, 15, 30, 60, 120, 121, 242,
243, 486, 487, 974, 975 [16 multiplications]; (b) 1, 2, 3, 4, 8, 12, 24, 36, 72, 108,
216, 324, 325, 650, 975 [14 multiplications]; (c) 1, 2, 3, 6, 12, 15, 30, 60, 120, 240,
243, 486, 972, 975 [13 multiplications]; (d) 1, 2, 3, 6, 12, 15, 30, 60, 75, 150, 300,
600, 900, 975 [13 multiplications]. [The smallest possible number of multiplications is
12; this is obtainable by combining the factor method with the binary method, since
975 = 15 · (26 + 1).]

4. (777777)8 = 218 − 1.

5. T1. [Initialize.] Set LINKU[j] ← 0 for 0 ≤ j ≤ 2r, and set k ← 0, LINKR[0] ← 1,
LINKR[1]← 0.

T2. [Change level.] (Now level k of the tree has been linked together from left to
right, starting at LINKR[0].) If k = r, the algorithm terminates. Otherwise set
n← LINKR[0], m← 0.

T3. [Prepare for n.] (Now n is a node on level k, and m points to the rightmost
node currently on level k + 1.) Set q ← 0, s← n.

T4. [Already in tree?] (Now s is a node in the path from the root to n.) If
LINKU[n+ s] ̸= 0, go to T6 (the value n+ s is already in the tree).

T5. [Insert below n.] If q = 0, set m′ ← n + s. Then set LINKR[n + s] ← q,
LINKU[n+ s]← n, q ← n+ s.

T6. [Move up.] Set s← LINKU[s]. If s ̸= 0, return to T4.

T7. [Attach group.] If q ̸= 0, set LINKR[m]← q, m← m′.

T8. [Move n.] Set n← LINKR[n]. If n ̸= 0, return to T3.

T9. [End of level.] Set LINKR[m]← 0, k ← k + 1, and return to T2.

6. Prove by induction that the path to the number 2e0 + 2e1 + · · ·+ 2et , if e0 > e1 >
· · · > et ≥ 0, is 1, 2, 22, . . . , 2e0, 2e0 + 2e1, . . . , 2e0 + 2e1 + · · · + 2et; furthermore, the
sequences of exponents on each level are in decreasing lexicographic order.

7. The binary and factor methods require one more step to compute x2n than xn;
the power tree method requires at most one more step. Hence (a) 15 · 2k; (b) 33 · 2k;
(c) 23 · 2k; k = 0, 1, 2, 3,

8. The power tree always includes the node 2m at one level below m, unless it occurs
at the same level or an earlier level; and it always includes the node 2m + 1 at one
level below 2m, unless it occurs at the same level or an earlier level. [It is not true that
2m is a child of m in the power tree for all m; the smallest example where this fails
is m = 2138, which appears on level 15, while 4276 appears elsewhere on level 16. In
fact, 2m sometimes occurs on the same level as m; the smallest example is m = 6029.]

9. Start with N ← n, Z ← x, and Yq ← 1 for 1 ≤ q < m, q odd; in general we
will have xn = Y1Y

3
3 Y

5
5 . . . Y

m−1
m−1 Z

N as the algorithm proceeds. Assuming that N > 0,
set k ← N modm, N ← ⌊N/m⌋. Then if k = 0, set Z ← Zm and repeat; otherwise
if k = 2pq where q is odd, set Z ← Z2p, Yq ← Yq · Z, and if N > 0 set Z ← Z2e−p

and repeat. Finally set Yk ← Yk · Yk+2 for k = m − 3, m − 5, . . . , 1; the answer is
Y1(Y3Y5 . . . Ym−1)2. (About m/2 of the multiplications are by 1.)

10. By using the “PARENTŤ representation discussed in Section 2.3.3: Make use of a
table p[j], 1 ≤ j ≤ 100, such that p[1] = 0 and p[j] is the number of the node just
above j for j ≥ 2. (The fact that each node of this tree has degree at most two has no
effect on the efficiency of this representation; it just makes the tree look prettier as an
illustration.)

4.6.3 ANSWERS TO EXERCISES 693

11. 1, 2, 3, 5, 10, 20, (23 or 40), 43; 1, 2, 4, 8, 9, 17, (26 or 34), 43; 1, 2, 4, 8, 9, 17,
34, (43 or 68), 77; 1, 2, 4, 5, 9, 18, 36, (41 or 72), 77. If either of the last two paths
were in the tree we would have no possibility for n = 43, since the tree must contain
either 1, 2, 3, 5 or 1, 2, 4, 8, 9.

12. No such inĄnite tree can exist, since l(n) ̸= l∗(n) for some n.

13. For Case 1, use a Type-1 chain followed by 2A+C + 2B+C + 2A + 2B ; or use the
factor method. For Case 2, use a Type-2 chain followed by 2A+C+1 + 2B+C + 2A + 2B.
For Case 3, use a Type-5 chain followed by addition of 2A + 2A−1, or use the factor
method. For Case 4, n = 135 · 2D, so we may use the factor method.

14. (a) It is easy to verify that steps r − 1 and r − 2 are not both small, so let us
assume that step r− 1 is small and step r− 2 is not. If c = 1, then λ(ar−1) = λ(ar−k),
so k = 2; and since 4 ≤ ν(ar) = ν(ar−1) + ν(ar−k) − 1 ≤ ν(ar−1) + 1, we have
ν(ar−1) ≥ 3, making r − 1 a star step (lest a0, a1, . . . , ar−3, ar−1 include only one
small step). Then ar−1 = ar−2 + ar−q for some q, and if we replace ar−2, ar−1,
ar by ar−2, 2ar−2, 2ar−2 + ar−q = ar, we obtain another counterexample chain in
which step r is small; but this is impossible. On the other hand, if c ≥ 2, then
4 ≤ ν(ar) ≤ ν(ar−1) + ν(ar−k) − 2 ≤ ν(ar−1); hence ν(ar−1) = 4, ν(ar−k) = 2, and
c = 2. This leads readily to an impossible situation by a consideration of the six types
in the proof of Theorem B.

(b) If λ(ar−k) < m − 1, we have c ≥ 3, so ν(ar−k) + ν(ar−1) ≥ 7 by (22);
therefore both ν(ar−k) and ν(ar−1) are ≥ 3. All small steps must be ≤ r − k, and
λ(ar−k) = m − k + 1. If k ≥ 4, we must have c = 4, k = 4, ν(ar−1) = ν(ar−4) = 4;
thus ar−1 ≥ 2m + 2m−1 + 2m−2, and ar−1 must equal 2m + 2m−1 + 2m−2 + 2m−3; but
ar−4 ≥ 1

8
ar−1 now implies that ar−1 = 8ar−4. Thus k = 3 and ar−1 > 2m + 2m−1.

Since ar−2 < 2m and ar−3 < 2m−1, step r − 1 must be a doubling; but step r − 2
is a nondoubling, since ar−1 ̸= 4ar−3. Furthermore, since ν(ar−3) ≥ 3, r − 3 is a
star step; and ar−2 = ar−3 + ar−5 would imply that ar−5 = 2m−2, hence we must
have ar−2 = ar−3 + ar−4. As in a similar case treated in the text, the only possibility
is now seen to be ar−4 = 2m−2 + 2m−3, ar−3 = 2m−2 + 2m−3 + 2d+1 + 2d, ar−1 =
2m + 2m−1 + 2d+2 + 2d+1, and even this possibility is impossible.

15. Achim Flammenkamp [Diplomarbeit in Mathematics (Bielefeld University, 1991),
Part 1] has shown that the numbers n with λ(n) + 3 = l(n) < l∗(n) all have the form
2A + 2B + 2C + 2D + 2E where A > B > C > D > E and B + E = C +D; moreover,
they are described precisely by not matching any of the following eight patterns where
|ϵ| ≤ 1: 2A + 2A−3 + 2C + 2C−1 + 22C+2−A, 2A + 2A−1 + 2C + 2D + 2C+D+1−A,
2A + 2B + 22B−A+3 + 22B+2−A + 23B+5−2A, 2A + 2B + 22B−A+ϵ + 2D + 2B+D+ϵ−A,
2A + 2B + 2B−1 + 2D + 2D−1, 2A + 2B + 2B−2 + 2D + 2D−2 (A > B + 1), 2A + 2B +
2C + 22B+ϵ−A + 2B+C+ϵ−A, 2A + 2B + 2C + 2B+C+ϵ−A + 22C+ϵ−A.

16. lB(n) = λ(n) + ν(n) − 1; so if n = 2k, lB(n)/λ(n) = 1, but if n = 2k+1 − 1,
lB(n)/λ(n) = 2.

17. Let i1 < · · · < it. Delete any intervals Ik that can be removed without affecting
the union I1 ∪ · · · ∪ It. (The interval (jk . . ik] may be dropped out if either jk+1 ≤ jk

or j1 < j2 < · · · and jk+1 ≤ ik−1.) Now combine overlapping intervals (j1 . . i1], . . . ,
(jd . . id] into an interval (j′ . . i′] = (j1 . . id] and note that

ai′ < aj′(1 + δ)i1−j1+···+id−jd ≤ aj′(1 + δ)2(i′−j′),

since each point of (j′ . . i′] is covered at most twice in (j1 . . i1] ∪ · · · ∪ (jd . . id].

694 ANSWERS TO EXERCISES 4.6.3

18. Call f(m) a “niceŤ function if (log f(m))/m → 0 as m → ∞. A polynomial
in m is nice. The product of nice functions is nice. If g(m) → 0 and c is a positive
constant, then cmg(m) is nice; also

2m

mg(m)

is nice, for by Stirling’s approximation this

is equivalent to saying that g(m) log(1/g(m))→ 0.
Now replace each term of the summation by the maximum term that is attained for

any s, t, v. The total number of terms is nice, and so are

m+s
t+v

,

t+v
v

≤ 2t+v, and β2v,

because (t+ v)/m→ 0. Finally,

(m+s)2

t

≤ (2m)2t/t! < (4em2/t)t , where (4e)t is nice.

Replacing t by its upper bound (1− ϵ/2)m/λ(m) shows that (m2/t)t ≤ 2m(1−ϵ/2)f(m),
where f(m) is nice. Hence the entire sum is less than αm for large m if α = 21−η,
where 0 < η < 1

2
ϵ.

19. (a) M ∩N, M ∪N, M ⊎N, respectively; see Eqs. 4.5.2Ű(6), 4.5.2Ű(7).
(b) f(z)g(z), lcm(f(z), g(z)), gcd(f(z), g(z)). (For the same reasons as (a), be-

cause the monic irreducible polynomials over the complex numbers are precisely the
polynomials z − ζ.)

(c) Commutative laws A⊎B = B⊎A, A∪B = B∪A, A∩B = B∩A. Associative
laws A⊎ (B⊎C) = (A⊎B)⊎C, A∪ (B∪C) = (A∪B)∪C, A∩ (B∩C) = (A∩B)∩C.
Distributive laws A ∪ (B ∩C) = (A ∪B) ∩ (A ∪C), A ∩ (B ∪C) = (A ∩B) ∪ (A ∩C),
A ⊎ (B ∪ C) = (A ⊎ B) ∪ (A ⊎ C), A ⊎ (B ∩ C) = (A ⊎ B) ∩ (A ⊎ C). Idempotent
laws A ∪ A = A, A ∩ A = A. Absorption laws A ∪ (A ∩ B) = A, A ∩ (A ∪ B) = A,
A ∩ (A ⊎B) = A, A ∪ (A ⊎B) = A ⊎B. Identity and zero laws ∅ ⊎A = A, ∅ ∪A = A,
∅ ∩ A = ∅, where ∅ is the empty multiset. Counting law A ⊎ B = (A ∪ B) ⊎ (A ∩ B).
Further properties analogous to those of sets come from the partial ordering deĄned by
the rule A ⊆ B if and only if A ∩B = A (if and only if A ∪B = B).

Notes: Other common applications of multisets are zeros and poles of meromor-
phic functions, invariants of matrices in canonical form, invariants of Ąnite Abelian
groups, etc.; multisets can be useful in combinatorial counting arguments and in the
development of measure theory. The terminal strings of a noncircular context-free
grammar form a multiset that is a set if and only if the grammar is unambiguous. The
author’s paper in Theoretical Studies in Computer Science, edited by J. D. Ullman
(Academic Press, 1992), 1Ű13, discusses further applications to context-free grammars,
and introduces the operation A ∩. B, where each element that occurs a times in A and
b times in B occurs ab times in A ∩. B.

Although multisets appear frequently in mathematics, they often must be treated
rather clumsily because there is currently no standard way to treat sets with repeated
elements. Several mathematicians have voiced their belief that the lack of adequate
terminology and notation for this common concept has been a deĄnite handicap to
the development of mathematics. (A multiset is, of course, formally equivalent to a
mapping from a set into the nonnegative integers, but this formal equivalence is of little
or no practical value for creative mathematical reasoning.) The author discussed this
matter with many people during the 1960s in an attempt to Ąnd a good remedy. Some
of the names suggested for the concept were list, bunch, bag, heap, sample, weighted
set, collection, suite; but these words either conĆicted with present terminology, had an
improper connotation, or were too much of a mouthful to say and to write conveniently.
Finally it became clear that such an important concept deserves a name of its own,
and the word “multisetŤ was coined by N. G. de Bruijn. His suggestion was widely
adopted during the 1970s, and it is now standard terminology.

The notation “A⊎BŤ has been selected by the author to avoid conĆict with existing
notations and to stress the analogy with set union. It would not be as desirable to use

4.6.3 ANSWERS TO EXERCISES 695

“A+BŤ for this purpose, since algebraists have found that A+B is a good notation for
the multiset {α+ β | α ∈ A and β ∈ B}. If A is a multiset of nonnegative integers, let
G(z) =

n∈A z

n be a generating function corresponding to A. (Generating functions
with nonnegative integer coefficients obviously correspond one-to-one with multisets of
nonnegative integers.) If G(z) corresponds to A and H(z) to B, then G(z) + H(z)
corresponds to A ⊎ B and G(z)H(z) corresponds to A + B. If we form “DirichletŤ
generating functions g(z) =

n∈A 1/nz, h(z) =

n∈B 1/nz, then the product g(z)h(z)

corresponds to the multiset product AB.

20. Type 3: (S0, . . . , Sr) = (M00, . . . ,Mr0) = ({0}, . . . , {A}, {A−1, A}, {A−1, A,A},
{A− 1, A− 1, A,A,A}, . . . , {A+C − 3, A+C − 3, A+C − 2, A+C − 2, A+C − 2}).
Type 5: (M00, . . . ,Mr0) = ({0}, . . . , {A}, {A − 1, A}, . . . , {A + C − 1, A + C},
{A + C − 1, A + C − 1, A + C}, . . . , {A + C + D − 1, A + C + D − 1, A + C + D});
(M01, . . . ,Mr1) = (∅, . . . ,∅, ∅, . . . , ∅, {A+C−2}, . . . , {A+C+D−2}), Si = Mi0⊎Mi1.

21. For example, let u = 28q+5, x = (2(q+1)u − 1)/(2u − 1) = 2qu + · · · + 2u + 1,
y = 2(q+1)u + 1. Then xy = (22(q+1)u − 1)/(2u − 1). If n = 24(q+1)u + xy, we have
l(n) ≤ 4(q+ 1)u+ q+ 2 by Theorem F, but l∗(n) = 4(q+ 1)u+ 2q+ 2 by Theorem H.

22. Underline everything except the u− 1 insertions used in the calculation of x.

23. Theorem G (everything underlined).

24. Use the numbers (Bai − 1)/(B − 1), 0 ≤ i ≤ r, underlined when ai is underlined;
and ckB

i−1(Bbj−1)/(B−1) for 0 ≤ j < t, 0 < i ≤ bj+1−bj , 1 ≤ k ≤ l0(B), underlined
when ck is underlined, where c0, c1, . . . is a minimum length l0-chain for B. To prove
the second inequality, let B = 2m and use (3). (The second inequality is rarely, if ever,
an improvement on Theorem G.)

25. We may assume that dk = 1. Use the rule R Ak−1 . . . A1, where Aj = “XRŤ if
dj = 1, Aj = “RŤ otherwise, and where “RŤ means take the square root, “XŤ means
multiply by x. For example, if y = (.1101101)2, the rule is R R XR XR R XR XR.
(There exist binary square-root extraction algorithms suitable for computer hardware,
requiring an execution time comparable to that of division; computers with such
hardware could therefore calculate more general fractional powers using the technique
in this exercise.)

26. If we know the pair (Fk, Fk−1), then we have (Fk+1, Fk) = (Fk + Fk−1, Fk) and
(F2k, F2k−1) = (F 2

k +2FkFk−1, F
2
k +F 2

k−1); so a binary method can be used to calculate
(Fn, Fn−1), using O(logn) arithmetic operations. Perhaps better is to use the pair
of values (Fk, Lk), where Lk = Fk−1 + Fk+1 (see exercise 4.5.4Ű15); then we have
(Fk+1, Lk+1) = (1

2
(Fk + Lk), 1

2
(5Fk + Lk)), (F2k, L2k) = (FkLk, L

2
k − 2(−1)k).

For the general linear recurrence xn = a1xn−1 + · · · + adxn−d, we can compute
xn in O(d3 logn) arithmetic operations by computing the nth power of an appropriate
d × d matrix. [This observation is due to J. C. P. Miller and D. J. Spencer Brown,
Comp. J. 9 (1966), 188Ű190.] In fact, as Richard Brent has observed, the number
of operations can be reduced to O(d2 logn), or even to O(d log d logn) using exercise
4.7Ű6, if we Ąrst compute xn mod (xd − a1x

d−1 − · · · − ad) and then replace xj by xj .

27. The smallest n requiring s small steps must be c(r) for some r. For if c(r) < n <
c(r+1) we have l(n)−λ(n) ≤ r−λ(c(r)) = l(c(r))−λ(c(r)). The answers for 1 ≤ s ≤ 8
are therefore 3, 7, 29, 127, 1903, 65131, 4169527, 994660991.

28. (a) x∇y = x | y | (x+ y), where “|Ť is bitwise “orŤ, see exercise 4.6.2Ű26; clearly
ν(x∇y) ≤ ν(x | y)+ν(x&y) = ν(x)+ν(y). (b) Note Ąrst that Ai−1/2di−1 ⊆ Ai/2di for
1 ≤ i ≤ r. Secondly, note that dj = di−1 in a nondoubling; for otherwise ai−1 ≥ 2aj ≥

696 ANSWERS TO EXERCISES 4.6.3

aj + ak = ai. Hence Aj ⊆ Ai−1 and Ak ⊆ Ai−1/2dj−dk . (c) An easy induction on i,
except that close steps need closer attention. Let us say that m has property P (α) if
the 1s in its binary representation all appear in consecutive blocks of ≥ α in a row. If
m and m′ have P (α), so does m∇m′; if m has P (α) then ρ(m) has P (α + δ). Hence
Bi has P (1 + δci). Finally if m has P (α) then ν(ρ(m)) ≤ (α+ δ)ν(m)/α; for ν(m) =
ν1 + · · ·+νq, where each block size νj is ≥ α, hence ν(ρ(m)) ≤ (ν1 +δ)+ · · ·+(νq +δ) ≤
(1+δ/α)ν1 + · · ·+(1+δ/α)νq. (d) Let f = br +cr be the number of nondoublings and s
the number of small steps. If f ≥ 3.271 lg ν(n) we have s ≥ lg ν(n) as desired, by (16).
Otherwise we have ai ≤ (1 + 2−δ)bi2ci+di for 0 ≤ i ≤ r, hence n ≤ ((1 + 2−δ)/2)br2r,
and r ≥ lgn + br − br lg(1 + 2−δ) ≥ lgn + lg ν(n) − lg(1 + δcr) − br lg(1 + 2−δ). Let
δ = ⌈lg(f + 1)⌉; then ln(1 + 2−δ) ≤ ln(1 + 1/(f + 1)) ≤ 1/(f + 1) ≤ δ/(1 + δf), and it
follows that lg(1 + δx) + (f − x) lg(1 + 2−δ) ≤ lg(1 + δf) for 0 ≤ x ≤ f . Hence Ąnally
l(n) ≥ lgn+ lg ν(n)− lg(1 + (3.271 lg ν(n))⌈lg(1 + 3.271 lg ν(n))⌉). [Theoretical Comp.
Sci. 1 (1975), 1Ű12.]

29. [Canadian J. Math. 21 (1969), 675Ű683. Schönhage reĄned the method of exer-
cise 28 to prove that l(n) ≥ lgn+ lg ν(n)− 2.13. Can the remaining gap be closed?]

30. n = 31 is the smallest example; l(31) = 7, but 1, 2, 4, 8, 16, 32, 31 is an addition-
subtraction chain of length 6. [After proving Theorem E, Erdős stated that the same
result holds also for addition-subtraction chains. Schönhage has extended the lower
bound of exercise 28 to addition-subtraction chains, with ν(n) replaced by ν(n) as
deĄned in exercise 4.1Ű34. A generalized right-to-left binary method for exponentiation,
which uses λ(n)+ν(n)−1 multiplications when both x and x−1 are given, can be based
on the representation αn of that exercise.]

32. See Discrete Math. 23 (1978), 115Ű119. [This cost model corresponds to mul-
tiplication of large numbers by a classical method like Algorithm 4.3.1M. Empirical
results with a more general model in which the cost is (ajak)β/2 have been obtained
by D. P. McCarthy, Math. Comp. 46 (1986), 603Ű608; this model comes closer to the
“fast multiplicationŤ methods of Section 4.3.3, when two n-bit numbers are multiplied
in O(nβ) steps, but the cost function aja

β−1
k would actually be more appropriate (see

exercise 4.3.3Ű13). H. Zantema has analyzed the analogous problem when the cost of
step i is aj + ak instead of ajak; see J. Algorithms 12 (1991), 281Ű307. In this case
the optimum chains have total cost 5

2
n+O(n1/2). Furthermore the optimum additive

cost when n is odd is at least 5
2
(n− 1), with equality if and only if n can be written as

a product of numbers of the form 2k + 1.]

33. Eight; there are four ways to compute 39 = 12 + 12 + 12 + 3 and two ways to
compute 79 = 39 + 39 + 1.

34. The statement is true. The labels in the reduced graph of the binary chain are
⌊n/2k⌋ for k = e0, . . . , 0; they are 1, 2, . . . , 2e0 , n in the dual graph. [Similarly, the
right-to-left m-ary method of exercise 9 is the dual of the left-to-right method.]

35. 2t are equivalent to the binary chain; it would be 2t−1 if e0 = e1 + 1. The number
of chains equivalent to the scheme of Algorithm A is the number of ways to compute
the sum of t + 2 numbers of which two are identical. This is 1

2
ft+1 + 1

2
ft, where fm

is the number of ways to compute the sum of m + 1 distinct numbers. When we take
commutativity into account, we see that fm is 2−m times (m + 1)! times the number
of binary trees on m nodes, so fm = (2m− 1)(2m− 3) . . . 1.

36. First form the 2m−m−1 products xe1
1 . . . xem

m , for all sequences of exponents such
that 0 ≤ ek ≤ 1 and e1 + · · · + em ≥ 2. Let nk = (dkλ . . . dk1dk0)2; to complete the

4.6.3 ANSWERS TO EXERCISES 697

calculation, take xd1λ
1 . . . x

dmλ
m , then square and multiply by xd1i

1 . . . xdmi
m , for i = λ− 1,

. . . , 1, 0. [Straus showed in AMM 71 (1964), 807Ű808, that 2λ(n) may be replaced by
(1+ϵ)λ(n) for any ϵ > 0, by generalizing this binary method to 2k-ary as in Theorem D.]

37. (Solution by D. J. Bernstein.) Let n = nm. First compute 2e for 1 ≤ e ≤ λ(n),
then compute each nj in λ(n)/λλ(n) + O(λ(n)λλλ(n)/λλ(n)2) further steps by the
following variant of the 2k-ary method, where k = ⌊lg lgn − 2 lg lg lgn⌋: For all odd
q < 2k, compute yq =

{2kt+e | dt = 2eq} where nj = (. . . d1d0)2k , in at most ⌊ 1
k

lgn⌋
steps; then use the method in the Ąnal stages of answer 9 to compute nj =

qyq with

at most 2k − 1 further additions.
[A generalization of Theorem E gives the corresponding lower bound. Reference:

SICOMP 5 (1976), 100Ű103.]

38. The following construction due to D. J. Newman provides the best upper bound
currently known: Let k = p1 . . . pr be the product of the Ąrst r primes. Compute k and
all quadratic residues mod k in O(2−rk log k) steps (because there are approximately
2−rk quadratic residues). Also compute all multiples of k that are ≤ m2, in about
m2/k further steps. Now m additions suffice to compute 12, 22, . . . , m2. We have k =
exp(pr +O(pr/(log pr)1000)) where pr is given by the formula in the answer to exercise
4.5.4Ű36; see, for example, Greene and Knuth, Math. for the Analysis of Algorithms
(Boston: Birkhäuser, 1981), §4.1.6. So by choosing

r = ⌊(1 + 1
2

ln 2/lg lgm) lnm/ln lnm⌋
it follows that l(12, . . . ,m2) = m+O(m · exp(−(1

2
ln 2− ϵ) lnm/ln lnm)).

On the other hand, D. Dobkin and R. Lipton have shown that, for any ϵ > 0,
l(12, . . . ,m2) > m+m2/3−ϵ when m is sufficiently large [SICOMP 9 (1980), 121Ű125].

39. The quantity l([n1, n2, . . . , nm]) is the minimum of arcs−vertices+m taken over all
directed graphs having m vertices sj whose in-degree is zero and one vertex t whose out-
degree is zero, where there are exactly nj oriented paths from sj to t for 1 ≤ j ≤ m.
The quantity l(n1, n2, . . . , nm) is the minimum of arcs − vertices + 1 taken over all
directed graphs having one vertex s whose in-degree is zero and m vertices tj whose
out-degree is zero, where there are exactly nj oriented paths from s to tj for 1 ≤ j ≤ m.
These problems are dual to each other, if we change the direction of all the arcs. [See
J. Algorithms 2 (1981), 13Ű21.]

Note: C. H. Papadimitriou has observed that this is a special case of a much more
general theorem. Let N = (nij) be an m × p matrix of nonnegative integers having
no row or column entirely zero. We can deĄne l(N) to be the minimum number of
multiplications needed to compute the set of monomials {xn1j

1 . . . x
nmj
m | 1 ≤ j ≤ p}.

Now l(N) is also the minimum of arcs − vertices + m taken over all directed graphs
having m vertices si whose in-degree is zero and p vertices tj whose out-degree is zero,
where there are exactly nij oriented paths from si to tj for each i and j. By duality
we have l(N) = l(NT) +m− p. [Bulletin of the EATCS 13 (February 1981), 2Ű3.]

N. Pippenger has considerably extended the results of exercises 36 and 37. For
example, if L(m, p, n) is the maximum of l(N) taken over all m × p matrices N of
nonnegative integers nij ≤ n, he showed that L(m, p, n) = min(m, p) lgn + H/ lgH +
O(m+ p+H(log logH)1/2(logH)−3/2), where H = mp lg(n + 1). [See SICOMP 9

(1980), 230Ű250.]

40. By exercise 39, it suffices to show that l(m1n1 + · · · + mtnt) ≤ l(m1, . . . ,mt) +
l([n1, . . . , nt]). But this is clear, since we can Ąrst form {xm1 , . . . , xmt} and then
compute the monomial (xm1)n1 . . . (xmt)nt .

698 ANSWERS TO EXERCISES 4.6.3

Note: One strong way to state Olivos’s theorem is that if a0, . . . , ar and b0, . . . , bs

are any addition chains, then l(

cijaibj) ≤ r + s+

cij − 1 for any (r+ 1)× (s+ 1)

matrix of nonnegative integers cij .

41. [SICOMP 10 (1981), 638Ű646.] The stated formula can be proved whenever A ≥
9m2. Since this is a polynomial in m, and since the problem of Ąnding a minimum
vertex cover is NP-hard (see Section 7.9), the problem of computing l(n1, . . . , nm) is
NP-complete. [It is unknown whether or not the problem of computing l(n) is NP-
complete. But it seems plausible that an optimum chain for, say,

m−1
k=0 nk+12Ak2

would entail an optimum chain for {n1, . . . , nm}, when A is sufficiently large.]

42. The condition fails at 128 (and in the dual 1, 2, . . . , 16384, 16385, 16401, 32768,
. . . at 32768). Only two reduced digraphs of cost 27 exist; hence l0(5784689) = 28.
Furthermore, Clift’s programs proved that l0(n) = l(n) for all smaller values of n.

SECTION 4.6.4

1. Set y ← x2, then compute ((. . . (u2n+1y + u2n−1)y + · · ·)y + u1)x.

2. Replacing x in (2) by the polynomial x+ x0 leads to the following procedure:

G1. Do step G2 for k = n, n− 1, . . . , 0 (in this order), and stop.

G2. Set vk ← uk, and then set vj ← vj + x0vj+1 for j = k, k + 1, . . . , n − 1.
(When k = n, this step simply sets vn ← un.)

The computations turn out to be identical to those in H1 and H2, but performed in a
different order. (This process was Newton’s original motivation for using scheme (2).)

3. The coefficient of xk is a polynomial in y that may be evaluated by Horner’s rule:
(. . . (un,0x+(un−1,1y+un−1,0))x+ · · ·)x+((. . . (u0,ny+u0,n−1)y+ · · ·)y+u0,0). [For a
“homogeneousŤ polynomial, such as unx

n +un−1x
n−1y+ · · ·+u1xy

n−1 +u0y
n, another

scheme is more efficient: If 0 < |x| ≤ |y|, Ąrst divide x by y, evaluate a polynomial in
x/y, then multiply by yn.]

4. Rule (2) involves 4n or 3n real multiplications and 4n or 7n real additions; (3) is
worse, it takes 4n+ 2 or 4n+ 1 multiplications, 4n+ 2 or 4n+ 5 additions.

5. One multiplication to compute x2; ⌊n/2⌋ multiplications and ⌊n/2⌋ additions to
evaluate the Ąrst line; ⌈n/2⌉ multiplications and ⌈n/2⌉ − 1 additions to evaluate the
second line; and one addition to add the two lines together. Total: n+1 multiplications
and n additions.

6. J1. Compute and store the values x2
0, x3

0, . . . , x⌈n/2⌉
0 .

J2. Set vj ← ujx
j−⌊n/2⌋
0 for 0 ≤ j ≤ n.

J3. For k = 0, 1, . . . , n− 1, set vj ← vj + vj+1 for j = n− 1, . . . , k + 1, k.

J4. Set vj ← vjx
⌊n/2⌋−j
0 for 0 ≤ j ≤ n.

There are (n2 +n)/2 additions, n+⌈n/2⌉−1 multiplications, n divisions. Another mul-
tiplication and division can be saved by treating vn and v0 as special cases. Reference:

SIGACT News 7, 3 (Summer 1975), 32Ű34.

7. Let xj = x0 + jh, and consider (42) and (44). Set yj ← u(xj) for 0 ≤ j ≤ n. For
k = 1, 2, . . . , n (in this order), set yj ← yj − yj−1 for j = n, n − 1, . . . , k (in this
order). Now set βj ← yj for all j.

However, rounding errors will accumulate as explained in the text, even if the
operations of (5) are done with perfect accuracy. A better way to do the initialization,

4.6.4 ANSWERS TO EXERCISES 699

when (5) is performed with Ąxed point arithmetic, is to choose β0, . . . , βn so that

0
0

0
1

· · ·

0
n

d
0

d
1

· · ·

d
n

...
...

...
nd
0

nd
1

· · ·

nd
n

β0

β1
...
βn

=

u(x0)
u(xd)

...
u(xnd)

+

ϵ0

ϵ1
...
ϵn

,

where |ϵ0|, |ϵ1|, . . . , |ϵn| are as small as possible. [H. Hassler, Proc. 12th Spring Conf.
Computer Graphics (Bratislava: Comenius University, 1996), 55Ű66.]

8. See (43).

9. [Combinatorial Mathematics (Buffalo: Math. Assoc. of America, 1963), 26Ű28.]
This formula can be regarded as an application of the principle of inclusion and
exclusion (Section 1.3.3), since the sum of the terms for n − ϵ1 − · · · − ϵn = k is
the sum of all x1j1x2j2 . . . xnjn for which k values of the ji do not appear. A direct
proof can be given by observing that the coefficient of x1j1 . . . xnjn is

(−1)n−ϵ1−···−ϵn ϵj1 . . . ϵjn ;

if the j’s are distinct, this equals unity, but if j1, . . . , jn ̸= k then it is zero, since the
terms for ϵk = 0 cancel the terms for ϵk = 1.

To evaluate the sum efficiently, we can start with ϵ1 = 1, ϵ2 = · · · = ϵn = 0,
and we can then proceed through all combinations of the ϵ’s in such a way that only
one ϵ changes from one term to the next. (See “Gray binary codeŤ in Section 7.2.1.1.)
The Ąrst term costs n− 1 multiplications; the subsequent 2n − 2 terms each involve n
additions, then n − 1 multiplications, then one more addition. Total: (2n − 1)(n − 1)
multiplications, and (2n− 2)(n+ 1) additions. Only n+ 1 temporary storage locations
are needed, one for the main partial sum and one for each factor of the current product.

10.

1≤k<n(k + 1)

n
k+1

= n(2n−1 − 1) multiplications and

1≤k<n k

n

k+1

=

n2n−1 − 2n + 1 additions. This is approximately half as many arithmetic operations as
the method of exercise 9, although it requires a more complicated program to control
the sequence. Approximately

n

⌈n/2⌉

+

n
⌈n/2⌉−1

temporary storage locations must be

used, and this grows exponentially large (on the order of 2n/
√
n).

The method in this exercise is equivalent to the unusual matrix factorization of
the permanent function given by Jurkat and Ryser in J. Algebra 3 (1966), 1Ű27. It may
also be regarded as an application of (39) and (40), in an appropriate sense.

11. Efficient methods are known for computing an approximate value, if the matrix
is sufficiently dense; see A. Sinclair, Algorithms for Random Generation and Counting
(Boston: Birkhäuser, 1993). But this problem asks for the exact value. There may be
a way to evaluate the permanent with O(cn) operations for some c < 2.

12. Here is a brief summary of progress on this famous research problem: J. Hopcroft
and L. R. Kerr proved, among other things, that seven multiplications are necessary in
2 × 2 matrix multiplication modulo 2 [SIAM J. Appl. Math. 20 (1971), 30Ű36]. R. L.
Probert showed that all 7-multiplication schemes, in which each multiplication takes a
linear combination of elements from one matrix and multiplies by a linear combination
of elements from the other, must have at least 15 additions [SICOMP 5 (1976), 187Ű
203]. The tensor rank of 2 × 2 matrix multiplication is 7 over every Ąeld [V. Y. Pan,
J. Algorithms 2 (1981), 301Ű310]; the rank of T (2, 3, 2), the tensor for the product
of a 2 × 3 matrix by a 3 × 2 matrix, is 11 [V. B. Alekseyev, J. Algorithms 6 (1985),

700 ANSWERS TO EXERCISES 4.6.4

71Ű85]. For n × n matrix multiplication, the best upper bound known when n = 3
is due to J. D. Laderman [Bull. Amer. Math. Soc. 82 (1976), 126Ű128], who showed
that 23 noncommutative multiplications suffice. His construction has been generalized
by Ondrej Sýkora, who exhibited a method requiring n3 − (n − 1)2 noncommutative
multiplications and n3−n2 +11(n−1)2 additions; this result also reduces to (36) when
n = 2 [Lecture Notes in Comp. Sci. 53 (1977), 504Ű512]. For n = 5, the current record
is 100 noncommutative multiplications [O. M. Makarov, USSR Comp. Math. and Math.
Phys. 27, 1 (1987), 205Ű207]. The best lower bound known so far is due to Markus
Bläser, who showed that 2n2 +n− 3 nonscalar multiplications are necessary for n ≥ 2,
and mn+ns+m−n+ s− 3 in the m×n× s case for n ≥ 2 and s ≥ 2 [Computational
Complexity 8 (1999), 203Ű226]. If all calculations must be done without division,
slightly better lower bounds were obtained by N. H. Bshouty [SICOMP 18 (1989),
759Ű765], who proved that m×n by n×s matrix multiplication mod 2 requires at leastj−1

k=0⌊ms/2k⌋+ 1
2
(n+ (nmod j))(n− (nmod j)− j) + nmod j multiplications when

n ≥ s ≥ j ≥ 1; setting m = n = s and j ≈ lgn gives 2.5n2 − 1
2
n lgn+O(n).

The best upper bounds known for large n are discussed in the text, following (36).

13. By summing geometric series, we Ąnd that F (t1, . . . , tn) equals

0≤s1<m1,...,0≤sn<mn
exp(−2πi(s1t1/m1 + · · ·+ sntn/mn)f(s1, . . . , sn))/m1 . . .mn.

The inverse transform times m1 . . .mn can be found by doing a regular transform and
interchanging tj with mj − tj when tj ̸= 0; see exercise 4.3.3Ű9.

[If we regard F (t1, . . . , tn) as the coefficient of xt1
1 . . . xtn

n in a multivariate polyno-
mial, the discrete Fourier transform amounts to evaluation of this polynomial at roots
of unity, and the inverse transform amounts to Ąnding the interpolating polynomial.]

14. Let m1 = · · · = mn = 2, F (t1, t2, . . . , tn) = F (2n−1tn + · · · + 2t2 + t1), and
f(s1, s2, . . . , sn) = f(2n−1s1 + 2n−2s2 + · · · + sn); note the reversal between t’s and
s’s. Also let gk(sk, . . . , sn, tk) be ω raised to the 2k−1tk(sn + 2sn−1 + · · · + 2n−ksk)
power. Replace fk(sn−k+1, . . . , sn, t1, . . . , tn−k) by fk(t1, . . . , tn−k, sn−k+1, . . . , sn) in
(40) if you prefer to work in situ.

At each iteration we essentially take 2n−1 pairs of complex numbers (α, β) and
replace them by (α+ζβ, α−ζβ), where ζ is a suitable power of ω, hence ζ = cos θ+i sin θ
for some θ. If we take advantage of simpliĄcations when ζ = ±1 or ±i, the total work
comes to ((n− 3) · 2n−1 + 2) complex multiplications and n · 2n complex additions; the
techniques of exercise 41 can be used to reduce the real multiplications and additions
used to implement these complex operations.

The number of complex multiplications can be reduced about 25 percent without
changing the number of additions by combining passes k and k + 1 for k = 1, 3, . . . ;
this means that 2n−2 quadruples (α, β, γ, δ) are being replaced by

(α+ ζβ + ζ2γ + ζ3δ, α+ iζβ − ζ2γ − iζ3δ, α− ζβ + ζ2γ − ζ3δ, α− iζβ − ζ2γ + iζ3δ).

The total number of complex multiplications when n is even is thereby reduced to
(3n− 2)2n−3 − 5⌊2n−1/3⌋.

These calculations assume that the given numbers F (t) are complex. If the F (t)
are real, then f(s) is the complex conjugate of f(2n−s), so we can avoid the redundancy
by computing only the 2n independent real numbers f(0), ℜf(1), . . . , ℜf(2n−1 − 1),
f(2n−1), ℑf(1), . . . , ℑf(2n−1 − 1). The entire calculation in this case can be done
by working with 2n real values, using the fact that fk(sn−k+1, . . . , sn, t1, . . . , tn−k)
will be the complex conjugate of fk(s′n−k+1, . . . , s

′
n, t1, . . . , tn−k) when (s1 . . . sn)2 +

4.6.4 ANSWERS TO EXERCISES 701

(s′1 . . . s
′
n)2 ≡ 0 (modulo 2n). About half as many multiplications and additions are

needed as in the complex case.
[The fast Fourier transform algorithm was discovered by C. F. Gauss in 1805 and

independently rediscovered many times since, most notably by J. W. Cooley and J.
W. Tukey, Math. Comp. 19 (1965), 297Ű301. Its interesting history has been traced
by J. W. Cooley, P. A. W. Lewis, and P. D. Welch, Proc. IEEE 55 (1967), 1675Ű1677;
M. T. Heideman, D. H. Johnson, and C. S. Burrus, IEEE ASSP Magazine 1, 4 (October
1984), 14Ű21. Details concerning its use have been discussed by hundreds of authors,
admirably summarized by Charles Van Loan, Computational Frameworks for the Fast
Fourier Transform (Philadelphia: SIAM, 1992). For a survey of fast Fourier transforms
on Ąnite groups, see M. Clausen and U. Baum, Fast Fourier Transforms (Mannheim:
Bibliographisches Institut Wissenschaftsverlag, 1993).]

15. (a) The hint follows by integration and induction. Let f (n)(θ) take on all values be-
tween A and B inclusive, as θ varies from min(x0, . . . , xn) to max(x0, . . . , xn). Replac-
ing f (n) by each of these bounds, in the stated integral, yields A/n! ≤ f(x0, . . . , xn) ≤
B/n!. (b) It suffices to prove this for j = n. Let f be Newton’s interpolation
polynomial, then f (n) is the constant n!αn. [See The Mathematical Papers of Isaac
Newton, edited by D. T. Whiteside, 4 (1971), 36Ű51, 70Ű73.]

16. Carry out the multiplications and additions of (43) as operations on polynomials.
(The special case x0 = x1 = · · · = xn is considered in exercise 2. We have used this
method in step T8 of Algorithm 4.3.3T.)

17. For example, when n = 5 we have

u[5](x) =

y0

x− x0
− 5y1

x− x1
+

10y2

x− x2
− 10y3

x− x3
+

5y4

x− x4
− y5

x− x5

1
x− x0

− 5
x− x1

+
10

x− x2
− 10
x− x3

+
5

x− x4
− 1
x− x5

,

independent of the value of h.

18. α0 = 1
2
(u3/u4 + 1), β = u2/u4 − α0(α0 − 1), α1 = α0β − u1/u4, α2 = β − 2α1,

α3 = u0/u4 − α1(α1 + α2), α4 = u4.

19. Since α5 is the leading coefficient, we may assume without loss of generality that
u(x) is monic (namely that u5 = 1). Then α0 is a root of the equation 40z3 − 24u4z

2 +
(4u2

4 + 2u3)z + (u2 − u3u4) = 0; this equation always has at least one real root, and it
may have three. Once α0 is determined, we have α3 = u4−4α0, α1 = u3−4α0α3−6α2

0,
α2 = u1 − α0(α0α1 + 4α2

0α3 + 2α1α3 + α3
0), α4 = u0 − α3(α4

0 + α1α
2
0 + α2).

For the given polynomial we are to solve the cubic equation 40z3 − 120z2 +
80z = 0; this leads to three solutions (α0, α1, α2, α3, α4, α5) = (0,−10, 13, 5,−5, 1),
(1,−20, 68, 1, 11, 1), (2,−10, 13,−3, 27, 1).

20. LDA X

FADD =α3=

STA TEMP1

FADD =α0-α3=

STA TEMP2

FMUL TEMP2

STA TEMP2

FADD =α1=

FMUL TEMP2

FADD =α2=

FMUL TEMP1

FADD =α4=

FMUL =α5=

21. z = (x+ 1)x− 2, w = (x+ 5)z+ 9, u(x) = (w+ z− 8)w− 8; or z = (x+ 9)x+ 26,
w = (x− 3)z + 73, u(x) = (w + z − 24)w − 12.

22. α6 = 1, α0 = −1, α1 = 1, β1 = −2, β2 = −2, β3 = −2, β4 = 1, α3 = −4, α2 = 0,
α4 = 4, α5 = −2. We form z = (x−1)x+1, w = z+x, and u(x) = ((z−x−4)w+4)z−2.
Here one of the seven additions can be saved if we compute w = x2 + 1, z = w − x.

702 ANSWERS TO EXERCISES 4.6.4

23. (a) We may use induction on n; the result is trivial if n < 2. If f(0) = 0, then
the result is true for the polynomial f(z)/z, so it holds for f(z). If f(iy) = 0 for some
real y ̸= 0, then g(±iy) = h(±iy) = 0; since the result is true for f(z)/(z2 + y2), it
holds also for f(z). Therefore we may assume that f(z) has no roots whose real part
is zero. Now the net number of times the given path circles the origin is the number of
roots of f(z) inside the region, which is at most 1. When R is large, the path f(Reit)
for π/2 ≤ t ≤ 3π/2 will circle the origin clockwise approximately n/2 times; so the
path f(it) for −R ≤ t ≤ R must go counterclockwise around the origin at least n/2− 1
times. For n even, this implies that f(it) crosses the imaginary axis at least n−2 times,
and the real axis at least n − 3 times; for n odd, f(it) crosses the real axis at least
n − 2 times and the imaginary axis at least n − 3 times. These are roots respectively
of g(it) = 0, h(it) = 0.

(b) If not, g or h would have a root of the form a+ bi with a ̸= 0 and b ̸= 0. But
this would imply the existence of at least three other such roots, namely a − bi and
−a± bi, while g(z) and h(z) have at most n roots.

24. The roots of u are −7, −3± i, −2± i, and −1; permissible values of c are 2 and 4
(but not 3, since c = 3 makes the sum of the roots equal to zero). Case 1: c = 2. Then
p(x) = (x + 5)(x2 + 2x + 2)(x2 + 1)(x − 1) = x6 + 6x5 + 6x4 + 4x3 − 5x2 − 2x − 10;
q(x) = 6x2 + 4x − 2 = 6(x + 1)(x − 1

3
). Let α2 = −1, α1 = 1

3
; p1(x) = x4 +

6x3 + 5x2 − 2x − 10 = (x2 + 6x + 16
3

)(x2 − 1
3
) − 74

9
; α0 = 6, β0 = 16

3
, β1 = − 74

9
.

Case 2: c = 4. A similar analysis gives α2 = 9, α1 = −3, α0 = −6, β0 = 12, β1 = −26.

25. β1 = α2, β2 = 2α1, β3 = α7, β4 = α6, β5 = β6 = 0, β7 = α1, β8 = 0, β9 = 2α1−α8.

26. (a) λ1 = α1 × λ0, λ2 = α2 + λ1, λ3 = λ2 × λ0, λ4 = α3 + λ3, λ5 = λ4 × λ0,
λ6 = α4 + λ5. (b) κ1 = 1 + β1x, κ2 = 1 + β2κ1x, κ3 = 1 + β3κ2x, u(x) = β4κ3 =
β1β2β3β4x

3 + β2β3β4x
2 + β3β4x+ β4. (c) If any coefficient is zero, the coefficient of x3

must also be zero in (b), while (a) yields an arbitrary polynomial α1x
3 +α2x

2 +α3x+α4

of degree ≤ 3.

27. Otherwise there would be a nonzero polynomial f(qn, . . . , q1, q0) with integer coeffi-
cients such that qn · f(qn, . . . , q1, q0) = 0 for all sets (qn, . . . , q0) of real numbers. This
cannot happen, since it is easy to prove by induction on n that a nonzero polynomial
always takes on some nonzero value. (See exercise 4.6.1Ű16. However, this result is
false for Ąnite Ąelds in place of the real numbers.)

28. The indeterminate quantities α1, . . . , αs form an algebraic basis for the polynomial
domain Q[α1, . . . , αs], where Q is the Ąeld of rational numbers. Since s + 1 is greater
than the number of elements in a basis, the polynomials fj(α1, . . . , αs) are algebraically
dependent; this means that there is a nonzero polynomial g with rational coefficients
such that g(f0(α1, . . . , αs), . . . , fs(α1, . . . , αs)) is identically zero.

29. Given j0, . . . , jt ∈ {0, 1, . . . , n}, there are nonzero polynomials with integer coeffi-
cients such that gj(qj0 , . . . , qjt) = 0 for all (qn, . . . , q0) in Rj , 1 ≤ j ≤ m. The product
g1g2 . . . gm is therefore zero for all (qn, . . . , q0) in R1 ∪ · · · ∪Rm.

30. Starting with the construction in Theorem M, we will prove that mp +(1−δ0mc) of
the β’s may effectively be eliminated: If µi corresponds to a parameter multiplication,
we have µi = β2i−1 × (T2i + β2i); add cβ2i−1β2i to each βj for which cµi occurs in Tj ,
and replace β2i by zero. This removes one parameter for each parameter multiplication.
If µi is the Ąrst chain multiplication, then µi = (γ1x+ θ1 + β2i−1)× (γ2x+ θ2 + β2i),
where γ1, γ2, θ1, θ2 are polynomials in β1, . . . , β2i−2 with integer coefficients. Here
θ1 and θ2 can be “absorbedŤ into β2i−1 and β2i, respectively, so we may assume that

4.6.4 ANSWERS TO EXERCISES 703

θ1 = θ2 = 0. Now add cβ2i−1β2i to each βj for which cµi occurs in Tj ; add β2i−1γ2/γ1

to β2i; and set β2i−1 to zero. The result set is unchanged by this elimination of β2i−1,
except for the values of α1, . . . , αs such that γ1 is zero. [This proof is essentially due to
V. Y. Pan, Uspekhi Mat. Nauk 21, 1 (JanuaryŰFebruary 1966), 103Ű134.] The latter
case can be handled as in the proof of Theorem A, since the polynomials with γ1 = 0
can be evaluated by eliminating β2i (as in the Ąrst construction, where µi corresponds
to a parameter multiplication).

31. Otherwise we could add one parameter multiplication as a Ąnal step, and violate
Theorem C. (The exercise is an improvement over Theorem A, in this special case,
since there are only n degrees of freedom in the coefficients of a monic polynomial of
degree n.)

32. λ1 = λ0 × λ0, λ2 = α1 × λ1, λ3 = α2 + λ2, λ4 = λ3 × λ1, λ5 = α3 + λ4. We
need at least three multiplications to compute u4x

4 (see Section 4.6.3), and at least
two additions by Theorem A.

33. We must have n+ 1 ≤ 2mc +mp + δ0mc , and mc +mp = (n+ 1)/2; so there are no
parameter multiplications. Now the Ąrst λi whose leading coefficient (as a polynomial
in x) is not an integer must be obtained by a chain addition; and there must be at least
n+ 1 parameters, so there are at least n+ 1 parameter additions.

34. Transform the given chain step by step, and also deĄne the “contentŤ ci of λi, as
follows: (Intuitively, ci is the leading coefficient of λi.) DeĄne c0 = 1. (a) If the step
has the form λi = αj + λk, replace it by λi = βj + λk, where βj = αj/ck; and deĄne
ci = ck. (b) If the step has the form λi = αj − λk, replace it by λi = βj + λk, where
βj = −αj/ck; and deĄne ci = −ck. (c) If the step has the form λi = αj × λk, replace
it by λi = λk (the step will be deleted later); and deĄne ci = αjck. (d) If the step has
the form λi = λj × λk, leave it unchanged; and deĄne ci = cjck.

After this process is Ąnished, delete all steps of the form λi = λk, replacing λi by
λk in each future step that uses λi. Then add a Ąnal step λr+1 = β×λr, where β = cr.
This is the desired scheme, since it is easy to verify that the new λi are just the old
ones divided by the factor ci. The β’s are given functions of the α’s; division by zero
is no problem, because if any ck = 0 we must have cr = 0 (hence the coefficient of xn

is zero), or else λk never contributes to the Ąnal result.

35. Since there are at least Ąve parameter steps, the result is trivial unless there is at
least one parameter multiplication; considering the ways in which three multiplications
can form u4x

4, we see that there must be one parameter multiplication and two chain
multiplications. Therefore the four addition-subtractions must each be parameter steps,
and exercise 34 applies. We can now assume that only additions are used, and that
we have a chain to compute a general monic fourth-degree polynomial with two chain
multiplications and four parameter additions. The only possible scheme of this type
that calculates a fourth-degree polynomial has the form

λ1 = α1 + λ0

λ2 = α2 + λ0

λ3 = λ1 × λ2

λ4 = α3 + λ3

λ5 = α4 + λ3

λ6 = λ4 × λ5

λ7 = α5 + λ6.

704 ANSWERS TO EXERCISES 4.6.4

Actually this chain has one addition too many, but any correct scheme can be put into
this form if we restrict some of the α’s to be functions of the others. Now λ7 has the
form (x2 +Ax+B)(x2 +Ax+ C) +D = x4 + 2Ax3 + (E +A2)x2 + EAx+ F, where
A = α1 + α2, B = α1α2 + α3, C = α1α2 + α4, D = α6, E = B + C, F = BC + D;
and since this involves only three independent parameters it cannot represent a general
monic fourth-degree polynomial.

36. As in the solution to exercise 35, we may assume that the chain computes a
general monic polynomial of degree six, using only three chain multiplications and six
parameter additions. The computation must take one of two general forms

λ1 = α1 + λ0

λ2 = α2 + λ0

λ3 = λ1 × λ2

λ4 = α3 + λ0

λ5 = α4 + λ3

λ6 = λ4 × λ5

λ7 = α5 + λ6

λ8 = α6 + λ6

λ9 = λ7 × λ8

λ10 = α7 + λ9

λ1 = α1 + λ0

λ2 = α2 + λ0

λ3 = λ1 × λ2

λ4 = α3 + λ3

λ5 = α4 + λ3

λ6 = λ4 × λ5

λ7 = α5 + λ3

λ8 = α6 + λ6

λ9 = λ7 × λ8

λ10 = α7 + λ9

where, as in exercise 35, an extra addition has been inserted to cover a more general
case. Neither of these schemes can calculate a general sixth-degree monic polynomial,
since the Ąrst case is a polynomial of the form

(x3 +Ax2 +Bx+ C)(x3 +Ax2 +Bx+D) + E,

and the second case is a polynomial of the form

(x4 + 2Ax3 + (E +A2)x2 + EAx+ F)(x2 +Ax+G) +H;

both of these involve only Ąve independent parameters.

37. Let p0(x) = unx
n +un−1x

n−1 + · · ·+u0 and q0(x) = xn +vn−1x
n−1 + · · ·+v0. For

1 ≤ j ≤ n, divide pj−1(x) by the monic polynomial qj−1(x), obtaining pj−1(x) =
αjqj−1(x) + βjqj(x). Assume that a monic polynomial qj(x) of degree n − j ex-
ists satisfying this relation; this will be true for almost all rational functions. Let
pj(x) = qj−1(x) − xvqj(x). These deĄnitions imply that deg(pn) < 1, so we may let
αn+1 = pn(x).

For the given rational function we have

j αj βj qj(x) pj(x)

0 x2 + 8x+ 19 x2 + 10x+ 29
1 1 2 x+ 5 3x+ 19
2 3 4 1 5

so u(x)/v(x) = p0(x)/q0(x) = 1 + 2/(x+ 3 + 4/(x+ 5)).
Notes: A general rational function of the stated form has 2n + 1 “degrees of

freedom,Ť in the sense that it can be shown to have 2n + 1 essentially independent
parameters. If we generalize polynomial chains to quolynomial chains, which allow
division operations as well as addition, subtraction, and multiplication (see exercise 71),
we can obtain the following results with slight modiĄcations to the proofs of Theorems
A and M: A quolynomial chain with q addition-subtraction steps has at most q + 1

4.6.4 ANSWERS TO EXERCISES 705

degrees of freedom. A quolynomial chain with m multiplication-division steps has at
most 2m+ 1 degrees of freedom. Therefore a quolynomial chain that computes almost
all rational functions of the stated form must have at least 2n addition-subtractions,
and n multiplication-divisions; the method in this exercise is optimal.

38. The theorem is certainly true if n = 0. Assume that n is positive, and that a
polynomial chain computing P (x;u0, . . . , un) is given, where each of the parameters αj

has been replaced by a real number. Let λi = λj × λk be the Ąrst chain multiplication
step that involves one of u0, . . . , un; such a step must exist because of the rank of A.
Without loss of generality, we may assume that λj involves un; thus, λj has the form
h0u0 + · · ·+ hnun + f(x), where h0, . . . , hn are real, hn ̸= 0, and f(x) is a polynomial
with real coefficients. (The h’s and the coefficients of f(x) are derived from the values
assigned to the α’s.)

Now change step i to λi = α×λk, where α is an arbitrary real number. (We could
take α = 0; general α is used here merely to show that there is a certain amount of
Ćexibility available in the proof.) Add further steps to calculate

λ = (α− f(x)− h0u0 − · · · − hn−1un−1)/hn;

these new steps involve only additions and parameter multiplications (by suitable
new parameters). Finally, replace λ−n−1 = un everywhere in the chain by this new
element λ. The result is a chain that calculates

Q(x;u0, . . . , un−1) = P (x;u0, . . . , un−1, (α− f(x)− h0u0 − · · · − hn−1un−1)/hn);

and this chain has one less chain multiplication. The proof will be complete if we
can show that Q satisĄes the hypotheses. The quantity (α − f(x))/hn leads to a
possibly increased value of m, and a new vector B′. If the columns of A are A0, A1,
. . . , An (these vectors being linearly independent over the reals), the new matrix A′

corresponding to Q has the column vectors

A0 − (h0/hn)An, . . . , An−1 − (hn−1/hn)An,

plus perhaps a few rows of zeros to account for an increased value of m, and these
columns are clearly also linearly independent. By induction, the chain that computes Q
has at least n− 1 chain multiplications, so the original chain has at least n.

[Pan showed also that the use of division would give no improvement; see Problemy
Kibernetiki 7 (1962), 21Ű30. Generalizations to the computation of several polynomials
in several variables, with and without various kinds of preconditioning, have been given
by S. Winograd, Comm. Pure and Applied Math. 23 (1970), 165Ű179.]

39. By induction on m. Let wm(x) = x2m + u2m−1x
2m−1 + · · · + u0, wm−1(x) =

x2m−2 + v2m−3x
2m−3 + · · ·+ v0, a = α1 + γm, b = αm, and let

f(r) =

i,j≥0(−1)i+j

i+j
j

ur+i+2ja

ibj .

It follows that vr = f(r + 2) for r ≥ 0, and δm = f(1). If δm = 0 and a is given,
we have a polynomial of degree m− 1 in b, with leading coefficient ±(u2m−1 −ma) =
±(γ2 + · · ·+ γm −mγm).

In Motzkin’s unpublished notes he arranged to make δk = 0 almost always, by
choosing γ’s so that this leading coefficient is ̸= 0 when m is even and = 0 when m is
odd; then we can almost always let b be a (real) root of an odd-degree polynomial.

706 ANSWERS TO EXERCISES 4.6.4

40. No; S. Winograd found a way to compute all polynomials of degree 13 with only
7 (possibly complex) multiplications [Comm. Pure and Applied Math. 25 (1972), 455Ű
457]. L. Revah found schemes that evaluate almost all polynomials of degree n ≥ 9
with ⌊n/2⌋ + 1 (possibly complex) multiplications [SICOMP 4 (1975), 381Ű392]; she
also showed that when n = 9 it is possible to achieve ⌊n/2⌋+1 multiplications only with
at least n + 3 additions. By appending sufficiently many additions (see exercise 39),
the “almost allŤ and “possibly complexŤ provisos disappear. V. Y. Pan [STOC 10

(1978), 162Ű172; IBM Research Report RC7754 (1979)] found schemes with ⌊n/2⌋+ 1
(complex) multiplications and the minimum number n+2+δn9 of (complex) additions,
for all odd n ≥ 9; his method for n = 9 is

v(x) = ((x+ α)2 + β)(x+ γ), w(x) = v(x) + x,

t1(x) = (v(x) + δ1)(w(x) + ϵ1), t2(x) = (v(x) + δ2)(w(x) + ϵ2),
u(x) = (t1(x) + ζ)(t2(x)− t1(x) + η) + κ.

The minimum number of real additions necessary, when the minimum number of (real)
multiplications is achieved, remains unknown for n ≥ 9.

41. a(c+ d)− (a+ b)d+ i(a(c+ d) + (b−a)c). [Beware of numerical instability. Three
multiplications are necessary, since complex multiplication is a special case of (71) with
p(u) = u2 + 1. Without the restriction on additions there are other possibilities. For
example, the symmetric formula ac− bd+ i((a+ b)(c+ d)− ac− bd) was suggested by
Peter Ungar in 1963; Eq. 4.3.3Ű(2) is similar, with 2n in the role of i. See I. Munro,
STOC 3 (1971), 40Ű44; S. Winograd, Linear Algebra and Its Applications 4 (1971),
381Ű388.]

Alternatively, if a2+b2 = 1 and t = (1−a)/b = b/(1+a), the algorithm “w = c−td,
v = d+ bw, u = w − tvŤ for calculating the product (a+ bi)(c+ di) = u+ iv has been
suggested by Oscar Buneman [J. Comp. Phys. 12 (1973), 127Ű128]. In this method if
a = cos θ and b = sin θ, we have t = tan(θ/2).

Helmut Alt and Jan van Leeuwen [Computing 27 (1981), 205Ű215] have shown
that four real multiplications or divisions are necessary for computing 1/(a + bi), and
four are sufficient for computing

a

b+ ci
=

a

b+ c(c/b)
− i

(c/b)a
b+ c(c/b)

.

Six multiplication-division operations and three addition-subtractions are necessary
and sufficient to compute (a+ bi)/(c+di). [T. Lickteig, SICOMP 16 (1987), 278Ű311].

In spite of these lower bounds, one should remember that complex arithmetic
need not be implemented in terms of real arithmetic. For example, the time needed to
multiply two n-place complex numbers is asymptotically only about twice the time to
multiply two n-place real numbers, using fast Fourier transforms.

42. (a) Let π1, . . . , πm be the λi’s that correspond to chain multiplications; then
πi = P2i−1 × P2i and u(x) = P2m+1, where each Pj has the form βj + βj0x+ βj1π1 +
· · ·+βjr(j)πr(j), where r(j) ≤ ⌈j/2⌉−1 and each of the βj and βjk is a polynomial in the
α’s with integer coefficients. We can systematically modify the chain (see exercise 30)
so that βj = 0 and βjr(j) = 1, for 1 ≤ j ≤ 2m; furthermore we can assume that β30 = 0.
The result set now has at most m+ 1 +

2m
j=1(⌈j/2⌉− 1) = m2 + 1 degrees of freedom.

(b) Any such polynomial chain with at most m chain multiplications can be
simulated by one with the form considered in (a), except that now we let r(j) = ⌈j/2⌉−1
for 1 ≤ j ≤ 2m + 1, and we do not assume that β30 = 0 or that βjr(j) = 1 for j ≥ 3.

4.6.4 ANSWERS TO EXERCISES 707

This single canonical form involves m2 + 2m parameters. As the α’s run through all
integers and as we run through all chains, the β’s run through at most 2m2+2m sets of
values mod 2, hence the result set does also. In order to obtain all 2n polynomials
of degree n with 0Ű1 coefficients, we need m2 + 2m ≥ n.

(c) Set m ← ⌊√n⌋ and compute x2, x3, . . . , xm. Let u(x) = um+1(x)x(m+1)m +
· · · + u1(x)xm + u0(x), where each uj(x) is a polynomial of degree ≤ m with integer
coefficients (hence it can be evaluated without any more multiplications). Now evaluate
u(x) by rule (2) as a polynomial in xm with known coefficients. (The number of
additions used is approximately the sum of the absolute values of the coefficients, so
this algorithm is efficient on 0Ű1 polynomials. Paterson and Stockmeyer also gave
another algorithm that uses about

√
2n multiplications.)

References: SICOMP 2 (1973), 60Ű66; see also J. E. Savage, SICOMP 3 (1974),
150Ű158; J. Ganz, SICOMP 24 (1995), 473Ű483. For analogous results about additions,
see Borodin and Cook, SICOMP 5 (1976), 146Ű157; Rivest and Van de Wiele, Inf. Proc.
Letters 8 (1979), 178Ű180.

43. When ai = aj + ak is a step in some optimal addition chain for n + 1, compute
xi = xjxk and pi = pkx

j + pj , where pi = xi−1 + · · ·+ x+ 1; omit the Ąnal calculation
of xn+1. We save one multiplication whenever ak = 1, in particular when i = 1. (See
exercise 4.6.3Ű31 with ϵ = 1

2
.)

44. Let l = ⌊lgn⌋, and suppose x, x2, x4, . . . , x2l

have been precomputed. If u(x)
is monic of degree n = 2m + 1, we can write u(x) = (xm+1 + α)v(x) + w(x), where
v(x) and w(x) are monic of degree m. This yields a method for n = 2l+1− 1 ≥ 3 that
requires 2l − 1 further multiplications and 2l+1 + 2l−1 − 2 additions. If n = 2l we can
apply Horner’s rule to reduce n by 1. And if m = 2l < n < 2l+1 − 1, we can write
u(x) = xmv(x) +w(x) where v and w are monic of degrees n−m and m, respectively;
by induction on l, this requires at most 1

2
n + l − 1 multiplications and 5

4
n additions,

after the precomputation. [See S. Winograd, IBM Tech. Disclosure Bull. 13 (1970),
1133Ű1135.]

Note: It is also possible to evaluate u(x) with 1
2
n + O(

√
n) multiplications and

n + O(
√
n) additions, under the same ground rules, if our goal is to minimize multi-

plications + additions. The generic polynomial

pjkm(x) =

. . . (((xm + α0)(xj+1 + β1) + α1)(xj+2 + β2)

+ α2) · · ·

(xk + βk−j) + αk−j

(xj + β0)

“coversŤ the coefficients of exponents {j, j + k, j + k + (k − 1), . . . , j + k + (k − 1) +
· · ·+ (j + 1), m′ − k,m′ − k + 1, . . . ,m′ − j}, where

m′ = m+ j + (j + 1) + · · ·+ k = m+

k + 1

2

−

j

2

.

By adding together such polynomials p1km1 (x), p2km2 (x), . . . , pkkmk (x) for mj =
j+1

2

+

k−j+2
2

, we obtain an arbitrary monic polynomial of degree k2 + k+ 1. [Rabin

and Winograd, Comm. on Pure and Applied Math. 25 (1972), 433Ű458, §2; this paper
also proves that constructions with 1

2
n + O(logn) multiplications and ≤ (1 + ϵ)n

additions are possible for all ϵ > 0, if n is large enough.]

45. It suffices to show that (Tijk)’s rank is at most that of (tijk), since we can obtain
(tijk) back from (Tijk) by transforming it in the same way with F−1, G−1, H−1. If

708 ANSWERS TO EXERCISES 4.6.4

tijk =
r

l=1 ailbjlckl then it follows immediately that

Tijk =

1≤l≤r(
m

i′=1 Fii′ ai′l)(
n

j′=1 Gjj′ bj′l)(
s

k′=1 Hkk′ ck′l).

[H. F. de Groote has proved that all normal schemes that yield 2 × 2 matrix
products with seven chain multiplications are equivalent, in the sense that they can be
obtained from each other by nonsingular matrix multiplication as in this exercise. In
this sense Strassen’s algorithm is unique. See Theor. Comp. Sci. 7 (1978), 127Ű148.]

46. By exercise 45 we can add any multiple of a row, column, or plane to another one
without changing the rank; we can also multiply a row, column, or plane by a nonzero
constant, or transpose the tensor. A sequence of such operations can always be found to
reduce a given 2×2×2 tensor to one of the forms

0 0
0 0

0 0
0 0

,

1 0
0 0

0 0
0 0

,

1 0
0 1

0 0
0 0

,

1 0
0 0

0 0
0 1

,

1 0
0 1

0 1
q r

. The last tensor has rank 3 or 2 according as the polynomial u2 − ru− q has

one or two irreducible factors in the Ąeld of interest, by Theorem W (see (74)).

47. A general m × n × s tensor has mns degrees of freedom. By exercise 28 it is
impossible to express all m × n × s tensors in terms of the (m + n + s)r elements of
a realization (A,B,C) unless (m + n + s)r ≥ mns. On the other hand, assume that
m ≥ n ≥ s. The rank of an m× n matrix is at most n, so we can realize any tensor in
ns chain multiplications by realizing each matrix plane separately. [Exercise 46 shows
that this lower bound on the maximum tensor rank is not best possible, nor is the
upper bound. Thomas D. Howell (Ph.D. thesis, Cornell Univ., 1976) has shown that
there are tensors of rank ≥ ⌈mns/(m+ n+ s− 2)⌉ over the complex numbers.]

48. If (A,B,C) and (A′, B′, C′) are realizations of (tijk) and (t′ijk) of respective lengths
r and r′, then A′′ = A⊕A′, B′′ = B⊕B′, C′′ = C⊕C′, and A′′′ = A⊗A′, B′′′ = B⊗B′,
C′′′ = C ⊗C′, are realizations of (t′′ijk) and (t′′′ijk) of respective lengths r+ r′ and r · r′.

Note: Many people have made the natural conjecture that rank((tijk)⊕ (t′ijk)) =
rank(tijk) + rank(t′ijk), but the constructions in exercise 60(b) and exercise 65 make
this seem much less plausible than it once was.

49. By Lemma T, rank(tijk) ≥ rank(ti(jk)). Conversely if M is a matrix of rank r
we can transform it by row and column operations, Ąnding nonsingular matrices F
and G such that FMG has all entries 0 except for r diagonal elements that are 1;
see Algorithm 4.6.2N. The tensor rank of FMG is therefore ≤ r; and it is the same as
the tensor rank of M, by exercise 45.

50. Let i = ⟨i′, i′′⟩ where 1 ≤ i′ ≤ m and 1 ≤ i′′ ≤ n; then t⟨i′,i′′⟩jk = δi′′jδi′k, and
it is clear that rank(ti(jk)) = mn since (ti(jk)) is a permutation matrix. By Lemma L,
rank(tijk) ≥ mn. Conversely, since (tijk) has only mn nonzero entries, its rank is
clearly ≤ mn. (There is consequently no normal scheme requiring fewer than the mn
obvious multiplications. There is no such abnormal scheme either [Comm. Pure and
Appl. Math. 3 (1970), 165Ű179]. But some savings can be achieved if the same matrix
is used with s > 1 different column vectors, since this is equivalent to (m × n) times
(n× s) matrix multiplication.)

51. (a) s1 = y0 + y1, s2 = y0 − y1; m1 = 1
2
(x0 + x1)s1, m2 = 1

2
(x0 − x1)s2; w0 =

m1 +m2, w1 = m1−m2. (b) Here are some intermediate steps, using the methodology
in the text: ((x0 − x2) + (x1 − x2)u)((y0 − y2) + (y1 − y2)u) mod (u2 + u + 1) =
((x0 − x2)(y0 − y2)− (x1 − x2)(y1 − y2)) + ((x0 − x2)(y0 − y2)− (x1 − x0)(y1 − y0))u.
The Ąrst realization is

1 1 1 0
1 0 1 1
1 1 0 1

,

1 1 1 0
1 0 1 1
1 1 0 1

,

1 1 1 2
1 1 2 1
1 2 1 1

× 1
3
.

4.6.4 ANSWERS TO EXERCISES 709

The second realization is

1 1 1 2
1 1 2 1
1 2 1 1

× 1
3
,

1 1 1 0
1 1 0 1
1 0 1 1

,

1 1 1 0
1 0 1 1
1 1 0 1

.

The resulting algorithm computes s1 = y0 +y1, s2 = y0−y1, s3 = y2−y0, s4 = y2−y1,
s5 = s1+y2; m1 = 1

3
(x0+x1+x2)s5, m2 = 1

3
(x0+x1−2x2)s2, m3 = 1

3
(x0−2x1+x2)s3,

m4 = 1
3
(−2x0 +x1 +x2)s4; t1 = m1 +m2, t2 = m1−m2, t3 = m1 +m3, w0 = t1−m3,

w1 = t3 +m4, w2 = t2 −m4.

52. Let k = ⟨k′, k′′⟩ when k mod n′ = k′ and k mod n′′ = k′′. Then we wish to compute
w⟨k′,k′′⟩ =

x⟨i′,i′′⟩y⟨j′,j′′⟩ summed for i′ + j′ ≡ k′ (modulo n′) and i′′ + j′′ ≡ k′′

(modulo n′′). This can be done by applying the n′ algorithm to the 2n′ vectors Xi′

and Yj′ of length n′′, obtaining the n′ vectors Wk′ . Each vector addition becomes n′′

additions, each parameter multiplication becomes n′′ parameter multiplications, and
each chain multiplication of vectors is replaced by a cyclic convolution of degree n′′. [If
the subalgorithms use the minimum number of chain multiplications over the rationals,
this algorithm uses 2(n′ − d(n′))(n′′ − d(n′′)) more than the minimum, where d(n) is
the number of divisors of n, because of exercise 4.6.2Ű32 and Theorem W.]

53. (a) Let n(k) = (p − 1)pe−k−1 = φ(pe−k) for 0 ≤ k < e, and n(k) = 1 for k ≥ e.
Represent the numbers {1, . . . ,m} in the form aipk (modulo m), where 0 ≤ k ≤ e and
0 ≤ i < n(k), and a is a Ąxed primitive element modulo pe. For example, when m = 9
we can let a = 2; the values are {2030, 2130, 2031, 2230, 2530, 2131, 2430, 2330, 2032}.
Then f(aipk) =

0≤l≤e

0≤j<n(l) ω

g(i,j,k,l)F (ajpl) where g(i, j, k, l) = ai+jpk+l.

We shall compute fikl =

0≤j<n(l) ω
g(i,j,k,l)F (ajpl) for 0 ≤ i < n(k) and for each

k and l. This is a cyclic convolution of degree n(k + l) on the values xi = ωaipk+l and
ys =

0≤j<n(l)[s+ j≡ 0 (modulo n(k + l))]F (ajpl), since fikl is

xrys summed over

r+s ≡ i (modulo n(k+ l)). The Fourier transform is obtained by summing appropriate
fikl’s. [Note: When linear combinations of the xi are formed, for example as in (69),
the result will be purely real or purely imaginary, when the cyclic convolution algorithm
has been constructed by using rule (59) with un(k)−1 = (un(k)/2−1)(un(k)/2 +1). The
reason is that reduction mod (un(k)/2− 1) produces a polynomial with real coefficients
ωj + ω−j while reduction mod (un(k)/2 + 1) produces a polynomial with imaginary
coefficients ωj − ω−j.]

When p = 2 an analogous construction applies, using the representation (−1)iaj2k

(modulo m), where 0 ≤ k ≤ e and 0 ≤ i ≤ min(e − k, 1) and 0 ≤ j < 2e−k−2. In this
case we use the construction of exercise 52 with n′ = 2 and n′′ = 2e−k−2; although
these numbers are not relatively prime, the construction does yield the desired direct
product of cyclic convolutions.

(b) Let a′m′ +a′′m′′ = 1; and let ω′ = ωa′′m′′

, ω′′ = ωa′m′

. DeĄne s′ = smodm′,
s′′ = smodm′′, t′ = tmodm′, t′′ = tmodm′′, so that ωst = (ω′)s′t′(ω′′)s′′t′′. It
follows that f(s′, s′′) =

m′−1
t′=0

m′′−1
t′′=0 (ω′)s′t′(ω′′)s′′t′′F (t′, t′′); in other words, the

one-dimensional Fourier transform on m elements is actually a two-dimensional Fourier
transform on m′ ×m′′ elements, in slight disguise.

We shall deal with “normalŤ algorithms consisting of (i) a number of sums si of
the F ’s and s’s; followed by (ii) a number of products mj , each of which is obtained
by multiplying one of the F ’s or S’s by a real or imaginary number αj ; followed by
(iii) a number of further sums tk, each of which is formed from m’s or t’s (not F ’s or
s’s). The Ąnal values must be m’s or t’s. For example, the “normalŤ Fourier transform

710 ANSWERS TO EXERCISES 4.6.4

scheme for m = 5 constructed from (69) and the method of part (a) is as follows:
s1 = F (1) + F (4), s2 = F (3) + F (2), s3 = s1 + s2, s4 = s1 − s2, s5 = F (1) − F (4),
s6 = F (2)−F (3), s7 = s5−s6; m1 = 1

4
(ω+ω2+ω4+ω3)s3, m2 = 1

4
(ω−ω2+ω4−ω3)s4,

m3 = 1
2
(ω + ω2 − ω4 − ω3)s5, m4 = 1

2
(−ω + ω2 + ω4 − ω3)s6, m5 = 1

2
(ω3 − ω2)s7,

m6 = 1 · F (5), m7 = 1 · s3; t0 = m1 + m6, t1 = t0 + m2, t2 = m3 + m5, t3 = t0 −m2,
t4 = m4 − m5, t5 = t1 + t2, t6 = t3 + t4, t7 = t1 − t2, t8 = t3 − t4, t9 = m6 + m7.
Note the multiplication by 1 shown in m6 and m7; this is required by our conventions,
and it is important to include such cases for use in recursive constructions (although
the multiplications need not really be done). Here m6 = f001, m7 = f010, t5 =
f000 + f001 = f(20), t6 = f100 + f101 = f(21), etc. We can improve the scheme by
introducing s8 = s3 +F (5), replacing m1 by (1

4
(ω+ω2 +ω4 +ω3)−1)s3 [this is − 5

4
s3],

replacing m6 by 1·s8, and deleting m7 and t9; this saves one of the trivial multiplications
by 1, and it will be advantageous when the scheme is used to build larger ones. In the
improved scheme, f(5) = m6, f(1) = t5, f(2) = t6, f(3) = t8, f(4) = t7.

Now suppose we have normal one-dimensional schemes for m′ and m′′, using
respectively (a′, a′′) complex additions, (t′, t′′) trivial multiplications by ±1 or ±i, and
a total of (c′, c′′) complex multiplications including the trivial ones. (The nontrivial
complex multiplications are all “simpleŤ since they involve only two real multiplications
and no real additions.) We can construct a normal scheme for the two-dimensional
m′ × m′′ case by applying the m′ scheme to vectors F (t′, ∗) of length m′′. Each si

step becomes m′′ additions; each mj becomes a Fourier transform on m′′ elements,
but with all of the α’s in this algorithm multiplied by αj ; and each tk becomes m′′

additions. Thus the new algorithm has (a′m′′ + c′a′′) complex additions, t′t′′ trivial
multiplications, and a total of c′c′′ complex multiplications.

Using these techniques, Winograd has found normal one-dimensional schemes for
the following small values of m with the following costs (a, t, c):

m = 2 (2, 2, 2) m = 7 (36, 1, 9)
m = 3 (6, 1, 3) m = 8 (26, 6, 8)
m = 4 (8, 4, 4) m = 9 (46, 1, 12)
m = 5 (17, 1, 6) m = 16 (74, 8, 18)

By combining these schemes as described above, we obtain methods that use fewer
arithmetic operations than the “fast Fourier transformŤ (FFT) discussed in exercise 14.
For example, when m = 1008 = 7·9·16, the costs come to (17946, 8, 1944), so we can do
a Fourier transform on 1008 complex numbers with 3872 real multiplications and 35892
real additions. It is possible to improve on Winograd’s method for combining relatively
prime moduli by using multidimensional convolutions, as shown by Nussbaumer and
Quandalle in IBM J. Res. and Devel. 22 (1978), 134Ű144; their ingenious approach
reduces the amount of computation needed for 1008-point complex Fourier transforms
to 3084 real multiplications and 34668 real additions. By contrast, the FFT on 1024
complex numbers involves 14344 real multiplications and 27652 real additions. If the
two-passes-at-once improvement in the answer to exercise 14 is used, however, the FFT
on 1024 complex numbers needs only 10936 real multiplications and 25948 additions,
and it is not difficult to implement. Therefore the subtler methods are faster only on
machines that take signiĄcantly longer to multiply than to add.

[References: Proc. Nat. Acad. Sci. USA 73 (1976), 1005Ű1006; Math. Comp. 32

(1978), 175Ű199; Advances in Math. 32 (1979), 83Ű117; IEEE Trans. ASSP-27 (1979),
169Ű181.]

54. max(2e1deg(p1)− 1, . . . , 2eqdeg(pq)− 1, q + 1).

4.6.4 ANSWERS TO EXERCISES 711

55. 2n′ − q′, where n′ is the degree of the minimum polynomial of P (the monic
polynomial µ of least degree such that µ(P) is the zero matrix) and q′ is the number
of distinct irreducible factors it has. (Reduce P by similarity transformations.)

56. Let tijk + tjik = τijk + τjik, for all i, j, k. If (A,B,C) is a realization of (tijk)
of rank r, then

r
l=1 ckl(

i ailxi)(

j bjlxj) =

i,j tijkxixj =

i,j τijkxixj for all k.

Conversely, let the lth chain multiplication of a polynomial chain, for 1 ≤ l ≤ r, be
the product (αl +

i αilxi)(βl +

j βjlxj), where αl and βl denote possible constant

terms and/or nonlinear terms. All terms of degree 2 appearing at any step of the chain
can be expressed as a linear combination

r
l=1 cl(

i ailxi)(

j bjlxj); hence the chain

deĄnes a tensor (tijk) of rank ≤ r such that tijk +tjik = τijk +τjik. This establishes the
hint. Now rank(τijk + τjik) = rank(tijk + tjik) ≤ rank(tijk) + rank(tjik) = 2 rank(tijk).

A bilinear form in x1, . . . , xm, y1, . . . , yn is a quadratic form in m+ n variables,
where τijk = ti,j−m,k for i ≤ m and j > m, otherwise τijk = 0. Now rank(τijk) +
rank(τjik) ≥ rank(tijk), since we obtain a realization of (tijk) by suppressing the last
n rows of A and the Ąrst m rows of B in a realization (A,B,C) of (τijk + τjik).

57. Let N be the smallest power of 2 that exceeds 2n, and let un+1 = · · · = uN−1 =
vn+1 = · · · = vN−1 = 0. If Us =

N−1
t=0 ωstut and Vs =

N−1
t=0 ωstvt for 0 ≤ s < N ,

where ω = e2πi/N, then
N−1

s=0 ω−stUsVs = N

ut1vt2 , where the latter sum is taken

over all t1 and t2 with 0 ≤ t1, t2 < N, t1 + t2 ≡ t (modulo N). The terms vanish unless
t1 ≤ n and t2 ≤ n, so t1 + t2 < N ; thus the sum is the coefficient of zt in the product
u(z)v(z). If we use the method of exercise 14 to compute the Fourier transforms and
the inverse transforms, the number of complex operations is O(N logN)+O(N logN)+
O(N) +O(N logN); and N ≤ 4n. [See Section 4.3.3C and the paper by J. M. Pollard,
Math. Comp. 25 (1971), 365Ű374.]

When multiplying integer polynomials, it is possible to use an integer number ω
that is of order 2t modulo a prime p, and to determine the results modulo sufficiently
many primes. Useful primes in this regard, together with their least primitive roots r
(from which we take ω = r(p−1)/2t mod p when pmod 2t = 1), can be found as described
in Section 4.5.4. For t = 9, the ten largest cases < 235 are p = 235 − 512a + 1,
where (a, r) = (28, 7), (31, 10), (34, 13), (56, 3), (58, 10), (76, 5), (80, 3), (85, 11), (91, 5),
(101, 3); the ten largest cases < 231 are p = 231 − 512a + 1, where (a, r) = (1, 10),
(11, 3), (19, 11), (20, 3), (29, 3), (35, 3), (55, 19), (65, 6), (95, 3), (121, 10). For larger t,
all primes p of the form 2tq + 1 where q < 32 is odd and 224 < p < 236 are given by
(p − 1, r) = (11 · 221, 3), (25 · 220, 3), (27 · 220, 5), (25 · 222, 3), (27 · 222, 7), (5 · 225, 3),
(7 · 226, 3), (27 · 226, 13), (15 · 227, 31), (17 · 227, 3), (3 · 230, 5), (13 · 228, 3), (29 · 227, 3),
(23 ·229, 5). Some of the latter primes can be used with ω = 2e for appropriate small e.
For a discussion of such primes, see R. M. Robinson, Proc. Amer. Math. Soc. 9 (1958),
673Ű681; S. W. Golomb, Math. Comp. 30 (1976), 657Ű663. Additional all-integer
methods are cited in the answer to exercise 4.6Ű5.

However, the method of exercise 59 will almost always be preferable in practice.

58. (a) In general if (A,B,C) realizes (tijk), then ((x1, . . . , xm)A,B,C) is a realization
of the 1×n× s matrix whose entry in row j, column k is

xitijk. So there must be at

least as many nonzero elements in (x1, . . . , xm)A as the rank of this matrix. In the case
of the m×n× (m+n− 1) tensor corresponding to polynomial multiplication of degree
m− 1 by degree n− 1, the corresponding matrix has rank n whenever (x1, . . . , xm) ̸=
(0, . . . , 0). A similar statement holds with A↔ B and m↔ n.

Notes: In particular, if we work over the Ąeld of 2 elements, this says that the
rows of A modulo 2 form a “linear codeŤ of m vectors having distance at least n,

712 ANSWERS TO EXERCISES 4.6.4

whenever (A,B,C) is a realization consisting entirely of integers. This observation,
due to R. W. Brockett and D. Dobkin [Linear Algebra and Its Applications 19 (1978),
207Ű235, Theorem 14; see also Lempel and Winograd, IEEE Trans. IT-23 (1977), 503Ű
508; Lempel, Seroussi, and Winograd, Theoretical Comp. Sci. 22 (1983), 285Ű296], can
be used to obtain nontrivial lower bounds on the rank over the integers. For example,
M. R. Brown and D. Dobkin [IEEE Trans. C-29 (1980), 337Ű340] have used it to show
that realizations of n × n polynomial multiplication over the integers must have rank
≥ αn for all sufficiently large n, when α is any real number less than

αmin = 3.52762 68026 32407 48061 54754 08128 07512 70182+;

here αmin = 1/H(sin2 θ, cos2 θ), where H(p, q) = p lg(1/p) + q lg(1/q) is the binary
entropy function and θ ≈ 1.34686 is the root of sin2(θ − π/4) = H(sin2 θ, cos2 θ). An
all-integer realization of rank O(n logn), based on cyclotomic polynomials, has been
constructed by M. Kaminski [J. Algorithms 9 (1988), 137Ű147].

(b)

 1 0 0 0 0 1 1 1
0 1 0 0 1 1 0 1
0 0 1 1 0 0 1 1

,

1 0 0 0 0 1 1 1
0 1 0 0 0 1 0 1
0 0 1 0 0 0 1 1
0 0 0 1 1 0 0 1

,

1 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0
1 1 1 0 0 0 1 0
1 0 0 1 1 1 1 1
0 0 1 0 1 0 0 0
0 0 0 1 0 0 0 0

.

The following economical ways to realize the multiplication of general polynomials
of degrees 2, 3, and 4 have been presented by H. Cohen and A. K. Lenstra [see Math.
Comp. 48 (1987), S1ŰS2]:

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1

 , same,

1 0 0 0 0 0

1 1 0 1 0 0

1 1 1 0 1 0

0 1 1 0 0 1

0 0 1 0 0 0

;

1 0 0 0 1 1 0 0 1

0 1 0 0 1 0 0 1 1

0 0 1 0 0 1 1 0 1

0 0 0 1 0 0 1 1 1

 , same,

1 0 0 0 0 0 0 0 0

1 1 0 0 1 0 0 0 0

1 1 1 0 0 1 0 0 0

1 1 1 1 1 1 1 1 1

0 1 1 1 0 0 0 1 0

0 0 1 1 0 0 1 0 0

0 0 0 1 0 0 0 0 0

;

1 0 0 1 1 0 1 0 1 1 0 0 0 0

0 1 0 1 0 1 0 1 1 0 1 0 0 0

0 0 1 0 1 1 0 0 0 1 1 0 0 0

0 0 0 0 0 0 1 0 1 1 0 1 0 1

0 0 0 0 0 0 0 1 1 0 1 0 1 1

, same,

1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 1 0 0 0 0 0 0 0 0 0 0

1 1 1 0 1 0 0 0 0 0 0 0 0 0

1 1 1 0 0 1 1 0 0 0 0 1 0 0

1 1 1 1 0 0 1 1 1 0 0 1 1 1

1 1 0 0 1 0 1 1 0 1 0 0 1 0

0 1 0 0 0 1 0 1 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 0

.

4.6.4 ANSWERS TO EXERCISES 713

In each case the A and B matrices are identical.

59. [IEEE Trans. ASSP-28 (1980), 205Ű215.] Note that cyclic convolution is polyno-
mial multiplication mod un−1, and negacyclic convolution is polynomial multiplication
mod un +1. Let us now change notation, replacing n by 2n; we shall consider recursive
algorithms for cyclic and negacyclic convolution (z0, . . . , z2n−1) of (x0, . . . , x2n−1) with
(y0, . . . , y2n−1). The algorithms are presented in unoptimized form, for brevity and
ease in exposition; readers who implement them will notice that many things can be
streamlined. For example, the Ąnal value of Z2m−1(w) in step N5 will always be zero.

C1. [Test for simple case.] If n = 1, set

z0 ← x0y0 + x1y1, z1 ← (x0 + x1)(y0 + y1)− z0,

and terminate. Otherwise set m← 2n−1.

C2. [Remainderize.] For 0 ≤ k < m, set (xk, xm+k) ← (xk + xm+k, xk − xm+k)
and (yk, ym+k)← (yk +ym+k, yk−ym+k). (Now we have x(u) mod (um−1) =
x0 + · · · + xm−1u

m−1 and x(u) mod (um + 1) = xm + · · · + x2m−1u
m−1; we

will compute x(u)y(u) mod (um−1) and x(u)y(u) mod (um +1), then we will
combine the results by (59).)

C3. [Recurse.] Set (z0, . . . , zm−1) to the cyclic convolution of (x0, . . . , xm−1) with
(y0, . . . , ym−1). Also set (zm, . . . , z2m−1) to the negacyclic convolution of
(xm, . . . , x2m−1) with (ym, . . . , y2m−1).

C4. [Unremainderize.] For 0 ≤ k < m, set (zk, zm+k)← 1
2
(zk + zm+k, zk − zm+k).

Now (z0, . . . , z2m−1) is the desired answer.

N1. [Test for simple case.] If n = 1, set t ← x0(y0 + y1), z0 ← t − (x0 + x1)y1,
z1 ← t+(x1−x0)y0, and terminate. Otherwise setm← 2⌊n/2⌋ and r ← 2⌈n/2⌉.
(The following steps use 2n+1 auxiliary variables Xij for 0 ≤ i < 2m and 0 ≤
j < r, to represent 2m polynomials Xi(w) = Xi0 +Xi1w+ · · ·+Xi(r−1)w

r−1;
similarly, there are 2n+1 auxiliary variables Yij .)

N2. [Initialize auxiliary polynomials.] Set Xij ← X(i+m)j ← xmj+i, Yij ←
Y(i+m)j ← ymj+i, for 0 ≤ i < m and 0 ≤ j < r. (At this point we have
x(u) = X0(um) + uX1(um) + · · · + um−1Xm−1(um), and a similar formula
holds for y(u). Our strategy will be to multiply these polynomials modulo
(umr + 1) = (u2n + 1), by operating modulo (wr + 1) on the polynomials
X(w) and Y (w), Ąnding their cyclic convolution of length 2m and thereby
obtaining x(u)y(u) ≡ Z0(um) + uZ1(um) + · · ·+ u2m−1Z2m−1(um).)

N3. [Transform.] (Now we will essentially do a fast Fourier transform on the poly-
nomials (X0, . . . , Xm−1, 0, . . . , 0) and (Y0, . . . , Ym−1, 0, . . . , 0), using wr/m as a
(2m)th root of unity. This is efficient, because multiplication by a power of w
is not really a multiplication at all.) For j = ⌊n/2⌋−1, . . . , 1, 0 (in this order),
do the following for all m binary numbers s + t = (s⌊n/2⌋ . . . sj+10 . . . 0)2 +
(0 . . . 0tj−1 . . . t0)2: Replace (Xs+t(w), Xs+t+2j (w)) by the pair of polynomi-
als (Xs+t(w) + w(r/m)s′Xs+t+2j (w), Xs+t(w)− w(r/m)s′Xs+t+2j (w)), where
s′ = 2j(sj+1 . . . s⌊n/2⌋)2. (We are evaluating 4.3.3Ű(39), with K = 2m and
ω = wr/m; notice the bit-reversal in s′. The polynomial operation Xi(w) ←
Xi(w) +wkXl(w) means, more precisely, that we set Xij ← Xij +Xl(j−k) for
k ≤ j < r, and Xij ← Xij −Xl(j−k+r) for 0 ≤ j < k. A copy of Xl(w) can be
made without wasting much space.) Do the same transformation on the Y ’s.

714 ANSWERS TO EXERCISES 4.6.4

N4. [Recurse.] For 0 ≤ i < 2m, set (Zi0, . . . , Zi(r−1)) to the negacyclic convolution
of (Xi0, . . . , Xi(r−1)) and (Yi0, . . . , Yi(r−1)).

N5. [Untransform.] For j= 0, 1, . . . , ⌊n/2⌋ (in this order), and for all m choices
of s and t as in steps N3, set (Zs+t(w), Zs+t+2j (w)) to

1
2
(Zs+t(w) + Zs+t+2j (w), w−(r/m)s′(Zs+t(w)− Zs+t+2j (w))).

N6. [Repack.] (Now we have accomplished the goal stated at the end of step N2,
since it is easy to show that the transform of the Z’s is the product of the
transforms of the X’s and the Y ’s.) Set zi ← Zi0−Z(m+i)(r−1) and zmj+i ←
Zij + Z(m+i)(j−1) for 0 < j < r, for 0 ≤ i < m.

It is easy to verify that at most n extra bits of precision are needed for the
intermediate variables in this calculation; for example, if |xi| ≤ M for 0 ≤ i < 2n

at the beginning of the algorithm, then all of the x and X variables will be bounded
by 2nM throughout. All of the z and Z variables will be bounded by (2nM)2, which
is n more bits than required to hold the Ąnal convolution.

Algorithm N performs An addition-subtractions, Dn halvings, and Mn multipli-
cations, where A1 = 5, D1 = 0, M1 = 3; for n > 1 we have An = ⌊n/2⌋2n+2 +
2⌊n/2⌋+1A⌈n/2⌉ + (⌊n/2⌋ + 1)2n+1 + 2n, Dn = 2⌊n/2⌋+1D⌈n/2⌉ + (⌊n/2⌋ + 1)2n+1, and
Mn = 2⌊n/2⌋+1M⌈n/2⌉. The solutions are An = 11 · 2n−1+⌈lg n⌉ − 3 · 2n + 6 · 2nSn,
Dn = 4 · 2n−1+⌈lg n⌉ − 2 · 2n + 2 · 2nSn, Mn = 3 · 2n−1+⌈lg n⌉; here Sn satisĄes the
recurrence S1 = 0, Sn = 2S⌈n/2⌉ +⌊n/2⌋, and it is not difficult to prove the inequalities
1
2
n⌈lgn⌉ ≤ Sn ≤ Sn+1 ≤ 1

2
n lgn + n for all n ≥ 1. Algorithm C does approximately

the same amount of work as Algorithm N.

60. (a) In Σ1, for example, we can group all terms having a common value of j and k
into a single trilinear term; this gives ν2 trilinear terms when (j, k) ∈ E×E, plus ν2

when (j, k) ∈ E×O and ν2 when (j, k) ∈ O×E. When ȷ̃ = k we can also include
−xjjyjȷ̃zȷ̃j in Σ1, free of charge. [In the case n = 10, the method multiplies 10 × 10
matrices with 710 noncommutative multiplications; this is almost as good as seven
5 × 5 multiplications by the method of Makarov cited in the answer to exercise 12,
although Winograd’s scheme (35) uses only 600 when commutativity is allowed. With
a similar scheme, Pan showed for the Ąrst time that M(n) < n2.8 for all large n, and
this awakened great interest in the problem. See SICOMP 9 (1980), 321Ű342.]

(b) Here we simply let S be all the indices (i, j, k) of one problem, S̃ the indices
[k, i, j] of the other, and work with an (mn+sm)× (ns+mn)× (sm+ns) tensor. [When
m = n = s = 10, the result is quite surprising: We can multiply two separate 10× 10
matrices with 1300 noncommutative multiplications, while no scheme is known that
would multiply each of them with 650.]

61. (a) Replace ail(u) by uail(u). (b) Let ail(u) =

µ ailµu
µ, etc., in a polynomial

realization of length r = rankd(tijk). Then tijk =

µ+ν+σ=d

r
l=1 ailµbjlνcklσ. [This

result can be improved to rank(tijk) ≤ (2d+ 1) rankd(tijk) in an inĄnite Ąeld, because
the trilinear form

µ+ν+σ=d aµbνcσ corresponds to multiplication of polynomials mod-

ulo ud+1, as pointed out by Bini and Pan. See Calcolo 17 (1980), 87Ű97.] (c, d) This is
clear from the realizations in exercise 48.

(e) Suppose we have realizations of t and rt′ such that
r

l=1 ailbjlckl = tijku
d +

O(ud+1) and
R

L=1 A⟨ii′⟩LB⟨jj′⟩LC⟨kk′⟩L = [i= j= k] t′i′j′k′ud′ +O(ud′+1). Then

R

L=1

r

l=1

ailA⟨li′⟩L

r

m=1

bjmB⟨mj′⟩L

r

n=1

cknC⟨nk′⟩L = tijkt
′
i′j′k′ud+d′

+O(ud+d′+1).

4.6.4 ANSWERS TO EXERCISES 715

62. The rank is 3, by the method of proof in Theorem W with P =

0
0

1
0

. The border

rank cannot be 1, since we cannot have a1(u)b1(u)c1(u) ≡ a1(u)b2(u)c2(u) ≡ ud and
a1(u)b2(u)c1(u) ≡ a1(u)b1(u)c2(u) ≡ 0 (modulo ud+1). The border rank is 2 because
of the realization

1
u

1
0

,

u
1

0
1

,

1
0

−1
u

.

The notion of border rank was introduced by Bini, Capovani, Lotti, and Romani
in Information Processing Letters 8 (1979), 234Ű235.

63. (a) Let the elements of T (m,n, s) and T (M,N, S) be denoted by t⟨i,j′⟩⟨j,k′⟩⟨k,i′⟩
and T⟨I,J′⟩⟨J,K′⟩⟨K,I′⟩, respectively. Each element T⟨I,J ′⟩⟨J ,K′⟩⟨K,I′⟩ of the direct prod-
uct, where I = ⟨i, I⟩, J = ⟨j, J⟩, and K = ⟨k,K⟩, is equal to t⟨i,j′⟩⟨j,k′⟩⟨k,i′⟩×
T⟨I,J′⟩⟨J,K′⟩⟨K,I′⟩ by deĄnition, so it is [I′ = I and J ′ =J and K′ =K].

(b) Apply exercise 61(e) with M(N) = rank0(T (N,N,N)).
(c) We have M(mns) ≤ r3, since T (mns,mns,mns) = T (m,n, s) ⊗ T (n, s,m) ⊗

T (s,m, n). If M(n) ≤ R we have M(nh) ≤ Rh for all h, and it follows that M(N) ≤
M(n⌈logn N⌉) ≤ R⌈logn N⌉ ≤ RN log R/log n. [This result appears in Pan’s paper of 1972.]

(d) We have Md(mns) ≤ r3 for some d, where Md(n) = rankd(T (n, n, n)). If
Md(n) ≤ R we have Mhd(nh) ≤ Rh for all h, and the stated formula follows since
M(nh) ≤

hd+2

2

Rh by exercise 61(b). In an inĄnite Ąeld we save a factor of logN.

[This result is due to Bini and Schönhage, 1979.]

64. We have

k(fk(u)+

j ̸=k gj,k(u)) = u2
1≤i,j,k≤3 xijyjkzki+O(u3), when fk(u) =

(xk1 + u2xk2)(y2k + u2y1k)zkk + (xk1 + u2xk3)y3k((1 + u)zkk − u(z1k + z2k + z3k)) −
xk1(y2k + y3k)(zk1 + zk2 + zk3) and gjk(u) = (xk1 + u2xj3)(y3k + uy1j)(zkj + uzjk) +
(xk1 + u2xj2)(y2k − uy1j)zkj . [The best upper bound known for rank(T (3, 3, 3)) is 23;
see the answer to exercise 12. The border rank of T (2, 2, 2) remains unknown.]

65. The polynomial in the hint is u2m
i=1

n
j=1(xiyjzij +XijYijZ) +O(u3). Let Xij

and Yij be indeterminates for 1 ≤ i < m and 1 ≤ j < n; also set Xin = Ymj = 0, Xmj =
−m−1

i=1 Xij , Yin = −n−1
j=1 Yij . Thus with mn + 1 multiplications of polynomials in

the indeterminates we can compute xiyj for each i and j and also
m

i=1

n
j=1 XijYij =

m−1
i=1

n−1
j=1 XijYij . [SICOMP 10 (1981), 434Ű455. In this classic paper Schönhage

also derived, among other things, the results of exercises 64, 66, and 67(i).]

66. (a) Let ω = lim infn→∞ logM(n)/logn; we have ω ≥ 2 by Lemma T. For all ϵ > 0,
there is an N with M(N) < Nω+ϵ. The argument of exercise 63(c) now shows that
logM(n)/logn < ω + 2ϵ for all sufficiently large n.

(b) This is an immediate consequence of exercise 63(d).
(c) Let r = rank(t), q = (mns)ω/3, Q = (MNS)ω/3. Given ϵ > 0, there is an

integer constant cϵ such that M(p) ≤ cϵp
ω+ϵ for all positive integers p. For every

integer h > 0 we have th =

k

h
k

T (mkMh−k, nkNh−k, skSh−k), and rank(th) ≤ rh.

Given h and k, let p = ⌊h
k

1/(ω+ϵ)⌋. Then

rank(T (pmkMh−k, pnkNh−k, pskSh−k)) ≤ rank(M(p)T (mkMh−k, nkNh−k, skSh−k))

≤ rank(cϵ

h
k

T (mkMh−k, nkNh−k, skSh−k))

≤ cϵr
h

by exercise 63(b), and it follows from part (b) that

pωqkQh−k = (pmkMh−kpnkNh−kpskSh−k)ω/3 ≤ cϵr
h.

716 ANSWERS TO EXERCISES 4.6.4

Since p ≥

h
k

1/(ω+ϵ)
/2 we have

h

k

qkQh−k ≤

h

k

ϵ/(ω+ϵ)

(2p)ωqkQh−k ≤ 2ϵh/(ω+ϵ)2ωcϵr
h.

Therefore (q + Q)h ≤ (h + 1)2ϵh/(ω+ϵ)2ωcϵr
h for all h. And it follows that we must

have q +Q ≤ 2ϵ/(ω+ϵ)r for all ϵ > 0.
(d) Set m = n = 4 in exercise 65, and note that 160.85 + 90.85 > 17.

67. (a) The mn ×mns2 matrix (t⟨ij′⟩(⟨jk′⟩⟨ki′⟩)) has rank mn because it is a permu-
tation matrix when restricted to the mn rows for which k = k′ = 1.

(b) ((t⊕ t′)i(jk)) is essentially (ti(jk))⊕ (t′i(jk)), plus n′s+ sn′ additional columns
of zeros. [Similarly we have ((t⊗ t′)i(jk)) = (ti(jk))⊗ (t′i(jk)) for the direct product.]

(c) Let D be the diagonal matrix diag(d1, . . . , dr), so that ADBT = O. We
know by Lemma T that rank(A) = m and rank(B) = n; hence rank(AD) = m and
rank(DBT) = n. We can assume without loss of generality that the Ąrst m columns
of A are linearly independent. Since the columns of BT are in the null space of AD,
we may also assume that the last n columns of B are linearly independent. Write A
in the partitioned form (A1 A2 A3) where A1 is m×m (and nonsingular), A2 is m× q,
and A3 is m × n. Also partition D so that AD = (A1D1 A2D2 A3D3). Then there is
a q × r matrix W = (W1 I O) such that ADWT = O, namely W1 = −D2A

T
2 A

−T
1 D−1

1 .
Similarly, we may write B = (B1 B2 B3), and we Ąnd VDBT = O when V = (O I V3)
is the q × r matrix with V3 = −D2B

T
2 B

−T
3 D−1

3 . Notice that UDV T = D2, so the hint
is established (more or less Ů after all, it was just a hint).

Now we let Ail(u) = ail for 1 ≤ i ≤ m, A(m+i)l(u) = uvil/dm+i; Bjl(u) = bjl for
1 ≤ j ≤ n, B(n+j)l(u) = wjlu; Ckl(u) = u2ckl for 1 ≤ k ≤ s, C(s+1)l(u) = dl. It follows
that

r
l=1 Ail(u)Bjl(u)Ckl(u) = u2tijk +O(u3) if k ≤ s, u2[i>m][j >n] if k = s+ 1.

[In this proof we did not need to assume that t is nondegenerate with respect to C.]
(d) Consider the following realization of T (m, 1, n) with r = mn+1: ail = [⌊l/n⌋ =

i − 1], bjl = [l mod n= j], b⟨ij⟩l = [l= (i−1)n+ j], if l ≤ mn; air = 1, bjr = −1,
c⟨ij⟩r = 0. This is improvable with dl = 1 for 1 ≤ l ≤ r.

(e) The idea is to Ąnd an improvable realization of T (m,n, s). Suppose (A,B,C)
is a realization of length r. Given arbitrary integers α1, . . . , αm, β1, . . . , βs, extend
A, B, and C by deĄning

A⟨ij′⟩(r+p) = αi[j′ = p], B⟨jk′⟩(r+p) = βk′ [j= p], C⟨ki′⟩(r+p) = 0, for 1 ≤ p ≤ n.
If dl =

m
i′=1

s
k=1 αi′βkc⟨ki′⟩l for l ≤ r and dl = −1 otherwise, we have

r+n

l=1

A⟨ij′⟩lB⟨jk′⟩ldl =
m

i′=1

s

k=1

αi′βk

r

l=1

A⟨ij′⟩lB⟨jk′⟩lC⟨ki′⟩l −
n

p=1

αi[j′ = p]βk′ [j= p]

= [j= j′]αiβk′ − [j= j′]αiβk′ = 0;

so this is improvable if d1 . . . dr ̸= 0. But d1 . . . dr is a polynomial in (α1, . . . , αm,
β1, . . . , βs), not identically zero, since we can assume without loss of generality that C
has no all-zero columns. Therefore some choice of α’s and β’s will work.

(f) If M(n) = nω we have M(nh) = nhω, hence

rank(T (nh, nh, nh)⊕ T (1, nhω − nh(2nh − 1), 1)) ≤ nhω + nh.

Exercise 66(c) now implies that nhω + (nhω − 2n2h + nh)ω/3 ≤ nhω + nh for all h.
Therefore ω = 2; but this contradicts the lower bound 2n2 − 1 (see the answer to
exercise 12).

4.6.4 ANSWERS TO EXERCISES 717

(g) Let f(u) and g(u) be polynomials such that the elements of V f(u) and Wg(u)
are polynomials. Then we redeĄne

A(i+m)l = ud+1vilf(u)/di+m, B(j+n)l = ud+1wjlg(u)/p, Ckl = ud+e+2ckl,

where f(u)g(u) = pue +O(ue+1). It follows that
r

l=1 Ail(u)Bjl(u)Ckl(u) is equal to
ud+e+2tijk + O(ud+e+3) if k ≤ s, ud+e+2[i>m][j >n] if k = s + 1. [Note: The result
of (e) therefore holds over any Ąeld, if rank2 is replaced by rank, since we can choose
the α’s and β’s to be polynomials of the form 1 +O(u).]

(h) Let row p of C refer to the component T (1, 16, 1). The key point is thatr
l=1 ail(u)bjl(u)cpl(u) is zero (not simply O(ud+1)) for all i and j that remain after

deletion; moreover, cpl(u) ̸= 0 for all l. These properties are true in the constructions
of parts (c) and (g), and they remain true when we take direct products.

(i) The proof generalizes from binomials to multinomials in a straightforward way.
(j) After part (h) we have 81ω/3 + 2(36ω/3) + 34ω/3 ≤ 100, so ω < 2.52. Squar-

ing once again gives rank(T (81, 1, 81) ⊕ 4T (27, 4, 27) ⊕ 2T (9, 34, 9) ⊕ 4T (9, 16, 9) ⊕
4T (3, 136, 3) ⊕ T (1, 3334, 1)) ≤ 10000; this yields ω < 2.4999. Success! Continued
squaring leads to better and better bounds that converge rapidly to 2.497723729083
If we had started with T (4, 1, 4)⊕T (1, 9, 1) instead of T (3, 1, 3)⊕T (1, 4, 1), the limiting
bound would have been 2.51096309

[Similar tricks yield ω < 2.496; see SICOMP 11 (1982), 472Ű492. The best current
bound, ω < 2.3727, is due to V. Vassilevska Williams, STOC 44 (2012), 887Ű898.]

68. T. M. Vari has shown that n − 1 multiplications are necessary, by proving that
n multiplications are necessary to compute x2

1 + · · · + x2
n [Cornell Computer Science

Report 120 (1972)]. C. Pandu Rangan showed that if we compute the polynomial as
L1R1 + · · · + Ln−1Rn−1, where the L’s and R’s are linear combinations of the x’s,
at least n − 2 additions are needed to form the L’s and R’s [J. Algorithms 4 (1983),
282Ű285]. But his lower bound does not obviously apply to all polynomial chains.

69. Let yij = xij − [i= j], and apply the recursive construction (31) to the matrix
I + Y , using arithmetic on power series in the n2 variables yij but ignoring all terms
of total degree > n. Each entry h of the array is represented as a sum h0 + h1 +
· · ·+ hn, where hk is the value of a homogeneous polynomial of degree k. Then every
addition step becomes n + 1 additions, and every multiplication step becomes ≈ 1

2
n2

multiplications and ≈ 1
2
n2 additions. Furthermore, every division is by a quantity of

the form 1 + h1 + · · · + hn, since all divisions in the recursive construction are by 1
when the yij are entirely zero; therefore division is slightly easier than multiplication
(see Eq. 4.7Ű(3) when V0 = 1). Since we stop when reaching a 2 × 2 determinant,
we need not subtract 1 from yjj when j > n − 2. It turns out that when redundant
computations are suppressed, this method requires 20

n
5

+8

n
4

+12

n
3

−4

n
2

+5n−4

multiplications and 20

n
5

+8

n
4

+4

n
3

+24

n
2

−n additions, thus 1

6
n5−O(n4) of each.

A similar method can be used to eliminate division in many other cases; see Crelle 264

(1973), 184Ű202. (But the next exercise constructs an even faster divisionless scheme
for determinants.)

70. Set A = λ − x, B = −u, C = −v, and D = λI − Y in the hinted identity, then
take the determinant of both sides, using the fact that I/λ + Y/λ2 + Y 2/λ3 + · · · is
the inverse of D as a formal power series in 1/λ. We need to compute uY kv only for
0 ≤ k ≤ n − 2, because we know that fX(λ) is a polynomial of degree n; thus, only
n3 +O(n2) multiplications and n3 +O(n2) additions are needed to advance from degree
n − 1 to degree n. Proceeding recursively, we obtain the coefficients of fX from the

718 ANSWERS TO EXERCISES 4.6.4

elements of X after doing 6

n
4

+ 7

n
3

+ 2

n
2

multiplications and 6

n
4

+ 5

n
3

+ 2

n
2

addition-subtractions.
If we only want to compute detX = (−1)nfX(0), we save 3

n
2

−n+ 1 multiplica-

tions and

n
2

additions. This division-free method for determinant evaluation is in fact

quite economical when n has a moderate size; it beats the obvious cofactor expansion
scheme when n > 4.

If ω is the exponent of matrix multiplication in exercise 66, the same approach
leads to a division-free computation in O(nω+1+ϵ) steps, because the vectors uY k for
0 ≤ k < n can be evaluated in O(M(n) logn) steps: Take a matrix whose Ąrst 2l

rows are uY k for 0 ≤ k < 2l and multiply it by Y 2l; then the Ąrst 2l rows of the
product are uY k for 2l ≤ k < 2l+1. [See S. J. Berkowitz, Inf. Processing Letters 18

(1984), 147Ű150.] Of course such asymptotically “fastŤ matrix multiplication is strictly
of theoretical interest. E. Kaltofen has shown how to evaluate determinants with only
O(n2+ϵ

M(n)) additions, subtractions, and multiplications [Proc. Int. Symp. Symb.

Alg. Comp. 17 (1992), 342Ű349]; his method is interesting even with M(n) = n3.

71. Suppose g1 = u1 ◦ v1, . . . , gr = ur ◦ vr, and f = α1g1 + · · · + αrgr + p0, where
uk = βk1g1 + · · ·+βk(k−1)gk−1 +pk, vk = γk1g1 + · · ·+γk(k−1)gk−1 +qk, each ◦ is “×Ť or
“/Ť, and each pj or qj is a polynomial of degree ≤ 1 in x1, . . . , xn. Compute auxiliary
quantities wk, yk, zk for k = r, r − 1, . . . , 1 as follows: wk = αk + β(k+1)kyk+1 +
γ(k+1)kzk+1 + · · ·+ βrkyr + γrkzr, and

yk = wk × vk, zk = wk × uk, if gk = uk × vk;
yk = wk/vk, zk = −yk × gk, if gk = uk/vk.

Then f ′ = p′0 + p′1yr + q′1z1 + · · · + p′ryr + q′rzr, where ′ denotes the derivative with
respect to any of x1, . . . , xn. [W. Baur and V. Strassen, Theoretical Comp. Sci. 22

(1983), 317Ű330. A related method had been published by S. Linnainmaa, BIT 16

(1976), 146Ű160, who applied it to analysis of rounding errors.] We save two chain
multiplications if gr = ur × vr, since wr = αr. Repeating the construction gives all
second partial derivatives with at most 9m+ 3d chain multiplications and 4d divisions.

72. There is an algorithm to compute the tensor rank over algebraically closed Ąelds
like the complex numbers, since this is a special case of the results of Alfred Tarski,
A Decision Method for Elementary Algebra and Geometry, 2nd edition (Berkeley,
California: Univ. of California Press, 1951); but the known methods do not make this
computation really feasible except for very small tensors. Over the Ąeld of rational
numbers, the problem isn’t even known to be solvable in Ąnite time.

73. In such a polynomial chain on N variables, the determinant of any N ×N matrix
for N of the linear forms known after l addition-subtraction steps is at most 2l. And in
the discrete Fourier transform, the matrix of the Ąnal N = m1 . . .mn linear forms has
determinant NN/2, since its square is N times a permutation matrix by exercise 13.
[JACM 20 (1973), 305Ű306.]

74. (a) If k = (k1, . . . , ks)T is a vector of relatively prime integers, so is Uk, since any
common divisor of the elements of Uk divides all elements of k = U−1Uk. Therefore
V Uk cannot have all integer components.

(b) Suppose there is a polynomial chain for Vx with t multiplications. If t = 0, the
entries of V must all be integers, so s = 0. Otherwise let λi = α× λk or λi = λj × λk

be the Ąrst multiplication step. We can assume that λk = n1x1 + · · ·+nsxs + β where
n1, . . . , ns are integers, not all zero, and β is constant. Find a unimodular matrix
U such that (n1, . . . , ns)U = (0, . . . , 0, d), where d = gcd(n1, . . . , ns). (The algorithm

4.7 ANSWERS TO EXERCISES 719

discussed before Eq. 4.5.2Ű(14) implicitly deĄnes such a U .) Construct a new polyno-
mial chain with inputs y1, . . . , ys−1 as follows: First calculate x = (x1, . . . , xs)T =
U(y1, . . . , ys−1,−β/d)T , then continue with the assumed polynomial chain for Vx.
When step i of that chain is reached, we will have λk = (n1, . . . , ns)x + β = 0, so
we can simply set λi = 0 instead of multiplying. After Vx has been evaluated, add
the constant vector wβ/d to the result, where w is the rightmost column of V U , and
let W be the other s − 1 columns of V U . The new polynomial chain has computed
Vx+wβ/d = V U(y1, . . . , ys−1,−β/d)T +wβ/d = W (y1, . . . , ys−1)T , with t− 1 multi-
plications. But the columns of W are Z-independent, by part (a); hence t− 1 ≥ s− 1,
by induction on s, and we have t ≥ s.

(c) Let xj = 0 for the t − s values of j that aren’t in the set of Z-independent
columns. Any chain for Vx then evaluates V ′x′ for a matrix V ′ to which part (b) applies.

(d) λ1 = x − y, λ2 = λ1 + λ1, λ3 = λ2 + x, λ4 = (1/6) × λ3, λ5 = λ4 + λ4,
λ6 = λ5 +y (= x+y/3), λ7 = λ6−λ1, λ8 = λ7 +λ4 (= x/2+y). But {x/2+y, x+y/2}
needs two multiplications, since the columns of (1/2

1
1

1/2
) are Z-independent. [Journal

of Information Processing 1 (1978), 125Ű129.]

SECTION 4.7

1. Find the Ąrst nonzero coefficient Vm, as in (4), and divide both U(z) and V (z)
by zm (shifting the coefficients m places to the left). The quotient will be a power
series if and only if U0 = · · · = Um−1 = 0.

2. We have V n+1
0 Wn = V n

0 Un − (V 1
0 W0)(V n−1

0 Vn) − (V 2
0 W1)(V n−2

0 Vn−1) − · · · −
(V n

0 Wn−1)(V 0
0 V1). Thus, we can start by replacing (Uj , Vj) by (V j

0 Uj , V
j−1

0 Vj) for
j ≥ 1, then set Wn ← Un −

n−1
k=0 WkVn−k for n ≥ 0, Ąnally replace Wj by Wj/V

j+1
0

for j ≥ 0. Similar techniques are possible in connection with other algorithms in this
section.

3. Yes. When α = 0, it is easy to prove by induction that W1 = W2 = · · · = 0. When
α = 1, we Ąnd Wn = Vn, by the cute identity

n

k=1

k − (n− k)

n

VkVn−k = VnV0.

4. If W (z) = eV (z), then W ′(z) = V ′(z)W (z); we Ąnd W0 = eV0 , and

Wn =
n

k=1

k

n
VkWn−k, for n ≥ 1.

If W (z) = lnV (z), the roles of V and W are reversed; hence when V0 = 1 the rule is
W0 = 0 and Wn = Vn +

n−1
k=1 (k/n− 1)VkWn−k for n ≥ 1.

[By exercise 6, the logarithm can be obtained to order n in O(n logn) operations.
R. P. Brent observes that exp(V (z)) can also be calculated with this asymptotic speed
by applying Newton’s method to f(x) = lnx− V (z); therefore general exponentiation
(1+V (z))α = exp(α ln(1+V (z))) is O(n logn) too. Reference: Analytic Computational
Complexity, edited by J. F. Traub (New York: Academic Press, 1975), 172Ű176.]

5. We get the original series back. This can be used to test a reversion algorithm.

6. ϕ(x) = x + x(1 − xV (z)); see Algorithm 4.3.3R. Thus after W0, . . . , WN−1

are known, the idea is to input VN, . . . , V2N−1, compute (W0 + · · ·+WN−1z
N−1)×

(V0 + · · ·+ V2N−1z
2N−1) = 1 + R0z

N + · · · + RN−1z
2N−1 + O(z2N), and let WN +

· · · + W2N−1z
N−1 = −(W0 + · · · + WN−1z

N−1)(R0 + · · · + RN−1z
N−1) + O(zN).

720 ANSWERS TO EXERCISES 4.7

[Numer. Math. 22 (1974), 341Ű348; this algorithm was, in essence, Ąrst published
by M. Sieveking, Computing 10 (1972), 153Ű156.] Note that the total time for N coef-
Ącients is O(N logN) arithmetic operations if we use “fastŤ polynomial multiplication
(exercise 4.6.4Ű57).

7. Wn =

mk
k

/n when n = (m− 1)k + 1, otherwise 0. (See exercise 2.3.4.4Ű11.)

8. G1. Input G1 and V1; set n← 1, U0 ← 1/V1; output W1 = G1U0.

G2. Increase n by 1. Terminate the algorithm if n > N ; otherwise input Vn

and Gn.

G3. Set Uk ← (Uk −
k

j=1 Uk−jVj+1)/V1 for k = 0, 1, . . . , n − 2 (in this order);

then set Un−1 ← −
n

k=2 kUn−kVk/V1.

G4. Output Wn =
n

k=1 kUn−kGk/n and return to G2.

(The running time of the order N3 algorithm is hereby increased by only order N2.)
Note: Algorithms T and N determine V [−1](U(z)); the algorithm in this exercise

determines G(V [−1](z)), which is somewhat different. Of course, the results can all be
obtained by a sequence of operations of reversion and composition (exercise 11), but it
is helpful to have more direct algorithms for each case.

9. n = 1 n = 2 n = 3 n = 4 n = 5

T1n 1 1 2 5 14
T2n 1 2 5 14
T3n 1 3 9
T4n 1 4
T5n 1

10. Form y1/α = x(1 + a1x + a2x
2 + · · ·)1/α = x(1 + c1x + c2x

2 + · · ·) by means of
Eq. (9); then revert the latter series. (See the remarks following Eq. 1.2.11.3Ű(11).)
11. Set W0 ← U0, and set (Tk,Wk) ← (Vk, 0) for 1 ≤ k ≤ N. Then for n = 1,
2, . . . , N, do the following: Set Wj ← Wj + UnTj for n ≤ j ≤ N; and then set
Tj ← Tj−1V1 + · · ·+ TnVj−n for j = N, N − 1, . . . , n+ 1.

Here T (z) represents V (z)N . An online power series algorithm for this problem,
analogous to Algorithm T, could be constructed, but it would require about N2/2
storage locations. There is also an online algorithm that solves this exercise and needs
only O(N) storage locations: We may assume that V1 = 1, if Uk is replaced by UkV

k
1

and Vk is replaced by Vk/V1 for all k. Then we may revert V (z) by Algorithm L, and
use its output as input to the algorithm of exercise 8 with G1 = U1, G2 = U2, etc.,
thus computing U(V [−1][−1](z))− U0. See also exercise 20.

Brent and Kung have constructed several algorithms that are asymptotically faster.
For example, we can evaluate U(x) for x = V (z) by a slight variant of exercise 4.6.4Ű
42(c), doing about 2

√
N chain multiplications of cost M(N) and about N parameter

multiplications of cost N , where M(N) is the number of operations needed to multiply
power series to order N ; the total time is therefore O(

√
NM(N) + N2) = O(N2).

A still faster method can be based on the identity U(V0(z) + zmV1(z)) = U(V0(z)) +
zmU ′(V0(z))V1(z)+z2mU ′′(V0(z))V1(z)2/2!+· · · , extending to aboutN/m terms, where
we choose m ≈

N/logN ; the Ąrst term U(V0(z)) is evaluated in O(mN(logN)2)

operations using a method somewhat like that in exercise 4.6.4Ű43. Since we can go from
U (k)(V0(z)) to U (k+1)(V0(z)) in O(N logN) operations by differentiating and dividing
by V ′

0 (z), the entire procedure takes O(mN(logN)2+(N/m)N logN) = O(N logN)3/2

operations. [JACM 25 (1978), 581Ű595.]

4.7 ANSWERS TO EXERCISES 721

When the polynomials have m-bit integer coefficients, this algorithm involves
roughly N3/2+ϵ multiplications of (N lgm)-bit numbers, so the total running time
will be more than N5/2. An alternative approach with asymptotic running time
O(N2+ϵ) has been developed by P. Ritzmann [Theoretical Comp. Sci. 44 (1986), 1Ű16].
Composition can be done much faster modulo a small prime p (see exercise 26).

12. Polynomial division is trivial unless m ≥ n ≥ 1. Assuming the latter, the equation
u(x) = q(x)v(x) + r(x) is equivalent to U(z) = Q(z)V (z) + zm−n+1R(z) where U(x) =
xmu(x−1), V (x) = xnv(x−1), Q(x) = xm−nq(x−1), and R(x) = xn−1r(x−1) are the
“reverseŤ polynomials of u, v, q, and r.

To Ąnd q(x) and r(x), compute the Ąrst m− n+ 1 coefficients of the power series
U(z)/V (z) = W (z) + O(zm−n+1); then compute the power series U(z) − V (z)W (z),
which has the form zm−n+1T (z) where T (z) = T0 +T1z+ · · · . Note that Tj = 0 for all
j ≥ n; hence Q(z) = W (z) and R(z) = T (z) satisfy the requirements.

13. Apply exercise 4.6.1Ű3 with u(z) = zN and v(z) = W0 + · · · + WN−1z
N−1; the

desired approximations are the values of v3(z)/v2(z) obtained during the course of
the algorithm. Exercise 4.6.1Ű26 tells us that there are no further possibilities with
relatively prime numerator and denominator. If each Wi is an integer, an all-integer
extension of Algorithm 4.6.1C will have the desired properties.

Notes: See the book History of Continued Fractions and Padé Approximants by
Claude Brezinski (Berlin: Springer, 1991) for further information. The case N = 2n+1
and deg(w1) = deg(w2) = n is of particular interest, since it is equivalent to a so-called
Toeplitz system; asymptotically fast methods for Toeplitz systems are surveyed in Bini
and Pan, Polynomial and Matrix Computations 1 (Boston: Birkhäuser, 1994), §2.5.
The method of this exercise can be generalized to arbitrary rational interpolation of
the form W (z) ≡ p(z)/q(z) (modulo (z − z1) . . . (z − zN)), where the zi’s need not be
distinct; thus, we can specify the value of W (z) and some of its derivatives at several
points. See Richard P. Brent, Fred G. Gustavson, and David Y. Y. Yun, J. Algorithms
1 (1980), 259Ű295.

14. If U(z) = z+Ukz
k +· · · and V (z) = zk +Vk+1z

k+1 +· · · , we Ąnd that the difference
V (U(z)) − U ′(z)V (z) is

j≥1 z

2k+j−1j(UkVk+j − Uk+j + (polynomial involving only
Uk, . . . , Uk+j−1, Vk+1, . . . , Vk+j−1)); hence V (z) is unique if U(z) is given and U(z)
is unique if V (z) and Uk are given.

The solution depends on two auxiliary algorithms, the Ąrst of which solves the
equation V (z+zkU(z)) = (1+zk−1W (z))V (z)+zk−1S(z)+O(zk−1+n) for V (z) = V0+
V1z + · · ·+ Vn−1z

n−1, given U(z), W (z), S(z), and n. If n = 1, let V0 = −S(0)/W (0);
or let V0 be arbitrary when S(0) = W (0) = 0. To go from n to 2n, let

V (z + zkU(z)) = (1 + zk−1W (z))V (z) + zk−1S(z)− zk−1+nR(z) +O(zk−1+2n),

1 + zk−1Ŵ (z) = (z/(z + zkU(z)))n(1 + zk−1W (z)) +O(zk−1+n),

Ŝ(z) = (z/(z + zkU(z)))n
R(z) +O(zn),

and let V̂ (z) = Vn + Vn+1z + · · ·+ V2n−1z
n−1 satisfy

V̂ (z + zkU(z)) = (1 + zk−1Ŵ (z))V̂ (z) + zk−1Ŝ(z) +O(zk−1+n).

The second algorithm solves W (z)U(z) + zU ′(z) = V (z) + O(zn) for U(z) =
U0+U1z+· · ·+Un−1z

n−1, given V (z), W (z), and n. If n = 1, let U0 = V (0)/W (0), or let
U0 be arbitrary in case V (0) = W (0) = 0. To go from n to 2n, let W (z)U(z)+zU ′(z) =

722 ANSWERS TO EXERCISES 4.7

V (z) − znR(z) + O(z2n), and let Û(z) = Un + · · · + U2n−1z
n−1 be a solution to the

equation (n+W (z))Û(z) + zÛ ′(z) = R(z) +O(zn).
Resuming the notation of (27), the Ąrst algorithm can be used to solve V̂ (U(z)) =

U ′(z)(z/U(z))k
V̂ (z) to any desired accuracy, and we set V (z) = zkV̂ (z). To Ąnd

P (z), suppose we have V (P (z)) = P ′(z)V (z) + O(z2k−1+n), an equation that holds
for n = 1 when P (z) = z + αzk and α is arbitrary. We can go from n to 2n by
letting V (P (z)) = P ′(z)V (z) + z2k−1+nR(z) + O(z2k−1+2n) and replacing P (z) by
P (z) + zk+nP̂ (z), where the second algorithm is used to Ąnd the polynomial P̂ (z) such
that (k + n− zV ′(P (z))/V (z))P̂ (z) + zP̂ ′(z) = (zk/V (z))R(z) +O(zn).

15. The differential equation U ′(z)/U(z)k = 1/zk implies that U(z)1−k = z1−k + c for
some constant c. So we Ąnd U [n](z) = z/(1 + cnz1−k)1/(k−1).

A similar argument solves (27) for arbitrary V (z): If W ′(z) = 1/V (z), we have
W (U [n](z)) = W (z) + nc for some c.

16. We want to show that [tn] tn+1((n+1)R′
k+1(t)/V (t)n−nR′

k(t)/V (t)n+1) = 0. This
follows since (n + 1)R′

k+1(t)/V (t)n − nR′
k(t)/V (t)n+1 = d

dt
(Rk(t)/V (t)n+1). Conse-

quently we have n−1[tn−1]R′
1(t) tn/V (t)n = (n− 1)−1[tn−2]R′

2(t) tn−1/V (t)n−1 = · · · =
1−1[t0]R′

n(t) t/V (t) = [t]Rn(t)/V1 = Wn.

17. Equating coefficients of xlym, the convolution formula states that

l+m
m

vn(l+m) =

k

n
k

vklv(n−k)m, which is the same as [zn]V (z)l+m =

k([zk]V (z)l)([zn−k]V (z)m),

which is a special case of (2).
Notes: The name “poweroidŤ was introduced by J. F. Steffensen, who was the

Ąrst of many authors to study the striking properties of these polynomials in general
[Acta Mathematica 73 (1941), 333Ű366]. For a review of the literature, and for further
discussion of the topics in the next several exercises, see D. E. Knuth, The Mathematica
Journal 2 (1992), 67Ű78. One of the results proved in that paper is the asymptotic
formula Vn(x) = exV (s)(n

es
)n(1−V2y+O(y2) +O(x−1)), if V1 = 1 and sV ′(s) = y and

y = n/x is bounded as x→∞ and n→∞.

18. We have Vn(x) =

k x
kn! [zn]V (z)k/k! = n! [zn] exV (z). Consequently Vn(x)/x =

(n − 1)! [zn−1]V ′(z) exV (z) when n > 0. We get the stated identity by equating the
coefficients of zn−1 in V ′(z) e(x+y)V (z) = V ′(z) exV (z)eyV (z).

19. We have

vnm =
n!
m!

[zn]

v1

1!
z +

v2

2!
z2 +

v3

3!
z3 + · · ·

m

=

k1+k2+···+kn=m

k1+2k2+···+nkn=n

k1,k2,...,kn≥0

n!
k1! k2! . . . kn!

v1

1!

k1

v2

2!

k2

. . .

vn

n!

kn

by the multinomial theorem 1.2.6Ű(42). These coefficients, called partial Bell polyno-
mials [see Annals of Math. (2) 35 (1934), 258Ű277], arise also in Arbogast’s formula,
exercise 1.2.5Ű21, and we can associate the terms with set partitions as explained in
the answer to that exercise. The recurrence

vnk =

j

n− 1
j − 1

vjv(n−j)(k−1)

shows how to calculate column k from columns 1 and k−1; it is readily interpreted with
respect to partitions of {1, . . . , n}, since there are

n−1
j−1

ways to include the element n

4.7 ANSWERS TO EXERCISES 723

in a subset of size j. The Ąrst few rows of the matrix are

v1

v2 v2
1

v3 3v1v2 v3
1

v4 4v1v3 + 3v2
2 6v2

1v2 v4
1

v5 5v1v4 + 10v2v3 15v1v
2
2 + 10v2

1v3 10v3
1v2 v5

1

20. [zn]W (z)k =

j([zj]U(z)k)([zn]V (z)j); hence wnk = (n!/k!)

j((k!/j!)ujk)×
((j!/n!)vnj). [E. Jabotinsky, Comptes Rendus Acad. Sci. 224 (Paris, 1947), 323Ű324.]

21. (a) If U(z) = αW (βz) we have unk = n!
k!

[zn] (αW (β(z))k = αkβnwnk; in partic-
ular, if U(z) = V [−1](z) = −W (−z) we have unk = (−1)n−kwnk. So

k unkvkm and

k vnkukm correspond to the identity function z, by exercise 20.
(b) [Solution by Ira Gessel.] This identity is, in fact, equivalent to Lagrange’s

inversion formula: We have wnk = (−1)n−kunk = (−1)n−k n!
k!

[zn]V [−1](z)k, and the
coefficient of zn in V [−1](z)k is n−1 [tn−1] ktn+k−1/V (t)n by exercise 16. On the
other hand we have deĄned v(−k)(−n) to be (−k)n−k [zn−k] (V (z)/z))−n, which equals
(−1)n−k(n− 1) . . . (k + 1)k [zn−1] zn+k−1/V (z)n.

22. (a) If V (z) = U{α}(z) and W (z) = V {β}(z), we have W (z) = V (zW (z)β) =
U(zW (z)β V (zW (z)β)α) = U(zW (z)α+β). (Notice the contrast between this law and
the similar formulas U [1](z) = U(z), U [α][β](z) = U [αβ](z) that apply to iteration.)

(b) B{2}(z) is the generating function for binary trees, 2.3.4.4Ű(12), which is
W (z)/z in the example z = t − t2 following Algorithm L. Moreover, B{t}(z) is the
generating function for t-ary trees, exercise 2.3.4.4Ű11.

(c) The hint is equivalent to zU{α}(z)α = W [−1](z), which is equivalent to the
formula zU{α}(z)α/U(zU{α}(z)α)α = z. Now Lagrange’s inversion theorem (exercise 8)
says that [zn]W [−1](z)x = x

n
[z−x]W (z)−n when x is a positive integer. (Here W (z)−n

is a Laurent series Ů a power series divided by a power of z; we can use the notation
[zm]V (z) for Laurent series as well as for power series.) Therefore [zn]U{α}(z)x =
[zn] (W [−1](z)/z)x/α = [zn+x/α]W [−1](z)x/α is equal to x/α

n+x/α
[z−x/α]W (z)−n−x/α =

x
x+nα

[z−x/α] z−n−x/αU(z)x+nα when x/α is a positive integer. We have veriĄed the

result for inĄnitely many α; that is sufficient, since the coefficients of U{α}(z)x are
polynomials in α.

We’ve seen special cases of this result in exercises 1.2.6Ű25 and 2.3.4.4Ű29. One
memorable consequence of the hint is the case α = −1:

W (z) = zU(z) if and only if W [−1](z) = z/U{−1}(z) .

(d) If U0 = 1 and Vn(x) is the poweroid for V (z) = lnU(z), we’ve just proved that
xVn(x + nα)/(x + nα) is the poweroid for lnU{α}(z). So we can plug this poweroid
into the former identities, changing y to y − αn in the second formula.

23. (a) We have U = I + T where Tn is zero in rows ≤ n. Hence lnU = T − 1
2
T 2 +

1
3
T 3−· · · will have the property that exp(α lnU) = I+

α
1

T +

α
2

T 2 + · · · = Uα. Each

entry of Uα is a polynomial in α, and the relations of exercise 19 hold whenever α is a
positive integer; therefore Uα is a power matrix for all α, and its Ąrst column deĄnes
U [α](z). (In particular, U−1 is a power matrix; this is another way to revert U(z).)

(b) Since U ϵ = I + ϵ lnU +O(ϵ2), we have

lnk = [ϵ]u[ϵ]
nk =

n!
k!

[zn][ϵ] (z + ϵL(z) +O(ϵ2))k =
n!
k!

[zn] kzk−1L(z).

724 ANSWERS TO EXERCISES 4.7

(c) ∂
∂α
U [α](z) = [ϵ]U [α+ϵ](z), and we have

U [α+ϵ](z) = U [α](U [ϵ](z)) = U [α](z + ϵL(z) +O(ϵ2)).

Also U [α+ϵ](z) = U [ϵ](U [α](z)) = U [α](z) + ϵL(U [α](z)) +O(ϵ2).
(d) The identity follows from the fact that U commutes with lnU . It determines

ln−1 when n ≥ 4, because the coefficient of ln−1 on the left is nu2, while the coefficient
on the right is un(n−1) =

n
2

u2. Similarly, if u2 = · · · = uk−1 = 0 and uk ̸= 0, we have

lk = uk and the recurrence for n ≥ 2k determines lk+1, lk+2, . . . : The left side has the
form ln +

n

k−1

ln+1−kuk + · · · and the right side has the form ln +

n
k

ln+1−kuk + · · · .

In general, l2 = u2, l3 = u3 − 3
2
u2

2, l4 = u4 − 5u2u3 + 9
2
u3

2, l5 = u5 − 15
2
u2u4 − 5u2

3 +
185

6
u2

2u3 − 20u4
2.

(e) We have U =

m(lnU)m/m!, and for Ąxed m the contribution to un = un1

from the mth term is

lnmnm−1 . . . ln2n1 ln1n0 summed over n = nm > · · · > n1 >

n0 = 1. Now apply the result of part (b). [See Trans. Amer. Math. Soc. 108 (1963),
457Ű477.]

24. (a) By (21) and exercise 20, we have U = VDV −1 where V is the power matrix
of the Schröder function and D is the diagonal matrix diag(u, u2, u3, . . .). So we may
take lnU = V diag(lnu, 2 lnu, 3 lnu, . . .)V −1. (b) The equation WVDV −1 = VDV −1W
implies (V −1WV)D = D(V −1WV). The diagonal entries of D are distinct, so V −1WV
must be a diagonal matrix D′. Thus W = VD′V −1, and W has the same Schröder
function as U . It follows that W1 ̸= 0 and W = VDαV −1, where α = (lnW1)/(lnU1).

25. We must have k = l because [zk+l−1]U(V (z)) = Uk+l−1 + Vk+l−1 + kUkVl. To
complete the proof it suffices to show that Uk = Vk and U(V (z)) = V (U(z)) implies
U(z) = V (z). Suppose l is minimal with Ul ̸= Vl, and let n = k + l − 1. Then we
have unk − vnk =

n
l

(ul − vl); unj = vnj for all j > k; unl =

n
k

uk; and unj = 0 for

l < j < n. Now the sum

junjvj = un + unkvk + · · · + unlvl + vn must be equal to
j vnjuj ; so we Ąnd

n
l

(ul − vl)vk =

n
k

vk(ul − vl). But we have

k+l−1

k

=

k+l−1
l

if and only if k = l.
[From this exercise and the previous one, we might suspect that U(V (z)) =

V (U(z)) only when one of U and V is an iterate of the other. But this is not necessarily
true when U1 and V1 are roots of unity. For example, if V1 = −1 and U(z) = V [2](z),
V is not an iterate of U [1/2], nor is U [1/2] an iterate of V .]

26. Writing U(z) = U[0](z2) + zU[1](z2), we have U(V (z)) ≡ U[0](V1z
2 +V2z

4 + · · ·) +
V (z)U[1](V1z

2 +V2z
4 + · · ·) (modulo 2). The running time satisĄes T (N) = 2T (N/2)+

C(N), where C(N) is essentially the time for polynomial multiplication mod zN. We
can make C(N) = O(N1+ϵ) by the method of, say, exercise 4.6.4Ű59; see also the answer
to exercise 4.6Ű5.

A similar method works mod p in time O(pN1+ϵ). [D. J. Bernstein, J. Symbolic
Computation 26 (1998), 339Ű341.]

27. From (W (qz) − W (z))V (z) = W (z)(V (qmz) − V (z)) we obtain the recurrence
Wn =

n
k=1 VkWn−k(qkm − qn−k)/(qn − 1). [J. Difference Eqs. and Applics. 1 (1995),

57Ű60.]

28. Note Ąrst that δ(U(z)V (z)) = (δU(z))V (z) + U(z)(δV (z)), because t(mn) =
t(m) + t(n). Therefore δ(V (z)n) = nV (z)n−1δV (z) for all n ≥ 0, by induction
on n; and this is the identity we need to show that δeV (z) =

n≥0 δ(V (z)n/n!) =

eV (z)δV (z). Replacing V (z) by lnV (z) in this equation gives V (z) δ lnV (z) = δV (z);

4.7 ANSWERS TO EXERCISES 725

hence δ(V (z)α) = δeα ln V (z) = eα ln V (z)δ(α lnV (z)) = αV (z)α−1 for all complex
numbers α.

It follows that the desired recurrences are

(a) W1 = 1, Wn =

d\n, d>1((α+ 1)t(d)/t(n)− 1)VdWn/d ;
(b) W1 = 1, Wn =

d\n, d>1(t(d)/t(n))VdWn/d ;

(c) W1 = 0, Wn = Vn +

d\n, d>1(t(d)/t(n)− 1)VdWn/d .

[See H. W. Gould, AMM 81 (1974), 3Ű14. These formulas hold when t is any function
such that t(m) + t(n) = t(mn) and t(n) = 0 if and only if n = 1, but the suggested t
is simplest. The method discussed here works also for power series in arbitrarily many
variables; then t is the total degree of a term.]

“It is certainly an idea you have there,Ť said Poirot, with some interest.

“Yes, yes, I play the part of the computer.

One feeds in the information Ů Ť

“And supposing you come up with all the wrong answers?Ť said Mrs. Oliver.

“That would be impossible,Ť said Hercule Poirot.

“Computers do not do that sort of a thing.Ť

“They’re not supposed to,Ť said Mrs. Oliver,

“but you’d be surprised at the things that happen sometimes.Ť

Ů AGATHA CHRISTIE, Hallowe’en Party (1969)

APPENDIX A

TABLES OF NUMERICAL QUANTITIES

Table 1

QUANTITIES THAT ARE FREQUENTLY USED IN STANDARD SUBROUTINES
AND IN ANALYSIS OF COMPUTER PROGRAMS (40 DECIMAL PLACES)

√
2 = 1.41421 35623 73095 04880 16887 24209 69807 85697−√
3 = 1.73205 08075 68877 29352 74463 41505 87236 69428+√
5 = 2.23606 79774 99789 69640 91736 68731 27623 54406+√

10 = 3.16227 76601 68379 33199 88935 44432 71853 37196−
3√2 = 1.25992 10498 94873 16476 72106 07278 22835 05703−
3√3 = 1.44224 95703 07408 38232 16383 10780 10958 83919−
4√2 = 1.18920 71150 02721 06671 74999 70560 47591 52930−

ln 2 = 0.69314 71805 59945 30941 72321 21458 17656 80755+
ln 3 = 1.09861 22886 68109 69139 52452 36922 52570 46475−

ln 10 = 2.30258 50929 94045 68401 79914 54684 36420 76011+
1/ln 2 = 1.44269 50408 88963 40735 99246 81001 89213 74266+

1/ln 10 = 0.43429 44819 03251 82765 11289 18916 60508 22944−
π = 3.14159 26535 89793 23846 26433 83279 50288 41972−

1◦ = π/180 = 0.01745 32925 19943 29576 92369 07684 88612 71344+
1/π = 0.31830 98861 83790 67153 77675 26745 02872 40689+
π2 = 9.86960 44010 89358 61883 44909 99876 15113 53137−√

π = Γ (1/2) = 1.77245 38509 05516 02729 81674 83341 14518 27975+
Γ (1/3) = 2.67893 85347 07747 63365 56929 40974 67764 41287−
Γ (2/3) = 1.35411 79394 26400 41694 52880 28154 51378 55193+

e = 2.71828 18284 59045 23536 02874 71352 66249 77572+
1/e = 0.36787 94411 71442 32159 55237 70161 46086 74458+
e2 = 7.38905 60989 30650 22723 04274 60575 00781 31803+
γ = 0.57721 56649 01532 86060 65120 90082 40243 10422−

lnπ = 1.14472 98858 49400 17414 34273 51353 05871 16473−
ϕ = 1.61803 39887 49894 84820 45868 34365 63811 77203+
eγ = 1.78107 24179 90197 98523 65041 03107 17954 91696+

eπ/4 = 2.19328 00507 38015 45655 97696 59278 73822 34616+
sin 1 = 0.84147 09848 07896 50665 25023 21630 29899 96226−
cos 1 = 0.54030 23058 68139 71740 09366 07442 97660 37323+
−ζ′(2) = 0.93754 82543 15843 75370 25740 94567 86497 78979−
ζ(3) = 1.20205 69031 59594 28539 97381 61511 44999 07650−
lnϕ = 0.48121 18250 59603 44749 77589 13424 36842 31352−

1/lnϕ = 2.07808 69212 35027 53760 13226 06117 79576 77422−
−ln ln 2 = 0.36651 29205 81664 32701 24391 58232 66946 94543−

726

TABLES OF NUMERICAL QUANTITIES 727

Table 2

QUANTITIES THAT ARE FREQUENTLY USED IN STANDARD SUBROUTINES
AND IN ANALYSIS OF COMPUTER PROGRAMS (45 OCTAL PLACES)

The names at the left of the “=Ť signs are given in decimal notation.

0.1 = 0.06314 63146 31463 14631 46314 63146 31463 14631 46315−
0.01 = 0.00507 53412 17270 24365 60507 53412 17270 24365 60510−

0.001 = 0.00040 61115 64570 65176 76355 44264 16254 02030 44672+
0.0001 = 0.00003 21556 13530 70414 54512 75170 33021 15002 35223−

0.00001 = 0.00000 24761 32610 70664 36041 06077 17401 56063 34417−
0.000001 = 0.00000 02061 57364 05536 66151 55323 07746 44470 26033+

0.0000001 = 0.00000 00153 27745 15274 53644 12741 72312 20354 02151+
0.00000001 = 0.00000 00012 57143 56106 04303 47374 77341 01512 63327+

0.000000001 = 0.00000 00001 04560 27640 46655 12262 71426 40124 21742+
0.0000000001 = 0.00000 00000 06676 33766 35367 55653 37265 34642 01627−√

2 = 1.32404 74631 77167 46220 42627 66115 46725 12575 17435+√
3 = 1.56663 65641 30231 25163 54453 50265 60361 34073 42223−√
5 = 2.17067 36334 57722 47602 57471 63003 00563 55620 32021−√

10 = 3.12305 40726 64555 22444 02242 57101 41466 33775 22532+
3√2 = 1.20505 05746 15345 05342 10756 65334 25574 22415 03024+
3√3 = 1.34233 50444 22175 73134 67363 76133 05334 31147 60121−
4√2 = 1.14067 74050 61556 12455 72152 64430 60271 02755 73136+

ln 2 = 0.54271 02775 75071 73632 57117 07316 30007 71366 53640+
ln 3 = 1.06237 24752 55006 05227 32440 63065 25012 35574 55337+

ln 10 = 2.23273 06735 52524 25405 56512 66542 56026 46050 50705+
1/ln 2 = 1.34252 16624 53405 77027 35750 37766 40644 35175 04353+

1/ln 10 = 0.33626 75425 11562 41614 52325 33525 27655 14756 06220−
π = 3.11037 55242 10264 30215 14230 63050 56006 70163 21122+

1◦ = π/180 = 0.01073 72152 11224 72344 25603 54276 63351 22056 11544+
1/π = 0.24276 30155 62344 20251 23760 47257 50765 15156 70067−
π2 = 11.67517 14467 62135 71322 25561 15466 30021 40654 34103−√

π = Γ (1/2) = 1.61337 61106 64736 65247 47035 40510 15273 34470 17762−
Γ (1/3) = 2.53347 35234 51013 61316 73106 47644 54653 00106 66046−
Γ (2/3) = 1.26523 57112 14154 74312 54572 37655 60126 23231 02452+

e = 2.55760 52130 50535 51246 52773 42542 00471 72363 61661+
1/e = 0.27426 53066 13167 46761 52726 75436 02440 52371 03355+
e2 = 7.30714 45615 23355 33460 63507 35040 32664 25356 50217+
γ = 0.44742 14770 67666 06172 23215 74376 01002 51313 25521−

lnπ = 1.11206 40443 47503 36413 65374 52661 52410 37511 46057+
ϕ = 1.47433 57156 27751 23701 27634 71401 40271 66710 15010+
eγ = 1.61772 13452 61152 65761 22477 36553 53327 17554 21260+

eπ/4 = 2.14275 31512 16162 52370 35530 11342 53525 44307 02171−
sin 1 = 0.65665 24436 04414 73402 03067 23644 11612 07474 14505−
cos 1 = 0.42450 50037 32406 42711 07022 14666 27320 70675 12321+
−ζ′(2) = 0.74001 45144 53253 42362 42107 23350 50074 46100 27706+
ζ(3) = 1.14735 00023 60014 20470 15613 42561 31715 10177 06614+
lnϕ = 0.36630 26256 61213 01145 13700 41004 52264 30700 40646+

1/lnϕ = 2.04776 60111 17144 41512 11436 16575 00355 43630 40651+
−ln ln 2 = 0.27351 71233 67265 63650 17401 56637 26334 31455 57005−

728 APPENDIX A

Several of the 40-digit values in Table 1 were computed on a desk calculator
by John W. Wrench, Jr., for the Ąrst edition of this book. When computer
software for such calculations became available during the 1970s, all of his
contributions proved to be correct. The 40-digit values of other fundamental
constants can be found in Eqs. 4.5.2Ű(60), 4.5.3Ű(26), 4.5.3Ű(41), 4.5.4Ű(9), and
the answers to exercises 4.5.4Ű8, 4.5.4Ű25, 4.6.4Ű58.

Table 3

VALUES OF HARMONIC NUMBERS, BERNOULLI NUMBERS,
AND FIBONACCI NUMBERS, FOR SMALL VALUES OF n

n Hn Bn Fn n

0 0 1 0 0
1 1 −1/2 1 1
2 3/2 1/6 1 2
3 11/6 0 2 3
4 25/12 −1/30 3 4
5 137/60 0 5 5
6 49/20 1/42 8 6
7 363/140 0 13 7
8 761/280 −1/30 21 8
9 7129/2520 0 34 9

10 7381/2520 5/66 55 10
11 83711/27720 0 89 11
12 86021/27720 −691/2730 144 12
13 1145993/360360 0 233 13
14 1171733/360360 7/6 377 14
15 1195757/360360 0 610 15
16 2436559/720720 −3617/510 987 16
17 42142223/12252240 0 1597 17
18 14274301/4084080 43867/798 2584 18
19 275295799/77597520 0 4181 19
20 55835135/15519504 −174611/330 6765 20
21 18858053/5173168 0 10946 21
22 19093197/5173168 854513/138 17711 22
23 444316699/118982864 0 28657 23
24 1347822955/356948592 −236364091/2730 46368 24
25 34052522467/8923714800 0 75025 25
26 34395742267/8923714800 8553103/6 121393 26
27 312536252003/80313433200 0 196418 27
28 315404588903/80313433200 −23749461029/870 317811 28
29 9227046511387/2329089562800 0 514229 29
30 9304682830147/2329089562800 8615841276005/14322 832040 30

TABLES OF NUMERICAL QUANTITIES 729

For any x, let Hx =

n≥1

 1
n
− 1
n+ x

. Then

H1/2 = 2− 2 ln 2,

H1/3 = 3− 1
2π/
√

3− 3
2 ln 3,

H2/3 = 3
2 + 1

2π/
√

3− 3
2 ln 3,

H1/4 = 4− 1
2π − 3 ln 2,

H3/4 = 4
3 + 1

2π − 3 ln 2,

H1/5 = 5− 1
2πϕ

3/25−1/4 − 5
4 ln 5− 1

2

√
5 lnϕ,

H2/5 = 5
2 − 1

2πϕ
−3/25−1/4 − 5

4 ln 5 + 1
2

√
5 lnϕ,

H3/5 = 5
3 + 1

2πϕ
−3/25−1/4 − 5

4 ln 5 + 1
2

√
5 lnϕ,

H4/5 = 5
4 + 1

2πϕ
3/25−1/4 − 5

4 ln 5− 1
2

√
5 lnϕ,

H1/6 = 6− 1
2π
√

3− 2 ln 2− 3
2 ln 3,

H5/6 = 6
5 + 1

2π
√

3− 2 ln 2− 3
2 ln 3,

and, in general, when 0 < p < q (see exercise 1.2.9Ű19),

Hp/q =
q

p
− π

2
cot

p

q
π − ln 2q + 2

1≤n<q/2

cos
2pn
q
π · ln sin

n

q
π.

APPENDIX B

INDEX TO NOTATIONS

In the following formulas, letters that are not further qualiĄed have the following
signiĄcance:

j, k integer-valued arithmetic expression
m,n nonnegative integer-valued arithmetic expression
x, y real-valued arithmetic expression
z complex-valued arithmetic expression
f real-valued or complex-valued function

S, T set or multiset

Where
Formal symbolism Meaning deĄned

end of algorithm, program, or proof 1.1

An or A[n] the nth element of linear array A 1.1

Amn or A[m,n] the element in row m and column n of
rectangular array A 1.1

V ← E give variable V the value of expression E 1.1

U ↔ V interchange the values of variables U and V 1.1

(R? a: b) conditional expression: denotes
a if relation R is true, b if R is false

[R] characteristic function of relation R:
(R? 1: 0) 1.2.3

δkj Kronecker delta: [j = k] 1.2.3

[zn] g(z) coefficient of zn in power series g(z) 1.2.9

R(k)

f(k) sum of all f(k) such that the variable k is an
integer and relation R(k) is true 1.2.3

R(k)

f(k) product of all f(k) such that the variable k
is an integer and relation R(k) is true 1.2.3

min
R(k)

f(k) minimum value of all f(k) such that the var-
iable k is an integer and relation R(k) is true 1.2.3

max
R(k)

f(k) maximum value of all f(k) such that the var-
iable k is an integer and relation R(k) is true 1.2.3

730

INDEX TO NOTATIONS 731

Where
Formal symbolism Meaning deĄned

ℜz real part of z 1.2.2
ℑz imaginary part of z 1.2.2
z complex conjugate: ℜz − iℑz 1.2.2

AT transpose of rectangular array A:
AT [j, k] = A[k, j]

xy x to the y power (when x is positive) 1.2.2
xk x to the kth power:

k ≥ 0?

0≤j<k

x: 1/x−k

1.2.2

xk x to the k rising: Γ (x+ k)/Γ (x) =

k ≥ 0?

0≤j<k

(x+ j): 1/(x+ k)−k

1.2.5

xk x to the k falling: x!/(x− k)! =

k ≥ 0?

0≤j<k

(x− j): 1/(x− k)−k

1.2.5

n! n factorial: Γ (n+ 1) = nn 1.2.5
f ′(x) derivative of f at x 1.2.9
f ′′(x) second derivative of f at x 1.2.10

f (n)(x) nth derivative:

n = 0? f(x): g′(x)

,

where g(x) = f (n−1)(x) 1.2.11.2

f [n](x) nth iterate:

n = 0? x: f(f [n−1](x))

4.7

f{n}(x) nth induced function:
f{n}(x) = f

xf{n}(x)n

4.7

H(x)
n harmonic number of order x:

1≤k≤n

1/kx 1.2.7

Hn harmonic number: H(1)
n 1.2.7

Fn Fibonacci number:
(n ≤ 1? n: Fn−1 + Fn−2) 1.2.8

Bn Bernoulli number: n! [zn] z/(ez − 1) 1.2.11.2
X · Y dot product of vectors X = (x1, . . . , xn)

and Y = (y1, . . . , yn): x1y1 + · · ·+ xnyn

3.3.4

j\k j divides k: k mod j = 0 and j > 0 1.2.4
S \ T set difference: {a | a in S and a not in T}

⊕ ⊖ ⊗⊘ rounded or special operations 4.2.1

732 APPENDIX B

Where
Formal symbolism Meaning deĄned

(. . . a1a0.a−1 . . .)b radix-b positional notation:

k akb
k 4.1

//x1, x2, . . . , xn// continued fraction:
1

x1 + 1/(x2 + 1/(· · ·+ 1/(xn) . . .))

4.5.3

x

k

binomial coefficient: (k < 0? 0: xk/k!) 1.2.6

n

n1, n2, . . . , nm

multinomial coefficient (deĄned only when
n = n1 + n2 + · · ·+ nm) 1.2.6

n

m

Stirling number of the Ąrst kind:

0<k1<k2<···<kn−m<n

k1k2 . . . kn−m 1.2.6

n

m

Stirling number of the second kind:

1≤k1≤k2≤···≤kn−m≤m

k1k2 . . . kn−m 1.2.6

{a | R(a)} set of all a such that the relation R(a) is true

{a1, . . . , an} the set or multiset {ak | 1 ≤ k ≤ n}
{x} fractional part (used in contexts where a

real value, not a set, is implied): x− ⌊x⌋ 1.2.11.2

[a . . b] closed interval: {x | a ≤ x ≤ b} 1.2.2

(a . . b) open interval: {x | a < x < b} 1.2.2

[a . . b) half-open interval: {x | a ≤ x < b} 1.2.2

(a . . b] half-closed interval: {x | a < x ≤ b} 1.2.2

|S| cardinality: the number of elements in set S

|x| absolute value of x: (x ≥ 0? x: − x)

|z| absolute value of z:
√
zz̄ 1.2.2

⌊x⌋ Ćoor of x, greatest integer function: maxk≤xk 1.2.4

⌈x⌉ ceiling of x, least integer function: mink≥x k 1.2.4

((x)) sawtooth function 3.3.3

⟨Xn⟩ the inĄnite sequence X0, X1, X2, . . .
(here the letter n is part of the symbolism) 1.2.9

INDEX TO NOTATIONS 733

Where
Formal symbolism Meaning deĄned

γ Euler’s constant: limn→∞(Hn − lnn) 1.2.7

γ(x, y) incomplete gamma function:
 y

0
e−ttx−1dt 1.2.11.3

Γ (x) gamma function: (x− 1)! = γ(x,∞) 1.2.5

δ(x) characteristic function of the integers 3.3.3

e base of natural logarithms:

n≥0 1/n! 1.2.2

ζ(x) zeta function: limn→∞H
(x)
n (when x > 1) 1.2.7

Kn(x1, . . . , xn) continuant polynomial 4.5.3

ℓ(u) leading coefficient of polynomial u 4.6

l(n) length of shortest addition chain for n 4.6.3

Λ(n) von Mangoldt’s function 4.5.3

µ(n) Möbius function 4.5.2

ν(n) sideways sum 4.6.3

O

f(n)

big-oh of f(n), as the variable n→∞ 1.2.11.1

O

f(z)

big-oh of f(z), as the variable z → 0 1.2.11.1

Ω

f(n)

big-omega of f(n), as the variable n→∞ 1.2.11.1

Θ

f(n)

big-theta of f(n), as the variable n→∞ 1.2.11.1

π(x) prime count:

n≤x[n is prime] 4.5.4

π circle ratio: 4

n≥0 (−1)n/(2n+ 1) 4.3.1

ϕ golden ratio: 1
2

1 +
√

5

1.2.8

∅ empty set: {x | 0 = 1}
φ(n) Euler’s totient function:

0≤k<n[k⊥n] 1.2.4

∞ inĄnity: larger than any number 4.2.2

det(A) determinant of square matrix A 1.2.3

sign(x) sign of x:

x = 0? 0: x/|x|

deg(u) degree of polynomial u 4.6

cont(u) content of polynomial u 4.6.1

pp

u(x)

primitive part of polynomial u 4.6.1

logb x logarithm, base b, of x (when x > 0,
b > 0, and b ̸= 1): the y such that x = by 1.2.2

ln x natural logarithm: loge x 1.2.2

lg x binary logarithm: log2 x 1.2.2

expx exponential of x: ex 1.2.9

j ⊥ k j is relatively prime to k: gcd(j, k) = 1 1.2.4

734 APPENDIX B

Where
Formal symbolism Meaning deĄned

gcd(j, k) greatest common divisor of j and k:

j = k = 0? 0: max
d\j, d\k

d

4.5.2

lcm(j, k) least common multiple of j and k:

jk = 0? 0: min
d>0, j\d, k\d

d

4.5.2

xmod y mod function:

y = 0? x: x− y⌊x/y⌋

1.2.4

u(x) mod v(x) remainder of polynomial u after division by
polynomial v 4.6.1

x ≡ x′ (modulo y) relation of congruence: xmod y = x′ mod y 1.2.4
x ≈ y x is approximately equal to y 3.5, 4.2.2

Pr

S(n)

probability that statement S(n) is true, for
random positive integers n 3.5

Pr

S(X)

probability that statement S(X) is true, for
random values of X 1.2.10

EX expected value of X:

x xPr(X = x) 1.2.10

mean(g) mean value of the probability distribution
represented by generating function g: g′(1) 1.2.10

var(g) variance of the probability distribution
represented by generating function g:

g′′(1) + g′(1)− g′(1)2 1.2.10

(min x1, ave x2,
max x3, dev x4)

a random variable having minimum
value x1, average (expected) value x2,
maximum value x3, standard deviation x4 1.2.10

␣ one blank space 1.3.1
rA register A (accumulator) of MIX 1.3.1
rX register X (extension) of MIX 1.3.1

rI1, . . . , rI6 (index) registers I1, . . . , I6 of MIX 1.3.1
rJ (jump) register J of MIX 1.3.1

(L:R) partial Ąeld of MIX word, 0 ≤ L ≤ R ≤ 5 1.3.1
OP ADDRESS,I(F) notation for MIX instruction 1.3.1, 1.3.2

u unit of time in MIX 1.3.1
* “selfŤ in MIXAL 1.3.2

0F, 1F, 2F, . . . , 9F “forwardŤ local symbol in MIXAL 1.3.2
0B, 1B, 2B, . . . , 9B “backwardŤ local symbol in MIXAL 1.3.2
0H, 1H, 2H, . . . , 9H “hereŤ local symbol in MIXAL 1.3.2

APPENDIX C

INDEX TO ALGORITHMS AND THEOREMS

Algorithm 3.1K, 5.
Theorem 3.2.1.2A, 17Ű19.
Theorem 3.2.1.2B, 20.
Theorem 3.2.1.2C, 20Ű21.
Theorem 3.2.1.2D, 21.
Lemma 3.2.1.2P, 17Ű18.
Lemma 3.2.1.2Q, 18.
Lemma 3.2.1.2R, 19.
Algorithm 3.2.2A, 28.
Program 3.2.2A, 28.
Algorithm 3.2.2B, 34.
Program 3.2.2B, 34.
Algorithm 3.2.2M, 33.
Algorithm 3.2.2X, 557.
Algorithm 3.2.2Y, 557.
Algorithm 3.3.2C, 64Ű65.
Algorithm 3.3.2G, 62.
Algorithm 3.3.2P, 65Ű66.
Algorithm 3.3.2R, 563.
Algorithm 3.3.2S, 71.
Lemma 3.3.3B, 84Ű85.
Algorithm 3.3.3D, 573.
Theorem 3.3.3D, 87.
Theorem 3.3.3K, 89.
Theorem 3.3.3P, 80Ű81.
Lemma 3.3.4A, 99.
Theorem 3.3.4N, 113.
Algorithm 3.3.4S, 101Ű103.
Algorithm 3.3.4S′, 582.
Algorithm 3.4.1A, 134.
Algorithm 3.4.1B, 588Ű589.
Algorithm 3.4.1F, 129.
Algorithm 3.4.1G, 587.
Algorithm 3.4.1L, 126.
Algorithm 3.4.1M, 127Ű128.
Algorithm 3.4.1N, 587.
Algorithm 3.4.1P, 122.
Algorithm 3.4.1R, 130Ű131.

Algorithm 3.4.1S, 133.
Algorithm 3.4.2P, 145.
Algorithm 3.4.2R, 144.
Algorithm 3.4.2S, 142.
DeĄnition 3.5A, 150.
Theorem 3.5A, 152Ű153.
DeĄnition 3.5B, 151.
Theorem 3.5B, 153Ű154.
DeĄnition 3.5C, 151.
Theorem 3.5C, 155Ű158.
DeĄnition 3.5D, 151.
DeĄnition 3.5E, 155.
Lemma 3.5E, 156.
Theorem 3.5F, 158.
Theorem 3.5G, 174.
Algorithm 3.5L, 173.
Theorem 3.5M, 166Ű167.
Corollary 3.5P, 154.
DeĄnition 3.5P, 171.
Theorem 3.5P, 175.
Lemma 3.5P1, 171Ű172.
Lemma 3.5P2, 172.
Lemma 3.5P3, 172.
Lemma 3.5P4, 172.
DeĄnition 3.5Q1, 168.
DeĄnition 3.5Q2, 168.
DeĄnition 3.5R1, 159.
DeĄnition 3.5R2, 159.
DeĄnition 3.5R3, 161.
DeĄnition 3.5R4, 161.
DeĄnition 3.5R5, 162.
DeĄnition 3.5R6, 163.
Corollary 3.5S, 154.
Lemma 3.5T, 163.
Algorithm 3.5W, 164.
Theorem 3.5W, 164Ű165.
Algorithm 4.1H, 610.
Algorithm 4.1S, 609.

Algorithm 4.2.1A, 216Ű217.
Program 4.2.1A, 218Ű219.
Algorithm 4.2.1M, 220.
Program 4.2.1M, 220Ű221.
Algorithm 4.2.1N, 217.
Theorem 4.2.2A, 235.
Theorem 4.2.2B, 236.
Theorem 4.2.2C, 236.
Theorem 4.2.2D, 237.
Lemma 4.2.2T, 235.
Program 4.2.3A, 247Ű249.
Program 4.2.3D, 251Ű252.
Program 4.2.3M, 249Ű250.
Theorem 4.2.4F, 260Ű262.
Lemma 4.2.4Q, 258Ű259.
Algorithm 4.3.1A, 266.
Program 4.3.1A, 266Ű267.
Theorem 4.3.1A, 271.
Algorithm 4.3.1A′, 623.
Program 4.3.1A′, 623.
Algorithm 4.3.1B, 623.
Program 4.3.1B, 624.
Theorem 4.3.1B, 272.
Algorithm 4.3.1C, 623Ű624.
Algorithm 4.3.1D, 272Ű273.
Program 4.3.1D, 273Ű275, 626.
Algorithm 4.3.1M, 268.
Program 4.3.1M, 269Ű270.
Algorithm 4.3.1N, 282.
Algorithm 4.3.1Q, 625.
Algorithm 4.3.1S, 267.
Program 4.3.1S, 267Ű268.
Theorem 4.3.2C, 286.
Theorem 4.3.2S, 291.
Theorem 4.3.3A, 296.
Theorem 4.3.3B, 302.
Algorithm 4.3.3R, 312.
Algorithm 4.3.3T, 299Ű301.

735

736 APPENDIX C

Algorithm 4.4A, 636.
Algorithm 4.5.2A, 337.
Program 4.5.2A, 337.
Program 4.5.2A′, 373.
Algorithm 4.5.2B, 338.
Program 4.5.2B, 339Ű340.
Algorithm 4.5.2C, 341.
Theorem 4.5.2D, 342.
Algorithm 4.5.2E, 336.
Algorithm 4.5.2K, 356.
Algorithm 4.5.2L, 347.
Algorithm 4.5.2X, 342.
Algorithm 4.5.2Y, 646.
Theorem 4.5.3E, 368.
Theorem 4.5.3F, 360.
Algorithm 4.5.3L, 375.
Corollary 4.5.3L, 360.
Lemma 4.5.3M, 367.
Theorem 4.5.3W, 366.
Algorithm 4.5.4A, 380.
Theorem 4.5.4A, 396.
Algorithm 4.5.4B, 385Ű386.
Algorithm 4.5.4C, 387.
Algorithm 4.5.4D, 389.
Program 4.5.4D, 390.
Theorem 4.5.4D, 402.

Algorithm 4.5.4E, 397Ű398.
Algorithm 4.5.4F, 659Ű660.
Algorithm 4.5.4L, 667Ű668.
Theorem 4.5.4L, 409Ű411.
Algorithm 4.5.4P, 395.
Algorithm 4.5.4S, 658.
Algorithm 4.6.1C, 428Ű429.
Algorithm 4.6.1D, 421.
Algorithm 4.6.1E, 426Ű427.
Lemma 4.6.1G, 422Ű423.
Lemma 4.6.1H, 423.
Algorithm 4.6.1R, 425Ű426.
Algorithm 4.6.1S, 676.
Algorithm 4.6.1T, 677.
Algorithm 4.6.2B, 441Ű442.
Algorithm 4.6.2D, 447Ű448.
Algorithm 4.6.2F, 452.
Algorithm 4.6.2N, 444.
Algorithm 4.6.2S, 681Ű682.
Algorithm 4.6.3A, 462.
Corollary 4.6.3A, 468.
Program 4.6.3A, 691.
Theorem 4.6.3A, 467Ű468.
Theorem 4.6.3B, 468Ű469.
Theorem 4.6.3C, 469Ű470.
Theorem 4.6.3D, 470Ű471.

Corollary 4.6.3E, 472Ű473.
Theorem 4.6.3E, 471Ű472.
Theorem 4.6.3F, 476.
Theorem 4.6.3G, 479.
Theorem 4.6.3H, 475Ű476.
Lemma 4.6.3K, 474.
Lemma 4.6.3P, 471.
Algorithm 4.6.3T, 692.
Theorem 4.6.4A, 496.
Algorithm 4.6.4C, 713.
Theorem 4.6.4C, 496.
Algorithm 4.6.4D, 489.
Theorem 4.6.4E, 493Ű494.
Algorithm 4.6.4G, 698.
Algorithm 4.6.4H, 489.
Algorithm 4.6.4J, 698.
Theorem 4.6.4M, 495.
Algorithm 4.6.4N, 713Ű714.
Algorithm 4.6.4S, 489.
Lemma 4.6.4T, 508.
Theorem 4.6.4W, 513Ű514.
Algorithm 4.7G, 720.
Algorithm 4.7L, 527Ű528.
Algorithm 4.7N, 529.
Algorithm 4.7T, 528.

At any step, arbitrary combinations of algorithms and theorems

can be applied to solve a given problem.

Ů KARSTEN HOMANN and JACQUES CALMET (1995)

INDEX AND GLOSSARY

Seek and ye shall Ąnd.

Ů Matthew 7:7

When an index entry refers to a page containing a relevant exercise, see also the answer to
that exercise for further information. An answer page is not indexed here unless it refers to a
topic not included in the statement of the exercise.

0-origin indexing, 444, 512.
0Ű1 matrices, 499.
0Ű1 polynomials, 497, 519, 707.
[0 . . 1) sequence, 151.
2-adic numbers, 213, 629.
10-adic numbers, 632.
1009, vi, 188, 413, 661.
69069, 75, 106, 108.
∞, representation of, 225, 244Ű245, 332.
∞-distributed sequence, 151Ű161,

177, 180Ű182.
γ (Euler’s constant), 359, 379, 726Ű727, 733.
π (circle ratio), 41, 151, 158, 161, 198, 200,

209, 279Ű280, 284, 358, 726Ű727, 733.
as “randomŤ example, 21, 25, 33, 47, 52,

89, 103, 106, 108, 184, 238, 243, 252,
324Ű325, 555, 593, 599, 665.

π(x) (prime count), 381Ű382, 416.
ρ(n) (ruler function), 540.
ϕ (golden ratio), 164, 283, 359, 360, 514,

652, 726Ű727, 733.
logarithm of, 283.
number system, 209.

φ(n) (totient function), 19Ű20, 289,
369, 376, 583, 646.

χ2, 42, 56, see Chi-square.

A priori tests, 80.
Abacus, 196.

binary, 200.
Abel, Niels Henrik, binomial theorem,

58, 535.
Abramowitz, Milton, 44.
Absolute error, 240, 309, 312Ű313.
Absorption laws, 694.
Abuse of probability, 433.
Abuse of theory, 88.
ACC: Floating point accumulator,

218Ű219, 248Ű249.
Acceptance-rejection method, 125Ű126,

128Ű129, 134, 138, 139, 591.
Accuracy of Ćoating point arithmetic, 222,

229Ű245, 253, 329, 438, 485.
Accuracy of random number generation,

27, 95, 105, 185.
Adaptation of coefficients, 490Ű494, 516Ű517.
Add-with-carry sequence, 23, 35, 72,

108, 547.

Addition, 194, 207, 210, 213, 265Ű267.
complex, 487.
continued fractions, 649.
double-precision, 247Ű249, 251.
Ćoating point, 215Ű220, 227Ű228, 230Ű231,

235Ű238, 253Ű254, 602.
fractions, 330Ű331.
left to right, 281.
mixed-radix, 281.
mod m, 12, 15, 203, 287Ű288.
modular, 285Ű286, 293.
multiprecision, 266Ű267, 276Ű278,

281, 283.
polynomial, 418Ű420.
power series, 525.
sideways, 463, 466.

Addition chains, 465Ű485, 494, 519.
ascending, 467.
dual, 481, 485.
l0-, 479, 483, 485.
star, 467, 473Ű477, 480, 482.

Addition-subtraction chains, 484.
Additive random number generation, 27Ű29,

39Ű40, 186Ű188, 193.
Adleman, Leonard Max, 403, 405,

414, 417, 671.
Admissible numbers, 177.
Agrawal, Manindra (mZF�dý ag}vAl), 396.
Ahrens, Joachim Heinrich Lüdecke,

119, 129Ű130, 132Ű134, 136, 137,
140, 141, 588.

Ahrens, Wilhelm Ernst Martin Georg, 208.
Akushsky, Izrail Yakovlevich (❆❦✉①s❦✐✚✱

■③r❛✐❧⑦ ✗❦♦✈❧❡✈✐q), 292.
al-Bırūnı, Abū al-Rayh. an Muh. ammad

ibn Ah. mad (❰♥❸Ú➃➾♠ Ø♣❝
ÞÏ×➃Ûq➾♠ ❿❒❷❝ Ñ♣ ❿❒❸❐), 461.

al-Kāshı, Jamshıd ibn MasŚūd
(Þ➋♥➻➾♠ ❾Ø➡➈❐ Ñ♣ ❿Û➌❒⑦), 198, 326, 462.

al-Khwārizmı, Abū ŚAbd Allāh
Muh. ammad ibn Mūsā
(Þ❐➄➂♠Ø❼➾♠ Ü➇Ø❐ Ñ♣ ❿❒❸❐ ❄♠ ❿q➠ Ø♣❝),
197, 280.

al-Samaw’al (= as-Samaw’al),
ibn Yah. yā ibn Yahūda al-Maghribı
(➪➠Ø❒➈➾♠ Þ♣➃➦❒➾♠ ♠❾ØÔÚ Ñ♣ ÜÛ❸Ú Ñ♣♠), 198.

al-Uqlıdisı, Abū al-H. asan
Ah. mad ibn Ibrāhım
(Þ➇❿Û➚➲➘♠ ❮ÛÓ♠➃♣❣ Ñ♣ ❿❒❷❝ Ñ➈❸➾♠ Ø♣❝),
198, 280Ű281, 461.

Ala-Nissilä, Tapio, 75, 570.

737

738 INDEX AND GLOSSARY

Alanen, Jack David, 30.
Aldous, David John, 145.
Alekseyev, Valery Borisovich (❆❧❡❦s❡❡✈✱

❱❛❧❡r✐✚ ❇♦r✐s♦✈✐q), 699.
Alexeev, Boris Vasilievich (❆❧❡❦s❡❡✈✱

❇♦r✐s ❱❛s✐❧⑦❡✈✐q), 117.
Alexi, Werner, 669.
Alford, William Robert, 659.
Algebra, free associative, 437.
Algebraic dependence, 496, 518.
Algebraic functions, 533.
Algebraic integers, 396.
Algebraic number Ąelds, 331, 333,

345, 403, 674.
Algebraic system: A set of elements

together with operations deĄned
on them, see Field, Ring, Unique
factorization domain.

ALGOL language, 279.
Algorithms: Precise rules for transforming

speciĄed inputs into speciĄed outputs
in a Ąnite number of steps.

analysis of, 7Ű9, 76, 140, 147, 276Ű278,
281, 301Ű302, 348Ű356, 360Ű373,
377Ű378, 382Ű384, 399Ű400, 435,
445Ű447, 455Ű456, 530Ű532, 658, 714.

complexity of, 138, 178Ű179, 280, 294Ű318,
396, 401Ű402, 416, 453, 465Ű485,
494Ű498, 516Ű524, 720.

discovery of, 99.
historical development of, 335, 461Ű462.
proof of, 281Ű282, 336Ű337, 592.

Alias method, 120, 127, 139.
Allouche, Jean-Paul, 656.
ALPAK system, 419.
Alt, Helmut, 706.
American National Standards Institute,

226, 246, 600, 602.
AMM: American Mathematical Monthly,

published by the Mathematical
Association of America since 1894.

AmpliĄcation of guesses, 172Ű174, 416Ű417.
Analysis of algorithms, 7Ű9, 76, 140, 147,

276Ű278, 281, 301Ű302, 348Ű356,
360Ű373, 377Ű378, 382Ű384, 399Ű400,
435, 445Ű447, 455Ű456, 530Ű532,
658, 714.

history, 360.
Analytical Engine, 189, 201.
Ananthanarayanan, Kasi (①❲➆

❆⑨✐⑧⑩❲❹❲❸⑦❤), 128.
AND (bitwise and), 140, 188, 322, 328Ű329,

389Ű390, 453, 671.
Anderson, Stanley Frederick, 312.
ANSI: The American National Standards

Institute, 226, 246, 600, 602.
Antanairesis, 335Ű336, 378.
Apollonius of Perga (❃❆♣♦❧❧➳♥✐♦❝

å P❡r❣❛Ø♦❝), 225.
Apparently random numbers, 3Ű4, 170Ű171.
Apparition, rank of, 410Ű411.

Approximate associative law, 232Ű233,
239Ű240, 244.

Approximate equality, 224, 233Ű235,
239, 242Ű243, 245.

Approximately linear density, 126.
Approximation, by rational functions,

438Ű439, 534.
by rational numbers, 331Ű332,

378Ű379, 617.
Arabic mathematics, 197, 280Ű281,

326, 461Ű462.
Arazi, Benjamin (■❋❳❅ ❖■◆■P❆), 396.
Arbitrary precision, 279, 283, 331, 416,

see also Multiple-precision.
Arbogast, Louis François Antoine, 722.
Archibald, Raymond Clare, 201.
Arctangent, 313, 628.
Aristotle of Stagira, son of Nicomachus

(❃❆r✐st♦tè❧❤❝ ◆✐❦♦♠❼q♦✉ å ❙t❛❣✐rÐt❤❝),
335.

Arithmetic, 194Ű537, see Addition,
Comparison, Division, Doubling,
Exponentiation, Greatest common
divisor, Halving, Multiplication,
Reciprocals, Square root, Subtraction.

complex, 205, 228, 283, 292, 307Ű310,
487, 501, 506, 519, 700, 706.

Ćoating point, 214Ű264.
fractions, 330Ű333, 420, 526.
fundamental theorem of, 334, 422, 483.
mod m, 12Ű16, 185Ű186, 203, 284,

287Ű288.
modular, 284Ű294, 302Ű305, 450, 454, 499.
multiprecision, 265Ű318.
polynomial, 418Ű524.
power series, 525Ű537.
rational, 330Ű333, 420, 526.

Arithmetic chains, see Quolynomial chains.
Armengaud, Joël, 409.
Arney, James W., 385.
Arrival time, 132.
Arwin, Axel, 687.
Āryabhat.a I (aAyBV), 343.
ASCII: The American Standard Code for

Information Interchange, 417.
Ashenhurst, Robert Lovett, 240, 242, 327.
Associative law, 229Ű233, 242, 341, 418, 694.

approximate, 232Ű233, 239Ű240, 244.
Asymptotic values: Functions that express

the limiting behavior approached
by numerical quantities, 59Ű60, 79,
263Ű264, 355, 372Ű373, 377Ű378, 415,
472, 525, 541Ű542, 659, 686, 722.

Atanasoff, John Vincent, 202.
Atkin, Arthur Oliver Lonsdale, 681.
Atrubin, Allan Joseph, 315.
Automata (plural of Automaton),

313Ű317, 329, 416.
Automorphic numbers, 293Ű294.
Avogadro di Quaregna e Cerreto, Lorenzo

Romano Amedeo Carlo, number,
214, 227, 238, 240.

Axioms for Ćoating point arithmetic,
230Ű231, 242Ű245.

Avanzi, Roberto Maria, 396.

INDEX AND GLOSSARY 739

b-ary number, 151.
b-ary sequence, 151Ű153, 177.
Babbage, Charles, 201.
Babenko, Konstantin Ivanovich (❇❛❜❡♥❦♦✱

❑♦♥st❛♥t✐♥ ■✈❛♥♦✈✐q), 366, 376.
Babington-Smith, Bernard, 3, 74, 76.
Babylonian mathematics, 196, 225, 335.
Bach, Carl Eric, 395, 661, 663, 689.
Bachet, Claude Gaspard, sieur de

Méziriac, 208.
Bag, 694.
Bailey, David Harold, 284, 634.
Baker, Kirby Alan, 316.
Balanced binary number system, 213.
Balanced decimal number system, 211.
Balanced mixed-radix number system,

103, 293, 631.
Balanced ternary number system, 207Ű208,

209, 227, 283, 353.
Ballantine, John Perry, 278.
Bareiss, Erwin Hans, 262, 292, 434.
Barlow, Jesse Louis, 262.
Barnard, Robert, 292.
Barnsley, Michael Fielding, 206.
Barton, David Elliott, 74, 566.
Barycentric coordinates, 567.
Base of representation, 195.

Ćoating point, 214Ű215, 254, 263.
Baseball, 378.
Bauer, Friedrich Ludwig, 241Ű242, 327.
Baum, Ulrich, 701.
Baur, Walter, 718.
Bays, John Carter, 34.
Beauzamy, Bernard, 452, 461, 683, 684.
Beckenbach, Edwin Ford, 135.
Becker, Oskar Joachim, 359.
Béjian, Robert, 164.
Belaga, Edward Grigorievich (❇❡❧❛❣❛✱

✄❞✉❛r❞ ●r✐❣♦r⑦❡✈✐q), 496.
Bell, Eric Temple, polynomials, 722.
Bell Telephone Laboratories Model V, 225.
Bellman, Richard Ernest, ix.
Ben-Or, Michael (❳❊❅ -❖❆ ▲❅❑■◆), 669.
Bender, Edward Anton, 385.
Benford, Frank, 255.
Bentley, Jon Louis, 141.
Berger, Arno, 262.
Bergman, George Mark, 676.
Berkowitz, Stuart J., 718.
Berlekamp, Elwyn Ralph, 439, 449, 456, 681.

algorithm, 439Ű447.
Bernoulli, Jacques (= Jakob = James), 200.

numbers Bn, 355, 569.
numbers, table, 728.
sequences, 177.

Bernoulli, Nicolas (= Nikolaus), 449.
Bernstein, Daniel Julius, 396, 697, 724.
Berrizbeitia Aristeguieta, Pedro José de

la Santísima Trinidad, 396.
Besicovitch, Abram Samoilovitch

(❇❡③✐❦♦✈✐q✱ ❆❜r❛♠ ❙❛♠♦✚❧♦✈✐q), 178.

Beta distribution, 134Ű135.
Beyer, William Aaron, 115.
Bharati Krishna Tirthaji Maharaja,

Jagadguru Swami Sri (jgdg�z -vAmF �F

BArtF к� 	Z tFTjF mhArAj), 208.
Bhāskara I, Ācārya (BA-кrAcAy), 343.
Bienaymé, Irénée Jules, 74.
Bilinear forms, 506Ű514, 520Ű524.
Billingsley, Patrick Paul, 384, 661.
Bin-packing problem, 585.
Binary abacus, 200.
Binary basis, 212.
Binary-coded decimal, 202, 322, 328Ű329.
Binary computer: A computer that

manipulates numbers primarily in the
binary (radix 2) number system, 30Ű32,
201Ű202, 276, 328, 339, 389Ű390.

Binary-decimal conversion, 319Ű329.
Binary digit, 195, 200.
Binary gcd algorithms, 338Ű341,

348Ű356, 435.
compared to Euclid’s, 341.
extended, 356.

Binary method for exponentiation,
461Ű463, 466, 482, 696.

Binary number systems, 195, 198Ű206,
209Ű213, 419, 461, 483.

Binary point, 195.
Binary recurrences, 318, 466, 634, 692, 714.
Binary search, 324.
Binary search trees, 593.
Binary shift, 322, 339, 481, 637, 686.
Binary trees, 378, 527, 696, 723.
BINEG computer, 205.
Binet, Jacques Philippe Marie, 653.

identity:
n

j=1 ajxj
n

k=1 bkyk =
n

j=1 ajyj
n

k=1 bkxk +

1≤j<k≤n (ajbk − akbj)(xjyk − xkyj),
564.

Bini, Dario Andrea, 500, 505, 515,
714, 715, 721.

Binomial coefficients, 416, 516, 622.
Binomial distribution, 136Ű138, 141,

401, 559.
tail of, 167.

Binomial number system, see Combinatorial
number system.

Binomial theorem, 526, 534.
Birnbaum, Zygmunt Wilhelm, 57.
Birthday spacings, 34, 71Ű72, 78Ű79, 188.
BIT: Nordisk Tidskrift for Informations-

Behandling, an international journal
published in Scandinavia since 1961.

Bit: “Binary digitŤ, either zero or
unity, 195, 200.

random, 12, 30Ű32, 35Ű36, 38, 48,
119Ű120, 170Ű176.

740 INDEX AND GLOSSARY

Bitwise operations, 30Ű31, 140, 202,
328Ű329, 389Ű390, 459, 605.

and, 140, 188, 322, 328Ű329, 389Ű390,
453, 671.

exclusive or, 31, 32, 193, 419.
or, 140, 686, 695.
shifts, 322, 339, 481, 637, 686.

Björk, Johan Harry, 244.
Blachman, Nelson Merle, 205.
Black box, 455.
Bläser, Markus, 700.
Bleichenbacher, Daniel, 478.
Blinn, James Frederick, 630.
Blöte, Hendrik Willem Jan, 29.
Blouin, François Joseph Raymond

Marcel, 582.
Bluestein, Leo Isaac, 634.
Blum, Bruce Ivan, 279.
Blum, Fred, 433, 518.
Blum, Lenore Carol, 36.
Blum, Manuel, 36, 174, 179.

integer, 174Ű176, 183, 416.
BoĄnger, Eve, 563.
BoĄnger, Victor John, 563.
Bohlender, Gerd, 242, 616.
Bojańczyk, Adam Wojciech, 646.
Bolker, Ethan David, 593.
Bombieri, Enrico, 683.

norm, 458, 684.
Boolean functions, 173Ű174.
Boolean operations, see Bitwise operations.
Boone, Steven Richard, 409.
Booth, Andrew Donald, 608.
Border rank, 522Ű523.
Borel, Émile Félix Édouard Justin, 177.
Borodin, Allan Bertram, 498, 505, 515, 707.
Borosh, Itzhak, 106Ű107, 117, 291, 584.
Borrow: A negative carry, 267, 273,

281, 545.
Borwein, Peter Benjamin, 284.
Bosma, Wiebren, 665.
Bouyer, Martine, 280.
Bowden, Joseph, 201.
Box, George Edward Pelham, 122.
Boyar, Joan, 599.
Boyd, David William, 691.
Bradley, Gordon Hoover, 343, 378.
Brakke, Kenneth Allen, 608.
Bramhall, Janet Natalie, 530.
Brauer, Alfred Theodor, 470, 478, 483, 690.
Bray, Thomas Arthur, 33, 128, 544.
Brent, Richard Peirce, 8, 28, 40, 130, 136,

139, 141, 187, 241, 279, 280, 313, 348,
352Ű353, 355, 356, 382, 386, 403, 501,
529Ű534, 539Ű540, 556, 590, 600, 643,
644, 646, 657, 658, 695, 719Ű721.

Brezinski, Claude, 357, 721.
Brillhart, John David, 29, 394, 396, 400, 660.
Brockett, Roger Ware, 712.
Brocot, Achille, 655.
Brontë, Emily Jane, 292.

Brooks, Frederick Phillips, Jr., 226.
Brouwer, Luitzen Egbertus Jan, 179.
Brown, David, see Spencer Brown.
Brown, George William, 135.
Brown, Mark Robbin, 712.
Brown, Robert, see Brownian motion.
Brown, William Stanley, 419, 428,

438, 454, 686.
Brownian motion, 559.
Bruijn, Nicolaas Govert de, 181, 212,

568, 653, 664, 686, 694.
cycle, 38Ű40.

Brute force, 642.
Bshouty, Nader Hanna (Þ✈Ø➌♣ ♥Ð❷ ➂❾♥Ï), 700.
Buchholz, Werner, 202, 226.
Bunch, James Raymond, 500.
Buneman, Oscar, 706.
Bunimovich, Leonid Abramovich

(❇✉♥✐♠♦✈✐q✱ ▲❡♦♥✐❞ ❆❜r❛♠♦✈✐q), 262.
Bürgisser, Peter, 515.
Burks, Arthur Walter, 202.
Burrus, Charles Sidney, 701.
Butler, James Preston, 77.
Butler, Michael Charles Richard, 442.

C language, 185Ű188, 193, 327, 556.
CACM: Communications of the ACM,

a publication of the Association for
Computing Machinery since 1958.

Cahen, Eugène, 676.
Calculating prodigies, 279, 295.
Calmet, Jacques Francis, 736.
Cameron, Michael James, 409.
Camion, Paul Frédéric Roger, 449.
Campbell, Edward Fay, Jr., vii.
Campbell, Sullivan Graham, 226.
Cancellation error, 58, 245.

avoiding, 617.
Canonical signed bit representation, 611.
Cantor, David Geoffrey, 446, 448, 449,

455, 460, 672, 681.
Cantor, Georg Ferdinand Ludwig

Philipp, 209.
Cantor, Moritz Benedikt, 655.
Capovani, Milvio, 500, 715.
Caramuel de Lobkowitz, Juan, 199Ű200.
Cards, playing, 2, 145, 147, 190.
Carissan, Eugène Olivier, 390.
Carling, Robert Laurence, 104.
Carlitz, Leonard, 84, 90.
Carmichael, Robert Daniel, numbers,

659, 662.
Carr, John Weber, III, 226, 241, 242.
Carroll, Lewis (= Dodgson, Charles

Lutwidge), 435.
Carry: An amount propagated to the

current digit position from the digits in
less signiĄcant positions, 205, 247, 266,
268, 273, 276Ű278, 281, 419, 470, 547.

Cassels, John William Scott, 109, 158.
Casting out nines, 289, 303, 324.

INDEX AND GLOSSARY 741

Castle, Clive Michael Anthony, 653.
Catalan, Eugène Charles, numbers, 723.
Cauchy, Augustin Louis, 208.

inequality, 97, 231.
matrices, 331.

CCITT: The International Telegraph
and Telephone Consultative
Committee of the ITU (International
Telecommunication Union), 405.

CDC 1604 computer, 291.
CDC 7600 computer, 280.
Ceiling function ⌈x⌉, 81, 732.
Cellular automaton, see Linear iterative

array.
Cerlienco, Luigi, 683.
CertiĄcate of irreducibility, 460.
CertiĄcate of primality, 413.
Cervantes Saavedra, Miguel de, 148.
Cesàro, Ernesto, 354, 622, 640.
Ceulen, Ludolph van, 198.
Chace, Arnold Buffum, 462.
Chain multiplications, 518, 519, 524.
Chain steps, 494.
Chains of primes, 415, 666.
Chaitin, Gregory John, 170, 178.
Chan, Tony Fan-Cheong (), 615.
Chapple, Milton Arthur, 530.
CHAR (convert to characters), 328.
Characteristic, 214, see Exponent part.
Characteristic polynomial, 499, 524.
Charles XII of Sweden, 200.
Chartres, Bruce Aylwin, 242.
Chebotarev, Nikolai Grigorievich

(◗❡❜♦t❛r✛✈✱ ◆✐❦♦❧❛✚ ●r✐❣♦r⑦❡✈✐q),
690.

Chebyshev (= Tschebyscheff), Pafnutii
Lvovich (◗❡❜②①❡✈⑧✱ P❛❢♥✉t☞✚
▲⑦✈♦✈✐q⑧ = ◗❡❜②①❡✈✱ P❛❢♥✉t✐✚
▲⑦✈♦✈✐q), inequality, 183, 669.

Cheng, Qi (), 396.
Cheng, Russell Ch’uan Hsun (), 135.
Chesterton, Gilbert Keith, 417, 537.
Chi-square distribution, 44, 48, 60,

69, 135, 590.
table, 44.

Chi-square test, 42Ű47, 53Ű56, 58Ű60.
Childers, James Gregory, 671.
Ch’in Chiu-Shao (= Qín Jiǔsháo)

(), 287, 486.
Chinese mathematics, 197Ű198, 287,

340Ű341, 486.
Chinese remainder algorithm, 21, 289Ű290,

293, 304Ű305, 505.
Chinese remainder theorem, 285Ű290,

389, 404, 584.
for polynomials, 440, 456, 509Ű510.
generalized, 292.

Chiò, Felice, 435.
Chirp transform, 634.
Chiu Chang Suan Shu (), 340.
Choice, random, 2, 119Ű121, 142.

Chor, Benny (❳❊❨ ❖❊■❱ -❖❆), 669.
Christiansen, Hanne Delgas, 74.
Christie Mallowan, Agatha Mary Clarissa

Miller, 725.
Chudnovsky, David Volfovich (◗✉❞♥♦✈s❦✐✚✱

❉❛✈✐❞ ❱♦❧⑦❢♦✈✐q), 280, 311, 533.
Chudnovsky, Gregory Volfovich

(◗✉❞♥♦✈s❦✐✚✱ ●r✐❣♦r✐✚ ❱♦❧⑦❢♦✈✐q),
280, 311, 533.

Church, Alonzo, 178.
Cipolla, Michele, 682.
Clarkson, Roland Hunter, 409.
Classical algorithms, 265Ű284.
Clausen, Michael Hermann, 515, 701.
Clift, Neill Michael, 477Ű479, 485.
Clinger, William Douglas, 638.
CMath: Concrete Mathematics, a book

by R. L. Graham, D. E. Knuth,
and O. Patashnik.

Cochran, William Gemmell, 55.
Cocke, John, 228.
Cocks, Clifford Christopher, 407.
Codes, linear, 711.
Codes for difficulty of exercises, ixŰxi.
Cody, William James, Jr., 226.
Coefficients of a polynomial, 418.

adaptation of, 490Ű494, 516Ű517.
leading, 418, 451Ű452, 454.
size of, 420, 451, 457Ű458, 461.

Cohen, Daniel Isaac Aryeh, 622.
Cohen, Henri José, 345, 658, 687, 712.
Cohn, Paul Moritz, 436, 676.
Coincidence, 6, 8.
Collenne, Joseph Désiré, 201.
Collins, George Edwin, 278, 279, 373, 420,

428, 453, 454, 460, 677.
Collision test, 70Ű71, 74, 158.
Color values, 284.
Colson, John, 208.
Colton, Charles Caleb, vii.
Column addition, 281, 284.
Combination, random, 142Ű148.
Combination of random number generators,

33Ű36, 38, 39.
Combinations with repetitions, 664.
Combinatorial matrices, 116.
Combinatorial number system, 209.
Commutative law, 230, 333, 418, 500,

694, 696.
Commutative ring with identity, 418,

420, 425.
Comp. J.: The Computer Journal, a

publication of the British Computer
Society since 1958.

Compagner, Aaldert, 29, 169.
Companion matrix, 512.
Comparison: Testing for <, =, or >.

continued fractions, 654.
Ćoating point numbers, 233Ű235,

239, 242Ű243.
fractions, 332.
mixed-radix, 290.
modular, 290.
multiprecision, 281.

742 INDEX AND GLOSSARY

Complement notations for numbers, 15,
203Ű204, 210, 213, 228, 275Ű276.

Complete binary tree, 667.
Completely equidistributed sequence, 177.
Complex arithmetic, 205, 228, 283, 292,

307Ű310, 487, 501, 506, 519, 700, 706.
Complex numbers, 420, 497.

representation of, 205Ű206, 209Ű210, 292.
Complex radices, 205Ű206, 209Ű210.
Complexity of calculation, 138, 178Ű179,

280, 294Ű318, 396, 401Ű402, 416, 453,
465Ű485, 494Ű498, 516Ű524, 720.

Composition of power series, 533,
535Ű536, 720.

Computability, 162Ű163, 178.
Concave function, 125, 139, 245, 627.
Conditional expression, 730.
Congruential sequence, inversive, 32Ű33, 40.
Congruential sequence, linear, 10Ű26,

145Ű146, 184Ű186, 193.
choice of increment, 10Ű11, 17, 22,

89, 97, 185.
choice of modulus, 12Ű16, 23, 184.
choice of multiplier, 16Ű26, 88Ű89,

105Ű109, 184Ű185.
choice of seed, 17, 20, 143, 184.
period length, 16Ű23.
subsequence of, 11, 73.

Congruential sequence, quadratic, 26Ű27, 37.
Conjugate of a complex number, 700, 731.
Connection Machine, 538.
Content of a polynomial, 423.
Context-free grammar, 694.
Continuant polynomials, 357, 360, 374, 377,

379, 438, 647, 651, 655, 676.
Continued fractions, 356Ű359, 396Ű401.

inĄnite, 358Ű359, 374.
quadratic irrationalities, 358, 374Ű375,

397Ű401, 412, 415, 665.
regular, 346, 358Ű359, 368, 374Ű379,

412, 415, 665.
with polynomial quotients, 438Ű439,

498, 518.
Continuous binomial distribution, 588.
Continuous distribution functions, 49,

53, 57, 60, 121Ű136.
Continuous Poisson distribution, 588.
Convergents, 378, 397, 438Ű439, 617, 622.
Conversion of representations, 221, 228,

252Ű253, 265, 288Ű290, 293, 304Ű305,
see also Radix conversion.

Convex function, 125, 139, 245, 684.
Convolution, 305, 318, 525, 586.

cyclic, 294, 305Ű307, 510Ű512, 520, 521.
multidimensional, 710.
negacyclic, 521.
polynomials, see Poweroids.

Conway, John Horton, 109, 402, 623.
Cook, Stephen Arthur, 211, 297, 299,

312, 318, 672, 707.
Cooley, James William, 701.

Coolidge, Julian Lowell, 486.
Coonen, Jerome Toby, 226.
Cooper, Curtis Niles, 409.
Copeland, Arthur Herbert, 177.
Coppersmith, Don, 182, 183, 500,

501, 523, 671.
Cormack, Gordon Villy, 664.
Coroutine, 375.
Corput, Johannes Gualtherus van der,

163Ű164, 181.
Correlation coefficient, 72Ű73, 77, 132.
Cosine, 247, 490.
Cotes, Roger, 651.
Couffignal, Louis, 202.
Counting law, 694.
Coupon collector’s test, 63Ű65, 74,

76, 158, 180.
Couture, Raymond, 546, 582.
Covariance, 67.

matrix, 60, 69, 139.
Cover, Thomas Merrill, 571.
Coveyou, Robert Reginald, 26Ű27, 37,

88, 92, 114, 115, 553.
Cox, Albert George, 278.
Crandall, Richard Eugene, 403, 632.
Craps, 190.
Cray T94 computer, 409.
Cray X-MP computer, 108.
Creative writing, 190Ű193.
Crelle: Journal für die reine und angewandte

Mathematik, an international journal
founded by A. L. Crelle in 1826.

Cryptography, 2, 193, 403Ű407, 415,
417, 505.

Cube root modulo m, 404, 415.
Cunningham, Allan Joseph Champneys, 666.
Cusick, Thomas William, 584.
Cut-and-riffle, 147.
Cycle in a random permutation, 384, 460.
Cycle in a sequence, 4, 10, 22, 37Ű40.

detection of, 7Ű8.
Cyclic convolution, 294, 305Ű307,

510Ű512, 520, 521.
Cyclotomic polynomials, 394, 451,

459, 510, 514.

Dahl, Ole-Johan, 148, 592.
Daniels, Henry Ellis, 568.
Dase, Johann Martin Zacharias, 279.
Datta, Bibhutibhusan (✐❜✫✮✐t✫✮❲✱ ❞➾) =

Bidyāranya, Swami (❙✈❀♠■ ✐❜❞✯❀r✱✯),
343, 461.

Daudé, Hervé, 366.
Davenport, Harold, 648.
David, Florence Nightingale, 3, 566.
Davis, Chandler, 606.
Davis, Clive Selwyn, 651.
de Bruijn, Nicolaas Govert, 181, 212,

568, 653, 664, 686, 694.
cycle, 38Ű40.

de Finetti, Bruno, 566.

INDEX AND GLOSSARY 743

de Groote, Hans Friedrich, 708.
de Jong, Lieuwe Sytse, 515.
de Jonquières, Jean Philippe Ernest

de Fauque, 465Ű466, 469, 477.
de La Vallée Poussin, Charles Jean

Gustave Nicolas, 381.
de Lagny, Thomas Fantet, 279, 360.
de Mairan, Jean-Jacques d’Ortous, 537.
de Maupertuis, Pierre-Louis Moreau, 537.
de Moivre, Abraham, 537.
Debugging, 193, 221Ű223, 275, 331.
Decimal computer: A computer that

manipulates numbers primarily in
the decimal (radix ten) number
system, 21, 202Ű203.

Decimal digits, 195, 319.
Decimal fractions, history, 197Ű198, 326.
Decimal number system, 197Ű199, 210,

320Ű326, 374.
Decimal point, 195.
Decimation, 326, 328.
Decision, unbiased, 2, 119Ű121.
DECsystem 20 computer, 15.
Decuple-precision Ćoating point, 283.
Dedekind, Julius Wilhelm Richard, 83, 687.

sums, generalized, 83Ű92, 106.
DeĄnitely greater than, 224, 233Ű235,

239, 242Ű243.
DeĄnitely less than, 224, 233Ű235,

239, 242Ű243.
DeĄnition of randomness, 2, 149Ű183.
Dégot, Jérôme, 683.
Degree of a polynomial, 418, 420, 436.
Degrees of freedom, 44, 495, 517Ű518, 704.
Dekker, Theodorus Jozef, 242, 244, 253.
Deléglise, Marc, 667.
Dellac, Hippolyte, 465.
DeMillo, Richard Allan, 675.
Denneau, Monty Montague, 311.
Density function, 124Ű126, 139.

nearly linear, 126.
Dependent normal deviates, 132, 139.
Derandomization, 414.
DerĆinger, Gerhard, 138.
Derivatives, 124, 439, 489, 524, 526, 537.
Descartes, René, 407.
Determinants, 356, 373, 432, 434,

498Ű500, 523Ű524.
Deviate: A random number.
Devroye, Luc Piet-Jan Arthur, 138.
Dewey, Melville (= Melvil) Louis Kossuth,

notation for trees, 555.
Diaconis, Persi Warren, 145, 263, 264, 622.
Diamond, Harold George, 245.
Dice, 2, 7, 42Ű43, 45Ű46, 58, 120Ű121, 190.
Dickman, Karl Daniel, 382Ű383.
DickmanŰGolomb constant, 661.
Dickson, Leonard Eugene, 287, 387, 646.
Dictionaries, 201Ű202.

Dieter, Ulrich Otto, 89, 91, 92, 101,
114, 116, 119, 129Ű130, 132, 134,
137, 573, 574, 588.

Differences, 297Ű298, 504, 516.
Differential equations, 526Ű527.
Differentiation, see Derivatives.
Diffie, Bailey WhitĄeld, 406.
Digit: One of the symbols used in positional

notation; usually a decimal digit, one
of the symbols 0, 1, . . . , or 9.

binary, 195, 200.
decimal, 195, 319.
hexadecimal, 195, 210.
octal, 210.

Dilcher, Karl Heinrich, 403.
Dilogarithm, 621.
Diophantine equations, 343Ű345, 354,

417, 449, 648.
Diophantus of Alexandria (❉✐ì❢❛♥t♦❝

å ❃❆❧❡①❛♥❞r❡Ô❝), see Diophantine
equations.

Direct product, 520, 522Ű523.
Direct sum, 520, 522Ű523.

conjecture, 708.
Directed graph, 480Ű481, 484Ű485.
Dirichlet, Johann Peter Gustav

Lejeune, 342.
series, 536Ű537, 695.

Discrepancy, 39, 110Ű115.
Discrete distribution functions, 48,

120Ű121, 136Ű138.
Discrete Fourier transforms, 169, 305Ű311,

316Ű318, 501Ű503, 506, 512, 516,
520Ű521, 524, 595.

Discrete logarithms, 417.
Discriminant of a polynomial, 674, 686.
Distinct-degree factorization, 447Ű449,

459, 689.
Distribution: A speciĄcation of probabilities

that govern the value of a random
variable, 2, 119, 121.

beta, 134Ű135.
binomial, 136Ű138, 141, 401, 559.
chi-square, 44, 48, 60, 69, 135, 590.
exponential, 133, 137, 589.
F -, 135.
of Ćoating point numbers, 253Ű264.
gamma, 253Ű264.
geometric, 136, 137, 140, 585.
integer-valued, 136Ű141.
KolmogorovŰSmirnov, 57Ű60.
of leading digits, 254Ű264, 282, 404.
negative binomial, 140.
normal, 56, 122, 132, 139, 384, 565.
partial quotients of regular continued

fractions, 362Ű369, 665.
Poisson, 55, 137Ű138, 140, 141, 538, 570.
of prime factors, 382Ű384, 413.
of prime numbers, 381Ű382, 405.
Student’s, 135.
t-, 135.
tail of binomial, 167.
tail of normal, 139.
uniform, 2, 10, 48, 61, 119, 121, 124, 263.
variance-ratio, 135.
wedge-shaped, 125Ű126.

744 INDEX AND GLOSSARY

Distribution functions, 48, 121, 140,
263, 362, 382Ű384.

continuous, 49, 53, 57, 60, 121Ű136.
discrete, 48, 120Ű121, 136Ű138.
empirical, 49.
mixture of, 123Ű124, 138.
polynomial, 138.
product of, 121.

Distributive laws, 231, 334, 418, 694.
Divide-and-correct, 270Ű275, 278, 282Ű284.
Divided differences, 504, 516.
Dividend: The quantity u while computing

⌊u/v⌋ and u mod v, 270.
Division, 194, 265, 270Ű275, 278, 282Ű284,

311Ű313.
algebraic numbers, 333, 674.
avoiding, 523Ű524.
balanced ternary, 283.
by ten, 321, 328.
by zero, 220, 224, 241, 639.
complex, 228, 283, 706.
continued fractions, 649.
double-precision, 251Ű252, 278Ű279.
exact, 284.
Ćoating point, 220Ű221, 230Ű231, 243.
fractions, 330.
long, 270Ű275, 278, 282Ű284.
mixed-radix, 209, 635.
mod m, 354, 445, 499.
multiprecision, 270Ű275, 278Ű279,

282Ű283, 311Ű313.
multiprecision by single-precision, 282.
polynomial, 420Ű439, 487, 534.
power series, 525Ű526, 533Ű534.
pseudo-, 425Ű426, 435Ű436.
quater-imaginary, 283.
short, 282.
string polynomials, 436Ű437.

Divisor: The quantity v while computing
⌊u/v⌋ and u mod v, 270.

Divisor: x is a divisor of y if y mod x = 0
and x > 0; it is a proper divisor if it is
a divisor such that 1 < x < y.

polynomial, 422.
Dixon, John Douglas, 372, 401Ű402,

412, 414, 415, 417.
Dixon, Wilfrid Joseph, 565.
Dobell, Alan Rodney, 17.
Dobkin, David Paul, 697, 712.
Dodgson, Charles Lutwidge, 435.
Donsker, Monroe David, 559.
Doob, Joseph Leo, 559.
Dorn, William Schroeder, 488.
Dot product, 36, 97, 173Ű174, 499Ű501.
Double-precision arithmetic, 246Ű253,

278Ű279, 295.
Doubling, 322, 462.

continued fraction, 375.
Doubling step, 467.
Downey, Peter James, 485.
Dragon curve, 606, 609, 655.

Dragon sequence, 655.
Dresden, Arnold, 196.
Drift, 237, 244.
Du Shiran (), 287.
Dual of an addition chain, 481, 484, 485.
Duality formula, 569.
Duality principle, 481, 485, 507, 535, 718.
Dubner, Harvey Allen, 664.
Duffield, Nicholas Geoffrey, 593.
Dumas, Philippe, 355.
Duncan, Robert Lee, 264.
Duodecimal number system, 199Ű200.
Dupré, Athanase, 653.
Durbin, James, 57, 568.
Durham, Stephen Daniel, 34.
Durstenfeld, Richard, 145.

e (base of natural logarithms), 12, 76,
359, 726Ű727, 733.

as “randomŤ example, 21, 33, 47, 52, 108.
Earle, John Goodell, 312.
Eckhardt, Roger Charles, 189.
L’Ecuyer, Pierre, 108, 179, 546, 582,

584, 603.
Edelman, Alan Stuart, 280.
Edinburgh rainfall, 74.
EDVAC computer, 225Ű226.
Effective algorithms, 161Ű166, 169, 178.
Effective information, 179.
Egyptian mathematics, 335, 462.
Eichenauer-Herrmann, Jürgen, 32, 558, 559.
Eisenstein, Ferdinand Gotthold Max, 457.
Electrologica X8 computer, 222.
Electronic mail, 406.
Elementary symmetric functions, 682Ű683.
Elkies, Noam David, xi.
Ellipsoid, 105.

random point on, 141.
Elliptic curve method, 402, 671.
Elvenich, Hans-Michael, 409.
Empirical distribution functions, 49.
Empirical tests for randomness, 41, 61Ű80.
Encoding a permutation, 65Ű66, 77Ű78, 145.
Encoding secret messages, 193, 403Ű407,

415, 417.
EnĆo, Per, 683.
Engineering Research Associates, 208.
Enhancing randomness, 26, 34.
ENIAC computer, 54, 280.
Entropy, 712.
Enumerating binary trees, 527, 696, 723.
Enumerating prime numbers, 382, 412, 416.
Equality, approximate, 224, 233Ű235,

239, 242Ű243, 245.
essential, 233Ű235, 239Ű240, 242Ű244.

Equidistributed sequence, 150, 163,
177, 179Ű183.

Equidistribution test, 61, 74, 75.
Equitable distribution, 181.
Equivalent addition chains, 480, 484.

INDEX AND GLOSSARY 745

Eratosthenes of Cyrene (❃❊r❛t♦s❥è♥❤❝
å ❑✉r❤♥❛Ø♦❝), 412.

Erdős, Pál (= Paul), 181, 384, 471, 696.
ERH, see Extended Riemann hypothesis.
ERNIE machine, 3Ű4.
Error, absolute, 240, 309, 312Ű313.
Error, relative, 222, 229, 232, 253, 255.
Error estimation, 222, 229, 232, 253,

255, 309Ű310.
Espelid, Terje Oskar, 616.
Essential equality, 233Ű235, 239Ű240,

242Ű244.
Estes, Dennis Ray, 671.
Estrin, Gerald, 488.
Euclid (❊❰❦❧❡Ð❞❤❝), 335Ű337.
Euclid’s algorithm, 86, 99, 102, 117, 184,

288, 290, 304, 334Ű337, 340, 579.
analysis of, 356Ű379.
compared to binary algorithm, 341.
extended, 342Ű343, 354, 379, 435Ű436, 534.
for polynomials, 424, 438Ű439.
for polynomials, extended, 437, 458.
for string polynomials, 426Ű428.
generalized to the hilt, 426Ű428.
multiprecision, 345Ű348, 373.
original form, 335Ű336.

Eudoxus of Cnidus, son of Æschinus
(❊Ö❞♦①♦❝ ❆✃sqÐ♥♦✉ å ❑♥Ð❞✐♦❝).

Euler, Leonhard (❊✚❧❡r⑧✱ ▲❡♦♥❛r❞⑧ =
✄✚❧❡r✱ ▲❡♦♥❛r❞), xi, 357, 375, 377,
392, 407, 526, 649Ű651, 653, 655.

constant γ, 359, 379, 726Ű727, 733.
theorem, 20, 286, 548.
totient function φ(n), 19Ű20, 289,

369, 376, 583, 646.
Eulerian numbers, 284.
Evaluation: Computing the value.

of determinants, 498Ű500, 523Ű524.
of mean and standard deviation, 232, 244.
of monomials, 485, 697.
of polynomials, 485Ű524.
of powers, 461Ű485.

Eve, James, 493, 517.
Eventually periodic sequence, 7, 22,

375, 385.
Exact division, 439.
Excess q exponent, 214Ű215, 227, 246.
Exclusive or, 31, 32, 193, 419.
Exercises, notes on, ixŰxi.
Exhaustive search, 103.
Exponent overĆow, 217, 221, 227, 231,

241, 243, 249.
Exponent part of a Ćoating point number,

214Ű215, 246, 263, 283.
Exponent underĆow, 217, 221Ű222, 227,

231, 241, 249.
Exponential deviates, generating,

132Ű133, 137.
Exponential distribution, 133, 137, 589.
Exponential function, 313, 490, 533, 537.

Exponential sums, 84Ű85, 110Ű115, 181,
305, 382, 501.

Exponentiation: Raising to a power,
461Ű485.

multiprecision, 463.
of polynomials, 463Ű464.
of power series, 526, 537, 719.

Extended arithmetic, 244Ű245, 639.
Extended Euclidean algorithm, 342Ű343,

354, 379, 435Ű436, 534.
for polynomials, 437, 458.

Extended Riemann Hypothesis,
395Ű396, 671.

F -distribution, 135.
Factor: A quantity being multiplied.
Factor method of exponentiation, 463,

465, 482, 485.
Factorial number system, 66, 209.
Factorial powers, 297, 515, 534, 643, 731.
Factorials, 416, 622.
Factorization: Discovering factors.

of integers, 13Ű14, 175, 379Ű394,
396Ű403, 412Ű417.

of polynomials, 439Ű461, 514.
of polynomials mod p, 439Ű449, 455Ű456.
of polynomials over the integers, 449Ű453.
of polynomials over the rationals, 459.
optimistic estimates of running time, 176.
uniqueness of, 436.

FADD (Ćoating add), 223Ű224, 227Ű228,
238, 253, 516.

Fagin, Barry Steven, 403, 632.
Fallacious reasoning, 26, 74, 88, 95Ű96, 222.
Falling powers, 297, 731.
Fan, Chung Teh (), 143.
Fast Fourier transform, 73, 306Ű310,

318, 502, 505, 512, 516, 521, 706,
710, 713Ű714.

history of, 701.
Fateman, Richard J, 463.
Faure, Henri, 164.
FCMP (Ćoating compare), 223, 244.
FDIV (Ćoating divide), 223.
Feijen, Wilhelmus (= Wim) Hendricus

Johannes, 636.
Ferguson, Donald Fraser, 280.
Fermat, Pierre de, 386Ű388, 391, 407, 579.

factorization method, 386Ű391, 412.
numbers, 14, 386, 397, 403.
theorems, 391, 413, 440, 579, 680.

Ferranti Mark I computer, 3, 192.
Ferrenberg, Alan Milton, 188.
FFT, 516, see Fast Fourier transform.
Fibonacci, Leonardo, of Pisa (= Leonardo

Ąlio Bonacii Pisano), 197, 208, 280.
generator, 27, 34, 36, 37, 47, 52, 54, 92.
number system, 209.
numbers Fn: Elements of the Fibonacci

sequence, 731.
numbers, table of, 728.
sequence, 27, 37, 213, 264, 360, 468,

483, 660, 666.
sequence, lagged, 27Ű29, 35, 40, 72, 75,

79Ű80, 146, 186Ű188, 193.

746 INDEX AND GLOSSARY

Field: An algebraic system admitting
addition, subtraction, multiplication,
and division, 213, 331, 420, 422,
506, 525.

Ąnite, 29Ű30, 449, 457, 554Ű555, 702.
Fike, Charles Theodore, 490.
Finck, Pierre Joseph Étienne, 360.
Findley, Josh Ryan, 409.
Fine, Nathan Jacob, 90.
Finetti, Bruno de, 566.
Finite Ąelds, 29Ű30, 449, 457, 554Ű555, 702.
Finite Fourier transform, see Discrete

Fourier transform.
Finite sequences, random, 167Ű170, 178.
Fischer, Michael John, 634.
Fischer, Patrick Carl, 241.
Fischlin, Roger, 669.
Fisher, Ronald Aylmer, 145.
Fishman, George Samuel, 108.
FIX (convert to Ąxed point), 224.
Fix-to-Ćoat conversion, 221, 223Ű224.
Fixed point arithmetic, 214, 225Ű226,

308Ű310, 532.
Fixed slash arithmetic, 331Ű333, 379.
Flajolet, Philippe Patrick Michel, 355,

366, 449, 541, 644.
Flammenkamp, Achim, 478, 483, 693.
Flat distribution, see Uniform distribution.
Flehinger, Betty Jeanne, 262.
Float-to-Ąx conversion, 224Ű225, 228.
Floating binary numbers, 214, 225,

227, 254, 263.
Floating decimal numbers, 214, 226,

254Ű264.
Floating hexadecimal numbers, 254, 263.
Floating point arithmetic, 36, 188, 193,

196, 214Ű264, 292.
accuracy of, 222, 229Ű245, 253, 329,

438, 485.
addition, 215Ű220, 227Ű228, 230Ű231,

235Ű238, 253Ű254, 602.
addition, exact, 236.
axioms, 230Ű231, 242Ű245.
comparison, 233Ű235, 239, 242Ű243.
decuple-precision, 283.
division, 220Ű221, 230Ű231, 243.
double-precision, 246Ű253, 278Ű279.
hardware, 223Ű226.
intervals, 228, 240Ű242, 244Ű245, 333, 613.
mod, 228, 243, 244.
multiplication, 220, 230Ű231, 243,

263Ű264.
multiplication, exact, 244.
operators of MIX, 215, 223Ű225, 516.
quadruple-precision, 253.
reciprocal, 243, 245, 263.
single-precision, 214Ű228.
subtraction, 216, 230Ű231, 235Ű238,

245, 253, 556, 602.
summation, 232, 244.
triple-precision, 252.
unnormalized, 238Ű240, 244, 327.

Floating point numbers, 196, 214Ű215,
222, 228, 246.

radix-b, excess-q, 214Ű215.
statistical distribution, 253Ű264.
two’s complement, 228.

Floating point radix conversion, 326Ű329.
Floating point trigonometric subroutines,

245, 247, 490.
Floating slash arithmetic, 331, 333.
Floor function ⌊x⌋, 81, 732.
FLOT (convert to Ćoating point), 223.
Floyd, Robert W, 7, 148, 280, 361, 505, 540.
Fluhrer, Scott, 542.
FMUL (Ćoating multiply), 223, 516.
Foata, Dominique Cyprien, 9.
FOCS: Proceedings of the IEEE Symposia

on Foundations of Computer Science
(1975Ű), formerly called the Symposia
on Switching Circuit Theory and
Logic Design (1960Ű1965), Symposia
on Switching and Automata Theory
(1966Ű1974).

Forsythe, George Elmer, 4, 128.
FORTRAN language, 188, 193, 279, 600, 602.
Fourier, Jean Baptiste Joseph, 278.

division method, 278.
series, 90, 487.
transform, discrete, 169, 305Ű311,

316Ű318, 501Ű503, 506, 512, 516,
520Ű521, 524, 595.

Fowler, Thomas, 208.
Fractals, 206.
Fraction overĆow, 217, 254, 262, 264.
Fraction part of a Ćoating point number,

214Ű215, 246, 263.
distribution of, 254Ű264.

Fractions: Numbers in [0 . . 1), 36.
conversion, 319Ű328.
decimal, history, 197Ű198, 326.
exponentiation, 483.
random, see Uniform deviates.
terminating, 328.

Fractions: Rational numbers, 330Ű333,
420, 526.

Fraenkel, Aviezri S (▲❲P❳❚ ■❳❋❘■❆❅), 290,
291, 292, 630.

Franel, Jérome, 258.
Franklin, Joel Nick, 149, 158, 159, 177,

180, 182, 577.
Franta, William Ray, 60.
Fredricksen, Harold Marvin, 557.
Free associative algebra, 437.
Frequency function, see Density function.
Frequency test, 61, 74, 75.
Friedland, Paul, 613.
Frieze, Alan Michael, 599.
Fritz, Kurt von, 335.
Frobenius, Ferdinand Georg, 539, 681, 689.

automorphism, 689.
Frye, Roger Edward, 538.
FSUB (Ćoating subtract), 223, 253.
Fuchs, Aimé, 9.
Fundamental theorem of arithmetic,

334, 422, 483.
Fuss, Paul Heinrich von (❋✉ss✱ P❛✈❡❧

◆✐❦♦❧❛❡✈✐q), 392, 651.

INDEX AND GLOSSARY 747

Gage, Paul Vincent, 409.
Galambos, János, 661.
Galois, Évariste, 449, 457.

Ąelds, see Finite Ąelds.
groups, 679, 681, 689, 690.

Gambling systems, 161.
Gamma distribution, 133Ű134, 140.
Gamma function, incomplete, 56, 59, 133.
Ganz, Jürg Werner, 707.
Gap test, 62Ű63, 74Ű76, 136, 158, 180.
Gardner, Martin, 41, 200, 280, 592.
Garner, Harvey Louis, 280, 290, 292.
Gathen, Joachim Paul Rudolf von zur,

449, 611, 673, 687.
Gauß (= Gauss), Johann Friderich Carl

(= Carl Friedrich), 20, 101, 363, 417,
422, 449, 578, 679, 685, 688, 701.

integers, 292, 345, 579.
lemma about polynomials, 422Ű423, 682.

Gay, John, 1.
gcd: Greatest common divisor.
Gebhardt, Friedrich, 34.
Geiger, Hans, counter, 7.
Geiringer, Hilda, von Mises, 76.
Generalized Dedekind sums, 83Ű92, 106.
Generalized Riemann hypothesis, 396.
Generating functions, 140, 147, 213, 261,

276Ű278, 525, 562Ű563, 679Ű680,
686, 695.

Generation of uniform deviates, 10Ű40,
184Ű189, 193.

Genuys, François, 280.
Geometric distribution, 136, 137, 140, 585.
Geometric mean, 283.
Geometric series, 84, 307, 519, 700.
Gerhardt, Carl Immanuel, 200.
Gerke, Friedrich Clemens, 653.
Gessel, Ira Martin, 723.
Gibb, Allan, 242.
Gilbert, William John, 607.
Gill, Stanley, 226.
Gimeno Fortea, Pedro, 187.
GIMPS project, 409.
Gioia, Anthony Alfred, 469.
Girard, Albert, 424.
Givens, James Wallace, Jr., 94.
Glaser, Anton, 201.
Globally nonrandom behavior, 51Ű52, 80.
Goertzel, Gerald, 487.
Goffinet, Daniel, 607.
Goldbach, Christian, 392, 651.
Goldberg, David Marc, 226.
Golden ratio, 164, 283, 359, 360, 514,

652, 726Ű727, 733.
Goldreich, Oded (❏■■❳❈▲❊❇ ❈❈❊❘), 179,

598, 669.
Goldschmidt, Robert Elliott, 312.
Goldstein, Daniel John, 593.
Goldstine, Herman Heine, 202, 278, 327.
Goldwasser, Shafrira, 598.
Golomb, Solomon Wolf, 147, 661, 711.

Golub, Gene Howard, 562.
Gonzalez, TeoĄlo, 60.
Good, Irving John, 183.
Goodman, Allan Sheldon, 108.
Gosper, Ralph William, Jr., 101, 107, 117,

355, 375, 378, 540, 649.
Gosset, William Sealy (= Student),

t-distribution, 135.
Goulard, Achille, 477.
Gould, Henry Wadsworth, 725.
Gourdon, Xavier Richard, 355, 449, 667.
Goyal, Girish Kumar (EgrFш к� mAr

goyl), 625.
Gradual underĆow, 222.
Gräffe, Carl Heinrich, 683.
Graham, Ronald Lewis, 484, 608, 741.
Gram, Jørgen Pedersen, 674.
GramŰSchmidt orthogonalization

process, 101, 674.
Granville, Andrew James, 396, 659.
Graph, 480Ű481, 485.
Graphics, 284.
Gray, Frank, binary code, 209, 568, 699.
Gray, Herbert Lee Roy, 242.
Gray levels, multiplication of, 284.
Great Internet Mersenne Prime Search, 409.
Greater than, deĄnitely, 224, 233Ű235,

239, 242Ű243.
Greatest common divisor, 330Ű356, 483.

binary algorithms for, 338Ű341,
348Ű356, 435.

Euclidean algorithm for, see Euclid’s
algorithm.

multiprecision, 345Ű348, 354, 355,
379, 656.

of n numbers, 341, 378.
of polynomials, 424Ű439, 460, 453Ű455.
within a unique factorization domain, 424.

Greatest common right divisor, 437Ű438.
Greedy algorithm, 293.
Greek mathematics, 196Ű197, 225,

335Ű337, 359.
Green, Bert Franklin, Jr., 27.
Greenberger, Martin, 17, 88, 551.
Greene, Daniel Hill, 659, 686, 697.
Greenwood, Joseph Arthur, 33.
Greenwood, Robert Ewing, 74.
Gregory, Robert Todd, 657.
GRH: The ERH for algebraic numbers, 396.
Groote, Hans Friedrich de, 708.
Grosswald, Emil, 90.
Grotefeld, Andreas Friedrich Wilhelm, 656.
Groups, 701.

Galois, 679, 681, 689, 690.
Grube, Andreas, 582.
Grünwald, Vittorio, 204, 205.
Guaranteed randomness, 35Ű36, 170Ű176.
Guard digits, 227.
Gudenberg, see Wolff von Gudenberg.
Guessing, ampliĄed, 172Ű174, 416Ű417.
Guilloud, Jean, 280.
Gustavson, Fred Gehrung, 721.
Guy, Michael John Thirian, 623.
Guy, Richard Kenneth, 402, 413.

748 INDEX AND GLOSSARY

Haber, Seymour, 164.
Habicht, Walter, 435.
Hadamard, Jacques Salomon, 382, 432.

inequality, 432, 436, 499.
transform, 173, 502.

Hafner, James Lee, 661.
Hajjar, Mansour (➂♥⑨❷ ➂Ø➐Ð❐), 29.
Hajratwala, Nayan (✱②♥ ✧✪❏rt✈❀❧❀), 409.
HAKMEM, 540, 649.
Halberstam, Heini, 664.
Halewyn, Christopher Neil van, 403.
Halliwell-Phillipps, James Orchard, 316.
Halton, John Henry, 164.
Halving, 328, 338, 339, 462.

continued fraction, 375.
modular, 293.

Hamblin, Charles Leonard, 420.
Hamlet, Prince of Denmark, v.
Hammersley, John Michael, 189.
Hamming, Richard Wesley, 255, 263.
Handscomb, David Christopher, 189.
Handy identities, 628Ű629.
Hansen, Eldon Robert, 617.
Hansen, Walter, 473, 475, 476, 479, 483.
Hanson, Richard Joseph, 615.
Haralambous, Yannis (◗❛r❛❧❼♠♣♦✉❝✱

❃■✇❼♥♥❤❝), 764.
Hard-core bit, 179.
Hardware: Computer circuitry.

algorithms suitable for, 228,
244 (exercise 17), 280, 312, 313Ű316,
322, 327Ű329, 338, 356, 461, 695.

Hardy, Godfrey Harold, 382, 384, 653.
Harmonic numbers Hn, 731.

fractional, 362, 729.
table of, 728Ű729.

Harmonic probability, 264.
Harmonic sums, 355.
Harriot, Thomas, 199.
Harris, Bernard, 541.
Harris, Vincent Crockett, 341, 355.
Harrison, Charles, Jr., 242.
Hashing, 70, 148.
Hassler, Hannes, 699.
Håstad, Johan Torkel, 179, 417, 514, 599.
Haynes, Charles Edmund, Jr., 108.
hcf, see Greatest common divisor.
Hebb, Kevin Ralph, 477.
Heideman, Michael Thomas, 701.
Heilbronn, Hans Arnold, 372, 377.
Heindel, Lee Edward, 677.
Hellman, Martin Edward, 406.
Henrici, Peter Karl Eugen, 332, 505.
Hensel, Kurt Wilhelm Sebastian, 213, 685.

lemma, 38, 451, 454Ű455, 458, 685Ű686.
Hensley, Douglas Austin, 366, 373.
Heringa, Jouke Reyn, 29.
Hermelink, Heinrich, 208.
Hermite, Charles, 115, 579.
Herrmann, Hans Jürgen, 29.
Hershberger, John Edward, 366.

Herzog, Thomas Nelson, 178, 594, 598.
Hexadecimal digits, 195, 210.
Hexadecimal number system, 201Ű202,

204, 210, 324, 639.
Ćoating point, 254, 263.
nomenclature for, 201.

Higham, Nicholas John, 242.
Hilferty, Margaret Mary, 134.
Hill, Ian David, 544.
Hill, Theodore Preston, 262.
himult, 15, 584.
Hindu mathematics, 197, 208, 209, 281,

287, 343, 387, 461, 648.
HITACHI SR2201 computer, 280.
Hitchcock, Frank Lauren, 506.
Hlawka, Edmund, 117.
HLT (halt), 222.
Hobby, John Douglas, 764.
Hoffmann, Immanuel Carl Volkmar, 279.
Hofstadter, Douglas Richard, 330.
Holte, John Myrom, 629.
Homann, Karsten, 736.
Homogeneous polynomial, 437, 458, 698.
Hopcroft, John Edward, 500, 507, 699.
Hörmann, Wolfgang, 138.
Hörner, Horst Helmut, 118.
Horner, William George, 486.

rule for polynomial evaluation, 486Ű489,
498, 504, 515, 517, 519.

Horowitz, Ellis, 505.
Howard, John Vernon, 178.
Howell, Thomas David, 708.
Hoyle, Edmond, rules, 147.
Huff, Darrell Burton, 42.
Hull, Thomas Edward, 17.
Hurwitz, Adolf, 345, 375, 376, 649.
Huygens (= Huyghens), Christiaan, 655.
Hyde, John Porter, 419.
Hyperbolic tangent, 375.
Hyperplanes, 96, 97, 116.

IBM 704 computer, 280.
IBM 7090 computer, 280.
IBM System/360 computers, 396Ű397, 614.
IBM System/370 computers, 15.
Ibn Ezra (= Ben Ezra), Abraham ben Meir

(❅❳❋❘ ❖❆❅ ❳■❅◆ ❖❆ ▼❉❳❆❅), also known as
Abū Ish. aq̄ Ibrāhim al-Mājid
(♠➂➅➠ Ñ♣ ❿⑦♥❒➾♠ ❮ÛÓ♠➃♣❣ ➵❸➇❣ Ø♣❝), 197.

Idempotent, 539, 694.
Identity element, 418.
IEEE standard Ćoating point, 226, 246, 602.
Ikebe, Yasuhiko (), 252.
Ill-conditioned matrix, 292.
Images, digitized, 284.
Imaginary radix, 205Ű206, 209Ű210, 283.
Impagliazzo, Russell Graham, 179.
Improving randomness, 26, 34.
IMSL: The International Mathematics and

Statistics Library, 108.
in situ transformation, 700.

INDEX AND GLOSSARY 749

Inclusion and exclusion principle, 354,
563, 610, 640, 678, 699.

Incomplete gamma function, 56, 59, 133.
Increment in a linear congruential sequence,

10Ű11, 17, 22, 89, 97, 185.
Independence, algebraic, 496, 518.
Independence, linear, 443Ű444, 508, 659Ű660.
Independence of random numbers, 2, 43,

46, 55, 59, 66, 95, 240, 559, 562.
Index modulo p, 417.
Indian mathematics, 197, 208, 209, 281,

287, 343, 387, 461, 648.
Induced functions, 535.
Induction, mathematical, 336.

on the course of computation, 266,
269, 337.

Inductive assertions, 281Ű282.
InĄnite continued fractions, 358Ű359, 374.
InĄnity, representation of, 225, 244Ű245, 332.
Inner product, 97, 499Ű501, 520.
Integer, random,

among all positive integers, 257,
264, 342, 354.

in a bounded set, 119Ű121, 138, 185Ű186.
Integer solution to equations, 343Ű345,

354, 417, 449, 648.
Integer-valued distributions, 136Ű141.
Integrated circuit module, 313.
Integration, 153Ű154, 259.
Interesting point, 642.
Internet, iv, x.
Interpolation, 297, 365, 503Ű505, 509,

516, 700, 721.
Interpretive routines, 226.
Interval arithmetic, 228, 240Ű242,

244Ű245, 333, 613.
Inverse Fourier transform, 307, 316,

516, 633.
Inverse function, 121, see also Reversion

of power series.
Inverse matrix, 98, 331, 500, 524.
Inverse modulo 2e, 213, 629.
Inverse modulo m, 26, 354, 445, 456, 646.
Inversive congruential sequence, 32Ű33, 40.
Irrational numbers: Real numbers that

are not rational, 181, 359.
multiples of, mod 1, 164, 379, 622.
transcendental, 378.

Irrational radix, 209.
Irrationality, quadratic, 358, 374Ű375,

397Ű401, 412, 415, 665.
Irreducible polynomial, 422, 435, 450,

456Ű457, 460.
Ishibashi, Yoshihiro (), 291.
Islamic mathematics, 197, 280Ű281,

326, 461Ű462.
Iteration of power series, 530Ű536, 723.
Iterative n-source, 172.
Iverson, Kenneth Eugene, 226.

Jabotinsky, Eri, 533, 536, 723.
JACM: Journal of the ACM, a publication

of the Association for Computing
Machinery since 1954.

Jacobi, Carl Gustav Jacob, 662.
symbol, 413Ű414, 415, 655, 662, 668.

JAE (jump A even), 339, 481.
Jaeschke, Gerhard Paul Werner, 666.
Jager, Hendrik, 665.
Ja’Ja’ (= JaJa), Joseph Farid

(➢⑨➡⑦ ❿Ú➃➩ ➭Ú➄Ø⑦), 514.
Janssens, Frank, 107, 114.
Jansson, Birger, 540, 553.
JAO (jump A odd), 339, 612.
Japanese mathematics, 648.
Jayadeva, Ācārya (aAcAy jyd�v), 648.
Jebelean, Tudor, 629.
Jefferson, Thomas, 229.
Jensen, Geraldine Afton, 466.
Jensen, Johan Ludvig William Valdemar,

683.
Jevons, William Stanley, 388.
Jiuzhang Suanshu (), 340.
Jöhnk, Max Detlev, 134.
Johnson, Don Herrick, 701.
Johnson, Jeremy Russell, 625.
Johnson, Samuel, 229.
Jokes, 3, 417.
Jones, Hugh, 200, 326.
Jones, Terence Gordon, 143.
Jong, Lieuwe Sytse de, 515.
Jonquières, Jean Philippe Ernest de Fauque

de, 465Ű466, 469, 477.
Jordaine, Joshua, 199.
Judd, John Stephen, 394.
Jurkat, Wolfgang Bernhard, 699.
Justeson, John Stephen, 196.
JXE (jump X even), 339.
JXO (jump X odd), 219, 339.

k-distributed sequence, 151Ű155, 168,
177, 179Ű182.

Kac, Mark, 384.
Kahan, William Morton, 222, 226, 227,

241Ű245, 617.
summation formula, 615.

Kaib, Michael Andreas, 578.
Kaltofen, Erich Leo, 345, 449, 455, 672, 718.
Kaminski, Michael, 712.
Kanada, Yasumasa (), 280.
Kankaala, Kari Veli Antero, 75, 570.
Kannan, Ravindran (❹➳✐➋❹❤

①❢⑦❤), 599.
Kanner, Herbert, 327.
Karatsuba, Anatolii Alekseevich (❑❛r❛❝✉❜❛✱

❆♥❛t♦❧✐✚ ❆❧❡❦s❡❡✈✐q), 295,
318, 420, 663.

Karlsruhe, University of, 242.
Kátai, Imre, 607.
Katz, Victor Joseph, 198.
Kayal, Neeraj (nFrj кyAl), 396.
Keir, Roy Alex, 237, 638.

750 INDEX AND GLOSSARY

Keller, Wilfrid, 664, 666.
Kempner, Aubrey John, 204, 378.
Kendall, Maurice George, 3, 74, 76.
Kermack, William Ogilvy, 74.
Kerr, Leslie Robert, 699.
Kesner, Oliver, 226.
Khinchin, Alexander Yakovlevich (❍✐♥q✐♥✱

❆❧❡❦s❛♥❞r ✗❦♦✈❧❡✈✐q), 356, 652.
Killingbeck, Lynn Carl, 103, 107.
Kinderman, Albert John, 130Ű131, 135.
Klarner, David Anthony, 213.
Klem, Laura, 27.
Knop, Robert Edward, 136.
Knopfmacher, Arnold, 345, 686.
Knopfmacher, John Peter Louis, 345.
Knopp, Konrad Hermann Theodor, 364.
Knorr, Wilbur Richard, 335.
Knott, Cargill Gilston, 627.
Knuth, Donald Ervin (), ii, iv, vii, 2,

4, 30, 89, 138, 145, 159, 189, 196, 205,
226, 242, 316, 335, 373, 378, 384, 435,
491, 584, 595, 599, 606, 636, 659, 661,
686, 694, 697, 722, 741, 764.

Knuth, Jennifer Sierra (), xiv.
Knuth, John Martin (), xiv.
Kohavi, Zvi (■❆❑❊❑ ■❆❱), 498.
Koksma, Jurjen Ferdinand, 161.
Kolmogorov, Andrei Nikolaevich

(❑♦❧♠♦❣♦r♦✈✱ ❆♥❞r❡✚ ◆✐❦♦❧❛❡✈✐q),
56, 169, 178, 183.

KolmogorovŰSmirnov distribution, 57Ű60.
table, 51.

KolmogorovŰSmirnov test, 48Ű60.
Kondo, Shigeru (), 280.
Kontorovich, Alex Vladimir (❑♦♥t♦r♦✈✐q✱

❆❧❡❦s❛♥❞r ❱❧❛❞✐♠✐r♦✈✐q), 584.
Koons, Florence, 327.
Kornerup, Peter, 332Ű333, 629, 657.
Korobov, Nikolai Mikhailovich (❑♦r♦❜♦✈✱

◆✐❦♦❧❛✚ ▼✐❤❛✚❧♦✈✐q), 114, 159, 177.
Kovács, Béla, 607.
Kraïtchik, Maurice Borisovitch (❑r❛✚q✐❦✱

▼❡❡r ❇♦r✐s♦✈✐q), 396, 407.
Krandick, Werner, 625, 629.
Krishnamurthy, Edayathumangalam

Venkataraman (●⑥❸❲❣➬❷❛①❻❦
❚❼❛①⑥❹❲❷❤ ➄❮q⑦ë♠❣➋),
278, 279.

Kronecker, Leopold, 450, 678, 688, 730.
Kruskal, Martin David, 542.
KS test, see KolmogorovŰSmirnov test.
Kuczma, Marek, 533.
Kuipers, Lauwerens, 114, 177.
Kulisch, Ulrich Walter Heinz, 242, 245.
Kung, Hsiang Tsung (), 356,

529Ű530, 533, 720.
Kurita, Yoshiharu (), 29, 572, 604.
Kurowski, Scott James, 409.
Kut.t.aka (к� Óк), 287, 343.
Kuz’min, Rodion Osievich (❑✉③⑦♠✐♥✱

❘♦❞✐♦♥ ❖s✐❡✈✐q), 363.

l0-chain, 479, 483, 485.
L3 algorithm, 118, 417, 453.
La Touche, Maria Price, 194, 230.
La Vallée Poussin, Charles Jean Gustave

Nicolas de, 381.
Laderman, Julian David, 700.
Lagarias, Jeffrey Clark, 416, 599, 667.
Lagged Fibonacci sequences, 27Ű29, 35, 40,

72, 75, 79Ű80, 146, 186Ű188, 193.
Lagny, Thomas Fantet de, 279, 360.
Lagrange (= de la Grange), Joseph Louis,

Comte, 375, 378, 456, 503, 527, 533,
549, 649, 653, 655.

interpolation formula, 503Ű505.
inversion formula, 527Ű528, 533Ű534, 723.

Lags, 28.
Lake, George Thomas, 327.
Lakshman, Yagati Narayana

(❤×⑨ ❙❶ ❳⑩ ❢⑩❡⑨ ❙ ❡⑨ ●⑨ ➵), 455.
Lalanne, Léon Louis Chrétien, 208.
Lalescu, Gheorghe Liviu, 186.
Lamé, Gabriel, 360.
Landau, Edmund Georg Hermann, 621, 683.
Laplace (= de la Place), Pierre Simon,

Marquis de, 363.
Lapko, Olga Georgievna (▲❛♣❦♦✱ ❖❧⑦❣❛

●❡♦r❣✐❡✈♥❛), 764.
Large prime numbers, 407Ű412, 549Ű550,

663Ű664.
Las Vegas algorithms: Computational

methods that use random numbers and
always produce the correct answer if
they terminate, 447Ű449, 459, 681Ű682.

Lattice of points, 97.
Lattice reduction, see Short vectors.
Laughlin, Harry Hamilton, 279.
Laurent, Paul Mathieu Hermann, series, 723.
Lauwerier, Hendrik Adolf, 561.
Lavaux, Michel, 107.
Lavington, Simon Hugh, 3.
Lawrence, Frederick William, 390.
lcm: Least common multiple.
Leading coefficient, 418, 451Ű452, 454.
Leading digit, 195, 239.
Leading zeros, 222, 238Ű240, 327.
Least common left multiple, 437Ű438.
Least common multiple, 18, 23, 292, 334,

337, 353, 411, 483, 641.
Least remainder algorithm, 376.
Least signiĄcant digit, 195.
Lebesgue, Henri Léon, measure, 160,

166Ű167, 178, 367.
Lebesgue (= Le Besgue), Victor Amédée,

341, 662.
L’Ecuyer, Pierre, 108, 179, 546, 582,

584, 603.
Leeb, Hannes, 604.
Leeuwen, Jan van, 477, 515, 706.
Left multiple, least common, 437Ű438.

INDEX AND GLOSSARY 751

Legendre (= Le Gendre), Adrien Marie,
326Ű327, 381, 396, 449.

symbol, 414.
Léger, Émile, 360.
Léger, Roger, 587.
Lehman, Russell Sherman, 387, 405.
Lehmer, Derrick Henry, 10Ű11, 47, 54, 149,

278, 345Ű346, 382, 390, 391, 394, 396,
409, 413, 414, 484, 655, 660, 667, 686.

Lehmer, Derrick Norman, 278, 661.
Lehmer, Emma Markovna Trotskaia, 391.
Lehn, Jürgen, 32, 558.
Leibniz, Gottfried Wilhelm, Freiherr

von, 200.
Lempel, Abraham, 556, 712.
Lenstra, Arjen Klaas, 118, 403, 417,

453, 712.
Lenstra, Hendrik Willem, Jr., 118, 396,

402Ű403, 416, 417, 453, 656.
Leonardo Pisano, see Fibonacci.
Leong, Benton Lau (), 485.
Leslie, John, 208.
Less than, deĄnitely, 224, 233Ű235,

239, 242Ű243.
Leva, Joseph Leon, 132.
Levene, Howard, 74.
LeVeque, William Judson, 648.
Levin, Leonid Anatolievich (▲❡✈✐♥✱ ▲❡♦♥✐❞

❆♥❛t♦❧⑦❡✈✐q), 36, 170, 179.
Levine, Kenneth Allan, 104.
Lévy, Paul, 363.
Levy, Silvio Vieira Ferreira, vii.
Lewis, John Gregg, 615.
Lewis, Peter Adrian Walter, 108, 701.
Lewis, Theodore Gyle, 32.
Lexicographic order, 207, 624.
li: Logarithmic integral function.
Li, Ming (), 179.
Li Yan (), 287.
Lickteig, Thomas Michael, 706.
Lindholm, James H., 79.
Linear congruential sequence, 10Ű26,

145Ű146, 184Ű186, 193.
choice of increment, 10Ű11, 17, 22,

89, 97, 185.
choice of modulus, 12Ű16, 23, 184.
choice of multiplier, 16Ű26, 88Ű89,

105Ű109, 184Ű185.
choice of seed, 17, 20, 143, 184.
period length, 16Ű23.
subsequence of, 11, 73.

Linear equations, 291Ű292.
integer solution to, 343Ű345, 354.

Linear factors mod p, 455.
Linear iterative array, 313Ű317, 328.
Linear lists, 279, 281, 283.
Linear operators, 363Ű366, 376.
Linear probing, 592.
Linear recurrences, 29Ű32, 409Ű411, 695.

mod m, 37Ű40.

Linearly independent vectors, 443Ű444,
508, 659Ű660.

Linked memory, 279, 281, 283, 419.
Linking automaton, 311.
Linnainmaa, Seppo Ilmari, 242, 244, 718.
Liouville, Joseph, 378.
Lipton, Richard Jay, 497, 675, 697.
Liquid measure, 199.
Little Fermat computer, 311.
Littlewood, John Edensor, 382.
LLL algorithm, 118, 417, 453.
Local arithmetic, 200.
Locally nonrandom behavior, 46,

51Ű52, 152, 168.
Lochs, Gustav, 372Ű373.
Loewenthal, Dan (▲❍P❆▲ ❖❈), 291.
Logarithm, 279, 313.

discrete, 417.
of a matrix, 536.
of a power series, 533, 537.
of a uniform deviate, 133.
of ϕ, 283.

Logarithmic integral, 381Ű382, 414, 663.
Logarithmic law of leading digits,

254Ű264, 282, 404.
Logarithmic sums, 628Ű629.
Logical operations, see Boolean operations.
Löh, Günter, 666.
lomult, 15.
Long division, 270Ű275, 278Ű279.
Loos, Rüdiger Georg Konrad, 435, 674.
Lotti, Grazia, 500, 715.
Lovász, László, 118, 417, 453.
Lovelace, Augusta Ada Byron King,

Countess of, 189.
Loveland, Donald William, 178, 179, 183.
Lubiw, Anna, 656.
Lubkin, Samuel, 327.
Luby, Michael George, 179.
Lucas, François Édouard Anatole, 391,

407, 409, 413, 414.
numbers Ln, 695.

Lukes, Richard Francis, 390.
Lund, Carsten, 593.
Lüscher, Martin, 35, 72, 109, 188,

550, 556, 571.
Luther, Herbert Adesla, 278.

m-ary method of exponention, 464, 466,
470Ű471, 481Ű482.

Ma, Keju (), 673.
Machine language versus higher-level

languages, 16, 185.
MacLaren, Malcolm Donald, 33, 47,

128, 551, 585.
MacMahon, Percy Alexander, 609.
MacMillan, Donald Bashford, 226.
MacPherson, Robert Duncan, 114.
MacSorley, Olin Lowe, 280.
Maeder, Roman Erich, 627, 635.
Mahler, Kurt, 180.

measure, 683.

752 INDEX AND GLOSSARY

Maiorana, James Anthony, 557.
Mairan, Jean-Jacques d’Ortous de, 537.
Makarov, Oleg Mikhailovich (▼❛❦❛r♦✈✱

❖❧❡❣ ▼✐❤❛✚❧♦✈✐q), 700, 714.
Mallows, Colin Lingwood, 74.
Manasse, Mark Steven, 403.
Manchester University Computer, 192.
Mandelbrot, Benoît Baruch, 606.
Mangoldt, Hans Carl Friedrich von, 663.

function, 371, 376.
MANIAC III computer, 242.
Mansour, Yishay (❳❊❱P◆ ■❨■), 316.
Mantel, Willem, 552.
Mantissa, 214, see Fraction part.
Marczyński, Romuald Wşadysşaw, 205.
Mariage, Aimé, 201.
Mark I computer (Ferranti), 3.
Mark II Calculator (Harvard), 225.
Marsaglia, George, 3, 23, 29, 33, 40, 47,

62, 71, 72, 75, 78, 108, 114Ű115, 119,
122, 123, 128, 133Ű135, 179, 544,
546Ű547, 549, 551, 565, 588.

Martin, Monroe Harnish, 32, 38, 40.
Martin-Löf, Per Erik Rutger, 169Ű170, 178.
Masking, 322, 328Ű329, 389Ű390, 671.
Math. Comp.: Mathematics of Computation

(1960Ű), a publication of the American
Mathematical Society since 1965;
founded by the National Research
Council of the National Academy
of Sciences under the original title
Mathematical Tables and Other Aids
to Computation (1943Ű1959).

Mathematical aesthetics, 289.
Matias, Yossi (◗❅■❍◆ ■◗❊■), 121.
Matrix: A rectangular array, 486.

characteristic polynomial, 499, 524.
determinant, 356, 373, 432, 434,

498Ű500, 523Ű524.
greatest common right divisor, 438.
inverse, 98, 331, 500, 524.
multiplication, 499Ű501, 506Ű507,

516, 520Ű523, 699.
null space, 443Ű444, 456, 659Ű660, 681.
permanent, 499, 515Ű516.
rank, 443Ű444, 506, 508, 520.
semideĄnite, 586.
singular, 98, 116, 513, 520.
triangularization, 444, 659Ű660, 677.

Matrix (Bush), Irving Joshua, 41, 280.
Matsumoto, Makoto (), 29, 572, 604.
Matthew, Saint (➇❆❣✐♦❝ ▼❛t❥❛Ø♦❝

å ❊❰❛❣❣❡❧✐st➔❝), 735.
Matula, David William, 210, 211, 329,

332Ű333, 379.
Mauchly, John William, 27.
Maupertuis, Pierre-Louis Moreau de, 537.
Maximum of random deviates, 122.
Maximum-of-t test, 52, 54, 59, 70, 75,

77, 122, 158, 180.
Maya Indians, 196.

Mayer, Dieter Heinz-Jörg, 366.
Maze, Gérard, 645.
McCarthy, Daniel Patrick, 696.
McClellan, Michael Terence, 292.
McCracken, Daniel Delbert, 226.
McCurley, Kevin Snow, 661, 671.
McEliece, Robert James, 687.
McKendrick, Anderson Gray, 74.
Mean, evaluation of, 232, 244.
Measure, units of, 198Ű199, 201, 209,

255, 326, 327.
Measure theory, 160, 166Ű167, 178, 367.
Mediant rounding, 331Ű332, 379.
Meissel, Daniel Friedrich Ernst, 667.
Mellin, Robert Hjalmar, transforms,

355, 644.
Mendelsohn, Nathan Saul, 211.
Mendès France, Michel, 649, 656.
Mental arithmetic, 279, 295.
Merit, Ągure of, 105.
Mersenne, Marin, 391, 407.

multiplication, 294.
numbers, 14, 409.
primes, 185, 409, 412, 413.

Mertens, Franz Carl Joseph, 641, 659.
constant, 659.

opqrstuq, iv, vi, 764.
METAPOST, vii, 764.
Metrology, 201.
Metropolis, Nicholas Constantine

(▼❤trì♣♦❧❤❝✱ ◆✐❦ì❧❛♦❝ ❑✇♥st❛♥tÐ♥♦✉),
4, 189, 240, 242, 327.

Metze, Gernot, 280.
Meyer, Albert Ronald da Silva, 634.
Micali, Silvio, 179, 598.
Michigan, University of, 242, 617.
Middle-square method, 3Ű4, 7Ű8, 27, 36, 75.
Midpoint, 244.
Mignotte, Maurice, 450, 683.
Mihăilescu, Preda-Mihai, 396.
Mikami, Yoshio (), 340, 486, 648.
Mikusiński, Jan, 378.
Miller, Gary Lee, 395Ű396.
Miller, James (= Jimmy) Milton, 108.
Miller, Jeffrey Charles Percy, 695.
Miller, Kenneth William, 108.
Miller, Victor Saul, 416.
Miller, Webb Colby, 485.
Milne-Thompson, Louis Melville, 505.
Minimizing a quadratic form, 98Ű101,

105, 115Ű118.
Minimum polynomial, 711.
Minkowski, Hermann, 579.
Minus zero, 202, 244Ű245, 249, 268, 274.
MIP-years, 176, 405.
Miranker, Willard Lee, 242.
Mises, Richard, Edler von, 149, 177, 494.
Mitchell, Gerard Joseph Francis Xavier,

27, 32.

INDEX AND GLOSSARY 753

MIX computer, vi, 209.
binary version, 202Ű204, 339,

389Ű390, 481.
Ćoating point attachment, 215,

223Ű225, 516.
Mixed congruential method, 11, see Linear

congruential sequence.
Mixed-radix number systems, 66, 199,

208Ű211, 290, 293, 505.
addition and subtraction, 209, 281.
balanced, 103, 293, 631.
comparison, 290.
counting by 1s, 103.
multiplication and division, 209.
radix conversion, 327.

Mixture of distribution functions,
123Ű124, 138.

Möbius, August Ferdinand, function,
354, 376, 456, 459.

inversion formula, 456, 652.
mod, 228, 421, 544, 734.
mod m arithmetic,

addition, 12, 15, 203, 287Ű288.
division, 354, 445, 499; see also Inverse

modulo m.
halving, 293.
multiplication, 12Ű16, 284, 287Ű288,

294, 318, 663.
on polynomial coefficients, 418Ű420.
square root, 406Ű407, 415, 456Ű457,

681Ű682.
subtraction, 15, 186, 203, 287Ű288.

Model V computer, 225.
Modular arithmetic, 284Ű294, 302Ű305,

450, 454, 499.
complex, 292.

Modular method for polynomial gcd,
453, 460.

Modulus in a linear congruential sequence,
10Ű16, 23, 184.

Moenck, Robert Thomas, 449, 505.
Moews, David John, 593.
Moivre, Abraham de, 537.
Møller, Ole, 242.
Monahan, John Francis, 130, 131, 135.
Monic polynomial, 418, 420, 421, 425,

435, 452, 457, 518.
Monier, Louis Marcel Gino, 414, 662.
Monkey tests, 75.
Monomials, evaluation of, 485, 697.
Monotonicity, 230, 243.
Monte Carlo, 2, 29, 55, 114, 185, 189.
Monte Carlo method: Any computational

method that uses random numbers
(possibly not producing a correct
answer); see also Las Vegas algorithms,
Randomized algorithms.

Montgomery, Hugh Lowell, 683.
Montgomery, Peter Lawrence, 284, 322.

multiplication mod m, 284, 386, 396.
Moore, Donald Philip, 27, 32.

Moore, Louis Robert, III, 108.
Moore, Ramon Edgar, 242.
Moore School of Electrical Engineering,

208, 225.
Morain, François, 390.
Morgenstern, Jacques, 524.
Morley, Frank Vigor, 199.
Morris, Robert, 613.
Morrison, Michael Allan, 396, 400, 660.
Morse, Harrison Reed, III, 192.
Morse, Samuel Finley Breese, code, 377.
Moses, Joel, 454Ű455.
Most signiĄcant digit, 195.
Motzkin, Theodor (= Theodore) Samuel

(❖■❲❱❊◆ ▲❅❊◆❨ ❳❊❈❊❅■❩), 378, 490, 494,
495, 497, 518, 519, 705.

Muddle-square method, 36, 174Ű176, 179.
Muller, Mervin Edgar, 122, 143.
Multinomial coefficients, 539.
Multinomial theorem, 722.
Multiple-precision arithmetic, 58, 202,

265Ű318, 419, 486.
addition, 266Ű267, 276Ű278, 281, 283.
comparison, 281.
division, 270Ű275, 278Ű279, 282Ű283,

311Ű313.
greatest common divisor, 345Ű348,

354, 355, 379, 656.
multiplication, 268Ű270, 283, 294Ű318.
radix conversion, 326, 328.
subtraction, 267Ű268, 276, 281, 283.

Multiple-precision constants, 352, 362, 366,
384, 659, 663, 712, 726Ű728.

Multiples, 422.
Multiples of an irrational number mod 1,

164, 379, 622.
Multiplication, 194, 207Ű208, 265, 294, 462.

complex, 205, 307Ű310, 487, 506, 519, 706.
double-precision, 249Ű250, 252, 295.
fast (asymptotically), 294Ű318.
Ćoating point, 220, 230Ű231, 243, 263Ű264.
fractions, 282, 330.
matrix, 499Ű501, 506Ű507, 516,

520Ű523, 699.
Mersenne, 294.
mixed-radix, 209.
mod m, 12Ű16, 284, 287Ű288, 294,

318, 663.
mod u(x), 446.
modular, 285Ű286, 302Ű305.
multiprecision, 268Ű270, 283, 294Ű318.
multiprecision by single-precision, 281.
polynomial, 418Ű420, 508, 512, 521,

712, 713.
power series, 525.
two’s complement, 608.

Multiplicative congruential method, 11,
19Ű23, 185Ű186.

Multiplier in a linear congruential sequence,
10Ű11, 16Ű26, 88Ű89, 105Ű109, 184Ű185.

Multiply-and-add algorithm, 268, 313.

754 INDEX AND GLOSSARY

Multiprecision: Multiple-precision or
Arbitrary precision.

Multiprimality: Total number of prime
factors, 384.

Multisets, 170, 473, 483.
operations on, 483, 694Ű695.
terminological discussion, 694.

Multivariate polynomials, 418Ű419,
422, 455, 518.

chains, 497Ű498, 514.
factors, 458.
noncommutative, 436.
roots of, 436.

Munro, James Ian, 515, 706.
Musical notation, 198.
Musinski, Jean Elisabeth Abramson, 507.
Musser, David Rea, 278, 453, 455.

N -source, 170.
Nadler, Morton, 627.
Nance, Richard Earle, 189.
Nandi, Salil Kumar (s✐❧❧ ❦✭♠❀r ♥◆❞■), 278.
NaNs, 245, 246, 639.
Napier, John, Laird of Merchiston, 194, 200.
Nārāyan. a Pan. d. ita, son of Nr.siṁha

(nArAyZ pE�Xt, n� Es\h-y p� /,), 387.
Native American mathematics, 196.
Needham, Noel Joseph Terence Montgomery

(), 287.
Negabinary number system, 204Ű205,

209Ű210, 212, 328.
Negacyclic convolution, 521.
Negadecimal number system, 204, 210.
Negative binomial distribution, 140.
Negative digits, 207Ű213, 696.
Negative numbers, representation of,

202Ű205, 275Ű276.
Negative radices, 204Ű205, 209Ű210,

212, 328.
Neighborhood of a Ćoating point

number, 234.
Neugebauer, Otto Eduard, 196, 225.
Neumann, John von (= Margittai Neumann

János), 1, 3Ű4, 26, 36, 119, 125, 128,
138, 140, 202, 226, 278, 327.

Newcomb, Simon, 255.
Newman, Donald Joseph, 697.
Newton, Isaac, 449, 486, 698, 701.

interpolation formula, 503Ű505, 516.
method for rootĄnding, 278Ű279, 312,

486, 529, 629, 719.
Ni, Wen-Chun (), 121.
Nicomachus of Gerasa (◆✐❦ì♠❛q♦❝

å â❦ ●❡r❼s✇♥), 659.
Niederreiter, Harald Günther, 106Ű107, 109,

113Ű115, 117, 161, 177, 584.
Nijenhuis, Albert, 146.
Nine Chapters on Arithmetic, 340.
Nines, casting out, 289, 303, 324.
Nines’ complement notation, 203, 210.

Nisan, Noam (❖◗■P ▼❘❊P), 316.
Niven, Ivan Morton, 155Ű156.
Nonary (radix 9) number system, 200, 637.
Noncommutative multiplication, 436Ű438,

500, 507, 672, 684.
Nonconstructive proofs, 286, 289, 583.
Nonnegative: Zero or positive.
Nonsingular matrix: A matrix with nonzero

determinant, 98, 116, 513, 520.
Norm of a polynomial, 457Ű458.
Normal deviates: Random numbers with the

normal distribution, 122Ű132, 142.
dependent, 132, 139.
direct generation, 141.
square of, 134.

Normal distribution, 56, 122, 384, 565.
tail of, 139.
variations, 132, 139.

Normal evaluation schemes, 506, 709Ű710.
Normal numbers, 177.
Normalization of divisors, 272Ű273, 282Ű283.
Normalization of Ćoating point numbers,

215Ű217, 227Ű228, 238, 248Ű249,
254, 616.

Normand, Jean-Marie, 29.
Norton, Graham Hilton, 373, 673.
Norton, Karl Kenneth, 383.
Norton, Victor Thane, Jr., 607.
Notations, index to, 730Ű734.
Nowak, Martin R., 409.
Nozaki, Akihiro (), 524.
NP-complete problems, 499, 514, 585, 698.
Null space of a matrix, 443Ű444, 456,

659Ű660, 681.
Number Ąeld sieve, 403, 671.
Number Ąelds, 331, 333, 345, 403, 674.
Number sentences, 605.
Number system: A language for representing

numbers.
balanced binary, 213.
balanced decimal, 211.
balanced mixed-radix, 103, 293, 631.
balanced ternary, 207Ű208, 209,

227, 283, 353.
binary (radix 2), 195, 198Ű206, 209Ű213,

419, 461, 483.
combinatorial, 209.
complex, 205Ű206, 209Ű210, 292.
decimal (= denary, radix ten), 197Ű199,

210, 320Ű326, 374.
duodecimal (radix twelve), 199Ű200.
factorial, 66, 209.
Fibonacci, 209.
Ćoating point, 196, 214Ű215, 222, 228, 246.
hexadecimal (radix sixteen), 201Ű202,

204, 210, 324, 639.
mixed-radix, 66, 199, 208Ű211, 290,

293, 505.
modular, 284Ű285.
negabinary (radix −2), 204Ű205,

209Ű210, 212, 328.
negadecimal, 204, 210.

INDEX AND GLOSSARY 755

nonary (radix 9), 200, 637.
octal (= octonary = octonal, radix 8),

194, 200Ű202, 210, 228, 323Ű325,
328, 481, 727.

p-adic, 213, 605, 632, 685.
phi, 209.
positional, 151, 166Ű167, 177, 195Ű213,

319Ű329.
primitive tribal, 195, 198.
quater-imaginary (radix 2i), 205,

209Ű210, 283.
quaternary (radix 4), 195, 200.
quinary (radix 5), 195, 200, 213.
rational, 330, 420.
regular continued fraction, 346, 358Ű359,

368, 374Ű379, 412, 415, 665.
reversing binary, 212.
revolving binary, 212.
senary (radix 6), 200.
senidenary (= hexadecimal), 202.
septenary (radix 7), 200.
sexagesimal (radix sixty), 196Ű200,

225, 326.
slash, 331Ű333, 379.
ternary (radix 3), 195, 200, 204, 213, 328.
vigesimal (radix twenty), 196.

Numerical instability, 245, 292, 485,
489, 490.

Nunes (= Nuĳez Salaciense = Nonius),
Pedro, 424.

Nussbaumer, Henri Jean, 521, 710.
Nystrom, John William, 201.

Octal (radix 8) number system, 194,
200Ű202, 210, 228, 323Ű325, 328,
481, 727.

Octavation, 326.
Odd-even method, 128Ű130, 139.
Odlyzko, Andrew Michael, 416, 541,

608, 667, 671.
OFLO, 218.
Oldham, Jeffrey David, vii.
Oliver, Ariadne, 725.
Oliveira e Silva, Tomás António Mendes,

386, 667.
Olivos Aravena, Jorge Augusto Octavio,

485, 698.
One-way function, 172, 179.
Ones’ complement notation, 12, 203Ű204,

275Ű276, 279, 288, 544.
Online algorithms, 318, 525Ű526, 720.
Operands: Quantities that are operated on,

such as u and v in the calculation
of u + v.

Ophelia, daughter of Polonius, v.
Optimum methods of computation,

see Complexity.
OR (bitwise or), 140, 686, 695.
Order of a modulo m, 20Ű23, 391Ű392.
Order of an element in a Ąeld, 457.
Order of magnitude zero, 239.

Order statistics, 135.
Ordered hash table, 592.
Organ-pipe order, 378.
Oriented binary tree, 692.
Oriented tree, 9, 464Ű465, 481Ű482.
Ostrowski, Alexander Markus, 494.
Oughtred, William, 225, 326.
OverĆow, 12Ű13, 252, 267, 293, 332,

543, 639.
exponent, 217, 221, 227, 231, 241,

243, 249.
fraction, 217, 254, 262, 264.
rounding, 217, 220, 222, 224, 227Ű228.

Overstreet, Claude Lee, Jr., 189.
Owen, John, 1.
Owings, James Claggett, Jr., 178.
Ozawa, Kazufumi (), 615.

p-adic numbers, 213, 605, 632, 685.
Packing, 109.
Padé, Henri Eugène, 357, 534.
Padegs, Andris, 226.
Pairwise independence, 183, 668Ű669.
Palindromes, 415.
Palmer, John Franklin, 222.
Pan, Victor Yakovlevich (P❛♥✱ ❱✐❦t♦r

✗❦♦✈❧❡✈✐q), 490, 492, 497, 500, 505,
507, 515, 517, 519, 521, 677, 699, 703,
705, 706, 714, 715, 721.

Panario Rodríguez, Daniel Nelson, 449.
Pandu Rangan, Chandrasekaran

(③✐➋❹❯③①❹❤ ❶❲❢➴❹❛①❤), 717.
Papadimitriou, Christos Harilaos

(P❛♣❛❞❤♠❤trÐ♦✉✱ ◗rÐst♦❝ ◗❛r✐❧❼♦✉), 697.
Pappus of Alexandria (P❼♣♣♦❝

å ❃❆❧❡①❛♥❞r✐♥ì❝), 225.
Paradox, 257.
Parallel computation, 286, 317, 488, 503.
Parameter multiplications, 518, 524.
Parameter step, 494, 518.
Pardo, see Trabb Pardo.
Park, Stephen Kent, 108.
Parlett, Beresford Neill, 194.
Parry, William, 209.
Partial derivatives, 524.
Partial fraction expansion, 85, 510, 685.
Partial ordering, 694.
Partial quotients, 87, 106, 117, 346, 359,

367Ű369, 379, 656.
distribution of, 362Ű369, 665.

Partition test, 63Ű64, 74, 158.
Partitions of a set, 64, 722.
Partitions of an integer, 79, 146.
Pascal, Blaise, 199.
Pascal-SC language, 242.
Patashnik, Oren, 741.
Paterson, Michael Stewart, 519, 634, 707.
Patience, 190.
Patterson, Cameron Douglas, 390.
Paul, Nicholas John, 128.
Pawlak, Zdzisşaw, 205, 627.

756 INDEX AND GLOSSARY

Payne, William Harris, 32.
Paz, Azaria (❋❚ ❉■❳❋❘), 498.
Peano, Giuseppe, 201.
Pearson, Karl, 55, 56.
Peirce, Charles Santiago Sanders, 538.
Pemantle, Robin Alexander, 542.
Penk, Michael Alexander, 646.
Penney, Walter Francis, 206.
Pentium computer chip, 280, 409.
Percentage points, 44, 46, 51, 70Ű71, 383.
Percival, Colin Andrew, 632.
Perfect numbers, 407.
Perfect squares, 387Ű388.
Period in a sequence, 7Ű9.

length of, 4, 16Ű23, 37Ű40, 95.
Periodic continued fraction, 375, 415.
Permanent, 499, 515Ű516.
Permutation: An ordered arrangement

of a set.
mapped to integers, 65Ű66, 77Ű78, 145.
random, 145Ű148, 384, 460, 679.

Permutation test, 65Ű66, 77Ű78, 80Ű81,
91, 154.

Perron, Oskar, 356, 460, 690.
Persian mathematics, 197, 326, 462.
Pervushin, Ivan Mikheevich (P❡r✈✉①✐♥✱

■✈❛♥ ▼✐❤❡❡✈✐q), 407.
Pethő, Attila, 607.
Petkovšek, Marko, 608.
Petr, Karel, 442.
Pfeiffer, John Edward, 192.
Phalen, Harold Romaine, 200.
Phi (ϕ), 164, 209, 283, 359, 360, 514,

652, 726Ű727, 733.
Phillips, Ernest William, 201Ű202.
Pi (π), 41, 151, 158, 161, 198, 200, 209,

279Ű280, 284, 358, 726Ű727, 733.
as “randomŤ example, 21, 25, 33, 47, 52,

89, 103, 106, 108, 184, 238, 243, 252,
324Ű325, 555, 593, 599, 665.

Picutti, Ettore, 412.
Pigeonhole principle, 286.
Piṅgala, Ācārya (aAcAy Epŋgl), 461.
Pipeline, 283.
Pippenger, Nicholas John, 481, 697.
Piras, Francesco, 683.
Pitfalls of random number generation,

6, 29, 88, 188Ű189.
Pitteway, Michael Lloyd Victor, 653.
Places, 265.
Planck, Karl Ernst Ludwig Marx (= Max),

constant, 214, 227, 238, 240.
Plauger, Phillip James, 327.
Playwriting, 190Ű192.
Plouffe, Simon, 284.
PM system, 420.
Pocklington, Henry Cabourn, 414, 681.
Pointer machine, 311, 317, 634.
Poirot, Hercule, 725.
Poisson, Siméon Denis, distribution, 55,

137Ű138, 140, 141, 538, 570.

Poker test, 63Ű64, 74, 158.
Polar coordinates, 56, 59, 123.
Polar method, 122Ű123, 125, 135.
Pollard, John Michael, 306, 385Ű386,

402Ű403, 413, 417, 658, 711.
Pólya, György (= George), 65, 569.
Polynomial, 418Ű420, 486.

addition, 418Ű420.
arithmetic modulo m, 37Ű40,

419Ű420, 464.
degree of, 418, 420, 436.
derivative of, 439, 489, 524, 537.
discriminant of, 674, 686.
distribution function, 138.
division, 420Ű439, 487, 534.
evaluation, 485Ű524.
factorization, 439Ű461, 514.
greatest common divisor, 424Ű439,

460, 453Ű455.
interpolation, 297, 365, 503Ű505, 509,

516, 700, 721.
irreducible, 422, 435, 450, 456Ű457, 460.
leading coefficient, 418, 451Ű452, 454.
monic, 418, 420, 421, 425, 435, 452,

457, 518.
multiplication, 418Ű420, 508, 512,

521, 712, 713.
multivariate, 418Ű419, 422, 455, 518.
norms, 457Ű458.
over a Ąeld, 420Ű425, 435, 439Ű449,

455Ű459.
over a unique factorization domain,

421Ű439, 449Ű461.
primitive, 422, 436.
primitive modulo p, 30Ű32, 422.
primitive part, 423Ű425.
random, 435, 448, 455, 459.
remainder sequence, 427Ű429, 438,

455, 721.
resultant, 433, 674, 690.
reverse of, 435, 452, 673, 721.
roots of, 23, 434, 436, 483, 493.
sparse, 455, 672.
squarefree, 439, 456, 459.
string, 436Ű438.
subtraction, 418Ű420.

Polynomial chains, 494Ű498, 517Ű524.
Pomerance, Carl, 396, 402, 659.
Poorten, Alfred Jacobus van der, 656.
Pope, Alexander, 88.
Pope, David Alexander, 278.
Popper, Karl Raimund, 178.
Portable random number generators,

185Ű188, 193.
Porter, John William, 372.
Positional representation of numbers, 151,

166Ű167, 177, 195Ű213, 319Ű329.
Positive deĄnite quadratic form, 98, 115.
Positive operator, 365.
Positive semideĄnite matrix, 586.

INDEX AND GLOSSARY 757

Potency, 24Ű26, 36, 47, 52, 73, 83, 87Ű88,
92, 105, 184.

Power matrix, 534Ű536.
Power series: A sum of the form

k≥0 akzk, see Generating functions.
manipulation of, 525Ű537.

Power tree, 464, 481.
Poweroids, 534Ű536, 722.
Powers, Donald (= Don) Michael, 312.
Powers, evaluation of, 461Ű485.

multiprecision, 463.
polynomial, 463Ű464.
power series, 526, 537, 719.

Powers, Ralph Ernest, 396, 407.
pp: Primitive part, 423Ű425.
Pr: Probability, 150, 152, 168, 179Ű180,

257, 264, 472, 734.
Pratt, Vaughan Ronald, 356, 413.
Precision: The number of digits in a

representation.
double, 246Ű253, 278Ű279, 295.
multiple, 58, 202, 265Ű318, 419, 486.
quadruple, 253, 295.
single: Ątting in one computer word, 215.
unlimited, 279, 283, 331, 416, see also

Multiple-precision.
Preconditioning, see Adaptation.
Prediction tests, 171, 183.
Preston, Richard McCann, 280.
Primality testing, 380, 391Ű396,

409Ű414, 549.
Prime chains, 415, 666.
Prime numbers: Integers greater than unity

having no proper divisors, 380.
distribution of, 381Ű382, 405.
enumeration of, 381Ű382, 416.
factorization into, 334.
largest known, 407Ű412.
Mersenne, 185, 409, 412, 413.
size of mth, 665.
useful, 291, 405, 407Ű408, 549Ű550, 711.
useless, 415.
verifying primality of, 380, 391Ű396,

409Ű414, 549.
Primes in a unique factorization domain,

421Ű422.
Primitive element modulo m, 20Ű23.
Primitive notations for numbers, 195, 198.
Primitive part of a polynomial, 423Ű425.
Primitive polynomial, 422, 436.
Primitive polynomial modulo p, 30Ű32, 422.
Primitive recursive function, 166.
Primitive root: A primitive element

in a Ąnite Ąeld, 20Ű23, 185, 391,
417, 456, 457.

Priority sampling, 148.
Pritchard, Paul Andrew, 631.
Probabilistic algorithms, see Randomized

algorithms.

Probability: Ratio of occurrence, 150,
177, 257.

abuse of, 433.
over the integers, 150, 152, 257, 264, 472.

Probert, Robert Lorne, 699.
Programming languages, 16, 185, 222.
Pronouncing hexadecimal numbers, 201.
Proof of algorithms, 281Ű282, 336Ű337, 592.
Proofs, constructive versus nonconstructive,

286, 289, 583, 630.
Proper factor of v: A factor that is neither

a unit nor a unit multiple of v.
Proth, François Toussaint, 663.
Proulx, René, 179.
Pseudo-division of polynomials, 425Ű426,

435Ű436.
Pseudorandom sequences, 4, 170Ű176, 179.
Ptolemy, Claudius (Pt♦❧❡♠❛Ø♦❝ ❑❧❛Ô❞✐♦❝),

197.
Public key cryptography, 406.
Purdom, Paul Walton, Jr., 541.
Pyke, Ronald, 566.

q-series, 536.
Quadratic congruences, solving, 417.
Quadratic congruential sequences, 26Ű27, 37.
Quadratic forms, 98, 521.

minimizing, over the integers, 98Ű101,
105, 115Ű118.

Quadratic irrationalities, continued
fractions for, 358, 374Ű375, 397Ű401,
412, 415, 665.

Quadratic reciprocity law, 393, 411,
414, 663.

Quadratic residues, 415, 697.
Quadratic sieve method, 402.
Quadruple-precision arithmetic, 253, 295.
Quandalle, Philippe, 710.
Quasirandom numbers, 4, 189.
Quater-imaginary number system, 205,

209Ű210, 283.
Quaternary number system, 195, 200.
Quick, Jonathan Horatio, 77, 147.
Quinary number system, 195, 200, 213.
Quolynomial chains, 498, 524, 704Ű705.
Quotient: ⌊u/v⌋, 265, see Division.

of polynomials, 420Ű421, 425Ű426, 534.
partial, 87, 106, 117, 346, 359, 362Ű369,

379, 656, 665.
trial, 270Ű272, 278, 282.

Rabin, Michael Oser (❖■❆❳ ❳❋❊❘ ▲❅❑■◆), 175,
396, 406, 413, 415, 448, 449, 707.

Rabinowitz, Philip, 279.
Rackoff, Charles Weill, 179.
Rademacher, Hans, 90, 91.
Radioactive decay, 7, 132, 137.
Radix: Base of positional notation, 195.

complex, 205Ű206, 209Ű210.
irrational, 209.
mixed, 66, 199, 208Ű211, 290, 293, 505.
negative, 204Ű205, 209Ű210, 212, 328.

758 INDEX AND GLOSSARY

Radix conversion, 200, 204, 205, 207,
210, 319Ű329, 486, 489.

Ćoating point, 326Ű329.
multiprecision, 326, 328.

Radix point, 10, 185, 195, 204, 209, 214, 319.
Raimi, Ralph Alexis, 257, 262.
Raleigh (= Ralegh), Walter, 199.
Rall, Louis Baker, 240, 242.
Ramage, John Gerow, 135.
Ramanujan Iyengar, Srinivasa (ÿ➌❼❲❾

❹❲❷❲➮④❤ ■❸❛①❲♠), 662.
Ramaswami, Vammi (❼❦➏ ❹❲❷③❲➏), 383.
Ramshaw, Lyle Harold, 164, 181.
ran array, 186Ű188, 193.
RAND Corporation, 3.
Randell, Brian, 202, 225.
Random bits, 12, 30Ű32, 35Ű36, 38, 48,

119Ű120, 170Ű176.
Random combinations, 142Ű148.
Random directions, 135Ű136.
Random fractions, 10, see Uniform deviates.
Random functions, 4Ű9, 385.
Random integers,

among all positive integers, 257,
264, 342, 354.

in a bounded set, 2Ű3, 6Ű7, 119Ű121,
138, 162Ű163, 185Ű186.

Random mappings, 4Ű9, 385, 657Ű658.
Random number generators, 1Ű193.

for nonuniform deviates, 119Ű148.
for uniform deviates, 10Ű40, 184Ű189, 193.
machines, 3, 404.
summary, 184Ű193.
tables, 3.
testing, 41Ű118.
using, 1Ű2, 119Ű148, 664, see also

Randomized algorithms.
Random permutations, 145Ű148, 384,

460, 679.
of a random combination, 148.

Random point, in a circle, 123.
in a sphere, 136.
on an ellipsoid, 141.
on a sphere, 135.

Random polynomials, 435, 448, 455, 459.
Random random number generators,

6Ű9, 26.
Random real numbers, 255, 263.
Random samples, 142Ű148.
Random sequences, meaning of, 2, 149Ű183.

Ąnite, 167Ű176, 178Ű179, 183.
Random walk test, 34, 79.
Randomized algorithms: Algorithms that

use random numbers and usually
produce a correct answer, 1Ű2, 171,
395Ű396, 401Ű402, 413Ű417, 436,
447Ű449, 453, 459, 669, 688.

Randomness, guaranteed, 35Ű36, 170Ű176.
RANDU, 26, 107, 188, 551.
Rangan, see Pandu Rangan.

Range arithmetic, 228, 240Ű242, 244Ű245,
333, 613.

Rank, of apparition, 410Ű411.
of a matrix, 443Ű444, 506, 508, 520.
of a tensor, 506, 508, 514, 520Ű524.

RANLUX, 109.
Rap music, 3.
Rapoport, Anatol, 541.
Ratio method, 130Ű132, 133, 140.
Rational arithmetic, 69, 330Ű333,

427Ű428, 526.
Rational function approximation,

438Ű439, 534.
Rational functions, 420, 498, 518.

approximation and interpolation,
438Ű439, 505, 534.

Rational numbers, 330, 420, 459.
approximation by, 331Ű332, 378Ű379, 617.
mod m, 379.
polynomials over, 428, 459.
positional representation of, 16,

211, 213, 328.
Rational reconstruction, 379.
Real numbers, 420.
Real time, 286.
Realization of a tensor, 507.
Reciprocal differences, 505.
Reciprocals, 278Ű279, 312Ű313, 421.

Ćoating point, 243, 245, 263.
mod 2e, 213, 629.
mod m, 26, 213, 354, 445, 456, 646.
power series, 537.

Reciprocity laws, 84, 90, 393, 414.
Recorde, Robert, xi, 280Ű281.
Rectangle-wedge-tail method, 123Ű128, 139.
Rectangular distribution, see Uniform

distribution.
Recurrence relations, 10, 26Ű33, 37Ű40,

260Ű261, 295, 301Ű302, 313, 318,
351, 362, 386, 409Ű411, 442, 525,
634, 687, 695, 714.

Recursive processes, 253, 295, 299Ű303,
318, 419, 500, 531, 689, 713.

Reeds, James Alexander, III, 599.
Rees, David, 39, 169.
Registers, 491.
Regular continued fractions, 346, 358Ű359,

368, 374Ű379, 412, 415, 665.
Rehkopf, Donald Caspar, 41.
Reiser, John Fredrick, 28, 39, 242.
Reitwiesner, George Walter, 213, 280.
Rejection method, 125Ű126, 128Ű129,

134, 138, 139, 591.
Relative error, 222, 229, 232, 253, 255.
Relatively prime: Having no common prime

factors, 11, 19, 286, 330, 332, 342, 354.
polynomials, 422, 436, 454.

Remainder: Dividend minus quotient times
divisor, 265, 272Ű273, 420Ű421, 425Ű426,
437, 534, see also mod.

Replicative law, 90.

INDEX AND GLOSSARY 759

Representation of numbers, see Number
systems.

Representation of trees, 482.
Representation of ∞, 225, 244Ű245, 332.
Reservoir sampling, 143Ű144, 147, 148.
Residue arithmetic, 284Ű294, 302Ű305,

450, 454, 499.
Result set, 494, 517.
Resultant of polynomials, 433, 674, 690.
Revah, Ludmila, 706.
Reverse of a polynomial, 435, 452, 673, 721.
Reversing binary number system, 212.
Reversion of power series, 527Ű530, 533Ű536.
Revolving binary number system, 212.
Rezucha, Ivan, 143.
Rhind papyrus, 462.
Rho method for factoring, 384Ű386,

393Ű394, 413.
Riccati, Jacopo Francesco, equation, 650.
Rieger, Georg Johann, 653.
Riemann, Georg Friedrich Bernhard,

83, 382, 414.
hypothesis, 382, 663.
hypothesis, generalized 395Ű396, 671.
integration, 153Ű154, 259.

Riffle shuffles, 145, 147.
Right divisor, greatest common, 437Ű438.
Ring with identity, commutative, 418.
Riordan, John, 542.
Rising powers, 534, 731.
Ritzmann, Peter, 721.
Rivat, Joël, 667.
Rivest, Ronald Linn, 403, 405, 707.
Robber, 190Ű192.
Robbins, David Peter, 593.
Robinson, Donald Wilford, 554.
Robinson, Julia Bowman, 666.
Robinson, Raphael Mitchel, 664, 711.
Roepstorff, Gert, 366.
Rolletschek, Heinrich Franz, 9, 345.
Roman numerals, 195, 209.
Romani, Francesco, 500, 715.
Roof, Raymond Bradley, 115.
Roots of a polynomial, 23, 434, 483, 493.

multivariate, 436.
Roots of unity, 84, 531Ű532, 700; see

also Cyclotomic polynomials,
Exponential sums.

Rosińska, Izabela Gra£yna, 198.
Ross, Douglas Taylor, 192.
Rotenberg, Aubey, 11, 47.
Rothe, Heinrich August, 535.
Rouché, Eugène, theorem, 690.
Roulette, 2, 10, 55.
Round to even, 237, 241, 245.
Round to odd, 237.
Rounding, 102, 207, 217, 222, 223,

230Ű231, 236Ű237.
mediant, 331Ű332, 379.

Rounding errors, 232, 242, 698, 718.

Rounding overĆow, 217, 220, 222,
224, 227Ű228.

Rozier, Charles Preston, 324.
RSA box, 404, 406.
RSA encryption, 403Ű407, 415, 629, 669.
Rudolff, Christof, 198.
Ruler function ρ(n), 540.
Run test, 63, 66Ű69, 74Ű77, 158, 180.
Runs above (or below) the mean, 63.
Runs in a permutation, 66, 74, 76.
Russian peasant method, 462.
Ruzsa, Imre Zoltán, 213.
Ryser, Herbert John, 515, 699.

$N , 170.
Saarinen, Jukka Pentti Päiviö, 75.
Sachau, Karl Eduard, 461.
Saddle point method, 568.
Sahni, Sartaj Kumar, 60.
Saidan, Ahmad Salim (Ñ♠❿Ú➄ ❮➾♥➇ ❿❒❷❝),

198, 461.
Salamin, Eugene, 283.
SalĄ, Robert, 145.
Samelson, Klaus, 241Ű242, 327.
Samet, Paul Alexander, 321.
Sampling (without replacement), 1, 142Ű148.
Sands, Arthur David, 610.
Saunders, Benjamin David, 455.
Savage, John Edmund, 707.
Sawtooth function ((x)), 81Ű82, 90Ű91.
Saxe, James Benjamin, 141.
Saxena, Nitin (EnEtn s?s�nA), 396.
Scarborough, James Blaine, 241.
Schatte, Peter, 262, 622.
Schelling, Hermann von, 65.
Schmid, Larry Philip, 73.
Schmidt, Erhard, 101, 674.
Schmidt, Wolfgang M, 183.
Schnorr, Claus-Peter, 118, 179, 414, 417,

497, 578, 664, 669.
Scholz, Arnold, 478.
ScholzŰBrauer conjecture, 478Ű479, 485.
Schönemann, Theodor, 457, 685.
Schönhage, Arnold, 292, 302Ű303, 305, 306,

311, 317, 328, 470, 484, 500, 522, 629,
638, 656, 672, 696, 715.

SchönhageŰStrassen algorithm, 306Ű311, 317.
Schooling, William, 627.
Schreyer, Helmut, 202.
Schröder, Friedrich Wilhelm Karl Ernst, 531.

function, 531Ű532, 724.
Schroeppel, Richard Crabtree, 399, 400, 671.
Schubert, Friedrich Theodor von, 450.
Schwartz, Jacob Theodore, 674, 675.
Schwarz (= Švarc), Štefan, 442.
Schwenter, Daniel, 654.
Secrest, Don, 279, 327.
Secret keys, 193, 403Ű407, 415, 417, 505.
Secure communications, 2, 403Ű407, 415.
Sedgewick, Robert, 540.

760 INDEX AND GLOSSARY

Seed (starting value), 143, 146, 170,
187Ű188, 193, 550, 590.

in a linear congruential sequence,
10, 17, 20, 184.

Seidenberg, Abraham, 198.
Selection sampling, 142Ű143, 146.
Selenius, Clas-Olof, 648.
Self-reproducing numbers, 6, 293Ű294, 540.
Selfridge, John Lewis, 394, 396, 412, 665.
Semi-online algorithm, 529.
Semigroup, 539.
Seneschal, David, 589.
Septenary (radix 7) number system, 200.
Serial correlation coefficient, 77.
Serial correlation test, 72Ű74, 91, 83,

154, 182.
Serial test, 39, 60, 62, 74, 75, 78, 95,

106, 109Ű115, 158.
Seroussi Blusztein, Gadiel (■◗❊❳◗ ▲❅■❈❇), 712.
Serret, Joseph Alfred, 374, 449, 579.
Sethi, Ravi, 485.
SETUN computer, 208.
Sexagesimal number system, 196Ű200,

225, 326.
Seysen, Martin, 118.
Shafer, Michael William, 409.
Shakespeare (= Shakspere), William, v.
Shallit, Jeffrey Outlaw, 360, 378, 380, 390,

395Ű396, 645, 646, 656, 663, 689.
Shamir, Adi (❳■◆❨ ■❈❘), 403, 405, 416,

505, 599, 669.
Shand, Mark Alexander, 629.
Shanks, Daniel Charles, 280, 379, 681Ű682.
Shanks, William, 279Ű280.
Shannon, Claude Elwood, Jr., 211.
Shaw, Mary Margaret, 489, 498, 515.
Shen, Kangshen (), 287.
Sheriff, 190Ű192.
Shibata, Akihiko (), 280.
Shift operators of MIX, 339.
Shift register recurrences, 27Ű32, 36Ű40,

186Ű188, 193.
Shift-symmetric N -source, 172, 183.
Shirley, John William, 199.
Shokrollahi, Mohammad Amin

(ÜÔ➾♠➃➻➋ ÑÛ❐♠ ❿❒❸❐), 515.
Short vectors, 98Ű101, 118.
Shoup, Victor John, 449, 687.
Shub, Michael Ira, 36.
Shuffled digits, 141.
Shuffling a sequence, 33Ű36, 38, 39.
Shuffling cards, 145Ű147.
Shukla, Kripa Shankar (к� pA ш�кr

ш� ?lA), 208, 648.
Sibuya, Masaaki (), 133.
SICOMP: SIAM Journal on Computing,

published by the Society for Industrial
and Applied Mathematics since 1972.

Sideways addition, 463, 466.
Sierpiński, Wacşaw Franciszek, 666.
Sieve methods, 389Ű391, 402Ű403, 412.

Sieve (❦ìs❦✐♥♦♥) of Eratosthenes, 412,
416, 667.

Sieveking, Malte, 720.
Signatures, digital, 406.
Signed magnitude representation, 202Ű203,

209Ű210, 247, 266.
SigniĄcant digits, 195, 229, 238.
Sikdar, Kripasindhu (❦⑨♣❀✐s➫✭ ✐①❦❞❀r), 327.
Silverman, Joseph Hillel, 402.
Simplex, recursively subdivided, 567.
Simulation, 1.
Sinclair, Alistair, 699.
Sine, 490.
Singh, Avadhesh Narayan (avD�ш nArAyZ

Es�h), 343, 461.
Singh, Parmanand (prmAn�d Es�h), 387.
Sink vertex, 480.
SKRZAT 1 computer, 205.
Slash arithmetic, 331Ű333, 379.
SLB (shift left rAX binary), 339, 340.
Slide rule, 225.
Sloane, Neil James Alexander, 109.
Slowinski, David Allen, 409.
Small step, 467.
Smirnov, Nikolai Vasilievich (❙♠✐r♥♦✈✱

◆✐❦♦❧❛✚ ❱❛s✐❧⑦❡✈✐q), 57.
Smith, David Eugene, 197, 198.
Smith, David Michael, 275, 279.
Smith, Edson McIntyre, 409.
Smith, Henry John Stephen, 646.
Smith, James Everett Keith, 27.
Smith, Robert LeRoy, 228.
Sobol, Ilya Meerovich (❙♦❜♦❧⑦✱ ■❧⑦✤

▼❡❡r♦✈✐q), 541.
SODA: Proceedings of the ACMŰSIAM

Symposia on Discrete Algorithms,
inaugurated in 1990.

Soden, Walter, 323.
Solitaire, 190.
Solomonoff, Ray Joseph, 178.
Solovay, Robert Martin, 396, 414.
Sorenson, Jonathan Paul, 646.
Sorted uniform deviates, 57, 71, 135,

137, 141.
Source vertex, 480.
Sowey, Eric Richard, 189.
Space-Ąlling curves, 495.
Spacings, 71, 78Ű79, 181.
Sparse polynomials, 455, 672.
Specht, Wilhelm, 683.
Species of measure zero, 179.
Spectral test, 30, 35, 93Ű118, 169, 184.

algorithm for, 101Ű104.
examples, 105Ű109.
generalized, 108, 117.

Spence, Gordon McDonald, 409.
Spencer Brown, David John, 695.
Sphere, n-dimensional, 56.

random point in, 136.
random point on, 135.
volume of, 105.

INDEX AND GLOSSARY 761

Spherical coordinates, 59.
SQRT box, 175, 406Ű407, 415.
Square root, 122, 213, 283, 374Ű375,

397Ű398, 483.
modulo m, 406Ű407, 415.
modulo p, 456Ű457, 681Ű682.
of power series, 526, 537.
of uniform deviate, 122.

Squarefree factorization, 460.
Squarefree polynomials, 439, 456, 459.
Squares, sum of two, 579Ű580.
Squeamish ossifrage, 417.
Squeeze method, 125Ű126, 147.
SRB (shift right rAX binary), 339, 340, 481.
Stability of polynomial evaluation,

485, 489, 490.
Stack: Linear list with last-in-Ąrst-out

growth pattern, 299Ű301.
Stahnke, Wayne Lee, 31.
Standard deviation, evaluation of, 232, 244.
Stanley, Richard Peter, 594.
Star chains, 467, 473Ű477, 480, 482.
Star step, 467.
Stark, Richard Harlan, 226.
Starting value in a linear congruential

sequence, 10, 17, 20, 184.
Statistical tests, 171, see Testing.
Steele, Guy Lewis, Jr., 635Ű636, 638.
Ştefănescu, Doru, 450.
Steffensen, Johan Frederik, 722.
Stegun, Irene Anne, 44.
Stein, Josef, 338.
Stein, Marvin Leonard, 278.
Stern, Moritz Abraham, 654.
SternŰBrocot tree, 378, 656.
Stevin, Simon, 198, 424.
Stibitz, George Roberto, 202, 225.
StillingĆeet, Edward, 537.
Stirling, James, 537.

approximation, 59.
numbers, 64Ű65, 298, 534Ű535, 542,

680, 732.
STOC: Proceedings of the ACM

Symposia on Theory of Computing,
inaugurated in 1969.

Stockmeyer, Larry Joseph, 519, 634, 707.
Stoneham, Richard George, 115.
Stoppard, Tom (= Straussler, Tomas), 61.
Storage modiĄcation machines, 311.
Strachey, Christopher, 192.
Straight-line program, 494.
Strassen, Volker, 306, 311, 317, 396, 414,

497, 500, 507, 521, 523, 656, 708, 718.
Straus, Ernst Gabor, 378, 485.
Strindmo, Odd Magnar, 409.
String polynomials, 436Ű438.
Stringent tests, 75.
Stroud, Arthur Howard, 279, 327.
Struve, Wassilij Wassiliewitsch (❙tr✉✈❡✱

❱❛s✐❧✐✚ ❱❛s✐❧⑦❡✈✐q), 462.

Student (= William Sealy Gosset),
t-distribution, 135.

Sturm, Jacques Charles François, 434,
438, 674.

Subbarao, Mathukumalli Venkata
(⑨❡ ⑨❱❻➳ ⑨❡➧Þ ➁❦✠⑨●◗ ⑨♥❻❝❶➠⑩❣ ❦⑨Ò), 469.

Subexponential (nice) functions, 694.
Subnormal Ćoating point numbers, 246.
Subresultant algorithm, 428Ű436, 438, 455.
Subsequence rules, 161Ű162, 168Ű169,

177Ű178, 182.
Subsequence tests, 73, 158.
Subsequences, 40, 193.
Subset FORTRAN language, 600.
Subtract-and-shift cycle, 338, 348.
Subtract-with-borrow sequence, 23, 35,

72, 75, 108, 193, 546.
Subtraction, 194, 207, 213, 265,

267Ű268, 281.
complex, 487.
continued fractions, 649.
double-precision, 247Ű249.
Ćoating point, 216, 230Ű231, 235Ű238,

245, 253, 556, 602.
fractions, 330Ű331.
mod m, 15, 186, 203, 287Ű288.
modular, 285Ű286.
multiprecision, 267Ű268, 276, 281, 283.
polynomial, 418Ű420.
power series, 525.

Subtractive random number generator,
39Ű40, 186Ű188, 193.

Sugunamma, Mantri (❷✐➋➑ ➶➚⑦❦❷❲),
469.

Sukhatme, Pandurang Vasudeo (pA�w� r�g
vAs� d�v s� хA(m�), 568.

Sum of periodic sequences, mod m,
35, 38, 78, 108.

Summation by parts, 643.
Sun Tsǔ (= Sūnžı, Master Sun) (),

280, 287.
Sun SPARCstation, 764.
Suokonautio, Vilho, 279.
Svoboda, Antonín, 282, 292.
Swarztrauber, Paul Noble, 634.
Swedenborg, Emanuel, 200.
Sweeney, Dura Warren, 253, 379.
Swinnerton-Dyer, Henry Peter Francis, 681.
Sýkora, Ondrej, 700.
Sylvester, James Joseph, matrix, 433,

436, 674.
Szabó, József, 607.
Szabó, Nicholas Sigismund, 291, 292.
Szekeres, György (= George), 570.
Szymanski, Thomas Gregory, 540.

t-ary trees, 723.
T. abarı, Moh. ammed ben Ayyūb

(Ù➃q↔ ♦ØÚ❝ Ñ♣ ❿❒❸❐), 208.
Tables of fundamental constants,

358Ű359, 726Ű729.
Tabulating polynomial values, 488, 515.
Tague, Berkley Arnold, 419.

762 INDEX AND GLOSSARY

Tail of a Ćoating point number, 235.
Tail of the binomial distribution, 167.
Tail of the normal distribution, 139.
Takahashi, Daisuke (), 280.
Takahasi, Hidetosi (), 291.
Tamura, Yoshiaki (), 280.
Tanaka, Richard Isamu (),

292.
Tangent, 376.
tanh, 375.
Tannery, Jules, 241.
Taranto, Donald Howard, 327, 635.
Tarski (Tajtelbaum), Alfred, 718.
Tate, John Torrence, Jr., 402.
Tate, Stephen Ralph, 309.
Taussky Todd, Olga, 35, 106.
Tausworthe, Robert Clem, 31.
Taylor, Alfred Bower, 201.
Taylor, Brook, theorem, 489.
Taylor, William Johnson, 504.
Television script, 190Ű192.
Ten’s complement notation, 203, 210.
Tensors, 506Ű514, 520Ű524.
Term: A quantity being added.
Terminating fractions, 328.
Ternary number system, 195, 200,

204, 213, 328.
balanced, 207Ű208, 209, 227, 283, 353.

Testing for randomness, 41Ű118.
a priori tests, 80.
chi-square test, 42Ű47, 53Ű56, 58Ű60.
collision test, 70Ű71, 74, 158.
coupon collector’s test, 63Ű65, 74,

76, 158, 180.
empirical tests, 41, 61Ű80.
equidistribution test, 61, 74, 75.
frequency test, 61, 74, 75.
gap test, 62Ű63, 74Ű76, 136, 158, 180.
KolmogorovŰSmirnov test, 48Ű60.
maximum-of-t test, 52, 54, 59, 70, 75,

77, 122, 158, 180.
partition test, 63Ű64, 74, 158.
permutation test, 65Ű66, 77Ű78,

80Ű81, 91, 154.
run test, 63, 66Ű69, 74Ű77, 158, 180.
serial correlation test, 72Ű74, 91,

83, 154, 182.
serial test, 39, 60, 62, 74, 75, 78, 95,

106, 109Ű115, 158.
spectral test, 30, 35, 93Ű118, 169, 184.
subsequence tests, 73, 158.
theoretical tests, 41Ű42, 80Ű93.
torture test, 79.

TEX, iv, vi, 764.
Tezuka, Shu (), 164, 189, 546, 584.
Thacher, Henry Clarke, Jr., 529.
Theoretical tests for randomness,

41Ű42, 80Ű93.
Thiele, Thorvald Nicolai, 505.
Thompson, John Eric Sidney, 196.
Thomson, William Ettrick, 3, 11, 22.

Thorup, Mikkel, 593.
Thurber, Edward Gerrish, 466, 470,

477, 478.
Tichy, Robert Franz, 161.
Tienari, Martti Johannes, 279.
Tingey, Fred Hollis, 57.
Tippett, Leonard Henry Caleb, 3.
Tiwari, Prasoon (prs�n EtvArF), 316.
Tobey, Robert George, 677.
Tocher, Keith Douglas, 588.
Todd, John, 35.
Todd, Olga Taussky, 35, 106.
Toeplitz, Otto, system, 721.
Tonal System, 201.
Tonelli, Alberto, 682.
Toolkit philosophy, 487.
Toom, Andrei Leonovich (❚♦♦♠✱ ❆♥❞r❡✚

▲❡♦♥♦✈✐q), 296, 299, 306.
ToomŰCook algorithm, 299Ű302,

316Ű317, 672.
Topological sorting, 480.
Topuzoǧlu, Alev, 558.
Torelli, Gabriele, 535.
Torres y Quevedo, Leonardo de, 225.
Torture test, 79.
Totient function φ(n), 19Ű20, 289, 369,

376, 583, 646.
Touchy-feely mathematics, 466, 477.
Trabb Pardo, Luis Isidoro, 661.
Trace of a Ąeld element, 687.
Trager, Barry Marshall, 455, 689.
Trailing digit, 195.
Transcendental numbers, 378.
Transitive permutation groups, 679.
Transpose of a tensor, 507, 512Ű513.
Transpositions, 147.
Traub, Joseph Frederick, 138, 348, 428, 489,

498, 505, 515, 531Ű534, 719.
Trees: Branching information structures,

413.
binary, 378, 527, 696, 723.
complete binary, 667.
enumeration of, 527, 696, 723.
oriented, 9, 464Ű465, 481Ű482.
t-ary, 723.

Trevisan, Vilmar, 452, 461.
Trial quotients, 270Ű272, 278, 282.
Triangularization of matrices, 444,

659Ű660, 677.
Tries, 687.
Trigonometric functions, 279, 313, 490.
Trilinear representation of tensors, 521Ű522.
Trinomials, 32, 40, 572.
Triple-precision Ćoating point, 252.
Trits, 207.
Truncation: Suppression of trailing digits,

207, 237Ű238, 309.
Tsang, Wai Wan (), 72.
Tsu Ch’ung-Chih (= Zǔ Chōngzh̄ı)

(), 198.
Tsuji, Masatsugu (), 264.

INDEX AND GLOSSARY 763

Tukey, John Wilder, 701.
Turán, Pál (= Paul), 372, 649.
Turing, Alan Mathison, 3, 599.

machines, 169, 499, 634.
Twindragon fractal, 206, 210, 606.
Two squares, sum of, 579Ű580.
Two’s complement notation, 15, 188,

203Ű204, 228, 275Ű276, 608.
Twos’ complement notation, 204.
Tydeman, Frederick John, 638.

Ulam, Stanisşaw Marcin, 138, 140, 189.
Ullman, Jeffrey David, 694.
Ullrich, Christian, 242.
Ulp, 232Ű233.
UnderĆow, exponent, 217, 221Ű222,

227, 231, 241, 249.
gradual, 222.

Ungar, Peter, 706.
Uniform deviates: Random numbers with

the uniform distribution, 138.
generating, 10Ű40, 184Ű189, 193.
logarithm of, 133.
sorted, 57, 71, 135, 137, 141.
square root of, 122.

Uniform distribution, 2, 10, 48, 61, 119,
121, 124, 263.

Unimodular matrix, 524.
Unique factorization domain, 421Ű424, 436.
Units in a unique factorization domain,

421Ű422, 435.
Unity: The number one, 336.

roots of, 84, 531Ű532, 700; see
also Cyclotomic polynomials,
Exponential sums.

Unlimited precision, 279, 283, 331, 416,
see also Multiple-precision.

Unnormalized Ćoating point arithmetic,
238Ű240, 244, 327.

Unusual correspondence, 9.
Useful primes, 291, 405, 407Ű408,

549Ű550, 711.
Uspensky, James Victor, 278.

Vahlen, Karl Theodor, 653.
Valach, Miroslav, 292.
Valiant, Leslie Gabriel, 499.
Vallée, Brigitte, 352, 355, 366, 644, 645.
Vallée Poussin, Charles Jean Gustave

Nicolas de la, 381.
Valtat, Raymond, 202.
van Ceulen, Ludolph, 198.
van de Wiele, Jean-Paul, 497, 707.
van der Corput, Johannes Gualtherus,

163Ű164, 181.
van der Poorten, Alfred Jacobus, 656.
van der Waerden, Bartel Leendert, 196,

433, 518, 690.
van Halewyn, Christopher Neil, 403.
van Leeuwen, Jan, 477, 515, 706.
Van Loan, Charles Francis, 562, 701.

van Wijngaarden, Adriaan, 242.
Vari, Thomas Michael, 717.
Variables, 418, 486.
Variance, unbiased estimate of, 232.
Variance-ratio distribution, 135.
Vassilevska Williams, Virginia Panayotova

(❱❛s✐❧❡✈s❦❛✱ ❱✐r❣✐♥✐✤ P❛♥❛✚♦t♦✈❛),
717.

Vattulainen, Ilpo Tapio, 75, 570.
Vaughan, Robert Charles, 451.
Velthuis, Frans Jozef, 764.
Veltkamp, Gerhard Willem, 616.
Vertex cover, 485.
Vetter, Herbert Dieter Ekkehart, 629, 656.
Viète, François, 198.
Ville, Jean André, 597.
Vitányi, Pál Mihály (= Paul Michael)

Béla, 179.
Vitter, Jeffrey Scott (), 121, 146.
Vogel, Otto Hermann Kurt, 341.
Voltaire, de (= Arouet, François

Marie), 200.
Volume of sphere, 105.
von Fritz, Kurt, 335.
von Mangoldt, Hans Carl Friedrich, 663.

function, 371, 376.
von Mises, Richard, Edler, 149, 177, 494.
von Neumann, John (= Margittai Neumann

János), 1, 3Ű4, 26, 36, 119, 125, 128,
138, 140, 202, 226, 278, 327.

von Schelling, Hermann, 65.
von Schubert, Friedrich Theodor, 450.
von zur Gathen, Joachim Paul Rudolf,

449, 611, 673, 687.
Vowels, Robin Anthony, 637.
Vuillemin, Jean Etienne, 629, 649.

Wadel, Louis Burnett, 205.
Wadey, Walter Geoffrey, 226, 242.
Waerden, Bartel Leendert van der, 196,

433, 518, 690.
Waiting time, 119, 136.
Wakulicz, Andrzej, 205, 627.
Wald, Abraham (= Ábrahám), 163,

177Ű178.
sequence, 164Ű165.

Wales, Francis Herbert, 194, 202.
WalĄsz, Arnold, 382.
Walker, Alastair John, 120, 127, 139.
Wall, Donald Dines, 553.
Wall, Hubert Stanley, 356.
Wallace, Christopher Stewart, 132,

141, 316, 590.
Wallis, John, 199, 655.
Walsh, Joseph Leonard, 502.
Wang, Paul Shyh-Horng (), 452,

455, 460Ű461, 657, 689.
Ward, Morgan, 554.
Waring, Edward, 503.
Warlimont, Richard Clemens, 686.
Watanabe, Masatoshi (), 764.

764 INDEX AND GLOSSARY

Waterman, Alan Gaisford, 40, 106Ű107,
116, 144, 554, 596.

Wattel, Evert, 466.
Weather, 74.
Wedge-shaped distributions, 125Ű126.
Weigel, Erhard, 199.
Weighing problem, 208.
Weights and measures, 198Ű199, 201,

209, 255, 326, 327.
Weinberger, Peter Jay, 415, 678.
Welch, Peter Dunbar, 701.
Welford, Barry Payne, 232.
Weyl, Claus Hugo Hermann, 181,

379, 382, 596.
Wheeler, David John, 226.
White, Jon L (= Lyle), 635Ű636, 638.
White sequence, 182.
Whiteside, Derek Thomas, 486, 701.
Whitworth, William Allen, 566, 568.
Wichmann, Brian Anderson, 544.
Wiedijk, Frederik, 665.
Wiele, Jean-Paul van de, 497, 707.
Wijngaarden, Adriaan van, 242.
Wilf, Herbert Saul, 146.
Wilkes, Maurice Vincent, 201, 226.
Wilkinson, James Hardy, 241, 499.
Williams, Hugh Cowie, 380, 390, 394,

401, 412, 415, 661, 664.
Williams, John Hayden, 541.
Williams, Virginia Panayotova Vassilevska

(❱✐r❣✐♥✐✤ P❛♥❛✚♦t♦✈❛ ❱❛s✐❧❡✈s❦❛),
717.

Williamson, Dorothy, 115.
Wilson, Edwin Bidwell, 134.
Winograd, Shmuel, 280, 316, 500, 501,

507, 509, 512Ű514, 520, 523, 705Ű707,
710, 712, 714.

Wirsing, Eduard, 363, 366, 376.
WM1 (word size minus one), 252, 267, 613.
Wolf, Thomas Howard, 192.
Wolff von Gudenberg, Jürgen Freiherr, 242.
Wolfowitz, Jacob, 69, 74.
Woltman, George Frederick, 409.
Wood, William Wayne, 115.
Word length: Logarithm of word size.
Word size, 12Ű16, 265, 276.
Wrench, John William, Jr., 280, 379,

627, 728.
Wright, Edward Maitland, 384, 653.
Wunderlich, Charles Marvin, 390,

394, 399Ű400.
Wynn, Peter, 356, 613.
Wynn-Williams, Charles Eryl, 202.

XOR (bitwise exclusive-or), 31, 32, 193, 419.

Yagati, see Lakshman.
Yaglom, Akiva Moiseevich (✗❣❧♦♠✱ ❆❦✐✈❛

▼♦✐s❡❡✈✐q), 622.
Yaglom, Isaak Moiseevich (✗❣❧♦♠✱ ■s❛❛❦

▼♦✐s❡❡✈✐q), 622.
Yao, Andrew Chi-Chih (), 138, 170,

179, 316, 378, 484, 485, 540.
Yao, Frances Foong Chu (), 484.
Yates, Frank, 145, 173, 501Ű502.
Yee, Alexander Jih-Hing (), 280.
Yohe, James Michael, 612.
Young, Jeffery Stagg, 664.
Younis, Saed Ghalib (➉ÏØÚ r➾♥➥ ❿❥♥➇), 311.
Yuditsky, Davit Islam Gireevich (✏❞✐❝❦✐✚✱

❉❛✈✐t ■s❧❛♠ ●✐r❡❡✈✐q), 292.
Yun, David Yuan-Yee (), 454Ű455,

460, 686, 688, 689, 721.
Yuriev, Sergei Petrovich (✏r⑦❡✈✱ ❙❡r❣❡✚

P❡tr♦✈✐q), 366.

Z-independent vectors, 524.
Zacher, Hans-Joachim, 200.
Zaman, Arif (❰♥❐➄ ➨➂♥➠), 72, 75, 546,

547, 549.
Zantema, Hantsje, 696.
Zaremba, Stanisşaw Krystyn, 108, 115,

117, 332, 584.
Zaring, Wilson Miles, 653.
Zassenhaus, Hans Julius, 446, 448, 449,

455, 456, 681, 685.
Zeilberger, Doron (❳❇❳❆▲■■❱ ❖❊❳❊❈), 536, 683.
Zero, 196, 336.

leading, 222, 238Ű240, 327.
minus, 202, 244Ű245, 249, 268, 274.
order of magnitude, 239.
polynomial, 418.

Zero divisors, 671.
Zeta function, 362, 382, 414, 644.
Zhang, Linbo (), 764.
Ziegler Hunts, Julian James, 617.
Zierler, Neal, 29.
Zippel, Richard Eliot, 455, 675.
Zuckerman, Herbert Samuel, 155Ű156.
Zuse, Konrad, 202, 225, 227.
Zvonkin, Alexander Kalmanovich (❩✈♦♥❦✐♥✱

❆❧❡❦s❛♥❞r ❑❛❧♠❛♥♦✈✐q), 170.

THIS BOOK was composed on a Sun SPARCstation with Computer Modern typefaces, using
the TEX and opqrstuq software as described in the author’s books Computers & Typesetting
(Reading, Mass.: AddisonŰWesley, 1986), Volumes AŰE. The illustrations were produced with
John Hobby’s METAPOST system. Some names in the index were typeset with additional
fonts developed by Yannis Haralambous (Greek, Hebrew, Arabic), Olga G. Lapko (Cyrillic),
Frans J. Velthuis (Devanagari), Masatoshi Watanabe (Japanese), and Linbo Zhang (Chinese).

This page intentionally left blank

Character code: 00

␣
01

A
02

B
03

C
04

D
05

E
06

F
07

G
08

H
09

I
10

´
11

J
12

K
13

L
14

M
15

N
16

O
17

P
18

Q
19

R
20

˚
21

˝
22

S
23

T
24

U

00 1

No operation

NOP(0)

01 2

rA← rA + V

ADD(0:5)
FADD(6)

02 2

rA← rA−V

SUB(0:5)
FSUB(6)

03 10

rAX← rA×V

MUL(0:5)
FMUL(6)

08 2

rA← V

LDA(0:5)

09 2

rI1← V

LD1(0:5)

10 2

rI2← V

LD2(0:5)

11 2

rI3← V

LD3(0:5)

16 2

rA← −V

LDAN(0:5)

17 2

rI1← −V

LD1N(0:5)

18 2

rI2← −V

LD2N(0:5)

19 2

rI3← −V

LD3N(0:5)

24 2

M(F)← rA

STA(0:5)

25 2

M(F)← rI1

ST1(0:5)

26 2

M(F)← rI2

ST2(0:5)

27 2

M(F)← rI3

ST3(0:5)

32 2

M(F)← rJ

STJ(0:2)

33 2

M(F)← 0

STZ(0:5)

34 1

Unit F busy?

JBUS(0)

35 1 + T

Control, unit F

IOC(0)

40 1

rA : 0, jump

JA[+]

41 1

rI1 : 0, jump

J1[+]

42 1

rI2 : 0, jump

J2[+]

43 1

rI3 : 0, jump

J3[+]

48 1

rA← [rA]?±M

INCA(0) DECA(1)
ENTA(2) ENNA(3)

49 1

rI1← [rI1]?±M

INC1(0) DEC1(1)
ENT1(2) ENN1(3)

50 1

rI2← [rI2]?±M

INC2(0) DEC2(1)
ENT2(2) ENN2(3)

51 1

rI3← [rI3]?±M

INC3(0) DEC3(1)
ENT3(2) ENN3(3)

56 2

CI← rA(F) : V

CMPA(0:5)
FCMP(6)

57 2

CI← rI1(F) : V

CMP1(0:5)

58 2

CI← rI2(F) : V

CMP2(0:5)

59 2

CI← rI3(F) : V

CMP3(0:5)

General form:

C t

Description

OP(F)

C = operation code, (5 : 5) Ąeld of instruction
F = op variant, (4 : 4) Ąeld of instruction
M = address of instruction after indexing
V = M(F) = contents of F Ąeld of location M
OP = symbolic name for operation
(F) = normal F setting
t = execution time; T = interlock time

25

V
26

W
27

X
28

Y
29

Z
30

0
31

1
32

2
33

3
34

4
35

5
36

6
37

7
38

8
39

9
40

.
41

,
42

(
43

)
44

+
45

-
46

*
47

/
48

=
49

$
50

<
51

>
52

@
53

;
54

:
55

‚

04 12

rA← rAX/V
rX← remainder

DIV(0:5)
FDIV(6)

05 10

Special
NUM(0)
CHAR(1)
HLT(2)

06 2

Shift M bytes
SLA(0) SRA(1)
SLAX(2) SRAX(3)
SLC(4) SRC(5)

07 1 + 2F
Move F words
from M to rI1

MOVE(1)

12 2

rI4← V

LD4(0:5)

13 2

rI5← V

LD5(0:5)

14 2

rI6← V

LD6(0:5)

15 2

rX← V

LDX(0:5)

20 2

rI4← −V

LD4N(0:5)

21 2

rI5← −V

LD5N(0:5)

22 2

rI6← −V

LD6N(0:5)

23 2

rX← −V

LDXN(0:5)

28 2

M(F)← rI4

ST4(0:5)

29 2

M(F)← rI5

ST5(0:5)

30 2

M(F)← rI6

ST6(0:5)

31 2

M(F)← rX

STX(0:5)

36 1 + T

Input, unit F

IN(0)

37 1 + T

Output, unit F

OUT(0)

38 1

Unit F ready?

JRED(0)

39 1

Jumps
JMP(0) JSJ(1)
JOV(2) JNOV(3)
also [*] below

44 1

rI4 : 0, jump

J4[+]

45 1

rI5 : 0, jump

J5[+]

46 1

rI6 : 0, jump

J6[+]

47 1

rX : 0, jump

JX[+]

52 1

rI4← [rI4]?±M

INC4(0) DEC4(1)
ENT4(2) ENN4(3)

53 1

rI5← [rI5]?±M

INC5(0) DEC5(1)
ENT5(2) ENN5(3)

54 1

rI6← [rI6]?±M

INC6(0) DEC6(1)
ENT6(2) ENN6(3)

55 1

rX← [rX]?±M

INCX(0) DECX(1)
ENTX(2) ENNX(3)

60 2

CI← rI4(F) : V

CMP4(0:5)

61 2

CI← rI5(F) : V

CMP5(0:5)

62 2

CI← rI6(F) : V

CMP6(0:5)

63 2

CI← rX(F) : V

CMPX(0:5)

rA = register A
rX = register X

rAX = registers A and X as one
rIi = index register i, 1 ≤ i ≤ 6
rJ = register J
CI = comparison indicator

[*]: [+]:

JL(4) < N(0)
JE(5) = Z(1)
JG(6) > P(2)
JGE(7) ≥ NN(3)
JNE(8) ̸= NZ(4)
JLE(9) ≤ NP(5)

The Art of
Computer
Programming

DONALD E. KNUTH

Sorting and Searching
Second Edition

VOLUME 3

THE CLASSIC WORK
NEWLY UPDATED AND REVISED

This multivolume work is widely recognized as the definitive description of classical computer
science. The first three volumes have for decades been an invaluable resource in programming
theory and practice for students, researchers, and practitioners alike.

September 1995

Countless readers have spoken about the profound personal influence of Knuth’s work. Scientists
have marveled at the beauty and elegance of his analysis, while ordinary programmers have
successfully applied his “cookbook” solutions to their day-to-day problems. All have admired Knuth
for the breadth, clarity, accuracy, and good humor found in his books.

Primarily written as a reference, some people have nevertheless found it possible and interesting to
read each volume from beginning to end. A programmer in China even compared the experience
to reading a poem.

Art of Computer
. . . . You should definitely send me a résumé if you can read the whole thing.

Whatever your background, if you need to do any serious computer programming, you will find
your own good reason to make each volume in this series a readily accessible part of your scholarly
or professional library.

 shelf. I find that merely opening one has a very useful terrorizing effect on computers.

For the first time in more than 20 years, Knuth has revised all three books to reflect more recent
developments in the field. His revisions focus specifically on those areas where knowledge has
converged since publication of the last editions, on problems that have been solved, on problems
that have changed. In keeping with the authoritative character of these books, all historical
information about previous work in the field has been updated where necessary. Consistent with
the author’s reputation for painstaking perfection, the rare technical errors in his work, discovered
by perceptive and demanding readers, have all been corrected. Hundreds of new exercises have
been added to raise new challenges.

This page intentionally left blank

THE ART OF

COMPUTER PROGRAMMING

SECOND EDITION

DONALD E. KNUTH Stanford University

6
77 ADDISON–WESLEY

Volume 3 / Sorting and Searching

THE ART OF

COMPUTER PROGRAMMING

SECOND EDITION

Upper Saddle River, NJ · Boston · Indianapolis · San Francisco
New York · Toronto · Montréal · London · Munich · Paris · Madrid
Capetown · Sydney · Tokyo · Singapore · Mexico City

TEX is a trademark of the American Mathematical Society
hijklmnj is a trademark of AddisonŰWesley
The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.
The publisher offers excellent discounts on this book when ordered in quantity for bulk
purposes or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

U.S. Corporate and Government Sales (800) 382Ű3419
corpsales@pearsontechgroup.com

For sales outside the U.S., please contact:
International Sales international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Knuth, Donald Ervin, 1938-
The art of computer programming / Donald Ervin Knuth.
xiv,782 p. 24 cm.
Includes bibliographical references and index.
Contents: v. 1. Fundamental algorithms. -- v. 2. Seminumerical

algorithms. -- v. 3. Sorting and searching. -- v. 4a. Combinatorial
algorithms, part 1.

Contents: v. 3. Sorting and searching. -- 2nd ed.
ISBN 978-0-201-89683-1 (v. 1, 3rd ed.)
ISBN 978-0-201-89684-8 (v. 2, 3rd ed.)
ISBN 978-0-201-89685-5 (v. 3, 2nd ed.)
ISBN 978-0-201-03804-0 (v. 4a)
1. Electronic digital computers--Programming. 2. Computer

algorithms. I. Title.
QA76.6.K64 1997
005.1--DC21 97-2147

Internet page http://www-cs-faculty.stanford.edu/~knuth/taocp.html contains
current information about this book and related books.

Electronic version by Mathematical Sciences Publishers (MSP), http://msp.org

Copyright c⃝ 1998 by AddisonŰWesley
All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or transmission in any form
or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116 Fax: (617) 671-3447

ISBN-13 978-0-201-89685-5
ISBN-10 0-201-89685-0
First digital release, June 2014

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsoned.com
http://informit.com/aw
http://www-cs-faculty.stanford.edu/~knuth/taocp.html
http://msp.org

PREFACE

Cookery is become an art,

a noble science;

cooks are gentlemen.

— TITUS LIVIUS, Ab Urbe Condita XXXIX.vi
(Robert Burton, Anatomy of Melancholy 1.2.2.2)

This book forms a natural sequel to the material on information structures in
Chapter 2 of Volume 1, because it adds the concept of linearly ordered data to
the other basic structural ideas.

The title ŞSorting and SearchingŤ may sound as if this book is only for those
systems programmers who are concerned with the preparation of general-purpose
sorting routines or applications to information retrieval. But in fact the area of
sorting and searching provides an ideal framework for discussing a wide variety
of important general issues:

• How are good algorithms discovered?
• How can given algorithms and programs be improved?
• How can the efficiency of algorithms be analyzed mathematically?
• How can a person choose rationally between different algorithms for the

same task?
• In what senses can algorithms be proved Şbest possibleŤ?
• How does the theory of computing interact with practical considerations?
• How can external memories like tapes, drums, or disks be used efficiently

with large databases?

Indeed, I believe that virtually every important aspect of programming arises
somewhere in the context of sorting or searching!

This volume comprises Chapters 5 and 6 of the complete series. Chapter 5
is concerned with sorting into order; this is a large subject that has been divided
chieĆy into two parts, internal sorting and external sorting. There also are
supplementary sections, which develop auxiliary theories about permutations
(Section 5.1) and about optimum techniques for sorting (Section 5.3). Chapter 6
deals with the problem of searching for speciĄed items in tables or Ąles; this is
subdivided into methods that search sequentially, or by comparison of keys, or
by digital properties, or by hashing, and then the more difficult problem of
secondary key retrieval is considered. There is a surprising amount of interplay

v

vi PREFACE

between both chapters, with strong analogies tying the topics together. Two
important varieties of information structures are also discussed, in addition to
those considered in Chapter 2, namely priority queues (Section 5.2.3) and linear
lists represented as balanced trees (Section 6.2.3).

Like Volumes 1 and 2, this book includes a lot of material that does not
appear in other publications. Many people have kindly written to me about
their ideas, or spoken to me about them, and I hope that I have not distorted
the material too badly when I have presented it in my own words.

I have not had time to search the patent literature systematically; indeed,
I decry the current tendency to seek patents on algorithms (see Section 5.4.5).
If somebody sends me a copy of a relevant patent not presently cited in this
book, I will dutifully refer to it in future editions. However, I want to encourage
people to continue the centuries-old mathematical tradition of putting newly
discovered algorithms into the public domain. There are better ways to earn a
living than to prevent other people from making use of oneŠs contributions to
computer science.

Before I retired from teaching, I used this book as a text for a studentŠs
second course in data structures, at the junior-to-graduate level, omitting most
of the mathematical material. I also used the mathematical portions of this book
as the basis for graduate-level courses in the analysis of algorithms, emphasizing
especially Sections 5.1, 5.2.2, 6.3, and 6.4. A graduate-level course on concrete
computational complexity could also be based on Sections 5.3, and 5.4.4, together
with Sections 4.3.3, 4.6.3, and 4.6.4 of Volume 2.

For the most part this book is self-contained, except for occasional discus-
sions relating to the MIX computer explained in Volume 1. Appendix B contains a
summary of the mathematical notations used, some of which are a little different
from those found in traditional mathematics books.

Preface to the Second Edition

This new edition matches the third editions of Volumes 1 and 2, in which I have
been able to celebrate the completion of TEX and METAFONT by applying those
systems to the publications they were designed for.

The conversion to electronic format has given me the opportunity to go
over every word of the text and every punctuation mark. IŠve tried to retain
the youthful exuberance of my original sentences while perhaps adding some
more mature judgment. Dozens of new exercises have been added; dozens of
old exercises have been given new and improved answers. Changes appear
everywhere, but most signiĄcantly in Sections 5.1.4 (about permutations and
tableaux), 5.3 (about optimum sorting), 5.4.9 (about disk sorting), 6.2.2 (about
entropy), 6.4 (about universal hashing), and 6.5 (about multidimensional trees
and tries).

PREFACE vii

The Art of Computer Programming is, however, still a work in progress.
Research on sorting and searching continues to grow at a phenomenal rate.

Therefore some parts of this book are headed by an Şunder constructionŤ icon,
to apologize for the fact that the material is not up-to-date. For example, if I
were teaching an undergraduate class on data structures today, I would surely
discuss randomized structures such as treaps at some length; but at present, I
am only able to cite the principal papers on the subject, and to announce plans
for a future Section 6.2.5 (see page 478). My Ąles are bursting with important
material that I plan to include in the Ąnal, glorious, third edition of Volume 3,
perhaps 17 years from now. But I must Ąnish Volumes 4 and 5 Ąrst, and I do
not want to delay their publication any more than absolutely necessary.

I am enormously grateful to the many hundreds of people who have helped
me to gather and reĄne this material during the past 35 years. Most of the
hard work of preparing the new edition was accomplished by Phyllis Winkler
(who put the text of the Ąrst edition into TEX form), by Silvio Levy (who
edited it extensively and helped to prepare several dozen illustrations), and by
Jeffrey Oldham (who converted more than 250 of the original illustrations to
METAPOST format). The production staff at AddisonŰWesley has also been
extremely helpful, as usual.

I have corrected every error that alert readers detected in the Ąrst edition Ů
as well as some mistakes that, alas, nobody noticed Ů and I have tried to avoid
introducing new errors in the new material. However, I suppose some defects still
remain, and I want to Ąx them as soon as possible. Therefore I will cheerfully
award $2.56 to the Ąrst Ąnder of each technical, typographical, or historical error.
The webpage cited on page iv contains a current listing of all corrections that
have been reported to me.

Stanford, California D. E. K.
February 1998

There are certain common Privileges of a Writer,

the BeneĄt whereof, I hope, there will be no Reason to doubt;

Particularly, that where I am not understood, it shall be concluded,

that something very useful and profound is coucht underneath.

— JONATHAN SWIFT, Tale of a Tub, Preface (1704)

This page intentionally left blank

NOTES ON THE EXERCISES

The exercises in this set of books have been designed for self-study as well as
for classroom study. It is difficult, if not impossible, for anyone to learn a subject
purely by reading about it, without applying the information to speciĄc problems
and thereby being encouraged to think about what has been read. Furthermore,
we all learn best the things that we have discovered for ourselves. Therefore the
exercises form a major part of this work; a deĄnite attempt has been made to
keep them as informative as possible and to select problems that are enjoyable
as well as instructive.

In many books, easy exercises are found mixed randomly among extremely
difficult ones. A motley mixture is, however, often unfortunate because readers
like to know in advance how long a problem ought to take Ů otherwise they
may just skip over all the problems. A classic example of such a situation is
the book Dynamic Programming by Richard Bellman; this is an important,
pioneering work in which a group of problems is collected together at the end
of some chapters under the heading ŞExercises and Research Problems,Ť with
extremely trivial questions appearing in the midst of deep, unsolved problems.
It is rumored that someone once asked Dr. Bellman how to tell the exercises
apart from the research problems, and he replied, ŞIf you can solve it, it is an
exercise; otherwise itŠs a research problem.Ť

Good arguments can be made for including both research problems and
very easy exercises in a book of this kind; therefore, to save the reader from
the possible dilemma of determining which are which, rating numbers have been
provided to indicate the level of difficulty. These numbers have the following
general signiĄcance:

Rating Interpretation

00 An extremely easy exercise that can be answered immediately if the
material of the text has been understood; such an exercise can almost
always be worked Şin your head.Ť

10 A simple problem that makes you think over the material just read, but
is by no means difficult. You should be able to do this in one minute at
most; pencil and paper may be useful in obtaining the solution.

20 An average problem that tests basic understanding of the text mate-
rial, but you may need about Ąfteen or twenty minutes to answer it
completely.

ix

x NOTES ON THE EXERCISES

30 A problem of moderate difficulty and/or complexity; this one may
involve more than two hoursŠ work to solve satisfactorily, or even more
if the TV is on.

40 Quite a difficult or lengthy problem that would be suitable for a term
project in classroom situations. A student should be able to solve the
problem in a reasonable amount of time, but the solution is not trivial.

50 A research problem that has not yet been solved satisfactorily, as far
as the author knew at the time of writing, although many people have
tried. If you have found an answer to such a problem, you ought to
write it up for publication; furthermore, the author of this book would
appreciate hearing about the solution as soon as possible (provided that
it is correct).

By interpolation in this ŞlogarithmicŤ scale, the signiĄcance of other rating
numbers becomes clear. For example, a rating of 17 would indicate an exercise
that is a bit simpler than average. Problems with a rating of 50 that are
subsequently solved by some reader may appear with a 40 rating in later editions
of the book, and in the errata posted on the Internet (see page iv).

The remainder of the rating number divided by 5 indicates the amount of
detailed work required. Thus, an exercise rated 24 may take longer to solve
than an exercise that is rated 25, but the latter will require more creativity. All
exercises with ratings of 46 or more are open problems for future research, rated
according to the number of different attacks that theyŠve resisted so far.

The author has tried earnestly to assign accurate rating numbers, but it is
difficult for the person who makes up a problem to know just how formidable it
will be for someone else to Ąnd a solution; and everyone has more aptitude for
certain types of problems than for others. It is hoped that the rating numbers
represent a good guess at the level of difficulty, but they should be taken as
general guidelines, not as absolute indicators.

This book has been written for readers with varying degrees of mathematical
training and sophistication; as a result, some of the exercises are intended only for
the use of more mathematically inclined readers. The rating is preceded by an M

if the exercise involves mathematical concepts or motivation to a greater extent
than necessary for someone who is primarily interested only in programming
the algorithms themselves. An exercise is marked with the letters ŞHMŤ if its
solution necessarily involves a knowledge of calculus or other higher mathematics
not developed in this book. An ŞHMŤ designation does not necessarily imply
difficulty.

Some exercises are preceded by an arrowhead, ŞxŤ; this designates prob-
lems that are especially instructive and especially recommended. Of course, no
reader/student is expected to work all of the exercises, so those that seem to
be the most valuable have been singled out. (This distinction is not meant to
detract from the other exercises!) Each reader should at least make an attempt
to solve all of the problems whose rating is 10 or less; and the arrows may help
to indicate which of the problems with a higher rating should be given priority.

NOTES ON THE EXERCISES xi

Solutions to most of the exercises appear in the answer section. Please use
them wisely; do not turn to the answer until you have made a genuine effort to
solve the problem by yourself, or unless you absolutely do not have time to work
this particular problem. After getting your own solution or giving the problem a
decent try, you may Ąnd the answer instructive and helpful. The solution given
will often be quite short, and it will sketch the details under the assumption
that you have earnestly tried to solve it by your own means Ąrst. Sometimes the
solution gives less information than was asked; often it gives more. It is quite
possible that you may have a better answer than the one published here, or you
may have found an error in the published solution; in such a case, the author
will be pleased to know the details. Later printings of this book will give the
improved solutions together with the solverŠs name where appropriate.

When working an exercise you may generally use the answers to previous
exercises, unless speciĄcally forbidden from doing so. The rating numbers have
been assigned with this in mind; thus it is possible for exercise n + 1 to have a
lower rating than exercise n, even though it includes the result of exercise n as
a special case.

Summary of codes:

x Recommended
M Mathematically oriented
HM Requiring Şhigher mathŤ

00 Immediate
10 Simple (one minute)
20 Medium (quarter hour)
30 Moderately hard
40 Term project
50 Research problem

EXERCISES

x 1. [00] What does the rating ŞM20 Ť mean?

2. [10] Of what value can the exercises in a textbook be to the reader?

3. [HM45] Prove that when n is an integer, n > 2, the equation xn + yn = zn has
no solution in positive integers x, y, z.

Two hoursŠ daily exercise . . . will be enough

to keep a hack Ąt for his work.

— M. H. MAHON, The Handy Horse Book (1865)

CONTENTS

Chapter 5 — Sorting . 1

*5.1. Combinatorial Properties of Permutations 11
*5.1.1. Inversions . 11
*5.1.2. Permutations of a Multiset 22
*5.1.3. Runs . 35
*5.1.4. Tableaux and Involutions 47

5.2. Internal Sorting . 73
5.2.1. Sorting by Insertion . 80
5.2.2. Sorting by Exchanging 105
5.2.3. Sorting by Selection . 138
5.2.4. Sorting by Merging . 158
5.2.5. Sorting by Distribution 168

5.3. Optimum Sorting . 180
5.3.1. Minimum-Comparison Sorting 180

*5.3.2. Minimum-Comparison Merging 197
*5.3.3. Minimum-Comparison Selection 207
*5.3.4. Networks for Sorting . 219

5.4. External Sorting . 248
5.4.1. Multiway Merging and Replacement Selection 252

*5.4.2. The Polyphase Merge . 267
*5.4.3. The Cascade Merge . 288
*5.4.4. Reading Tape Backwards 299
*5.4.5. The Oscillating Sort . 311
*5.4.6. Practical Considerations for Tape Merging 317
*5.4.7. External Radix Sorting 343
*5.4.8. Two-Tape Sorting . 348
*5.4.9. Disks and Drums . 356

5.5. Summary, History, and Bibliography 380

Chapter 6 — Searching . 392

6.1. Sequential Searching . 396
6.2. Searching by Comparison of Keys 409

6.2.1. Searching an Ordered Table 409
6.2.2. Binary Tree Searching . 426
6.2.3. Balanced Trees . 458
6.2.4. Multiway Trees . 481

xii

CONTENTS xiii

6.3. Digital Searching . 492
6.4. Hashing . 513
6.5. Retrieval on Secondary Keys . 559

Answers to Exercises . 584

Appendix A — Tables of Numerical Quantities 748

1. Fundamental Constants (decimal) 748
2. Fundamental Constants (octal) 749
3. Harmonic Numbers, Bernoulli Numbers, Fibonacci Numbers . . . 750

Appendix B — Index to Notations 752

Appendix C — Index to Algorithms and Theorems 757

Index and Glossary . 759

CHAPTER FIVE

SORTING

There is nothing more difficult to take in hand,

more perilous to conduct, or more uncertain in its success,

than to take the lead in the introduction of

a new order of things.

— NICCOLÒ MACHIAVELLI, The Prince (1513)

ŞBut you canŠt look up all those license

numbers in time,Ť Drake objected.

ŞWe donŠt have to, Paul. We merely arrange a list

and look for duplications.Ť

— PERRY MASON, in The Case of the Angry Mourner (1951)

ŞTreesortŤ Computer Ů With this new ‘computer-approachŠ

to nature study you can quickly identify over 260

different trees of U.S., Alaska, and Canada,

even palms, desert trees, and other exotics.

To sort, you simply insert the needle.

— EDMUND SCIENTIFIC COMPANY, Catalog (1964)

In this chapter we shall study a topic that arises frequently in programming:
the rearrangement of items into ascending or descending order. Imagine how
hard it would be to use a dictionary if its words were not alphabetized! We
will see that, in a similar way, the order in which items are stored in computer
memory often has a profound inĆuence on the speed and simplicity of algorithms
that manipulate those items.

Although dictionaries of the English language deĄne ŞsortingŤ as the process
of separating or arranging things according to class or kind, computer program-
mers traditionally use the word in the much more special sense of marshaling
things into ascending or descending order. The process should perhaps be called
ordering, not sorting; but anyone who tries to call it ŞorderingŤ is soon led
into confusion because of the many different meanings attached to that word.
Consider the following sentence, for example: ŞSince only two of our tape drives
were in working order, I was ordered to order more tape units in short order,
in order to order the data several orders of magnitude faster.Ť Mathematical
terminology abounds with still more senses of order (the order of a group, the
order of a permutation, the order of a branch point, relations of order, etc., etc.).
Thus we Ąnd that the word ŞorderŤ can lead to chaos.

Some people have suggested that ŞsequencingŤ would be the best name for
the process of sorting into order; but this word often seems to lack the right

1

2 SORTING 5

connotation, especially when equal elements are present, and it occasionally
conĆicts with other terminology. It is quite true that ŞsortingŤ is itself an
overused word (ŞI was sort of out of sorts after sorting that sort of dataŤ),
but it has become Ąrmly established in computing parlance. Therefore we shall
use the word ŞsortingŤ chieĆy in the strict sense of sorting into order, without
further apologies.

Some of the most important applications of sorting are:

a) Solving the ŞtogethernessŤ problem, in which all items with the same identi-
Ącation are brought together. Suppose that we have 10000 items in arbitrary
order, many of which have equal values; and suppose that we want to rearrange
the data so that all items with equal values appear in consecutive positions. This
is essentially the problem of sorting in the older sense of the word; and it can be
solved easily by sorting the Ąle in the new sense of the word, so that the values
are in ascending order, v1 ≤ v2 ≤ · · · ≤ v10000. The efficiency achievable in this
procedure explains why the original meaning of ŞsortingŤ has changed.

b) Matching items in two or more Ąles. If several Ąles have been sorted into the
same order, it is possible to Ąnd all of the matching entries in one sequential pass
through them, without backing up. This is the principle that Perry Mason used
to help solve a murder case (see the quotation at the beginning of this chapter).
We can usually process a list of information most quickly by traversing it in
sequence from beginning to end, instead of skipping around at random in the
list, unless the entire list is small enough to Ąt in a high-speed random-access
memory. Sorting makes it possible to use sequential accessing on large Ąles, as
a feasible substitute for direct addressing.

c) Searching for information by key values. Sorting is also an aid to searching,
as we shall see in Chapter 6, hence it helps us make computer output more
suitable for human consumption. In fact, a listing that has been sorted into
alphabetic order often looks quite authoritative even when the associated nu-
merical information has been incorrectly computed.

Although sorting has traditionally been used mostly for business data pro-
cessing, it is actually a basic tool that every programmer should keep in mind
for use in a wide variety of situations. We have discussed its use for simplify-
ing algebraic formulas, in exercise 2.3.2Ű17. The exercises below illustrate the
diversity of typical applications.

One of the Ąrst large-scale software systems to demonstrate the versatility
of sorting was the LARC ScientiĄc Compiler developed by J. Erdwinn, D. E.
Ferguson, and their associates at Computer Sciences Corporation in 1960. This
optimizing compiler for an extended FORTRAN language made heavy use of
sorting so that the various compilation algorithms were presented with relevant
parts of the source program in a convenient sequence. The Ąrst pass was a
lexical scan that divided the FORTRAN source code into individual tokens, each
representing an identiĄer or a constant or an operator, etc. Each token was
assigned several sequence numbers; when sorted on the name and an appropriate
sequence number, all the uses of a given identiĄer were brought together. The

5 SORTING 3

ŞdeĄning entriesŤ by which a user would specify whether an identiĄer stood for a
function name, a parameter, or a dimensioned variable were given low sequence
numbers, so that they would appear Ąrst among the tokens having a given
identiĄer; this made it easy to check for conĆicting usage and to allocate storage
with respect to EQUIVALENCE declarations. The information thus gathered about
each identiĄer was now attached to each token; in this way no Şsymbol tableŤ
of identiĄers needed to be maintained in the high-speed memory. The updated
tokens were then sorted on another sequence number, which essentially brought
the source program back into its original order except that the numbering scheme
was cleverly designed to put arithmetic expressions into a more convenient
ŞPolish preĄxŤ form. Sorting was also used in later phases of compilation, to
facilitate loop optimization, to merge error messages into the listing, etc. In
short, the compiler was designed so that virtually all the processing could be
done sequentially from Ąles that were stored in an auxiliary drum memory, since
appropriate sequence numbers were attached to the data in such a way that it
could be sorted into various convenient arrangements.

Computer manufacturers of the 1960s estimated that more than 25 percent
of the running time on their computers was spent on sorting, when all their
customers were taken into account. In fact, there were many installations in
which the task of sorting was responsible for more than half of the computing
time. From these statistics we may conclude that either (i) there are many
important applications of sorting, or (ii) many people sort when they shouldnŠt,
or (iii) inefficient sorting algorithms have been in common use. The real truth
probably involves all three of these possibilities, but in any event we can see that
sorting is worthy of serious study, as a practical matter.

Even if sorting were almost useless, there would be plenty of rewarding rea-
sons for studying it anyway! The ingenious algorithms that have been discovered
show that sorting is an extremely interesting topic to explore in its own right.
Many fascinating unsolved problems remain in this area, as well as quite a few
solved ones.

From a broader perspective we will Ąnd also that sorting algorithms make a
valuable case study of how to attack computer programming problems in general.
Many important principles of data structure manipulation will be illustrated in
this chapter. We will be examining the evolution of various sorting techniques
in an attempt to indicate how the ideas were discovered in the Ąrst place. By
extrapolating this case study we can learn a good deal about strategies that help
us design good algorithms for other computer problems.

Sorting techniques also provide excellent illustrations of the general ideas
involved in the analysis of algorithms Ů the ideas used to determine performance
characteristics of algorithms so that an intelligent choice can be made between
competing methods. Readers who are mathematically inclined will Ąnd quite a
few instructive techniques in this chapter for estimating the speed of computer
algorithms and for solving complicated recurrence relations. On the other hand,
the material has been arranged so that readers without a mathematical bent can
safely skip over these calculations.

4 SORTING 5

Before going on, we ought to deĄne our problem a little more clearly, and
introduce some terminology. We are given N items

R1, R2, . . . , RN

to be sorted; we shall call them records, and the entire collection of N records
will be called a Ąle. Each record Rj has a key, Kj , which governs the sorting
process. Additional data, besides the key, is usually also present; this extra
Şsatellite informationŤ has no effect on sorting except that it must be carried
along as part of each record.

An ordering relation Ş<Ť is speciĄed on the keys so that the following
conditions are satisĄed for any key values a, b, c:

i) Exactly one of the possibilities a < b, a = b, b < a is true. (This is called
the law of trichotomy.)

ii) If a < b and b < c, then a < c. (This is the familiar law of transitivity.)

Properties (i) and (ii) characterize the mathematical concept of linear ordering,
also called total ordering. Any relationship Ş<Ť satisfying these two properties
can be sorted by most of the methods to be mentioned in this chapter, although
some sorting techniques are designed to work only with numerical or alphabetic
keys that have the usual ordering.

The goal of sorting is to determine a permutation p(1) p(2) . . . p(N) of the
indices {1, 2, . . . , N} that will put the keys into nondecreasing order:

Kp(1) ≤ Kp(2) ≤ · · · ≤ Kp(N). (1)

The sorting is called stable if we make the further requirement that records with
equal keys should retain their original relative order. In other words, stable
sorting has the additional property that

p(i) < p(j) whenever Kp(i) = Kp(j) and i < j. (2)

In some cases we will want the records to be physically rearranged in storage
so that their keys are in order. But in other cases it will be sufficient merely to
have an auxiliary table that speciĄes the permutation in some way, so that the
records can be accessed in order of their keys.

A few of the sorting methods in this chapter assume the existence of either
or both of the values Ş∞Ť and Ş−∞Ť, which are deĄned to be greater than or
less than all keys, respectively:

−∞ < Kj <∞, for 1 ≤ j ≤ N. (3)

Such extreme values are occasionally used as artiĄcial keys or as sentinel indica-
tors. The case of equality is excluded in (3); if equality can occur, the algorithms
can be modiĄed so that they will still work, but usually at the expense of some
elegance and efficiency.

Sorting can be classiĄed generally into internal sorting, in which the records
are kept entirely in the computerŠs high-speed random-access memory, and ex-

ternal sorting, when more records are present than can be held comfortably in

5 SORTING 5

memory at once. Internal sorting allows more Ćexibility in the structuring and
accessing of the data, while external sorting shows us how to live with rather
stringent accessing constraints.

The time required to sort N records, using a decent general-purpose sorting
algorithm, is roughly proportional to N log N ; we make about log N ŞpassesŤ
over the data. This is the minimum possible time, as we shall see in Section 5.3.1,
if the records are in random order and if sorting is done by pairwise comparisons
of keys. Thus if we double the number of records, it will take a little more
than twice as long to sort them, all other things being equal. (Actually, as N
approaches inĄnity, a better indication of the time needed to sort is N(log N)2,
if the keys are distinct, since the size of the keys must grow at least as fast as
log N ; but for practical purposes, N never really approaches inĄnity.)

On the other hand, if the keys are known to be randomly distributed with
respect to some continuous numerical distribution, we will see that sorting can
be accomplished in O(N) steps on the average.

EXERCISES — First Set

1. [M20] Prove, from the laws of trichotomy and transitivity, that the permutation
p(1) p(2) . . . p(N) is uniquely determined when the sorting is assumed to be stable.

2. [21] Assume that each record Rj in a certain Ąle contains two keys, a Şmajor keyŤ
Kj and a Şminor keyŤ kj , with a linear ordering < deĄned on each of the sets of keys.
Then we can deĄne lexicographic order between pairs of keys (K, k) in the usual way:

(Ki, ki) < (Kj , kj) if Ki < Kj or if Ki = Kj and ki < kj .

Alice took this Ąle and sorted it Ąrst on the major keys, obtaining n groups of
records with equal major keys in each group,

Kp(1) = · · · = Kp(i1) < Kp(i1+1) = · · · = Kp(i2) < · · · < Kp(in−1+1) = · · · = Kp(in),

where in = N. Then she sorted each of the n groups Rp(ij−1+1), . . . , Rp(ij) on their
minor keys.

Bill took the same original Ąle and sorted it Ąrst on the minor keys; then he took
the resulting Ąle, and sorted it on the major keys.

Chris took the same original Ąle and did a single sorting operation on it, using
lexicographic order on the major and minor keys (Kj , kj).

Did everyone obtain the same result?

3. [M25] Let < be a relation on K1, . . . ,KN that satisĄes the law of trichotomy but
not the transitive law. Prove that even without the transitive law it is possible to sort
the records in a stable manner, meeting conditions (1) and (2); in fact, there are at
least three arrangements that satisfy the conditions!

x 4. [21] Lexicographers donŠt actually use strict lexicographic order in dictionaries,
because uppercase and lowercase letters must be interĄled. Thus they want an ordering
such as this:

a < A < aa < AA < AAA < Aachen < aah < · · · < zzz < ZZZ.

Explain how to implement dictionary order.

6 SORTING 5

x 5. [M28] Design a binary code for all nonnegative integers so that if n is encoded as
the string ρ(n) we have m < n if and only if ρ(m) is lexicographically less than ρ(n).
Moreover, ρ(m) should not be a preĄx of ρ(n) for any m ̸= n. If possible, the length of
ρ(n) should be at most lgn + O(log logn) for all large n. (Such a code is useful if we
want to sort texts that mix words and numbers, or if we want to map arbitrarily large
alphabets into binary strings.)

6. [15] Mr. B. C. Dull (a MIX programmer) wanted to know if the number stored in
location A is greater than, less than, or equal to the number stored in location B. So
he wrote ‘LDA A; SUB BŠ and tested whether register A was positive, negative, or zero.
What serious mistake did he make, and what should he have done instead?

7. [17] Write a MIX subroutine for multiprecision comparison of keys, having the
following speciĄcations:

Calling sequence: JMP COMPARE

Entry conditions: rI1 = n; CONTENTS(A + k) = ak and CONTENTS(B + k) = bk, for
1 ≤ k ≤ n; assume that n ≥ 1.

Exit conditions: CI = GREATER, if (an, . . . , a1) > (bn, . . . , b1);
CI = EQUAL, if (an, . . . , a1) = (bn, . . . , b1);
CI = LESS, if (an, . . . , a1) < (bn, . . . , b1);
rX and rI1 are possibly affected.

Here the relation (an, . . . , a1) < (bn, . . . , b1) denotes lexicographic ordering from left to
right; that is, there is an index j such that ak = bk for n ≥ k > j, but aj < bj .

x 8. [30] Locations A and B contain two numbers a and b, respectively. Show that it is
possible to write a MIX program that computes and stores min(a, b) in location C, without

using any jump operators. (Caution: Since you will not be able to test whether or not
arithmetic overĆow has occurred, it is wise to guarantee that overĆow is impossible
regardless of the values of a and b.)

9. [M27] After N independent, uniformly distributed random variables between 0
and 1 have been sorted into nondecreasing order, what is the probability that the rth
smallest of these numbers is ≤ x?

EXERCISES — Second Set

Each of the following exercises states a problem that a computer programmer might
have had to solve in the old days when computers didnŠt have much random-access
memory. Suggest a ŞgoodŤ way to solve the problem, assuming that only a few thousand

words of internal memory are available, supplemented by about half a dozen tape units
(enough tape units for sorting). Algorithms that work well under such limitations also
prove to be efficient on modern machines.

10. [15] You are given a tape containing one million words of data. How do you
determine how many distinct words are present on the tape?

11. [18] You are the U. S. Internal Revenue Service; you receive millions of Şinforma-
tionŤ forms from organizations telling how much income they have paid to people, and
millions of ŞtaxŤ forms from people telling how much income they have been paid. How
do you catch people who donŠt report all of their income?

12. [M25] (Transposing a matrix.) You are given a magnetic tape containing one
million words, representing the elements of a 1000×1000 matrix stored in order by rows:
a1,1 a1,2 . . . a1,1000 a2,1 . . . a2,1000 . . . a1000,1000. How do you create a tape in which the

5 SORTING 7

elements are stored by columns a1,1 a2,1 . . . a1000,1 a1,2 . . . a1000,2 . . . a1000,1000 instead?
(Try to make less than a dozen passes over the data.)

13. [M26] How could you ŞshuffleŤ a large Ąle of N words into a random rearrange-
ment?

14. [20] You are working with two computer systems that have different conventions
for the Şcollating sequenceŤ that deĄnes the ordering of alphameric characters. How do
you make one computer sort alphameric Ąles in the order used by the other computer?

15. [18] You are given a list of the names of a fairly large number of people born in
the U.S.A., together with the name of the state where they were born. How do you
count the number of people born in each state? (Assume that nobody appears in the
list more than once.)

16. [20] In order to make it easier to make changes to large FORTRAN programs, you
want to design a Şcross-referenceŤ routine; such a routine takes FORTRAN programs
as input and prints them together with an index that shows each use of each identiĄer
(that is, each name) in the program. How should such a routine be designed?

x 17. [33] (Library card sorting.) Before the days of computerized databases, every
library maintained a catalog of cards so that users could Ąnd the books they wanted.
But the task of putting catalog cards into an order convenient for human use turned out
to be quite complicated as library collections grew. The following ŞalphabeticalŤ listing
indicates many of the procedures recommended in the American Library Association
Rules for Filing Catalog Cards (Chicago: 1942):

Text of card Remarks

R. Accademia nazionale dei Lincei, Rome Ignore foreign royalty (except British)
1812; ein historischer Roman. Achtzehnhundertzwölf
Bibliothèque dŠhistoire révolutionnaire. Treat apostrophe as space in French
Bibliothèque des curiosités. Ignore accents on letters
Brown, Mrs. J. Crosby Ignore designation of rank
Brown, John Names with dates follow those without
Brown, John, mathematician . . . and the latter are subarranged
Brown, John, of Boston by descriptive words
Brown, John, 1715Ű1766 Arrange identical names by birthdate
BROWN, JOHN, 1715Ű1766 Works ŞaboutŤ follow works ŞbyŤ
Brown, John, d. 1811 Sometimes birthdate must be estimated
Brown, Dr. John, 1810Ű1882 Ignore designation of rank
Brown-Williams, Reginald Makepeace Treat hyphen as space
Brown America. Book titles follow compound names
Brown & DallisonŠs Nevada directory. & in English becomes ŞandŤ
Brownjohn, Alan
DenŠ, Vladimir Éduardovich, 1867Ű Ignore apostrophe in names
The den. Ignore an initial article
Den lieben langen Tag. . . . provided itŠs in nominative case
Dix, Morgan, 1827Ű1908 Names precede words
1812 ouverture. Dix-huit cent douze
Le XIXe siècle français. Dix-neuvième
The 1847 issue of U. S. stamps. Eighteen forty-seven
1812 overture. Eighteen twelve
I am a mathematician. (a book by Norbert Wiener)

8 SORTING 5

Text of card Remarks

IBM journal of research and development. Initials are like one-letter words
ha-I ha-ehad. Ignore initial article
Ia; a love story. Ignore punctuation in titles
International Business Machines Corporation
al-Khuwārizmı̄, Muh. ammad ibn Mūsā,

Ć. 813Ű846 Ignore initial Şal-Ť in Arabic names
Labour. A magazine for all workers. Respell it ŞLaborŤ
Labor research association
Labour, see Labor Cross-reference card
McCallŠs cookbook Ignore apostrophe in English
McCarthy, John, 1927Ű Mc = Mac
Machine-independent computer

programming. Treat hyphen as space
MacMahon, Maj. Percy Alexander,

1854Ű1929 Ignore designation of rank
Mrs. Dalloway. ŞMrs.Ť = ŞMistressŤ
Mistress of mistresses.
Royal society of London DonŠt ignore British royalty
St. Petersburger Zeitung. ŞSt.Ť = ŞSaintŤ, even in German
Saint-Saëns, Camille, 1835Ű1921 Treat hyphen as space
Ste-Marie, Gaston P Sainte
Seminumerical algorithms. (a book by Donald Ervin Knuth)
Uncle TomŠs cabin. (a book by Harriet Beecher Stowe)
U. S. bureau of the census. ŞU. S.Ť = ŞUnited StatesŤ
Vandermonde, Alexandre Théophile,

1735Ű1796
Van Valkenburg, Mac Elwyn, 1921Ű Ignore space after preĄx in surnames
Von Neumann, John, 1903Ű1957
The whole art of legerdemain. Ignore initial article
WhoŠs afraid of Virginia Woolf? Ignore apostrophe in English
Wijngaarden, Adriaan van, 1916Ű Surname begins with uppercase letter

(Most of these rules are subject to certain exceptions, and there are many other rules
not illustrated here.)

If you were given the job of sorting large quantities of catalog cards by computer,
and eventually maintaining a very large Ąle of such cards, and if you had no chance to
change these long-standing policies of card Ąling, how would you arrange the data in
such a way that the sorting and merging operations are facilitated?

18. [M25] (E. T. Parker.) Leonhard Euler once conjectured [Nova Acta Acad. Sci.
Petropolitanæ 13 (1795), 45Ű63, §3; written in 1778] that there are no solutions to the
equation

u6 + v6 + w6 + x6 + y6 = z6

in positive integers u, v, w, x, y, z. At the same time he conjectured that

xn
1 + · · ·+ xn

n−1 = xn
n

would have no positive integer solutions, for all n ≥ 3, but this more general conjecture
was disproved by the computer-discovered identity 275 + 845 + 1105 + 1335 = 1445;
see L. J. Lander, T. R. Parkin, and J. L. Selfridge, Math. Comp. 21 (1967), 446Ű459.

5 SORTING 9

InĄnitely many counterexamples when n = 4 were subsequently found by Noam Elkies
[Math. Comp. 51 (1988), 825Ű835]. Can you think of a way in which sorting would
help in the search for counterexamples to EulerŠs conjecture when n = 6?

x 19. [24] Given a Ąle containing a million or so distinct 30-bit binary words x1, . . . , xN,
what is a good way to Ąnd all complementary pairs {xi, xj} that are present? (Two
words are complementary when one has 0 wherever the other has 1, and conversely;
thus they are complementary if and only if their sum is (11 . . . 1)2, when they are
treated as binary numbers.)

x 20. [25] Given a Ąle containing 1000 30-bit words x1, . . . , x1000, how would you pre-
pare a list of all pairs (xi, xj) such that xi = xj except in at most two bit positions?

21. [22] How would you go about looking for Ąve-letter anagrams such as CARET,
CARTE, CATER, CRATE, REACT, RECTA, TRACE; CRUEL, LUCRE, ULCER; DOWRY, ROWDY, WORDY?
[One might wish to know whether there are any sets of ten or more Ąve-letter English
anagrams besides the remarkable set

APERS, ASPER, PARES, PARSE, PEARS, PRASE, PRESA, RAPES, REAPS, SPAER, SPARE, SPEAR,

to which we might add the French word APRÈS.]

22. [M28] Given the speciĄcations of a fairly large number of directed graphs, what
approach will be useful for grouping the isomorphic ones together? (Directed graphs are
isomorphic if there is a one-to-one correspondence between their vertices and a one-to-
one correspondence between their arcs, where the correspondences preserve incidence
between vertices and arcs.)

23. [30] In a certain group of 4096 people, everyone has about 100 acquaintances.
A Ąle has been prepared listing all pairs of people who are acquaintances. (The relation
is symmetric: If x is acquainted with y, then y is acquainted with x. Therefore the Ąle
contains roughly 200,000 entries.) How would you design an algorithm to list all the
k-person cliques in this group of people, given k? (A clique is an instance of mutual
acquaintances: Everyone in the clique is acquainted with everyone else.) Assume that
there are no cliques of size 25, so the total number of cliques cannot be enormous.

x 24. [30] Three million men with distinct names were laid end-to-end, reaching from
New York to California. Each participant was given a slip of paper on which he wrote
down his own name and the name of the person immediately west of him in the line.
The man at the extreme western end didnŠt understand what to do, so he threw his
paper away; the remaining 2,999,999 slips of paper were put into a huge basket and
taken to the National Archives in Washington, D.C. Here the contents of the basket
were shuffled completely and transferred to magnetic tapes.

At this point an information scientist observed that there was enough information
on the tapes to reconstruct the list of people in their original order. And a computer
scientist discovered a way to do the reconstruction with fewer than 1000 passes through
the data tapes, using only sequential accessing of tape Ąles and a small amount of
random-access memory. How was that possible?

[In other words, given the pairs (xi, xi+1), for 1 ≤ i < N, in random order,
where the xi are distinct, how can the sequence x1x2 . . . xN be obtained, restricting
all operations to serial techniques suitable for use with magnetic tapes? This is the
problem of sorting into order when there is no easy way to tell which of two given keys
precedes the other; we have already raised this question as part of exercise 2.2.3Ű25.]

10 SORTING 5

25. [M21] (Discrete logarithms.) You know that p is a (rather large) prime number,
and that a is a primitive root modulo p. Therefore, for all b in the range 1 ≤ b < p,
there is a unique n such that an mod p = b, 1 ≤ n < p. (This n is called the index
of b modulo p, with respect to a.) Explain how to Ąnd n, given b, without needing
Ω(n) steps. [Hint: Let m = ⌈√p ⌉ and try to solve amn1 ≡ ba−n2 (modulo p) for
0 ≤ n1, n2 < m.]

5.1.1 INVERSIONS 11

*5.1. COMBINATORIAL PROPERTIES OF PERMUTATIONS

A permutation of a Ąnite set is an arrangement of its elements into a row.
Permutations are of special importance in the study of sorting algorithms, since
they represent the unsorted input data. In order to study the efficiency of
different sorting methods, we will want to be able to count the number of
permutations that cause a certain step of a sorting procedure to be executed
a certain number of times.

We have, of course, met permutations frequently in previous chapters. For
example, in Section 1.2.5 we discussed two basic theoretical methods of con-
structing the n! permutations of n objects; in Section 1.3.3 we analyzed some
algorithms dealing with the cycle structure and multiplicative properties of
permutations; in Section 3.3.2 we studied their Şruns upŤ and Şruns down.Ť
The purpose of the present section is to study several other properties of per-
mutations, and to consider the general case where equal elements are allowed to
appear. In the course of this study we will learn a good deal about combinatorial
mathematics.

The properties of permutations are sufficiently pleasing to be interesting in
their own right, and it is convenient to develop them systematically in one place
instead of scattering the material throughout this chapter. But readers who
are not mathematically inclined and readers who are anxious to dive right into
sorting techniques are advised to go on to Section 5.2 immediately, since the
present section actually has little direct connection to sorting.

*5.1.1. Inversions

Let a1 a2 . . . an be a permutation of the set {1, 2, . . . , n}. If i < j and ai > aj ,
the pair (ai, aj) is called an inversion of the permutation; for example, the
permutation 3 1 4 2 has three inversions: (3, 1), (3, 2), and (4, 2). Each inversion is
a pair of elements that is out of sort, so the only permutation with no inversions is
the sorted permutation 1 2 . . . n. This connection with sorting is the chief reason
why we will be so interested in inversions, although we have already used the
concept to analyze a dynamic storage allocation algorithm (see exercise 2.2.2Ű9).

The concept of inversions was introduced by G. Cramer in 1750 [Intr. à
lŠAnalyse des Lignes Courbes Algébriques (Geneva: 1750), 657Ű659; see Thomas
Muir, Theory of Determinants 1 (1906), 11Ű14], in connection with his famous
rule for solving linear equations. In essence, Cramer deĄned the determinant of
an n× n matrix in the following way:

det

x11 x12 . . . x1n
...

...
...

xn1 xn2 . . . xnn

 =

(−1)inv(a1a2...an)x1a1

x2a2
. . . xnan

,

summed over all permutations a1 a2 . . . an of {1, 2, . . . , n}, where inv(a1 a2 . . . an)
is the number of inversions of the permutation.

The inversion table b1 b2 . . . bn of the permutation a1 a2 . . . an is obtained by
letting bj be the number of elements to the left of j that are greater than j.

12 SORTING 5.1.1

In other words, bj is the number of inversions whose second component is j.
It follows, for example, that the permutation

5 9 1 8 2 6 4 7 3 (1)

has the inversion table

2 3 6 4 0 2 2 1 0, (2)

since 5 and 9 are to the left of 1; 5, 9, 8 are to the left of 2; etc. This permutation
has 20 inversions in all. By deĄnition the numbers bj will always satisfy

0 ≤ b1 ≤ n− 1, 0 ≤ b2 ≤ n− 2, . . . , 0 ≤ bn−1 ≤ 1, bn = 0. (3)

Perhaps the most important fact about inversions is the simple observation
that an inversion table uniquely determines the corresponding permutation. We
can go back from any inversion table b1 b2 . . . bn satisfying (3) to the unique
permutation that produces it, by successively determining the relative placement
of the elements n, n−1, . . . , 1 (in this order). For example, we can construct the
permutation corresponding to (2) as follows: Write down the number 9; then
place 8 after 9, since b8 = 1. Similarly, put 7 after both 8 and 9, since b7 = 2.
Then 6 must follow two of the numbers already written down, because b6 = 2;
the partial result so far is therefore

9 8 6 7.

Continue by placing 5 at the left, since b5 = 0; put 4 after four of the numbers;
and put 3 after six numbers (namely at the extreme right), giving

5 9 8 6 4 7 3.

The insertion of 2 and 1 in an analogous way yields (1).
This correspondence is important because we can often translate a problem

stated in terms of permutations into an equivalent problem stated in terms of
inversion tables, and the latter problem may be easier to solve. For example,
consider the simplest question of all: How many permutations of {1, 2, . . . , n} are
possible? The answer must be the number of possible inversion tables, and they
are easily enumerated since there are n choices for b1, independently n−1 choices
for b2, . . . , 1 choice for bn, making n(n−1) . . . 1 = n! choices in all. Inversions are
easy to count, because the bŠs are completely independent of each other, while
the aŠs must be mutually distinct.

In Section 1.2.10 we analyzed the number of local maxima that occur when
a permutation is read from right to left; in other words, we counted how many
elements are larger than any of their successors. (The right-to-left maxima in (1),
for example, are 3, 7, 8, and 9.) This is the number of j such that bj has its
maximum value, n − j. Since b1 will equal n − 1 with probability 1/n, and
(independently) b2 will be equal to n − 2 with probability 1/(n − 1), etc., it is
clear by consideration of the inversions that the average number of right-to-left

5.1.1 INVERSIONS 13

1234

2134

1243

2143

2314

3214

2341

3241

1324

3124
1342

3142

1423

1432

4132

4123

2413

2431

4231

4213

3421

3412

4321

4312

Fig. 1. The truncated octahedron, which shows the change in inversions when adjacent
elements of a permutation are interchanged.

maxima is
1
n

+
1

n− 1
+ · · ·+ 1

1
= Hn.

The corresponding generating function is also easily derived in a similar way.
If we interchange two adjacent elements of a permutation, it is easy to see

that the total number of inversions will increase or decrease by unity. Figure 1
shows the 24 permutations of {1, 2, 3, 4}, with lines joining permutations that
differ by an interchange of adjacent elements; following any line downward inverts
exactly one new pair. Hence the number of inversions of a permutation π is the
length of a downward path from 1234 to π in Fig. 1; all such paths must have
the same length.

Incidentally, the diagram in Fig. 1 may be viewed as a three-dimensional
solid, the Ştruncated octahedron,Ť which has 8 hexagonal faces and 6 square
faces. This is one of the classical uniform polyhedra attributed to Archimedes
(see exercise 10).

The reader should not confuse inversions of a permutation with the inverse

of a permutation. Recall that we can write a permutation in two-line form

1 2 3 . . . n
a1 a2 a3 . . . an

; (4)

the inverse a′
1 a′

2 a′
3 . . . a′

n of this permutation is the permutation obtained by
interchanging the two rows and then sorting the columns into increasing order

14 SORTING 5.1.1

of the new top row:

a1 a2 a3 . . . an

1 2 3 . . . n

=

1 2 3 . . . n
a′

1 a′
2 a′

3 . . . a′
n

. (5)

For example, the inverse of 5 9 1 8 2 6 4 7 3 is 3 5 9 7 1 6 8 4 2, since

5 9 1 8 2 6 4 7 3
1 2 3 4 5 6 7 8 9

=

1 2 3 4 5 6 7 8 9
3 5 9 7 1 6 8 4 2

.

Another way to deĄne the inverse is to say that a′
j = k if and only if ak = j.

The inverse of a permutation was Ąrst deĄned by H. A. Rothe [in Samm-
lung combinatorisch-analytischer Abhandlungen, edited by C. F. Hindenburg, 2

(Leipzig: 1800), 263Ű305], who noticed an interesting connection between inverses
and inversions: The inverse of a permutation has exactly as many inversions as
the permutation itself. RotheŠs proof of this fact was not the simplest possible
one, but it is instructive and quite pretty nevertheless. We construct an n × n
chessboard having a dot in column j of row i whenever ai = j. Then we put
×Šs in all squares that have dots lying both below (in the same column) and to
their right (in the same row). For example, the diagram for 5 9 1 8 2 6 4 7 3 is

× × × × •
× × × × × × × •
•
× × × × × •
•
× × •
× •
× •
•

The number of ×Šs is the number of inversions, since it is easy to see that bj is the
number of ×Šs in column j. Now if we transpose the diagram Ů interchanging
rows and columns Ů we get the diagram corresponding to the inverse of the
original permutation. Hence the number of ×Šs (the number of inversions) is
the same in both cases. Rothe used this fact to prove that the determinant of a
matrix is unchanged when the matrix is transposed.

The analysis of several sorting algorithms involves the knowledge of how
many permutations of n elements have exactly k inversions. Let us denote that
number by In(k); Table 1 lists the Ąrst few values of this function.

By considering the inversion table b1 b2 . . . bn, it is obvious that In(0) = 1,
In(1) = n− 1, and there is a symmetry property

In

n

2

− k

= In(k). (6)

5.1.1 INVERSIONS 15

Table 1

PERMUTATIONS WITH k INVERSIONS

n In(0) In(1) In(2) In(3) In(4) In(5) In(6) In(7) In(8) In(9) In(10) In(11)

1 1 0 0 0 0 0 0 0 0 0 0 0

2 1 1 0 0 0 0 0 0 0 0 0 0

3 1 2 2 1 0 0 0 0 0 0 0 0

4 1 3 5 6 5 3 1 0 0 0 0 0

5 1 4 9 15 20 22 20 15 9 4 1 0

6 1 5 14 29 49 71 90 101 101 90 71 49

Furthermore, since each of the bŠs can be chosen independently of the others, it
is not difficult to see that the generating function

Gn(z) = In(0) + In(1)z + In(2)z2 + · · · (7)

satisĄes Gn(z) = (1 + z + · · · + zn−1)Gn−1(z); hence it has the comparatively
simple form noticed by O. Rodrigues [J. de Math. 4 (1839), 236Ű240]:

(1 + z + · · ·+ zn−1) . . . (1 + z)(1) = (1− zn) . . . (1− z2)(1− z)/(1− z)n. (8)

From this generating function, we can easily extend Table 1, and we can verify
that the numbers below the zigzag line in that table satisfy

In(k) = In(k − 1) + In−1(k), for k < n. (9)

(This relation does not hold above the zigzag line.) A more complicated argument
(see exercise 14) shows that, in fact, we have the formulas

In(2) =

n

2

− 1, n ≥ 2;

In(3) =

n + 1
3

−

n

1

, n ≥ 3;

In(4) =

n + 2
4

−

n + 1
2

, n ≥ 4;

In(5) =

n + 3
5

−

n + 2
3

+ 1, n ≥ 5;

in general, the formula for In(k) contains about 1.6
√

k terms:

In(k) =

n+k−2
k

−

n+k−3

k−2

+

n+k−6
k−5

+

n+k−8

k−7

− · · ·

+ (−1)j

n+k−uj−1
k−uj

+

n+k−uj−j−1
k−uj−j

+ · · · , n ≥ k, (10)

where uj = (3j2 − j)/2 is a so-called Şpentagonal number.Ť
If we divide Gn(z) by n! we get the generating function gn(z) for the

probability distribution of the number of inversions in a random permutation

16 SORTING 5.1.1

of n elements. This is the product

gn(z) = h1(z)h2(z) . . . hn(z), (11)

where hk(z) = (1 + z + · · ·+ zk−1)/k is the generating function for the uniform
distribution of a random nonnegative integer less than k. It follows that

mean(gn) = mean(h1) + mean(h2) + · · ·+ mean(hn)

= 0 +
1
2

+ · · ·+ n− 1
2

=
n(n− 1)

4
; (12)

var(gn) = var(h1) + var(h2) + · · ·+ var(hn)

= 0 +
1
4

+ · · ·+ n2 − 1
12

=
n(2n + 5)(n− 1)

72
. (13)

So the average number of inversions is rather large, about 1
4 n2; the standard

deviation is also rather large, about 1
6 n3/2.

A remarkable discovery about the distribution of inversions was made by
P. A. MacMahon [Amer. J. Math. 35 (1913), 281Ű322]. Let us deĄne the index

of the permutation a1 a2 . . . an as the sum of all subscripts j such that aj > aj+1,
1 ≤ j < n. For example, the index of 5 9 1 8 2 6 4 7 3 is 2 + 4 + 6 + 8 = 20. By
coincidence the index is the same as the number of inversions in this case. If we
list the 24 permutations of {1, 2, 3, 4}, namely

Permutation Index Inversions Permutation Index Inversions

1 2 3 4 0 0 3|1 2 4 1 2
1 2 4|3 3 1 3|1 4|2 4 3
1 3|2 4 2 1 3|2|1 4 3 3
1 3 4|2 3 2 3|2 4|1 4 4
1 4|2 3 2 2 3 4|1 2 2 4
1 4|3|2 5 3 3 4|2|1 5 5

2|1 3 4 1 1 4|1 2 3 1 3
2|1 4|3 4 2 4|1 3|2 4 4
2 3|1 4 2 2 4|2|1 3 3 4
2 3 4|1 3 3 4|2 3|1 4 5
2 4|1 3 2 3 4|3|1 2 3 5
2 4|3|1 5 4 4|3|2|1 6 6

we see that the number of permutations having a given index, k, is the same as
the number having k inversions.

At Ąrst this fact might appear to be almost obvious, but further scrutiny
makes it very mysterious. MacMahon gave an ingenious indirect proof, as follows:
Let ind(a1 a2 . . . an) be the index of the permutation a1 a2 . . . an, and let

Hn(z) =

z ind(a1 a2...an) (14)

be the corresponding generating function; the sum in (14) is over all permutations
of {1, 2, . . . , n}. We wish to show that Hn(z) = Gn(z). For this purpose we will

5.1.1 INVERSIONS 17

deĄne a one-to-one correspondence between arbitrary n-tuples (q1, q2, . . . , qn) of
nonnegative integers, on the one hand, and ordered pairs of n-tuples

(a1, a2, . . . , an), (p1, p2, . . . , pn)

on the other hand, where a1 a2 . . . an is a permutation of the indices {1, 2, . . . , n}
and p1 ≥ p2 ≥ · · · ≥ pn ≥ 0. This correspondence will satisfy the condition

q1 + q2 + · · ·+ qn = ind(a1 a2 . . . an) + (p1 + p2 + · · ·+ pn). (15)

The generating function

zq1+q2+···+qn, summed over all n-tuples of nonnega-
tive integers (q1, q2, . . . , qn), is Qn(z) = 1/(1− z)n; and the generating function

zp1+p2+···+pn, summed over all n-tuples of integers (p1, p2, . . . , pn) such that
p1 ≥ p2 ≥ · · · ≥ pn ≥ 0, is

Pn(z) = 1/(1− z)(1− z2) . . . (1− zn), (16)

as shown in exercise 15. In view of (15), the one-to-one correspondence we are
about to establish will prove that Qn(z) = Hn(z)Pn(z), that is,

Hn(z) = Qn(z)/Pn(z). (17)

But Qn(z)/Pn(z) is Gn(z), by (8).
The desired correspondence is deĄned by a simple sorting procedure: Any

n-tuple (q1, q2, . . . , qn) can be rearranged into nonincreasing order qa1
≥ qa2

≥
· · · ≥ qan

in a stable manner, where a1 a2 . . . an is a permutation such that qaj
=

qaj+1
implies aj < aj+1. We set (p1, p2, . . . , pn) = (qa1

, qa2
, . . . , qan

) and then, for
1 ≤ j < n, subtract 1 from each of p1, . . . , pj for each j such that aj > aj+1. We
still have p1 ≥ p2 ≥ · · · ≥ pn, because pj was strictly greater than pj+1 whenever
aj > aj+1. The resulting pair

(a1, a2, . . . , an), (p1, p2, . . . , pn)

satisĄes (15),

because the total reduction of the pŠs is ind(a1 a2 . . . an). For example, if n = 9
and (q1, . . . , q9) = (3, 1, 4, 1, 5, 9, 2, 6, 5), we Ąnd a1 . . . a9 = 6 8 5 9 3 1 7 2 4 and
(p1, . . . , p9) = (5, 2, 2, 2, 2, 2, 1, 1, 1).

Conversely, we can easily go back to (q1, q2, . . . , qn) when a1 a2 . . . an and
(p1, p2, . . . , pn) are given. (See exercise 17.) So the desired correspondence has
been established, and MacMahonŠs index theorem has been proved.

D. Foata and M. P. Schützenberger discovered a surprising extension of
MacMahonŠs theorem, about 65 years after MacMahonŠs original publication:
The number of permutations of n elements that have k inversions and index l is
the same as the number that have l inversions and index k. In fact, Foata and
Schützenberger found a simple one-to-one correspondence between permutations
of the Ąrst kind and permutations of the second (see exercise 25).

EXERCISES

1. [10] What is the inversion table for the permutation 2 7 1 8 4 5 9 3 6? What per-
mutation has the inversion table 5 0 1 2 1 2 0 0?

2. [M20] In the classical problem of Josephus (exercise 1.3.2Ű22), n men are initially
arranged in a circle; the mth man is executed, the circle closes, and every mth man is
repeatedly eliminated until all are dead. The resulting execution order is a permutation

18 SORTING 5.1.1

of {1, 2, . . . , n}. For example, when n = 8 and m = 4 the order is 5 4 6 1 3 8 7 2 (man 1
is 5th out, etc.); the inversion table corresponding to this permutation is 3 6 3 1 0 0 1 0.

Give a simple recurrence relation for the elements b1 b2 . . . bn of the inversion table
in the general Josephus problem for n men, when every mth man is executed.

3. [18] If the permutation a1 a2 . . . an corresponds to the inversion table b1 b2 . . . bn,
what is the permutation a1 a2 . . . an that corresponds to the inversion table

(n− 1− b1)(n− 2− b2) . . . (0− bn) ?

x 4. [20] Design an algorithm suitable for computer implementation that constructs
the permutation a1 a2 . . . an corresponding to a given inversion table b1 b2 . . . bn satis-
fying (3). [Hint: Consider a linked-memory technique.]

5. [35] The algorithm of exercise 4 requires an execution time roughly proportional
to n+ b1 + · · ·+ bn on typical computers, and this is Θ(n2) on the average. Is there an
algorithm whose worst-case running time is substantially better than order n2?

x 6. [26] Design an algorithm that computes the inversion table b1 b2 . . . bn corre-
sponding to a given permutation a1 a2 . . . an of {1, 2, . . . , n}, where the running time is
essentially proportional to n logn on typical computers.

7. [20] Several other kinds of inversion tables can be deĄned, corresponding to a
given permutation a1 a2 . . . an of {1, 2, . . . , n}, besides the particular table b1 b2 . . . bn

deĄned in the text; in this exercise we will consider three other types of inversion tables
that arise in applications.

Let cj be the number of inversions whose Ąrst component is j, that is, the number
of elements to the right of j that are less than j. [Corresponding to (1) we have the
table 0 0 0 1 4 2 1 5 7; clearly 0 ≤ cj < j.] Let Bj = baj and Cj = caj .

Show that 0 ≤ Bj < j and 0 ≤ Cj ≤ n − j, for 1 ≤ j ≤ n; furthermore show
that the permutation a1 a2 . . . an can be determined uniquely when either c1 c2 . . . cn

or B1 B2 . . . Bn or C1 C2 . . . Cn is given.

8. [M24] Continuing the notation of exercise 7, let a′1 a
′
2 . . . a

′
n be the inverse of

the permutation a1 a2 . . . an, and let the corresponding inversion tables be b′1 b
′
2 . . . b

′
n,

c′1 c
′
2 . . . c

′
n, B′

1 B
′
2 . . . B

′
n, and C′

1 C
′
2 . . . C

′
n. Find as many interesting relations as you

can between the numbers aj , bj , cj , Bj , Cj , a′j , b′j , c′j , B′
j , C′

j .

x 9. [M21] Prove that, in the notation of exercise 7, the permutation a1 a2 . . . an is an
involution (that is, its own inverse) if and only if bj = Cj for 1 ≤ j ≤ n.

10. [HM20] Consider Fig. 1 as a polyhedron in three dimensions. What is the diam-
eter of the truncated octahedron (the distance between vertex 1234 and vertex 4321),
if all of its edges have unit length?

11. [M25] If π = a1 a2 . . . an is a permutation of {1, 2, . . . , n}, let

E(π) = {(ai, aj) | i < j, ai > aj}

be the set of its inversions, and let

E(π) = {(ai, aj) | i > j, ai > aj}

be the non-inversions.
a) Prove that E(π) and E(π) are transitive. (A set S of ordered pairs is called

transitive if (a, c) is in S whenever both (a, b) and (b, c) are in S.)

5.1.1 INVERSIONS 19

b) Conversely, let E be any transitive subset of T = {(x, y) | 1 ≤ y < x ≤ n} whose
complement E = T \E is also transitive. Prove that there exists a permutation π
such that E(π) = E.

12. [M28] Continuing the notation of the previous exercise, prove that if π1 and π2

are permutations and if E is the smallest transitive set containing E(π1)∪E(π2), then
E is transitive. [Hence, if we say π1 is ŞaboveŤ π2 whenever E(π1) ⊆ E(π2), a lattice

of permutations is deĄned; there is a unique ŞlowestŤ permutation ŞaboveŤ two given
permutations. Figure 1 is the lattice diagram when n = 4.]

13. [M23] It is well known that half of the terms in the expansion of a determinant
have a plus sign, and half have a minus sign. In other words, there are just as many
permutations with an even number of inversions as with an odd number, when n ≥ 2.
Show that, in general, the number of permutations having a number of inversions
congruent to t modulo m is n!/m, regardless of the integer t, whenever n ≥ m.

14. [M24] (F. Franklin.) A partition of n into k distinct parts is a representation
n = p1 + p2 + · · ·+ pk, where p1 > p2 > · · · > pk > 0. For example, the partitions of 7
into distinct parts are 7, 6 + 1, 5 + 2, 4 + 3, 4 + 2 + 1. Let fk(n) be the number of
partitions of n into k distinct parts; prove that

k(−1)kfk(n) = 0, unless n has the

form (3j2 ± j)/2, for some nonnegative integer j; in the latter case the sum is (−1)j .
For example, when n = 7 the sum is − 1 + 3 − 1 = 1, and 7 = (3 · 22 + 2)/2. [Hint:

Represent a partition as an array of dots, putting pi dots in the ith row, for 1 ≤ i ≤ k.
Find the smallest j such that pj+1 < pj −1, and encircle the rightmost dots in the Ąrst
j rows. If j < pk, these j dots can usually be removed, tilted 45◦, and placed as a new
(k+1)st row. On the other hand if j ≥ pk, the kth row of dots can usually be removed,
tilted 45◦, and placed to the right of the circled dots. (See Fig. 2.) This process pairs
off partitions having an odd number of rows with partitions having an even number of
rows, in most cases, so only unpaired partitions must be considered in the sum.]

Fig. 2. FranklinŠs correspondence between partitions with distinct parts.

Note: As a consequence, we obtain EulerŠs formula

(1− z)(1− z2)(1− z3) . . . = 1− z − z2 + z5 + z7 − z12 − z15 + · · ·

=

−∞<j<∞
(−1)jz(3j2+j)/2.

The generating function for ordinary partitions (whose parts are not necessarily dis-
tinct) is

p(n)zn = 1/(1 − z)(1 − z2)(1 − z3) . . . ; hence we obtain a nonobvious

recurrence relation for the partition numbers,

p(n) = p(n− 1) + p(n− 2)− p(n− 5)− p(n− 7) + p(n− 12) + p(n− 15)− · · · .

20 SORTING 5.1.1

15. [M23] Prove that (16) is the generating function for partitions into at most n
parts; that is, prove that the coefficient of zm in 1/(1 − z)(1 − z2) . . . (1 − zn) is the
number of ways to write m = p1 + p2 + · · · + pn with p1 ≥ p2 ≥ · · · ≥ pn ≥ 0.
[Hint: Drawing dots as in exercise 14, show that there is a one-to-one correspondence
between n-tuples (p1, p2, . . . , pn) such that p1 ≥ p2 ≥ · · · ≥ pn ≥ 0 and sequences
(P1, P2, P3, . . .) such that n ≥ P1 ≥ P2 ≥ P3 ≥ · · · ≥ 0, with the property that
p1 + p2 + · · ·+ pn = P1 +P2 +P3 + · · · . In other words, partitions into at most n parts
correspond to partitions into parts not exceeding n.]

16. [M25] (L. Euler.) Prove the following identities by interpreting both sides of the
equations in terms of partitions:

k≥0

1
(1− qkz)

=
1

(1− z)(1− qz)(1− q2z) . . .

= 1 +
z

1− q +
z2

(1− q)(1− q2)
+ · · · =

n≥0

zn

 n

k=1

(1− qk).

k≥0

(1 + qkz) = (1 + z)(1 + qz)(1 + q2z) . . .

= 1 +
z

1− q +
z2q

(1− q)(1− q2)
+ · · · =

n≥0

znqn(n−1)/2

 n

k=1

(1− qk).

17. [20] In MacMahonŠs correspondence deĄned at the end of this section, what are
the 24 quadruples (q1, q2, q3, q4) for which (p1, p2, p3, p4) = (0, 0, 0, 0)?

18. [M30] (T. Hibbard, CACM 6 (1963), 210.) Let n > 0, and assume that a sequence
of 2n n-bit integers X0, . . . , X2n−1 has been generated at random, where each bit of
each number is independently equal to 1 with probability p. Consider the sequence
X0 ⊕ 0, X1 ⊕ 1, . . . , X2n−1 ⊕ (2n − 1), where ⊕ denotes the Şexclusive orŤ operation
on the binary representations. Thus if p = 0, the sequence is 0, 1, . . . , 2n−1, and if
p = 1 it is 2n−1, . . . , 1, 0; and when p = 1

2
, each element of the sequence is a random

integer between 0 and 2n− 1. For general p this is a useful way to generate a sequence
of random integers with a biased number of inversions, although the distribution of
the elements of the sequence taken as a whole is uniform in the sense that each n-bit
integer has the same distribution. What is the average number of inversions in such a
sequence, as a function of the probability p?

19. [M28] (C. Meyer.) When m is relatively prime to n, we know that the sequence
(mmod n)(2mmod n) . . . ((n− 1)mmod n) is a permutation of {1, 2, . . . , n− 1}. Show
that the number of inversions of this permutation can be expressed in terms of Dedekind
sums (see Section 3.3.3).

20. [M43] The following famous identity due to Jacobi [Fundamenta Nova Theoriæ
Functionum Ellipticarum (1829), §64] is the basis of many remarkable relationships
involving elliptic functions:

k≥1

(1− ukvk−1)(1− uk−1vk)(1− ukvk)

= (1− u)(1− v)(1− uv)(1− u2v)(1− uv2)(1− u2v2) . . .

= 1− (u+ v) + (u3v + uv3)− (u6v3 + u3v6) + · · ·

=

−∞<j<+∞
(−1)ju(j2)v(j+1

2).

5.1.1 INVERSIONS 21

For example, if we set u = z, v = z2, we obtain EulerŠs formula of exercise 14. If we
set z =

√
u/v, q =

√
uv, we obtain

k≥1

(1− q2k−1z)(1− q2k−1z−1)(1− q2k) =

−∞<n<∞
(−1)nznqn2

.

Is there a combinatorial proof of JacobiŠs identity, analogous to FranklinŠs proof
of the special case in exercise 14? (Thus we want to consider Şcomplex partitionsŤ

m+ ni = (p1 + q1i) + (p2 + q2i) + · · ·+ (pk + qki)

where the pj + qji are distinct nonzero complex numbers, pj and qj being nonnegative
integers with |pj − qj | ≤ 1. JacobiŠs identity says that the number of such represen-
tations with k even is the same as the number with k odd, except when m and n
are consecutive triangular numbers.) What other remarkable properties do complex
partitions have?

x 21. [M25] (G. D. Knott.) Show that the permutation a1 . . . an is obtainable with
a stack, in the sense of exercise 2.2.1Ű5 or 2.3.1Ű6, if and only if Cj ≤ Cj+1 + 1 for
1 ≤ j < n in the notation of exercise 7.

22. [M26] Given a permutation a1 a2 . . . an of {1, 2, . . . , n}, let hj be the number of
indices i < j such that ai ∈ {aj+1, aj+2, . . . , aj+1}. (If aj+1 < aj , the elements of this
set Şwrap aroundŤ from n to 1. When j = n we use the set {an+1, an+2, . . . , n}.) For
example, the permutation 5 9 1 8 2 6 4 7 3 leads to h1 . . . h9 = 0 0 1 2 1 4 2 4 6.

a) Prove that a1 a2 . . . an can be reconstructed from the numbers h1 h2 . . . hn.
b) Prove that h1 + h2 + · · ·+ hn is the index of a1 a2 . . . an.

x 23. [M27] (Russian roulette.) A group of n condemned men who prefer probability
theory to number theory might choose to commit suicide by sitting in a circle and
modifying JosephusŠs method (exercise 2) as follows: The Ąrst prisoner holds a gun
and aims it at his head; with probability p he dies and leaves the circle. Then the
second man takes the gun and proceeds in the same way. Play continues cyclically,
with constant probability p > 0, until everyone is dead.

Let aj = k if man k is the jth to die. Prove that the death order a1 a2 . . . an

occurs with a probability that is a function only of n, p, and the index of the dual
permutation (n+ 1− an) . . . (n+ 1− a2) (n+ 1− a1). What death order is least likely?

24. [M26] Given integers t(1) t(2) . . . t(n) with t(j) ≥ j, the generalized index of a
permutation a1 a2 . . . an is the sum of all subscripts j such that aj > t(aj+1), plus the
total number of inversions such that i < j and t(aj) ≥ ai > aj . Thus when t(j) = j for
all j, the generalized index is the same as the index; but when t(j) ≥ n for all j it is the
number of inversions. Prove that the number of permutations whose generalized index
equals k is the same as the number of permutations having k inversions. [Hint: Show
that, if we take any permutation a1 . . . an−1 of {1, . . . , n− 1} and insert the number n
in all possible places, we increase the generalized index by the numbers {0, 1, . . . , n−1}
in some order.]

x 25. [M30] (Foata and Schützenberger.) If α = a1 . . . an is a permutation, let ind(α)
be its index, and let inv(α) count its inversions.

a) DeĄne a one-to-one correspondence that takes each permutation α of {1, . . . , n}
to a permutation f(α) that has the following two properties: (i) ind(f(α)) =
inv(α); (ii) for 1 ≤ j < n, the number j appears to the left of j + 1 in f(α)
if and only if it appears to the left of j + 1 in α. What permutation does your

22 SORTING 5.1.1

construction assign to f(α) when α = 1 9 8 2 6 3 7 4 5? For what permutation α is
f(α) = 1 9 8 2 6 3 7 4 5? [Hint: If n > 1, write α = x1α1x2α2 . . . xkαkan, where
x1, . . . , xk are all the elements < an if a1 < an, otherwise x1, . . . , xk are all the
elements > an; the other elements appear in (possibly empty) strings α1, . . . , αk.
Compare the number of inversions of h(α) = α1x1α2x2 . . . αkxk to inv(α); in this
construction the number an does not appear in h(α).]

b) Use f to deĄne another one-to-one correspondence g having the following two
properties: (i) ind(g(α)) = inv(α); (ii) inv(g(α)) = ind(α). [Hint: Consider
inverse permutations.]

26. [M25] What is the statistical correlation coefficient between the number of inver-
sions and the index of a random permutation? (See Eq. 3.3.2Ű(24).)

27. [M37] Prove that, in addition to (15), there is a simple relationship between
inv(a1 a2 . . . an) and the n-tuple (q1, q2, . . . , qn). Use this fact to generalize the deriva-
tion of (17), obtaining an algebraic characterization of the bivariate generating function

Hn(w, z) =

winv(a1 a2...an)zind(a1 a2...an),

where the sum is over all n! permutations a1 a2 . . . an.

x 28. [25] If a1 a2 . . . an is a permutation of {1, 2, . . . , n}, its total displacement is
deĄned to be

n
j=1 |aj − j|. Find upper and lower bounds for total displacement

in terms of the number of inversions.

29. [28] If π = a1 a2 . . . an and π′ = a′1 a
′
2 . . . a

′
n are permutations of {1, 2, . . . , n},

their product ππ′ is a′a1
a′a2

. . . a′an
. Let inv(π) denote the number of inversions, as in

exercise 25. Show that inv(ππ′) ≤ inv(π) + inv(π′), and that equality holds if and only
if ππ′ is ŞbelowŤ π′ in the sense of exercise 12.

*5.1.2. Permutations of a Multiset

So far we have been discussing permutations of a set of elements; this is just a
special case of the concept of permutations of a multiset. (A multiset is like a set
except that it can have repetitions of identical elements. Some basic properties
of multisets have been discussed in exercise 4.6.3Ű19.)

For example, consider the multiset

M = {a, a, a, b, b, c, d, d, d, d}, (1)

which contains 3 aŠs, 2 bŠs, 1 c, and 4 dŠs. We may also indicate the multiplicities
of elements in another way, namely

M = {3 · a, 2 · b, c, 4 · d}. (2)

A permutation* of M is an arrangement of its elements into a row; for example,

c a b d d a b d a d.

From another point of view we would call this a string of letters, containing 3 aŠs,
2 bŠs, 1 c, and 4 dŠs.

How many permutations of M are possible? If we regarded the elements
of M as distinct, by subscripting them a1, a2, a3, b1, b2, c1, d1, d2, d3, d4,

* Sometimes called a Şpermatution.Ť

5.1.2 PERMUTATIONS OF A MULTISET 23

we would have 10! = 3,628,800 permutations; but many of those permutations
would actually be the same when we removed the subscripts. In fact, each
permutation of M would occur exactly 3! 2! 1! 4! = 288 times, since we can start
with any permutation of M and put subscripts on the aŠs in 3! ways, on the
bŠs (independently) in 2! ways, on the c in 1 way, and on the dŠs in 4! ways.
Therefore the true number of permutations of M is

10!
3! 2! 1! 4!

= 12,600.

In general, we can see by this same argument that the number of permutations
of any multiset is the multinomial coefficient

n

n1, n2, . . .

=

n!
n1! n2! . . .

, (3)

where n1 is the number of elements of one kind, n2 is the number of another
kind, etc., and n = n1 + n2 + · · · is the total number of elements.

The number of permutations of a set has been known for more than 1500
years. The Hebrew Book of Creation (c. A.D. 400), which was the earliest literary
product of Jewish philosophical mysticism, gives the correct values of the Ąrst
seven factorials, after which it says ŞGo on and compute what the mouth cannot
express and the ear cannot hear.Ť [Sefer Yetzirah, end of Chapter 4. See Solomon
Gandz, Studies in Hebrew Astronomy and Mathematics (New York: Ktav, 1970),
494Ű496; Aryeh Kaplan, Sefer Yetzirah (York Beach, Maine: Samuel Weiser,
1993).] This is one of the Ąrst two known enumerations of permutations in
history. The other occurs in the Indian classic Anuyogadvārasūtra (c. 500), rule
97, which gives the formula

6× 5× 4× 3× 2× 1− 2

for the number of permutations of six elements that are neither in ascending nor
descending order. [See G. Chakravarti, Bull. Calcutta Math. Soc. 24 (1932),
79Ű88. The Anuyogadvārasūtra is one of the books in the canon of Jainism,
a religious sect that Ćourishes in India.]

The corresponding formula for permutations of multisets seems to have
appeared Ąrst in the L̄ılāvat̄ı of Bhāskara (c. 1150), sections 270Ű271. Bhāskara
stated the rule rather tersely, and illustrated it only with two simple examples
{2, 2, 1, 1} and {4, 8, 5, 5, 5}. Consequently the English translations of his work
do not all state the rule correctly, although there is little doubt that Bhāskara
knew what he was talking about. He went on to give the interesting formula

(4 + 8 + 5 + 5 + 5)× 120× 11111
5× 6

for the sum of the 20 numbers 48555 + 45855 + · · · .
The correct rule for counting permutations when elements are repeated was

apparently unknown in Europe until Marin Mersenne stated it without proof
as Proposition 10 in his elaborate treatise on melodic principles [Harmonie
Universelle 2, also entitled Traitez de la Voix et des Chants (1636), 129Ű130].

24 SORTING 5.1.2

Mersenne was interested in the number of tunes that could be made from a given
collection of notes; he observed, for example, that a theme by Boesset,

can be rearranged in exactly 15!/(4!3!3!2!) = 756,756,000 ways.
The general rule (3) also appeared in Jean PrestetŠs Élémens des Mathéma-

tiques (Paris: 1675), 351Ű352, one of the very Ąrst expositions of combinatorial
mathematics to be written in the Western world. Prestet stated the rule correctly
for a general multiset, but illustrated it only in the simple case {a, a, b, b, c, c}.
A few years later, John WallisŠs Discourse of Combinations (Oxford: 1685),
Chapter 2 (published with his Treatise of Algebra) gave a clearer and somewhat
more detailed discussion of the rule.

In 1965, Dominique Foata introduced an ingenious idea called the Şinter-
calation product,Ť which makes it possible to extend many of the known results
about ordinary permutations to the general case of multiset permutations. [See
Publ. Inst. Statistique, Univ. Paris, 14 (1965), 81Ű241; also Lecture Notes in
Math. 85 (Springer, 1969).] Assuming that the elements of a multiset have been
linearly ordered in some way, we may consider a two-line notation such as

a a a b b c d d d d
c a b d d a b d a d

, (4)

where the top line contains the elements of M sorted into nondecreasing order
and the bottom line is the permutation itself. The intercalation product α β of
two multiset permutations α and β is obtained by (a) expressing α and β in the
two-line notation, (b) juxtaposing these two-line representations, and (c) sorting
the columns into nondecreasing order of the top line. The sorting is supposed
to be stable, in the sense that left-to-right order of elements in the bottom line
is preserved when the corresponding top line elements are equal. For example,
c a d a b b d d a d = c a b d d a b d a d, since

a a b c d
c a d a b

a b d d d
b d d a d

=

a a a b b c d d d d
c a b d d a b d a d

. (5)

It is easy to see that the intercalation product is associative:

(α β) γ = α (β γ); (6)

it also satisĄes two cancellation laws:

π α = π β implies α = β,

α π = β π implies α = β.
(7)

There is an identity element,

α ϵ = ϵ α = α, (8)

5.1.2 PERMUTATIONS OF A MULTISET 25

where ϵ is the null permutation, the ŞarrangementŤ of the empty set. Although
the commutative law is not valid in general (see exercise 2), we do have

α β = β α if α and β have no letters in common. (9)

In an analogous fashion we can extend the concept of cycles in permutations
to cases where elements are repeated; we let

(x1 x2 . . . xn) (10)

stand for the permutation obtained in two-line form by sorting the columns of

x1 x2 . . . xn

x2 x3 . . . x1

(11)

by their top elements in a stable manner. For example, we have

(d b d d a c a a b d) =

d b d d a c a a b d
b d d a c a a b d d

=

a a a b b c d d d d
c a b d d a b d a d

,

so the permutation (4) is actually a cycle. We might render this cycle in words
by saying something like Şd goes to b goes to d goes to d goes . . . goes to d
goes back.Ť Note that these general cycles do not share all of the properties of
ordinary cycles; (x1 x2 . . . xn) is not always the same as (x2 . . . xn x1).

We observed in Section 1.3.3 that every permutation of a set has a unique
representation (up to order) as a product of disjoint cycles, where the ŞproductŤ
of permutations is deĄned by a law of composition. It is easy to see that
the product of disjoint cycles is exactly the same as their intercalation; this
suggests that we might be able to generalize the previous results, obtaining a
unique representation (in some sense) for any permutation of a multiset, as the
intercalation of cycles. In fact there are at least two natural ways to do this,
each of which has important applications.

Equation (5) shows one way to factor c a b d d a b d a d as the intercala-
tion of shorter permutations; let us consider the general problem of Ąnding all
factorizations π = α β of a given permutation π. It will be helpful to consider
a particular permutation, such as

π =

a a b b b b b c c c d d d d d
d b c b c a c d a d d b b b d

, (12)

as we investigate the factorization problem.
If we can write this permutation π in the form α β, where α contains the

letter a at least once, then the leftmost a in the top line of the two-line notation
for α must appear over the letter d, so α must also contain at least one occurrence
of the letter d. If we now look at the leftmost d in the top line of α, we see in
the same way that it must appear over the letter d, so α must contain at least
two dŠs. Looking at the second d, we see that α also contains at least one b. We
have deduced the partial result

α =

a
. . .

b
. . .

d d
. . .

d d b

(13)

26 SORTING 5.1.2

on the sole assumption that α is a left factor of π containing the letter a.
Proceeding in the same manner, we Ąnd that the b in the top line of (13) must
appear over the letter c, etc. Eventually this process will reach the letter a again,
and we can identify this a with the Ąrst a if we choose to do so. The argument
we have just made essentially proves that any left factor α of (12) that contains
the letter a has the form (d d b c d b b c a) α′, for some permutation α′. (It
is convenient to write the a last in the cycle, instead of Ąrst; this arrangement
is permissible since there is only one a.) Similarly, if we had assumed that α
contains the letter b, we would have deduced that α = (c d d b) α′′ for some α′′.

In general, this argument shows that, if we have any factorization α β = π,
where α contains a given letter y, exactly one cycle of the form

(x1 . . . xn y), n ≥ 0, x1, . . . , xn ̸= y, (14)

is a left factor of α. This cycle is easily determined when π and y are given; it is
the shortest left factor of π that contains the letter y. One of the consequences
of this observation is the following theorem:

Theorem A. Let the elements of the multiset M be linearly ordered by the
relation Ş<Ť. Every permutation π of M has a unique representation as the
intercalation

π = (x11 . . . x1n1
y1) (x21 . . . x2n2

y2) · · · (xt1 . . . xtnt
yt), t ≥ 0, (15)

where the following two conditions are satisĄed:

y1 ≤ y2 ≤ · · · ≤ yt and yi < xij for 1 ≤ j ≤ ni, 1 ≤ i ≤ t. (16)

(In other words, the last element in each cycle is smaller than every other element,
and the sequence of last elements is in nondecreasing order.)

Proof. If π = ϵ, we obtain such a factorization by letting t = 0. Otherwise
we let y1 be the smallest element permuted; and we determine (x11 . . . x1n1

y1),
the shortest left factor of π containing y1, as in the example above. Now π =
(x11 . . . x1n1

y1) ρ for some permutation ρ; by induction on the length, we can
write

ρ = (x21 . . . x2n2
y2) · · · (xt1 . . . xtnt

yt), t ≥ 1,

where (16) is satisĄed. This proves the existence of such a factorization.
Conversely, to prove that the representation (15) satisfying (16) is unique,

clearly t = 0 if and only if π is the null permutation ϵ. When t > 0, (16)
implies that y1 is the smallest element permuted, and that (x11 . . . x1n1

y1) is
the shortest left factor containing y1. Therefore (x11 . . . x1n1

y1) is uniquely
determined; by the cancellation law (7) and induction, the representation is
unique.

For example, the ŞcanonicalŤ factorization of (12), satisfying the given con-
ditions, is

(d d b c d b b c a) (b a) (c d b) (d), (17)

if a < b < c < d.

5.1.2 PERMUTATIONS OF A MULTISET 27

It is important to note that we can actually drop the parentheses and the
Šs in this representation, without ambiguity! Each cycle ends just after the Ąrst

appearance of the smallest remaining element. So this construction associates
the permutation

π′ = d d b c d b b c a b a c d b d

with the original permutation

π = d b c b c a c d a d d b b b d.

Whenever the two-line representation of π had a column of the form y
x , where

x < y, the associated permutation π′ has a corresponding pair of adjacent
elements . . . y x Thus our example permutation π has three columns of the
form d

b , and π′ has three occurrences of the pair d b. In general this construction
establishes the following remarkable theorem:

Theorem B. Let M be a multiset. There is a one-to-one correspondence
between the permutations of M such that, if π corresponds to π′, the following
conditions hold:

a) The leftmost element of π′ equals the leftmost element of π.

b) For all pairs of permuted elements (x, y) with x < y, the number of occur-
rences of the column y

x in the two-line notation of π is equal to the number of
times x is immediately preceded by y in π′.

When M is a set, this is essentially the same as the Şunusual correspondenceŤ
we discussed near the end of Section 1.3.3, with unimportant changes. The more
general result in Theorem B is quite useful for enumerating special kinds of
permutations, since we can often solve a problem based on a two-line constraint
more easily than the equivalent problem based on an adjacent-pair constraint.

P. A. MacMahon considered problems of this type in his extraordinary
book Combinatory Analysis 1 (Cambridge Univ. Press, 1915), 168Ű186. He
gave a constructive proof of Theorem B in the special case that M contains
only two different kinds of elements, say a and b; his construction for this
case is essentially the same as that given here, although he expressed it quite
differently. For the case of three different elements a, b, c, MacMahon gave
a complicated nonconstructive proof of Theorem B; the general case was Ąrst
proved constructively by Foata [Comptes Rendus Acad. Sci. 258 (Paris, 1964),
1672Ű1675].

As a nontrivial example of Theorem B, let us Ąnd the number of strings of
letters a, b, c containing exactly

A occurrences of the letter a;
B occurrences of the letter b;
C occurrences of the letter c;
k occurrences of the adjacent pair of letters ca;
l occurrences of the adjacent pair of letters cb;
m occurrences of the adjacent pair of letters ba. (18)

28 SORTING 5.1.2

The theorem tells us that this is the same as the number of two-line arrays of
the form

A B C

a . . . a b . . . b c . . . c

.
␣ . . . ␣ ␣ . . . ␣ ␣ . . . ␣

A−k−m aŠs m aŠs k aŠs

B−l bŠs l bŠs

C cŠs

(19)

The aŠs can be placed in the second line in

A

A− k −m

B

m

C

k

ways;

then the bŠs can be placed in the remaining positions in

B + k

B − l

C − k

l

ways.

The positions that are still vacant must be Ąlled by cŠs; hence the desired number
is

A

A− k −m

B

m

C

k

B + k

B − l

C − k

l

. (20)

Let us return to the question of Ąnding all factorizations of a given per-
mutation. Is there such a thing as a ŞprimeŤ permutation, one that has no
intercalation factors except itself and ϵ? The discussion preceding Theorem A
leads us quickly to conclude that a permutation is prime if and only if it is a
cycle with no repeated elements. For if it is such a cycle, our argument proves
that there are no left factors except ϵ and the cycle itself. And if a permutation
contains a repeated element y, it has a nontrivial cyclic left factor in which y
appears only once.

A nonprime permutation can be factored into smaller and smaller pieces
until it has been expressed as a product of primes. Furthermore we can show
that the factorization is unique, if we neglect the order of factors that commute:

Theorem C. Every permutation of a multiset can be written as a product

σ1 σ2 · · · σt, t ≥ 0, (21)

where each σj is a cycle having no repeated elements. This representation is
unique, in the sense that any two such representations of the same permuta-
tion may be transformed into each other by successively interchanging pairs of
adjacent disjoint cycles.

5.1.2 PERMUTATIONS OF A MULTISET 29

The term Şdisjoint cyclesŤ means cycles having no elements in common. As
an example of this theorem, we can verify that the permutation

a a b b c c d
b a a c d b c

has exactly Ąve factorizations into primes, namely

(a b) (a) (c d) (b c) = (a b) (c d) (a) (b c)

= (a b) (c d) (b c) (a)

= (c d) (a b) (b c) (a)

= (c d) (a b) (a) (b c). (22)

Proof. We must show that the stated uniqueness property holds. By induction
on the length of the permutation, it suffices to prove that if ρ and σ are unequal
cycles having no repeated elements, and if

ρ α = σ β,

then ρ and σ are disjoint, and

α = σ θ, β = ρ θ,

for some permutation θ.
If y is any element of the cycle ρ, then any left factor of σ β containing the

element y must have ρ as a left factor. So if ρ and σ have an element in common,
σ is a multiple of ρ; hence σ = ρ (since they are primes), contradicting our as-
sumption. Therefore the cycle containing y, having no elements in common with
σ, must be a left factor of β. The proof is completed by using the cancellation
law (7).

As an example of Theorem C, let us consider permutations of the multiset
M = {A · a, B · b, C · c} consisting of A aŠs, B bŠs, and C cŠs. Let N(A, B, C, m)
be the number of permutations of M whose two-line representation contains no

columns of the forms a
a , b

b , c
c , and exactly m columns of the form a

b . It follows
that there are exactly A − m columns of the form a

c , B − m of the form c
b ,

C −B + m of the form c
a , C −A + m of the form b

c , and A + B −C −m of the
form b

a . Hence

N(A, B, C, m) =

A

m

B

C −A + m

C

B −m

. (23)

Theorem C tells us that we can count these permutations in another way:
Since columns of the form a

a , b
b , c

c are excluded, the only possible prime factors
of the permutation are

(a b), (a c), (b c), (a b c), (a c b). (24)

Each pair of these cycles has at least one letter in common, so the factorization
into primes is completely unique. If the cycle (a b c) occurs k times in the
factorization, our previous assumptions imply that (a b) occurs m − k times,

30 SORTING 5.1.2

(b c) occurs C − A + m − k times, (a c) occurs C − B + m − k times, and
(a c b) occurs A + B − C − 2m + k times. Hence N(A, B, C, m) is the number
of permutations of these cycles (a multinomial coefficient), summed over k:

N(A, B, C, m)

=

k

(C +m−k)!
(m−k)! (C−A+m−k)! (C−B +m−k)! k! (A+B−C−2m+k)!

=

k

m

k

A

m

A−m

C−B +m−k

C +m−k

A

. (25)

Comparing this with (23), we Ąnd that the following identity must be valid:

k

m

k

A−m

C −B + m− k

C + m− k

A

=

B

C −A + m

C

B −m

. (26)

This turns out to be the identity we met in exercise 1.2.6Ű31, namely

j

M −R + S

j

N + R− S

N − j

R + j

M + N

=

R

M

S

N

, (27)

with M = A+B−C−m, N = C−B+m, R = B, S = C, and j = C−B+m−k.
Similarly we can count the number of permutations of {A·a, B ·b, C ·c, D ·d}

such that the number of columns of various types is speciĄed as follows:

Column
type:

a
d

a
b

b
a

b
c

c
b

c
d

d
a

d
c (28)

Frequency: r A−r q B−q B−A+r D−r A−q D−A+q

(Here A + C = B + D.) The possible cycles occurring in a prime factorization
of such permutations are then

Cycle: (a b) (b c) (c d) (d a) (a b c d) (d c b a)
(29)

Frequency: A−r−s B−q−s D−r−s A−q−s s q−A+r+s

for some s (see exercise 12). In this case the cycles (a b) and (c d) commute with
each other, and so do (b c) and (d a), so we must count the number of distinct
prime factorizations. It turns out (see exercise 10) that there is always a unique
factorization such that no (c d) is immediately followed by (a b), and no (d a) is
immediately followed by (b c). Hence by the result of exercise 13, we have

s,t

B

t

A−q−s

A−r−s− t

B +D−r−s− t

B−q−s

× D!
(D−r−s)! (A−q−s)! s! (q−A+r+s)!

=

A

r

B +D−A

D−r

B

q

D

A−q

.

5.1.2 PERMUTATIONS OF A MULTISET 31

Taking out the factor

D
A−q

from both sides and simplifying the factorials slightly

leaves us with the complicated-looking Ąve-parameter identity

s,t

B

t

A−r− t

s

B +D−r−s− t

D+q−r− t

D−A+q

D−r−s

A−q

r+ t−q

=

A

r

B +D−A

D−r

B

q

. (30)

The sum on s can be performed using (27), and the resulting sum on t is easily
evaluated; so, after all this work, we were not fortunate enough to discover any
identities that we didnŠt already know how to derive. But at least we have
learned how to count certain kinds of permutations, in two different ways, and
these counting techniques are good training for the problems that lie ahead.

EXERCISES

1. [M05] True or false: Let M1 and M2 be multisets. If α is a permutation of M1

and β is a permutation of M2, then α β is a permutation of M1 ∪M2.

2. [10] The intercalation of c a d a b and b d d a d is computed in (5); Ąnd the
intercalation b d d a d c a d a b that is obtained when the factors are interchanged.

3. [M13] Is the converse of (9) valid? In other words, if α and β commute under
intercalation, must they have no letters in common?

4. [M11] The canonical factorization of (12), in the sense of Theorem A, is given
in (17) when a < b < c < d. Find the corresponding canonical factorization when
d < c < b < a.

5. [M23] Condition (b) of Theorem B requires x < y; what would happen if we
weakened the relation to x ≤ y?

6. [M15] How many strings are there that contain exactly m aŠs, n bŠs, and no other
letters, with exactly k of the aŠs preceded immediately by a b?

7. [M21] How many strings on the letters a, b, c satisfying conditions (18) begin
with the letter a? with the letter b? with c?

x 8. [20] Find all factorizations of (12) into two factors α β.

9. [33] Write computer programs that perform the factorizations of a given multiset
permutation into the forms mentioned in Theorems A and C.

x 10. [M30] True or false: Although the factorization into primes isnŠt quite unique,
according to Theorem C, we can ensure uniqueness in the following way: ŞThere is a
linear ordering ≺ of the set of primes such that every permutation of a multiset has a
unique factorization σ1 σ2 · · · σn into primes subject to the condition that σi ⪯ σi+1

whenever σi commutes with σi+1, for 1 ≤ i < n.Ť

x 11. [M26] Let σ1, σ2, . . . , σt be cycles without repeated elements. DeĄne a partial or-
dering ≺ on the t objects {x1, . . . , xt} by saying that xi ≺ xj if i < j and σi has at least
one letter in common with σj . Prove the following connection between Theorem C and
the notion of Ştopological sortingŤ (Section 2.2.3): The number of distinct prime factor-
izations of σ1 σ2 · · · σt is the number of ways to sort the given partial ordering topo-
logically. (For example, corresponding to (22) we Ąnd that there are Ąve ways to sort the
ordering x1 ≺ x2, x3 ≺ x4, x1 ≺ x4 topologically.) Conversely, given any partial order-
ing on t elements, there is a set of cycles {σ1, σ2, . . . , σt} that deĄnes it in the stated way.

32 SORTING 5.1.2

12. [M16] Show that (29) is a consequence of the assumptions of (28).

13. [M21] Prove that the number of permutations of the multiset

{A · a, B · b, C · c, D · d, E · e, F · f}

containing no occurrences of the adjacent pairs of letters ca and db is

t

D

A− t

A+B + E + F

t

A+B + C + E + F − t

B

C +D + E + F

C,D,E, F

.

14. [M30] One way to deĄne the inverse π− of a general permutation π, suggested by
other deĄnitions in this section, is to interchange the lines of the two-line representation
of π and then to do a stable sort of the columns in order to bring the top row into
nondecreasing order. For example, if a < b < c < d, this deĄnition implies that the
inverse of c a b d d a b d a d is a c d a d a b b d d.

Explore properties of this inversion operation; for example, does it have any simple
relation with intercalation products? Can we count the number of permutations such
that π = π−?

x 15. [M25] Prove that the permutation a1 . . . an of the multiset

{n1 · x1, n2 · x2, . . . , nm · xm},

where x1 < x2 < · · · < xm and n1 + n2 + · · · + nm = n, is a cycle if and only if the
directed graph with vertices {x1, x2, . . . , xm} and arcs from xj to an1+···+nj contains
precisely one oriented cycle. In the latter case, the number of ways to represent the
permutation in cycle form is the length of the oriented cycle. For example, the directed
graph corresponding to

a a a b b c c c d d
d c b a c a a b d c

is

a

d

b

c

and the two ways to represent the permutation as a cycle are (b a d d c a c a b c) and
(c a d d c a c b a b).

16. [M35] We found the generating function for inversions of permutations in the
previous section, Eq. 5.1.1Ű(8), in the special case that a set was being permuted.
Show that, in general, if a multiset is permuted, the generating function for inversions
of {n1 · x1, n2 · x2, . . . } is the Şz-multinomial coefficientŤ

n

n1, n2, . . .

z

=
n!z

n1!z n2!z . . .
, where m!z =

m

k=1

(1 + z + · · ·+ zk−1).

[Compare with (3) and with the deĄnition of z-nomial coefficients in Eq. 1.2.6Ű(40).]

17. [M24] Find the average and standard deviation of the number of inversions in
a random permutation of a given multiset, using the generating function found in
exercise 16.

18. [M30] (P. A. MacMahon.) The index of a permutation a1 a2 . . . an was deĄned
in the previous section; and we proved that the number of permutations of a given
set that have a given index k is the same as the number of permutations that have k
inversions. Does the same result hold for permutations of a given multiset?

5.1.2 PERMUTATIONS OF A MULTISET 33

19. [HM28] DeĄne the Möbius function µ(π) of a permutation π to be 0 if π contains
repeated elements, otherwise (−1)k if π is the product of k primes. (Compare with the
deĄnition of the ordinary Möbius function, exercise 4.5.2Ű10.)

a) Prove that if π ̸= ϵ, we have
µ(λ) = 0,

summed over all permutations λ that are left factors of π (namely all λ such that
π = λ ρ for some ρ).

b) Given that x1 < x2 < · · · < xm and π = xi1
xi2

. . . xin , where 1 ≤ ik ≤ m for
1 ≤ k ≤ n, prove that

µ(π) = (−1)nϵ(i1 i2 . . . in), where ϵ(i1 i2 . . . in) = sign

1≤j<k≤n

(ik − ij).

x 20. [HM33] (D. Foata.) Let (aij) be any matrix of real numbers. In the notation of
exercise 19(b), deĄne ν(π) = ai1j1

. . . ainjn , where the two-line notation for π is

xi1

xi2
. . . xin

xj1
xj2

. . . xjn

.

This function is useful in the computation of generating functions for permutations of
a multiset, because

ν(π), summed over all permutations π of the multiset

{n1 · x1, . . . , nm · xm},
will be the generating function for the number of permutations satisfying certain
restrictions. For example, if we take aij = z for i = j, and aij = 1 for i ̸= j,
then

ν(π) is the generating function for the number of ŞĄxed pointsŤ (columns in

which the top and bottom entries are equal). In order to study

ν(π) for all multisets

simultaneously, we consider the function

G =

πν(π)

summed over all π in the set {x1, . . . , xm}∗ of all permutations of multisets involving
the elements x1, . . . , xm, and we look at the coefficient of xn1

1 . . . xnm
m in G.

In this formula for G we are treating π as the product of the xŠs. For example,
when m = 2 we have

G= 1+x1ν(x1)+x2ν(x2)+x1x1ν(x1x1)+x1x2ν(x1x2)+x2x1ν(x2x1)+x2x2ν(x2x2)+· · ·
= 1+x1a11 +x2a22 +x2

1a
2
11 +x1x2a11a22 +x1x2a21a12 +x2

2a
2
22 + · · · .

Thus the coefficient of xn1

1 . . . xnm
m in G is

ν(π) summed over all permutations π of

{n1 ·x1, . . . , nm ·xm}. It is not hard to see that this coefficient is also the coefficient of
xn1

1 . . . xnm
m in the expression

(a11x1 + · · ·+ a1mxm)n1 (a21x1 + · · ·+ a2mxm)n2 . . . (am1x1 + · · ·+ ammxm)nm .

The purpose of this exercise is to prove what P. A. MacMahon called a ŞMaster
TheoremŤ in his Combinatory Analysis 1 (1915), Section 3, namely the formula

G = 1/D, where D = det

1− a11x1 −a12x2 . . . −a1mxm

−a21x1 1− a22x2 −a2mxm

...
...

−am1x1 −am2x2 . . . 1− ammxm

 .

34 SORTING 5.1.2

For example, if aij = 1 for all i and j, this formula gives

G = 1/(1− (x1 + x2 + · · ·+ xm)),

and the coefficient of xn1

1 . . . xnm
m turns out to be (n1 + · · · + nm)!/n1! . . . nm!, as it

should. To prove the Master Theorem, show that
a) ν(π ρ) = ν(π)ν(ρ);
b) D =

πµ(π)ν(π), in the notation of exercise 19, summed over all permutations

π in {x1, . . . , xm}∗;
c) therefore D ·G = 1.

21. [M21] Given n1, . . . , nm, and d ≥ 0, how many permutations a1 a2 . . . an of the
multiset {n1 · 1, . . . , nm ·m} satisfy aj+1 ≥ aj − d for 1 ≤ j < n = n1 + · · ·+ nm?

22. [M30] Let P (xn1

1 . . . xnm
m) denote the set of all possible permutations of the multi-

set {n1 ·x1, . . . , nm ·xm}, and let P0(xn0

0 xn1

1 . . . xnm
m) be the subset of P (xn0

0 xn1

1 . . . xnm
m)

in which the Ąrst n0 elements are ̸= x0.
a) Given a number t with 1 ≤ t < m, Ąnd a one-to-one correspondence between

P (1n1 . . .mnm) and the set of all ordered pairs of permutations that belong re-
spectively to P0(0p1n1 . . . tnt) and P0(0p(t+1)nt+1 . . .mnm), for some p ≥ 0. [Hint:

For each π = a1 . . . an ∈ P (1n1 . . .mnm), let l(π) be the permutation obtained by
replacing t+ 1, . . . , m by 0 and erasing all 0s in the last nt+1 + · · ·+nm positions;
similarly, let r(π) be the permutation obtained by replacing 1, . . . , t by 0 and
erasing all 0s in the Ąrst n1 + · · ·+ nt positions.]

b) Prove that the number of permutations of P0(0n0 1n1 . . .mnm) whose two-line form
has pj columns 0

j and qj columns j
0 is

|P (xp1

1 . . . xpm
m yn1−p1

1 . . . ynm−pm
m)| |P (xq1

1 . . . xqm
m yn1−q1

1 . . . ynm−qm
m)|

|P0(0n0 1n1 . . .mnm)| .

c) Let w1, . . . , wm, z1, . . . , zm be complex numbers on the unit circle. DeĄne the
weight w(π) of a permutation π ∈ P (1n1 . . .mnm) as the product of the weights
of its columns in two-line form, where the weight of j

k is wj/wk if j and k are
both ≤ t or both > t, otherwise it is zj/zk. Prove that the sum of w(π) over all
π ∈ P (1n1 . . .mnm) is

p≥0

p!2(n≤t − p)! (n>t − p)!
n1! . . . nm!

n1

p1

. . .

nm

pm

w1

z1

p1

. . .

wm

zm

pm

2

,

where n≤t is n1 + · · ·+ nt, n>t is nt+1 + · · ·+ nm, and the inner sum is over all
(p1, . . . , pm) such that p≤t = p>t = p.

23. [M23] A strand of DNA can be thought of as a word on a four-letter alphabet.
Suppose we copy a strand of DNA and break it completely into one-letter bases, then
recombine those bases at random. If the resulting strand is placed next to the original,
prove that the number of places in which they differ is more likely to be even than odd.
[Hint: Apply the previous exercise.]

24. [27] Consider any relation R that might hold between two unordered pairs of
letters; if {w, x}R{y, z} we say {w, x} preserves {y, z}, otherwise {w, x} moves {y, z}.

The operation of transposing w
y

x
z with respect to R replaces w

y
x
z by x

y
w
z or x

z
w
y ,

according as the pair {w, x} preserves or moves the pair {y, z}, assuming that w ̸= x
and y ̸= z; if w = x or y = z the transposition always produces x

z
w
y .

5.1.3 RUNS 35

The operation of sorting a two-line array (x1
y1

...

...
xn
yn

) with respect to R repeatedly
Ąnds the largest xj such that xj > xj+1 and transposes columns j and j + 1, until
eventually x1 ≤ · · · ≤ xn. (We do not require y1 . . . yn to be a permutation of x1 . . . xn.)

a) Given (x1
y1

...

...
xn
yn

), prove that for every x ∈ {x1, . . . , xn} there is a unique y ∈
{y1, . . . , yn} such that sort(x1

y1

...

...
xn
yn

) = sort(x x′

2

y y′

2

...

...
x′

n
y′
n

) for some x′2, y
′
2, . . . , x

′
n, y

′
n.

b) Let (w1
y1

...

...
wk
yk

) R⃝ (x1
z1

...

...
xl
zl

) denote the result of sorting (w1
y1

...

...
wk
yk

x1
z1

...

...
xl
zl

) with

respect to R. For example, if R is always true, R⃝ sorts {w1, . . . , wk, x1, . . . , xl},
but it simply juxtaposes y1 . . . yk with z1 . . . zl; if R is always false, R⃝ is the inter-
calation product . Generalize Theorem A by proving that every permutation π
of a multiset M has a unique representation of the form

π = (x11 . . . x1n1
y1) R⃝ ((x21 . . . x2n2

y2) R⃝ (· · · R⃝ (xt1 . . . xtnt yt) · · ·))
satisfying (16), if we redeĄne cycle notation by letting the two-line array (11)
correspond to the cycle (x2 . . . xn x1) instead of to (x1 x2 . . . xn). For example,
suppose {w, x}R{y, z} means that w, x, y, and z are distinct; then it turns out
that the factorization of (12) analogous to (17) is

(d d b c a) R⃝ ((c b b a) R⃝ ((c d b) R⃝ ((d b) R⃝ (d)))) .

(The operation R⃝ does not always obey the associative law; parentheses in the
generalized factorization should be nested from right to left.)

*5.1.3. Runs

In Chapter 3 we analyzed the lengths of upward runs in permutations, as a way
to test the randomness of a sequence. If we place a vertical line at both ends
of a permutation a1 a2 . . . an and also between aj and aj+1 whenever aj > aj+1,
the runs are the segments between pairs of lines. For example, the permutation

| 3 5 7 | 1 6 8 9 | 4 | 2 |
has four runs. The theory developed in Section 3.3.2G determines the average
number of runs of length k in a random permutation of {1, 2, . . . , n}, as well as
the covariance of the numbers of runs of lengths j and k. Runs are important in
the study of sorting algorithms, because they represent sorted segments of the
data, so we will now take up the subject of runs once again.

Let us use the notation n

k

(1)

to stand for the number of permutations of {1, 2, . . . , n} that have exactly k
ŞdescentsŤ aj > aj+1, thus exactly k + 1 ascending runs. These numbers

n
k

arise in several contexts, and they are usually called Eulerian numbers since
Euler discussed them in his famous book Institutiones Calculi Differentialis
(St. Petersburg: 1755), 485Ű487, after having introduced them several years
earlier in a technical paper [Comment. Acad. Sci. Imp. Petrop. 8 (1736), 147Ű
158, §13]; they should not be confused with the Euler numbers En discussed in
exercise 5.1.4Ű23. The angle brackets in

n
k

remind us of the Ş>Ť sign in the

deĄnition of a descent. Of course

n
k

is also the number of permutations that

have k ŞascentsŤ aj < aj+1.

36 SORTING 5.1.3

We can use any given permutation of {1, . . . , n−1} to form n new permuta-
tions, by inserting the element n in all possible places. If the original permutation
has k descents, exactly k + 1 of these new permutations will have k descents; the
remaining n − 1 − k will have k + 1, since we increase the number of descents
unless we place the element n at the end of an existing run. For example, the
six permutations formed from 3 1 2 4 5 are

6 3 1 2 4 5, 3 6 1 2 4 5, 3 1 6 2 4 5,
3 1 2 6 4 5, 3 1 2 4 6 5, 3 1 2 4 5 6;

all but the second and last of these have two descents instead of one. Therefore
we have the recurrence relation

n

k

= (k + 1)

n− 1

k

+ (n− k)

n− 1
k − 1

, integer n > 0, integer k. (2)

By convention we set 0
k

= δk0 , (3)

saying that the null permutation has no descents. The reader may Ąnd it
interesting to compare (2) with the recurrence relations for Stirling numbers
in Eqs. 1.2.6Ű(46). Table 1 lists the Eulerian numbers for small n.

Several patterns can be observed in Table 1. By deĄnition, we have

n

0

+

n

1

+ · · ·+

n

n

= n! ; (4)

n

0

= 1 ; (5)

n

n− 1

= 1 ,

n

n

= 0 , for n ≥ 1. (6)

Eq. (6) follows from (5) because of a general rule of symmetry,

n

k

=

n

n− 1− k

, for n ≥ 1, (7)

which comes from the fact that each nonnull permutation a1 a2 . . . an having
k descents has n− 1− k ascents.

Another important property of the Eulerian numbers is the formula

k

n

k

m + k

n

= mn , n ≥ 0, (8)

which was discovered by the Chinese mathematician Li Shan-Lan and pub-
lished in 1867. [See J.-C. Martzloff, A History of Chinese Mathematics (Berlin:
Springer, 1997), 346Ű348; special cases for n ≤ 5 had already been known to
Yoshisuke Matsunaga in Japan, who died in 1744.] Li Shan-LanŠs identity follows
from the properties of sorting: Consider the mn sequences a1 a2 . . . an such that
1 ≤ ai ≤ m. We can sort any such sequence into nondecreasing order in a stable
manner, obtaining

ai1
≤ ai2

≤ · · · ≤ ain (9)

5.1.3 RUNS 37

Table 1

EULERIAN NUMBERS

n

n

0

n

1

n

2

n

3

n

4

n

5

n

6

n

7

n

8

0 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0
3 1 4 1 0 0 0 0 0 0
4 1 11 11 1 0 0 0 0 0
5 1 26 66 26 1 0 0 0 0
6 1 57 302 302 57 1 0 0 0
7 1 120 1191 2416 1191 120 1 0 0
8 1 247 4293 15619 15619 4293 247 1 0
9 1 502 14608 88234 156190 88234 14608 502 1

where i1 i2 . . . in is a uniquely determined permutation of {1, 2, . . . , n} such that
aij = aij+1

implies ij < ij+1; in other words, ij > ij+1 implies that aij < aij+1
.

If the permutation i1 i2 . . . in has k runs, we will show that the number of
corresponding sequences a1 a2 . . . an is

m+n−k

n

. This will prove (8) if we replace

k by n− k and use (7), because

n
k

permutations have n− k runs.

For example, if n = 9 and i1 i2 . . . in = 3 5 7 1 6 8 9 4 2, we want to count the
number of sequences a1 a2 . . . an such that

1 ≤ a3 ≤ a5 ≤ a7 < a1 ≤ a6 ≤ a8 ≤ a9 < a4 < a2 ≤ m; (10)

this is the number of sequences b1 b2 . . . b9 such that

1 ≤ b1 < b2 < b3 < b4 < b5 < b6 < b7 < b8 < b9 ≤ m + 5,

since we can let b1 = a3, b2 = a5 + 1, b3 = a7 + 2, b4 = a1 + 2, b5 = a6 + 3,
etc. The number of choices of the bŠs is simply the number of ways of choosing
9 things out of m + 5, namely

m+5

9

; a similar proof works for general n and k,

and for any permutation i1 i2 . . . in with k runs.
Since both sides of (8) are polynomials in m, we may replace m by any real

number x, and we obtain an interesting representation of powers in terms of
consecutive binomial coefficients:

xn =

n

0

x

n

+

n

1

x + 1

n

+ · · ·+

n

n− 1

x + n− 1

n

, n ≥ 1. (11)

For example,

x3 =

x

3

+ 4

x + 1

3

+

x + 2
3

.

This is the key property of Eulerian numbers that makes them useful in the
study of discrete mathematics.

Setting x = 1 in (11) proves again that

n
n−1

= 1, since the binomial

coefficients vanish in all but the last term. Setting x = 2 yields

n

n− 2

=

n

1

= 2n − n− 1, n ≥ 1. (12)

38 SORTING 5.1.3

Setting x = 3, 4, . . . shows that relation (11) completely deĄnes the numbers
⟨nk ⟩, and leads to a formula originally given by Euler:

n

k

= (k + 1)n− kn

n + 1

1

+ (k− 1)n

n + 1

2

− · · ·+ (−1)k1n

n + 1

k

=
k

j=0

(−1)j

n + 1
j

(k + 1− j)n, n ≥ 0, k ≥ 0. (13)

Now let us study the generating function for runs. If we set

gn(z) =

k

n

k − 1

zk

n!
, (14)

the coefficient of zk is the probability that a random permutation of {1, 2, . . . , n}
has exactly k runs. Since k runs are just as likely as n+1−k, the average number
of runs must be 1

2 (n+1), hence g′
n(1) = 1

2 (n+1). Exercise 2(b) shows that there
is a simple formula for all the derivatives of gn(z) at the point z = 1:

g(m)
n (1) =

n + 1

n + 1−m

n

m

, n ≥ m. (15)

Thus in particular the variance g′′
n(1) + g′

n(1)− g′
n(1)2 comes to (n + 1)/12, for

n ≥ 2, indicating a rather stable distribution about the mean.

We found this

same quantity in Eq. 3.3.2Ű(18), where it was called covar(R′
1, R′

1).

Since gn(z)
is a polynomial, we can use formula (15) to deduce the Taylor series expansions

gn(z) =
1
n!

n

k=0

(z− 1)n−kk!

n + 1
k + 1

=

1
n!

n

k=0

zk+1(1− z)n−kk!

n + 1
k + 1

.

(16)
The second of these equations follows from the Ąrst, since

gn(z) = zn+1gn(1/z), n ≥ 1, (17)

by the symmetry condition (7). The Stirling number recurrence

n + 1
k + 1

= (k + 1)

n

k + 1

+

n

k

gives two slightly simpler representations,

gn(z) =
1
n!

n

k=0

z(z − 1)n−kk!

n

k

=

1
n!

n

k=0

zk(1− z)n−kk!

n

k

, (18)

when n ≥ 1. The super generating function

g(z, x) =

n≥0

gn(z)xn

z
=

k,n≥0

n

k

zkxn

n!
(19)

5.1.3 RUNS 39

is therefore equal to

k,n≥0

(z − 1)x

n

(z − 1)k

n

k

k!
n!

=

k≥0

e(z−1)x − 1

z − 1

k

=
(1− z)

e(z−1)x − z
; (20)

this is another relation discussed by Euler.
Further properties of the Eulerian numbers may be found in a survey pa-

per by L. Carlitz [Math. Magazine 32 (1959), 247Ű260]. See also J. Riordan,
Introduction to Combinatorial Analysis (New York: Wiley, 1958), 38Ű39, 214Ű
219, 234Ű237; D. Foata and M. P. Schützenberger, Lecture Notes in Math. 138

(Berlin: Springer, 1970).
Let us now consider the length of runs; how long will a run be, on the

average? We have already studied the expected number of runs having a given
length, in Section 3.3.2; the average run length is approximately 2, in agreement
with the fact that about 1

2 (n + 1) runs appear in a random permutation of
length n. For applications to sorting algorithms, a slightly different viewpoint is
useful; we will consider the length of the kth run of the permutation from left to
right, for k = 1, 2,

For example, how long is the Ąrst (leftmost) run of a random permutation
a1 a2 . . . an? Its length is always ≥ 1, and its length is ≥ 2 exactly one-half
the time (namely when a1 < a2). Its length is ≥ 3 exactly one-sixth of the
time (when a1 < a2 < a3), and, in general, its length is ≥ m with probability
qm = 1/m!, for 1 ≤ m ≤ n. The probability that its length is exactly equal to m
is therefore

pm = qm − qm+1 = 1/m!− 1/(m + 1)!, for 1 ≤ m < n;

pn = 1/n!. (21)

The average length of the Ąrst run therefore equals

p1 + 2p2 + · · ·+ npn = (q1− q2) + 2(q2− q3) + · · ·+ (n− 1)(qn−1− qn) + nqn

= q1 + q2 + · · ·+ qn =
1
1!

+
1
2!

+ · · ·+ 1
n!

. (22)

If we let n → ∞, the limit is e − 1 = 1.71828 . . . , and for Ąnite n the value is
e− 1− δn where δn is quite small;

δn =
1

(n + 1)!

1 +

1
n + 2

+
1

(n + 2)(n + 3)
+ · · ·

≤ e− 1

(n + 1)!
.

For practical purposes it is therefore convenient to study runs in a random inĄnite

sequence of distinct numbers

a1, a2, a3, . . . ;

by ŞrandomŤ we mean in this case that each of the n! possible relative orderings
of the Ąrst n elements in the sequence is equally likely. The average length of
the Ąrst run in a random inĄnite sequence is exactly e− 1.

By slightly sharpening our analysis of the Ąrst run, we can ascertain the
average length of the kth run in a random sequence. Let qkm be the probability

40 SORTING 5.1.3

that the Ąrst k runs have total length ≥ m; then qkm is 1/m! times the number
of permutations of {1, 2, . . . , m} that have ≤ k runs,

qkm =

m

0

+ · · ·+

m

k − 1

m! . (23)

The probability that the Ąrst k runs have total length m is qkm − qk(m+1).
Therefore if Lk denotes the average length of the kth run, we Ąnd that

L1 + · · ·+ Lk = average total length of Ąrst k runs

= (qk1 − qk2) + 2(qk2 − qk3) + 3(qk3 − qk4) + · · ·
= qk1 + qk2 + qk3 + · · · .

Subtracting L1 + · · ·+ Lk−1 and using the value of qkm in (23) yields the desired
formula

Lk =
1
1!

 1
k − 1

+

1
2!

 2
k − 1

+

1
3!

 3
k − 1

+ · · · =

m≥1

m

k − 1

 1
m!

. (24)

Since

0
k−1

= 0 except when k = 1, Lk turns out to be the coefficient of zk−1 in

the generating function g(z, 1)− 1 (see Eq. (19)), so we have

L(z) =

k≥0

Lkzk =
z(1− z)
ez−1 − z

− z. (25)

From EulerŠs formula (13) we obtain a representation of Lk as a polynomial in e:

Lk =

m≥0

k

j=0

(−1)k−j

m + 1
k − j

jm

m!

=
k

j=0

(−1)k−j

m≥0

m

k − j

jm

m!
+

k−1

j=0

(−1)k−j

m≥0

m

k − j − 1

jm

m!

=
k

j=0

(−1)k−jjk−j

(k − j)!

n≥0

jn

n!
+

k−1

j=0

(−1)k−jjk−j−1

(k − j − 1)!

n≥0

jn

n!

= k

k

j=0

(−1)k−jjk−j−1

(k − j)!
ej . (26)

This formula for Lk was Ąrst obtained by B. J. Gassner [see CACM 10 (1967),
89Ű93]. In particular, we have

L1 = e− 1 ≈ 1.71828 . . . ;
L2 = e2 − 2e ≈ 1.95249 . . . ;
L3 = e3 − 3e2 + 3

2 e ≈ 1.99579

The second run is expected to be longer than the Ąrst, and the third run will
be longer yet, on the average. This may seem surprising at Ąrst glance, but a
momentŠs reĆection shows that the Ąrst element of the second run tends to be

5.1.3 RUNS 41

Table 2

AVERAGE LENGTH OF THE kTH RUN

k Lk k Lk

1 1.71828 18284 59045+ 10 2.00000 00012 05997+
2 1.95249 24420 12560− 11 2.00000 00001 93672+
3 1.99579 13690 84285− 12 1.99999 99999 99909+
4 2.00003 88504 76806− 13 1.99999 99999 97022−
5 2.00005 75785 89716+ 14 1.99999 99999 99719+
6 2.00000 50727 55710− 15 2.00000 00000 00019+
7 1.99999 96401 44022+ 16 2.00000 00000 00006+
8 1.99999 98889 04744+ 17 2.00000 00000 00000+
9 1.99999 99948 43434− 18 2.00000 00000 00000−

small (it caused the Ąrst run to terminate); hence there is a better chance for
the second run to go on longer. The Ąrst element of the third run will tend to
be even smaller than that of the second.

The numbers Lk are important in the theory of replacement-selection sorting
(Section 5.4.1), so it is interesting to study their values in detail. Table 2 shows
the Ąrst 18 values of Lk to 15 decimal places. Our discussion in the preceding
paragraph might lead us to suspect at Ąrst that Lk+1 > Lk, but in fact the values
oscillate back and forth. Notice that Lk rapidly approaches the limiting value 2;
it is quite remarkable to see these monic polynomials in the transcendental
number e converging to the rational number 2 so quickly! The polynomials (26)
are also somewhat interesting from the standpoint of numerical analysis, since
they provide an excellent example of the loss of signiĄcant Ągures when nearly
equal numbers are subtracted; using 19-digit Ćoating point arithmetic, Gassner
concluded incorrectly that L12 > 2, and John W. Wrench, Jr., has remarked that
42-digit Ćoating point arithmetic gives L28 correct to only 29 signiĄcant digits.

The asymptotic behavior of Lk can be determined by using simple principles
of complex variable theory. The denominator of (25) is zero only when ez−1 = z,
namely when

ex−1 cos y = x and ex−1 sin y = y, (27)

if we write z = x + iy. Figure 3 shows the superimposed graphs of these two
equations, and we note that they intersect at the points z = z0, z1, z1, z2, z2, . . . ,
where z0 = 1,

z1 = (3.08884 30156 13044−) + (7.46148 92856 54255−) i, (28)

and the imaginary part ℑ(zk+1) is roughly equal to ℑ(zk)+2π for large k. Since

lim
z→zk

 1− z

ez−1 − z

(z − zk) = −1, for k > 0,

and since the limit is −2 for k = 0, the function

Rm(z) = L(z)+
2z

z−z0
+

z

z−z1
+

z

z−z1
+

z

z−z2
+

z

z−z2
+ · · ·+ z

z−zm
+

z

z−zm

42 SORTING 5.1.3

has no singularities in the complex plane for |z| < |zm+1|. Hence Rm(z) has a
power series expansion

k ρkzk that converges absolutely when |z| < |zm+1|; it

follows that ρkMk → 0 as k → ∞, where M = |zm+1| − ϵ. The coefficients of
L(z) are the coefficients of

2z

1− z
+

z/z1

1− z/z1
+

z/z1

1− z/z1
+ · · ·+ z/zm

1− z/zm
+

z/zm

1− z/zm
+ Rm(z),

namely,

Ln = 2 + 2r−n
1 cos nθ1 + 2r−n

2 cos nθ2 + · · ·+ 2r−n
m cos nθm + O(r−n

m+1), (29)

if we let
zk = rkeiθk . (30)

This shows the asymptotic behavior of Ln. We have

r1 = 8.07556 64528 89526−,

r2 = 14.35456 68997 62106−,

r3 = 20.62073 15381 80628−,

r4 = 26.88795 29424 54546−,

θ1 = 1.17830 39784 74668+;

θ2 = 1.31268 53883 87636+;

θ3 = 1.37427 90757 91688−;

θ4 = 1.41049 72786 51865−; (31)

so the main contribution to Ln − 2 is due to r1 and θ1, and convergence of
(29) is quite rapid. Further analysis [W. W. Hooker, CACM 12 (1969), 411Ű
413] shows that Rm(z) → cz for some constant c as m → ∞; hence the series
2

k≥0 r−n
k cos nθk actually converges to Ln when n > 1. (See also exercise 28.)

A more careful examination of probabilities can be carried out to determine
the complete probability distribution for the length of the kth run and for the
total length of the Ąrst k runs (see exercises 9, 10, 11). The sum L1 + · · · + Lk

turns out to be asymptotically 2k − 1
3 + O(8−k).

Let us conclude this section by considering the properties of runs when equal
elements are allowed to appear in the permutations. The famous nineteenth-
century American astronomer Simon Newcomb amused himself by playing a
game of solitaire related to this question. He would deal a deck of cards into a
pile, so long as the face values were in nondecreasing order; but whenever the
next card to be dealt had a face value lower than its predecessor, he would start
a new pile. He wanted to know the probability that a given number of piles
would be formed after the entire deck had been dealt out in this manner.

Simon NewcombŠs problem therefore consists of Ąnding the probability dis-
tribution of runs in a random permutation of a multiset. The general answer
is rather complicated (see exercise 12), although we have already seen how to
solve the special case when all cards have a distinct face value. We will content
ourselves here with a derivation of the average number of piles that appear in
the game.

Suppose Ąrst that there are m different types of cards, each occurring exactly
p times. An ordinary bridge deck, for example, has m = 13 and p = 4 if suits
are disregarded. A remarkable symmetry applying to this case was discovered

5.1.3 RUNS 43

e
x−1

sin y=y

e
x−1

cos y=x

Fig. 3. Roots of ez−1 = z. 0 5 10

10

5

0

−5

−10

z0

z1

z1

z2

z2

by P. A. MacMahon [Combinatory Analysis 1 (Cambridge, 1915), 212Ű213]:
The number of permutations with k + 1 runs is the same as the number with
mp − p − k + 1 runs. When p = 1, this relation is Eq. (7), but for p > 1 it is
quite surprising.

We can prove the symmetry by setting up a one-to-one correspondence
between the permutations in such a way that each permutation with k + 1 runs
corresponds to another having mp− p− k + 1 runs. The reader is urged to try
discovering such a correspondence before reading further.

No very simple correspondence is evident; MacMahonŠs proof was based
on generating functions instead of a combinatorial construction. But FoataŠs
correspondence (Theorem 5.1.2B) provides a useful simpliĄcation, because it
tells us that there is a one-to-one correspondence between multiset permutations
with k + 1 runs and permutations whose two-line notation contains exactly k
columns y

x with x < y.
Suppose the given multiset is {p · 1, p · 2, . . . , p · m}, and consider the

permutation whose two-line notation is

1 . . . 1 2 . . . 2 . . . m . . . m
x11 . . . x1p x21 . . . x2p . . . xm1 . . . xmp

. (32)

We can associate this permutation with another one,

1 . . . 1 2 . . . 2 . . . m . . . m
x′

11 . . . x′
1p x′

m1 . . . x′
mp . . . x′

21 . . . x′
2p

, (33)

where x′ = m + 1−x. If (32) contains k columns of the form y
x with x < y, then

(33) contains (m−1)p−k such columns; for we need only consider the case y > 1,
and x < y is equivalent to x′ ≥ m+2−y. Now (32) corresponds to a permutation

44 SORTING 5.1.3

with k +1 runs, and (33) corresponds to a permutation with mp−p−k +1 runs,
and the transformation that takes (32) into (33) is reversible Ů it takes (33) back
into (32). Therefore MacMahonŠs symmetry condition has been established. See
exercise 14 for an example of this construction.

Because of the symmetry property, the average number of runs in a random
permutation must be 1

2

(k + 1) + (mp − p − k + 1)

= 1 + 1

2 p(m − 1). For
example, the average number of piles resulting from Simon NewcombŠs solitaire
game using a standard deck will be 25 (so it doesnŠt appear to be a very exciting
way to play solitaire).

We can actually determine the average number of runs in general, using a
fairly simple argument, given any multiset {n1 · x1, n2 · x2, . . . , nm · xm} where
the xŠs are distinct. Let n = n1 + n2 + · · · + nm, and imagine that all of the
permutations a1 a2 . . . an of this multiset have been written down; we will count
how often ai is greater than ai+1, for each Ąxed value of i, 1 ≤ i < n. The
number of times ai > ai+1 is just half of the number of times ai ̸= ai+1; and it
is not difficult to see that ai = ai+1 = xj exactly Nnj(nj − 1)/n(n − 1) times,
where N is the total number of permutations. Hence ai = ai+1 exactly

N

n(n− 1)

n1(n1 − 1) + · · ·+ nm(nm − 1)

=

N

n(n− 1)
(n2

1 + · · ·+ n2
m − n)

times, and ai > ai+1 exactly

N

2n(n− 1)

n2 − (n2

1 + · · ·+ n2
m)

times. Summing over i and adding N, since a run ends at an in each permutation,
we obtain the total number of runs among all N permutations:

N

n

2
− 1

2n
(n2

1 + · · ·+ n2
m) + 1

. (34)

Dividing by N gives the desired average number of runs.
Since runs are important in the study of Şorder statistics,Ť there is a fairly

large literature dealing with them, including several other types of runs not
considered here. For additional information, see the book Combinatorial Chance
by F. N. David and D. E. Barton (London: Griffin, 1962), Chapter 10; and the
survey paper by D. E. Barton and C. L. Mallows, Annals of Math. Statistics 36

(1965), 236Ű260.

EXERCISES

1. [M26] Derive EulerŠs formula (13).

x 2. [M22] (a) Extend the idea used in the text to prove (8), considering those se-
quences a1 a2 . . . an that contain exactly q distinct elements, in order to prove the
formula

k

n

k

k

n− q

=

n

q

q!, integer q ≥ 0.

5.1.3 RUNS 45

(b) Use this identity to prove that

k

n

k

k + 1
m

=

n+ 1
n+ 1−m

(n−m)!, for n ≥ m.

3. [HM25] Evaluate the sum

k⟨n
k
⟩(−1)k.

4. [M21] What is the value of

k(−1)k

n
k

k!

n−k
m

?

5. [M20] Deduce the value of

p
k

mod p when p is prime.

x 6. [M21] Mr. B. C. Dull noticed that, by Eqs. (4) and (13),

n! =

k≥0

n

k

=

k≥0

j≥0

(−1)k−j

n+ 1
k − j

(j + 1)n.

Carrying out the sum on k Ąrst, he found that

k≥0(−1)k−j

n+1
k−j

= 0 for all j ≥ 0;

hence n! = 0 for all n ≥ 0. Did he make a mistake?

7. [HM40] Is the probability distribution of runs, given by (14), asymptotically
normal? (See exercise 1.2.10Ű13.)

8. [M24] (P. A. MacMahon.) Show that the probability that the Ąrst run of a
sufficiently long permutation has length l1, the second has length l2, . . . , and the kth
has length ≥ lk, is

det

1/l1! 1/(l1 + l2)! 1/(l1 + l2 + l3)! . . . 1/(l1 + l2 + l3 + · · ·+ lk)!
1 1/l2! 1/(l2 + l3)! . . . 1/(l2 + l3 + · · ·+ lk)!
0 1 1/l3! . . . 1/(l3 + · · ·+ lk)!
...

...
0 0 . . . 1 1/lk!

.

9. [M30] Let hk(z) =

pkmz

m, where pkm is the probability that m is the total
length of the Ąrst k runs in a random (inĄnite) sequence. Find ŞsimpleŤ expressions
for h1(z), h2(z), and the super generating function h(z, x) =

k hk(z)xk.

10. [HM30] Find the asymptotic behavior of the mean and variance of the distribu-
tions hk(z) in the preceding exercise, for large k.

11. [M40] Let Hk(z) =

Pkmz

m, where Pkm is the probability that m is the length
of the kth run in a random (inĄnite) sequence. Express H1(z), H2(z), and the super
generating function H(z, x) =

k Hk(z)xk in terms of familiar functions.

12. [M33] (P. A. MacMahon.) Generalize Eq. (13) to permutations of a multiset, by
proving that the number of permutations of {n1 · 1, n2 · 2, . . . , nm ·m} having exactly
k runs is

k

j=0

(−1)j

n+ 1
j

n1 − 1 + k − j

n1

n2 − 1 + k − j

n2

. . .

nm − 1 + k − j

nm

,

where n = n1 + n2 + · · ·+ nm.

13. [05] If Simon NewcombŠs solitaire game is played with a standard bridge deck,
ignoring face value but treating clubs < diamonds < hearts < spades, what is the
average number of piles?

14. [M18] The permutation 3 1 1 1 2 3 1 4 2 3 3 4 2 2 4 4 has 5 runs; Ąnd the correspond-
ing permutation with 9 runs, according to the textŠs construction for MacMahonŠs
symmetry condition.

46 SORTING 5.1.3

x 15. [M21] (Alternating runs.) The classical nineteenth-century literature of combi-
natorial analysis did not treat the topic of runs in permutations, as we have considered
them, but several authors studied “runs” that are alternately ascending and descending.
Thus 5 3 2 4 7 6 1 8 was considered to have 4 runs: 5 3 2, 2 4 7, 7 6 1, and 1 8. (The first
run would be ascending or descending, according as a1 < a2 or a1 > a2; thus a1 a2 . . . an

and an . . . a2 a1 and (n + 1 − a1)(n + 1 − a2) . . . (n + 1 − an) all have the same number
of alternating runs.) When n elements are being permuted, the maximum number of
runs of this kind is n − 1.

Find the average number of alternating runs in a random permutation of the set
{1, 2, . . . , n}. [Hint: Consider the proof of (34).]

16. [M30] Continuing the previous exercise, let i
⌦

n

k

↵

h be the number of permutations
of {1, 2, . . . , n} that have exactly k alternating runs. Find a recurrence relation, by
means of which a table of i

⌦

n

k

↵

h can be computed; and find the corresponding recurrence

relation for the generating function Gn(z) =
P

k
i
⌦

n

k

↵

hzk/n!. Use the latter recurrence
to discover a simple formula for the variance of the number of alternating runs in a
random permutation of {1, 2, . . . , n}.

17. [M25] Among all 2n sequences a1 a2 . . . an, where each aj is either 0 or 1, how
many have exactly k runs (that is, k − 1 occurrences of aj > aj+1)?

18. [M28] Among all n! sequences b1 b2 . . . bn such that each bj is an integer in the
range 0 ≤ bj ≤ n − j, how many have (a) exactly k descents (that is, k occurrences of
bj > bj+1)? (b) exactly k distinct elements?

Fig. 4. Nonattacking rooks on a chessboard, with k = 3 rooks below the main diagonal.

x 19. [M26] (I. Kaplansky and J. Riordan, 1946.) (a) In how many ways can n non-
attacking rooks — no two in the same row or column — be placed on an n×n chessboard,
so that exactly k lie below the main diagonal? (b) In how many ways can k nonattacking
rooks be placed below the main diagonal of an n × n chessboard?

For example, Fig. 4 shows one of the 15619 ways to put eight nonattacking rooks
on a standard chessboard with exactly three rooks in the unshaded portion below the
main diagonal, together with one of the 1050 ways to put three nonattacking rooks on
a triangular board.

x 20. [M21] A permutation is said to require k readings if we must scan it k times from
left to right in order to read off its elements in nondecreasing order. For example, the

5.1.4 TABLEAUX AND INVOLUTIONS 47

permutation 4 9 1 8 2 5 3 6 7 requires four readings: On the Ąrst we obtain 1, 2, 3; on the
second we get 4, 5, 6, 7; then 8; then 9. Find a connection between runs and readings.

21. [M22] If the permutation a1 a2 . . . an of {1, 2, . . . , n} has k runs and requires
j readings, in the sense of exercise 20, what can be said about an . . . a2 a1?

22. [M26] (L. Carlitz, D. P. Roselle, and R. A. Scoville.) Show that there is no
permutation of {1, 2, . . . , n} with n + 1 − r runs, and requiring s readings, if rs < n;
but such permutations do exist if n ≥ n+ 1− r ≥ s ≥ 1 and rs ≥ n.

23. [HM42] (Walter Weissblum.) The Şlong runsŤ of a permutation a1 a2 . . . an are
obtained by placing vertical lines just before a segment fails to be monotonic; long
runs are either increasing or decreasing, depending on the order of their Ąrst two
elements, so the length of each long run (except possibly the last) is ≥ 2. For example,
7 5 | 6 2 | 3 8 9 | 1 4 has four long runs. Find the average length of the Ąrst two long
runs of an inĄnite permutation, and prove that the limiting long-run length is

(1 + cot 1
2
)/(3− cot 1

2
) ≈ 2.4202.

24. [M30] What is the average number of runs in sequences generated as in exercise
5.1.1Ű18, as a function of p?

25. [M25] Let U1, . . . , Un be independent uniform random numbers in [0 . . 1). What
is the probability that ⌊U1 + · · ·+ Un⌋ = k?

26. [M20] Let ϑ be the operation z d
dz

, which multiplies the coefficient of zn in a
generating function by n. Show that the result of applying ϑ to 1/(1 − z) repeatedly,
m times, can be expressed in terms of Eulerian numbers.

x 27. [M21] An increasing forest is an oriented forest in which the nodes are labeled
{1, 2, . . . , n} in such a way that parents have smaller numbers than their children. Show
that

n
k

is the number of n-node increasing forests with k + 1 leaves.

28. [HM35] Find the asymptotic value of the numbers zm in Fig. 3 as m → ∞, and
prove that

∞
m=1(z−1

m + z̄−1
m) = e− 5/2.

x 29. [M30] The permutation a1 . . . an has a ŞpeakŤ at aj if 1 < j < n and aj−1 < aj >
aj+1. Let snk be the number of permutations with exactly k peaks, and let tnk be the
number with k peaks and k descents. Prove that (a) snk = 1

2
⟩ n

2k

⟨ + ⟩ n
2k+1

⟨ + 1
2
⟩ n

2k+2

⟨
(see exercise 16); (b) snk = 2n−1−2ktnk; (c)

k

n
k

xk =

k tnkx

k(1 + x)n−1−2k.

*5.1.4. Tableaux and Involutions

To complete our survey of the combinatorial properties of permutations, we
will discuss some remarkable relations that connect permutations with arrays
of integers called tableaux. A Young tableau of shape (n1, n2, . . . , nm), where
n1 ≥ n2 ≥ · · · ≥ nm > 0, is an arrangement of n1 + n2 + · · · + nm distinct
integers in an array of left-justiĄed rows, with ni elements in row i, such that
the entries of each row are in increasing order from left to right, and the entries
of each column are increasing from top to bottom. For example,

1 2 5 9 10 15
3 6 7 13
4 8 12 14
11

(1)

48 SORTING 5.1.4

is a Young tableau of shape (6, 4, 4, 1). Such arrangements were introduced by
Alfred Young as an aid to the study of matrix representations of permutations
[see Proc. London Math. Soc. (2) 28 (1928), 255Ű292; Bruce E. Sagan, The
Symmetric Group (PaciĄc Grove, Calif.: Wadsworth & Brooks/Cole, 1991)]. For
simplicity, we will simply say ŞtableauŤ instead of ŞYoung tableau.Ť

An involution is a permutation that is its own inverse. For example, there
are ten involutions of {1, 2, 3, 4}:

1 2 3 4
1 2 3 4

1 2 3 4
2 1 3 4

1 2 3 4
3 2 1 4

1 2 3 4
4 2 3 1

1 2 3 4
1 3 2 4

1 2 3 4
1 4 3 2

1 2 3 4
1 2 4 3

1 2 3 4
2 1 4 3

1 2 3 4
3 4 1 2

1 2 3 4
4 3 2 1

 (2)

The term ŞinvolutionŤ originated in classical geometry problems; involutions in
the general sense considered here were Ąrst studied by H. A. Rothe when he
introduced the concept of inverses (see Section 5.1.1).

It may appear strange that we should be discussing both tableaux and
involutions at the same time, but there is an extraordinary connection be-
tween these two apparently unrelated concepts: The number of involutions of
{1, 2, . . . , n} is the same as the number of tableaux that can be formed from the
elements {1, 2, . . . , n}. For example, exactly ten tableaux can be formed from
{1, 2, 3, 4}, namely,

1 2 3 4 1 3 4
2

1 4
2
3

1 3
2
4

1 2 4
3

1 2
3
4

1 2 3
4

1 3
2 4

1 2
3 4

1
2
3
4

(3)

corresponding respectively to the ten involutions (2).
This connection between involutions and tableaux is by no means obvious,

and there is probably no very simple way to prove it. The proof we will discuss
involves an interesting tableau-construction algorithm that has several other
surprising properties. It is based on a special procedure that inserts new elements
into a tableau.

For example, suppose that we want to insert the element 8 into the tableau

1 3 5 9 12 16
2 6 10 15
4 13 14
11
17

. (4)

5.1.4 TABLEAUX AND INVOLUTIONS 49

The method we will use starts by placing the 8 into row 1, in the spot previously
occupied by 9, since 9 is the least element greater than 8 in that row. Element 9 is
Şbumped downŤ into row 2, where it displaces the 10. The 10 then ŞbumpsŤ the
13 from row 3 to row 4; and since row 4 contains no element greater than 13, the
process terminates by inserting 13 at the right end of row 4. Thus, tableau (4)
has been transformed into

1 3 5 8 12 16
2 6 9 15
4 10 14
11 13
17

. (5)

A precise description of this process, together with a proof that it always
preserves the tableau properties, appears in Algorithm I.

Algorithm I (Insertion into a tableau). Let P = (Pij) be a tableau of positive
integers, and let x be a positive integer not in P . This algorithm transforms P
into another tableau that contains x in addition to its original elements. The new
tableau has the same shape as the old, except for the addition of a new position
in row s, column t, where s and t are quantities determined by the algorithm.

(Parenthesized remarks in this algorithm serve to prove its validity, since
it is easy to verify inductively that the remarks are valid and that the array P
remains a tableau throughout the process. For convenience we will assume that
the tableau has been bordered by zeros at the top and left and with ∞Šs to the
right and below, so that Pij is deĄned for all i, j ≥ 0. If we deĄne the relation

a <∼ b if and only if a < b or a = b = 0 or a = b =∞, (6)

the tableau inequalities can be expressed in the convenient form

Pij = 0 if and only if i = 0 or j = 0;

Pij <∼ Pi(j+1) and Pij <∼ P(i+1)j , for all i, j ≥ 0.
(7)

The statement Şx ̸∈ PŤ means that either x =∞ or x ̸= Pij for all i, j ≥ 0.)

I1. [Input x.] Set i ← 1, set x1 ← x, and set j to the smallest value such that
P1j =∞.

I2. [Find xi+1.] (At this point P(i−1)j < xi < Pij and xi ̸∈ P .) If xi < Pi(j−1),
decrease j by 1 and repeat this step. Otherwise set xi+1 ← Pij and set
ri ← j.

I3. [Replace by xi.] (Now Pi(j−1) < xi < xi+1 = Pij <∼ Pi(j+1), P(i−1)j < xi <
xi+1 = Pij <∼ P(i+1)j , and ri = j.) Set Pij ← xi.

I4. [Is xi+1 = ∞?] (Now Pi(j−1) < Pij = xi < xi+1 <∼ Pi(j+1), P(i−1)j < Pij =
xi < xi+1 <∼ P(i+1)j , ri = j, and xi+1 /∈ P .) If xi+1 ̸=∞, increase i by 1 and
return to step I2.

50 SORTING 5.1.4

I5. [Determine s, t.] Set s ← i, t ← j, and terminate the algorithm. (At this
point the conditions

Pst ̸=∞ and P(s+1)t = Ps(t+1) =∞ (8)

are satisĄed.)

Algorithm I deĄnes a Şbumping sequenceŤ

x = x1 < x2 < · · · < xs < xs+1 =∞, (9)

as well as an auxiliary sequence of column indices

r1 ≥ r2 ≥ · · · ≥ rs = t; (10)

element Piri has been changed from xi+1 to xi, for 1 ≤ i ≤ s. For example,
when we inserted 8 into (4), the bumping sequence was 8, 9, 10, 13, ∞, and the
auxiliary sequence was 4, 3, 2, 2. We could have reformulated the algorithm so
that it used much less temporary storage; only the current values of j, xi, and
xi+1 need to be remembered. But sequences (9) and (10) have been introduced
so that we can prove interesting things about the algorithm.

The key fact we will use about Algorithm I is that it can be run backwards:
Given the values of s and t determined in step I5, we can transform P back
into its original form again, determining and removing the element x that was
inserted. For example, consider (5) and suppose we are told that element 13 is
in the position that used to be blank. Then 13 must have been bumped down
from row 3 by the 10, since 10 is the greatest element less than 13 in that row;
similarly the 10 must have been bumped from row 2 by the 9, and the 9 must
have been bumped from row 1 by the 8. Thus we can go from (5) back to (4).
The following algorithm speciĄes this process in detail:

Algorithm D (Deletion from a tableau). Given a tableau P and positive
integers s, t satisfying (8), this algorithm transforms P into another tableau,
having almost the same shape, but with ∞ in column t of row s. An element x,
determined by the algorithm, is deleted from P .

(As in Algorithm I, parenthesized assertions are included here to facilitate
a proof that P remains a tableau throughout the process.)

D1. [Input s, t.] Set j ← t, i← s, xs+1 ←∞.

D2. [Find xi.] (At this point Pij < xi+1 <∼ P(i+1)j and xi+1 ̸∈ P .) If Pi(j+1) <
xi+1, increase j by 1 and repeat this step. Otherwise set xi ← Pij and
ri ← j.

D3. [Replace by xi+1.] (Now Pi(j−1) < Pij = xi < xi+1 <∼ Pi(j+1), P(i−1)j <
Pij = xi < xi+1 <∼ P(i+1)j , and ri = j.) Set Pij ← xi+1.

D4. [Is i = 1?] (Now Pi(j−1) < xi < xi+1 = Pij <∼ Pi(j+1), P(i−1)j < xi <
xi+1 = Pij <∼ P(i+1)j , and ri = j.) If i > 1, decrease i by 1 and return to
step D2.

D5. [Determine x.] Set x← x1; the algorithm terminates. (Now 0 < x <∞.)

5.1.4 TABLEAUX AND INVOLUTIONS 51

The parenthesized assertions appearing in Algorithms I and D are not only a
useful way to prove that the algorithms preserve the tableau structure; they also
serve to verify that Algorithms I and D are perfect inverses of each other. If we
perform Algorithm I Ąrst, given some tableau P and some positive integer x ̸∈ P ,
it will insert x and determine positive integers s, t satisfying (8); Algorithm D
applied to the result will recompute x and will restore P . Conversely, if we
perform Algorithm D Ąrst, given some tableau P and some positive integers
s, t satisfying (8), it will modify P , deleting some positive integer x; Algorithm I
applied to the result will recompute s, t and will restore P . The reason is that the
parenthesized assertions of steps I3 and D4 are identical, as are the assertions of
steps I4 and D3, and these assertions characterize the value of j uniquely. Hence
the auxiliary sequences (9), (10) are the same in each case.

Now we are ready to prove a basic property of tableaux:

Theorem A. There is a one-to-one correspondence between the set of all
permutations of {1, 2, . . . , n} and the set of ordered pairs (P, Q) of tableaux
formed from {1, 2, . . . , n}, where P and Q have the same shape.

(An example of this theorem appears within the proof that follows.)

Proof. It is convenient to prove a slightly more general result. Given any two-line
array

q1 q2 . . . qn
p1 p2 . . . pn

,

q1 < q2 < · · · < qn,
p1, p2, . . . , pn distinct, (11)

we will construct two corresponding tableaux P and Q, where the elements of P
are {p1, . . . , pn} and the elements of Q are {q1, . . . , qn} and the shape of P is the
shape of Q.

Let P and Q be empty initially. Then, for i = 1, 2, . . . , n (in this order),
do the following operation: Insert pi into tableau P using Algorithm I; then set
Qst ← qi, where s and t specify the newly Ąlled position of P .

For example, if the given permutation is

1 3 5 6 8
7 2 9 5 3

, we obtain

P Q

Insert 7: 7 1

Insert 2: 2 1
7 3

Insert 9: 2 9 1 5
7 3

Insert 5: 2 5 1 5
7 9 3 6

Insert 3: 2 3 1 5
5 9 3 6
7 8

(12)

52 SORTING 5.1.4

so the tableaux (P, Q) corresponding to

1 3 5 6 8
7 2 9 5 3

are

P =
2 3
5 9
7

, Q =
1 5
3 6
8

. (13)

It is clear from this construction that P and Q always have the same shape;
furthermore, since we always add elements on the periphery of Q, in increasing
order, Q is a tableau.

Conversely, given two equal-shape tableaux P and Q, we can Ąnd the cor-
responding two-line array (11) as follows. Let the elements of Q be

q1 < q2 < · · · < qn.

For i = n, . . . , 2, 1 (in this order), let pi be the element x that is removed when
Algorithm D is applied to P , using the values s and t such that Qst = qi.

For example, this construction will start with (13) and will successively undo
the calculation (12) until P is empty, and

1 3 5 6 8
7 2 9 5 3

is obtained.

Since Algorithms I and D are inverses of each other, the two constructions
we have described are inverses of each other, and the one-to-one correspondence
has been established.

The correspondence deĄned in the proof of Theorem A has many startling
properties, and we will now proceed to derive some of them. The reader is urged
to work out the example in exercise 1, in order to become familiar with the
construction, before proceeding further.

Once an element has been bumped from row 1 to row 2, it doesnŠt affect
row 1 any longer; furthermore rows 2, 3, . . . are built up from the sequence of
bumped elements in exactly the same way as rows 1, 2, . . . are built up from the
original permutation. These facts suggest that we can look at the construction
of Theorem A in another way, concentrating only on the Ąrst rows of P and Q.
For example, the permutation

1 3 5 6 8
7 2 9 5 3

causes the following action in row 1,

according to (12):
1: Insert 7, set Q11 ← 1.
3: Insert 2, bump 7.
5: Insert 9, set Q12 ← 5.
6: Insert 5, bump 9.
8: Insert 3, bump 5.

(14)

Thus the Ąrst row of P is 2 3, and the Ąrst row of Q is 1 5. Furthermore, the
remaining rows of P and Q are the tableaux corresponding to the ŞbumpedŤ
two-line array

3 6 8
7 9 5

. (15)

In order to study the behavior of the construction on row 1, we can consider
the elements that go into a given column of this row. Let us say that (qi, pi) is

5.1.4 TABLEAUX AND INVOLUTIONS 53

in class t with respect to the two-line array

q1 q2 . . . qn
p1 p2 . . . pn

,

q1 < q2 < · · · < qn,
p1, p2, . . . , pn distinct, (16)

if pi = P1t after Algorithm I has been applied successively to p1, p2, . . . , pi,
starting with an empty tableau P . (Remember that Algorithm I always inserts
the given element into row 1.)

It is easy to see that (qi, pi) is in class 1 if and only if pi has i− 1 inversions,
that is, if and only if pi = min{p1, p2, . . . , pi} is a Şleft-to-right minimum.Ť If we
cross out the columns of class 1 in (16), we obtain another two-line array

q′1 q′2 . . . q′m
p′1 p′2 . . . p′m

(17)

such that (q, p) is in class t with respect to (17) if and only if it is in class t+1 with
respect to (16). The operation of going from (16) to (17) represents removing
the leftmost position of row 1. This gives us a systematic way to determine the
classes. For example in

1 3 5 6 8
7 2 9 5 3

the elements that are left-to-right minima are

7 and 2, so class 1 is {(1, 7), (3, 2)}; in the remaining array

5 6 8
9 5 3

all elements

are minima, so class 2 is {(5, 9), (6, 5), (8, 3)}. In the ŞbumpedŤ array (15), class
1 is {(3, 7), (8, 5)} and class 2 is {(6, 9)}.

For any Ąxed value of t, the elements of class t can be labeled

(qi1
, pi1

), . . . , (qik , pik)

in such a way that
qi1

< qi2
< · · · < qik ,

pi1
> pi2

> · · · > pik , (18)

since the tableau position P1t takes on the decreasing sequence of values pi1
, . . . ,

pik as the insertion algorithm proceeds. At the end of the construction we have

P1t = pik , Q1t = qi1
; (19)

and the ŞbumpedŤ two-line array that deĄnes rows 2, 3, . . . of P and Q contains
the columns

qi2
qi3

. . . qik
pi1

pi2
. . . pik−1

(20)

plus other columns formed in a similar way from the other classes.
These observations lead to a simple method for calculating P and Q by

hand (see exercise 3), and they also provide us with the means to prove a rather
unexpected result:

Theorem B. If the permutation

1 2 . . . n
a1 a2 . . . an

corresponds to tableaux (P, Q) in the construction of Theorem A, then the
inverse permutation corresponds to (Q, P).

54 SORTING 5.1.4

This fact is quite startling, since P and Q are formed by such completely
different methods in Theorem A, and since the inverse of a permutation is
obtained by juggling the columns of the two-line array rather capriciously.

Proof. Suppose that we have a two-line array (16); its columns are essentially
independent and can be rearranged. Interchanging the lines and sorting the
columns so that the new top line is in increasing order gives the ŞinverseŤ array

q1 q2 . . . qn
p1 p2 . . . pn

−
=

p1 p2 . . . pn
q1 q2 . . . qn

=

p′1 p′2 . . . p′n
q′1 q′2 . . . q′n

,

p′1 < p′2 < · · · < p′n;

q′1, q′2, . . . , q′n distinct.
(21)

We will show that this operation corresponds to interchanging P and Q in the
construction of Theorem A.

Exercise 2 reformulates our remarks about class determination so that the
class of (qi, pi) doesnŠt depend on the fact that q1, q2, . . . , qn are in ascending
order. Since the resulting condition is symmetrical in the qŠs and the pŠs, the
operation (21) does not destroy the class structure; if (q, p) is in class t with
respect to (16), then (p, q) is in class t with respect to (21). If we therefore
arrange the elements of the latter class t as

pik < · · · < pi2
< pi1

,
qik > · · · > qi2

> qi1
, (22)

by analogy with (18), we have

P1t = qi1
, Q1t = pik (23)

as in (19), and the columns

pik−1
. . . pi2

pi1

qik . . . qi3
qi2

(24)

go into the ŞbumpedŤ array as in (20). Hence the Ąrst rows of P and Q are
interchanged. Furthermore the ŞbumpedŤ two-line array for (21) is the inverse
of the ŞbumpedŤ two-line array for (16), so the proof is completed by induction
on the number of rows in the tableaux.

Corollary B. The number of tableaux that can be formed from {1, 2, . . . , n} is
the number of involutions on {1, 2, . . . , n}.
Proof. If π is an involution corresponding to (P, Q), then π = π− corresponds
to (Q, P); hence P = Q. Conversely, if π is any permutation corresponding
to (P, P), then π− also corresponds to (P, P); hence π = π−. So there is a
one-to-one correspondence between involutions π and tableaux P .

It is clear that the upper-left corner element of a tableau is always the
smallest. This suggests a possible way to sort a set of numbers: First we can
put the numbers into a tableau, by using Algorithm I repeatedly; this brings the
smallest element to the corner. Then we delete the smallest element, rearranging

5.1.4 TABLEAUX AND INVOLUTIONS 55

the remaining elements so that they form another tableau; then we delete the
new smallest element; and so on.

Let us therefore consider what happens when we delete the corner element
from the tableau

1 3 5 7 11 15
2 6 8 14
4 9 13
10 12
16

. (25)

If the 1 is removed, the 2 must come to take its place. Then we can move the
4 up to where the 2 was, but we canŠt move the 10 to the position of the 4; the
9 can be moved instead, then the 12 in place of the 9. In general, we are led to
the following procedure.

Algorithm S (Delete corner element). Given a tableau P , this algorithm deletes
the upper left corner element of P and moves other elements so that the tableau
properties are preserved. The notational conventions of Algorithms I and D are
used.

S1. [Initialize.] Set r ← 1, s← 1.

S2. [Done?] If Prs =∞, the process is complete.

S3. [Compare.] If P(r+1)s <∼ Pr(s+1), go to step S5. (We examine the elements
just below and to the right of the vacant cell, and we will move the smaller
of the two.)

S4. [Shift left.] Set Prs ← Pr(s+1), s← s + 1, and return to S3.

S5. [Shift up.] Set Prs ← P(r+1)s, r ← r + 1, and return to S2.

It is easy to prove that P is still a tableau after Algorithm S has deleted its
corner element (see exercise 10). So if we repeat Algorithm S until P is empty,
we can read out its elements in increasing order. Unfortunately this doesnŠt
turn out to be as efficient a sorting algorithm as other methods we will see; its
minimum running time is proportional to n1.5, but similar algorithms that use
trees instead of tableau structures have an execution time on the order of n log n.

In spite of the fact that Algorithm S doesnŠt lead to a superbly efficient
sorting algorithm, it has some very interesting properties.

Theorem C (M. P. Schützenberger). If P is the tableau formed by the con-
struction of Theorem A from the permutation a1 a2 . . . an, and if

ai = min{a1, a2, . . . , an},

then Algorithm S changes P to the tableau corresponding to a1. . . ai−1ai+1. . . an.

Proof. See exercise 13.

56 SORTING 5.1.4

After we apply Algorithm S to a tableau, let us put the deleted element into
the newly vacated place Prs, but in italic type to indicate that it isnŠt really part
of the tableau. For example, after applying this procedure to the tableau (25)
we would have

2 3 5 7 11 15
4 6 8 14
9 12 13
10 1

16

,

and two more applications yield

4 5 7 11 15 2

6 8 13 14
9 12 3

10 1

16

.

Continuing until all elements are removed gives

16 14 13 12 10 2

15 9 6 4

11 5 3

8 1

7

, (26)

which has the same shape as the original tableau (25). This conĄguration may
be called a dual tableau, since it is like a tableau except that the Şdual orderŤ
has been used (reversing the roles of < and >). Let us denote the dual tableau
formed from P in this way by the symbol PS .

From PS we can determine P uniquely; in fact, we can obtain the original
tableau P from PS , by applying exactly the same algorithm Ů but reversing the
order and the roles of italic and regular type, since PS is a dual tableau. For
example, two steps of the algorithm applied to (26) give

14 13 12 10 2 15
11 9 6 4

8 5 3

7 1

16

,

and eventually (25) will be reproduced again! This remarkable fact is one of the
consequences of our next theorem.

Schensted, M. P. Schützenberger) + .

5.1.4 TABLEAUX AND INVOLUTIONS 57

Theorem D (C. Schensted, M. P. Schützenberger). Let

q1 q2 . . . qn
p1 p2 . . . pn

(27)

be the two-line array corresponding to the tableaux (P, Q).

a) Using dual (reverse) order on the qŠs, but not on the pŠs, the two-line array

qn . . . q2 q1

pn . . . p2 p1

(28)

corresponds to

PT , (QS)T

.

As usual, ŞTŤ denotes the operation of transposing rows and columns; PT is a
tableau, while (QS)T is a dual tableau, since the order of the qŠs is reversed.

b) Using dual order on the pŠs, but not on the qŠs, the two-line array (27)
corresponds to

(PS)T , QT

.

c) Using dual order on both the pŠs and the qŠs, the two-line array (28) corre-
sponds to (PS , QS).

Proof. No simple proof of this theorem is known. The fact that case (a)
corresponds to (PT , X) for some dual tableau X is proved in exercise 5; hence
by Theorem B, case (b) corresponds to (Y, QT) for some dual tableau Y , and
Y must have the shape of PT.

Let pi = min{p1, . . . , pn}; since pi is the ŞlargestŤ element in the dual order,
it appears on the periphery of Y , and it doesnŠt bump any elements in the con-
struction of Theorem A. Thus, if we successively insert p1, . . . , pi−1, pi+1, . . . , pn
using the dual order, we get Y −{pi}, that is, Y with pi removed. By Theorem C
if we successively insert p1, . . . , pi−1, pi+1, . . . , pn using the normal order, we get
the tableau d(P) obtained by applying Algorithm S to P . By induction on n,
Y − {pi} =

d(P)S

T. But since

(PS)T − {pi} =

d(P)S

T , (29)

by deĄnition of the operation S, and since Y has the same shape as (PS)T, we
must have Y = (PS)T.

This proves part (b), and part (a) follows by an application of Theorem B.
Applying parts (a) and (b) successively then shows that case (c) corresponds
to

((PT)S)T, ((QS)T)T

; and this is (PS , QS) since (PS)T = (PT)S by the

row-column symmetry of operation S.

In particular, this theorem establishes two surprising facts about the tableau
insertion algorithm: If successive insertion of distinct elements p1, . . . , pn into an
empty tableau yields tableau P , insertion in the opposite order pn, . . . , p1 yields
the transposed tableau PT. And if we not only insert the pŠs in this order
pn, . . . , p1 but also interchange the roles of < and >, as well as 0 and ∞, in
the insertion process, we obtain the dual tableau PS . The reader is urged to
try out these processes on some simple examples. The unusual nature of these
coincidences might lead us to suspect that some sort of witchcraft is operating

58 SORTING 5.1.4

behind the scenes! No simple explanation for these phenomena is yet known;
there seems to be no obvious way to prove even that case (c) corresponds to
tableaux having the same shape as P and Q, although the characterization of
classes in exercise 2 does provide a signiĄcant clue.

The correspondence of Theorem A was given by G. de B. Robinson [Amer-
ican J. Math. 60 (1938), 745Ű760, §5], in a somewhat vague and different form,
as part of his solution to a rather difficult problem in group theory. Robinson
stated Theorem B without proof. Many years later, C. Schensted independently
rediscovered the correspondence, which he described in terms of ŞbumpingŤ as
we have done in Algorithm I; Schensted also proved the ŞP Ť part of Theorem
D(a) [see Canadian J. Math. 13 (1961), 179Ű191]. M. P. Schützenberger [Math.
Scand. 12 (1963), 117Ű128] proved Theorem C and the ŞQŤ part of Theorem
D(a), from which (b) and (c) follow. It is possible to extend the correspondence
to permutations of multisets; the case that p1, . . . , pn need not be distinct was
considered by Schensted, and the ŞultimateŤ generalization to the case that both
the pŠs and the qŠs may contain repeated elements was investigated by Knuth
[PaciĄc J. Math. 34 (1970), 709Ű727].

Let us now turn to a related question: How many tableaux formed from

{1, 2, . . . , n} have a given shape (n1, n2, . . . , nm), where n1 + n2 + · · ·+ nm = n?
If we denote this number by f(n1, n2, . . . , nm), and if we allow the parameters nj

to be arbitrary integers, the function f must satisfy the relations

f(n1, n2, . . . , nm) = 0 unless n1 ≥ n2 ≥ · · · ≥ nm ≥ 0; (30)

f(n1, n2, . . . , nm, 0) = f(n1, n2, . . . , nm); (31)

f(n1, n2, . . . , nm) = f(n1−1, n2, . . . , nm) + f(n1, n2−1, . . . , nm)

+ · · ·+ f(n1, n2, . . . , nm−1),

if n1 ≥ n2 ≥ · · · ≥ nm ≥ 1. (32)

Recurrence (32) comes from the fact that a tableau with its largest element
removed is always another tableau; for example, the number of tableaux of shape
(6, 4, 4, 1) is f(5, 4, 4, 1) + f(6, 3, 4, 1) + f(6, 4, 3, 1) + f(6, 4, 4, 0) = f(5, 4, 4, 1) +
f(6, 4, 3, 1) + f(6, 4, 4), since every tableau of shape (6, 4, 4, 1) on {1, 2, . . . , 15}
is formed by inserting the element 15 into the appropriate place in a tableau of
shape (5, 4, 4, 1), (6, 4, 3, 1), or (6, 4, 4). Schematically:

15

= + 15 +
15

(33)

The function f(n1, n2, . . . , nm) that satisĄes these relations has a fairly
simple form,

f(n1, n2, . . . , nm) =
∆(n1 + m− 1, n2 + m− 2, . . . , nm) n!

(n1 + m− 1)! (n2 + m− 2)! . . . nm!
, (34)

5.1.4 TABLEAUX AND INVOLUTIONS 59

provided that the relatively mild conditions

n1 + m− 1 ≥ n2 + m− 2 ≥ · · · ≥ nm

are satisĄed; here ∆ denotes the Şsquare root of the discriminantŤ function

∆(x1, x2, . . . , xm) = det

xm−1
1 xm−1

2 . . . xm−1
m

...
...

...
x2

1 x2
2 x2

m

x1 x2 xm

1 1 . . . 1

=

1≤i<j≤m

(xi−xj). (35)

Formula (34) was derived by G. Frobenius [Sitzungsberichte preuß. Akad. der
Wissenschaften (1900), 516Ű534, §3], in connection with an equivalent problem
in group theory, using a rather deep group-theoretical argument; a combinatorial
proof was given independently by MacMahon [Philosophical Trans. A209 (1909),
153Ű175]. The formula can be established by induction, since relations (30) and
(31) are readily proved and (32) follows by setting y = −1 in the identity of
exercise 17.

Theorem A gives a remarkable identity in connection with this formula for
the number of tableaux. If we sum over all shapes, we have

n! =

k1≥k2≥···≥kn≥0
k1+k2+···+kn=n

f(k1, k2 . . . , kn)2

= n!2

k1≥k2≥···≥kn≥0
k1+k2+···+kn=n

∆(k1 + n− 1, k2 + n− 2, . . . , kn)2

(k1 + n− 1)!2 (k2 + n− 2)!2 . . . kn!2

= n!2

q1>q2>···>qn≥0
q1+q2+···+qn=(n+1)n/2

∆(q1, q2, . . . , qn)2

q1!2 q2!2 . . . qn!2
;

hence

q1+q2+···+qn=(n+1)n/2
q1,q2,...,qn≥0

∆(q1, q2, . . . , qn)2

q1!2 q2!2 . . . qn!2
= 1. (36)

The inequalities q1 > q2 > · · · > qn have been removed in the latter sum, since
the summand is a symmetric function of the qŠs that vanishes when qi = qj .
A similar identity appears in exercise 24.

The formula for the number of tableaux can also be expressed in a much
more interesting way, based on the idea of Şhooks.Ť The hook corresponding to
a cell in a tableau is deĄned to be the cell itself plus the cells lying below and
to its right. For example, the shaded area in Fig. 5 is the hook corresponding to
cell (2, 3) in row 2, column 3; it contains six cells. Each cell of Fig. 5 has been
Ąlled in with the length of its hook.

60 SORTING 5.1.4

12 11 8 7 5 4 1
10 9 6 5 3 2 •
9 8 5 4 2 1 •
6 5 2 1 •
3 2 •
2 1 •

Fig. 5. Hooks and hook lengths.

If the shape of the tableau is (n1, n2, . . . , nm), the longest hook has length
n1 +m−1. Further examination of the hook lengths shows that row 1 con-
tains all the lengths n1 +m−1, n1 +m−2, . . . , 1 except for (n1 +m−1)−(nm),
(n1 +m−1)−(nm−1 +1), . . . , (n1 +m−1)−(n2 +m−2). In Fig. 5, for example,
the hook lengths in row 1 are 12, 11, 10, . . . , 1 except for 10, 9, 6, 3, 2; the
exceptions correspond to Ąve nonexistent hooks, from nonexistent cells (6, 3),
(5, 3), (4, 5), (3, 7), (2, 7) leading up to cell (1, 7). Similarly, row j contains
all lengths nj +m−j, . . . , 1, except for (nj +m−j)−(nm), . . . , (nj +m−j)−
(nj+1 +m−j−1). It follows that the product of all the hook lengths is equal to

(n1 +m−1)! (n2 +m−2)! . . . nm!
∆(n1 +m−1, n2 +m−2, . . . , nm)

.

This is just what happens in Eq. (34), so we have derived the following celebrated
result due to J. S. Frame, G. de B. Robinson, and R. M. Thrall [Canadian J.
Math. 6 (1954), 316Ű318]:

Theorem H. The number of tableaux on {1, 2, . . . , n} having a speciĄed shape
is n! divided by the product of the hook lengths.

Since this is such a simple rule, it deserves a simple proof; a heuristic
argument runs as follows: Each element of the tableau is the smallest in its
hook. If we Ąll the tableau shape at random, the probability that cell (i, j) will
contain the minimum element of the corresponding hook is the reciprocal of the
hook length; multiplying these probabilities over all i and j gives Theorem H.
But unfortunately this argument is fallacious, since the probabilities are far from
independent! No direct proof of Theorem H, based on combinatorial properties of
hooks used correctly, was known until 1992 (see exercise 39), although researchers
did discover several instructive indirect proofs (exercises 35, 36, and 38).

Theorem H has an interesting connection with the enumeration of trees,
which we considered in Chapter 2. We observed that binary trees with n nodes
correspond to permutations that can be obtained with a stack, and that such
permutations correspond to sequences a1 a2 . . . a2n of n SŠs and n XŠs, where the
number of SŠs is never less than the number of XŠs as we read from left to right.
(See exercises 2.2.1Ű3 and 2.3.1Ű6.) The latter sequences correspond in a natural
way to tableaux of shape (n, n); we place in row 1 the indices i such that ai = S,
and in row 2 we put those indices with ai = X. For example, the sequence

S S S X X S S X X S X X

5.1.4 TABLEAUX AND INVOLUTIONS 61

corresponds to the tableau
1 2 3 6 7 10
4 5 8 9 11 12

. (37)

The column constraint is satisĄed in this tableau if and only if the number of XŠs
never exceeds the number of SŠs from left to right. By Theorem H, the number
of tableaux of shape (n, n) is

(2n)!
(n + 1)! n!

;

so this is the number of binary trees, in agreement with Eq. 2.3.4.4Ű(14). Further-
more, this argument solves the more general Şballot problemŤ considered in
the answer to exercise 2.2.1Ű4, if we use tableaux of shape (n, m) for n ≥ m.
So Theorem H includes some rather complex enumeration problems as simple
special cases.

Any tableau A of shape (n, n) on the elements {1, 2, . . . , 2n} corresponds
to two tableaux (P, Q) of the same shape, in the following way suggested by
MacMahon [Combinatory Analysis 1 (1915), 130Ű131]: Let P consist of the ele-
ments {1, . . . , n} as they appear in A; then Q is formed by taking the remaining
elements, rotating the conĄguration by 180◦, and replacing n + 1, n + 2, . . . , 2n
by n, n− 1, . . . , 1, respectively. For example, (37) splits into

1 2 3 6 and 7 10
4 5 8 9 11 12

;

rotation and renaming of the latter yields

P =
1 2 3 6
4 5

, Q =
1 2 4 5
3 6

. (38)

Conversely, any pair of equal-shape tableaux of at most two rows, each containing
n cells, corresponds in this way to a tableau of shape (n, n). Hence by exercise 7
the number of permutations a1 a2 . . . an of {1, 2, . . . , n} containing no decreasing
subsequence ai > aj > ak for i < j < k is the number of binary trees with
n nodes. An interesting one-to-one correspondence between such permutations
and binary trees, more direct than the roundabout method via Algorithm I that
we have used here, has been found by D. Rotem [Inf. Proc. Letters 4 (1975),
58Ű61]; similarly there is a rather direct correspondence between binary trees
and permutations having no instances of ai > ak > aj for i < j < k (see exercise
2.2.1Ű5).

The number of ways to Ąll a tableau of shape (6, 4, 4, 1) is obviously the
number of ways to put the labels {1, 2, . . . , 15} onto the vertices of the directed
graph

(39)

62 SORTING 5.1.4

in such a way that the label of vertex u is less than the label of vertex v whenever
u→ v. In other words, it is the number of ways to sort the partial ordering (39)
topologically, in the sense of Section 2.2.3.

In general, we can ask the same question for any directed graph that contains
no oriented cycles. It would be nice if there were some simple formula generalizing
Theorem H to the case of an arbitrary directed graph; but not all graphs have
such pleasant properties as the graphs corresponding to tableaux. Some other
classes of directed graphs for which the labeling problem has a simple solution
are discussed in the exercises at the close of this section. Other exercises show
that some directed graphs have no simple formula corresponding to Theorem H.
For example, the number of ways to do the labeling is not always a divisor of n!.

To complete our investigations, let us count the total number of tableaux
that can be formed from n distinct elements; we will denote this number by tn.
By Corollary B, tn is the number of involutions of {1, 2, . . . , n}. A permutation
is its own inverse if and only if its cycle form consists solely of one-cycles (Ąxed
points) and two-cycles (transpositions). Since tn−1 of the tn involutions have
(n) as a one-cycle, and since tn−2 of them have (j n) as a two-cycle, for Ąxed
j < n, we obtain the formula

tn = tn−1 + (n− 1)tn−2, (40)

which Rothe devised in 1800 to tabulate tn for small n. The values for n ≥ 0
are 1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496,

Counting another way, let us suppose that there are k two-cycles and (n−2k)
one-cycles. There are

n
2k

ways to choose the Ąxed points, and the multinomial

coefficient (2k)!/(2!)k is the number of ways to arrange the other elements
into k distinguishable transpositions; dividing by k! to make the transpositions
indistinguishable we therefore obtain

tn =
⌊n/2⌋

k=0

tn(k), tn(k) =
n!

(n− 2k)! 2kk!
. (41)

Unfortunately, this sum has no simple closed form (unless we choose to regard the
Hermite polynomial in2−n/2Hn

−i/
√

2

as simple), so we resort to two indirect
approaches in order to understand tn better:

a) We can Ąnd the generating function

n

tnzn/n! = ez+z2/2; (42)

see exercise 25.

b) We can determine the asymptotic behavior of tn. This is an instructive
problem, because it involves some general techniques that will be useful to
us in other connections, so we will conclude this section with an analysis of
the asymptotic behavior of tn.

5.1.4 TABLEAUX AND INVOLUTIONS 63

The Ąrst step in analyzing the asymptotic behavior of (41) is to locate the
main contribution to the sum. Since

tn(k + 1)
tn(k)

=
(n− 2k)(n− 2k − 1)

2(k + 1)
, (43)

we can see that the terms gradually increase from k = 0 until tn(k + 1) ≈ tn(k)
when k is approximately 1

2

n−√n

; then they decrease to zero when k exceeds

1
2 n. The main contribution clearly comes from the vicinity of k = 1

2 (n − √n).
It is usually preferable to have the main contribution at the value 0, so we write

k = 1
2 (n−√n) + x, (44)

and we will investigate the size of tn(k) as a function of x.
One useful way to get rid of the factorials in tn(k) is to use StirlingŠs

approximation, Eq. 1.2.11.2Ű(18). For this purpose it is convenient (as we shall
see in a moment) to restrict x to the range

−nϵ+1/4 ≤ x ≤ nϵ+1/4, (45)

where ϵ = 0.001, say, so that an error term can be included. A somewhat
laborious calculation, which the author did by hand in the 60s but which is now
easily done with the help of computer algebra, yields the formula

tn(k) = exp

1
2 n ln n− 1

2 n +
√

n− 1
4 ln n− 2x2/

√
n− 1

4 − 1
2 ln π

− 4
3 x3/n + 2x/

√
n + 1

3 /
√

n− 4
3 x4/n

√
n + O(n5ϵ−3/4)

. (46)

The restriction on x in (45) can be justiĄed by the fact that we may set x =
±nϵ+1/4 to get an upper bound for all of the discarded terms, namely

e−2n2ϵ

exp

1
2 n ln n− 1

2 n +
√

n− 1
4 ln n− 1

4 − 1
2 ln π + O(n3ϵ−1/4)

, (47)

and if we multiply this by n we get an upper bound for the sum of the excluded
terms. The upper bound is of lesser order than the terms we will compute for
x in the restricted range (45), because of the factor exp(−2n2ϵ), which is much
smaller than any polynomial in n.

We can evidently remove the factor

exp

1
2 n ln n− 1

2 n +
√

n− 1
4 ln n− 1

4 − 1
2 ln π + 1

3 /
√

n

(48)

from the sum, and this leaves us with the task of summing

exp

−2x2/

√
n− 4

3 x3/n + 2x/
√

n− 4
3 x4/n

√
n + O(n5ϵ−3/4)

= exp
−2x2

√
n

1− 4

3
x3

n
+

8
9

x6

n2

1 + 2

x√
n

+ 2
x2

n

×

1− 4
3

x4

n
√

n

1 + O(n9ϵ−3/4)

(49)

64 SORTING 5.1.4

over the range x = α, α+1, . . . , β−2, β−1, where −α and β are approximately
equal to nϵ+1/4 (and not necessarily integers). EulerŠs summation formula,
Eq. 1.2.11.2Ű(10), can be written

α≤x<β

f(x) =
 β

α

f(x) dx− 1
2

f(x)

β

α

+
1
2

B2
f ′(x)

1!

β

α

+ · · ·+ 1
m + 1

Bm+1
f (m)(x)

m!

β

α

+ Rm+1, (50)

by translation of the summation interval. Here |Rm| ≤ (4/(2π)m)
 β

α

f (m)(x)
 dx.

If we let f(x) = xt exp

−2x2/

√
n

, where t is a Ąxed nonnegative integer, EulerŠs

summation formula will give an asymptotic series for

f(x) as n→∞, since

f (m)(x) = n(t−m)/4g(m)(n−1/4x), g(y) = yte−2y2

, (51)

and g(y) is a well-behaved function independent of n. The derivative g(m)(y) is
e−2y2 times a polynomial in y, hence Rm = O(n(t+1−m)/4)

 +∞
−∞ |g(m)(y)| dy =

O(n(t+1−m)/4). Furthermore if we replace α and β by −∞ and +∞ in the right-
hand side of (50), we make an error of at most O

exp(−2n2ϵ)

in each term.

Thus

α≤x<β

f(x) =
 ∞

−∞
f(x) dx + O(n−m), for all m ≥ 0; (52)

only the integral is really signiĄcant, given this particular choice of f(x)! The
integral is not difficult to evaluate (see exercise 26), so we can multiply out and
sum formula (49), giving

π/2

n1/4 − 1

24 n−1/4 + O(n−1/2)

. Thus

tn =
1√
2

nn/2e−n/2+
√
n−1/4

1 + 7

24 n−1/2 + O(n−3/4)

. (53)

Actually the O-terms here should have an extra 9ϵ in the exponent, but our
manipulations make it clear that this 9ϵ would disappear if we had carried further
accuracy in the intermediate calculations. In principle, the method we have
used could be extended to obtain O(n−k) for any k, instead of O(n−3/4). This
asymptotic series for tn was Ąrst determined (using a different method) by Moser
and Wyman, Canadian J. Math. 7 (1955), 159Ű168.

The method we have used to derive (53) is an extremely useful technique for
asymptotic analysis that was introduced by P. S. Laplace [Mémoires Acad. Sci.
(Paris, 1782), 1Ű88]; it is discussed under the name Ştrading tailsŤ in CMath,
§9.4. For further examples and extensions of tail-trading, see the conclusion of
Section 5.2.2.

EXERCISES

1. [16] What tableaux (P,Q) correspond to the two-line array

1 2 3 4 5 6 7 8 9
6 4 9 5 7 1 2 8 3

,

5.1.4 TABLEAUX AND INVOLUTIONS 65

in the construction of Theorem A? What two-line array corresponds to the tableaux

P =
1 4 7

2 8

5 9

, Q =
1 3 7

4 5

8 9

?

2. [M21] Prove that (q, p) belongs to class t with respect to (16) if and only if t is
the largest number of indices i1, . . . , it such that

pi1
< pi2

< · · · < pit = p, qi1
< qi2

< · · · < qit = q.

x 3. [M24] Show that the correspondence deĄned in the proof of Theorem A can also
be carried out by constructing a table such as this:

Line 0 1 3 5 6 8
Line 1 7 2 9 5 3
Line 2 ∞ 7 ∞ 9 5
Line 3 ∞ ∞ 7
Line 4 ∞

Here lines 0 and 1 constitute the given two-line array. For k ≥ 1, line k + 1 is formed
from line k by the following procedure:

a) Set p←∞.
b) Let column j be the leftmost column in which line k contains an integer < p, but

line k+ 1 is blank. If no such columns exist, and if p =∞, line k+ 1 is complete;
if no such columns exist and p <∞, return to (a).

c) Insert p into column j in line k + 1, then set p equal to the entry in column j of
line k and return to (b).

Once the table has been constructed in this way, row k of P consists of those integers
in line k that are not in line (k+ 1); row k of Q consists of those integers in line 0 that
appear in a column containing ∞ in line k + 1.

x 4. [M30] Let a1 . . . aj−1 aj . . . an be a permutation of distinct elements, and assume
that 1 < j ≤ n. The permutation a1 . . . aj−2 aj aj−1 aj+1 . . . an, obtained by inter-
changing aj−1 with aj , is called ŞadmissibleŤ if either

i) j ≥ 3 and aj−2 lies between aj−1 and aj ; or
ii) j < n and aj+1 lies between aj−1 and aj .

For example, exactly three admissible interchanges can be performed on the permuta-
tion 1 5 4 6 8 3 7; we can interchange the 1 and the 5 since 1 < 4 < 5; we can interchange
the 8 and the 3 since 3 < 6 < 8 (or since 3 < 7 < 8); but we cannot interchange the 5
and the 4, or the 3 and the 7.

a) Prove that an admissible interchange does not change the tableau P formed from
the permutation by successive insertion of the elements a1, a2, . . . , an into an
initially empty tableau.

b) Conversely, prove that any two permutations that have the same P tableau can be
transformed into each other by a sequence of one or more admissible interchanges.
[Hint: Given that the shape of P is (n1, n2, . . . , nm), show that any permuta-
tion that corresponds to P can be transformed into the Şcanonical permutationŤ
Pm1 . . . Pmnm . . . P21 . . . P2n2

P11 . . . P1n1
by a sequence of admissible interchanges.]

x 5. [M22] Let P be the tableau corresponding to the permutation a1 a2 . . . an; use
exercise 4 to prove that PT is the tableau corresponding to an . . . a2 a1.

66 SORTING 5.1.4

6. [M26] (M. P. Schützenberger.) Let π be an involution with k Ąxed points. Prove
that the tableau corresponding to π, in the proof of Corollary B, has exactly k columns
of odd length.

7. [M20] (C. Schensted.) Let P be the tableau corresponding to the permutation
a1 a2 . . . an. Prove that the number of columns in P is the longest length c of an
increasing subsequence ai1

< ai2
< · · · < aic , where i1 < i2 < · · · < ic; the number of

rows in P is the longest length r of a decreasing subsequence aj1
> aj2

> · · · > ajr ,
where j1 < j2 < · · · < jr.

8. [M18] (P. Erdős, G. Szekeres.) Prove that any permutation containing more than
n2 elements has a monotonic subsequence of length greater than n; but there are
permutations of n2 elements with no monotonic subsequences of length greater than n.
[Hint: See the previous exercise.]

9. [M24] Continuing exercise 8, Ąnd a ŞsimpleŤ formula for the exact number of
permutations of {1, 2, . . . , n2} that have no monotonic subsequences of length greater
than n.

10. [M20] Prove that P is a tableau when Algorithm S terminates, if it was a tableau
initially.

11. [20] Given only the values of r and s after Algorithm S terminates, is it possible
to restore P to its original condition?

12. [M24] How many times is step S3 performed, if Algorithm S is used repeatedly
to delete all elements of a tableau P whose shape is (n1, n2, . . . , nm)? What is the
minimum of this quantity, taken over all shapes with n1 + n2 + · · ·+ nm = n?

13. [M28] Prove Theorem C.

14. [M43] Find a more direct proof of Theorem D, part (c).

15. [M20] How many permutations of the multiset {l ·a, m ·b, n ·c} have the property
that, as we read the permutation from left to right, the number of cŠs never exceeds the
number of bŠs, and the number of bŠs never exceeds the number of aŠs? (For example,
a a b c a b b c a c a is such a permutation.)

16. [M08] In how many ways can the partial ordering represented by (39) be sorted
topologically?

17. [HM25] Let

g(x1, x2, . . . , xn; y) = x1 ∆(x1+y, x2, . . . , xn) + x2 ∆(x1, x2+y, . . . , xn)

+ · · ·+ xn ∆(x1, x2, . . . , xn+y).

Prove that

g(x1, x2, . . . , xn; y) =

x1 + x2 + · · ·+ xn +

n
2

y

∆(x1, x2, . . . , xn).

[Hint: The polynomial g is homogeneous (all terms have the same total degree); and
it is antisymmetric in the xŠs (interchanging xi and xj changes the sign of g).]

18. [HM30] Generalizing exercise 17, evaluate the sum

xm
1 ∆(x1+y, x2, . . . , xn) + xm

2 ∆(x1, x2+y, . . . , xn) + · · ·+ xm
n ∆(x1, x2, . . . , xn+y),

when m ≥ 0.

5.1.4 TABLEAUX AND INVOLUTIONS 67

19. [M40] Find a formula for the number of ways to Ąll an array that is like a tableau
but with two boxes removed at the left of row 1; for example,

n1−2 boxes

n2 boxes

n3 boxes
...

is such a shape. (The rows and columns are to be in increasing order, as in ordinary
tableaux.)

In other words, how many tableaux of shape (n1, n2, . . . , nm) on the elements
{1, 2, . . . , n1+ · · ·+nm} have both of the elements 1 and 2 in the Ąrst row?

x 20. [M24] Prove that the number of ways to label the nodes of a given tree with
the elements {1, 2, . . . , n}, such that the label of each node is less than that of its
descendants, is n! divided by the product of the subtree sizes (the number of nodes in
each subtree). For example, the number of ways to label the nodes of

11

4

1 2

1

5

3

1 1

1

1

is 11!/(11 · 4 · 1 · 5 · 1 · 2 · 3 · 1 · 1 · 1 · 1) = 10 · 9 · 8 · 7 · 6. (Compare with Theorem H.)

21. [HM31] (R. M. Thrall.) Let n1 > n2 > · · · > nm specify the shape of a Şshifted
tableauŤ where row i+1 starts one position to the right of row i; for example, a shifted
tableau of shape (7, 5, 4, 1) has the form of the diagram

12 11 8 7 5 4 1

9 6 5 3 2

5 4 2 1

1

.

Prove that the number of ways to put the integers 1, 2, . . . , n = n1+n2+ · · ·+nm into
shifted tableaux of shape (n1, n2, . . . , nm), so that rows and columns are in increasing
order, is n! divided by the product of the Şgeneralized hook lengthsŤ; a generalized
hook of length 11, corresponding to the cell in row 1 column 2, has been shaded in
the diagram above. (Hooks in the Şinverted staircaseŤ portion of the array, at the left,
have a U-shape, tilted 90◦, instead of an L-shape.) Thus there are

17!/(12 · 11 · 8 · 7 · 5 · 4 · 1 · 9 · 6 · 5 · 3 · 2 · 5 · 4 · 2 · 1 · 1)

ways to Ąll the shape with rows and columns in increasing order.

22. [M39] In how many ways can an array of shape (n1, n2, . . . , nm) be Ąlled with
elements from the set {1, 2, . . . , N} with repetitions allowed, so that the rows are

68 SORTING 5.1.4

nondecreasing and the columns are strictly increasing? For example, the simple m-
rowed shape (1, 1, . . . , 1) can be Ąlled in

N
m

ways; the 1-rowed shape (m) can be Ąlled

in

m+N−1
m

ways; the small square shape (2, 2) in 1

3

N+1

2

N
2

ways.

x 23. [HM30] (D. André.) In how many ways, En, can the numbers {1, 2, . . . , n} be
placed into the array of n cells

. . .

in such a way that the rows and columns are in increasing order? Find the generating
function g(z) =

Enz

n/n!.

24. [M28] Prove that

q1+···+qn=t
0≤q1,...,qn≤m

m

q1

. . .

m

qn

∆(q1, . . . , qn)2

= n!

nm− (n2 − n)
t− 1

2
(n2 − n)

m

n− 1

m

n− 2

. . .

m

0

∆(n−1, . . . , 0)2.

[Hints: Prove that ∆(k1+n−1, . . . , kn) = ∆(m−kn+n−1, . . . ,m−k1); decompose an
n× (m− n+ 1) tableau in a fashion analogous to (38); and manipulate the sum as in
the derivation of (36).]

25. [M20] Why is (42) the generating function for involutions?

26. [HM21] Evaluate
∞
−∞ xt exp(−2x2/

√
n) dx when t is a nonnegative integer.

27. [M24] Let Q be a Young tableau on {1, 2, . . . , n}; let the element i be in row ri

and column ci. We say that i is ŞaboveŤ j when ri < rj .

a) Prove that, for 1 ≤ i < n, i is above i+ 1 if and only if ci ≥ ci+1.
b) Given that Q is such that (P,Q) corresponds to the permutation

1 2 . . . n
a1 a2 . . . an

,

prove that i is above i + 1 if and only if ai > ai+1. (Therefore we can determine
the number of runs in the permutation, knowing only Q. This result is due to
M. P. Schützenberger.)

c) Prove that, for 1 ≤ i < n, i is above i+ 1 in Q if and only if i+ 1 is above i in QS .

28. [M43] Prove that the average length of the longest increasing subsequence of a
random permutation of {1, 2, . . . , n} is asymptotically 2

√
n. (This is the average length

of row 1 in the correspondence of Theorem A.)

29. [HM25] Prove that a random permutation of n elements has an increasing sub-
sequence of length ≥ l with probability ≤

n
l

/l!. This probability is O(1/

√
n) when

l = e
√
n+O(1), and O(exp(−c√n)) when l = 3

√
n, c = 6 ln 3− 6.

30. [M41] (M. P. Schützenberger.) Show that the operation of going from P to PS is
a special case of an operation applicable in connection with any Ąnite partially ordered
set, not merely a tableau: Label the elements of a partially ordered set with the integers

5.1.4 TABLEAUX AND INVOLUTIONS 69

{1, 2, . . . , n} in such a way that the partial order is consistent with the labeling. Find
a dual labeling analogous to (26), by successively deleting the labels 1, 2, . . . while
moving the other labels in a fashion analogous to Algorithm S and placing 1, 2, . . .
in the vacated places. Show that this operation, when repeated on the dual labeling
in reverse numerical order, yields the original labeling; and explore other properties of
the operation.

31. [HM30] Let xn be the number of ways to place n mutually nonattacking rooks on
an n × n chessboard, where each arrangement is unchanged by reĆection about both
diagonals. Thus, x4 = 6. (Involutions are required to be symmetrical about only one
diagonal. Exercise 5.1.3Ű19 considers a related problem.) Find the asymptotic behavior
of xn.

32. [HM21] Prove that the involution number tn is the expected value of Xn, when
X is a normal deviate with mean 1 and variance 1.

33. [M25] (O. H. Mitchell, 1881.) True or false: ∆(a1, a2, . . . , am)/∆(1, 2, . . . ,m) is
an integer when a1, a2, . . . , am are integers.

34. [25] (T. Nakayama, 1940.) Prove that if a tableau shape contains a hook of length
ab, it contains a hook of length a.

x 35. [30] (A. P. Hillman and R. M. Grassl, 1976.) An arrangement of nonnegative
integers pij in a tableau shape is called a plane partition of m if

pij = m and

pi1 ≥ · · · ≥ pini , p1j ≥ · · · ≥ pn′

j
j , for 1 ≤ i ≤ n′

1, 1 ≤ j ≤ n1,

when there are ni cells in row i and n′
j cells in column j. It is called a reverse plane

partition if instead

pi1 ≤ · · · ≤ pini , p1j ≤ · · · ≤ pn′

j
j , for 1 ≤ i ≤ n′

1, 1 ≤ j ≤ n1.

Consider the following algorithm, which operates on reverse plane partitions of a given
shape and constructs another array of numbers qij having the same shape:

G1. [Initialize.] Set qij ← 0 for 1 ≤ j ≤ ni and 1 ≤ i ≤ n′
1. Then set j ← 1.

G2. [Find nonzero cell.] If pn′

j
j > 0, set i ← n′

j , k ← j, and go on to step G3.

Otherwise if j < n1, increase j by 1 and repeat this step. Otherwise stop (the
p array is now zero).

G3. [Decrease p.] Decrease pik by 1.

G4. [Move up or right.] If i > 1 and p(i−1)k > pik, decrease i by 1 and return
to G3. Otherwise if k < ni, increase k by 1 and return to G3.

G5. [Increase q.] Increase qij by 1 and return to G2.

Prove that this construction deĄnes a one-to-one correspondence between reverse plane
partitions of m and solutions of the equation

m =

hijqij ,

where the numbers hij are the hook lengths of the shape, by designing an algorithm
that recomputes the pŠs from the qŠs.

36. [HM27] (R. P. Stanley, 1971.) (a) Prove that the number of reverse plane par-
titions of m in a given shape is [zm] 1/

(1 − zhij), where the numbers hij are the

hook lengths of the shape. (b) Derive Theorem H from this result. [Hint: What is the
asymptotic number of partitions as m→∞?]

70 SORTING 5.1.4

37. [M20] (P. A. MacMahon, 1912.) What is the generating function for all plane
partitions? (The coefficient of zm should be the total number of plane partitions of m
when the tableau shape is unbounded.)

x 38. [M30] (Greene, Nijenhuis, and Wilf, 1979.) We can construct a directed acyclic
graph on the cells T of any given tableau shape by letting arcs run from each cell to
the other cells in its hook; the out-degree of cell (i, j) will then be dij = hij − 1, where
hij is the hook length. Suppose we generate a random path in this digraph by choosing
a random starting cell (i, j) and choosing further arcs at random, until coming to a
corner cell from which there is no exit. Each random choice is made uniformly.

a) Let (a, b) be a corner cell of T , and let I = {i0, . . . , ik} and J = {j0, . . . , jl} be
sets of rows and columns with i0 < · · · < ik = a and j0 < · · · < jl = b. The
digraph contains

k+l

k

paths whose row and column sets are respectively I and J ;

let P (I, J) be the probability that the random path is one of these. Prove that
P (I, J) = 1/(ndi0b . . . dik−1b daj0

. . . dajl−1
), where n = |T |.

b) Let f(T) = n!/

hij . Prove that the random path ends at corner (a, b) with

probability f(T \ {(a, b)})/f(T).
c) Show that the result of (b) proves Theorem H and also gives us a way to generate

a random tableau of shape T , with all f(T) tableaux equally likely.

39. [M38] (I. M. Pak and A. V. Stoyanovskii, 1992.) Let P be an array of shape
(n1, . . . , nm) that has been Ąlled with any permutation of the integers {1, . . . , n}, where
n = n1+· · ·+nm. The following procedure, which is analogous to the ŞsiftupŤ algorithm
in Section 5.2.3, can be used to convert P to a tableau. It also deĄnes an array Q of
the same shape, which can be used to provide a combinatorial proof of Theorem H.

P1. [Loop on (i, j).] Perform steps P2 and P3 for all cells (i, j) of the array, in
reverse lexicographic order (that is, from bottom to top, and from right to
left in each row); then stop.

P2. [Fix P at (i, j).] Set K ← Pij and perform Algorithm S′ (see below).

P3. [Adjust Q.] Set Qik ← Qi(k+1) + 1 for j ≤ k < s, and set Qis ← i− r.
Here Algorithm S′ is the same as SchützenbergerŠs Algorithm S, except that steps S1
and S2 are generalized slightly:

S1′. [Initialize.] Set r ← i, s← j.

S2′. [Done?] If K <∼ P(r+1)s and K <∼ Pr(s+1), set Prs ← K and terminate.

(Algorithm S is essentially the special case i = 1, j = 1, K =∞.)
For example, Algorithm P straightens out one particular array of shape (3, 3, 2)

in the following way, if we view the contents of arrays P and Q at the beginning of
step P2, with Pij in boldface type:

P =
7 8 5

1 6 4

3 2

7 8 5

1 6 4

3 2

7 8 5

1 6 4

2 3

7 8 5

1 6 4

2 3

7 8 5

1 3 4

2 6

7 8 5

1 3 4

2 6

7 8 4

1 3 5

2 6

7 3 4

1 5 8

2 6

Q =
0 1 0

0

1 0

−1 0

1 0

0 −1 0

1 0

−1

0 −1 0

1 0

0 −1

0 −1 0

1 0

5.1.4 TABLEAUX AND INVOLUTIONS 71

The Ąnal result is

P =
1 3 4

2 5 8

6 7

, Q =
1 −2 −1

0 −1 0

1 0

.

a) If P is simply a 1× n array, Algorithm P sorts it into 1 . . . n . Explain what
the Q array will contain in that case.

b) Answer the same question if P is n× 1 instead of 1× n.
c) Prove that, in general, we will have

−bij ≤ Qij ≤ rij ,

where bij is the number of cells below (i, j) and rij is the number of cells to the
right. Thus, the number of possible values for Qij is exactly hij , the size of the
(i, j)th hook.

d) Theorem H will be proved constructively if we can show that Algorithm P deĄnes
a one-to-one correspondence between the n! ways to Ąll the original shape and the
pairs of output arrays (P,Q), where P is a tableau and the elements of Q satisfy
the condition of part (c). Therefore we want to Ąnd an inverse of Algorithm P. For
what initial permutations does Algorithm P produce the 2× 2 array Q = (0

0
−1
0

)?
e) What initial permutation does Algorithm P convert into the arrays

P =

1 3 5 7 11 15

2 6 8 14

4 9 13

10 12

16

, Q =

−2 −3 −1 −1 1 0

3 −2 −1 0

0 −1 0

−1 0

0

?

f) Design an algorithm that inverts Algorithm P, given any pair of arrays (P,Q)
such that P is a tableau and Q satisĄes the condition of part (c). [Hint: Construct
an oriented tree whose vertices are the cells (i, j), with arcs

(i, j)→ (i, j − 1) if Pi(j−1) > P(i−1)j ;

(i, j)→ (i− 1, j) if Pi(j−1) < P(i−1)j .

In the example of part (e) we have the tree

The paths of this tree hold the key to inverting Algorithm P.]

40. [HM43] Suppose a random Young tableau has been constructed by successively
placing the numbers 1, 2, . . . , n in such a way that each possibility is equally likely
when a new number is placed. For example, the tableau (1) would be obtained with
probability 1

1
· 1

2
· 1

2
· 1

3
· 1

3
· 1

3
· 1

4
· 1

3
· 1

3
· 1

4
· 1

4
· 1

5
· 1

4
· 1

5
· 1

4
using this procedure.

Prove that, with high probability, the resulting shape (n1, n2, . . . , nm) will have
m ≈

√
6n and

k +

nk+1 ≈

m for 0 ≤ k ≤ m.

72 SORTING 5.1.4

41. [25] (Disorder in a library.) Casual users of a library often put books back on the
shelves in the wrong place. One way to measure the amount of disorder present in a
library is to consider the minimum number of times we would have to take a book out
of one place and insert it in another, before all books are restored to the correct order.

Thus let π = a1 a2 . . . an be a permutation of {1, 2, . . . , n}. A Şdeletion-insertion
operationŤ changes π to

a1 . . . ai−1 ai+1 . . . aj ai aj+1 . . . an or a1 . . . aj ai aj+1 . . . ai−1 ai+1 . . . an,

for some i and j. Let dis(π) be the minimum number of deletion-insertion operations
that will sort π into order. Can dis(π) be expressed in terms of simpler characteristics
of π?

x 42. [30] (Disorder in a genome.) The DNA of Lobelia fervens has genes occur-
ring in the sequence gR

7 g1g2g4g5g3g
R
6 , where gR

7 stands for the left-right reĆection
of g7; the same genes occur in tobacco plants, but in the order g1g2g3g4g5g6g7. Show
that Ąve ŞĆipŤ operations on substrings are needed to get from g1g2g3g4g5g6g7 to
gR

7 g1g2g4g5g3g
R
6 . (A Ćip takes αβγ to αβRγ, when α, β, and γ are strings.)

43. [35] Continuing the previous exercise, show that at most n + 1 Ćips are needed
to sort any rearrangement of g1g2 . . . gn. Construct examples that require n + 1 Ćips,
for all n > 3.

44. [M37] Show that the average number of Ćips required to sort a random arrange-
ment of n genes is greater than n−Hn, if all 2n n! genome rearrangements are equally
likely.

5.2 INTERNAL SORTING 73

5.2. INTERNAL SORTING

Let’s begin our discussion of good ŞsortsmanshipŤ by conducting a little ex-
periment. How would you solve the following programming problem?

ŞMemory locations R+1, R+2, R+3, R+4, and R+5 contain Ąve numbers.
Write a computer program that rearranges these numbers, if necessary,
so that they are in ascending order.Ť

(If you already are familiar with some sorting methods, please do your best to
forget about them momentarily; imagine that you are attacking this problem for
the Ąrst time, without any prior knowledge of how to proceed.)

Before reading any further, you are requested to construct a solution to this

problem.

. .

The time you spent working on the challenge problem will pay dividends
as you continue to read this chapter. Chances are your solution is one of the
following types:

A. An insertion sort. The items are considered one at a time, and each new
item is inserted into the appropriate position relative to the previously-sorted
items. (This is the way many bridge players sort their hands, picking up one
card at a time.)

B. An exchange sort. If two items are found to be out of order, they are
interchanged. This process is repeated until no more exchanges are necessary.

C. A selection sort. First the smallest (or perhaps the largest) item is lo-
cated, and it is somehow separated from the rest; then the next smallest (or next
largest) is selected, and so on.

D. An enumeration sort. Each item is compared with each of the others; an
itemŠs Ąnal position is determined by the number of keys that it exceeds.

E. A special-purpose sort, which works nicely for sorting Ąve elements as
stated in the problem, but does not readily generalize to larger numbers of items.

F. A lazy attitude, with which you ignored the suggestion above and decided
not to solve the problem at all. Sorry, by now you have read too far and you
have lost your chance.

G. A new, super sorting technique that is a deĄnite improvement over known
methods. (Please communicate this to the author at once.)

If the problem had been posed for, say, 1000 items, not merely 5, you might
also have discovered some of the more subtle techniques that will be mentioned
later. At any rate, when attacking a new problem it is often wise to Ąnd some
fairly obvious procedure that works, and then try to improve upon it. Cases A, B,
and C above lead to important classes of sorting techniques that are reĄnements
of the simple ideas stated.

Many different sorting algorithms have been invented, and we will be dis-
cussing about 25 of them in this book. This rather alarming number of methods
is actually only a fraction of the algorithms that have been devised so far;
many techniques that are now obsolete will be omitted from our discussion, or

74 SORTING 5.2

mentioned only brieĆy. Why are there so many sorting methods? For computer
programming, this is a special case of the question, ŞWhy are there so many x
methods?Ť, where x ranges over the set of problems; and the answer is that each
method has its own advantages and disadvantages, so that it outperforms the
others on some conĄgurations of data and hardware. Unfortunately, there is no
known ŞbestŤ way to sort; there are many best methods, depending on what
is to be sorted on what machine for what purpose. In the words of Rudyard
Kipling, ŞThere are nine and sixty ways of constructing tribal lays, and every
single one of them is right.Ť

It is a good idea to learn the characteristics of each sorting method, so that
an intelligent choice can be made for particular applications. Fortunately, it is
not a formidable task to learn these algorithms, since they are interrelated in
interesting ways.

At the beginning of this chapter we deĄned the basic terminology and
notation to be used in our study of sorting: The records

R1, R2, . . . , RN (1)

are supposed to be sorted into nondecreasing order of their keys K1, K2, . . . , KN,
essentially by discovering a permutation p(1) p(2) . . . p(N) such that

Kp(1) ≤ Kp(2) ≤ · · · ≤ Kp(N). (2)

In the present section we are concerned with internal sorting, when the number
of records to be sorted is small enough that the entire process can be performed
in a computerŠs high-speed memory.

In some cases we will want the records to be physically rearranged in memory
so that their keys are in order, while in other cases it may be sufficient merely
to have an auxiliary table of some sort that speciĄes the permutation. If the
records and/or the keys each take up quite a few words of computer memory,
it is often better to make up a new table of link addresses that point to the
records, and to manipulate these link addresses instead of moving the bulky
records around. This method is called address table sorting (see Fig. 6). If the
key is short but the satellite information of the records is long, the key may be
placed with the link addresses for greater speed; this is called keysorting. Other
sorting schemes utilize an auxiliary link Ąeld that is included in each record;
these links are manipulated in such a way that, in the Ąnal result, the records
are linked together to form a straight linear list, with each link pointing to the
following record. This is called list sorting (see Fig. 7).

After sorting with an address table or list method, the records can be re-
arranged into increasing order as desired. Exercises 10 and 12 discuss interesting
ways to do this, requiring only enough additional memory space to hold one
record; alternatively, we can simply move the records into a new area capable
of holding all records. The latter method is usually about twice as fast as the
former, but it demands nearly twice as much storage space. Many applications
can get by without moving the records at all, since the link Ąelds are often
adequate for all of the subsequent processing.

5.2 INTERNAL SORTING 75

89

R

D

37

S

T

41

O

E

Before sorting

After sorting

Auxiliary table

Records

Key
}

Satellite information

R1 R2 R3

Fig. 6. Address table sorting.

89

R

D

37

S

T

41

O

E

Key
}

Satellite information

Link field (after sorting)

Head of list

R1 R2 R3

Fig. 7. List sorting.

All of the sorting methods that we shall examine in depth will be illustrated
in four ways, by means of

a) an English-language description of the algorithm,

b) a Ćow diagram,

c) a MIX program, and

d) an example of the sorting method applied to a certain set of 16 numbers.

For convenience, the MIX programs will usually assume that the key is numeric
and that it Ąts in a single word; sometimes we will even restrict the key to part
of a word. The order relation < will be ordinary arithmetic order; and the record
will consist of the key alone, with no satellite information. These assumptions
make the programs shorter and easier to understand, and a reader should Ąnd
it fairly easy to adapt any of the programs to the general case by using address
table sorting or list sorting. An analysis of the running time of each sorting
algorithm will be given with the MIX programs.

Sorting by counting. As a simple example of the way in which we shall study
internal sorting methods, let us consider the ŞcountingŤ idea mentioned near
the beginning of this section. This simple method is based on the idea that the
jth key in the Ąnal sorted sequence is greater than exactly j−1 of the other
keys. Putting this another way, if we know that a certain key exceeds exactly
27 others, and if no two keys are equal, the corresponding record should go into

76 SORTING 5.2

position 28 after sorting. So the idea is to compare every pair of keys, counting
how many are less than each particular one.

The obvious way to do the comparisons is to

(compare Kj with Ki) for 1 ≤ j ≤ N

for 1 ≤ i ≤ N ;

but it is easy to see that more than half of these comparisons are redundant,
since it is unnecessary to compare a key with itself, and it is unnecessary to
compare Ka with Kb and later to compare Kb with Ka. We need merely to

(compare Kj with Ki) for 1 ≤ j < i

for 1 < i ≤ N.

Hence we are led to the following algorithm.

Algorithm C (Comparison counting). This algorithm sorts R1, . . . , RN on the
keys K1, . . . , KN by maintaining an auxiliary table COUNT[1], . . . , COUNT[N] to
count the number of keys less than a given key. After the conclusion of the
algorithm, COUNT[j] + 1 will specify the Ąnal position of record Rj .
C1. [Clear COUNTs.] Set COUNT[1] through COUNT[N] to zero.
C2. [Loop on i.] Perform step C3, for i = N , N−1, . . . , 2; then terminate the

algorithm.
C3. [Loop on j.] Perform step C4, for j = i−1, i−2, . . . , 1.
C4. [Compare Ki : Kj .] If Ki < Kj , increase COUNT[j] by 1; otherwise increase

COUNT[i] by 1.
Note that this algorithm involves no movement of records. It is similar to

an address table sort, since the COUNT table speciĄes the Ąnal arrangement of
records; but it is somewhat different because COUNT[j] tells us where to move
Rj , instead of indicating which record should be moved into the place of Rj .
(Thus the COUNT table speciĄes the inverse of the permutation p(1) . . . p(N); see
Section 5.1.1.)

Table 1 illustrates the typical behavior of comparison counting, by applying
it to 16 numbers that were chosen at random by the author on March 19, 1963.
The same 16 numbers will be used to illustrate almost all of the other methods
that we shall discuss later.

In our discussion preceding this algorithm we blithely assumed that no two
keys were equal. This was a potentially dangerous assumption, for if equal
keys corresponded to equal COUNTs the Ąnal rearrangement of records would be
quite complicated. Fortunately, however, Algorithm C gives the correct result
no matter how many equal keys are present; see exercise 2.

Program C (Comparison counting). The following MIX implementation of
Algorithm C assumes that Rj is stored in location INPUT + j, and COUNT[j]
in location COUNT + j, for 1 ≤ j ≤ N ; rI1 ≡ i; rI2 ≡ j; rA ≡ Ki ≡ Ri;
rX ≡ COUNT[i].
01 START ENT1 N 1 C1. Clear COUNTs.
02 STZ COUNT,1 N COUNT[i]← 0.
03 DEC1 1 N
04 J1P *-2 N N ≥ i > 0.

5.2 INTERNAL SORTING 77

Table 1

SORTING BY COUNTING (ALGORITHM C)

KEYS: 503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703
COUNT (initially): 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
COUNT (i = N): 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 12
COUNT (i = N−1): 0 0 0 0 2 0 2 0 0 0 0 0 0 0 13 12
COUNT (i = N−2): 0 0 0 0 3 0 3 0 0 0 0 0 0 11 13 12
COUNT (i = N−3): 0 0 0 0 4 0 4 0 1 0 0 0 9 11 13 12
COUNT (i = N−4): 0 0 1 0 5 0 5 0 2 0 0 7 9 11 13 12
COUNT (i = N−5): 1 0 2 0 6 1 6 1 3 1 2 7 9 11 13 12

. .
COUNT (i = 2): 6 1 8 0 15 3 14 4 10 5 2 7 9 11 13 12

C1. Clear COUNTs C2. Loop on i C3. Loop on j
C4. Compare

Ki :Kj

N≥ i>1 i>j≥1

j=0i=1

Fig. 8. Algorithm C: Comparison counting.

05 ENT1 N 1 C2. Loop on i.
06 JMP 1F 1
07 2H LDA INPUT,1 N − 1
08 LDX COUNT,1 N − 1
09 3H CMPA INPUT,2 A C4. Compare Ki : Kj .
10 JGE 4F A Jump if Ki ≥ Kj .
11 LD3 COUNT,2 B COUNT[j]
12 INC3 1 B +1
13 ST3 COUNT,2 B → COUNT[j].
14 JMP 5F B
15 4H INCX 1 A−B COUNT[i]← COUNT[i] + 1.
16 5H DEC2 1 A C3. Loop on j.
17 J2P 3B A
18 STX COUNT,1 N − 1
19 DEC1 1 N − 1
20 1H ENT2 -1,1 N N ≥ i > j > 0.
21 J2P 2B N

The running time of this program is 13N + 6A + 5B − 4 units, where N is
the number of records; A is the number of choices of two things from a set of
N objects, namely

N
2

= (N2 −N)/2; and B is the number of pairs of indices

for which j < i and Kj > Ki. Thus, B is the number of inversions of the
permutation K1 . . . KN ; this is the quantity that was analyzed extensively in
Section 5.1.1, where we found in Eqs. 5.1.1Ű(12) and 5.1.1Ű(13) that, for unequal
keys in random order, we have

B =

min 0, ave (N2−N)/4, max (N2−N)/2, dev

N(N − 1)(N + 2.5)/6

.

78 SORTING 5.2

Hence Program C requires between 3N2 + 10N − 4 and 5.5N2 + 7.5N − 4 units
of time, and the average running time lies halfway between these two extremes.
For example, the data in Table 1 has N = 16, A = 120, B = 41, so Program C
will sort it in 1129u. See exercise 5 for a modiĄcation of Program C that has
slightly different timing characteristics.

The factor N2 that dominates this running time shows that Algorithm C
is not an efficient way to sort when N is large; doubling the number of records
increases the running time fourfold. Since the method requires a comparison of
all distinct pairs of keys (Ki, Kj), there is no apparent way to get rid of the
dependence on N2, although we will see later in this chapter that the worst-case
running time for sorting can be reduced to order N log N using other techniques.
Our main interest in Algorithm C is its simplicity, not its speed. Algorithm C
serves as an example of the style in which we will be describing more complex
(and more efficient) methods.

There is another way to sort by counting that is quite important from the
standpoint of efficiency; it is primarily applicable in the case that many equal
keys are present, and when all keys fall into the range u ≤ Kj ≤ v, where (v−u)
is small. These assumptions appear to be quite restrictive, but in fact we shall
see quite a few applications of the idea. For example, if we apply this method
to the leading digits of keys instead of applying it to entire keys, the Ąle will be
partially sorted and it will be comparatively simple to complete the job.

In order to understand the principles involved, suppose that all keys lie
between 1 and 100. In one pass through the Ąle we can count how many 1s, 2s,
. . . , 100s are present; and in a second pass we can move the records into the
appropriate place in an output area. The following algorithm spells things out
in complete detail:

Algorithm D (Distribution counting). Assuming that all keys are integers in
the range u ≤ Kj ≤ v for 1 ≤ j ≤ N, this algorithm sorts the records R1, . . . , RN

by making use of an auxiliary table COUNT[u], . . . , COUNT[v]. At the conclusion
of the algorithm the records are moved to an output area S1, . . . , SN in the
desired order.

D1. [Clear COUNTs.] Set COUNT[u] through COUNT[v] all to zero.

D2. [Loop on j.] Perform step D3 for 1 ≤ j ≤ N ; then go to step D4.

D3. [Increase COUNT[Kj].] Increase the value of COUNT[Kj] by 1.

D4. [Accumulate.] (At this point COUNT[i] is the number of keys that are equal
to i.) Set COUNT[i]← COUNT[i]+ COUNT[i− 1], for i = u + 1, u + 2, . . . , v.

D5. [Loop on j.] (At this point COUNT[i] is the number of keys that are less than
or equal to i; in particular, COUNT[v] = N.) Perform step D6 for j = N ,
N − 1, . . . , 1; then terminate the algorithm.

D6. [Output Rj .] Set i← COUNT[Kj], Si ← Rj , and COUNT[Kj]← i− 1.

An example of this algorithm is worked out in exercise 6; a MIX program appears
in exercise 9. When the range v − u is small, this sorting procedure is very fast.

5.2 INTERNAL SORTING 79

D1. Clear COUNTs D2. Loop on j D3. Increase COUNT[Kj]

D4. Accumulate D5. Loop on j D6. Output Rj

N≥j≥1

N≥j≥1

j=0

j=0

Fig. 9. Algorithm D: Distribution counting.

Sorting by comparison counting as in Algorithm C was Ąrst mentioned in
print by E. H. Friend [JACM 3 (1956), 152], although he didnŠt claim it as his
own invention. Distribution sorting as in Algorithm D was Ąrst developed by
H. Seward in 1954 for use with radix sorting techniques that we will discuss
later (see Section 5.2.5); it was also published under the name ŞMathsortŤ by
W. Feurzeig, CACM 3 (1960), 601.

EXERCISES

1. [15] Would Algorithm C still work if i varies from 2 up to N in step C2, instead
of from N down to 2? What if j varies from 1 up to i− 1 in step C3?

2. [21] Show that Algorithm C works properly when equal keys are present. If
Kj = Ki and j < i, does Rj come before or after Ri in the Ąnal ordering?

x 3. [21] Would Algorithm C still work properly if the test in step C4 were changed
from ŞKi < KjŤ to ŞKi ≤ KjŤ?

4. [16] Write a MIX program that ŞĄnishesŤ the sorting begun by Program C; your
program should transfer the keys to locations OUTPUT+1 through OUTPUT+N, in ascending
order. How much time does your program require?

5. [22] Does the following set of changes improve Program C?
New line 08a: INCX 0,2

Change line 10: JGE 5F
Change line 14: DECX 1

Delete line 15.
6. [18] Simulate Algorithm D by hand, showing intermediate results when the 16

records 5T, 0C, 5U, 0O, 9., 1N, 8S, 2R, 6A, 4A, 1G, 5L, 6T, 6I, 7O, 7N are being sorted.
Here the numeric digit is the key, and the alphabetic information is just carried along
with the records.

7. [13] Is Algorithm D a stable sorting method?

8. [15] Would Algorithm D still work properly if j were to vary from 1 up to N in
step D5, instead of from N down to 1?

9. [23] Write a MIX program for Algorithm D, analogous to Program C and exercise 4.
What is the execution time of your program, as a function of N and (v − u)?

10. [25] Design an efficient algorithm that replaces the N quantities (R1, . . . , RN) by
(Rp(1), . . . , Rp(N)), respectively, given the values of R1, . . . , RN and the permutation

80 SORTING 5.2

p(1) . . . p(N) of {1, . . . , N}. Try to avoid using excess memory space. (This problem
arises if we wish to rearrange records in memory after an address table sort, without
having enough room to store 2N records.)

11. [M27] Write a MIX program for the algorithm of exercise 10, and analyze its
efficiency.

x 12. [25] Design an efficient algorithm suitable for rearranging the records R1, . . . , RN

into sorted order, after a list sort (Fig. 7) has been completed. Try to avoid using
excess memory space.

x 13. [27] Algorithm D requires space for 2N records R1, . . . , RN and S1, . . . , SN. Show
that it is possible to get by with only N records R1, . . . , RN, if a new unshuffling
procedure is substituted for steps D5 and D6. (Thus the problem is to design an
algorithm that rearranges R1, . . . , RN in place, based on the values of COUNT[u], . . . ,
COUNT[v] after step D4, without using additional memory space; this is essentially a
generalization of the problem considered in exercise 10.)

5.2.1. Sorting by Insertion

One of the important families of sorting techniques is based on the Şbridge
playerŤ method mentioned near the beginning of Section 5.2: Before examining
record Rj , we assume that the preceding records R1, . . . , Rj−1 have already
been sorted; then we insert Rj into its proper place among the previously sorted
records. Several interesting variations on this basic theme are possible.

Straight insertion. The simplest insertion sort is the most obvious one.
Assume that 1 < j ≤ N and that records R1, . . . , Rj−1 have been rearranged so
that

K1 ≤ K2 ≤ · · · ≤ Kj−1.

(Remember that, throughout this chapter, Kj denotes the key portion of Rj .)
We compare the new key Kj with Kj−1, Kj−2, . . . , in turn, until discovering
that Rj should be inserted between records Ri and Ri+1; then we move records
Ri+1, . . . , Rj−1 up one space and put the new record into position i + 1. It is
convenient to combine the comparison and moving operations, interleaving them
as shown in the following algorithm; since Rj Şsettles to its proper levelŤ this
method of sorting has often been called the sifting or sinking technique.

S1. Loop on j

S2. Set up i, K, R S3. Compare K :Ki

S4. Move Ri, decrease iS5. R into Ri+1

j>N

2≤
j≤

N

≥ <

i>0

i=0

Fig. 10. Algorithm S: Straight insertion.

Algorithm S (Straight insertion sort). Records R1, . . . , RN are rearranged in
place; after sorting is complete, their keys will be in order, K1 ≤ · · · ≤ KN.

5.2.1 SORTING BY INSERTION 81

S1. [Loop on j.] Perform steps S2 through S5 for j = 2, 3, . . . , N ; then terminate
the algorithm.

S2. [Set up i, K, R.] Set i ← j − 1, K ← Kj , R ← Rj . (In the following steps
we will attempt to insert R into the correct position, by comparing K with
Ki for decreasing values of i.)

S3. [Compare K : Ki.] If K ≥ Ki, go to step S5. (We have found the desired
position for record R.)

S4. [Move Ri, decrease i.] Set Ri+1 ← Ri, then i ← i − 1. If i > 0, go back to
step S3. (If i = 0, K is the smallest key found so far, so record R belongs in
position 1.)

S5. [R into Ri+1.] Set Ri+1 ← R.

Table 1 shows how our sixteen example numbers are sorted by Algorithm S. This
method is extremely easy to implement on a computer; in fact the following MIX

program is the shortest decent sorting routine in this book.

Table 1

EXAMPLE OF STRAIGHT INSERTION

∧

503 : 087

087 503
∧

: 512

∧

087 503 512 : 061

061 087 503 512
∧

: 908

061 087
∧

503 512 908 : 170

061 087 170 503 512
∧

908 : 897

. .

061 087 154 170 275 426 503 509 512 612 653 677
∧

765 897 908 : 703

061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908

Program S (Straight insertion sort). The records to be sorted are in locations
INPUT+1 through INPUT+N; they are sorted in place in the same area, on a full-
word key. rI1 ≡ j −N ; rI2 ≡ i; rA ≡ R ≡ K; assume that N ≥ 2.
01 START ENT1 2-N 1 S1. Loop on j. j ← 2.
02 2H LDA INPUT+N,1 N − 1 S2. Set up i, K, R.
03 ENT2 N-1,1 N − 1 i← j − 1.
04 3H CMPA INPUT,2 B +N − 1−A S3. Compare K : Ki.
05 JGE 5F B +N − 1−A To S5 if K ≥ Ki.
06 4H LDX INPUT,2 B S4. Move Ri, decrease i.
07 STX INPUT+1,2 B Ri+1 ← Ri.
08 DEC2 1 B i← i− 1.
09 J2P 3B B To S3 if i > 0.
10 5H STA INPUT+1,2 N − 1 S5. R into Ri+1.
11 INC1 1 N − 1
12 J1NP 2B N − 1 2 ≤ j ≤ N.

82 SORTING 5.2.1

The running time of this program is 9B + 10N − 3A − 9 units, where N is
the number of records sorted, A is the number of times i decreases to zero in
step S4, and B is the number of moves. Clearly A is the number of times
Kj < min(K1, . . . , Kj−1) for 1 < j ≤ N ; this is one less than the number of left-
to-right minima, so A is equivalent to the quantity that was analyzed carefully
in Section 1.2.10. Some reĆection shows us that B is also a familiar quantity:
The number of moves for Ąxed j is the number of inversions of Kj , so B is
the total number of inversions of the permutation K1 K2 . . . KN. Hence by Eqs.
1.2.10Ű(16), 5.1.1Ű(12), and 5.1.1Ű(13), we have

A =

min 0, ave HN − 1, max N − 1, dev

HN −H

(2)
N

;

B =

min 0, ave (N2 −N)/4, max (N2 −N)/2, dev

N(N − 1)(N + 2.5)/6

;

and the average running time of Program S, assuming that the input keys are
distinct and randomly ordered, is (2.25N2 + 7.75N − 3HN − 6)u. Exercise 33
explains how to improve this slightly.

The example data in Table 1 involves 16 items; there are two changes to the
left-to-right minimum, namely 087 and 061; and there are 41 inversions, as we
have seen in the previous section. Hence N = 16, A = 2, B = 41, and the total
sorting time is 514u.

Binary insertion and two-way insertion. While the jth record is being
processed during a straight insertion sort, we compare its key with about j/2
of the previously sorted keys, on the average; therefore the total number of
comparisons performed comes to roughly (1 + 2 + · · · + N)/2 ≈ N2/4, and this
gets very large when N is only moderately large. In Section 6.2.1 we shall
study Şbinary searchŤ techniques, which show where to insert the jth item
after only about lg j well-chosen comparisons have been made. For example,
when inserting the 64th record we can start by comparing K64 with K32; if it
is less, we compare it with K16, but if it is greater we compare it with K48,
etc., so that the proper place to insert R64 will be known after making only six
comparisons. The total number of comparisons for inserting all N items comes
to about N lg N, a substantial improvement over 1

4 N2; and Section 6.2.1 shows
that the corresponding program need not be much more complicated than a
program for straight insertion. This method is called binary insertion; it was
mentioned by John Mauchly as early as 1946, in the Ąrst published discussion
of computer sorting.

The unfortunate difficulty with binary insertion is that it solves only half
of the problem; after we have found where record Rj is to be inserted, we still
need to move about 1

2 j of the previously sorted records in order to make room
for Rj , so the total running time is still essentially proportional to N2. Some
early computers such as the IBM 705 had a built-in ŞtumbleŤ instruction that did
such move operations at high speed, and modern machines can do the moves even
faster with special hardware attachments; but as N increases, the dependence
on N2 eventually takes over. For example, an analysis by H. Nagler [CACM 3

5.2.1 SORTING BY INSERTION 83

(1960), 618Ű620] indicated that binary insertion could not be recommended for
sorting more than about N = 128 records on the IBM 705, when each record
was 80 characters long, and similar analyses apply to other machines.

Of course, a clever programmer can think of various ways to reduce the
amount of moving that is necessary; the Ąrst such trick, proposed early in the
1950s, is illustrated in Table 2. Here the Ąrst item is placed in the center of an
output area, and space is made for subsequent items by moving to the right or
to the left, whichever is most convenient. This saves about half the running time
of ordinary binary insertion, at the expense of a somewhat more complicated
program. It is possible to use this method without using up more space than
required for N records (see exercise 6); but we shall not dwell any longer on this
Ştwo-wayŤ method of insertion, since considerably more interesting techniques
have been developed.

Table 2

TWO-WAY INSERTION

∧

503

087 503
∧

∧

087 503 512

061 087 503 512
∧

061 087
∧

503 512 908

061 087 170 503 512
∧

908

061 087 170
∧

503 512 897 908

061 087 170 275 503 512 897 908

ShellŠs method. If we have a sorting algorithm that moves items only one
position at a time, its average time will be, at best, proportional to N2, since
each record must travel an average of about 1

3 N positions during the sorting
process (see exercise 7). Therefore, if we want to make substantial improvements
over straight insertion, we need some mechanism by which the records can take
long leaps instead of short steps.

Such a method was proposed in 1959 by Donald L. Shell [CACM 2, 7
(July 1959), 30Ű32], and it became known as shellsort. Table 3 illustrates the
general idea behind the method: First we divide the 16 records into 8 groups
of two each, namely (R1, R9), (R2, R10), . . . , (R8, R16). Sorting each group of
records separately takes us to the second line of Table 3; this is called the ŞĄrst
pass.Ť Notice that 154 has changed places with 512; 908 and 897 have both
jumped to the right. Now we divide the records into 4 groups of four each,
namely (R1, R5, R9, R13), . . . , (R4, R8, R12, R16), and again each group is sorted
separately; this Şsecond passŤ takes us to line 3. A third pass sorts two groups
of eight records, then a fourth pass completes the job by sorting all 16 records.
Each of the intermediate sorting processes involves either a comparatively short
Ąle or a Ąle that is comparatively well ordered, so straight insertion can be used

84 SORTING 5.2.1

Table 3

SHELLSORT WITH INCREMENTS 8, 4, 2, 1

8-sort:

503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703

4-sort:

503 087 154 061 612 170 765 275 653 426 512 509 908 677 897 703

2-sort:
503 087 154 061 612 170 512 275 653 426 765 509 908 677 897 703

1-sort:
154 061 503 087 512 170 612 275 653 426 765 509 897 677 908 703

061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908

for each sorting operation. In this way the records tend to converge quickly to
their Ąnal destinations.

Shellsort is also known as the Şdiminishing increment sort,Ť since each pass
is deĄned by an increment h such that we sort the records that are h units apart.
The sequence of increments 8, 4, 2, 1 is not sacred; indeed, any sequence ht−1,
ht−2, . . . , h0 can be used, so long as the last increment h0 equals 1. For example,
Table 4 shows the same data sorted with increments 7, 5, 3, 1. Some sequences
are much better than others; we will discuss the choice of increments later.

Algorithm D (Shellsort). Records R1, . . . , RN are rearranged in place; after
sorting is complete, their keys will be in order, K1 ≤ · · · ≤ KN . An auxiliary
sequence of increments ht−1, ht−2, . . . , h0 is used to control the sorting process,
where h0 = 1; proper choice of these increments can signiĄcantly decrease the
sorting time. This algorithm reduces to Algorithm S when t = 1.

D1. [Loop on s.] Perform step D2 for s = t− 1, t− 2, . . . , 0; then terminate the
algorithm.

D2. [Loop on j.] Set h← hs, and perform steps D3 through D6 for h < j ≤ N .
(We will use a straight insertion method to sort elements that are h positions
apart, so that Ki ≤ Ki+h for 1 ≤ i ≤ N − h. Steps D3 through D6 are
essentially the same as steps S2 through S5, respectively, in Algorithm S.)

D3. [Set up i, K, R.] Set i← j − h, K ← Kj , R← Rj .

D4. [Compare K : Ki.] If K ≥ Ki, go to step D6.

D5. [Move Ri, decrease i.] Set Ri+h ← Ri, then i← i− h. If i > 0, go back to
step D4.

D6. [R into Ri+h.] Set Ri+h ← R.

The corresponding MIX program is not much longer than our program for
straight insertion. Lines 08Ű19 of the following code are a direct translation of
Program S into the more general framework of Algorithm D.

Program D (Shellsort). We assume that the increments are stored in an
auxiliary table, with hs in location H+s; all increments are less than N. Register

5.2.1 SORTING BY INSERTION 85

Table 4

SHELLSORT WITH INCREMENTS 7, 5, 3, 1

7-sort:

503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703

5-sort:

275 087 426 061 509 170 677 503 653 512 154 908 612 897 765 703

3-sort:
154 087 426 061 509 170 677 503 653 512 275 908 612 897 765 703

1-sort:
061 087 170 154 275 426 512 503 653 612 509 765 677 897 908 703

061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908

assignments: rI1 ≡ j−N ; rI2 ≡ i; rA ≡ R ≡ K; rI3 ≡ s; rI4 ≡ h. Note that this
program modiĄes itself, in order to obtain efficient execution of the inner loop.

01 START ENT3 T-1 1 D1. Loop on s. s← t− 1.
02 1H LD4 H,3 T D2. Loop on j. h← hs.
03 ENT1 INPUT,4 T Modify the addresses of three
04 ST1 5F(0:2) T instructions in the main loop.
05 ST1 6F(0:2) T
06 ENN1 -N,4 T rI1← N − h.
07 ST1 3F(0:2) T
08 ENT1 1-N,4 T j ← h+ 1.
09 2H LDA INPUT+N,1 NT − S D3. Set up i, K, R.
10 3H ENT2 N-H,1 NT − S i← j − h. [Instruction modiĄed]
11 4H CMPA INPUT,2 B+NT−S−A D4. Compare K : Ki.
12 JGE 6F B+NT−S−A To D6 if K ≥ Ki.
13 LDX INPUT,2 B D5. Move Ri, decrease i.
14 5H STX INPUT+H,2 B Ri+h ← Ri. [Instruction modiĄed]
15 DEC2 0,4 B i← i− h.
16 J2P 4B B To D4 if i > 0.
17 6H STA INPUT+H,2 NT − S D6.R intoRi+h. [Instruction modiĄed]
18 7H INC1 1 NT − S j ← j + 1.
19 J1NP 2B NT − S To D3 if j ≤ N.
20 DEC3 1 T
21 J3NN 1B T t > s ≥ 0.

*Analysis of shellsort. In order to choose a good sequence of increments
ht−1, . . . , h0 for use in Algorithm D, we need to analyze the running time as
a function of those increments. This leads to some fascinating mathematical
problems, not yet completely resolved; nobody has been able to determine
the best possible sequence of increments for large values of N. Yet a good
many interesting facts are known about the behavior of shellsort, and we will
summarize them here; details appear in the exercises below. [Readers who are
not mathematically inclined should skim over the next few pages, continuing
with the discussion of list insertion following (12).]

86 SORTING 5.2.1

The frequency counts shown with Program D indicate that Ąve factors
determine the execution time: the size of the Ąle, N ; the number of passes
(that is, the number of increments), T = t; the sum of the increments,

S = h0 + · · ·+ ht−1;

the number of comparisons, B + NT − S −A; and the number of moves, B. As
in the analysis of Program S, A is essentially the number of left-to-right minima
encountered in the intermediate sorting operations, and B is the number of
inversions in the subĄles. The factor that governs the running time is B, so we
shall devote most of our attention to it. For purposes of analysis we shall assume
that the keys are distinct and initially in random order.

Let us call the operation of step D2 Şh-sorting,Ť so that shellsort consists
of ht−1-sorting, followed by ht−2 sorting, . . . , followed by h0-sorting. A Ąle in
which Ki ≤ Ki+h for 1 ≤ i ≤ N − h will be called Şh-ordered.Ť

Consider Ąrst the simplest generalization of straight insertion, when there
are just two increments, h1 = 2 and h0 = 1. In this case the second pass begins
with a 2-ordered sequence of keys, K1 K2 . . . KN. It is easy to see that the number
of permutations a1 a2 . . . an of {1, 2, . . . , n} having ai ≤ ai+2 for 1 ≤ i ≤ n− 2 is

n

⌊n/2⌋

,

since we obtain exactly one 2-ordered permutation for each choice of ⌊n/2⌋
elements to put in the even-numbered positions a2 a4 . . . , while the remaining
⌈n/2⌉ elements occupy the odd-numbered positions. Each 2-ordered permutation
is equally likely after a random Ąle has been 2-sorted. What is the average
number of inversions among all such permutations?

Let An be the total number of inversions among all 2-ordered permutations
of {1, 2, . . . , n}. Clearly A1 = 0, A2 = 1, A3 = 2; and by considering the six
cases

1 3 2 4 1 2 3 4 1 2 4 3 2 1 3 4 2 1 4 3 3 1 4 2

we Ąnd that A4 = 1 + 0 + 1 + 1 + 2 + 3 = 8. One way to investigate An in
general is to consider the Şlattice diagramŤ illustrated in Fig. 11 for n = 15.
A 2-ordered permutation of {1, 2, . . . , n} can be represented as a path from the
upper left corner point (0,0) to the lower right corner point (⌈n/2⌉, ⌊n/2⌋), if
we make the kth step of the path go downwards or to the right, respectively,
according as k appears in an odd or an even position in the permutation. This
rule deĄnes a one-to-one correspondence between 2-ordered permutations and
n-step paths from corner to corner of the lattice diagram; for example, the path
shown by the heavy line in Fig. 11 corresponds to the permutation

2 1 3 4 6 5 7 10 8 11 9 12 14 13 15. (1)

Furthermore, we can attach ŞweightsŤ to the vertical lines of the path, as Fig. 11
shows; a line from (i, j) to (i+1, j) gets weight |i− j|. A little study will convince
the reader that the sum of these weights along each path is equal to the number
of inversions of the corresponding permutation; this sum also equals the number

5.2.1 SORTING BY INSERTION 87

00 01 02 03 04 05 06 07

10 11 12 13 14 15 16 17

20 21 22 23 24 25 26 27

30 31 32 33 34 35 36 37

40 41 42 43 44 45 46 47

50 51 52 53 54 55 56 57

60 61 62 63 64 65 66 67

70 71 72 73 74 75 76 77

80 81 82 83 84 85 86 87

00

00

00

00

00

00

00

00

1

1 1

1 1

1 1

1 1

1 1

1 1

1

2

2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

5

5

5

5

5

5

6

6

6

6

7

7

Fig. 11. Correspondence between 2-ordering and paths in a lattice. Italicized numbers
are weights that yield the number of inversions in the 2-ordered permutation.

of shaded squares between the given path and the staircase path indicated by
heavy dots in the Ągure. (See exercise 12.) Thus, for example, (1) has 1 + 0 +
1 + 0 + 1 + 2 + 1 + 0 = 6 inversions.

When a ≤ a′ and b ≤ b′, the number of relevant paths from (a, b) to (a′, b′)
is the number of ways to mix a′ − a vertical lines with b′ − b horizontal lines,
namely

a′ − a + b′ − b

a′ − a

;

hence the number of permutations whose corresponding path traverses the ver-
tical line segment from (i, j) to (i+1, j) is

i + j

i

n− i− j − 1
⌊n/2⌋ − j

.

Multiplying by the associated weight and summing over all segments gives

A2n =

0≤i≤n
0≤j≤n

|i− j|

i + j

i

2n− i− j − 1

n− j

;

A2n+1 =

0≤i≤n
0≤j≤n

|i− j|

i + j

i

2n− i− j

n− j

. (2)

The absolute value signs in these sums make the calculations somewhat tricky,
but exercise 14 shows that An has the surprisingly simple form ⌊n/2⌋2n−2. Hence

88 SORTING 5.2.1

the average number of inversions in a random 2-ordered permutation is

⌊n/2⌋2n−2

n

⌊n/2⌋

;

by StirlingŠs approximation this is asymptotically

π/128 n3/2 ≈ 0.15n3/2. The
maximum number of inversions is easily seen to be

⌊n/2⌋+ 1
2

≈ 1

8
n2.

It is instructive to study the distribution of inversions more carefully, by
examining the generating functions

h1(z) = 1,

h2(z) = 1 + z,

h3(z) = 1 + 2z,

h4(z) = 1 + 3z + z2 + z3, . . . ,

(3)

as in exercise 15. In this way we Ąnd that the standard deviation is also
proportional to n3/2, so the distribution is not extremely stable about the mean.

Now let us consider the general two-pass case of Algorithm D, when the
increments are h and 1:

Theorem H. The average number of inversions in an h-ordered permutation
of {1, 2, . . . , n} is

f(n, h) =
22q−1q! q!
(2q + 1)!

h

2

q(q + 1) +

r

2

(q + 1)− 1

2

h− r

2

q

, (4)

where q = ⌊n/h⌋ and r = n mod h.

This theorem is due to Douglas H. Hunt [BachelorŠs thesis, Princeton University
(April 1967)]. Note that when h ≥ n the formula correctly gives f(n, h) = 1

2

n
2

.

Proof. An h-ordered permutation contains r sorted subsequences of length q +1,
and h−r of length q. Each inversion comes from a pair of distinct subsequences,
and a given pair of distinct subsequences in a random h-ordered permutation
deĄnes a random 2-ordered permutation. The average number of inversions
is therefore the sum of the average number of inversions between each pair of
distinct subsequences, namely

r

2

A2q+2
2q + 2
q + 1

 + r(h− r)
A2q+1
2q + 1

q

 +

h− r

2

A2q
2q

q

 = f(n, h).

Corollary H. If the sequence of increments ht−1, . . . , h1, h0 satisĄes the
condition

hs+1 mod hs = 0, for t− 1 > s ≥ 0, (5)

5.2.1 SORTING BY INSERTION 89

8 16 24 32 40 48 56 64 72 801 h
0

100

200

300

400

500

600

700

800

900

1000

1100

Fig. 12. The average number, f(n, h), of inversions in an h-ordered Ąle of n elements,
shown for n = 64.

then the average number of move operations in Algorithm D is

t>s≥0

rsf(qs+1, hs+1/hs) + (hs − rs)f(qs, hs+1/hs)

, (6)

where rs = N mod hs, qs = ⌊N/hs⌋, ht = Nht−1, and f is deĄned in (4).

Proof. The process of hs-sorting consists of a straight insertion sort on rs
(hs+1/hs)-ordered subĄles of length qs + 1, and on (hs − rs) such subĄles of
length qs. The divisibility condition implies that each of these subĄles is a ran-
dom (hs+1/hs)-ordered permutation, in the sense that each (hs+1/hs)-ordered
permutation is equally likely, since we are assuming that the original input was
a random permutation of distinct elements.

Condition (5) in this corollary is always satisĄed for two-pass shellsorts,
when the increments are h and 1. If q = ⌊N/h⌋ and r = N mod h, the quantity
B in Program D will have an average value of

rf(q+1, N) + (h− r)f(q, N) + f(N, h) =
r

2

q + 1

2

+

h− r

2

q

2

+ f(N, h).

To a Ąrst approximation, the function f(n, h) equals (
√

π/8)n3/2h1/2; we can,
for example, compare it to the smooth curve in Fig. 12 when n = 64. Hence the
running time for a two-pass Program D is approximately proportional to

2N2/h +
√

πN3h.

The best choice of h is therefore approximately 3

16N/π ≈ 1.72
3
√

N ; and with
this choice of h we get an average running time proportional to N 5/3.

90 SORTING 5.2.1

Thus we can make a substantial improvement over straight insertion, from
O(N2) to O(N1.667), just by using shellsort with two increments. Clearly we
can do even better when more increments are used. Exercise 18 discusses the
optimum choice of ht−1, . . . , h0 when t is Ąxed and when the hŠs are constrained
by the divisibility condition; the running time decreases to O(N1.5+ϵ/2), where
ϵ = 1/(2t − 1), for large N. We cannot break the N1.5 barrier by using the
formulas above, since the last pass always contributes

f(N, h1) ≈ (
√

π/8)N3/2h
1/2
1

inversions to the sum.
But our intuition tells us that we can do even better when the increments

ht−1, . . . , h0 do not satisfy the divisibility condition (5). For example, 8-sorting
followed by 4-sorting followed by 2-sorting does not allow any interaction between
keys in even and odd positions; therefore the Ąnal 1-sorting pass is inevitably
faced with Θ(N3/2) inversions, on the average. By contrast, 7-sorting followed
by 5-sorting followed by 3-sorting jumbles things up in such a way that the Ąnal
1-sorting pass cannot encounter more than 2N inversions! (See exercise 26.)
Indeed, an astonishing phenomenon occurs:

Theorem K. If a k-ordered Ąle is h-sorted, it remains k-ordered.

Thus a Ąle that is Ąrst 7-sorted, then 5-sorted, becomes both 7-ordered and
5-ordered. And if we 3-sort it, the result is ordered by 7s, 5s, and 3s. Examples
of this remarkable property can be seen in Table 4 on page 85.

Proof. Exercise 20 shows that Theorem K is a consequence of the following fact:

Lemma L. Let m, n, r be nonnegative integers, and let (x1, . . . , xm+r) and
(y1, . . . , yn+r) be any sequences of numbers such that

y1 ≤ xm+1, y2 ≤ xm+2, . . . , yr ≤ xm+r. (7)

If the xŠs and yŠs are sorted independently, so that x1 ≤ · · · ≤ xm+r and y1 ≤
· · · ≤ yn+r, the relations (7) will still be valid.

Proof. All but m of the xŠs are known to dominate (that is, to be greater than
or equal to) some y, where distinct xŠs dominate distinct yŠs. Let 1 ≤ j ≤ r.
Since xm+j after sorting dominates m + j of the xŠs, it dominates at least j of
the yŠs; therefore it dominates the smallest j of the yŠs; hence xm+j ≥ yj after
sorting.

Theorem K suggests that it is desirable to sort with relatively prime incre-
ments, but it does not lead directly to exact estimates of the number of moves
made in Algorithm D. Moreover, the number of permutations of {1, 2, . . . , n}
that are both h-ordered and k-ordered is not always a divisor of n!, so we can see
that Theorem K does not tell the whole story; some k- and h-ordered Ąles are
obtained more often than others after k- and h-sorting. Therefore the average-
case analysis of Algorithm D for general increments ht−1, . . . , h0 has baffled
everyone so far when t > 3. There is not even an obvious way to Ąnd the worst

5.2.1 SORTING BY INSERTION 91

case, when N and (ht−1, . . . , h0) are given. We can, however, derive several
facts about the approximate maximum running time when the increments have
certain forms:

Theorem P. The running time of Algorithm D is O(N3/2), when hs = 2s+1−1
for 0 ≤ s < t = ⌊lg N⌋.
Proof. It suffices to bound Bs, the number of moves in pass s, in such a way
that Bt−1 + · · · + B0 = O(N3/2). During the Ąrst t/2 passes, for t > s ≥ t/2,
we may use the obvious bound Bs = O

hs(N/hs)2

; and for subsequent passes

we may use the result of exercise 23, Bs = O(Nhs+2hs+1/hs). Consequently
Bt−1 + · · ·+ B0 = O

N(2 + 22 + · · ·+ 2t/2 + 2t/2 + · · ·+ 2)

= O(N3/2).

This theorem is due to A. A. Papernov and G. V. Stasevich, Problemy
Peredachi Informatsii 1, 3 (1965), 81Ű98. It gives an upper bound on the worst-

case running time of the algorithm, not merely a bound on the average running
time. The result is not trivial since the maximum running time when the hŠs
satisfy the divisibility constraint (5) is of order N2; and exercise 24 shows that
the exponent 3/2 cannot be lowered.

An interesting improvement of Theorem P was discovered by Vaughan Pratt
in 1969: If the increments are chosen to be the set of all numbers of the form 2p3q

that are less than N, the running time of Algorithm D is of order N(log N)2. In
this case we can also make several important simpliĄcations to the algorithm; see
exercises 30 and 31. However, even with these simpliĄcations, PrattŠs method
requires a substantial overhead because it makes quite a few passes over the data.
Therefore his increments donŠt actually sort faster than those of Theorem P in
practice, unless N is astronomically large. The best sequences for real-world N
appear to satisfy hs ≈ ρs, where the ratio ρ ≈ hs+1/hs is roughly independent
of s but may depend on N .

We have observed that it is unwise to choose increments in such a way that
each is a divisor of all its predecessors; but we should not conclude that the best
increments are relatively prime to all of their predecessors. Indeed, every element
of a Ąle that is gh-sorted and gk-sorted with h ⊥ k has at most 1

2 (h− 1)(k − 1)
inversions when we are g-sorting. (See exercise 21.) PrattŠs sequence {2p3q}
wins as N →∞ by exploiting this fact, but it grows too slowly for practical use.

Janet Incerpi and Robert Sedgewick [J. Comp. Syst. Sci. 31 (1985), 210Ű224;
see also Lecture Notes in Comp. Sci. 1136 (1996), 1Ű11] have found a way to have
the best of both worlds, by showing how to construct a sequence of increments
for which hs ≈ ρs yet each increment is the gcd of two of its predecessors. Given
any number ρ > 1, they start by deĄning a base sequence a1, a2, . . . , where ak is
the least integer ≥ ρk such that aj ⊥ ak for 1 ≤ j < k. If ρ = 2.5, for example,
the base sequence is

a1, a2, a3, . . . = 3, 7, 16, 41, 101, 247, 613, 1529, 3821, 9539,

Now they deĄne the increments by setting h0 = 1 and

hs = hs−rar for

r

2

< s ≤

r + 1

2

. (8)

92 SORTING 5.2.1

Thus the sequence of increments starts

1; a1; a2, a1a2; a1a3, a2a3, a1a2a3;

For example, when ρ = 2.5 we get

1, 3, 7, 21, 48, 112, 336, 861, 1968, 4592, 13776, 33936, 86961, 198768,

The crucial point is that we can turn recurrence (8) around:

hs = hr+s/ar = h(r
2)/a(r

2)−s for

r − 1
2

≤ s <

r

2

. (9)

Therefore, by the argument in the previous paragraph, the number of inversions
per element when we are h0-sorting, h1-sorting, . . . is at most

b(a2, a1); b(a3, a2), b(a3, a1); b(a4, a3), b(a4, a2), b(a4, a1); . . . (10)

where b(h, k) = 1
2 (h− 1)(k− 1). If ρt−1 ≤ N < ρt, the total number B of moves

is at most N times the sum of the Ąrst t elements of this sequence. Therefore
(see exercise 41) we can prove that the worst-case running time is much better
than order N1.5:

Theorem I. The running time for Algorithm D is O(Nec
√

ln N) when the
increments hs are deĄned by (8). Here c =

√
8 ln ρ and the constant implied

by O depends on ρ.

This asymptotic upper bound is not especially important as N → ∞,
because PrattŠs sequence does better. The main point of Theorem I is that
a sequence of increments with the practical growth rate hs ≈ ρs can have a
running time that is guaranteed to be O(N1+ϵ) for arbitrarily small ϵ > 0, when
any value ρ > 1 is given.

LetŠs consider practical sizes of N more carefully by looking at the total

running time of Program D, namely (9B+10NT +13T−10S−3A+1)u. Table 5
shows the average running time for various sequences of increments when N = 8.
For this small value of N, bookkeeping operations are the most signiĄcant part
of the cost, and the best results are obtained when t = 1; hence for N = 8
we are better off using simple straight insertion. (The average running time of
Program S when N = 8 is only 191.85u.) Curiously, the best two-pass algorithm
occurs when h1 = 6, since a large value of S is more important here than a
small value of B. Similarly, the three increments 3 2 1 minimize the average
number of moves, but they do not lead to the best three-pass sequence. It may
be of interest to record here some Şworst-caseŤ permutations that maximize the
number of moves, since the general construction of such permutations is still
unknown:

h2 = 5, h1 = 3, h0 = 1: 8 5 2 6 3 7 4 1 (19 moves)

h2 = 3, h1 = 2, h0 = 1: 8 3 5 7 2 4 6 1 (17 moves)

5.2.1 SORTING BY INSERTION 93

Table 5

ANALYSIS OF ALGORITHM D WHEN N = 8

Increments Aave Bave S T MIX time

1 1.718 14.000 1 1 204.85u
2 1 2.667 9.657 3 2 235.91u
3 1 2.917 9.100 4 2 220.15u
4 1 3.083 10.000 5 2 217.75u
5 1 2.601 10.000 6 2 209.20u
6 1 2.135 10.667 7 2 206.60u
7 1 1.718 12.000 8 2 209.85u

4 2 1 3.500 8.324 7 3 274.42u
5 3 1 3.301 8.167 9 3 253.60u
3 2 1 3.320 7.829 6 3 280.50u

As N grows larger we have a slightly different picture. Table 6 shows
the approximate number of moves for various sequences of increments when
N = 1000. The Ąrst few entries satisfy the divisibility constraints (5), so
that formula (6) and exercise 19 can be used; empirical tests were used to
get approximate average values for the other cases. Ten thousand random Ąles
of 1000 elements were generated, and they each were sorted with each of the
sequences of increments. The standard deviation of the number of left-to-right
minima A was usually about 15; the standard deviation of the number of moves
B was usually about 300.

Some patterns are evident in this data, but the behavior of Algorithm D still
remains very obscure. Shell originally suggested using the increments ⌊N/2⌋,
⌊N/4⌋, ⌊N/8⌋, . . . , but this is undesirable when the binary representation of N
contains a long string of zeros. Lazarus and Frank [CACM 3 (1960), 20Ű22]
suggested using essentially the same sequence, but adding 1 when necessary,
to make all increments odd. Hibbard [CACM 6 (1963), 206Ű213] suggested
using increments of the form 2k− 1; Papernov and Stasevich suggested the form
2k + 1. Other natural sequences investigated in Table 6 involve the numbers
2k − (−1)k

/3 and (3k − 1)/2, as well as Fibonacci numbers and the IncerpiŰ

Sedgewick sequences (8) for ρ = 2.5 and ρ = 2. Pratt-like sequences {5p11q}
and {7p13q} are also shown, because they retain the asymptotic O

N(log N)2

behavior but have lower overhead costs for small N . The Ąnal examples in
Table 6 come from another sequence devised by Sedgewick, based on slightly
different heuristics [J. Algorithms 7 (1986), 159Ű173]:

hs =

9 · 2s − 9 · 2s/2 + 1, if s is even;
8 · 2s − 6 · 2(s+1)/2 + 1, if s is odd.

(11)

When these increments (h0, h1, h2, . . .) = (1, 5, 19, 41, 109, 209, . . .) are used,
Sedgewick proved that the worst-case running time is O(N4/3).

The minimum number of moves, about 6750, was observed for increments
of the form 2k + 1, and also in the IncerpiŰSedgewick sequence for ρ = 2. But it
is important to realize that the number of moves is not the only consideration,

94 SORTING 5.2.1

Table 6

APPROXIMATE BEHAVIOR OF ALGORITHM D WHEN N = 1000

Increments Aave Bave T

1 6 249750 1
17 1 65 41667 2

60 6 1 158 26361 3
140 20 4 1 262 21913 4

256 64 16 4 1 362 20459 5
576 192 48 16 4 1 419 20088 6

729 243 81 27 9 3 1 378 18533 7
512 256 128 64 32 16 8 4 2 1 493 16435 10

500 250 125 62 31 15 7 3 1 516 7655 9
501 251 125 63 31 15 7 3 1 558 7370 9
511 255 127 63 31 15 7 3 1 559 7200 9

255 127 63 31 15 7 3 1 436 7445 8
127 63 31 15 7 3 1 299 8170 7

63 31 15 7 3 1 190 9860 6
31 15 7 3 1 114 13615 5

513 257 129 65 33 17 9 5 3 1 561 6745 10
257 129 65 33 17 9 5 3 1 440 6995 9

129 65 33 17 9 5 3 1 304 7700 8
65 33 17 9 5 3 1 197 9300 7

33 17 9 5 3 1 122 12695 6
683 341 171 85 43 21 11 5 3 1 511 7365 10

341 171 85 43 21 11 5 3 1 490 7490 9
255 63 15 7 3 1 373 8620 6
257 65 17 5 3 1 375 8990 6
341 85 21 5 3 1 410 9345 6

377 233 144 89 55 34 21 13 8 5 3 2 1 518 7400 13
233 144 89 55 34 21 13 8 5 3 2 1 432 7610 12

377 144 55 21 8 3 1 456 8795 7
365 122 41 14 5 2 1 440 8085 7

364 121 40 13 4 1 437 8900 6
121 40 13 4 1 268 9790 5

336 112 48 21 7 3 1 432 7840 7
306 170 90 45 18 10 5 2 1 465 6755 9

169 91 49 13 7 1 349 8698 6
275 125 121 55 25 11 5 1 446 6788 8

190 84 37 16 7 3 1 359 7201 7
929 505 209 109 41 19 5 1 512 7725 8

505 209 109 41 19 5 1 519 7790 7
209 109 41 19 5 1 382 8165 6

even though it dominates the asymptotic running time. Since Program D takes
9B + 10(NT − S) + · · · units of time, we see that saving one pass is about as
desirable as saving 10

9 N moves; when N = 1000 we are willing to add 1111 moves
if we can save one pass. (The Ąrst pass is very quick, however, if ht−1 is near N ,
because NT − S = (N − ht−1) + · · ·+ (N − h0).)

5.2.1 SORTING BY INSERTION 95

Empirical tests conducted by M. A. Weiss [Comp. J. 34 (1991), 88Ű91]
suggest strongly that the average number of moves performed by Algorithm D
with increments 2k − 1, . . . , 15, 7, 3, 1 is approximately proportional to N5/4.
More precisely, Weiss found that Bave ≈ 1.55N5/4 − 4.48N + O(N3/4) for
100 ≤ N ≤ 12000000 when these increments are used; the empirical standard
deviation was approximately .065N5/4. On the other hand, subsequent tests by
Marcin Ciura show that SedgewickŠs sequence (11) apparently makes Bave =
O

N(log N)2

or better. The standard deviation for sequence (11) is amazingly

small for N ≤ 106, but it mysteriously begins to ŞexplodeŤ when N passes 107.
Table 7 shows typical breakdowns of moves per pass obtained in three

random experiments, using increments of the forms 2k − 1, 2k + 1, and (11).
The same Ąle of numbers was used in each case. The total number of moves,

s Bs, comes to 346152, 329532, 248788 in the three cases, so sequence (11) is
clearly superior in this example.

Table 7

MOVES PER PASS: EXPERIMENTS WITH N = 20000

hs Bs hs Bs hs Bs

4095 19458 4097 19459 3905 20714
2047 15201 2049 14852 2161 13428
1023 16363 1025 15966 929 18206
511 18867 513 18434 505 16444
255 23232 257 22746 209 21405
127 28034 129 27595 109 19605
63 33606 65 34528 41 26604
31 40350 33 45497 19 23441
15 66037 17 48717 5 38941
7 43915 9 38560 1 50000
3 24191 5 20271
1 16898 3 9448

1 13459

Although Algorithm D is gradually becoming better understood, more than
three decades of research have failed to turn up any grounds for making strong
assertions about what sequences of increments make it work best. If N is less
than 1000, a simple rule such as

Let h0 = 1, hs+1 = 3hs + 1, and stop with ht−1 when ht+1 > N (12)

seems to be about as good as any other. For larger values of N , SedgewickŠs
sequence (11) can be recommended. Still better results, possibly even of order
N log N , have been reported by N. Tokuda using the quantity ⌊2.25hs⌋ in place
of 3hs in (12); see Information Processing 92 1 (1992), 449Ű457.

List insertion. Let us now leave shellsort and consider other types of im-
provements over straight insertion. One of the most important general ways to
improve on a given algorithm is to examine its data structures carefully, since

96 SORTING 5.2.1

a reorganization of data structures to avoid unnecessary operations often leads
to substantial savings. Further discussion of this general idea appears in Section
2.4, where a rather complex algorithm is studied; let us consider how it applies
to a very simple algorithm like straight insertion. What is the most appropriate
data structure for Algorithm S?

Straight insertion involves two basic operations:

i) scanning an ordered Ąle to Ąnd the largest key less than or equal to a given
key; and

ii) inserting a new record into a speciĄed part of the ordered Ąle.

The Ąle is obviously a linear list, and Algorithm S handles this list by using
sequential allocation (Section 2.2.2); therefore it is necessary to move roughly
half of the records in order to accomplish each insertion operation. On the
other hand, we know that linked allocation (Section 2.2.3) is ideally suited to
insertion, since only a few links need to be changed; and the other operation,
sequential scanning, is about as easy with linked allocation as with sequential
allocation. Only one-way linkage is needed, since we always scan the list in the
same direction. Therefore we conclude that the right data structure for straight
insertion is a one-way, linked linear list. It also becomes convenient to revise
Algorithm S so that the list is scanned in increasing order:

Algorithm L (List insertion). Records R1, . . . , RN are assumed to contain keys
K1, . . . , KN, together with link Ąelds L1, . . . , LN capable of holding the numbers
0 through N ; there is also an additional link Ąeld L0, in an artiĄcial record
R0 at the beginning of the Ąle. This algorithm sets the link Ąelds so that the
records are linked together in ascending order. Thus, if p(1) . . . p(N) is the stable
permutation that makes Kp(1) ≤ · · · ≤ Kp(N), this algorithm will yield

L0 = p(1); Lp(i) = p(i + 1), for 1 ≤ i < N ; Lp(N) = 0. (13)

L1. [Loop on j.] Set L0 ← N, LN ← 0. (Link L0 acts as the ŞheadŤ of the list,
and 0 acts as a null link; hence the list is essentially circular.) Perform steps
L2 through L5 for j = N−1, N−2, . . . , 1; then terminate the algorithm.

L2. [Set up p, q, K.] Set p ← L0, q ← 0, K ← Kj . (In the following steps we
will insert Rj into its proper place in the linked list, by comparing K with
the previous keys in ascending order. The variables p and q act as pointers
to the current place in the list, with p = Lq so that q is one step behind p.)

L3. [Compare K : Kp.] If K ≤ Kp, go to step L5. (We have found the desired
position for record R, between Rq and Rp in the list.)

L4. [Bump p, q.] Set q ← p, p ← Lq. If p > 0, go back to step L3. (If p = 0,
K is the largest key found so far; hence record R belongs at the end of the
list, between Rq and R0.)

L5. [Insert into list.] Set Lq ← j, Lj ← p.

This algorithm is important not only because it is a simple sorting method,
but also because it occurs frequently as part of other list-processing algorithms.

5.2.1 SORTING BY INSERTION 97

Table 8 shows the Ąrst few steps that occur when our sixteen example numbers
are sorted; exercise 32 gives the Ąnal link setting.

Table 8

EXAMPLE OF LIST INSERTION

j: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Kj : − 503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703
Lj : 16 − − − − − − − − − − − − − − − 0
Lj : 16 − − − − − − − − − − − − − − 0 15
Lj : 14 − − − − − − − − − − − − − 16 0 15

. .

Program L (List insertion). We assume that Kj is stored in INPUT+j (0 :3),
and Lj is stored in INPUT+j (4 :5). rI1 ≡ j; rI2 ≡ p; rI3 ≡ q; rA(0:3) ≡ K.

01 KEY EQU 0:3

02 LINK EQU 4:5

03 START ENT1 N 1 L1. Loop on j. j ← N.
04 ST1 INPUT(LINK) 1 L0 ← N.
05 STZ INPUT+N(LINK) 1 LN ← 0.
06 JMP 6F 1 Go to decrease j.
07 2H LD2 INPUT(LINK) N − 1 L2. Set up p, q, K. p← L0.
08 ENT3 0 N − 1 q ← 0.
09 LDA INPUT,1 N − 1 K ← Kj .
10 3H CMPA INPUT,2(KEY) B +N − 1−A L3. Compare K : Kp.
11 JLE 5F B +N − 1−A To L5 if K ≤ Kp.
12 4H ENT3 0,2 B L4. Bump p, q. q ← p.
13 LD2 INPUT,3(LINK) B p← Lq.
14 J2P 3B B To L3 if p > 0.
15 5H ST1 INPUT,3(LINK) N − 1 L5. Insert into list. Lq ← j.
16 ST2 INPUT,1(LINK) N − 1 Lj ← p.
17 6H DEC1 1 N
18 J1P 2B N N > j ≥ 1.

The running time of this program is 7B + 14N − 3A− 6 units, where N is
the length of the Ąle, A + 1 is the number of right-to-left maxima, and B is the
number of inversions in the original permutation. (See the analysis of Program S.
Note that Program L does not rearrange the records in memory; this can be done
as in exercise 5.2Ű12, at a cost of about 20N additional units of time.) Program S
requires (9B + 10N − 3A− 9)u, and since B is about 1

4 N2, we can see that the
extra memory space used for the link Ąelds has saved about 22 percent of the
execution time. Another 22 percent can be saved by careful programming (see
exercise 33), but the running time remains proportional to N2.

To summarize what we have done so far: We started with Algorithm S,
a simple and natural sorting algorithm that does about 1

4 N2 comparisons and
1
4 N2 moves. We improved it in one direction by considering binary insertion,
which does about N lg N comparisons and 1

4 N2 moves. Changing the data

98 SORTING 5.2.1

061 087 503 512 908

154 170 275 426 509 612 653 897

677 765

703

Fig. 13. Example of WheelerŠs tree insertion scheme.

structure slightly with Ştwo-way insertionŤ cuts the number of moves down
to about 1

8 N2. Shellsort cuts the number of comparisons and moves to about
N7/6, for N in a practical range; as N → ∞ this number can be lowered to
order N(log N)2. Another way to improve on Algorithm S, using a linked data
structure, gave us the list insertion method, which does about 1

4 N2 comparisons,
0 moves, and 2N changes of links.

Is it possible to marry the best features of these methods, reducing the
number of comparisons to order N log N as in binary insertion, yet reducing
the number of moves as in list insertion? The answer is yes, by going to a
tree-structured arrangement. This possibility was Ąrst explored about 1957 by
D. J. Wheeler, who suggested using two-way insertion until it becomes necessary
to move some data; then instead of moving the data, a pointer to another area
of memory is inserted, and the same technique is applied recursively to all items
that are to be inserted into this new area of memory. WheelerŠs original method
[see A. S. Douglas, Comp. J. 2 (1959), 5] was a complicated combination of
sequential and linked memory, with nodes of varying size; for our 16 example
numbers the tree of Fig. 13 would be formed. A similar but simpler tree-insertion
scheme, using binary trees, was devised by C. M. Berners-Lee about 1958 [see
Comp. J. 3 (1960), 174, 184]. Since the binary tree method and its reĄnements
are quite important for searching as well as sorting, they are discussed at length
in Section 6.2.2.

Still another way to improve on straight insertion is to consider inserting
several things at a time. For example, if we have a Ąle of 1000 items, and
if 998 of them have already been sorted, Algorithm S makes two more passes
through the Ąle (Ąrst inserting R999, then R1000). We can obviously save time
if we compare K999 with K1000, to see which is larger, then insert them both

with one look at the Ąle. A combined operation of this kind involves about 2
3 N

comparisons and moves (see exercise 3.4.2Ű5), instead of two passes each with
about 1

2 N comparisons and moves.
In other words, it is generally a good idea to ŞbatchŤ operations that require

long searches, so that multiple operations can be done together. If we carry this
idea to its natural conclusion, we rediscover the method of sorting by merging,
which is so important it is discussed in Section 5.2.4.

5.2.1 SORTING BY INSERTION 99

Address calculation sorting. Surely by now we have exhausted all possible
ways to improve on the simple method of straight insertion; but letŠs look again!
Suppose you want to arrange several dozen books on your bookshelves, in order
by authorsŠ names, when the books are given to you in random order. YouŠll
naturally try to estimate the Ąnal position of each book as you put it in place,
thereby reducing the number of comparisons and moves that youŠll have to make.
And the whole process will be somewhat more efficient if you start with a little
more shelf space than is absolutely necessary. This method was Ąrst suggested
for computer sorting by Isaac and Singleton, JACM 3 (1956), 169Ű174, and it
was developed further by Tarter and Kronmal, Proc. ACM National Conference
21 (1966), 331Ű337.

Address calculation sorting usually requires additional storage space propor-
tional to N, either to leave enough room so that excessive moving is not required,
or to maintain auxiliary tables that account for irregularities in the distribution
of keys. (See the Şdistribution countingŤ sort, Algorithm 5.2D, which is a form
of address calculation.) We can probably make the best use of this additional
memory space if we devote it to link Ąelds, as in the list insertion method. In this
way we can also avoid having separate areas for input and output; everything
can be done in the same area of memory.

These considerations suggest that we generalize list insertion so that several

lists are kept, not just one. Each list is used for certain ranges of keys. We
make the important assumption that the keys are pretty evenly distributed, not
Şbunched upŤ irregularly: The set of all possible values of the keys is partitioned
into M parts, and we assume a probability of 1/M that a given key falls into a
given part. Then we provide additional storage for M list heads, and each list
is maintained as in simple list insertion.

It is not necessary to give the algorithm in great detail here; the method
simply begins with all list heads set to Λ. As each new item enters, we Ąrst decide
which of the M parts its key falls into, then we insert it into the corresponding
list as in Algorithm L.

To illustrate this approach, suppose that the 16 keys used in our examples
are divided into the M = 4 ranges 0Ű249, 250Ű499, 500Ű749, 750Ű999. We
obtain the following conĄgurations as the keys K1, K2, . . . , K16 are successively
inserted:

After After After Final
4 items: 8 items: 12 items: state:

List 1: 061, 087 061, 087, 170 061, 087, 154, 170 061, 087, 154, 170
List 2: 275 275, 426 275, 426
List 3: 503, 512 503, 512 503, 509, 512, 653 503, 509, 512, 612, 653, 677, 703
List 4: 897, 908 897, 908 765, 897, 908

(Program M below actually inserts the keys in reverse order, K16, . . . , K2, K1,
but the Ąnal result is the same.) Because linked memory is used, the varying-
length lists cause no storage allocation problem. All lists can be combined into
a single list at the end, if desired (see exercise 35).

100 SORTING 5.2.1

Program M (Multiple list insertion). In this program we make the same
assumptions as in Program L, except that the keys must be nonnegative, thus

0 ≤ Kj < (BYTESIZE)3.

The program divides this range into M equal parts by multiplying each key by a
suitable constant. The list heads are in locations HEAD+1 through HEAD+M.
01 KEY EQU 1:3

02 LINK EQU 4:5

03 START ENT2 M 1
04 STZ HEAD,2 M HEAD[p]← Λ.
05 DEC2 1 M
06 J2P *-2 M M ≥ p ≥ 1.
07 ENT1 N 1 j ← N.
08 2H LDA INPUT,1(KEY) N
09 MUL =M(1:3)= N rA← ⌊M ·Kj/ BYTESIZE

3⌋.
10 STA *+1(1:2) N
11 ENT4 0 N rI4← rA.
12 ENT3 HEAD+1-INPUT,4 N q ← LOC(HEAD[rA]).
13 LDA INPUT,1 N K ← Kj .
14 JMP 4F N Jump to set p.
15 3H CMPA INPUT,2(KEY) B +N −A
16 JLE 5F B +N −A Jump to insert, if K ≤ Kp.
17 ENT3 0,2 B q ← p.
18 4H LD2 INPUT,3(LINK) B +N p← LINK(q).
19 J2P 3B B +N Jump if not end of list.
20 5H ST1 INPUT,3(LINK) N LINK(q)← LOC(Rj).
21 ST2 INPUT,1(LINK) N LINK(LOC(Rj))← p.
22 6H DEC1 1 N
23 J1P 2B N N ≥ j ≥ 1.

This program is written for general M, but it would be better to Ąx M
at some convenient value; for example, we might choose M = BYTESIZE, so
that the list heads could be cleared with a single MOVE instruction and the
multiplication sequence of lines 08Ű11 could be replaced by the single instruc-
tion LD4 INPUT,1(1:1). The most notable contrast between Program L and
Program M is the fact that Program M must consider the case of an empty list,
when no comparisons are to be made.

How much time do we save by having M lists? The total running time of
Program M is 7B + 31N − 3A + 4M + 2 units, where M is the number of lists
and N is the number of records sorted; A and B respectively count the right-to-
left maxima and the inversions present among the keys belonging to each list.
(In contrast to other time analyses of this section, the rightmost element of a
nonempty permutation is included in the count A.) We have already studied
A and B for M = 1, when their average values are respectively HN and 1

2

N
2

.

By our assumption about the distribution of keys, the probability that a given
list contains precisely n items at the conclusion of sorting is the ŞbinomialŤ
probability

N

n

 1
M

n
1− 1

M

N−n

. (14)

5.2.1 SORTING BY INSERTION 101

Therefore the average values of A and B in the general case are

Aave = M

n

N

n

 1
M

n
1− 1

M

N−n

Hn; (15)

Bave = M

n

N

n

 1
M

n
1− 1

M

N−n
n

2

2. (16)

Using the identity
N

n

n

2

=

N

2

N − 2
n− 2

,

which is a special case of Eq. 1.2.6Ű(20), we can easily evaluate the sum in (16):

Bave =
1

2M

N

2

. (17)

And exercise 37 derives the standard deviation of B. But the sum in (15) is
more difficult. By Theorem 1.2.7A, we have

n

N

n

(M − 1)−nHn =

1− 1

M

−N

(HN − ln M) + ϵ,

0 < ϵ =

n>N

1
n

1− 1

M

n−N

<
M − 1
N + 1

;

hence

Aave = M(HN − ln M) + δ, 0 < δ <
M2

N + 1

1− 1

M

N+1

. (18)

(This formula is practically useless when M ≈ N; exercise 40 gives a more
detailed analysis of the asymptotic behavior of Aave when M = N/α.)

By combining (17) and (18) we can deduce the total running time of Pro-
gram M, for Ąxed M as N →∞:

min 31N + M + 2,

ave 1.75N2/M + 31N − 3MHN + 3M ln M + 4M − 3δ − 1.75N/M + 2,

max 3.50N2 + 24.5N + 4M + 2. (19)

Notice that when M is not too large we are speeding up the average time by
a factor of M ; M = 10 will sort about ten times as fast as M = 1. However,
the maximum time is much larger than the average time; this reiterates the
assumption we have made about a fairly equal distribution of keys, since the
worst case occurs when all records pile onto the same list.

If we set M = N, the average running time of Program M is approximately
34.36N units; when M = 1

2 N it is slightly more, approximately 34.52N ; and
when M = 1

10 N it is approximately 48.04N. The additional cost of the sup-
plementary program in exercise 35, which links all M lists together in a single
list, raises these times respectively to 44.99N , 41.95N , and 52.74N . (Note that

102 SORTING 5.2.1

10N of these MIX time units are spent in the multiplication instruction alone!)
We have achieved a sorting method of order N, provided only that the keys are
reasonably well spread out over their range.

Improvements to multiple list insertion are discussed in Section 5.2.5.

EXERCISES

1. [10] Is Algorithm S a stable sorting algorithm?

2. [11] Would Algorithm S still sort numbers correctly if the relation ŞK ≥ KiŤ in
step S3 were replaced by ŞK > KiŤ?

x 3. [30] Is Program S the shortest possible sorting program that can be written for
MIX, or is there a shorter program that achieves the same effect?

x 4. [M20] Find the minimum and maximum running times for Program S, as a
function of N.

x 5. [M27] Find the generating function gN (z) =

k≥0 pNkz
k for the total running

time of Program S, where pNk is the probability that Program S takes exactly k units
of time, given a random permutation of {1, 2, . . . , N} as input. Also calculate the
standard deviation of the running time, given N.

6. [23] The two-way insertion method illustrated in Table 2 seems to imply that
there is an output area capable of holding up to 2N + 1 records, in addition to the
input area containing N records. Show that two-way insertion can be done using only
enough space for N + 1 records, including both input and output.

7. [M20] If a1 a2 . . . an is a random permutation of {1, 2, . . . , n}, what is the average
value of |a1 − 1| + |a2 − 2| + · · · + |an − n|? (This is n times the average net distance
traveled by a record during a sorting process.)

8. [10] Is Algorithm D a stable sorting algorithm?

9. [20] What are the quantities A and B, and the total running time of Program D,
corresponding to Tables 3 and 4? Discuss the relative merits of shellsort versus straight
insertion in this case.

x 10. [22] If Kj ≥ Kj−h when we begin step D3, Algorithm D speciĄes a lot of actions
that accomplish nothing. Show how to modify Program D so that this redundant
computation can be avoided, and discuss the merits of such a modiĄcation.

11. [M10] What path in a lattice like that of Fig. 11 corresponds to the permutation
1 2 5 3 7 4 8 6 9 11 10 12?

12. [M20] Prove that the area between a lattice path and the staircase path (as shown
in Fig. 11) equals the number of inversions in the corresponding 2-ordered permutation.

x 13. [M16] Explain how to put weights on the horizontal line segments of a lattice,
instead of the vertical segments, so that the sum of the horizontal weights on a lattice
path is the number of inversions in the corresponding 2-ordered permutation.

14. [M28] (a) Show that, in the sums deĄned by Eq. (2), we have A2n+1 = 2A2n.
(b) The general identity of exercise 1.2.6Ű26 simpliĄes to

k

2k + s

k

zk =

1√
1− 4z

1−
√

1− 4z
2z

s

if we set r = s, t = −2. By considering the sum

n A2nz
n, show that

A2n = n · 4n−1.

5.2.1 SORTING BY INSERTION 103

x 15. [HM33] Let gn(z), ĝn(z), hn(z), and ĥn(z) be

ztotal weight of path summed over

all lattice paths of length 2n from (0, 0) to (n, n), where the weight is deĄned as in
Fig. 11, subject to certain restrictions on the vertices on the paths: For hn(z), there is
no restriction, but for gn(z) the path must avoid all vertices (i, j) with i > j; ĥn(z) and
ĝn(z) are deĄned similarly, except that all vertices (i, i) are also excluded, for 0 < i < n.
Thus

g0(z) = 1, g1(z) = z, g2(z) = z3 + z2; ĝ1(z) = z, ĝ2(z) = z3;

h0(z) = 1, h1(z) = z + 1, h2(z) = z3 + z2 + 3z + 1;

ĥ1(z) = z + 1, ĥ2(z) = z3 + z.

Find recurrence relations deĄning these functions, and use these relations to prove that

h′′
n(1) + h′

n(1) =
7n3 + 4n2 + 4n

30

2n
n

.

(The exact formula for the variance of the number of inversions in a random 2-ordered
permutation of {1, 2, . . . , 2n} is therefore easily found; it is asymptotically (7

30
− π

16
)n3.)

16. [M24] Find a formula for the maximum number of inversions in an h-ordered
permutation of {1, 2, . . . , n}. What is the maximum possible number of moves in
Algorithm D when the increments satisfy the divisibility condition (5)?

17. [M21] Show that, when N = 2t and hs = 2s for t > s ≥ 0, there is a unique
permutation of {1, 2, . . . , N} that maximizes the number of move operations performed
by Algorithm D. Find a simple way to describe this permutation.

18. [HM24] For large N the sum (6) can be estimated as

1
4
N2

ht−1
+
√
π

8

N3/2h

1/2
t−1

ht−2
+ · · ·+ N3/2h

1/2
1

h0

.

What real values of ht−1, . . . , h0 minimize this expression when N and t are Ąxed and
h0 = 1?

x 19. [M25] What is the average value of the quantity A in the timing analysis of
Program D, when the increments satisfy the divisibility condition (5)?

20. [M22] Show that Theorem K follows from Lemma L.

21. [M25] Let h and k be relatively prime positive integers, and say that an integer
is generable if it equals xh + yk for some nonnegative integers x and y. Show that n
is generable if and only if hk − h − k − n is not generable. (Since 0 is the smallest
generable integer, the largest nongenerable integer must therefore be hk − h − k. It
follows that Ki ≤ Kj whenever j− i ≥ (h−1)(k−1), in any Ąle that is both h-ordered
and k-ordered.)

22. [M30] Prove that all integers ≥ 2s(2s − 1) can be represented in the form

a0(2s − 1) + a1(2s+1 − 1) + a2(2s+2 − 1) + · · · ,

where the aj Šs are nonnegative integers; but 2s(2s − 1) − 1 cannot be so represented.
Furthermore, exactly 2s−1(2s +s−3) positive integers are unrepresentable in this form.

Find analogous formulas when the quantities 2k − 1 are replaced by 2k + 1 in the
representations.

104 SORTING 5.2.1

x 23. [M22] Prove that if hs+2 and hs+1 are relatively prime, the number of moves that
occur while Algorithm D is using the increment hs is O(Nhs+2hs+1/hs). Hint: See
exercise 21.

24. [M42] Prove that Theorem P is best possible, in the sense that the exponent 3/2
cannot be lowered.

x 25. [M22] How many permutations of {1, 2, . . . , N} are both 3-ordered and 2-ordered?
What is the maximum number of inversions in such a permutation? What is the total
number of inversions among all such permutations?

26. [M35] Can a Ąle of N elements have more than N inversions if it is 3-, 5-, and
7-ordered? Estimate the maximum number of inversions when N is large.

27. [M41] (Bjorn Poonen.) (a) Prove that there is a constant c such that if m of the
increments hs in Algorithm D are less than N/2, the running time is Ω(N1+c/

√
m) in the

worst case. (b) Consequently the worst-case running time is Ω(N(logN/ log logN)2)
for all sequences of increments.

28. [15] Which sequence of increments shown in Table 6 is best from the standpoint
of Program D, considering the average total running time?

29. [40] For N = 1000 and various values of t, Ąnd empirical values of ht−1, . . . ,
h1, h0 for which the average number of moves, Bave, is as small as you can make it.

30. [M23] (V. Pratt.) If the set of increments in shellsort is {2p3q | 2p3q < N},
show that the number of passes is approximately 1

2
(log2N)(log3N), and the number

of moves per pass is at most N/2. In fact, if Kj−h > Kj on any pass, we will always
have Kj−3h,Kj−2h ≤ Kj < Kj−h ≤ Kj+h,Kj+2h; so we may simply interchange Kj−h

and Kj and increase j by 2h, saving two of the comparisons of Algorithm D. Hint: See
exercise 25.

x 31. [25] Write a MIX program for PrattŠs sorting algorithm (exercise 30). Express its
running time in terms of quantities A, B, S, T, N analogous to those in Program D.

32. [10] What would be the Ąnal contents of L0 L1 . . . L16 if the list insertion sort in
Table 8 were carried through to completion?

x 33. [25] Find a way to improve on Program L so that its running time is dominated
by 5B instead of 7B, where B is the number of inversions. Discuss corresponding
improvements to Program S.

34. [M10] Verify formula (14).

35. [21] Write a MIX program to follow Program M, so that all lists are combined into
a single list. Your program should set the LINK Ąelds exactly as they would have been
set by Program L.

36. [18] Assume that the byte size of MIX is 100, and that the sixteen example keys
in Table 8 are actually 503000, 087000, 512000, . . . , 703000. Determine the running
time of Programs L and M on this data, when M = 4.

37. [M25] Let gn(z) be the probability generating function for inversions in a random
permutation of n objects, Eq. 5.1.1Ű(11). Let gNM (z) be the corresponding generating
function for the quantity B in Program M. Show that

N≥0

gNM (z)
MNwN

N !
=

n≥0

gn(z)
wn

n!

M

,

and use this formula to derive the variance of B.

5.2.2 SORTING BY EXCHANGING 105

38. [HM23] (R. M. Karp.) Let F (x) be a distribution function for a probability
distribution, with F (0) = 0 and F (1) = 1. Given that the keys K1,K2, . . . ,KN are
independently chosen at random from this distribution, and that M = cN, where c
is constant and N → ∞, prove that the average running time of Program M is O(N)
when F is sufficiently smooth. (A key K is inserted into list j when ⌊MK⌋ = j−1; this
occurs with probability F (j/M)− F ((j − 1)/M). Only the case F (x) = x, 0 ≤ x ≤ 1,
is treated in the text.)

39. [HM16] If a program runs in approximately A/M + B units of time and uses
C +M locations in memory, what choice of M gives the minimum time× space?

x 40. [HM24] Find the asymptotic value of the average number of right-to-left maxima
that occur in multiple list insertion, Eq. (15), when M = N/α for Ąxed α as N →∞.
Carry out the expansion to an absolute error of O(N−1), expressing your answer in
terms of the exponential integral function E1(z) =

∞
z
e−t dt/t.

41. [HM26] (a) Prove that the sum of the Ąrst

k
2

elements of (10) is O(ρ2k). (b) Now

prove Theorem I.

42. [HM43] Analyze the average behavior of shellsort when there are t = 3 increments
h, g, and 1, assuming that h ⊥ g. The Ąrst pass, h-sorting, obviously does a total of
1
4
N2/h+O(N) moves.

a) Prove that the second pass, g-sorting, does
√

π
8

(
√
h− 1/

√
h)N3/2/g + O(hN)

moves.
b) Prove that the third pass, 1-sorting, does ψ(h, g)N +O(g3h2) moves, where

ψ(h, g) =
1
2

g−1

d=1

j

h− 1
j

d

g

j
1− d

g

h−1−j
j −

hd

g

 .

x 43. [25] Exercise 33 uses a sentinel to speed up Algorithm S, by making the test
Şi > 0Ť unnecessary in step S4. This trick does not apply to Algorithm D. Nevertheless,
show that there is an easy way to avoid testing Şi > 0Ť in step D5, thereby speeding
up the inner loop of shellsort.

44. [M25] If π = a1 . . . an and π′ = a′1 . . . a
′
n are permutations of {1, . . . , n}, say that

π ≤ π′ if the ith-largest element of {a1, . . . , aj} is less than or equal to the ith-largest
element of {a′1, . . . , a′j}, for 1 ≤ i ≤ j ≤ n. (In other words, π ≤ π′ if straight insertion
sorting of π is componentwise less than or equal to straight insertion sorting of π′ after
the Ąrst j elements have been inserted, for all j.)

a) If π is above π′ in the sense of exercise 5.1.1Ű12, does it follow that π ≤ π′?
b) If π ≤ π′, does it follow that πR ≥ π′R?
c) If π ≤ π′, does it follow that π is above π′?

5.2.2. Sorting by Exchanging

We come now to the second family of sorting algorithms mentioned near the
beginning of Section 5.2: ŞexchangeŤ or ŞtranspositionŤ methods that system-
atically interchange pairs of elements that are out of order until no more such
pairs exist.

The process of straight insertion, Algorithm 5.2.1S, can be viewed as an
exchange method: We take each new record Rj and essentially exchange it with
its neighbors to the left until it has been inserted into the proper place. Thus
the classiĄcation of sorting methods into various families such as Şinsertion,Ť

106 SORTING 5.2.2

P
as

s
1

P
as

s
2

P
as

s
3

P
as

s
4

P
as

s
5

P
as

s
6

P
as

s
7

P
as

s
8

P
as

s
9

703 908 908 908 908 908 908 908 908 908

765 703 897 897 897 897 897 897 897 897

677 765 703 765 765 765 765 765 765 765

612 677 765 703 703 703 703 703 703 703

509 612 677 677 677 677 677 677 677 677

154 509 612 653 653 653 653 653 653 653

426 154 509 612 612 612 612 612 612 612

653 426 154 509 512 512 512 512 512 512

275 653 426 154 509 509 509 509 509 509

897 275 653 426 154 503 503 503 503 503

170 897 275 512 426 154 426 426 426 426

908 170 512 275 503 426 154 275 275 275

061 512 170 503 275 275 275 154 170 170

512 061 503 170 170 170 170 170 154 154

087 503 061 087 087 087 087 087 087 087

503 087 087 061 061 061 061 061 061 061

Fig. 14. The bubble sort in action.

Şexchange,Ť Şselection,Ť etc., is not always clear-cut. In this section, we shall
discuss four types of sorting methods for which exchanging is a dominant char-
acteristic: exchange selection (the Şbubble sortŤ); merge exchange (BatcherŠs
parallel sort); partition exchange (HoareŠs ŞquicksortŤ); and radix exchange.

The bubble sort. Perhaps the most obvious way to sort by exchanges is to
compare K1 with K2, interchanging R1 and R2 if the keys are out of order;
then do the same to records R2 and R3, R3 and R4, etc. During this sequence
of operations, records with large keys tend to move to the right, and in fact
the record with the largest key will move up to become RN. Repetitions of the
process will get the appropriate records into positions RN−1, RN−2, etc., so that
all records will ultimately be sorted.

Figure 14 shows this sorting method in action on the sixteen keys 503 087
512 . . . 703; it is convenient to represent the Ąle of numbers vertically instead of
horizontally, with RN at the top and R1 at the bottom. The method is called
Şbubble sortingŤ because large elements Şbubble upŤ to their proper position,
by contrast with the Şsinking sortŤ (that is, straight insertion) in which elements
sink down to an appropriate level. The bubble sort is also known by more prosaic
names such as Şexchange selectionŤ or Şpropagation.Ť

After each pass through the Ąle, it is not hard to see that all records above
and including the last one to be exchanged must be in their Ąnal position, so

5.2.2 SORTING BY EXCHANGING 107

they need not be examined on subsequent passes. Horizontal lines in Fig. 14
show the progress of the sorting from this standpoint; notice, for example, that
Ąve more elements are known to be in Ąnal position as a result of Pass 4. On
the Ąnal pass, no exchanges are performed at all. With these observations we
are ready to formulate the algorithm.

Algorithm B (Bubble sort). Records R1, . . . , RN are rearranged in place; after
sorting is complete their keys will be in order, K1 ≤ · · · ≤ KN.

B1. [Initialize BOUND.] Set BOUND ← N. (BOUND is the highest index for which
the record is not known to be in its Ąnal position; thus we are indicating
that nothing is known at this point.)

B2. [Loop on j.] Set t ← 0. Perform step B3 for j = 1, 2, . . . , BOUND − 1, and
then go to step B4. (If BOUND = 1, this means go directly to B4.)

B3. [Compare/exchange Rj :Rj+1.] If Kj > Kj+1, interchange Rj ↔ Rj+1 and
set t← j.

B4. [Any exchanges?] If t = 0, terminate the algorithm. Otherwise set BOUND← t
and return to step B2.

B1. Initialize BOUND B2. Loop on j B3. Compare/exchange Rj :Rj+1

B4. Any exchanges?

1≤j<BOUND

j=BOUND

Yes

No

Fig. 15. Flow chart for bubble sorting.

Program B (Bubble sort). As in previous MIX programs of this chapter, we
assume that the items to be sorted are in locations INPUT+1 through INPUT+N.
rI1 ≡ t; rI2 ≡ j.
01 START ENT1 N 1 B1. Initialize BOUND. t← N.
02 1H ST1 BOUND(1:2) A BOUND← t.
03 ENT2 1 A B2. Loop on j. j ← 1.
04 ENT1 0 A t← 0.
05 JMP BOUND A Exit if j ≥ BOUND.
06 3H LDA INPUT,2 C B3. Compare/exchange Rj :Rj +1.
07 CMPA INPUT+1,2 C
08 JLE 2F C No exchange if Kj ≤ Kj+1.
09 LDX INPUT+1,2 B Rj+1

10 STX INPUT,2 B → Rj .
11 STA INPUT+1,2 B (old Rj)→ Rj+1.
12 ENT1 0,2 B t← j.
13 2H INC2 1 C j ← j + 1.
14 BOUND ENTX -*,2 A+ C rX← j − BOUND. [Instruction modiĄed]
15 JXN 3B A+ C Do step B3 for 1 ≤ j < BOUND.
16 4H J1P 1B A B4. Any exchanges? To B2 if t > 0.

108 SORTING 5.2.2

Analysis of the bubble sort. It is quite instructive to analyze the running
time of Algorithm B. Three quantities are involved in the timing: the number
of passes, A; the number of exchanges, B; and the number of comparisons, C. If
the input keys are distinct and in random order, we may assume that they form
a random permutation of {1, 2, . . . , n}. The idea of inversion tables (Section
5.1.1) leads to an easy way to describe the effect of each pass in a bubble sort.

Theorem I. Let a1 a2 . . . an be a permutation of {1, 2, . . . , n}, and let b1 b2 . . . bn
be the corresponding inversion table. If one pass of the bubble sort, Algorithm B,
changes a1 a2 . . . an to the permutation a′

1 a′
2 . . . a′

n, the corresponding inversion
table b′1 b′2 . . . b′n is obtained from b1 b2 . . . bn by decreasing each nonzero entry
by 1.

Proof. If ai is preceded by a larger element, the largest preceding element is
exchanged with it, so bai decreases by 1. But if ai is not preceded by a larger
element, it is never exchanged with a larger element, so bai remains 0.

Thus we can see what happens during a bubble sort by studying the sequence
of inversion tables between passes. For example, the successive inversion tables
corresponding to Fig. 14 are

3 1 8 3 4 5 0 4 0 3 2 2 3 2 1 0
Pass 1

2 0 7 2 3 4 0 3 0 2 1 1 2 1 0 0
Pass 2

1 0 6 1 2 3 0 2 0 1 0 0 1 0 0 0
Pass 3

0 0 5 0 1 2 0 1 0 0 0 0 0 0 0 0

(1)

and so on. If b1 b2 . . . bn is the inversion table of the input permutation, we must
therefore have

A = 1 + max (b1, b2, . . . , bn), (2)

B = b1 + b2 + · · ·+ bn, (3)

C = c1 + c2 + · · ·+ cA, (4)

where cj is the value of BOUND − 1 at the beginning of pass j. In terms of the
inversion table,

cj = max {bi + i | bi ≥ j − 1} − j (5)

(see exercise 5). In example (1) we therefore have A = 9, B = 41, C = 15 + 14 +
13 + 12 + 7 + 5 + 4 + 3 + 2 = 75. The total MIX sorting time for Fig. 14 is 960u.

The distribution of B (the total number of inversions in a random permu-
tation) is very well-known to us by now; so we are left with A and C to be
analyzed.

The probability that A ≤ k is 1/n! times the number of inversion tables
having no components ≥ k, namely kn−kk!, when 1 ≤ k ≤ n. Hence the
probability that exactly k passes are required is

Ak =
1
n!

kn−kk!− (k − 1)n−k+1(k − 1)!

. (6)

5.2.2 SORTING BY EXCHANGING 109

The mean value

kAk can now be calculated; summing by parts, it is

Aave = n + 1−
n

k=0

kn−kk!
n!

= n + 1− P (n), (7)

where P (n) is the function whose asymptotic value was found to be

πn/2− 2
3 +

O

1/
√

n

in Eq. 1.2.11.3Ű(24). Formula (7) was stated without proof by E. H.
Friend in JACM 3 (1956), 150; a proof was given by Howard B. Demuth [Ph.D.
Thesis (Stanford University, October 1956), 64Ű68]. For the standard deviation
of A, see exercise 7.

The total number of comparisons, C, is somewhat harder to handle, and we
will consider only Cave. For Ąxed n, let fj(k) be the number of inversion tables
b1 . . . bn such that for 1 ≤ i ≤ n we have either bi < j − 1 or bi + i− j ≤ k; then

fj(k) = (j + k)! (j − 1)n−j−k, for 0 ≤ k ≤ n− j. (8)

(See exercise 8.) The average value of cj in (5) is

k

fj(k) − fj(k − 1)

/n!;

summing by parts and then summing on j leads to the formula

Cave =

n + 1
2

− 1

n!

1≤j≤n

0≤k≤n−j

fj(k) =

n + 1
2

− 1

n!

0≤r<s≤n

s! rn−s. (9)

Here the asymptotic value is not easy to determine, and we shall return to it at
the end of this section.

To summarize our analysis of the bubble sort, the formulas derived above
and below may be written as follows:

A =

min 1, ave N −

πN/2 + O(1), max N

; (10)

B =

min 0, ave 1

4 (N2 −N), max 1
2 (N2 −N)

; (11)

C =

min N − 1, ave 1

2

N2 −N ln N − (γ + ln 2− 1)N

+ O

√
N

,

max 1
2 (N2 −N)

. (12)

In each case the minimum occurs when the input is already in order, and the
maximum occurs when it is in reverse order; so the MIX running time is 8A +
7B + 8C + 1 =

min 8N + 1, ave 5.75N2 + O(N log N), max 7.5N2 + 0.5N + 1

.

ReĄnements of the bubble sort. It took a good deal of work to analyze the
bubble sort; and although the techniques used in the calculations are instructive,
the results are disappointing since they tell us that the bubble sort isnŠt really
very good at all. Compared to straight insertion (Algorithm 5.2.1S), bubble
sorting requires a more complicated program and takes more than twice as long!

Some of the bubble sortŠs deĄciencies are easy to spot. For example, in
Fig. 14, the Ąrst comparison in Pass 4 is redundant, as are the Ąrst two in
Pass 5 and the Ąrst three in Passes 6 and 7. Notice also that elements can never
move to the left more than one step per pass; so if the smallest item happens
to be initially at the far right we are forced to make the maximum number of

110 SORTING 5.2.2

703 908 908 908 908 908 908 908

765 703 765 897 897 897 897 897

677 765 703 765 765 765 765 765

612 677 677 703 703 703 703 703

509 612 612 677 677 677 677 677

154 509 509 612 612 653 653 653

426 154 426 509 509 612 612 612

653 426 653 426 653 509 512 512

275 653 275 653 426 512 509 509

897 275 897 275 512 426 503 503

170 897 170 512 275 503 426 426

908 170 512 170 503 275 275 275

061 512 154 503 170 170 170 170

512 061 503 154 154 154 154 154

087 503 087 087 087 087 087 087

503 087 061 061 061 061 061 061

Fig. 16. The cocktail-shaker short [shic].

comparisons. This suggests the Şcocktail-shaker sort,Ť in which alternate passes
go in opposite directions (see Fig. 16). The average number of comparisons is
slightly reduced by this approach. K. E. Iverson [A Programming Language
(Wiley, 1962), 218Ű219] made an interesting observation in this regard: If j is
an index such that Rj and Rj+1 are not exchanged with each other on two
consecutive passes in opposite directions, then Rj and Rj+1 must be in their
Ąnal position, and they need not enter into any subsequent comparisons. For
example, traversing 4 3 2 1 8 6 9 7 5 from left to right yields 3 2 1 4 6 8 7 5 9;
no interchange occurred between R4 and R5. When we traverse the latter
permutation from right to left, we Ąnd R4 still less than (the new) R5, so we
may immediately conclude that R4 and R5 need not participate in any further
comparisons.

But none of these reĄnements lead to an algorithm better than straight
insertion; and we already know that straight insertion isnŠt suitable for large N .
Another idea is to eliminate most of the exchanges; since most elements simply
shift left one step during an exchange, we could achieve the same effect by viewing
the array differently, shifting the origin of indexing! But the resulting algorithm
is no better than straight selection, Algorithm 5.2.3S, which we shall study later.

In short, the bubble sort seems to have nothing to recommend it, except a
catchy name and the fact that it leads to some interesting theoretical problems.

BatcherŠs parallel method. If we are going to have an exchange algorithm
whose running time is faster than order N2, we need to select some nonadjacent

pairs of keys (Ki, Kj) for comparisons; otherwise we will need as many exchanges

5.2.2 SORTING BY EXCHANGING 111

as the original permutation has inversions, and the average number of inversions
is 1

4 (N2−N). An ingenious way to program a sequence of comparisons, looking
for potential exchanges, was discovered in 1964 by K. E. Batcher [see Proc.
AFIPS Spring Joint Computer Conference 32 (1968), 307Ű314]. His method is
not at all obvious; in fact, a fairly intricate proof is needed just to show that it
is valid, since comparatively few comparisons are made. We shall discuss two
proofs, one in this section and another in Section 5.3.4.

M1. Initialize p

M2. Initialize q, r, d M3. Loop on i

M4. Compare/exchange Ri+1 :Ri+d+1

M5. Loop on q M6. Loop on p
q=pi≥N−d

0≤ i<N−d
i& p= r

q>p p≥1

p=0

Fig. 17. Algorithm M.

BatcherŠs sorting scheme is similar to shellsort, but the comparisons are
done in a novel way so that no propagation of exchanges is necessary. We can,
for instance, compare Table 1 (on the next page) to Table 5.2.1Ű3; BatcherŠs
method achieves the effect of 8-sorting, 4-sorting, 2-sorting, and 1-sorting, but
the comparisons do not overlap. Since BatcherŠs algorithm essentially merges
pairs of sorted subsequences, it may be called the Şmerge exchange sort.Ť

Algorithm M (Merge exchange). Records R1, . . . , RN are rearranged in place;
after sorting is complete their keys will be in order, K1 ≤ · · · ≤ KN. We assume
that N ≥ 2.
M1. [Initialize p.] Set p← 2t−1, where t = ⌈lg N ⌉ is the least integer such that

2t ≥ N. (Steps M2 through M5 will be performed for p = 2t−1, 2t−2, . . . , 1.)
M2. [Initialize q, r, d.] Set q ← 2t−1, r ← 0, d← p.
M3. [Loop on i.] For all i such that 0 ≤ i < N − d and i & p = r, do step M4.

Then go to step M5. (Here i & p means the Şbitwise andŤ of the binary
representations of i and p; each bit of the result is zero except where both
i and p have 1-bits in corresponding positions. Thus 13 & 21 = (1101)2 &
(10101)2 = (00101)2 = 5. At this point, d is an odd multiple of p, and p is a
power of 2, so that i & p ̸= (i + d) & p; it follows that the actions of step M4
can be done for all relevant i in any order, even simultaneously.)

M4. [Compare/exchange Ri+1 :Ri+d+1.] If Ki+1 > Ki+d+1, interchange the
records Ri+1 ↔ Ri+d+1.

M5. [Loop on q.] If q ̸= p, set d← q − p, q ← q/2, r ← p, and return to M3.
M6. [Loop on p.] (At this point the permutation K1 K2 . . . KN is p-ordered.)

Set p← ⌊p/2⌋. If p > 0, go back to M2.

112 SORTING 5.2.2

Table 1

MERGE-EXCHANGE SORTING (BATCHERŠS METHOD)

p q r d

503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703

8 8 0 8

503 087 154 061 612 170 765 275 653 426 512 509 908 677 897 703

4 8 0 4

503 087 154 061 612 170 765 275 653 426 512 509 908 677 897 703

4 4 4 4

503 087 154 061 612 170 512 275 653 426 765 509 908 677 897 703

2 8 0 2

154 061 503 087 512 170 612 275 653 426 765 509 897 677 908 703

2 4 2 6

154 061 503 087 512 170 612 275 653 426 765 509 897 677 908 703

2 2 2 2

154 061 503 087 512 170 612 275 653 426 765 509 897 677 908 703

1 8 0 1
061 154 087 503 170 512 275 612 426 653 509 765 677 897 703 908

1 4 1 7

061 154 087 503 170 512 275 612 426 653 509 765 677 897 703 908

1 2 1 3

061 154 087 275 170 426 503 509 512 653 612 703 677 897 765 908

1 1 1 1
061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908

Table 1 illustrates the method for N = 16. Notice that the algorithm sorts N
elements essentially by sorting R1, R3, R5, . . . and R2, R4, R6, . . . independently;
then we perform steps M2 through M5 for p = 1, in order to merge the two
sorted sequences together.

In order to prove that the magic sequence of comparison/exchanges speciĄed
in Algorithm M actually will sort all possible input Ąles R1 R2 . . . RN, we must
show only that steps M2 through M5 will merge all 2-ordered Ąles R1 R2 . . . RN

when p = 1. For this purpose we can use the lattice-path method of Section
5.2.1 (see Fig. 11 on page 87); each 2-ordered permutation of {1, 2, . . . , N}
corresponds uniquely to a path from (0, 0) to (⌈N/2⌉, ⌊N/2⌋) in a lattice di-
agram. Figure 18(a) shows an example for N = 16, corresponding to the
permutation 1 3 2 4 10 5 11 6 13 7 14 8 15 9 16 12. When we perform step M3 with
p = 1, q = 2t−1, r = 0, d = 1, the effect is to compare (and possibly exchange)
R1 :R2, R3 :R4, etc. This operation corresponds to a simple transformation of
the lattice path, ŞfoldingŤ it about the diagonal if necessary so that it never
goes above the diagonal. (See Fig. 18(b) and the proof in exercise 10.) The

5.2.2 SORTING BY EXCHANGING 113

next iterations of step M3 have p = r = 1, and d = 2t−1 − 1, 2t−2 − 1, . . . , 1;
their effect is to compare/exchange R2 :R2+d, R4 :R4+d, etc., and again there
is a simple lattice interpretation: The path is ŞfoldedŤ about a line 1

2 (d + 1)
units below the diagonal. See Fig. 18(c) and (d); eventually we get to the
path in Fig. 18(e), which corresponds to a completely sorted permutation. This
completes a Şgeometric proofŤ that BatcherŠs algorithm is valid; we might call
it sorting by folding!

(a) (b) (c) (d) (e)

Fig. 18. A geometric interpretation of BatcherŠs method, N = 16.

A MIX program for Algorithm M appears in exercise 12. Unfortunately the
amount of bookkeeping needed to control the sequence of comparisons is rather
large, so the program is less efficient than other methods we have seen. But it has
one important redeeming feature: All comparison/exchanges speciĄed by a given
iteration of step M3 can be done simultaneously, on computers or networks that
allow parallel computations. With such parallel operations, sorting is completed
in 1

2⌈lg N ⌉

⌈lg N ⌉ + 1

steps, and this is about as fast as any general method

known. For example, 1024 elements can be sorted in only 55 parallel steps by
BatcherŠs method. The nearest competitor is PrattŠs method (see exercise 5.2.1Ű
30), which uses either 40 or 73 steps, depending on how we count; if we are
willing to allow overlapping comparisons as long as no overlapping exchanges
are necessary, PrattŠs method requires only 40 comparison/exchange cycles to
sort 1024 elements. For further comments, see Section 5.3.4.

Quicksort. The sequence of comparisons in BatcherŠs method is predetermined;
we compare the same pairs of keys each time, regardless of what we may have
learned about the Ąle from previous comparisons. The same is largely true of the
bubble sort, although Algorithm B does make limited use of previous knowledge
in order to reduce its work at the right end of the Ąle. Let us now turn to a
quite different strategy, which uses the result of each comparison to determine
what keys are to be compared next. Such a strategy is inappropriate for parallel
computations, but on computers that work serially it can be quite fruitful.

The basic idea of the following method is to take one record, say R1, and to
move it to the Ąnal position that it should occupy in the sorted Ąle, say position s.
While determining this Ąnal position, we will also rearrange the other records so
that there will be none with greater keys to the left of position s, and none with
smaller keys to the right. Thus the Ąle will have been partitioned in such a way

114 SORTING 5.2.2

that the original sorting problem is reduced to two simpler problems, namely
to sort R1 . . . Rs−1 and (independently) to sort Rs+1 . . . RN. We can apply the
same technique to each of these subĄles, until the job is done.

There are several ways to achieve such a partitioning into left and right
subĄles; the following scheme due to R. Sedgewick seems to be best, for reasons
that will become clearer when we analyze the algorithm: Keep two pointers,
i and j, with i = 2 and j = N initially. If Ri is eventually supposed to be
part of the left-hand subĄle after partitioning (we can tell this by comparing
Ki with K1), increase i by 1, and continue until encountering a record Ri that
belongs to the right-hand subĄle. Similarly, decrease j by 1 until encountering
a record Rj belonging to the left-hand subĄle. If i < j, exchange Ri with Rj ;
then move on to process the next records in the same way, Şburning the candle
at both endsŤ until i ≥ j. The partitioning is Ąnally completed by exchanging
Rj with R1. For example, consider what happens to our Ąle of sixteen numbers:

i j
↓ ↓

Initial Ąle: [503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703]

1st exchange: 503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703
2nd exchange: 503 087 154 061 908 170 897 275 653 426 512 509 612 677 765 703
3rd exchange: 503 087 154 061 426 170 897 275 653 908 512 509 612 677 765 703
Pointers cross: 503 087 154 061 426 170 275 897 653 908 512 509 612 677 765 703
Partitioned Ąle: [275 087 154 061 426 170]503 [897 653 908 512 509 612 677 765 703]

↑ ↑
j i

(In order to indicate the positions of i and j, keys Ki and Kj are shown here in
boldface type.)

Table 2 shows how our example Ąle gets completely sorted by this approach,
in 11 stages. Brackets indicate subĄles that still need to be sorted; double
brackets identify the subĄle of current interest. Inside a computer, the current
subĄle can be represented by boundary values (l, r), and the other subĄles by
a stack of additional pairs (lk, rk). Whenever a Ąle is subdivided, we put the
longer subĄle on the stack and commence work on the shorter one, until we reach
trivially short Ąles; this strategy guarantees that the stack will never contain
more than lg N entries (see exercise 20).

The sorting procedure just described may be called partition-exchange sort-

ing ; it is due to C. A. R. Hoare, whose interesting paper [Comp. J. 5 (1962),
10Ű15] contains one of the most comprehensive accounts of a sorting method that
has ever been published. Hoare dubbed his method Şquicksort,Ť and that name
is not inappropriate, since the inner loops of the computation are extremely fast
on most computers. All comparisons during a given stage are made against the
same key, so this key may be kept in a register. Only a single index needs to
be changed between comparisons. Furthermore, the amount of data movement

5.2.2 SORTING BY EXCHANGING 115

Table 2

QUICKSORTING
(l, r) Stack

[[503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703]] (1,16) −

[[275 087 154 061 426 170]] 503 [897 653 908 512 509 612 677 765 703] (1,6) (8,16)

[[170 087 154 061]] 275 426 503 [897 653 908 512 509 612 677 765 703] (1,4) (8,16)

[[061 087 154]] 170 275 426 503 [897 653 908 512 509 612 677 765 703] (1,3) (8,16)

061 [[087 154]] 170 275 426 503 [897 653 908 512 509 612 677 765 703] (2,3) (8,16)

061 087 154 170 275 426 503 [[897 653 908 512 509 612 677 765 703]] (8,16) −

061 087 154 170 275 426 503 [[765 653 703 512 509 612 677]] 897 908 (8,14) −

061 087 154 170 275 426 503 [[677 653 703 512 509 612]] 765 897 908 (8,13) −

061 087 154 170 275 426 503 [[509 653 612 512]] 677 703 765 897 908 (8,11) −

061 087 154 170 275 426 503 509 [[653 612 512]] 677 703 765 897 908 (9,11) −

061 087 154 170 275 426 503 509 [[512 612]] 653 677 703 765 897 908 (9,10) −

061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908 − −

is quite reasonable; the computation in Table 2, for example, makes only 17
exchanges.

The bookkeeping required to control i, j, and the stack is not difficult, but
it makes the quicksort partitioning procedure most suitable for fairly large N .
Therefore the following algorithm uses another strategy after the subĄles have
become short.

Algorithm Q (Quicksort). Records R1, . . . , RN are rearranged in place; after
sorting is complete their keys will be in order, K1 ≤ · · · ≤ KN. An auxiliary
stack with at most ⌊lg N⌋ entries is needed for temporary storage. This algorithm
follows the quicksort partitioning procedure described in the text above, with
slight modiĄcations for extra efficiency:

a) We assume the presence of artiĄcial keys K0 = −∞ and KN+1 = +∞ such
that

K0 ≤ Ki ≤ KN+1 for 1 ≤ i ≤ N. (13)

(Equality is allowed.)

b) SubĄles of M or fewer elements are left unsorted until the very end of the
procedure; then a single pass of straight insertion is used to produce the Ąnal
ordering. Here M ≥ 1 is a parameter that should be chosen as described in
the text below. (This idea, due to R. Sedgewick, saves some of the overhead
that would be necessary if we applied straight insertion directly to each small
subĄle, unless locality of reference is signiĄcant.)

c) Records with equal keys are exchanged, although it is not strictly necessary
to do so. (This idea, due to R. C. Singleton, keeps the inner loops fast and
helps to split subĄles nearly in half when equal elements are present; see
exercise 18.)

Q1. [Initialize.] If N ≤ M, go to step Q9. Otherwise set the stack empty, and
set l← 1, r ← N.

116 SORTING 5.2.2

Q1. Initialize
Q2. Begin
new stage

Q3. Compare Ki :K Q4. Compare K :Kj

Q5. Test i :jQ6. Exchange

Q7. Put on stackQ8. Take
off stack

Q9. Straight
insertion sort

N≤M

≥

< <

≥

<

≥

Both subfile
lengths ≤M

Stack
empty

Fig. 19. Partition-exchange sorting (quicksort).

Q2. [Begin new stage.] (We now wish to sort the subĄle Rl . . . Rr; from the
nature of the algorithm, we have r ≥ l + M, and Kl−1 ≤ Ki ≤ Kr+1 for
l ≤ i ≤ r.) Set i← l, j ← r +1; and set K ← Kl. (The text below discusses
alternative choices for K that might be better.)

Q3. [Compare Ki :K.] (At this point the Ąle has been rearranged so that

Kk ≤ K for l − 1 ≤ k ≤ i, K ≤ Kk for j ≤ k ≤ r + 1; (14)

and l ≤ i < j.) Increase i by 1; then if Ki < K, repeat this step. (Since
Kj ≥ K, the iteration must terminate with i ≤ j.)

Q4. [Compare K :Kj .] Decrease j by 1; then if K < Kj , repeat this step. (Since
K ≥ Ki−1, the iteration must terminate with j ≥ i− 1.)

Q5. [Test i :j.] (At this point, (14) holds except for k = i and k = j; also
Ki ≥ K ≥ Kj , and r ≥ j ≥ i − 1 ≥ l.) If j ≤ i, interchange Rl ↔ Rj and
go to step Q7.

Q6. [Exchange.] Interchange Ri ↔ Rj and go back to step Q3.

Q7. [Put on stack.] (Now the subĄle Rl . . . Rj . . . Rr has been partitioned so
that Kk ≤ Kj for l − 1 ≤ k ≤ j and Kj ≤ Kk for j ≤ k ≤ r + 1.) If
r− j ≥ j − l > M, insert (j+1, r) on top of the stack, set r ← j − 1, and go
to Q2. If j− l > r− j > M, insert (l, j−1) on top of the stack, set l← j +1,
and go to Q2. (Each entry (a, b) on the stack is a request to sort the subĄle
Ra . . . Rb at some future time.) Otherwise if r−j > M ≥ j− l, set l← j +1
and go to Q2; or if j − l > M ≥ r − j, set r ← j − 1 and go to Q2.

Q8. [Take off stack.] If the stack is nonempty, remove its top entry (l′, r′), set
l← l′, r ← r′, and return to step Q2.

Q9. [Straight insertion sort.] For j = 2, 3, . . . , N, if Kj−1 > Kj do the following
operations: Set K ← Kj , R ← Rj , i ← j − 1; then set Ri+1 ← Ri and
i ← i − 1 one or more times until Ki ≤ K; then set Ri+1 ← R. (This

5.2.2 SORTING BY EXCHANGING 117

is Algorithm 5.2.1S, modiĄed as suggested in exercise 5.2.1Ű10 and answer
5.2.1Ű33. Step Q9 may be omitted if M = 1. Caution: The Ąnal straight
insertion might conceal bugs in steps Q1ŰQ8; donŠt trust an implementation
just because it gives the correct answers!)

The corresponding MIX program is rather long, but not complicated; in fact,
a large part of the coding is devoted to step Q7, which just fools around with
the variables in a very straightforward way.

Program Q (Quicksort). Records to be sorted appear in locations INPUT+1

through INPUT+N; assume that locations INPUT and INPUT+N+1 contain, respec-
tively, the smallest and largest values possible in MIX. The stack is kept in
locations STACK+1, STACK+2, . . . ; see exercise 20 for the exact number of locations
to set aside for the stack. rI2 ≡ l, rI3 ≡ r, rI4 ≡ i, rI5 ≡ j, rI6 ≡ size of stack,
rA ≡ K ≡ R. We assume that N > M.

A EQU 2:3 First component of stack entry.
B EQU 4:5 Second component of stack entry.

01 START ENT6 0 1 Q1. Initialize. Set stack empty.
02 ENT2 1 1 l← 1.
03 ENT3 N 1 r ← N.
04 2H ENT5 1,3 A Q2. Begin new stage. j ← r + 1.
05 LDA INPUT,2 A K ← Kl.
06 ENT4 1,2 A i← l + 1.
07 JMP 0F A To Q3 omitting Şi← i+ 1Ť.
08 6H LDX INPUT,4 B Q6. Exchange.
09 ENT1 INPUT,4 B
10 MOVE INPUT,5 B
11 STX INPUT,5 B Ri ↔ Rj .
12 3H INC4 1 C′ −A Q3. Compare Ki :K. i← i+ 1.
13 0H CMPA INPUT,4 C′

14 JG 3B C′ Repeat if K > Ki.
15 4H DEC5 1 C − C′ Q4. Compare K :Kj . j ← j − 1.
16 CMPA INPUT,5 C − C′

17 JL 4B C − C′ Repeat if K < Kj .
18 5H ENTX 0,5 B +A Q5. Test i : j.
19 DECX 0,4 B +A
20 JXP 6B B +A To Q6 if j > i.
21 LDX INPUT,5 A
22 STX INPUT,2 A Rl ← Rj .
23 STA INPUT,5 A Rj ← R.
24 7H ENT4 0,3 A Q7. Put on stack.
25 DEC4 M,5 A rI4← r − j −M.
26 ENT1 0,5 A
27 DEC1 M,2 A rI1← j − l −M.
28 ENTA 0,4 A
29 DECA 0,1 A
30 JANN 1F A Jump if r − j ≥ j − l.
31 J1NP 8F A′ To Q8 if M ≥ j − l > r − j.
32 J4NP 3F S′ +A′′ Jump if j − l > M ≥ r − j.

118 SORTING 5.2.2

33 INC6 1 S′ (Now j − l > r − j > M.)
34 ST2 STACK,6(A) S′

35 ENTA -1,5 S′

36 STA STACK,6(B) S′ (l, j−1)⇒ stack.
37 4H ENT2 1,5 S′ +A′′′ l← j + 1.
38 JMP 2B S′ +A′′′ To Q2.
39 1H J4NP 8F A−A′ To Q8 if M ≥ r − j ≥ j − l.
40 J1NP 4B S − S′ +A′′′ Jump if r − j > M ≥ j − l.
41 INC6 1 S − S′ (Now r − j ≥ j − l > M.)
42 ST3 STACK,6(B) S − S′

43 ENTA 1,5 S − S′

44 STA STACK,6(A) S − S′ (j+1, r)⇒ stack.
45 3H ENT3 -1,5 S − S′ +A′′ r ← j − 1.
46 JMP 2B S − S′ +A′′ To Q2.
47 8H LD2 STACK,6(A) S + 1 Q8. Take off stack.
48 LD3 STACK,6(B) S + 1
49 DEC6 1 S + 1 (l, r)⇐ stack.
50 J6NN 2B S + 1 To Q2 if stack wasnŠt empty.
51 9H ENT5 2-N 1 Q9. Straight insertion sort. j ← 2.
52 2H LDA INPUT+N,5 N − 1 K ← Kj , R← Rj .
53 CMPA INPUT+N-1,5 N − 1 (In this loop, rI5 ≡ j −N.)
54 JGE 6F N − 1 Jump if K ≥ Kj−1.
55 3H ENT4 N-1,5 D i← j − 1.
56 4H LDX INPUT,4 E
57 STX INPUT+1,4 E Ri+1 ← Ri.
58 DEC4 1 E i← i− 1.
59 CMPA INPUT,4 E
60 JL 4B E Repeat if K < Ki.
61 5H STA INPUT+1,4 D Ri+1 ← R.
62 6H INC5 1 N − 1
63 J5NP 2B N − 1 2 ≤ j ≤ N.

Analysis of quicksort. The timing information shown with Program Q is not
hard to derive using KirchhoffŠs conservation law (Section 1.3.3) and the fact
that everything put onto the stack is eventually removed again. KirchhoffŠs law
applied at Q2 also shows that

A = 1 + (S′ + A′′′) + (S − S′ + A′′) + S = 2S + 1 + A′′ + A′′′, (15)

hence the total running time comes to

24A + 11B + 4C + 3D + 8E + 7N + 9S units,

where

A = number of partitioning stages;
B = number of exchanges in step Q6;
C = number of comparisons made while partitioning;
D = number of times Kj−1 > Kj during straight insertion (step Q9);
E = number of inversions removed by straight insertion;
S = number of times an entry is put on the stack. (16)

5.2.2 SORTING BY EXCHANGING 119

By analyzing these six quantities, we will be able to make an intelligent choice of
the parameter M that speciĄes the ŞthresholdŤ between straight insertion and
partitioning. The analysis is particularly instructive because the algorithm is
rather complex; the unraveling of this complexity makes a particularly good
illustration of important techniques. However, nonmathematical readers are
advised to skip to Eq. (25).

As in most other analyses of this chapter, we shall assume that the keys to
be sorted are distinct; exercise 18 indicates that equalities between keys do not
seriously harm the efficiency of Algorithm Q, and in fact they seem to help it.
Since the method depends only on the relative order of the keys, we may as well
assume that they are simply {1, 2, . . . , N} in some order.

We can attack this problem by considering the behavior of the very Ąrst
partitioning stage, which takes us to Q7 for the Ąrst time. Once this partitioning
has been achieved, both of the subĄles R1 . . . Rj−1 and Rj+1 . . . RN will be in
random order if the original Ąle was in random order, since the relative order of
elements in these subĄles has no effect on the partitioning algorithm. Therefore
the contribution of subsequent partitionings can be determined by induction
on N.

This is an important observation, since some alternative algorithms that

violate this property have turned out to be signiĄcantly slower; see Computing
Surveys 6 (1974), 287Ű289.

Let s be the value of the Ąrst key, K1, and assume that exactly t of the Ąrst s
keys {K1, . . . , Ks} are greater than s. (Remember that the keys being sorted are
the integers {1, 2, . . . , N}.) If s = 1, it is easy to see what happens during the
Ąrst stage of partitioning: Step Q3 is performed once, step Q4 is performed N
times, and then step Q5 takes us to Q7. So the contributions of the Ąrst stage in
this case are A = 1, B = 0, C = N + 1. A similar but slightly more complicated
argument when s > 1 (see exercise 21) shows that the contributions of the Ąrst
stage to the total running time are, in general,

A = 1, B = t, C = N + 1, for 1 ≤ s ≤ N. (17)

To this we must add the contributions of the later stages, which sort subĄles of
s− 1 and N − s elements, respectively.

If we assume that the original Ąle is in random order, it is now possible
to write down formulas that deĄne the generating functions for the probability
distributions of A, B, . . . , S (see exercise 22). But for simplicity we shall consider
here only the average values of these quantities, AN , BN , . . . , SN, as functions
of N. Consider, for example, the average number of comparisons, CN, that occur
during the partitioning process. When N ≤ M, CN = 0. Otherwise, since any
given value of s occurs with probability 1/N, we have

CN =
1
N

N

s=1

(N + 1 + Cs−1 + CN−s)

= N + 1 +
2
N

0≤k<N

Ck, for N > M. (18)

120 SORTING 5.2.2

Similar formulas hold for other quantities AN, BN, DN, EN, SN (see exercise 23).

There is a simple way to solve recurrence relations of the form

xn = fn +
2
n

0≤k<n

xk, for n ≥ m. (19)

The Ąrst step is to get rid of the summation sign: Since

(n + 1)xn+1 = (n + 1)fn+1 + 2

0≤k≤n

xk,

nxn = nfn + 2

0≤k<n

xk,

we may subtract, obtaining

(n + 1)xn+1 − nxn = gn + 2xn, where gn = (n + 1)fn+1 − nfn.

Now the recurrence takes the much simpler form

(n + 1)xn+1 = (n + 2)xn + gn, for n ≥ m. (20)

Any recurrence relation that has the general form

anxn+1 = bnxn + gn (21)

can be reduced to a summation if we multiply both sides by the Şsummation
factorŤ a0 a1 . . . an−1/b0 b1 . . . bn; we obtain

yn+1 = yn + cn, where yn =
a0 . . . an−1

b0 . . . bn−1
xn, cn =

a0 . . . an−1

b0 b1 . . . bn
gn. (22)

In our case (20), the summation factor is simply n!/(n + 2)! = 1/(n + 1)(n + 2),
so we Ąnd that the simple relation

xn+1

n + 2
=

xn

n + 1
+

(n + 1)fn+1 − nfn
(n + 1)(n + 2)

, for n ≥ m, (23)

is a consequence of (19).
For example, if we set fn = 1/n, we get the unexpected result xn/(n + 1) =

xm/(m + 1) for all n ≥ m. If we set fn = n + 1, we get

xn/(n + 1) = 2/(n + 1) + 2/n + · · ·+ 2/(m + 2) + xm/(m + 1)

= 2 (Hn+1 −Hm+1) + xm/(m + 1),

for all n ≥ m. Thus we obtain the solution to (18) by setting m = M + 1 and
xn = 0 for n ≤M ; the required formula is

CN = (N + 1) (2HN+1 − 2HM+2 + 1)

≈ 2 (N + 1) ln

N + 1
M + 2

, for N > M. (24)

Exercise 6.2.2Ű8 proves that, when M = 1, the standard deviation of CN is
asymptotically

(21− 2π2)/3 N ; this is reasonably small compared to (24).

5.2.2 SORTING BY EXCHANGING 121

The other quantities can be found in a similar way (see exercise 23); when
N > M we have

AN = 2 (N + 1)/(M + 2)− 1,

BN = 1
6 (N + 1)

2HN+1 − 2HM+2 + 1− 6/(M + 2)

+ 1

2 ,

DN = (N + 1)

1− 2HM+1/(M + 2)

,

EN = 1
6 (N + 1)M(M − 1)/(M + 2);

SN = (N + 1)/(2M + 3)− 1, for N > 2M + 1. (25)

The discussion above shows that it is possible to carry out an exact analysis
of the average running time of a fairly complex program, by using techniques
that we have previously applied only to simpler cases.

Formulas (24) and (25) can be used to determine the best value of M on a
particular computer. In MIXŠs case, Program Q requires (35/3)(N + 1)HN+1 +
1
6 (N + 1)f(M)− 34.5 units of time on the average, for N > 2M + 1, where

f(M) = 8M − 70HM+2 + 71− 36
HM+1

M + 2
+

270
M + 2

+
54

2M + 3
. (26)

We want to choose M so that f(M) is a minimum, and a simple computer
calculation shows that M = 9 is best. The average running time of Program Q
is approximately 11.667(N + 1) ln N − 1.74N − 18.74 units when M = 9, for
large N.

So Program Q is quite fast, on the average, considering that it requires very
little memory space. Its speed is primarily due to the fact that the inner loops,
in steps Q3 and Q4, are extremely short Ů only three MIX instructions each (see
lines 12Ű14 and 15Ű17). The number of exchanges, in step Q6, is only about
1/6 of the number of comparisons in steps Q3 and Q4; hence we have saved a
signiĄcant amount of time by not comparing i to j in the inner loops.

But what is the worst case of Algorithm Q? Are there some inputs that it
does not handle efficiently? The answer to this question is quite embarrassing:
If the original Ąle is already in order, with K1 < K2 < · · · < KN, each
ŞpartitioningŤ operation is almost useless, since it reduces the size of the subĄle
by only one element! So this situation (which ought to be easiest of all to sort)
makes quicksort anything but quick; the sorting time becomes proportional to
N2 instead of N lg N. (See exercise 25.) Unlike the other sorting methods we
have seen, Algorithm Q likes a disordered Ąle.

Hoare suggested two ways to remedy the situation, in his original paper, by
choosing a better value of the test key K that governs the partitioning. One of
his recommendations was to choose a random integer q between l and r in the
last part of step Q2; we can change the instruction ŞK ← KlŤ to

K ← Kq, R← Rq, Rq ← Rl, Rl ← R (27)

in that step. (The last assignment ŞRl ← RŤ is necessary; otherwise step Q4
would stop with j = l − 1 when K is the smallest key of the subĄle being

122 SORTING 5.2.2

partitioned.) According to Eqs. (25), such random integers need to be calculated
only 2 (N + 1)/(M + 2)− 1 times on the average, so the additional running time
is not substantial; and the random choice gives good protection against the
occurrence of the worst case. Even a mildly random choice of q should be safe.
Exercise 42 proves that, with truly random q, the probability of more than, say,
20N ln N comparisons will surely be less than 10−8.

HoareŠs second suggestion was to look at a small sample of the Ąle and to
choose a median value of the sample. This approach was adopted by R. C.
Singleton [CACM 12 (1969), 185Ű187], who suggested letting Kq be the median
of the three values

Kl, K⌊(l+r)/2⌋, Kr. (28)

SingletonŠs procedure cuts the number of comparisons down from 2N ln N to
about 12

7 N ln N (see exercise 29). It can be shown that BN is asymptotically
CN/5 instead of CN/6 in this case, so the median method slightly increases the
amount of time spent in transferring the data; the total running time therefore
decreases by roughly 8 percent. (See exercise 56 for a detailed analysis.) The
worst case is still of order N2, but such slow behavior will hardly ever occur.

W. D. Frazer and A. C. McKellar [JACM 17 (1970), 496Ű507] have suggested
taking a much larger sample consisting of 2k − 1 records, where k is chosen so
that 2k ≈ N/ ln N. The sample can be sorted by the usual quicksort method,
then inserted among the remaining records by taking k passes over the Ąle
(partitioning it into 2k subĄles, bounded by the elements of the sample). Finally
the subĄles are sorted. The average number of comparisons required by such
a ŞsamplesortŤ procedure is about the same as in SingletonŠs median method,
when N is in a practical range, but it decreases to the asymptotic value N lg N
as N →∞.

An absolute guarantee of O(N log N) sorting time in the worst case, together
with fast running time on the average, can be obtained by combining quicksort
with other schemes. For example, D. R. Musser [Software Practice & Exper. 27

(1997), 983Ű993] has suggested adding a Şdepth of partitioningŤ component to
each entry on quicksortŠs stack. If any subĄle is found to have been subdivided
more than, say, 2 lg N times, we can abandon Algorithm Q and switch to Al-
gorithm 5.2.3H. The inner loop time remains unchanged, so the average total
running time remains almost the same as before.

Robert Sedgewick has analyzed a number of optimized variants of quicksort
in Acta Informatica 7 (1977), 327Ű356, and in CACM 21 (1978), 847Ű857,
22 (1979), 368. See also J. L. Bentley and M. D. McIlroy, Software Practice
& Exper. 23 (1993), 1249Ű1265, for a version of quicksort that has been tuned
up to Ąt the UNIX R⃝software library, based on 15 further years of experience.

Radix exchange. We come now to a method that is quite different from
any of the sorting schemes we have seen before; it makes use of the binary

representation of the keys, so it is intended only for binary computers. Instead
of comparing two keys with each other, this method inspects individual bits of

5.2.2 SORTING BY EXCHANGING 123

the keys, to see if they are 0 or 1. In other respects it has the characteristics of
exchange sorting, and, in fact, it is rather similar to quicksort. Since it depends
on radix 2 representations, we call it Şradix exchange sorting.Ť The algorithm
can be described roughly as follows:

i) Sort the sequence on its most signiĄcant binary bit, so that all keys that
have a leading 0 come before all keys that have a leading 1. This sorting is done
by Ąnding the leftmost key Ki that has a leading 1, and the rightmost key Kj

with a leading 0. Then Ri and Rj are exchanged and the process is repeated
until i > j.

ii) Let F0 be the elements with leading bit 0, and let F1 be the others. Apply
the radix exchange sorting method to F0 (starting now at the second bit from
the left instead of the most signiĄcant bit), until F0 is completely sorted; then
do the same for F1.

For example, Table 3 shows how the radix exchange sort acts on our 16
random numbers, which have been converted to octal notation. Stage 1 in the
table shows the initial input, and after exchanging on the Ąrst bit we get to
stage 2. Stage 2 sorts the Ąrst group on bit 2, and stage 3 works on bit 3. (The
reader should mentally convert the octal notation to 10-bit binary numbers. For
example, 0232 stands for (0 010 011 010)2.) When we reach stage 5, after sorting
on bit 4, we Ąnd that each group remaining has but a single element, so this part
of the Ąle need not be further examined. The notation Ş4[0232 0252]Ť means
that the subĄle 0232 0252 is waiting to be sorted on bit 4 from the left. In this
particular case, no progress occurs when sorting on bit 4; we need to go to bit 5
before the items are separated.

The complete sorting process shown in Table 3 takes 22 stages, somewhat
more than the comparable number for quicksort (Table 2). Similarly, the number
of bit inspections, 82, is rather high; but we shall see that the number of bit
inspections for large N is actually less than the number of comparisons made
by quicksort, assuming a uniform distribution of keys. The total number of
exchanges in Table 3 is 17, which is quite reasonable. Note that bit inspections
never have to go past bit 7 here, although 10-bit numbers are being sorted.

As in quicksort, we can use a stack to keep track of the Şboundary line
informationŤ for waiting subĄles. Instead of sorting the smallest subĄle Ąrst, it
is convenient simply to go from left to right, since the stack size in this case
can never exceed the number of bits in the keys being sorted. In the following
algorithm the stack entry (r, b) is used to indicate the right boundary r of a
subĄle waiting to be sorted on bit b; the left boundary need not actually be
recorded in the stack Ů it is implicit because of the left-to-right nature of the
procedure.

Algorithm R (Radix exchange sort). Records R1, . . . , RN are rearranged in
place; after sorting is complete, their keys will be in order, K1 ≤ · · · ≤ KN. Each
key is assumed to be a nonnegative m-bit binary number, (a1 a2 . . . am)2; the ith
most signiĄcant bit, ai, is called Şbit iŤ of the key. An auxiliary stack with
room for at most m− 1 entries is needed for temporary storage. This algorithm

124
S

O
R

T
IN

G
5.2.2

Table 3

RADIX EXCHANGE SORTING

Stage l r b Stack

1 1[[0767 0127 1000 0075 1614 0252 1601 0423 1215 0652 0232 0775 1144 1245 1375 1277]] 1 16 1 −−

2 2[[0767 0127 0775 0075 0232 0252 0652 0423]]2[1215 1601 1614 1000 1144 1245 1375 1277] 1 8 2 (16,2)

3 3[[0252 0127 0232 0075]]3[0775 0767 0652 0423] 2[1215 1601 1614 1000 1144 1245 1375 1277] 1 4 3 (8,3)(16,2)

4 4[[0075 0127]]4[0232 0252] 3[0775 0767 0652 0423] 2[1215 1601 1614 1000 1144 1245 1375 1277] 1 2 4 (4,4)(8,3)(16,2)

5 0075 0127 4[[0232 0252]]3[0775 0767 0652 0423] 2[1215 1601 1614 1000 1144 1245 1375 1277] 3 4 4 (8,3)(16,2)

6 0075 0127 5[[0232 0252]]3[0775 0767 0652 0423] 2[1215 1601 1614 1000 1144 1245 1375 1277] 3 4 5 (8,3)(16,2)

7 0075 0127 0232 0252 3[[0775 0767 0652 0423]]2[1215 1601 1614 1000 1144 1245 1375 1277] 5 8 3 (16,2)

8 0075 0127 0232 0252 0423 4[[0767 0652 0775]]2[1215 1601 1614 1000 1144 1245 1375 1277] 6 8 4 (16,2)

9 0075 0127 0232 0252 0423 0652 5[[0767 0775]]2[1215 1601 1614 1000 1144 1245 1375 1277] 7 8 5 (16,2)

10 0075 0127 0232 0252 0423 0652 6[[0767 0775]]2[1215 1601 1614 1000 1144 1245 1375 1277] 7 8 6 (16,2)

11 0075 0127 0232 0252 0423 0652 7[[0767 0775]]2[1215 1601 1614 1000 1144 1245 1375 1277] 7 8 7 (16,2)

12 0075 0127 0232 0252 0423 0652 0767 0775 2[[1215 1601 1614 1000 1144 1245 1375 1277]] 9 16 2 −−

13 0075 0127 0232 0252 0423 0652 0767 0775 3[[1215 1277 1375 1000 1144 1245]]3[1614 1601] 9 14 3 (16,3)

14 0075 0127 0232 0252 0423 0652 0767 0775 4[[1144 1000]]4[1375 1277 1215 1245] 3[1614 1601] 9 10 4 (14,4)(16,3)

15 0075 0127 0232 0252 0423 0652 0767 0775 1000 1144 4[[1375 1277 1215 1245]]3[1614 1601] 11 14 4 (16,3)

16 0075 0127 0232 0252 0423 0652 0767 0775 1000 1144 5[[1245 1277 1215]]5[1375] 3[1614 1601] 11 13 5 (14,5)(16,3)

17 0075 0127 0232 0252 0423 0652 0767 0775 1000 1144 1215 6[[1277 1245]]5[1375] 3[1614 1601] 12 13 6 (14,5)(16,3)

18 0075 0127 0232 0252 0423 0652 0767 0775 1000 1144 1215 1245 1277 1375 3[[1614 1601]] 15 16 3 −−

19 0075 0127 0232 0252 0423 0652 0767 0775 1000 1144 1215 1245 1277 1375 4[[1614 1601]] 15 16 4 −−

20 0075 0127 0232 0252 0423 0652 0767 0775 1000 1144 1215 1245 1277 1375 5[[1614 1601]] 15 16 5 −−

21 0075 0127 0232 0252 0423 0652 0767 0775 1000 1144 1215 1245 1277 1375 6[[1614 1601]] 15 16 6 −−

22 0075 0127 0232 0252 0423 0652 0767 0775 1000 1144 1215 1245 1277 1375 7[[1614 1601]] 15 16 7 −−

23 0075 0127 0232 0252 0423 0652 0767 0775 1000 1144 1215 1245 1277 1375 1601 1614 17 − − −−

The radix exchange method looks precisely once at every bit that is needed to determine the Ąnal order of the keys.

5.2.2 SORTING BY EXCHANGING 125

essentially follows the radix exchange partitioning procedure described in the
text above; certain improvements in its efficiency are possible, as described in
the text and exercises below.

R1. [Initialize.] Set the stack empty, and set l← 1, r ← N, b← 1.

R2. [Begin new stage.] (We now wish to sort the subĄle Rl . . . Rr on bit b;
from the nature of the algorithm, we have l ≤ r.) If l = r, go to step R10
(since a one-word Ąle is already sorted). Otherwise set i← l, j ← r.

R3. [Inspect Ki for 1.] Examine bit b of Ki. If it is a 1, go to step R6.

R4. [Increase i.] Increase i by 1. If i ≤ j, return to step R3; otherwise go to
step R8.

R5. [Inspect Kj+1 for 0.] Examine bit b of Kj+1. If it is a 0, go to step R7.

R6. [Decrease j.] Decrease j by 1. If i ≤ j, go to step R5; otherwise go to
step R8.

R7. [Exchange Ri, Rj+1.] Interchange records Ri ↔ Rj+1; then go to step R4.

R8. [Test special cases.] (At this point a partitioning stage has been completed;
i = j + 1, bit b of keys Kl, . . . , Kj is 0, and bit b of keys Ki, . . . , Kr is 1.)
Increase b by 1. If b > m, where m is the total number of bits in the keys,
go to step R10. (In such a case, the subĄle Rl . . . Rr has been sorted. This
test need not be made if there is no chance of having equal keys present in
the Ąle.) Otherwise if j < l or j = r, go back to step R2 (all bits examined
were 1 or 0, respectively). Otherwise if j = l, increase l by 1 and go to
step R2 (there was only one 0 bit).

R9. [Put on stack.] Insert the entry (r, b) on top of the stack; then set r ← j
and go to step R2.

R10. [Take off stack.] If the stack is empty, we are done sorting; otherwise set
l← r + 1, remove the top entry (r′, b′) of the stack, set r ← r′, b← b′, and
return to step R2.

Program R (Radix exchange sort). The following MIX code uses essentially the
same conventions as Program Q. We have rI1 ≡ l − r, rI2 ≡ r, rI3 ≡ i, rI4 ≡ j,
rI5 ≡ m − b, rI6 ≡ size of stack, except that it proves convenient for certain
instructions (designated below) to leave rI3 = i − j or rI4 = j − i. Because of
the binary nature of radix exchange, this program uses the operations SRB (shift
right AX binary), JAE (jump A even), and JAO (jump A odd), deĄned in Section
4.5.2. We assume that N ≥ 2.
01 START ENT6 0 1 R1. Initialize. Set stack empty.
02 ENT1 1-N 1 l← 1.
03 ENT2 N 1 r ← N.
04 ENT5 M-1 1 b← 1.
05 JMP 1F 1 To R2 (omit testing l = r).
06 9H INC6 1 S R9. Put on stack. [rI4 = j−l]
07 ST2 STACK,6(A) S
08 ST5 STACK,6(B) S (r, b)⇒ stack.

126 SORTING 5.2.2

09 ENN1 0,4 S rI1← l − j.
10 ENT2 -1,3 S r ← j.
11 1H ENT3 0,1 A R2. Begin new stage. [rI3 = i−j]
12 ENT4 0,2 A i← l, j ← r. [rI3 = i−j]
13 3H INC3 0,4 C′ R3. Inspect Ki for 1.
14 LDA INPUT,3 C′

15 SRB 0,5 C′ units bit of rA← bit b of Ki.
16 JAE 4F C′ To R4 if it is 0.
17 6H DEC4 1,3 C′′ +X R6. Decrease j. j ← j − 1. [rI4 = j−i]
18 J4N 8F C′′ +X To R8 if j < i. [rI4 = j−i]
19 5H INC4 0,3 C′′ R5. Inspect Kj +1 for 0.
20 LDA INPUT+1,4 C′′

21 SRB 0,5 C′′ units bit of rA← bit b of Kj+1.
22 JAO 6B C′′ To R6 if it is 1.
23 7H LDA INPUT+1,4 B R7. Exchange Ri, Rj +1.
24 LDX INPUT,3 B
25 STX INPUT+1,4 B
26 STA INPUT,3 B
27 4H DEC3 -1,4 C′ −X R4. Increase i. i← i+ 1. [rI3 = i−j]
28 J3NP 3B C′ −X To R3 if i ≤ j. [rI3 = i−j]
29 INC3 0,4 A−X rI3← i.
30 8H J5Z 0F A R8. Test special cases. [rI4 unknown]
31 DEC5 1 A−G To R10 if b = m, else b← b+ 1.
32 ENT4 -1,3 A−G rI4← j.
33 DEC4 0,2 A−G rI4← j − r.
34 J4Z 1B A−G To R2 if j = r.
35 DEC4 0,1 A−G−R rI4← j − l.
36 J4N 1B A−G−R To R2 if j < l.
37 J4NZ 9B A−G−L−R To R9 if j ̸= l.
38 INC1 1 K l← l + 1.
39 2H J1NZ 1B K + S Jump if l ̸= r.
40 0H ENT1 1,2 S + 1 R10. Take off stack.
41 LD2 STACK,6(A) S + 1
42 DEC1 0,2 S + 1
43 LD5 STACK,6(B) S + 1 stack⇒ (r, b).
44 DEC6 1 S + 1
45 J6NN 2B S + 1 To R2 if stack was nonempty.

The running time of this radix exchange program depends on

A = number of stages encountered with l < r;
B = number of exchanges;
C = C ′ + C ′′ = number of bit inspections;
G = number of times b > m in step R8;
K = number of times b ≤ m, j = l in step R8; (29)
L = number of times b ≤ m, j < l in step R8;
R = number of times b ≤ m, j = r in step R8;
S = number of times things are entered onto the stack;
X = number of times j < i in step R6.

5.2.2 SORTING BY EXCHANGING 127

By KirchhoffŠs law, S = A−G−K −L−R; so the total running time comes to
27A + 8B + 8C − 23G − 14K − 17L − 19R −X + 13 units. The bit-inspection
loops can be made somewhat faster, as shown in exercise 34, at the expense of
a more complicated program. It is also possible to increase the speed of radix
exchange by using straight insertion whenever r − l is sufficiently small, as we
did in Algorithm Q; but we shall not dwell on these reĄnements.

In order to analyze the running time of radix exchange, two kinds of input
data suggest themselves. We can

i) assume that N = 2m and that the keys to be sorted are simply the integers
0, 1, 2, . . . , 2m − 1 in random order; or

ii) assume that m = ∞ (unlimited precision) and that the keys to be sorted
are independent uniformly distributed real numbers in [0 . . 1).

The analysis of case (i) is relatively easy, so it has been left as an exercise for the
reader (see exercise 35). Case (ii) is comparatively difficult, so it has also been left
as an exercise (see exercise 38). The following table shows crude approximations
to the results of these analyses:

Quantity Case (i) Case (ii)

A N αN

B 1
4 N lg N 1

4 N lg N

C N lg N N lg N

G 1
2 N 0

K 0 1
2 N

L 0 1
2 (α− 1)N

R 0 1
2 (α− 1)N

S 1
2 N 1

2 N

X 1
2 N 1

2 N (30)

Here α = 1/ ln 2 ≈ 1.4427. Notice that the average number of exchanges, bit
inspections, and stack accesses is essentially the same for both kinds of data,
even though case (ii) takes about 44 percent more stages. Our MIX program
takes approximately 14.4 N ln N units of time, on the average, to sort N items
in case (ii), and this could be cut to about 11.5 N ln N using the suggestion of
exercise 34; the corresponding Ągure for Program Q is 11.7 N ln N, which can be
decreased to about 10.6 N ln N using SingletonŠs median-of-three suggestion.

Thus radix exchange sorting takes about as long as quicksort, on the average,
when sorting uniformly distributed data; on some machines it is actually a little
quicker than quicksort. Exercise 53 indicates to what extent the process slows
down for a nonuniform distribution. It is important to note that our entire
analysis is predicated on the assumption that keys are distinct; radix exchange
as deĄned above is not especially efficient when equal keys are present, since it
goes through several time-consuming stages trying to separate sets of identical

128 SORTING 5.2.2

keys before b becomes > m. One plausible way to remedy this defect is suggested
in the answer to exercise 40.

Both radix exchange and quicksort are essentially based on the idea of
partitioning. Records are exchanged until the Ąle is split into two parts: a left-
hand subĄle, in which all keys are ≤ K, for some K, and a right-hand subĄle
in which all keys are ≥ K. Quicksort chooses K to be an actual key in the
Ąle, while radix exchange essentially chooses an artiĄcial key K based on binary
representations. From a historical standpoint, radix exchange was discovered by
P. Hildebrandt, H. Isbitz, H. Rising, and J. Schwartz [JACM 6 (1959), 156Ű163],
about a year earlier than quicksort. Other partitioning schemes are also possible;
for example, John McCarthy has suggested setting K ≈ 1

2 (u + v), if all keys are
known to lie between u and v. Yihsiao Wang has suggested that the mean of
three key values such as (28) be used as the threshold for partitioning; he has
proved that the number of comparisons required to sort uniformly distributed
random data will then be asymptotic to 1.082N lg N .

Still another partitioning strategy has been proposed by M. H. van Emden
[CACM 13 (1970), 563Ű567]: Instead of choosing K in advance, we ŞlearnŤ
what a good K might be, by keeping track of K ′ = max(Kl, . . . , Ki) and K ′′ =
min(Kj , . . . , Kr) as partitioning proceeds. We may increase i until encountering
a key greater than K ′, then decrease j until encountering a key less than K ′′, then
exchange and/or adjust K ′ and K ′′. Empirical tests on this Şinterval-exchange
sortŤ method indicate that it is slightly slower than quicksort; its running time
appears to be so difficult to analyze that an adequate theoretical explanation
will never be found, especially since the subĄles after partitioning are no longer
in random order.

A generalization of radix exchange to radices higher than 2 is discussed in
Section 5.2.5.

*Asymptotic methods. The analysis of exchange sorting algorithms leads to
some particularly instructive mathematical problems that enable us to learn
more about how to Ąnd the asymptotic behavior of functions. For example, we
came across the function

Wn =
1
n!

0≤r<s≤n

s! rn−s (31)

in (9), during our analysis of the bubble sort; what is its asymptotic value?
We can proceed as in our study of the number of involutions, Eq. 5.1.4Ű(41);

the reader will Ąnd it helpful to review the discussion at the end of Section 5.1.4
before reading further.

Inspection of (31) shows that the contribution for s = n is larger than that
for s = n− 1, etc.; this suggests replacing s by n− s. In fact, we soon discover
that it is most convenient to use the substitutions t = n− s + 1, m = n + 1, so
that (31) becomes

1
m

Wm−1 =
1

m!

1≤t<m

(m− t)!

0≤r<m−t

rt−1. (32)

5.2.2 SORTING BY EXCHANGING 129

The inner sum has a well-known asymptotic series obtained from EulerŠs sum-
mation formula, namely

0≤r<N

rt−1 =
N t

t
− 1

2
(N t−1 − δt1) +

B2

2!
(t− 1)(N t−2 − δt2) + · · ·

=
1
t

k

j=0

t

j

Bj(N t−j − δtj) + O(N t−k) (33)

(see exercise 1.2.11.2Ű4); hence our problem reduces to studying sums of the
form

1
m!

1≤t<m

(m− t)! (m− t)ttk, k ≥ −1. (34)

As in Section 5.1.4 we can show that the value of this summand is negligi-
ble, O

exp(−nδ)

, whenever t is greater than m1/2+ϵ; hence we may put t =

O(m1/2+ϵ) and replace the factorials by StirlingŠs approximation:

(m− t)! (m− t)t

m!

=

1− t

m
exp

t

12m2
−

t2

2m
+

t3

3m2
+

t4

4m3
+

t5

5m4

+ O(m−2+6ϵ)

.

We are therefore interested in the asymptotic value of

rk(m) =

1≤t<m

e−t2/2mtk, k ≥ −1. (35)

The sum could also be extended to the full range 1 ≤ t < ∞ without changing
its asymptotic value, since the values for t > m1/2+ϵ are negligible.

Let gk(x) = xke−x2 and fk(x) = gk

x/
√

2m

. When k ≥ 0, EulerŠs

summation formula tells us that

0≤t<m

fk(t) =
 m

0

fk(x) dx +
p

j=1

Bj

j!

f

(j−1)
k (m)− f

(j−1)
k (0)

+ Rp,

Rp =
(−1)p+1

p!

 m

0

Bp({x})f (p)
k (x) dx

=

1√
2m

p

O

 ∞

0

g(p)
k (y)

 dy

= O(m−p/2); (36)

hence we can get an asymptotic series for rk(m) whenever k ≥ 0 by using
essentially the same ideas we have used at the end of Section 5.1.4. But when
k = −1 the method breaks down, since f−1(0) is undeĄned; we canŠt merely
sum from 1 to m either, because the remainders donŠt give smaller and smaller
powers of m when the lower limit is 1. (This is the crux of the matter, and the
reader should pause to appreciate the problem before proceeding further.)

130 SORTING 5.2.2

To resolve the dilemma we can deĄne g−1(x) = (e−x2 − 1)/x and f−1(x) =
g−1

x/
√

2m

; then f−1(0) = 0, and r−1(m) can be obtained from

0≤t<m f−1(t)

in a simple way. Equation (36) is now valid for k = −1, and the remaining
integral is well known,

2√
2m

 m

0

f−1(x) dx = 2
 m

0

e−x2/2m − 1
x

dx =
 m/2

0

e−y − 1
y

dy

=
 1

0

e−y − 1
y

dy +
 m/2

1

e−y

y
dy − ln

m

2

= −γ − ln m + ln 2 + O(e−m/2),

by exercise 43.
Now we have enough facts and formulas to grind out the answer,

Wn = 1
2 m ln m + 1

2 (γ + ln 2)m− 2
3

√
2πm + 49

36 + O(n−1/2), m = n + 1, (37)

as shown in exercise 44. This completes our analysis of the bubble sort.
For the analysis of radix exchange sorting, we need to know the asymptotic

value of the Ąnite sum

Un =

k≥2

n

k

(−1)k

1
2k−1 − 1

(38)

as n→∞. This question turns out to be harder than any of the other asymptotic
problems we have met so far; the elementary methods of power series expansions,
EulerŠs summation formula, etc., turn out to be inadequate. The following
derivation has been suggested by N. G. de Bruijn.

To get rid of the cancellation effects of the large factors

n
k

(−1)k in (38),

we start by rewriting the sum as an inĄnite series

Un =

k≥2

n

k

(−1)k

j≥1

 1
2k−1

j
=

j≥1

2j(1− 2−j)n − 2j + n

. (39)

If we set x = n/2j , the summand is

2j(1− 2−j)n − 2j + n =
n

x

1− x

n

n
− 1 + x

.

When x ≤ nϵ, we have

1− x

n

n
= exp

n ln

1− x

n

= exp

−x + x2 O(n−1)

, (40)

and this suggests approximating (39) by

Tn =

j≥1

(2je−n/2j − 2j + n). (41)

5.2.2 SORTING BY EXCHANGING 131

To justify this approximation, we have Un − Tn = Xn + Yn, where

Xn =

j≥1

2j<n1−ϵ

2j(1− 2−j)n − 2je−n/2j

[the terms for x > nϵ]

=

j≥1

2j<n1−ϵ

O(ne−n/2j

) [since 0 < 1−2−j < e−2−j

]

= O(n log n e−nϵ

) [since there are O(log n) terms];

and

Yn =

j≥1

2j≥n1−ϵ

2j(1− 2−j)n − 2je−n/2j

[the terms for x ≤ nϵ]

=

j≥1

2j≥n1−ϵ

e−n/2j n

2j
O(1)

[by (40)].

Our discussion below will demonstrate that the latter sum is O(1); consequently
Un − Tn = O(1). (See exercise 47.)

So far we havenŠt applied any techniques that are really different from those
we have used before. But the study of Tn requires a new idea, based on simple
principles of complex variable theory: If x is any positive number, we have

e−x =
1

2πi

 1/2+i∞

1/2−i∞
Γ (z)x−z dz =

1
2π

 ∞

−∞
Γ (1

2 + it)x−(1/2+it) dt. (42)

To prove this identity, consider the path of integration shown in Fig. 20(a), where
N, N ′, and M are large. The value of the integral along this contour is the sum
of the residues inside, namely

0≤k<M

x−(−k) lim
z→−k

(z + k)Γ (z) =

0≤k<M

xk (−1)k

k!
.

The integral on the top line is O
 1/2

−∞ |Γ (t + iN)|x−t dt

, and we have the well-

known bound

Γ (t + iN) = O

|t + iN |t−1/2e−t−πN/2

as N →∞.

[For properties of the gamma function see, for example, Erdélyi, Magnus, Ober-
hettinger, and Tricomi, Higher Transcendental Functions 1 (New York: McGrawŰ
Hill, 1953), Chapter 1.] Therefore the top line integral is quite negligible,
O

e−πN/2

 1/2

−∞(N/xe)t dt

. The bottom line integral has a similar innocuous

behavior. For the integral along the left line we use the fact that

Γ

1
2 + it−M

= Γ

1
2 + it

/

−M + 1

2 + it

. . .

−1 + 1

2 + it

= Γ

1
2 + it

O

1/(M − 1)!

;

132 SORTING 5.2.2

1

2
−iN

′
−M

1

2
−iN

′

1

2
+iN

1

2
+iN−M

0

(a)

−

3

2
−iN

′
M−iN

′

M+iN−

3

2
+iN

0

(b)

Fig. 20. Contours of integration for gamma-function identities.

hence the left-hand integral is O

xM−1/2/(M − 1)!

 ∞
−∞

Γ

1
2 + it

 dt. There-
fore as M, N, N ′ → ∞, only the right-hand integral survives, and this proves
(42). In fact, (42) remains valid if we replace 1

2 by any positive number.
The same argument can be used to derive many other useful relations

involving the gamma function. We can replace x−z by other functions of z;
or we can replace the constant 1

2 by other quantities. For example,

1
2πi

 −3/2+i∞

−3/2−i∞
Γ (z)x−z dz = e−x − 1 + x, (43)

and this is the critical quantity in our formula (41) for Tn:

Tn = n

j≥1

1
2πi

 −3/2+i∞

−3/2−i∞
Γ (z)(n/2j)−1−z dz. (44)

The sum may be placed inside the integrals, since its convergence is absolutely
well-behaved; we have

j≥1

(n/2j)w = nw

j≥1

(1/2w)j = nw/(2w − 1), when ℜ(w) > 0,

because |2w| = 2ℜ(w) > 1. Therefore

Tn =
n

2πi

 −3/2+i∞

−3/2−i∞

Γ (z)n−1−z

2−1−z − 1
dz, (45)

and it remains to evaluate the latter integral.
This time we integrate along a path that extends far to the right, as in

Fig. 20(b). The top line integral is O(n1/2e−πN/2
M

−3/2
|M + iN |t dt), if 2iN ̸= 1,

and the bottom line integral is equally negligible, when N and N ′ are much
larger than M. The right-hand line integral is O(n−1−M

∞
−∞ |Γ (M + it)| dt).

Fixing M and letting N, N ′ →∞ shows that −Tn/n is O(n−1−M) plus the sum
of the residues in the region −3/2 < ℜ(z) < M. The factor Γ (z) has simple
poles at z = −1 and z = 0, while n−1−z has no poles, and 1/(2−1−z − 1) has
simple poles when z = −1 + 2πik/ ln 2.

5.2.2 SORTING BY EXCHANGING 133

The double pole at z = −1 is the hardest to handle. We can use the well-
known relation

Γ (z + 1) = exp(−γz + ζ(2)z2/2− ζ(3)z3/3 + ζ(4)z4/4− · · ·),

where ζ(s) = 1−s + 2−s + 3−s + · · · = H
(s)
∞ , to deduce the following expansions

when w = z + 1 is small:

Γ (z) =
Γ (w + 1)
w(w − 1)

= −w−1 + (γ − 1) + O(w),

n−1−z = 1− w ln n + O(w2),

1/(2−1−z − 1) = −w−1/ ln 2− 1
2 + O(w).

The residue at z = −1 is the coefficient of w−1 in the product of these three
formulas, namely 1

2 − (ln n + γ − 1)/ ln 2. Adding the other residues gives the
formula

Tn

n
=

ln n + γ − 1
ln 2

− 1
2

+ δ(n) +
2
n

+ O(n−M), (46)

for arbitrarily large M, where δ(n) is a rather strange function,

δ(n) =
2

ln 2

k≥1

ℜ

Γ (−1− 2πik/ ln 2) exp(2πik lg n)

. (47)

Notice that δ(n) = δ(2n). The average value of δ(n) is zero, since the average
value of each term is zero. (We may assume that (lg n) mod 1 is uniformly
distributed, in view of the results about Ćoating point numbers in Section 4.2.4.)
Furthermore, since |Γ (−1 + it)| =

π/(t(1 + t2) sinh πt)
1/2, it is not difficult to

show that δ(n)
 < 0.000000173; (48)

thus we may safely ignore the ŞwobblesŤ of δ(n) for practical purposes. For
theoretical purposes, however, we canŠt obtain a valid asymptotic expansion of
Un without it; that is why Un is a comparatively difficult function to analyze.

From the deĄnition of Tn in (41) we can see immediately that

T2n

2n
=

Tn

n
+ 1− 1

n
+

e−n

n
. (49)

Therefore the error term O(n−M) in (46) is essential; it cannot be replaced by
zero. However, exercise 54 presents another approach to the analysis, which
avoids such error terms by deriving a rather peculiar convergent series.

In summary, we have deduced the behavior of the difficult sum (38):

Un = n lg n + n

γ − 1
ln 2

− 1
2

+ δ(n)

+ O(1). (50)

The gamma-function method we have used to obtain this result is a special case
of the general technique of Mellin transforms, which are extremely useful in the
study of radix-oriented recurrence relations. Other examples of this approach

134 SORTING 5.2.2

can be found in exercises 51Ű53 and in Section 6.3. An excellent introduction
to Mellin transforms and their applications to algorithmic analysis has been
presented by P. Flajolet, X. Gourdon, and P. Dumas in Theoretical Computer
Science 144 (1995), 3Ű58.

EXERCISES

1. [M20] Let a1 . . . an be a permutation of {1, . . . , n}, and let i and j be indices such
that i < j and ai > aj . Let a′1 . . . a

′
n be the permutation obtained from a1 . . . an by

interchanging ai and aj . Can a′1 . . . a
′
n have more inversions than a1 . . . an?

x 2. [M25] (a) What is the minimum number of exchanges that will sort the permuta-
tion 3 7 6 9 8 1 4 5 2? (b) In general, given any permutation π = a1 . . . an of {1, . . . , n},
let xch(π) be the minimum number of exchanges that will sort π into increasing order.
Express xch(π) in terms of ŞsimplerŤ characteristics of π. (See exercise 5.1.4Ű41 for
another way to measure the disorder of a permutation.)

3. [10] Is the bubble sort Algorithm B a stable sorting algorithm?

4. [M23] If t = 1 in step B4, we could actually terminate Algorithm B immediately,
because the subsequent step B2 will do nothing useful. What is the probability that
t = 1 will occur in step B4 when sorting a random permutation?

5. [M25] Let b1 b2 . . . bn be the inversion table for the permutation a1 a2 . . . an. Show
that the value of BOUND after r passes of the bubble sort is max {bi + i | bi ≥ r}− r, for
0 ≤ r ≤ max (b1, . . . , bn).

6. [M22] Let a1 . . . an be a permutation of {1, . . . , n} and let a′1 . . . a
′
n be its in-

verse. Show that the number of passes to bubble-sort a1 . . . an is 1 + max (a′1 − 1,
a′2 − 2, . . . , a′n − n).

7. [M28] Calculate the standard deviation of the number of passes for the bubble
sort, and express it in terms of n and the function P (n). [See Eqs. (6) and (7).]

8. [M24] Derive Eq. (8).

9. [M48] Analyze the number of passes and the number of comparisons in the cock-
tail-shaker sorting algorithm. Note: See exercise 5.4.8Ű9 for partial information.

10. [M26] Let a1 a2 . . . an be a 2-ordered permutation of {1, 2, . . . , n}.
a) What are the coordinates of the endpoints of the aith step of the corresponding

lattice path? (See Fig. 11 on page 87.)
b) Prove that the comparison/exchange of a1 :a2, a3 :a4, . . . corresponds to folding

the path about the diagonal, as in Fig. 18(b).
c) Prove that the comparison/exchange of a2 :a2+d, a4 :a4+d, . . . corresponds to

folding the path about a line m units below the diagonal, as in Figs. 18(c), (d),
and (e), when d = 2m− 1.

x 11. [M25] What permutation of {1, 2, . . . , 16} maximizes the number of exchanges
done by BatcherŠs algorithm?

12. [24] Write a MIX program for Algorithm M, assuming that MIX is a binary com-
puter with the operations AND, SRB. How much time does your program take to sort
the sixteen records in Table 1?

13. [10] Is BatcherŠs method a stable sorting algorithm?

5.2.2 SORTING BY EXCHANGING 135

14. [M21] Let c(N) be the number of key comparisons used to sort N elements by
BatcherŠs method; this is the number of times step M4 is performed.

a) Show that c(2t) = 2c(2t−1) + (t− 1)2t−1 + 1, for t ≥ 1.
b) Find a simple expression for c(2t) as a function of t. Hint: Consider the sequence

xt = c(2t)/2t.

15. [M38] The object of this exercise is to analyze the function c(N) of exercise 14,
and to Ąnd a formula for c(N) when N = 2e1 + 2e2 + · · ·+ 2er, e1 > e2 > · · · > er ≥ 0.

a) Let a(N) = c(N +1)−c(N). Prove that a(2n) = a(n)+⌊lg (2n)⌋, and a(2n+1) =
a(n) + 1; hence

a(N) =

e1 + 1

2

− r(e1 − 1) + (e1 + e2 + · · ·+ er).

b) Let x(n) = a(n)− a(⌊n/2⌋), so that a(n) = x(n) + x(⌊n/2⌋) + x(⌊n/4⌋) + · · · . Let
y(n) = x(1)+x(2)+ · · ·+x(n); and let z(2n) = y(2n)−a(n), z(2n+1) = y(2n+1).
Prove that c(N + 1) = z(N) + 2z(⌊N/2⌋) + 4z(⌊N/4⌋) + · · · .

c) Prove that y(N) = N + (⌊N/2⌋+ 1)(e1 − 1)− 2e1 + 2.
d) Now put everything together and Ąnd a formula for c(N) in terms of the exponents

ej , holding r Ąxed.

16. [HM42] Find the asymptotic value of the average number of exchanges occurring
when BatcherŠs method is applied to a random permutation of N distinct elements,
assuming that N is a power of two.

x 17. [20] Where in Algorithm Q do we use the fact that K0 and KN+1 have the values
postulated in (13)?

x 18. [20] Explain how the computation proceeds in Algorithm Q when all of the input
keys are equal. What would happen if the Ş<Ť signs in steps Q3 and Q4 were changed
to Ş≤Ť instead?

19. [15] Would Algorithm Q still work properly if a queue (Ąrst-in-Ąrst-out) were
used instead of a stack (last-in-Ąrst-out)?

20. [M20] What is the largest possible number of elements that will ever be on the
stack at once in Algorithm Q, as a function of M and N?

21. [20] Explain why the Ąrst partitioning phase of Algorithm Q takes the number of
comparisons and exchanges speciĄed in (17), when the keys are distinct.

22. [M25] Let pkN be the probability that the quantity A in (16) will equal k, when
Algorithm Q is applied to a random permutation of {1, 2, . . . , N}, and let AN (z) =

k pkNz
k be the corresponding generating function. Prove that AN (z) = 1 for N ≤M ,

and AN (z) = z(

1≤s≤N As−1(z)AN−s(z))/N for N > M. Find similar recurrence
relations deĄning the other probability distributions BN (z), CN (z), DN (z), EN (z),
SN (z).

23. [M23] Let AN, BN, DN, EN, SN be the average values of the corresponding
quantities in (16), when sorting a random permutation of {1, 2, . . . , N}. Find recur-
rence relations for these quantities, analogous to (18); and solve these recurrences to
obtain (25).

24. [M21] Algorithm Q obviously does a few more comparisons than it needs to, since
we can have i = j in step Q3 and even i > j in step Q4. How many comparisons CN

would be done on the average if we avoided all comparisons when i ≥ j?

136 SORTING 5.2.2

25. [M20] When the input keys are the numbers 1 2 . . . N in order, what are the exact
values of the quantities A, B, C, D, E, and S in the timing of Program Q? (Assume
that N > M.)

x 26. [M24] Construct an input Ąle that makes Program Q go even more slowly than
it does in exercise 25. (Try to Ąnd a really bad case.)

27. [M28] (R. Sedgewick.) Consider the best case of Algorithm Q: Find a permutation
of {1, 2, . . . , 23} that takes the least time to be sorted when N = 23 and M = 3.

28. [M26] Find the recurrence relation analogous to (20) that is satisĄed by the
average number of comparisons in SingletonŠs modiĄcation of Algorithm Q (choosing
s as the median of {K1,K⌊(N+1)/2⌋,KN} instead of s = K1). Ignore the comparisons
made when computing the median value s.

29. [HM40] Continuing exercise 28, Ąnd the asymptotic value of the number of com-
parisons in SingletonŠs Şmedian of threeŤ method.

x 30. [25] (P. Shackleton.) When multiword keys are being sorted, many sorting meth-
ods become progressively slower as the Ąle gets closer to its Ąnal order, since equal
and nearly-equal keys require an inspection of several words to determine the proper
lexicographic order. (See exercise 5Ű5.) Files that arise in practice often involve such
keys, so this phenomenon can have a signiĄcant impact on the sorting time.

Explain how Algorithm Q can be extended to avoid this difficulty; within a subĄle
in which the leading k words are known to have constant values for all keys, only the
(k + 1)st words of the keys should be inspected.

x 31. [20] (C. A. R. Hoare.) Suppose that, instead of sorting an entire Ąle, we only
want to determine the mth smallest of a given set of n elements. Show that quicksort
can be adapted to this purpose, avoiding many of the computations required to do a
complete sort.

32. [M40] Find a simple closed form expression for Cnm, the average number of key
comparisons required to select the mth smallest of n elements by the ŞquickĄndŤ
method of exercise 31. (For simplicity, let M = 1; that is, donŠt assume the use of
a special technique for short subĄles.) What is the asymptotic behavior of C(2m−1)m,
the average number of comparisons needed to Ąnd the median of 2m − 1 elements by
HoareŠs method?

x 33. [15] Design an algorithm that rearranges all the numbers in a given table so
that all negative values precede all nonnegative ones. (The items need not be sorted
completely, just separated between negative and nonnegative.) Your algorithm should
use the minimum possible number of exchanges.

34. [20] How can the bit-inspection loops of radix exchange (in steps R3 through R6)
be speeded up?

35. [M23] Analyze the values of the frequencies A, B, C, G, K, L, R, S, and X that
arise in radix exchange sorting using Şcase (i) input.Ť

36. [M27] Given a sequence of numbers ⟨an⟩ = a0, a1, a2, . . . , deĄne its binomial

transform ⟨ân⟩ = â0, â1, â2, . . . by the rule

ân =

k

n

k

(−1)kak.

a) Prove that ⟨ˆ̂an⟩ = ⟨an⟩.
b) Find the binomial transforms of the sequences ⟨1⟩; ⟨n⟩; ⟨n

m

⟩, for Ąxed m; ⟨an⟩,
for Ąxed a; ⟨n

m

an⟩, for Ąxed a and m.

5.2.2 SORTING BY EXCHANGING 137

c) Suppose that a sequence ⟨xn⟩ satisĄes the relation

xn = an + 21−n

k≥2

n

k

xk, for n ≥ 2; x0 = x1 = a0 = a1 = 0.

Prove that the solution to this recurrence is

xn =

k≥2

n

k

(−1)k 2k−1 âk

2k−1 − 1
= an +

k≥2

n

k

(−1)k âk

2k−1 − 1
.

37. [M28] Determine all sequences ⟨an⟩ such that ⟨ân⟩ = ⟨an⟩, in the sense of exer-
cise 36.

x 38. [M30] Find AN, BN, CN, GN, KN, LN, RN, and XN, the average values of the
quantities in (29), when radix exchange is applied to Şcase (ii) input.Ť Express your
answers in terms of N and the quantities

Un =

k≥2

n

k

 (−1)k

2k−1 − 1
Vn =

k≥2

n

k

 (−1)kk

2k−1 − 1
= n(Un − Un−1).

[Hint: See exercise 36.]

39. [20] The results shown in (30) indicate that radix exchange sorting involves about
1.44N partitioning stages when it is applied to random input. Prove that quicksort
will never require more than N stages; and explain why radix exchange often does.

40. [21] Explain how to modify Algorithm R so that it works with reasonable effi-
ciency when sorting Ąles containing numerous equal keys.

x 41. [30] Devise a good way to exchange records Rl . . . Rr so that they are partitioned
into three blocks, with (i) Kk < K for l ≤ k < i; (ii) Kk = K for i ≤ k ≤ j; (iii)
Kk > K for j < k ≤ r. Schematically, the Ąnal arrangement should be

< K = K > K

l i j r

.

42. [HM32] For any real number c > 0, prove that the probability is less than e−c

that Algorithm Q will make more than (c + 1)(N + 1)HN comparisons when sorting
random data. (This upper bound is especially interesting when c is, say, N ϵ.)

43. [HM21] Prove that
 1

0
y−1(e−y − 1) dy +

∞
1
y−1e−y dy = −γ. [Hint: Consider

lima→0+ y
a−1.]

44. [HM24] Derive (37) as suggested in the text.

45. [HM20] Explain why (43) is true, when x > 0.

46. [HM20] What is the value of (1/2πi)
 a+i∞

a−i∞ Γ (z)ns−zdz/(2s−z − 1), given that
s is a positive integer and 0 < a < s?

47. [HM21] Prove that

j≥1(n/2j)e−n/2j

is a bounded function of n.

48. [HM24] Find the asymptotic value of the quantity Vn deĄned in exercise 38, using
a method analogous to the textŠs study of Un, obtaining terms up to O(1).

49. [HM24] Extend the asymptotic formula (47) for Un to O(n−1).

50. [HM24] Find the asymptotic value of the function

Umn =

k≥2

n

k

(−1)k 1

mk−1 − 1
,

138 SORTING 5.2.2

when m is any Ąxed number greater than 1. (When m is an integer greater than 2,
this quantity arises in the study of generalizations of radix exchange, as well as the
trie memory search algorithms of Section 6.3.)

x 51. [HM28] Show that the gamma-function approach to asymptotic problems can be
used instead of EulerŠs summation formula to derive the asymptotic expansion of the
quantity rk(m) in (35). (This gives us a uniform method for studying rk(m) for all k,
without relying on tricks such as the textŠs introduction of g−1(x) = (e−x2 − 1)/x.)
52. [HM35] (N. G. de Bruijn.) What is the asymptotic behavior of the sum

Sn =

t≥1

 2n
n+ t

d(t),

where d(t) is the number of divisors of t? (Thus, d(1) = 1, d(2) = d(3) = 2, d(4) = 3,
d(5) = 2, etc. This question arises in connection with the analysis of a tree traversal
algorithm, exercise 2.3.1Ű11.) Find the value of Sn/

2n
n

to terms of O(n−1).

53. [HM42] Analyze the average number of bit inspections and exchanges done by
radix exchange when the input data consists of inĄnite-precision binary numbers in
[0 . . 1), each of whose bits is independently equal to 1 with probability p. (Only the
case p = 1

2
is discussed in the text; the methods we have used can be generalized to

arbitrary p.) Consider in particular the case p = 1/ϕ = .61803

54. [HM24] (S. O. Rice.) Show that Un can be written

Un = (−1)n n!
2πi

C

dz

z(z − 1) . . . (z − n)
1

2z−1 − 1
,

where C is a skinny closed curve encircling the points 2, 3, . . . , n. Changing C to an
arbitrarily large circle centered at the origin, derive the convergent series

Un =
(Hn−1 − 1)n

ln 2
− n

2
+ 2 +

2
ln 2

m≥1

ℜ (B(n+1,−1+ibm)),

where b = 2π/ ln 2, and B(n+1,−1+ibm) = Γ (n + 1)Γ (−1 + ibm)/Γ (n + ibm) =
n!/

n
k=0(k − 1 + ibm).

x 55. [22] Show how to modify Program Q so that the partitioning element is the
median of the three keys (28), assuming that M > 1.

56. [M43] Analyze the average behavior of the quantities that occur in the running
time of Algorithm Q when the program has been modiĄed to take the median of three
elements as in exercise 55. (See exercise 29.)

5.2.3. Sorting by Selection

Another important family of sorting techniques is based on the idea of repeated
selection. The simplest selection method is perhaps the following:

i) Find the smallest key; transfer the corresponding record to the output area;
then replace the key by the value ∞ (which is assumed to be higher than
any actual key).

ii) Repeat step (i). This time the second smallest key will be selected, since
the smallest key has been replaced by ∞.

iii) Continue repeating step (i) until N records have been selected.

5.2.3 SORTING BY SELECTION 139

A selection method requires all of the input items to be present before sorting
may proceed, and it generates the Ąnal outputs one by one in sequence. This is
essentially the opposite of insertion, where the inputs are received sequentially
but we do not know any of the Ąnal outputs until sorting is completed.

Step (i) involves N−1 comparisons each time a new record is selected, and it
also requires a separate output area in memory. But we can obviously do better:
We can move the selected record into its proper Ąnal position, by exchanging it
with the record currently occupying that position. Then we need not consider
that position again in future selections, and we need not deal with inĄnite keys.
This idea yields our Ąrst selection sorting algorithm.

Algorithm S (Straight selection sort). Records R1, . . . , RN are rearranged in
place; after sorting is complete, their keys will be in order, K1 ≤ · · · ≤ KN.
Sorting is based on the method indicated above, except that it proves to be
more convenient to select the largest element Ąrst, then the second largest, etc.

S1. [Loop on j.] Perform steps S2 and S3 for j = N, N − 1, . . . , 2.

S2. [Find max(K1, . . . , Kj).] Search through keys Kj , Kj−1, . . . , K1 to Ąnd a
maximal one; let it be Ki, where i is as large as possible.

S3. [Exchange with Rj .] Interchange records Ri ↔ Rj . (Now records Rj , . . . , RN

are in their Ąnal position.)

S1. Loop on j S2. Find max(K1, . . . ,Kj) S3. Exchange with Rj

j=1

N≥j≥2

Fig. 21. Straight selection sorting.

Table 1 shows this algorithm in action on our sixteen example keys. Elements
that are candidates for the maximum during the right-to-left search in step S2
are shown in boldface type.

Table 1

STRAIGHT SELECTION SORTING

503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703

503 087 512 061 703 170 897 275 653 426 154 509 612 677 765 908
503 087 512 061 703 170 765 275 653 426 154 509 612 677 897 908
503 087 512 061 703 170 677 275 653 426 154 509 612 765 897 908
503 087 512 061 612 170 677 275 653 426 154 509 703 765 897 908
503 087 512 061 612 170 509 275 653 426 154 677 703 765 897 908
· · ·
061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908

140 SORTING 5.2.3

The corresponding MIX program is quite simple:

Program S (Straight selection sort). As in previous programs of this chapter,
the records in locations INPUT+1 through INPUT+N are sorted in place, on a full-
word key. rA ≡ current maximum, rI1 ≡ j − 1, rI2 ≡ k (the current search
position), rI3 ≡ i. Assume that N ≥ 2.
01 START ENT1 N-1 1 S1. Loop on j. j ← N.
02 2H ENT2 0,1 N − 1 S2. Find max(K1, . . . ,Kj). k ← j − 1.
03 ENT3 1,1 N − 1 i← j.
04 LDA INPUT,3 N − 1 rA← Ki.
05 8H CMPA INPUT,2 A
06 JGE *+3 A Jump if Ki ≥ Kk.
07 ENT3 0,2 B Otherwise set i← k,
08 LDA INPUT,3 B rA← Ki.
09 DEC2 1 A k ← k − 1.
10 J2P 8B A Repeat if k > 0.
11 LDX INPUT+1,1 N − 1 S3. Exchange with Rj .
12 STX INPUT,3 N − 1 Ri ← Rj .
13 STA INPUT+1,1 N − 1 Rj ← rA.
14 DEC1 1 N − 1
15 J1P 2B N − 1 N ≥ j ≥ 2.

The running time of this program depends on the number of items, N ; the
number of comparisons, A; and the number of changes to right-to-left maxima, B.
It is easy to see that

A =

N

2

=

1
2

N(N − 1), (1)

regardless of the values of the input keys; hence only B is variable. In spite of the
simplicity of straight selection, this quantity B is not easy to analyze precisely.
Exercises 3 through 6 show that

B =

min 0, ave (N + 1)HN − 2N, max ⌊N2/4⌋

; (2)

in this case the maximum value turns out to be particularly interesting. The
standard deviation of B is of order N3/4; see exercise 7.

Thus the average running time of Program S is 2.5N2 + 3(N + 1)HN +
3.5N − 11 units, just slightly slower than straight insertion (Program 5.2.1S).
It is interesting to compare Algorithm S to the bubble sort (Algorithm 5.2.2B),
since bubble sorting may be regarded as a selection algorithm that sometimes
selects more than one element at a time. For this reason bubble sorting usually
does fewer comparisons than straight selection and it may seem to be preferable;
but in fact Program 5.2.2B is more than twice as slow as Program S! Bubble
sorting is handicapped by the fact that it does so many exchanges, while straight
selection involves very little data movement.

ReĄnements of straight selection. Is there any way to improve on the
selection method used in Algorithm S? For example, take the search for a
maximum in step S2; is there a substantially faster way to Ąnd a maximum?
The answer to the latter question is no!

5.2.3 SORTING BY SELECTION 141

Lemma M. Every algorithm for Ąnding the maximum of n elements, based on
comparing pairs of elements, must make at least n− 1 comparisons.

Proof. If we have made fewer than n− 1 comparisons, there will be at least two
elements that have never been found to be less than any others. Therefore we do
not know which of these two elements is larger, and we cannot have determined
the maximum.

Thus, any selection process that Ąnds the largest element must perform at
least n−1 comparisons; and we might suspect that all sorting methods based on
n repeated selections are doomed to require Ω(n2) operations. But fortunately
Lemma M applies only to the Ąrst selection step; subsequent selections can make
use of previously gained information. For example, exercises 8 and 9 show that
a comparatively simple change to Algorithm S will cut the average number of
comparisons in half.

Consider the 16 numbers in Table 1; one way to save time on repeated
selections is to regard them as four groups of four. We can start by determining
the largest in each group, namely the respective keys

512, 908, 653, 765;

the largest of these four elements, 908, is then the largest of the entire Ąle. To
get the second largest we need only look at 512, 653, 765, and the other three
elements of the group containing 908; the largest of {170, 897, 275} is 897, and
the largest of

512, 897, 653, 765

is 897. Similarly, to get the third largest element we determine the largest of
{170, 275} and then the largest of

512, 275, 653, 765.

Each selection after the Ąrst takes at most 5 additional comparisons. In general,
if N is a perfect square, we can divide the Ąle into

√
N groups of

√
N elements

each; each selection after the Ąrst takes at most
√

N − 2 comparisons within
the group of the previously selected item, plus

√
N − 1 comparisons among the

Şgroup leaders.Ť This idea is called quadratic selection; its total execution time
is O(N

√
N), which is substantially better than order N2.

Quadratic selection was Ąrst published by E. H. Friend [JACM 3 (1956),
152Ű154], who pointed out that the same idea can be generalized to cubic,
quartic, and higher degrees of selection. For example, cubic selection divides the
Ąle into

3
√

N large groups, each containing
3
√

N small groups, each containing
3
√

N
records; the execution time is proportional to N

3
√

N . If we carry this idea to its
ultimate conclusion we arrive at what Friend called Şnth degree selecting,Ť based
on a binary tree structure. This method has an execution time proportional to
N log N ; we shall call it tree selection.

Tree selection. The principles of tree selection sorting are easy to understand
in terms of matches in a typical Şknockout tournament.Ť Consider, for example,

142 SORTING 5.2.3

the results of the ping-pong contest shown in Fig. 22; at the bottom level, Kim
beats Sandy and Chris beats Lou, then in the next round Chris beats Kim, etc.

Chris

Chris Pat

Kim Chris Pat Robin

Kim Sandy Chris Lou Pat Ray Dale Robin

Fig. 22. A ping-pong tournament.

Figure 22 shows that Chris is the champion of the eight players, and 8−1 = 7
matches/comparisons were required to determine this fact. Pat is not necessarily
the second-best player; any of the people defeated by Chris, including the Ąrst-
round loser Lou, might possibly be second best. We can determine the second-
best player by having Lou play Kim, and the winner of that match plays Pat;
only two additional matches are required to Ąnd the second-best player, because
of the structure we have remembered from the earlier games.

In general, we can ŞoutputŤ the player at the root of the tree, and replay
the tournament as if that player had been sick and unable to play a good game.
Then the original second-best player will rise to the root; and to recalculate the
winners in the upper levels of the tree, only one path must be changed. It follows
that fewer than ⌈lg N⌉ further comparisons are needed to select the second-best
player. The same procedure will Ąnd the third-best, etc.; hence the total time for
such a selection sort will be roughly proportional to N log N , as claimed above.

Figure 23 shows tree selection sorting in action, on our 16 example numbers.
Notice that we need to know where the key at the root came from, in order to
know where to insert the next Ş−∞Ť. Therefore each branch node of the tree
should actually contain a pointer or index specifying the position of the relevant
key, instead of the key itself. It follows that we need memory space for N input
records, N − 1 pointers, and N output records or pointers to those records.
(If the output goes to tape or disk, of course, we donŠt need to retain the output
records in high-speed memory.)

The reader should pause at this point and work exercise 10, because a good
understanding of the basic principles of tree selection will make it easier to
appreciate the remarkable improvements we are about to discuss.

One way to modify tree selection, essentially introduced by K. E. Iverson
[A Programming Language (Wiley, 1962), 223Ű227], does away with the need for
pointers by Şlooking aheadŤ in the following way: When the winner of a match
in the bottom level of the tree is moved up, the winning value can be replaced
immediately by −∞ at the bottom level; and whenever a winner moves up from
one branch to another, we can replace the corresponding value by the one that
should eventually move up into the vacated place (namely the larger of the two
keys below). Repeating this operation as often as possible converts Fig. 23(a)
into Fig. 24.

5.2.3 SORTING BY SELECTION 143

908

908

908

908

908

512

512

512

503

503

897

897

653

653

653

509

509

765

765

765

765

677

677170 275 426 154 612 703087 061

(a) Initial conĄguration.

512

512

512

503

503

897

897

897

897

897

653

653

653

509

509

765

765

765

765

677

677

170

170 275 426 154 612 703087 061 −∞

(b) Key 908 is replaced by −∞, and the second highest element moves up to the root.

512

512

512

512

512

503

503

509

509

509

509

170

170

275

275

275

426

426 154087 061 −∞ −∞ −∞

−∞

−∞

−∞ −∞

−∞

−∞ −∞

(c) ConĄguration after 908, 897, 765, 703, 677, 653, and 612 have been output.

Fig. 23. An example of tree selection sorting.

908

897 765

512 275 653 703

503 170 426 509 677

154 612

−∞ −∞

−∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞087

061

Fig. 24. The Peter Principle applied to sorting. Everyone rises to their level of
incompetence in the hierarchy.

144 SORTING 5.2.3

Once the tree has been set up in this way we can proceed to sort by a Ştop-
downŤ method, instead of the Şbottom upŤ method of Fig. 23: We output the
root, then move up its largest descendant, then move up the latterŠs largest
descendant, and so forth. The process begins to look less like a ping-pong
tournament and more like a corporate system of promotions.

The reader should be able to see that this top-down method has the ad-
vantage that redundant comparisons of −∞ with −∞ can be avoided. (The
bottom-up approach Ąnds −∞ omnipresent in the latter stages of sorting, but
the top-down approach can stop modifying the tree during each stage as soon
as a −∞ has been stored.)

Figures 23 and 24 are complete binary trees with 16 terminal nodes (see
Section 2.3.4.5), and it is convenient to represent such trees in consecutive
locations as shown in Fig. 25. Note that the parent of node number k is node
⌊k/2⌋, and its children are nodes 2k and 2k +1. This leads to another advantage
of the top-down approach, since it is often considerably simpler to go top-down
from node k to nodes 2k and 2k + 1 than bottom-up from node k to nodes k⊕ 1
and ⌊k/2⌋. (Here k⊕ 1 stands for k + 1 or k− 1, according as k is even or odd.)

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fig. 25. Sequential storage allocation for a complete binary tree.

Our examples of tree selection so far have more or less assumed that N is
a power of 2; but actually we can work with arbitrary N, since the complete
binary tree with N terminal nodes is readily constructed for any N.

Now we come to the crucial question: CanŠt we do the top-down method
without using −∞ at all? WouldnŠt it be nice if the important information of
Fig. 24 were all in locations 1 through 16 of the complete binary tree, without the
useless ŞholesŤ containing −∞? Some reĆection shows that it is indeed possible
to achieve this goal, not only eliminating −∞ but also avoiding the need for an
auxiliary output area. This line of thinking leads us to an important sorting
algorithm that was christened ŞheapsortŤ by its discoverer J. W. J. Williams
[CACM 7 (1964), 347Ű348].

Heapsort. Let us say that a Ąle of keys K1, K2, . . . , KN is a heap if

K⌊j/2⌋ ≥ Kj for 1 ≤ ⌊j/2⌋ < j ≤ N. (3)

5.2.3 SORTING BY SELECTION 145

Thus, K1 ≥ K2, K1 ≥ K3, K2 ≥ K4, etc.; this is exactly the condition that
holds in Fig. 24, and it implies in particular that the largest key appears Şon top
of the heap,Ť

K1 = max (K1, K2, . . . , KN). (4)

If we can somehow transform an arbitrary input Ąle into a heap, we can sort the
elements by using a top-down selection procedure as described above.

An efficient approach to heap creation has been suggested by R. W. Floyd
[CACM 7 (1964), 701]. Let us assume that we have been able to arrange the Ąle
so that

K⌊j/2⌋ ≥ Kj for l < ⌊j/2⌋ < j ≤ N, (5)

where l is some number≥ 1. (In the original Ąle this condition holds vacuously for
l = ⌊N/2⌋, since no subscript j satisĄes the condition ⌊N/2⌋ < ⌊j/2⌋ < j ≤ N.)
It is not difficult to see how to transform the Ąle so that the inequalities in (5)
are extended to the case l = ⌊j/2⌋, working entirely in the subtree whose root
is node l. Then we can decrease l by 1, until condition (3) is Ąnally achieved.
These ideas of Williams and Floyd lead to the following elegant algorithm, which
merits careful study:

Algorithm H (Heapsort). Records R1, . . . , RN are rearranged in place; after
sorting is complete, their keys will be in order, K1 ≤ · · · ≤ KN. First we
rearrange the Ąle so that it forms a heap, then we repeatedly remove the top of
the heap and transfer it to its proper Ąnal position. Assume that N ≥ 2.

H1. [Initialize.] Set l← ⌊N/2⌋+ 1, r ← N.

H2. [Decrease l or r.] If l > 1, set l← l− 1, R← Rl, K ← Kl. (If l > 1, we are
in the process of transforming the input Ąle into a heap; on the other hand
if l = 1, the keys K1 K2 . . . Kr presently constitute a heap.) Otherwise set
R ← Rr, K ← Kr, Rr ← R1, and r ← r − 1; if this makes r = 1, set
R1 ← R and terminate the algorithm.

H3. [Prepare for siftup.] Set j ← l. (At this point we have

K⌊k/2⌋ ≥ Kk for l < ⌊k/2⌋ < k ≤ r; (6)

and record Rk is in its Ąnal position for r < k ≤ N. Steps H3ŰH8 are called
the siftup algorithm; their effect is equivalent to setting Rl ← R and then
rearranging Rl, . . . , Rr so that condition (6) holds also for l = ⌊k/2⌋.)

H4. [Advance downward.] Set i ← j and j ← 2j. (In the following steps we
have i = ⌊j/2⌋.) If j < r, go right on to step H5; if j = r, go to step H6;
and if j > r, go to H8.

H5. [Find larger child.] If Kj < Kj+1, then set j ← j + 1.

H6. [Larger than K?] If K ≥ Kj , then go to step H8.

H7. [Move it up.] Set Ri ← Rj , and go back to step H4.

H8. [Store R.] Set Ri ← R. (This terminates the siftup algorithm initiated in
step H3.) Return to step H2.

146 SORTING 5.2.3

H1. Initialize H2. Decrease l or r

H3. Prepare
for siftup

H4. Advance
downward

H5. Find
larger child

H6. Larger
than K?

H7. Move
it up

H8. Store Rl=r=1

j>r

j=r

j<r

Yes

No

Fig. 26. Heapsort; dotted lines enclose the siftup algorithm.

Heapsort has sometimes been described as the algorithm, because of the
motion of l and r. The upper triangle represents the heap-creation phase, when
r = N and l decreases to 1; and the lower triangle represents the selection phase,
when l = 1 and r decreases to 1. Table 2 shows the process of heapsorting our
sixteen example numbers. (Each line in that table shows the state of affairs at
the beginning of step H2, and brackets indicate the position of l and r.)

Program H (Heapsort). The records in locations INPUT+1 through INPUT+N

are sorted by Algorithm H, with the following register assignments: rI1 ≡ l− 1,
rI2 ≡ r − 1, rI3 ≡ i, rI4 ≡ j, rI5 ≡ r − j, rA ≡ K ≡ R, rX ≡ Rj .
01 START ENT1 N/2 1 H1. Initialize. l← ⌊N/2⌋+ 1.
02 ENT2 N-1 1 r ← N.
03 1H DEC1 1 ⌊N/2⌋ l← l − 1.
04 LDA INPUT+1,1 ⌊N/2⌋ R← Rl, K ← Kl.
05 3H ENT4 1,1 P H3. Prepare for siftup. j ← l.
06 ENT5 0,2 P
07 DEC5 0,1 P rI5← r − j.
08 JMP 4F P To H4.
09 5H LDX INPUT,4 B +A−D H5. Find larger child.
10 CMPX INPUT+1,4 B +A−D
11 JGE 6F B +A−D Jump if Kj ≥ Kj+1.
12 INC4 1 C Otherwise set j ← j + 1.
13 DEC5 1 C
14 9H LDX INPUT,4 C +D rX← Rj .
15 6H CMPA INPUT,4 B +A H6. Larger than K?
16 JGE 8F B +A To H8 if K ≥ Kj .
17 7H STX INPUT,3 B H7. Move it up. Ri ← Rj .
18 4H ENT3 0,4 B + P H4. Advance downward. i← j.
19 DEC5 0,4 B + P rI5← rI5− j.
20 INC4 0,4 B + P j ← j + j.

5.2.3 SORTING BY SELECTION 147

Table 2

EXAMPLE OF HEAPSORT

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15 K16 l r

503 087 512 061 908 170 897 275 [653 426 154 509 612 677 765 703] 9 16
503 087 512 061 908 170 897 [703 653 426 154 509 612 677 765 275] 8 16
503 087 512 061 908 170 [897 703 653 426 154 509 612 677 765 275] 7 16
503 087 512 061 908 [612 897 703 653 426 154 509 170 677 765 275] 6 16
503 087 512 061 [908 612 897 703 653 426 154 509 170 677 765 275] 5 16
503 087 512 [703 908 612 897 275 653 426 154 509 170 677 765 061] 4 16
503 087 [897 703 908 612 765 275 653 426 154 509 170 677 512 061] 3 16
503 [908 897 703 426 612 765 275 653 087 154 509 170 677 512 061] 2 16

[908 703 897 653 426 612 765 275 503 087 154 509 170 677 512 061] 1 16
[897 703 765 653 426 612 677 275 503 087 154 509 170 061 512] 908 1 15
[765 703 677 653 426 612 512 275 503 087 154 509 170 061] 897 908 1 14
[703 653 677 503 426 612 512 275 061 087 154 509 170] 765 897 908 1 13
[677 653 612 503 426 509 512 275 061 087 154 170] 703 765 897 908 1 12
[653 503 612 275 426 509 512 170 061 087 154] 677 703 765 897 908 1 11
[612 503 512 275 426 509 154 170 061 087] 653 677 703 765 897 908 1 10
[512 503 509 275 426 087 154 170 061] 612 653 677 703 765 897 908 1 9
[509 503 154 275 426 087 061 170] 512 612 653 677 703 765 897 908 1 8
[503 426 154 275 170 087 061] 509 512 612 653 677 703 765 897 908 1 7
[426 275 154 061 170 087] 503 509 512 612 653 677 703 765 897 908 1 6
[275 170 154 061 087] 426 503 509 512 612 653 677 703 765 897 908 1 5
[170 087 154 061] 275 426 503 509 512 612 653 677 703 765 897 908 1 4
[154 087 061] 170 275 426 503 509 512 612 653 677 703 765 897 908 1 3
[087 061] 154 170 275 426 503 509 512 612 653 677 703 765 897 908 1 2

21 J5P 5B B + P To H5 if j < r.
22 J5Z 9B P −A+D To H6 if j = r.
23 8H STA INPUT,3 P H8. Store R. Ri ← R.
24 2H J1P 1B P H2. Decrease l or r.
25 LDA INPUT+1,2 N − 1 If l = 1, set R← Rr, K ← Kr.
26 LDX INPUT+1 N − 1
27 STX INPUT+1,2 N − 1 Rr ← R1.
28 DEC2 1 N − 1 r ← r − 1.
29 J2P 3B N − 1 To H3 if r > 1.
30 STA INPUT+1 1 R1 ← R.

Although this program is only about twice as long as Program S, it is much
more efficient when N is large. Its running time depends on

P = N + ⌊N/2⌋ − 2, the number of siftup passes;

A, the number of siftup passes in which the key K Ąnally lands
in an interior node of the heap;

B, the total number of keys promoted during siftups;

C, the number of times j ← j + 1 in step H5; and

D, the number of times j = r in step H4.

148 SORTING 5.2.3

These quantities are analyzed below; in practice they show comparatively little
Ćuctuation about their average values,

A ≈ 0.349N,

C ≈ 1
2 N lg N − 0.94N,

B ≈ N lg N − 1.87N,

D ≈ lg N.
(7)

For example, when N = 1000, four experiments on random input gave, respec-
tively, A = 371, 351, 341, 340; B = 8055, 8072, 8094, 8108; C = 4056, 4087,
4017, 4083; and D = 12, 14, 8, 13. The total running time,

7A + 14B + 4C + 20N − 2D + 15⌊N/2⌋ − 28,

is therefore approximately 16N lg N + 0.01N units on the average.
A glance at Table 2 makes it hard to believe that heapsort is very efficient;

large keys migrate to the left before we stash them at the right! It is indeed a
strange way to sort, when N is small; the sorting time for the 16 keys in Table 2
is 1068u, while the simple method of straight insertion (Program 5.2.1S) takes
only 514u. Straight selection (Program S) takes 853u.

For larger N, Program H is more efficient. It invites comparison with
shellsort (Program 5.2.1D) and quicksort (Program 5.2.2Q), since all three pro-
grams sort by comparisons of keys and use little or no auxiliary storage. When
N = 1000, the approximate average running times on MIX are

160000u for heapsort,

130000u for shellsort,

80000u for quicksort.

(MIX is a typical computer, but particular machines will of course yield somewhat
different relative values.) As N gets larger, heapsort will be superior to shell-
sort, but its asymptotic running time 16N lg N ≈ 23.08N ln N will never beat
quicksortŠs 11.67N ln N. A modiĄcation of heapsort discussed in exercise 18 will
speed up the process by substantially reducing the number of comparisons, but
even this improvement falls short of quicksort.

On the other hand, quicksort is efficient only on the average, and its worst
case is of order N2. Heapsort has the interesting property that its worst case
isnŠt much worse than the average: We always have

A ≤ 1.5N, B ≤ N⌊lg N⌋, C ≤ N⌊lg N⌋, (8)

so Program H will take no more than 18N⌊lg N⌋+ 38N units of time, regardless
of the distribution of the input data. Heapsort is the Ąrst sorting method we
have seen that is guaranteed to be of order N log N. Merge sorting, discussed in
Section 5.2.4 below, also has this property, but it requires more memory space.

Largest in, Ąrst out. We have seen in Chapter 2 that linear lists can often be
classiĄed in a meaningful way by the nature of the insertion and deletion oper-
ations that make them grow and shrink. A stack has last-in-Ąrst-out behavior,
in the sense that every deletion removes the youngest item in the list Ů the item
that was inserted most recently of all items currently present. A simple queue

5.2.3 SORTING BY SELECTION 149

has Ąrst-in-Ąrst-out behavior, in the sense that every deletion removes the oldest
remaining item. In more complex situations, such as the elevator simulation of
Section 2.2.5, we want a smallest-in-Ąrst-out list, where every deletion removes
the item having the smallest key. Such a list may be called a priority queue,
since the key of each item reĆects its relative ability to get out of the list quickly.
Selection sorting is a special case of a priority queue in which we do N insertions
followed by N deletions.

Priority queues arise in a wide variety of applications. For example, some
numerical iterative schemes are based on repeated selection of an item having
the largest (or smallest) value of some test criterion; parameters of the selected
item are changed, and it is reinserted into the list with a new test value, based on
the new values of its parameters. Operating systems often make use of priority
queues for the scheduling of jobs. Exercises 15, 29, and 36 mention other typical
applications of priority queues, and many other examples will appear in later
chapters.

How shall we implement priority queues? One of the obvious methods is
to maintain a sorted list, containing the items in order of their keys. Inserting
a new item is then essentially the same problem we have treated in our study
of insertion sorting, Section 5.2.1. Another even more obvious way to deal with
priority queues is to keep the list of elements in arbitrary order, selecting the
appropriate element each time a deletion is required by Ąnding the largest (or
smallest) key. The trouble with both of these obvious approaches is that they
require Ω(N) steps either for insertion or deletion, when there are N entries in
the list, so they are very time-consuming when N is large.

In his original paper on heapsorting, Williams pointed out that heaps are
ideally suited to large priority queue applications, since we can insert or delete
elements from a heap in O(log N) steps; furthermore, all elements of the heap
are compactly located in consecutive memory locations. The selection phase of
Algorithm H is a sequence of deletion steps of a largest-in-Ąrst-out process: To
delete the largest element K1 we remove it and sift KN up into a new heap of
N − 1 elements. (If we want a smallest-in-Ąrst-out algorithm, as in the elevator
simulation, we can obviously change the deĄnition of heap so that Ş≥Ť becomes
Ş≤Ť in (3); for convenience, we shall consider only the largest-in-Ąrst-out case
here.) In general, if we want to delete the largest item and then insert a new
element x, we can do the siftup procedure with

l = 1, r = N, and K = x.

If we wish to insert an element x without a prior deletion, we can use the bottom-
up procedure of exercise 16.

A linked representation for priority queues. An efficient way to represent
priority queues as linked binary trees was discovered in 1971 by Clark A. Crane
[Technical Report STAN-CS-72-259 (Computer Science Department, Stanford
University, 1972)]. His method requires two link Ąelds and a small count in
every record, but it has the following advantages over a heap:

150 SORTING 5.2.3

i) When the priority queue is being treated as a stack, the insertion and
deletion operations take a Ąxed time independent of the queue size.
ii) The records never move, only the pointers change.
iii) Two disjoint priority queues, having a total of N elements, can easily be
merged into a single priority queue, in only O(log N) steps.

CraneŠs original method, slightly modiĄed, is illustrated in Fig. 27, which
shows a special kind of binary tree structure. Each node contains a KEY Ąeld, a
DIST Ąeld, and two link Ąelds LEFT and RIGHT. The DIST Ąeld is always set to
the length of a shortest path from that node to the null link Λ; in other words,
it is the distance from that node to the nearest empty subtree. If we deĄne
DIST(Λ) = 0 and KEY(Λ) = −∞, the KEY and DIST Ąelds in the tree satisfy the
following properties:

KEY(P) ≥ KEY(LEFT(P)), KEY(P) ≥ KEY(RIGHT(P)); (9)

DIST(P) = 1 + min(DIST(LEFT(P)), DIST(RIGHT(P))); (10)

DIST(LEFT(P)) ≥ DIST(RIGHT(P)). (11)

Relation (9) is analogous to the heap condition (3); it guarantees that the root
of the tree has the largest key. Relation (10) is just the deĄnition of the DIST

Ąelds as stated above. Relation (11) is the interesting innovation: It implies that
a shortest path to Λ may always be obtained by moving to the right. We shall
say that a binary tree with this property is a leftist tree, because it tends to lean
so heavily to the left.

It is clear from these deĄnitions that DIST(P) = n implies the existence of
at least 2n empty subtrees below P; otherwise there would be a shorter path
from P to Λ. Thus, if there are N nodes in a leftist tree, the path leading
downward from the root towards the right contains at most ⌊lg(N + 1)⌋ nodes.
It is possible to insert a new node into the priority queue by traversing this path
(see exercise 33); hence only O(log N) steps are needed in the worst case. The
best case occurs when the tree is linear (all RIGHT links are Λ), and the worst
case occurs when the tree is perfectly balanced.

To remove the node at the root, we simply need to merge its two subtrees.
The operation of merging two disjoint leftist trees, pointed to respectively by
P and Q, is conceptually simple: If KEY(P) ≥ KEY(Q) we take P as the root
and merge Q with PŠs right subtree; then DIST(P) is updated, and LEFT(P) is
interchanged with RIGHT(P) if necessary. A detailed description of this process
is not difficult to devise (see exercise 33).

Comparison of priority queue techniques. When the number of nodes,
N, is small, it is best to use one of the straightforward linear list methods to
maintain a priority queue; but when N is large, a log N method using heaps
or leftist trees is obviously much faster. In Section 6.2.3 we shall discuss the
representation of linear lists as balanced trees, and this leads to a third log N
method suitable for priority queue implementation. It is therefore appropriate
to compare these three techniques.

5.2.3 SORTING BY SELECTION 151

908 3

897 3

653 2

275 1 426 1

765 2

677 1

612 1

509 1

170 1

154 1

703 1

512 2

503 1

087 1

061 1

KEY DIST

LEFT RIGHT

Node format

Fig. 27. A priority queue represented as a leftist tree.

We have seen that leftist tree operations tend to be slightly faster than heap
operations, although heaps consume less memory space because they have no
link Ąelds. Balanced trees take about the same space as leftist trees, perhaps
slightly less; the operations are slower than heaps, and the programming is more
complicated, but the balanced tree structure is considerably more Ćexible in
several ways. When using a heap or a leftist tree we cannot predict very easily
what will happen to two items with equal keys; it is impossible to guarantee
that items with equal keys will be treated in a last-in-Ąrst-out or Ąrst-in-Ąrst-
out manner, unless the key is extended to include an additional Şserial number of
insertionŤ Ąeld so that no equal keys are really present. With balanced trees, on
the other hand, we can easily stipulate consistent conventions about equal keys,
and we can also do things such as Şinsert x immediately before (or after) y.Ť
Balanced trees are symmetrical, so that we can delete either the largest or the
smallest element at any time, while heaps and leftist trees must be oriented
one way or the other. (See exercise 31, however, which shows how to construct
symmetrical heaps.) Balanced trees can be used for searching as well as for
sorting; and we can rather quickly remove consecutive blocks of elements from
a balanced tree. But Ω(N) steps are needed in general to merge two balanced
trees, while leftist trees can be merged in only O(log N) steps.

In summary, heaps use minimum memory; leftist trees are great for merging
disjoint priority queues; and the Ćexibility of balanced trees is available, if
necessary, at reasonable cost.

152 SORTING 5.2.3

Many new ways to represent priority queues have been discovered since the
pioneering work of Williams and Crane discussed above. Programmers now

have a large menu of options to ponder, besides simple lists, heaps, leftist or
balanced trees:
• stratiĄed trees, which provide symmetrical priority queue operations in only

O(log log M) steps when all keys lie in a given range 0 ≤ K < M [P. van
Emde Boas, R. Kaas, and E. Zijlstra, Math. Systems Theory 10 (1977),
99Ű127];
• binomial queues [J. Vuillemin, CACM 21 (1978), 309Ű315; M. R. Brown,

SICOMP 7 (1978), 298Ű319];
• pagodas [J. Françon, G. Viennot, and J. Vuillemin, FOCS 19 (1978), 1Ű7];
• pairing heaps [M. L. Fredman, R. Sedgewick, D. D. Sleator, and R. E. Tarjan,

Algorithmica 1 (1986), 111Ű129; J. T. Stasko and J. S. Vitter, CACM 30

(1987), 234Ű249; M. L. Fredman, JACM 46 (1999), 473Ű501];
• skew heaps [D. D. Sleator and R. E. Tarjan, SICOMP 15 (1986), 52Ű59];
• Fibonacci heaps [M. L. Fredman and R. E. Tarjan, JACM 34 (1987), 596Ű

615] and the more general AF-heaps [M. L. Fredman and D. E. Willard,
J. Computer and System Sci. 48 (1994), 533Ű551];
• calendar queues [R. Brown, CACM 31 (1988), 1220Ű1227; G. A. Davison,

CACM 32 (1989), 1241Ű1243];
• relaxed heaps [J. R. Driscoll, H. N. Gabow, R. Shrairman, and R. E. Tarjan,

CACM 31 (1988), 1343Ű1354];
• Ąshspear [M. J. Fischer and M. S. Paterson, JACM 41 (1994), 3Ű30];
• hot queues [B. V. Cherkassky, A. V. Goldberg, and C. Silverstein, SICOMP

28 (1999), 1326Ű1346];
etc. Not all of these methods will survive the test of time; leftist trees are in fact
already obsolete, except for applications with a strong tendency towards last-in-
Ąrst-out behavior. Detailed implementations and expositions of binomial queues
and Fibonacci heaps can be found in D. E. Knuth, The Stanford GraphBase
(New York: ACM Press, 1994), 475Ű489.

*Analysis of heapsort. Algorithm H is rather complicated, so it probably will
never submit to a complete mathematical analysis; but several of its properties
can be deduced without great difficulty. Therefore we shall conclude this section
by studying the anatomy of a heap in some detail.

Figure 28 shows the shape of a heap with 26 elements; each node has been
labeled in binary notation corresponding to its subscript in the heap. Asterisks
in this diagram denote the special nodes, those that lie on the path from 1 to N.

One of the most important attributes of a heap is the collection of its subtree
sizes. For example, in Fig. 28 the sizes of the subtrees rooted at 1, 2, . . . , 26 are,
respectively,

26∗, 15, 10∗, 7, 7, 6∗, 3, 3, 3, 3, 3, 3, 2∗, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1∗. (12)

Asterisks denote special subtrees, rooted at the special nodes; exercise 20 shows
that if the binary representation of N is

N = (bnbn−1 . . . b1b0)2, n = ⌊lg N⌋, (13)

5.2.3 SORTING BY SELECTION 153

1

10 11

100 101 110 111

1000 1001 1010 1011 1100 1101 1110 1111

10000 10001 10010 10011 10100 10101 10110 10111 11000 11001 11010

*

*

*

*

*

Fig. 28. A heap of 26 = (11010)2 elements looks like this.

then the special subtree sizes are always

(1bn−1 . . . b1b0)2, (1bn−2 . . . b1b0)2, . . . , (1b1b0)2, (1b0)2, (1)2. (14)

Nonspecial subtrees are always perfectly balanced, so their size is always of the
form 2k − 1. Exercise 21 shows that the nonspecial sizes consist of exactly

N − 1

2

1s,

N − 2

4

3s,

N − 4

8

7s, . . . ,

N − 2n−1

2n

(2n − 1)s. (15)

For example, Fig. 28 contains twelve nonspecial subtrees of size 1, six of size 3,
two of size 7, and one of size 15.

Let sl be the size of the subtree whose root is l, and let MN be the multiset
{s1, s2, . . . , sN} of all these sizes. We can calculate MN easily for any given N
by using (14) and (15). Exercise 5.1.4Ű20 tells us that the total number of ways
to arrange the integers {1, 2, . . . , N} into a heap is

N !/s1s2 . . . sN = N !

{s | s ∈MN}. (16)

For example, the number of ways to place the 26 letters {A, B, C, . . . , Z} into
Fig. 28 so that vertical lines preserve alphabetic order is

26!/(26 · 10 · 6 · 2 · 1 · 112 · 36 · 72 · 151).

We are now in a position to analyze the heap-creation phase of Algorithm H,
namely the computations that take place before the condition l = 1 occurs for
the Ąrst time in step H2. Fortunately we can reduce the study of heap creation
to the study of independent siftup operations, because of the following theorem.

Theorem H. If Algorithm H is applied to a random permutation of {1,2, . . . ,N},
each of the N !

 {s | s ∈MN} possible heaps is an equally likely outcome of the
heap-creation phase. Moreover, each of the ⌊N/2⌋ siftup operations performed
during this phase is uniform, in the sense that each of the sl possible values of i
is equally likely when step H8 is reached.

154 SORTING 5.2.3

Proof. We can apply what numerical analysts might call a Şbackwards analysisŤ;
given a possible result K1 . . . KN of the siftup operation rooted at l, we see that
there are exactly sl prior conĄgurations K ′

1 . . . K ′
N of the Ąle that will sift up

to that result. Each of these prior conĄgurations has a different value of K ′
l ;

hence, working backwards, there are exactly sl sl+1 . . . sN input permutations of
{1, 2, . . . , N} that yield the conĄguration K1 . . . KN after the siftup at position l
has been completed.

The case l = 1 is typical: Let K1 . . . KN be a heap, and let K ′
1 . . . K ′

N be
a Ąle that is transformed by siftup into K1 . . . KN when l = 1, K = K ′

1. If
K = Ki, we must have K ′

i = K⌊i/2⌋, K ′
⌊i/2⌋ = K⌊i/4⌋, etc., while K ′

j = Kj

for all j not on the path from 1 to i. Conversely, for each i this construction
yields a Ąle K ′

1 . . . K ′
N such that (a) siftup transforms K ′

1 . . . K ′
N into K1 . . . KN,

and (b) K⌊j/2⌋ ≥ Kj for 2 ≤ ⌊j/2⌋ < j ≤ N. Therefore exactly N such Ąles
K ′

1 . . . K ′
N are possible, and the siftup operation is uniform. (An example of the

proof of this theorem appears in exercise 22.)

Referring to the quantities A, B, C, D in the analysis of Program H, we can
see that a uniform siftup operation on a subtree of size s contributes ⌊s/2⌋/s to
the average value of A; it contributes

1
s

(0 + 1 + 1 + 2 + · · ·+ ⌊lg s⌋) =
1
s

s

k=1

⌊lg k⌋ =
1
s

(s + 1)⌊lg s⌋ − 2⌊lg s⌋+1 + 2

to the average value of B (see exercise 1.2.4Ű42); and it contributes either 2/s or
0 to the average value of D, according as s is even or odd. The corresponding
contribution to C is somewhat more difficult to determine, so it has been left to
the reader (see exercise 26). Summing over all siftups, we Ąnd that the average
value of A during heap creation is

A′
N =

{⌊s/2⌋/s | s ∈MN}, (17)

and similar formulas hold for B, C, and D. It is therefore possible to compute
these average values exactly without great difficulty, and the following table
shows typical results:

N A′
N B′

N C ′
N D′

N

99 19.18 68.35 42.95 0.00
100 19.93 69.39 42.71 1.84
999 196.16 734.66 464.53 0.00

1000 196.94 735.80 464.16 1.92
9999 1966.02 7428.18 4695.54 0.00

10000 1966.82 7429.39 4695.06 1.97
10001 1966.45 7430.07 4695.84 0.00
10002 1967.15 7430.97 4695.95 1.73

Asymptotically speaking, we may ignore the special subtree sizes in MN, and we
Ąnd for example that

A′
N =

N

2
· 0

1
+

N

4
· 1

3
+

N

8
· 3

7
+ · · ·+ O(log N) =

1− 1

2 α

N + O(log N), (18)

5.2.3 SORTING BY SELECTION 155

where

α =

k≥1

1
2k−1

= 1.60669 51524 15291 76378 33015 23190 92458 04806−. (19)

(This value was Ąrst computed to high precision by J. W. Wrench, Jr., using the
series transformation of exercise 27. Paul Erdős has proved that α is irrational
[J. Indian Math. Soc. 12 (1948), 63Ű66], and Peter Borwein has demonstrated
the irrationality of many similar constants [Proc. Camb. Phil. Soc. 112 (1992),
141Ű146].) For large N, we may use the approximate formulas

A′
N ≈ 0.1967N + (−1)N0.3;

B′
N ≈ 0.74403N − 1.3 ln N ;

C ′
N ≈ 0.47034N − 0.8 ln N ;

D′
N ≈ (1.8± 0.2)[N even].

(20)

The minimum and maximum values are also readily determined. Only O(N)
steps are needed to create the heap (see exercise 23).

This theory nicely explains the heap-creation phase of Algorithm H. But
the selection phase is another story, which remains to be written! Let A′′

N , B′′
N ,

C ′′
N , and D ′′

N denote the average values of A, B, C, and D during the selection
phase when N elements are being heapsorted. The behavior of Algorithm H on
random input is subject to comparatively little Ćuctuation about the empirically
determined average values

A′′
N ≈ 0.152N ;

B′′
N ≈ N lg N − 2.61N ;

C ′′
N ≈ 1

2 N lg N − 1.41N ;

D ′′
N ≈ lg N ± 2;

(21)

but no adequate theoretical explanation for the behavior of D ′′
N or for the

conjectured constants 0.152, 2.61, or 1.41 has yet been found. The leading
terms of B′′

N and C ′′
N have, however, been established in an elegant manner by

R. Schaffer and R. Sedgewick; see exercise 30. Schaffer has also proved that the
minimum and maximum possible values of C ′′

N are respectively asymptotic to
1
4 N lg N and 3

4 N lg N .

EXERCISES

1. [10] Is straight selection (Algorithm S) a stable sorting method?

2. [15] Why does it prove to be more convenient to select the largest key, then
the second-largest, etc., in Algorithm S, instead of Ąrst Ąnding the smallest, then the
second-smallest, etc.?

3. [M21] (a) Prove that if the input to Algorithm S is a random permutation of
{1, 2, . . . , N}, then the Ąrst iteration of steps S2 and S3 yields a random permutation
of {1, 2, . . . , N−1} followed by N. (In other words, the presence of each permutation
of {1, 2, . . . , N−1} in K1 . . . KN−1 is equally likely.) (b) Therefore if BN denotes the

156 SORTING 5.2.3

average value of the quantity B in Program S, given randomly ordered input, we have
BN = HN − 1 +BN−1. [Hint: See Eq. 1.2.10Ű(16).]

x 4. [M25] Step S3 of Algorithm S accomplishes nothing when i = j; is it a good idea
to test whether or not i = j before doing step S3? What is the average number of
times the condition i = j will occur in step S3 for random input?

5. [20] What is the value of the quantity B in the analysis of Program S, when the
input is N. . . 3 2 1?

6. [M29] (a) Let a1 a2 . . . aN be a permutation of {1, 2, . . . , N} having C cycles,
I inversions, and B changes to the right-to-left maxima when sorted by Program S.
Prove that 2B ≤ I +N − C. [Hint: See exercise 5.2.2Ű1.] (b) Show that I +N − C ≤
⌊N2/2⌋; hence B can never exceed ⌊N2/4⌋.

7. [M41] Find the variance of the quantity B in Program S, as a function of N,
assuming random input.

x 8. [24] Show that if the search for max (K1, . . . ,Kj) in step S2 is carried out by
examining keys in left-to-right order K1, K2, . . . , Kj , instead of going from right to
left as in Program S, it is often possible to reduce the number of comparisons needed
on the next iteration of step S2. Write a MIX program based on this observation.

9. [M25] What is the average number of comparisons performed by the algorithm
of exercise 8, for random input?

10. [12] What will be the conĄguration of the tree in Fig. 23 after 14 of the original
16 items have been output?

11. [10] What will be the conĄguration of the tree in Fig. 24 after the element 908
has been output?

12. [M20] How many times will −∞ be compared with −∞ when the bottom-up
method of Fig. 23 is used to sort a Ąle of 2n elements into order?

13. [20] (J. W. J. Williams.) Step H4 of Algorithm H distinguishes between the three
cases j < r, j = r, and j > r. Show that if K ≥ Kr+1 it would be possible to simplify
step H4 so that only a two-way branch is made. How could the condition K ≥ Kr+1

be ensured throughout the heapsort process, by modifying step H2?

14. [10] Show that simple queues are special cases of priority queues. (Explain how
keys can be assigned to the elements so that a largest-in-Ąrst-out procedure is equivalent
to Ąrst-in-Ąrst-out.) Is a stack also a special case of a priority queue?

x 15. [M22] (B. A. Chartres.) Design a high-speed algorithm that builds a table of
the prime numbers ≤ N, making use of a priority queue to avoid division operations.
[Hint: Let the smallest key in the priority queue be the least odd nonprime number
greater than the last odd number considered as a prime candidate. Try to minimize
the number of elements in the queue.]

16. [20] Design an efficient algorithm that inserts a new key into a given heap of
n elements, producing a heap of n+ 1 elements.

17. [20] The algorithm of exercise 16 can be used for heap creation, instead of the
Şdecrease l to 1Ť method used in Algorithm H. Do both methods create the same heap
when they begin with the same input Ąle?

x 18. [21] (R. W. Floyd.) During the selection phase of heapsort, the key K tends to
be quite small, so that nearly all of the comparisons in step H6 Ąnd K < Kj . Show
how to modify the algorithm so that K is not compared with Kj in the main loop of
the computation, thereby nearly cutting the average number of comparisons in half.

5.2.3 SORTING BY SELECTION 157

19. [21] Design an algorithm that deletes a given element of a heap of length N,
producing a heap of length N − 1.

20. [M20] Prove that (14) gives the special subtree sizes in a heap.

21. [M24] Prove that (15) gives the nonspecial subtree sizes in a heap.

x 22. [20] What permutations of {1, 2, 3, 4, 5} are transformed into 5 3 4 1 2 by the heap-
creation phase of Algorithm H?

23. [M28] (a) Prove that the length of scan, B, in a siftup algorithm never exceeds
⌊lg (r/l)⌋. (b) According to (8), B can never exceed N⌊lgN⌋ in any particular appli-
cation of Algorithm H. Find the maximum value of B as a function of N, taken over
all possible input Ąles. (You must prove that an input Ąle exists such that B takes on
this maximum value.)

24. [M24] Derive an exact formula for the standard deviation of B′
N (the total length

of scan during the heap-creation phase of Algorithm H).

25. [M20] What is the average value of the contribution to C made during the siftup
pass when l = 1 and r = N, if N = 2n+1 − 1?

26. [M30] Solve exercise 25, (a) for N = 26, (b) for general N.

27. [M25] (T. Clausen, 1828.) Prove that

n≥1

xn

1− xn
=

n≥1

1 + xn

1− xn
xn2

.

(Setting x = 1
2

gives a very rapidly converging series for the evaluation of (19).)
28. [35] Explore the idea of ternary heaps, based on complete ternary trees instead
of binary trees. Do ternary heaps sort faster than binary heaps?

29. [26] (W. S. Brown.) Design an algorithm for multiplication of polynomials or
power series (a1x

i1 + a2x
i2 + · · ·)(b1x

j1 + b2x
j2 + · · ·), in which the coefficients of

the answer c1x
i1+j1 + · · · are generated in order as the input coefficients are being

multiplied. [Hint: Use an appropriate priority queue.]

x 30. [HM35] (R. Schaffer and R. Sedgewick.) Let hnm be the number of heaps on
the elements {1, 2, . . . , n} for which the selection phase of heapsort does exactly m
promotions. Prove that hnm ≤ 2mn

k=2 lg k, and use this relation to show that the
average number of promotions performed by Algorithm H is N lgN +O(N log logN).

31. [37] (J. W. J. Williams.) Show that if two heaps are placed Şback to backŤ in a
suitable way, it is possible to maintain a structure in which either the smallest or the
largest element can be deleted at any time in O(logn) steps. (Such a structure may be
called a priority deque.)

32. [M28] Prove that the number of heapsort promotions, B, is always at least
1
2
N lgN + O(N), if the keys being sorted are distinct. Hint: Consider the movement

of the largest ⌈N/2⌉ keys.

33. [21] Design an algorithm that merges two disjoint priority queues, represented
as leftist trees, into one. (In particular, if one of the given queues contains a single
element, your algorithm will insert it into the other queue.)

34. [M41] How many leftist trees with N nodes are possible, ignoring the KEY values?
The sequence begins 1, 1, 2, 4, 8, 17, 38, 87, 203, 482, 1160, . . . ; show that the number
is asymptotically abNN−3/2 for suitable constants a and b, using techniques like those
of exercise 2.3.4.4Ű4.

158 SORTING 5.2.3

35. [26] If UP links are added to a leftist tree (see the discussion of triply linked trees in
Section 6.2.3), it is possible to delete an arbitrary node P from within the priority queue
as follows: Replace P by the merger of LEFT(P) and RIGHT(P); then adjust the DIST
Ąelds of PŠs ancestors, possibly swapping left and right subtrees, until either reaching
the root or reaching a node whose DIST is unchanged.

Prove that this process never requires changing more than O(logN) of the DIST
Ąelds, if there are N nodes in the tree, even though the tree may contain very long
upward paths.

36. [18] (Least-recently-used page replacement.) Many operating systems make use of
the following type of algorithm: A collection of nodes is subjected to two operations,
(i) ŞusingŤ a node, and (ii) replacing the least-recently-used node by a new node. What
data structure makes it easy to ascertain the least-recently-used node?

37. [HM32] Let eN (k) be the expected treewise distance of the kth-largest element
from the root, in a random heap of N elements, and let e(k) = limN→∞ eN (k). Thus
e(1) = 0, e(2) = 1, e(3) = 1.5, and e(4) = 1.875. Find the asymptotic value of e(k) to
within O(k−1).

38. [M21] Find a simple recurrence relation for the multiset MN of subtree sizes in a
heap or in a complete binary tree with N internal nodes.

5.2.4. Sorting by Merging

Merging (or collating) means the combination of two or more ordered Ąles into
a single ordered Ąle. For example, we can merge the two Ąles 503 703 765 and
087 512 677 to obtain 087 503 512 677 703 765. A simple way to accomplish this
is to compare the two smallest items, output the smallest, and then repeat the
same process. Starting with

503 703 765
087 512 677

we obtain

087

503 703 765
512 677

then

087 503

703 765
512 677

and

087 503 512

703 765
677

and so on. Some care is necessary when one of the two Ąles becomes exhausted;
a detailed description of the process appears in the following algorithm:

Algorithm M (Two-way merge). This algorithm merges nonempty ordered Ąles
x1 ≤ x2 ≤ · · · ≤ xm and y1 ≤ y2 ≤ · · · ≤ yn into a single Ąle z1 ≤ z2 ≤ · · · ≤ zm+n.

M1. [Initialize.] Set i← 1, j ← 1, k ← 1.

M2. [Find smaller.] If xi ≤ yj , go to step M3, otherwise go to M5.

5.2.4 SORTING BY MERGING 159

M1. Initialize M2. Find smaller

M3. Output xi

M4. Transmit yj , . . . , yn

M5. Output yj

M6. Transmit xi, . . . , xm

xi≤yj xi>yj

x’s exhausted y’s exhausted

Fig. 29. Merging x1 ≤ · · · ≤ xm with y1 ≤ · · · ≤ yn.

M3. [Output xi.] Set zk ← xi, k ← k + 1, i← i + 1. If i ≤ m, return to M2.

M4. [Transmit yj , . . . , yn.] Set (zk, . . . , zm+n)← (yj , . . . , yn) and terminate the
algorithm.

M5. [Output yj .] Set zk ← yj , k ← k + 1, j ← j + 1. If j ≤ n, return to M2.

M6. [Transmit xi, . . . , xm.] Set (zk, . . . , zm+n) ← (xi, . . . , xm) and terminate
the algorithm.

We shall see in Section 5.3.2 that this straightforward procedure is essentially
the best possible way to merge on a conventional computer, when m ≈ n. (On
the other hand, when m is much smaller than n, it is possible to devise more
efficient merging algorithms, although they are rather complicated in general.)
Algorithm M could be made slightly simpler without much loss of efficiency by
placing sentinel elements xm+1 = yn+1 =∞ at the end of the input Ąles, stopping
just before ∞ is output. For an analysis of Algorithm M, see exercise 2.

The total amount of work involved in Algorithm M is essentially propor-
tional to m + n, so it is clear that merging is a simpler problem than sorting.
Furthermore, we can reduce the problem of sorting to merging, because we can
repeatedly merge longer and longer subĄles until everything is in sort. We may
consider this to be an extension of the idea of insertion sorting: Inserting a new
element into a sorted Ąle is the special case n = 1 of merging. If we want to
speed up the insertion process we can consider inserting several elements at a
time, ŞbatchingŤ them, and this leads naturally to the general idea of merge
sorting. From a historical point of view, merge sorting was one of the very Ąrst
methods proposed for computer sorting; it was suggested by John von Neumann
as early as 1945 (see Section 5.5).

We shall study merging in considerable detail in Section 5.4, with regard
to external sorting algorithms; our main concern in the present section is the
somewhat simpler question of merge sorting within a high-speed random-access
memory.

Table 1 shows a merge sort that Şburns the candle at both endsŤ in a manner
similar to the scanning procedure we have used in quicksort and radix exchange:
We examine the input from the left and from the right, working towards the

160 SORTING 5.2.4

middle. Ignoring the top line of the table for a moment, let us consider the
transformation from line 2 to line 3. At the left we have the ascending run 503
703 765; at the right, reading leftwards, we have the run 087 512 677. Merging
these two sequences leads to 087 503 512 677 703 765, which is placed at the
left of line 3. Then the keys 061 612 908 in line 2 are merged with 170 509 897,
and the result (061 170 509 612 897 908) is recorded at the right end of line 3.
Finally, 154 275 426 653 is merged with 653 Ů discovering the overlap before it
causes any harm Ů and the result is placed at the left, following the previous run.
Line 2 of the table was formed in the same way from the original input in line 1.

Table 1

NATURAL TWO-WAY MERGE SORTING

←−−−−−−−−−−− ←−− ←−− ←−− ←−−−−−−−
503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703−−→ −−−−−−−→ −−−−−−−→ −−−−−−−→ −−−−−−−→ ←−− ←−−−−−−−−−−− ←−−−−−−−−−−−
503 703 765 061 612 908 154 275 426 653 897 509 170 677 512 087−−−−−−−−−−−→ −−−−−−−−−−−→ −−−−−−−−−−−−−−−→←−− ←−−−−−−−−−−−−−−−−−−−−−−−
087 503 512 677 703 765 154 275 426 653 908 897 612 509 170 061−−−−−−−−−−−−−−−−−−−−−−−→ −−−−−−−−−−−−−−−→ ←−−−−−−−−−−−−−−−−−−−
061 087 170 503 509 512 612 677 703 765 897 908 653 426 275 154−−−→ ←−−
061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908−−−→

Vertical lines in Table 1 represent the boundaries between runs. They are the
so-called stepdowns, where a smaller element follows a larger one in the direction
of reading. We generally encounter an ambiguous situation in the middle of the
Ąle, when we read the same key from both directions; this causes no problem if we
are a little bit careful as in the following algorithm. The method is traditionally
called a ŞnaturalŤ merge because it makes use of the runs that occur naturally
in its input.

Algorithm N (Natural two-way merge sort). Records R1, . . . , RN are sorted
using two areas of memory, each of which is capable of holding N records. For
convenience, we shall say that the records of the second area are RN+1, . . . , R2N ,
although it is not really necessary that RN+1 be adjacent to RN. The initial
contents of RN+1, . . . , R2N are immaterial. After sorting is complete, the keys
will be in order, K1 ≤ · · · ≤ KN.

N1. [Initialize.] Set s← 0. (When s = 0, we will be transferring records from
the (R1, . . . , RN) area to the (RN+1, . . . , R2N) area; when s = 1, we will
be going the other way.)

N2. [Prepare for pass.] If s = 0, set i ← 1, j ← N, k ← N + 1, l ← 2N ; if
s = 1, set i← N + 1, j ← 2N, k ← 1, l← N. (Variables i, j, k, l point to
the current positions in the Şsource ĄlesŤ being read and the Şdestination
ĄlesŤ being written.) Set d ← 1, f ← 1. (Variable d gives the current
direction of output; f is set to zero if future passes are necessary.)

N3. [Compare Ki :Kj .] If Ki > Kj , go to step N8. If i = j, set Rk ← Ri and
go to N13.

5.2.4 SORTING BY MERGING 161

N1. Initialize N2. Prepare for pass N3. Compare Ki :Kj

N4. Transmit Ri

N5. Stepdown?

N6. Transmit Rj

N7. Stepdown?

N8. Transmit Rj

N9. Stepdown?

N10. Transmit Ri

N11. Stepdown?

N12. Switch sides

N13. Switch areas

i=j

i 6=j, Ki≤Kj Ki>Kj

Sorting
complete

Yes Yes
No No

No No
Yes Yes

Fig. 30. Merge sorting.

N4. [Transmit Ri.] (Steps N4ŰN7 are analogous to steps M3ŰM4 of Algo-
rithm M.) Set Rk ← Ri, k ← k + d.

N5. [Stepdown?] Increase i by 1. Then if Ki−1 ≤ Ki, go back to step N3.

N6. [Transmit Rj .] Set Rk ← Rj , k ← k + d.

N7. [Stepdown?] Decrease j by 1. Then if Kj+1 ≤ Kj , go back to step N6;
otherwise go to step N12.

N8. [Transmit Rj .] (Steps N8ŰN11 are dual to steps N4ŰN7.) Set Rk ← Rj ,
k ← k + d.

N9. [Stepdown?] Decrease j by 1. Then if Kj+1 ≤ Kj , go back to step N3.

N10. [Transmit Ri.] Set Rk ← Ri, k ← k + d.

N11. [Stepdown?] Increase i by 1. Then if Ki−1 ≤ Ki, go back to step N10.

N12. [Switch sides.] Set f ← 0, d ← −d, and interchange k ↔ l. Return to
step N3.

N13. [Switch areas.] If f = 0, set s← 1−s and return to N2. Otherwise sorting
is complete; if s = 0, set (R1, . . . , RN) ← (RN+1, . . . , R2N). (This last
copying operation is unnecessary if it is acceptable to have the output in
(RN+1, . . . , R2N) about half of the time.)

This algorithm contains one tricky feature that is explained in exercise 5.
It would not be difficult to program Algorithm N for MIX, but we can

deduce the essential facts of its behavior without constructing the entire program.
The number of ascending runs in the input will be about 1

2 N, under random
conditions, since we have Ki > Ki+1 with probability 1

2 ; detailed information
about the number of runs, under slightly different hypotheses, has been derived

162 SORTING 5.2.4

in Section 5.1.3. Each pass cuts the number of runs in half (except in unusual
cases such as the situation in exercise 6). So the number of passes will usually be
about lg 1

2 N = lg N−1. Each pass requires us to transmit each of the N records,
and by exercise 2 most of the time is spent in steps N3, N4, N5, N8, N9. We
can sketch the time in the inner loop as follows, if we assume that there is low
probability of equal keys:

Step Operations Time

N3 CMPA, JG, JE 3.5u

Either

N4 STA, INC 3u

N5 INC, LDA, CMPA, JGE 6u

Or

N8 STX, INC 3u

N9 DEC, LDX, CMPX, JGE 6u

Thus about 12.5u is spent on each record in each pass, and the total running
time will be asymptotically 12.5N lg N, for both the average case and the worst
case. This is slower than quicksortŠs average time, and it may not be enough
better than heapsort to justify taking twice as much memory space, since the
asymptotic running time of Program 5.2.3H is never more than 18N lg N.

The boundary lines between runs are determined in Algorithm N entirely by
stepdowns. This has the possible advantage that input Ąles with a preponderance
of increasing order can be handled very quickly, and so can input Ąles with
a preponderance of decreasing order; but it slows down the main loop of the
calculation. Instead of testing stepdowns, we can determine the length of runs
artiĄcially, by saying that all runs in the input have length 1, all runs after the
Ąrst pass (except possibly the last run) have length 2, . . . , all runs after k passes
(except possibly the last run) have length 2k. This is called a straight two-merge,
as opposed to the ŞnaturalŤ merge in Algorithm N.

Straight two-way merging is very similar to Algorithm N, and it has essen-
tially the same Ćow chart; but things are sufficiently different that we had better
write down the whole algorithm again:

Algorithm S (Straight two-way merge sort). Records R1, . . . , RN are sorted
using two memory areas as in Algorithm N.

S1. [Initialize.] Set s ← 0, p ← 1. (For the signiĄcance of variables s, i, j, k,
l, and d, see Algorithm N. Here p represents the size of ascending runs to
be merged on the current pass; further variables q and r will keep track of
the number of unmerged items in a run.)

S2. [Prepare for pass.] If s = 0, set i← 1, j ← N, k ← N, l← 2N +1; if s = 1,
set i← N + 1, j ← 2N, k ← 0, l← N + 1. Then set d← 1, q ← p, r ← p.

S3. [Compare Ki : Kj .] If Ki > Kj , go to step S8.
S4. [Transmit Ri.] Set k ← k + d, Rk ← Ri.
S5. [End of run?] Set i← i + 1, q ← q − 1. If q > 0, go back to step S3.
S6. [Transmit Rj .] Set k ← k + d. Then if k = l, go to step S13; otherwise set

Rk ← Rj .

5.2.4 SORTING BY MERGING 163

Table 2

STRAIGHT TWO-WAY MERGE SORTING

503 | 087 | 512 | 061 | 908 | 170 | 897 | 275 653 | 426 | 154 | 509 | 612 | 677 | 765 | 703

503 703 | 512 677 | 509 908 | 426 897 653 275 | 170 154 | 612 061 | 765 087

087 503 703 765 | 154 170 509 908 897 653 426 275 | 677 612 512 061

061 087 503 512 612 677 703 765 908 897 653 509 426 275 170 154

061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908

S7. [End of run?] Set j ← j − 1, r ← r − 1. If r > 0, go back to step S6;
otherwise go to S12.

S8. [Transmit Rj .] Set k ← k + d, Rk ← Rj .

S9. [End of run?] Set j ← j − 1, r ← r − 1. If r > 0, go back to step S3.

S10. [Transmit Ri.] Set k ← k + d. Then if k = l, go to step S13; otherwise set
Rk ← Ri.

S11. [End of run?] Set i← i + 1, q ← q − 1. If q > 0, go back to step S10.

S12. [Switch sides.] Set q ← p, r ← p, d ← −d, and interchange k ↔ l. If
j − i < p, return to step S10; otherwise return to S3.

S13. [Switch areas.] Set p ← p + p. If p < N, set s ← 1 − s and return to S2.
Otherwise sorting is complete; if s = 0, set

(R1, . . . , RN)← (RN+1, . . . , R2N).

(The latter copying operation will be done if and only if ⌈lg N ⌉ is odd, or in
the trivial case N = 1, regardless of the distribution of the input. Therefore
it is possible to predict the location of the sorted output in advance, and
copying will usually be unnecessary.)

An example of this algorithm appears in Table 2. It is somewhat amazing
that the method works properly when N is not a power of 2; the runs being
merged are not all of length 2k, yet no provision has apparently been made for
the exceptions! (See exercise 8.) The former tests for stepdowns have been
replaced by decrementing q or r and testing the result for zero; this reduces the
asymptotic MIX running time to 11N lg N units, slightly faster than we were able
to achieve with Algorithm N.

In practice it would be worthwhile to combine Algorithm S with straight
insertion; we can sort groups of, say, 16 items using straight insertion, in place of
the Ąrst four passes of Algorithm S, thereby avoiding the comparatively wasteful
bookkeeping operations involved in short merges. As we saw with quicksort,
such a combination of methods does not affect the asymptotic running time, but
it gives us a reasonable improvement nevertheless.

Let us now study Algorithms N and S from the standpoint of data structures.
Why did we need 2N record locations instead of N? The reason is comparatively
simple: We were dealing with four lists of varying size (two source lists and
two destination lists on each pass); and we were using the standard Şgrowing

164 SORTING 5.2.4

togetherŤ idea discussed in Section 2.2.2, for each pair of sequentially allocated
lists. But half of the memory space was always unused, and a little reĆection
shows that we could really make use of a linked allocation for the four lists. If
we add one link Ąeld to each of the N records, we can do everything required
by the merging algorithms using simple link manipulations, without moving the
records at all! Adding N link Ąelds is generally better than adding the space
needed for N more records, and the reduced record movement may also save
us time, unless our computer memory is especially good at sequential reading
and writing. Therefore we ought to consider also a merging algorithm like the
following one:

Algorithm L (List merge sort). Records R1, . . . , RN are assumed to contain
keys K1, . . . , KN, together with link Ąelds L1, . . . , LN capable of holding the
numbers −(N + 1) through (N + 1). There are two auxiliary link Ąelds L0 and
LN+1 in artiĄcial records R0 and RN+1 at the beginning and end of the Ąle. This
algorithm is a Şlist sortŤ that sets the link Ąelds so that the records are linked
together in ascending order. After sorting is complete, L0 will be the index of
the record with the smallest key; and Lk, for 1 ≤ k ≤ N, will be the index of the
record that follows Rk, or Lk = 0 if Rk is the record with the largest key. (See
Eq. 5.2.1Ű(13).)

During the course of this algorithm, R0 and RN+1 serve as list heads for two
linear lists whose sublists are being merged. A negative link denotes the end of
a sublist known to be ordered; a zero link denotes the end of the entire list. We
assume that N ≥ 2.

The notation Ş|Ls| ← pŤ means ŞSet Ls to p or −p, retaining the previous
sign of Ls.Ť This operation is well-suited to MIX, but unfortunately not to most
computers; it is possible to modify the algorithm in straightforward ways to
obtain an equally efficient method for most other machines.

L1. [Prepare two lists.] Set L0 ← 1, LN+1 ← 2, Li ← −(i+2) for 1 ≤ i ≤ N−2,
and LN−1 ← LN ← 0. (We have created two lists containing R1, R3, R5, . . .
and R2, R4, R6, . . . , respectively; the negative links indicate that each or-
dered sublist consists of one element only. For another way to do this step,
taking advantage of ordering that may be present in the initial data, see
exercise 12.)

L2. [Begin new pass.] Set s ← 0, t ← N + 1, p ← Ls, q ← Lt. If q = 0, the
algorithm terminates. (During each pass, p and q traverse the lists being
merged; s usually points to the most recently processed record of the current
sublist, while t points to the end of the previously output sublist.)

L3. [Compare Kp : Kq.] If Kp > Kq, go to L6.

L4. [Advance p.] Set |Ls| ← p, s← p, p← Lp. If p > 0, return to L3.

L5. [Complete the sublist.] Set Ls ← q, s← t. Then set t← q and q ← Lq, one
or more times, until q ≤ 0. Finally go to L8.

L6. [Advance q.] (Steps L6 and L7 are dual to L4 and L5.) Set |Ls| ← q, s← q,
q ← Lq. If q > 0, return to L3.

5.2.4 SORTING BY MERGING 165

Table 3

LIST MERGE SORTING

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Kj − 503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703 −
Lj 1 −3 −4 −5 −6 −7 −8 −9 −10 −11 −12 −13 −14 −15 −16 0 0 2
Lj 2 −6 1 −8 3 −10 5 −11 7 −13 9 12 −16 14 0 0 15 4
Lj 4 3 1 −11 2 −13 8 5 7 0 12 10 9 14 16 0 15 6
Lj 4 3 6 7 2 0 8 5 1 14 12 10 13 9 16 0 15 11
Lj 4 12 11 13 2 0 8 5 10 14 1 6 3 9 16 7 15 0

L7. [Complete the sublist.] Set Ls ← p, s← t. Then set t← p and p← Lp, one
or more times, until p ≤ 0.

L8. [End of pass?] (At this point, p ≤ 0 and q ≤ 0, since both pointers have
moved to the end of their respective sublists.) Set p ← −p, q ← −q. If
q = 0, set |Ls| ← p, |Lt| ← 0 and return to L2. Otherwise return to L3.

An example of this algorithm in action appears in Table 3, where we can see the
link settings each time step L2 is encountered. It is possible to rearrange the
records R1, . . . , RN at the end of this algorithm so that their keys are in order,
using the method of exercise 5.2Ű12. There is an interesting similarity between
list merging and the addition of sparse polynomials (see Algorithm 2.2.4A).

Let us now construct a MIX program for Algorithm L, to see whether the
list manipulation is advantageous from the standpoint of speed as well as space:

Program L (List merge sort). For convenience, we assume that records are
one word long, with Lj in the (0:2) Ąeld and Kj in the (3:5) Ąeld of location
INPUT + j; rI1 ≡ p, rI2 ≡ q, rI3 ≡ s, rI4 ≡ t, rA ≡ Kq; N ≥ 2.
01 L EQU 0:2 DeĄnition of Ąeld names
02 ABSL EQU 1:2

03 KEY EQU 3:5

04 START ENT1 N-2 1 L1. Prepare two lists.
05 ENNA 2,1 N − 2
06 STA INPUT,1(L) N − 2 Li ← −(i+ 2).
07 DEC1 1 N − 2
08 J1P *-3 N − 2 N − 2 ≥ i > 0.
09 ENTA 1 1
10 STA INPUT(L) 1 L0 ← 1.
11 ENTA 2 1
12 STA INPUT+N+1(L) 1 LN+1 ← 2.
13 STZ INPUT+N-1(L) 1 LN−1 ← 0.
14 STZ INPUT+N(L) 1 LN ← 0.
15 JMP L2 1 To L2.
16 L3Q LDA INPUT,2 C′′ +B′ L3. Compare Kp :Kq.
17 L3P CMPA INPUT,1(KEY) C
18 JL L6 C To L6 if Kq < Kp.
19 L4 ST1 INPUT,3(ABSL) C′ L4. Advance p. |Ls| ← p.
20 ENT3 0,1 C′ s← p.
21 LD1 INPUT,1(L) C′ p← Lp.
22 J1P L3P C′ To L3 if p > 0.

166 SORTING 5.2.4

23 L5 ST2 INPUT,3(L) B′ L5. Complete the sublist. Ls ← q.
24 ENT3 0,4 B′ s← t.
25 ENT4 0,2 D′ t← q.
26 LD2 INPUT,2(L) D′ q ← Lq.
27 J2P *-2 D′ Repeat if q > 0.
28 JMP L8 B′ To L8.
29 L6 ST2 INPUT,3(ABSL) C′′ L6. Advance q. |Ls| ← q.
30 ENT3 0,2 C′′ s← q.
31 LD2 INPUT,2(L) C′′ q ← Lq.
32 J2P L3Q C′′ To L3 if q > 0.
33 L7 ST1 INPUT,3(L) B′′ L7. Complete the sublist. Ls ← p.
34 ENT3 0,4 B′′ s← t.
35 ENT4 0,1 D′′ t← p.
36 LD1 INPUT,1(L) D′′ p← Lp.
37 J1P *-2 D′′ Repeat if p > 0.
38 L8 ENN1 0,1 B L8. End of pass? p← −p.
39 ENN2 0,2 B q ← −q.
40 J2NZ L3Q B To L3 if q ̸= 0.
41 ST1 INPUT,3(ABSL) A |Ls| ← p.
42 STZ INPUT,4(ABSL) A |Lt| ← 0.
43 L2 ENT3 0 A+ 1 L2. Begin new pass. s← 0.
44 ENT4 N+1 A+ 1 t← N + 1.
45 LD1 INPUT(L) A+ 1 p← Ls.
46 LD2 INPUT+N+1(L) A+ 1 q ← Lt.
47 J2NZ L3Q A+ 1 To L3 if q ̸= 0.

The running time of this program can be deduced using techniques we have
seen many times before (see exercises 13 and 14); it comes to approximately
(10N lg N + 4.92N)u on the average, with a small standard deviation of order√

N . Exercise 15 shows that the running time can in fact be reduced to about
(8N lg N)u, at the expense of a substantially longer program.

Thus we have a clear victory for linked-memory techniques over sequential
allocation, when internal merging is being done: Less memory space is required,
and the program runs about 10 to 20 percent faster. Similar algorithms have
been published by L. J. Woodrum [IBM Systems J. 8 (1969), 189Ű203] and
A. D. Woodall [Comp. J. 13 (1970), 110Ű111].

EXERCISES

1. [21] Generalize Algorithm M to a k-way merge of the input Ąles xi1 ≤ · · · ≤ ximi

for i = 1, 2, . . . , k.

2. [M24] Assuming that each of the

m+n
m

possible arrangements of m xŠs among

n yŠs is equally likely, Ąnd the mean and standard deviation of the number of times
step M2 is performed during Algorithm M. What are the maximum and minimum
values of this quantity?

x 3. [20] (Updating.) Given records R1, . . . , RM and R′
1, . . . , R

′
N whose keys are dis-

tinct and in order, so that K1 < · · · < KM and K′
1 < · · · < K′

N , show how to modify
Algorithm M to obtain a merged Ąle in which records Ri of the Ąrst Ąle have been
discarded if their keys appear also in the second Ąle.

5.2.4 SORTING BY MERGING 167

4. [21] The text observes that merge sorting may be regarded as a generalization
of insertion sorting. Show that merge sorting is also strongly related to tree selection
sorting as depicted in Fig. 23.

x 5. [21] Prove that i can never be equal to j in steps N6 or N10. (Therefore it is
unnecessary to test for a possible jump to N13 in those steps.)

6. [22] Find a permutation K1 K2 . . .K16 of {1, 2, . . . , 16} such that

K2 > K3, K4 > K5, K6 > K7, K8 > K9, K10 < K11, K12 < K13, K14 < K15,

yet Algorithm N will sort the Ąle in only two passes. (Since there are eight or more
runs, we would expect to have at least four runs after the Ąrst pass, two runs after
the second pass, and sorting would ordinarily not be complete until after at least three
passes. How can we get by with only two passes?)

7. [16] Give a formula for the exact number of passes required by Algorithm S, as a
function of N.

8. [22] During Algorithm S, the variables q and r are supposed to represent the
lengths of the unmerged elements in the runs currently being processed; q and r both
start out equal to p, while the runs are not always this long. How can this possibly
work?

9. [24] Write a MIX program for Algorithm S. Specify the instruction frequencies in
terms of quantities analogous to A,B′, B′′, C′, . . . in Program L.

10. [25] (D. A. Bell.) Show that sequentially allocated straight two-way merging can
be done with at most 3

2
N memory locations, instead of 2N as in Algorithm S.

11. [21] Is Algorithm L a stable sorting method?

x 12. [22] Revise step L1 of Algorithm L so that the two-way merge is Şnatural,Ť taking
advantage of ascending runs that are initially present. (In particular, if the input is
already sorted, step L2 should terminate the algorithm immediately after your step L1
has acted.)

x 13. [M34] Give an analysis of the average running time of Program L, in the style
of other analyses in this chapter: Interpret the quantities A,B,B′, . . . , and explain
how to compute their exact average values. How long does Program L take to sort the
16 numbers in Table 3?

14. [M24] Let the binary representation of N be 2e1 +2e2 + · · ·+2et, where e1 > e2 >
· · · > et ≥ 0, t ≥ 1. Prove that the maximum number of key comparisons performed
by Algorithm L is 1− 2et +

t
k=1(ek + k − 1)2ek.

15. [20] Hand simulation of Algorithm L reveals that it occasionally does redundant
operations; the assignments |Ls| ← p, |Ls| ← q in steps L4 and L6 are unnecessary
about half of the time, since we have Ls = p (or q) each time step L4 (or L6) returns
to L3. How can Program L be improved so that this redundancy disappears?

16. [28] Design a list merging algorithm like Algorithm L but based on three-way
merging.

17. [20] (J. McCarthy.) Let the binary representation of N be as in exercise 14, and
assume that we are given N records arranged in t ordered subĄles of respective sizes
2e1, 2e2, . . . , 2et. Show how to maintain this state of affairs when a new (N +1)st record
is added and N ← N+1. (The resulting algorithm may be called an online merge sort.)

168 SORTING 5.2.4

Fig. 31. A railway network with Ąve Şstacks.Ť

18. [40] (M. A. Kronrod.) Given a Ąle of N records containing only two runs,

K1 ≤ · · · ≤ KM and KM+1 ≤ · · · ≤ KN ,

is it possible to sort the Ąle with O(N) operations in a random-access memory, using

only a small Ąxed amount of additional memory space regardless of the sizes of M
and N? (All of the merging algorithms described in this section make use of extra
memory space proportional to N.)

19. [26] Consider a railway switching network with n Şstacks,Ť as shown in Fig. 31
when n = 5; we considered one-stack networks in exercises 2.2.1Ű2 through 2.2.1Ű5. If
N railroad cars enter at the right, we observed that only comparatively few of the N !
permutations of those cars could appear at the left, in the one-stack case.

In the n-stack network, assume that 2n cars enter at the right. Prove that each
of the 2n! possible permutations of these cars is achievable at the left, by a suitable
sequence of operations. (Each stack is actually much bigger than indicated in the
illustration Ů big enough to accommodate all the cars, if necessary.)

20. [47] In the notation of exercise 2.2.1Ű4, at most a n
N permutations of N elements

can be produced with an n-stack railway network; hence the number of stacks needed
to obtain all N ! permutations is at least logN !/ log aN ≈ log4 N. Exercise 19 shows
that at most ⌈lgN ⌉ stacks are needed. What is the true rate of growth of the necessary
number of stacks, as N →∞?

21. [23] (A. J. Smith.) Explain how to extend Algorithm L so that, in addition to
sorting, it computes the number of inversions present in the input permutation.

22. [28] (J. K. R. Barnett.) Develop a way to speed up merge sorting on multiword
keys. (Exercise 5.2.2Ű30 considers the analogous problem for quicksort.)

23. [M30] Exercises 13 and 14 analyze a Şbottom-upŤ or iterative version of merge
sort, where the cost c(N) of sorting N items satisĄes the recurrence

c(N) = c(2k) + c(N − 2k) + f(2k, N − 2k) for 2k < N ≤ 2k+1

and f(m,n) is the cost of merging m things with n. Study the Ştop-downŤ or divide-
and-conquer recurrence

c(N) = c(⌈N/2⌉) + c(⌊N/2⌋) + f(⌈N/2⌉, ⌊N/2⌋) for N > 1,

which arises when merge sort is programmed recursively.

5.2.5. Sorting by Distribution

We come now to an interesting class of sorting methods that are essentially the
exact opposite of merging, when considered from a standpoint we shall discuss

5.2.5 SORTING BY DISTRIBUTION 169

in Section 5.4.7. These methods were used to sort punched cards for many years,
long before electronic computers existed. The same approach can be adapted to
computer programming, and it is generally known as Şbucket sorting,Ť Şradix
sorting,Ť or Şdigital sorting,Ť because it is based on the digits of the keys.

Suppose we want to sort a 52-card deck of playing cards. We may deĄne

A < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9 < 10 < J < Q < K,

as an ordering of the face values, and for the suits we may deĄne

♣ < ♢ < ♡ < ♠.

One card is to precede another if either (i) its suit is less than the other suit, or
(ii) its suit equals the other suit but its face value is less. (This is a particular
case of lexicographic ordering between ordered pairs of objects; see exercise 5Ű2.)
Thus

A♣ < 2♣ < · · · < K♣ < A♢ < · · · < Q♠ < K♠.

We could sort the cards by any of the methods already discussed. Card
players often use a technique somewhat analogous to the idea behind radix
exchange: First they divide the cards into four piles, according to suit, then
they Ąddle with each individual pile until everything is in order.

But there is a faster way to do the trick! First deal the cards face up into
13 piles, one for each face value. Then collect these piles by putting the aces
on the bottom, the 2s face up on top of them, then the 3s, etc., Ąnally putting
the kings (face up) on top. Turn the deck face down and deal again, this time
into four piles for the four suits. (Again you turn the cards face up as you deal
them.) By putting the resulting piles together, with clubs on the bottom, then
diamonds, hearts, and spades, youŠll get the deck in perfect order.

The same idea applies to the sorting of numbers and alphabetic data. Why
does it work? Because (in our playing card example) if two cards go into different
piles in the Ąnal deal, they have different suits, so the one with the lower suit is
lowest. But if two cards have the same suit (and consequently go into the same
pile), they are already in proper order because of the previous sorting. In other
words, the face values will be in increasing order, on each of the four piles, as we
deal the cards on the second pass. The same proof can be abstracted to show
that any lexicographic ordering can be sorted in this way; for details, see the
answer to exercise 5Ű2, at the beginning of this chapter.

The sorting method just described is not immediately obvious, and it isnŠt
clear who Ąrst discovered the fact that it works so conveniently. A 19-page
pamphlet entitled ŞThe Inventory SimpliĄed,Ť published by the Tabulating Ma-
chines Company division of IBM in 1923, presented an interesting Digit Plan
method for forming sums of products on their Electric Sorting Machine: Suppose,
for example, that we want to multiply the number punched in columns 1Ű10
by the number punched in columns 23Ű25, and to sum all of these products
for a large number of cards. We can sort Ąrst on column 25, then use the
Tabulating Machine to Ąnd the quantities a1, a2, . . . , a9, where ak is the total

170 SORTING 5.2.5

of columns 1Ű10 summed over all cards having k in column 25. Then we can
sort on column 24, Ąnding the analogous totals b1, b2, . . . , b9; also on column 23,
obtaining c1, c2, . . . , c9. The desired sum of products is easily seen to be

a1 + 2a2 + · · ·+ 9a9 + 10b1 + 20b2 + · · ·+ 90b9 + 100c1 + 200c2 + · · ·+ 900c9.

This punched-card tabulating method leads naturally to the discovery of least-
signiĄcant-digit-Ąrst radix sorting, so it probably became known to the machine
operators. The Ąrst published reference to this principle for sorting appears in
L. J. ComrieŠs early discussion of punched-card equipment [Transactions of the
Office Machinery UsersŠ Assoc., Ltd. (1929), 25Ű37, especially page 28].

In order to handle radix sorting inside a computer, we must decide what to
do with the piles. Suppose that there are M piles; we could set aside M areas of
memory, moving each record from an input area into its appropriate pile area.
But this is unsatisfactory, since each area must be large enough to hold N items,
and (M + 1)N record spaces would be required. Therefore most people rejected
the idea of radix sorting within a computer, until H. H. Seward [MasterŠs thesis,
M.I.T. Digital Computer Laboratory Report R-232 (1954), 25Ű28] pointed out
that we can achieve the same effect with only 2N record areas and M count Ąelds.
We simply count how many elements will lie in each of the M piles, by making
a preliminary pass over the data; this tells us precisely how to allocate memory
for the piles. We have already made use of the same idea in the Şdistribution
counting sort,Ť Algorithm 5.2D.

Thus radix sorting can be carried out as follows: Start with a distribution
sort based on the least signiĄcant digit of the keys (in radix M notation), moving
records from the input area to an auxiliary area. Then do another distribution
sort, on the next least signiĄcant digit, moving the records back into the original
input area; and so on, until the Ąnal pass (on the most signiĄcant digit) puts all
records into the desired order.

If we have a decimal computer with 12-digit keys, and if N is rather large, we
can choose M = 1000 (considering three decimal digits as one radix-1000 digit);
then sorting will be complete in four passes, regardless of the size of N. Similarly,
if we have a binary computer and a 40-bit key, we can set M = 1024 = 210 and
complete the sorting in four passes. Actually each pass consists of three parts
(counting, allocating, moving); E. H. Friend [JACM 3 (1956), 151] suggested
combining two of those parts at the expense of M more memory locations, by
accumulating the counts for pass k + 1 while moving the records on pass k.

Table 1 shows how such a radix sort can be applied to our 16 example
numbers, with M = 10. Radix sorting is generally not useful for such small N,
so a small example like this is intended to illustrate the sufficiency rather than
the efficiency of the method.

An alert, ŞmodernŤ reader will note, however, that the whole idea of mak-
ing digit counts for the storage allocation is tied to old-fashioned ideas about
sequential data representation. We know that linked allocation is speciĄcally
designed to handle a set of tables of variable size, so it is natural to choose a
linked data structure for radix sorting. Since we traverse each pile serially, all

5.2.5 SORTING BY DISTRIBUTION 171

Table 1

RADIX SORTING

Input area contents: 503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703

Counts for units digit distribution: 1 1 2 3 1 2 1 3 1 1

Storage allocations based on these counts: 1 2 4 7 8 10 11 14 15 16

Auxiliary area contents: 170 061 512 612 503 653 703 154 275 765 426 087 897 677 908 509

Counts for tens digit distribution: 4 2 1 0 0 2 2 3 1 1

Storage allocations based on these counts: 4 6 7 7 7 9 11 14 15 16

Input area contents: 503 703 908 509 512 612 426 653 154 061 765 170 275 677 087 897

Counts for hundreds digit distribution: 2 2 1 0 1 3 3 2 1 1

Storage allocations based on these counts: 2 4 5 5 6 9 12 14 15 16

Auxiliary area contents: 061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908

we need is a single link from each item to its successor. Furthermore, we never
need to move the records; we merely adjust the links and proceed merrily down
the lists. The amount of memory required is (1 + ϵ)N + 2ϵM records, where ϵ
is the amount of space taken up by a link Ąeld. Formal details of this procedure
are rather interesting since they furnish an excellent example of typical data
structure manipulations, combining sequential and linked allocation:

Algorithm R (Radix list sort). Records R1, . . . , RN are each assumed to contain
a LINK Ąeld. Their keys are assumed to be p-tuples

(a1, a2, . . . , ap), 0 ≤ ai < M, (1)

where the order is deĄned lexicographically so that

(a1, a2, . . . , ap) < (b1, b2, . . . , bp) (2)

if and only if for some j, 1 ≤ j ≤ p, we have

ai = bi for all i < j, but aj < bj . (3)

The keys may, in particular, be thought of as numbers written in radix M
notation,

a1Mp−1 + a2Mp−2 · · ·+ ap−1M + ap, (4)

and in this case lexicographic order corresponds to the normal ordering of non-
negative numbers. The keys may also be strings of alphabetic letters, etc.

Sorting is done by keeping M ŞpilesŤ of records, in a manner that exactly
parallels the action of a card sorting machine. The piles are really queues in the
sense of Chapter 2, since we link them together so that they are traversed in a
Ąrst-in-Ąrst-out manner. There are two pointer variables TOP[i] and BOTM[i]
for each pile, 0 ≤ i < M, and we assume as in Chapter 2 that

LINK(LOC(BOTM[i])) ≡ BOTM[i]. (5)

172 SORTING 5.2.5

R1. Loop on k

R2. Set piles empty

R3. Extract kth
digit of key

R4. Adjust links

R5. Step to
next record

R6. Do Algorithm Hk>p

1≤
k≤

p

Last
record

Fig. 32. Radix list sort.

R1. [Loop on k.] In the beginning, set P ← LOC(RN), a pointer to the last
record. Then perform steps R2 through R6 for k = 1, 2, . . . , p. (Steps R2
through R6 constitute one Şpass.Ť) Then the algorithm terminates, with P

pointing to the record with the smallest key, LINK(P) to the record with next
smallest, then LINK(LINK(P)), etc.; the LINK in the Ąnal record will be Λ.

R2. [Set piles empty.] Set TOP[i] ← LOC(BOTM[i]) and BOTM[i] ← Λ, for
0 ≤ i < M .

R3. [Extract kth digit of key.] Let KEY(P), the key in the record referenced by P,
be (a1, a2, . . . , ap); set i← ap+1−k, the kth least signiĄcant digit of this key.

R4. [Adjust links.] Set LINK(TOP[i])← P, then set TOP[i]← P.

R5. [Step to next record.] If k = 1 (the Ąrst pass) and if P = LOC(Rj), for some
j ̸= 1, set P← LOC(Rj−1) and return to R3. If k > 1 (subsequent passes),
set P← LINK(P), and return to R3 if P ̸= Λ.

R6. [Do Algorithm H.] (We are now done distributing all elements onto the
piles.) Perform Algorithm H below, which Şhooks togetherŤ the individual
piles into one list, in preparation for the next pass. Then set P← BOTM[0],
a pointer to the Ąrst element of the hooked-up list. (See exercise 3.)

Algorithm H (Hooking-up of queues). Given M queues, linked according to
the conventions of Algorithm R, this algorithm adjusts at most M links so that
a single queue is created, with BOTM[0] pointing to the Ąrst element, and with
pile 0 preceding pile 1 . . . preceding pile M−1.

H1. [Initialize.] Set i← 0.

H2. [Point to top of pile.] Set P← TOP[i].

H3. [Next pile.] Increase i by 1. If i = M, set LINK(P) ← Λ and terminate the
algorithm.

H4. [Is pile empty?] If BOTM[i] = Λ, go back to H3.

H5. [Tie piles together.] Set LINK(P)← BOTM[i]. Return to H2.

5.2.5 SORTING BY DISTRIBUTION 173

Figure 33 shows the contents of the piles after each of the three passes, when
our 16 example numbers are sorted with M = 10. Algorithm R is very easy to
program for MIX, once a suitable way to treat the pass-by-pass variation of steps
R3 and R5 has been found. The following program does this without sacriĄcing
any speed in the inner loop, by overlaying two of the instructions. Note that
TOP[i] and BOTM[i] can be packed into the same word.

BOTM[0]

TOP[0]

170

BOTM[1]

TOP[1]

061

BOTM[2]

TOP[2]

612

512

BOTM[3]

TOP[3]

703

653

503

BOTM[4]

TOP[4]

154

BOTM[5]

TOP[5]

765

275

BOTM[6]

TOP[6]

426

BOTM[7]

TOP[7]

677

897

087

BOTM[8]

TOP[8]

908

BOTM[9]

TOP[9]

509

BOTM[0]

TOP[0]

703

503

908

509

BOTM[1]

TOP[1]

612

512

BOTM[2]

TOP[2]

426

BOTM[3]

TOP[3]

BOTM[4]

TOP[4]

BOTM[5]

TOP[5]

653

154

BOTM[6]

TOP[6]

061

765

BOTM[7]

TOP[7]

170

275

677

BOTM[8]

TOP[8]

087

BOTM[9]

TOP[9]

897

BOTM[0]

TOP[0]

061

087

BOTM[1]

TOP[1]

154

170

BOTM[2]

TOP[2]

275

BOTM[3]

TOP[3]

BOTM[4]

TOP[4]

426

BOTM[5]

TOP[5]

503

509

512

BOTM[6]

TOP[6]

612

653

677

BOTM[7]

TOP[7]

703

765

BOTM[8]

TOP[8]

897

BOTM[9]

TOP[9]

908

Fig. 33. Radix sort using linked allocation: contents of the ten piles after each pass.

Program R (Radix list sort). The given records in locations INPUT+1 through
INPUT+N are assumed to have p = 3 components (a1, a2, a3) stored respectively
in the (1:1), (2 :2), and (3:3) Ąelds. (Thus M is assumed to be less than or
equal to the byte size of MIX.) The (4:5) Ąeld of each record is its LINK. We
let TOP[i] ≡ PILES + i(1 :2) and BOTM[i] ≡ PILES + i(4 :5), for 0 ≤ i < M. It
is convenient to make links relative to location INPUT, so that LOC(BOTM[i]) =
PILES+i−INPUT; to avoid negative links we therefore want the PILES table to be

174 SORTING 5.2.5

in higher locations than the INPUT table. Index registers are assigned as follows:
rI1 ≡ P, rI2 ≡ i, rI3 ≡ 3− k, rI4 ≡ TOP[i]; during Algorithm H, rI2 ≡ i−M.
01 LINK EQU 4:5

02 TOP EQU 1:2

03 START ENT1 N 1 R1. Loop on k. P = LOC(RN).
04 ENT3 2 1 k ← 1.
05 2H ENT2 M-1 3 R2. Set piles empty.
06 ENTA PILES-INPUT,2 3M LOC(BOTM[i])
07 STA PILES,2(TOP) 3M → TOP[i].
08 STZ PILES,2(LINK) 3M BOTM[i]← Λ.
09 DEC2 1 3M
10 J2NN *-4 3M M > i ≥ 0.
11 LDA R3SW,3 3
12 STA 3F 3 Modify instructions for pass k.
13 LDA R5SW,3 3
14 STA 5F 3
15 3H [LD2 INPUT,1(3:3)] R3. Extract kth digit of key.
16 4H LD4 PILES,2(TOP) 3N R4. Adjust links.
17 ST1 INPUT,4(LINK) 3N LINK(TOP[i])← P.
18 ST1 PILES,2(TOP) 3N TOP[i]← P.
19 5H [DEC1 1] R5. Step to next record.
20 J1NZ 3B 3N To R3 if not end of pass.
21 6H ENN2 M 3 R6. Do Algorithm H.
22 JMP 7F 3 To H2 with i← 0.
23 R3SW LD2 INPUT,1(1:1) N Instruction for R3 when k = 3.
24 LD2 INPUT,1(2:2) N Instruction for R3 when k = 2.
25 LD2 INPUT,1(3:3) N Instruction for R3 when k = 1.
26 R5SW LD1 INPUT,1(LINK) N Instruction for R5 when k = 3.
27 LD1 INPUT,1(LINK) N Instruction for R5 when k = 2.
28 DEC1 1 N Instruction for R5 when k = 1.
29 9H LDA PILES+M,2(LINK) 3M−3 H4. Is pile empty?
30 JAZ 8F 3M−3 To H3 if BOTM[i] = Λ.
31 STA INPUT,1(LINK) 3M−3−E H5. Tie piles together.
32 7H LD1 PILES+M,2(TOP) 3M − E H2. Point to top of pile.
33 8H INC2 1 3M H3. Next pile. i← i+ 1.
34 J2NZ 9B 3M To H4 if i ̸= M.
35 STZ INPUT,1(LINK) 3 LINK(P)← Λ.
36 LD1 PILES(LINK) 3 P← BOTM[0].
37 DEC3 1 3
38 J3NN 2B 3 Loop for 1 ≤ k ≤ 3.

The running time of Program R is 32N + 48M + 38 − 4E, where N is the
number of input records, M is the radix (the number of piles), and E is the
number of occurrences of empty piles. This compares very favorably with other
programs we have constructed based on similar assumptions (Programs 5.2.1M,
5.2.4L). A p-pass version of the program would take (11p− 1)N + O(pM) units
of time; the critical factor in the timing is the inner loop, which involves Ąve
references to memory and one branch. On a typical computer we will have
M = br and p = ⌈t/r⌉, where t is the number of radix-b digits in the keys;

5.2.5 SORTING BY DISTRIBUTION 175

increasing r will decrease p, so the formulas can be used to determine a best
value of r.

The only variable in the timing is E, the number of empty piles observed
in step H4. If we consider each of the MN sequences of radix-M digits to be
equally probable, we know from our study of the Şpoker testŤ in Section 3.3.2D
that there are M − r empty piles with probability

M(M − 1) . . . (M − r + 1)
MN

N

r

(6)

on each pass, where

N
r

is a Stirling number of the second kind. By exercise 6,

E =

min max(M−N, 0)p, ave M

1− 1
M

N
p, max (M−1)p

. (7)

An ever-increasing number of ŞpipelineŤ or Şnumber-crunchingŤ computers
have appeared in recent years. These machines have multiple arithmetic units
and look-ahead circuitry so that memory references and computation can be
highly overlapped; but their efficiency deteriorates noticeably in the presence of
conditional branch instructions unless the branch almost always goes the same
way. The inner loop of a radix sort is well adapted to such machines, because
it is a straight iterative calculation of typical number-crunching form. Therefore
radix sorting is usually more efficient than any other known method for internal

sorting on such machines, provided that N is not too small and the keys are not
too long.

Of course, radix sorting is not very efficient when the keys are extremely
long. For example, imagine sorting 60-digit decimal numbers with 20 passes of a
radix sort, using M = 103; very few pairs of numbers will tend to have identical
keys in their leading 9 digits, so the Ąrst 17 passes accomplish very little. In our
analysis of radix exchange sorting, we found that it was unnecessary to inspect
many bits of the key, when we looked at the keys from the left instead of the
right. Let us therefore reconsider the idea of a radix sort that starts at the most
signiĄcant digit (MSD) instead of the least signiĄcant digit (LSD).

We have already remarked that an MSD-Ąrst radix method suggests itself
naturally; in fact, it is not hard to see why the post office uses such a method
to sort mail. A large collection of letters can be sorted into separate bags for
different geographical areas; each of these bags then contains a smaller number
of letters that can be sorted independently of the other bags, into Ąner and
Ąner geographical divisions. (Indeed, bags of letters can be transported nearer
to their destinations before they are sorted further, or as they are being sorted
further.) This principle of Şdivide and conquerŤ is quite appealing, and the
only reason it doesnŠt work especially well for sorting punched cards is that it
ultimately spends too much time fussing with very small piles. Algorithm R is
relatively efficient, even though it considers LSD Ąrst, since we never have more
than M piles, and the piles need to be hooked together only p times. On the
other hand, it is not difficult to design an MSD-Ąrst radix method using linked
memory, with negative links as in Algorithm 5.2.4L to denote the boundaries

176 SORTING 5.2.5

between piles. (See exercise 10.) The main difficulty is that empty piles tend to
proliferate and to consume a great deal of time in an MSD-Ąrst method.

Perhaps the best compromise has been suggested by M. D. MacLaren [JACM
13 (1966), 404Ű411], who recommends an LSD-Ąrst sort as in Algorithm R, but
applied only to the most signiĄcant digits. This does not completely sort the Ąle,
but it usually brings the Ąle very nearly into order so that very few inversions
remain; therefore straight insertion can be used to Ąnish up. Our analysis of
Program 5.2.1M applies also to this situation, so that if the keys are uniformly
distributed we will have an average of 1

4 N(N − 1)M−p inversions remaining in
the Ąle after sorting on the leading p digits. (See Eq. 5.2.1Ű(17) and exercise
5.2.1Ű38.) MacLaren has computed the average number of memory references
per item sorted, and the optimum choice of M and p (assuming that M is
a power of 2, that the keys are uniformly distributed, and that N/Mp ≤ 0.1
so that deviations from uniformity are tolerable) turns out to be given by the
following table:

N = 100 1000 10000 100000 1000000 107 108 109

best M = 32 128 512 1024 8192 215 217 219

best p = 2 2 2 2 2 2 2 2
β(N) = 19.3 18.5 18.2 18.1 18.0 18.0 18.0 18.0

Here β(N) denotes the average number of memory references per item sorted,

β(N) = 5p + 8 +
2pM

N
+

N − 1
2Mp

− HN

N
; (8)

it is bounded as N →∞, if we take p = 2 and M >
√

N , so the average sorting
time is actually O(N) instead of order N log N. This method is an improvement
over multiple list insertion (Program 5.2.1M), which is essentially the case p = 1.
Exercise 12 gives MacLarenŠs interesting procedure for Ąnal rearrangement of a
partially list-sorted Ąle.

It is also possible to avoid the link Ąelds, using the methods of Algo-
rithm 5.2D and exercise 5.2Ű13, so that only O

√
N

memory locations are

needed in addition to the space required for the records themselves. The average
sorting time is proportional to N if the input records are uniformly distributed.

W. Dobosiewicz obtained good results by using an MSD-Ąrst distribution
sort until reaching short subĄles, with the distribution process constrained so
that the Ąrst M/2 piles were guaranteed to receive between 25% and 75% of the
records [see Inf. Proc. Letters 7 (1978), 1Ű6; 8 (1979), 170Ű172]; this ensured
that the average time to sort uniform keys would be O(N) while the worst case
would be O(N log N). His papers inspired several other researchers to devise
new address calculation algorithms, of which the most instructive is perhaps the
following 2-level scheme due to Markku Tamminen [J. Algorithms 6 (1985), 138Ű
144]: Assume that all keys are fractions in the interval [0 . . 1). First distribute
the N records into ⌊N/8⌋ bins by mapping key K into bin ⌊KN/8⌋. Then suppose
bin k has received Nk records; if Nk ≤ 16, sort it by straight insertion, otherwise

5.2.5 SORTING BY DISTRIBUTION 177

sort it by a MacLaren-like distribution-plus-insertion sort into M2 bins, where
M2 ≈ 10Nk. Tamminen proved the following remarkable result:

Theorem T. There is a constant T such that the sorting method just de-
scribed performs at most TN operations on the average, whenever the keys
are independent random numbers whose density function f(x) is bounded and
Riemann-integrable for 0 ≤ x ≤ 1. (The constant T does not depend on f .)

Proof. See exercise 18. Intuitively, the Ąrst distribution into N/8 piles Ąnds
intervals in which f is approximately constant; the second distribution will then
make the expected bin size approximately constant.

Several versions of radix sort that have been well tuned for sorting large
arrays of alphabetic strings are described in an instructive article by P. M.
McIlroy, K. Bostic, and M. D. McIlroy, Computing Systems 6 (1993), 5Ű27.

EXERCISES

x 1. [20] The algorithm of exercise 5.2Ű13 shows how to do a distribution sort with
only N record areas (and M count Ąelds), instead of 2N record areas. Does this lead
to an improvement over the radix sorting algorithm illustrated in Table 1?

2. [13] Is Algorithm R a stable sorting method?

3. [15] Explain why Algorithm H makes BOTM[0] point to the Ąrst record in the
Şhooked-upŤ queue, even though pile 0 might be empty.

x 4. [23] Algorithm R keeps the M piles linked together as queues (Ąrst-in-Ąrst-out).
Explore the idea of linking the piles as stacks instead. (The arrows in Fig. 33 would
go downward instead of upward, and the BOTM table would be unnecessary.) Show that
if the piles are Şhooked togetherŤ in an appropriate order, it is possible to achieve a
valid sorting method. Does this lead to a simpler or a faster algorithm?

5. [20] What changes are necessary to Program R so that it sorts eight-byte keys
instead of three-byte keys? Assume that the most signiĄcant bytes of Ki are stored in
location KEY+i(1:5), while the three least signiĄcant bytes are in location INPUT+i(1:3)
as presently. What is the running time of the program, after these changes have been
made?

6. [M24] Let gMN (z) =

pMNkz

k, where pMNk is the probability that exactly k
empty piles are present after a random radix-sort pass puts N elements into M piles.

a) Show that gM(N+1)(z) = gMN (z) + ((1− z)/M)g′MN (z).
b) Use this relation to Ąnd simple expressions for the mean and variance of this

probability distribution, as a function of M and N.

7. [20] Discuss the similarities and differences between Algorithm R and radix ex-
change sorting (Algorithm 5.2.2R).

x 8. [20] The radix-sorting algorithms discussed in the text assume that all keys being
sorted are nonnegative. What changes should be made to the algorithms when the keys
are numbers expressed in twoŠs complement or onesŠ complement notation?

9. [20] Continuing exercise 8, what changes should be made to the algorithms when
the keys are numbers expressed in signed magnitude notation?

178 SORTING 5.2.5

10. [30] Design an efficient most-signiĄcant-digit-Ąrst radix-sorting algorithm that
uses linked memory. (As the size of the subĄles decreases, it is wise to decrease M, and
to use a nonradix method on the really short subĄles.)

11. [16] The sixteen input numbers shown in Table 1 start with 41 inversions; after
sorting is complete, of course, there are no inversions remaining. How many inversions
would be present in the Ąle if we omitted pass 1, doing a radix sort only on the tens
and hundreds digits? How many inversions would be present if we omitted both pass 1
and pass 2?

12. [24] (M. D. MacLaren.) Suppose that Algorithm R has been applied only to the
p leading digits of the actual keys; thus the Ąle is nearly sorted when we read it in
the order of the links, but keys that agree in their Ąrst p digits may be out of order.
Design an algorithm that rearranges the records in place so that their keys are in order,
K1 ≤ K2 ≤ · · · ≤ KN. [Hint: The special case that the Ąle is perfectly sorted appears
in the answer to exercise 5.2Ű12; it is possible to combine this with straight insertion
without loss of efficiency, since few inversions remain in the Ąle.]

13. [40] Implement the internal sorting method suggested in the text at the close of
this section, producing a subroutine that sorts random data in O(N) units of time with
only O(

√
N) additional memory locations.

14. [22] The sequence of playing cards

8 7
K1010

Q 3
6 5

9 2
A J

4
4

can be sorted into increasing order A 2 . . . J Q K from top to bottom in two passes,
using just two piles for intermediate storage: Deal the cards face down into two piles
containing respectively A 2 9 3 10 and 4 J 5 6 Q K 7 8 (from bottom to top); then put
the second pile on the Ąrst, turn the deck face up, and deal into two piles A 2 3 4 5 6 7 8,
9 10 J Q K. Combine these piles, turn them face up, and youŠre done.

Prove that this sequence of cards cannot be sorted into decreasing order K Q J . . . 2 A
from top to bottom in two passes, even if you are allowed to use up to three piles for
intermediate storage. (Dealing must always be from the top of the deck, turning the
cards face down as they are dealt. Top to bottom is right to left in the illustration.)

15. [M25] Consider the problem of exercise 14 when all cards must be dealt face up
instead of face down. Thus, one pass can be used to convert increasing order into
decreasing order. How many passes are required?

x 16. [25] Design an algorithm to sort strings α1, . . . , αn on an m-letter alphabet into
lexicographic order. The total running time of your algorithm should be O(m+n+N),
where N = |α1|+ · · ·+ |αn| is the total length of all the strings.

5.2.5 SORTING BY DISTRIBUTION 179

17. [15] In the two-level distribution sort proposed by Tamminen (see Theorem T),
why is a MacLaren-like method used for the second level of distribution but not the
Ąrst level?

18. [HM26] Prove Theorem T. Hint: Show Ąrst that MacLarenŠs distribution-plus-
insertion algorithm does O(BN) operations, on the average, when it is applied to
independent random keys whose probability density function satisĄes f(x) ≤ B for
0 ≤ x ≤ 1.

For sorting the roots and words

we had the use of 1100 lozenge boxes,

and used trays for the forms.

— GEORGE V. WIGRAM (1843)

180 SORTING 5.3

5.3. OPTIMUM SORTING

Now that we have analyzed a great many methods for internal sorting, it is
time to turn to a broader question: What is the best possible way to sort? Can
we place limits on the maximum sorting speeds that will ever be achievable, no
matter how clever a programmer might be?

Of course there is no best possible way to sort; we must deĄne precisely
what is meant by Şbest,Ť and there is no best possible way to deĄne Şbest.Ť
We have discussed similar questions about the theoretical optimality of algo-
rithms in Sections 4.3.3, 4.6.3, and 4.6.4, where high-precision multiplication
and polynomial evaluation were considered. In each case it was necessary to
formulate a rather simple deĄnition of a Şbest possibleŤ algorithm, in order to
give sufficient structure to the problem to make it workable. And in each case
we ran into interesting problems that are so difficult they still havenŠt been
completely resolved. The same situation holds for sorting; some very interesting
discoveries have been made, but many fascinating questions remain unanswered.

Studies of the inherent complexity of sorting have usually been directed
towards minimizing the number of times we make comparisons between keys
while sorting n items, or merging m items with n, or selecting the tth largest of an
unordered set of n items. Sections 5.3.1, 5.3.2, and 5.3.3 discuss these questions
in general, and Section 5.3.4 deals with similar issues under the interesting
restriction that the pattern of comparisons must essentially be Ąxed in advance.
Several other types of interesting theoretical questions related to optimum sorting
appear in the exercises for Section 5.3.4, and in the discussion of external sorting
(Sections 5.4.4, 5.4.8, and 5.4.9).

As soon as an Analytical Engine exists,

it will necessarily guide the future course of the science.

Whenever any result is sought by its aid,

the question will then arise Ů

By what course of calculation can these

results be arrived at by the machine

in the shortest time?

— CHARLES BABBAGE (1864)

5.3.1. Minimum-Comparison Sorting

The minimum number of key comparisons needed to sort n elements is obviously
zero, because we have seen radix methods that do no comparisons at all. In fact,
it is possible to write MIX programs that are able to sort, although they contain
no conditional jump instructions at all! (See exercise 5Ű8 at the beginning of this
chapter.) We have also seen several sorting methods that are based essentially
on comparisons of keys, yet their running time in practice is dominated by other
considerations such as data movement, housekeeping operations, etc.

Therefore it is clear that comparison counting is not the only way to measure
the effectiveness of a sorting method. But it is fun to scrutinize the number of
comparisons anyway, since a theoretical study of this subject gives us a good

5.3.1 MINIMUM-COMPARISON SORTING 181

1:2

2:3 2:3

1 2 3 1:3 1:3 3 2 1

1 3 2 3 1 2 2 1 3 2 3 1

Level 0

Level 1

Level 2

Level 3

Fig. 34. A comparison tree for sorting three elements.

deal of useful insight into the nature of sorting processes, and it also helps us to
sharpen our wits for the more mundane problems that confront us at other times.

In order to rule out radix-sorting methods, which do no comparisons at
all, we shall restrict our discussion to sorting techniques that are based solely
on an abstract linear ordering relation Ş<Ť between keys, as discussed at the
beginning of this chapter. For simplicity, we shall also conĄne our discussion to
the case of distinct keys, so that there are only two possible outcomes of any
comparison of Ki versus Kj : either Ki < Kj or Ki > Kj . (For an extension
of the theory to the general case where equal keys are allowed, see exercises 3
through 12. For bounds on the worst-case running time that is needed to sort
integers without the restriction to comparison-based methods, see Fredman and
Willard, J. Computer and Syst. Sci. 47 (1993), 424Ű436; Ben-Amram and Galil,
J. Comp. Syst. Sci. 54 (1997), 345Ű370; Thorup, SODA 9 (1998), 550Ű555.)

The problem of sorting by comparisons can also be expressed in other
equivalent ways. Given a set of n distinct weights and a balance scale, we can
ask for the least number of weighings necessary to completely rank the weights in
order of magnitude, when the pans of the balance scale can each accommodate
only one weight. Alternatively, given a set of n players in a tournament, we
can ask for the smallest number of games that suffice to rank all contestants,
assuming that the strengths of the players can be linearly ordered (with no ties).

All n-element sorting methods that satisfy the constraints above can be
represented in terms of an extended binary tree structure such as that shown
in Fig. 34. Each internal node (drawn as a circle) contains two indices Şi :jŤ
denoting a comparison of Ki versus Kj . The left subtree of this node represents
the subsequent comparisons to be made if Ki < Kj , and the right subtree
represents the actions to be taken when Ki > Kj . Each external node of the tree
(drawn as a box) contains a permutation a1 a2 . . . an of {1, 2, . . . , n}, denoting
the fact that the ordering

Ka1
< Ka2

< · · · < Kan

has been established. (If we look at the path from the root to this external node,
each of the n − 1 relationships Kai

< Kai+1
for 1 ≤ i < n will be the result of

some comparison ai :ai+1 or ai+1:ai on this path.)

182 SORTING 5.3.1

1:2

2:3

3:1

Fig. 35. Example of a redundant comparison.

Thus Fig. 34 represents a sorting method that Ąrst compares K1 with K2;
if K1 > K2, it goes on (via the right subtree) to compare K2 with K3, and
then if K2 < K3 it compares K1 with K3; Ąnally if K1 > K3 it knows that
K2 < K3 < K1. An actual sorting algorithm will usually also move the keys
around in the Ąle, but we are interested here only in the comparisons, so we
ignore all data movement. A comparison of Ki with Kj in this tree always
means the original keys Ki and Kj , not the keys that might currently occupy
the ith and jth positions of the Ąle after the records have been shuffled around.

It is possible to make redundant comparisons; for example, in Fig. 35 there
is no reason to compare 3:1, since K1 < K2 and K2 < K3 implies that K1 < K3.
No permutation can possibly correspond to the left subtree of node 3:1 in Fig. 35;
consequently that part of the algorithm will never be performed! Since we are
interested in minimizing the number of comparisons, we may assume that no re-
dundant comparisons are made. Hence we have an extended binary tree structure
in which every external node corresponds to a permutation. All permutations of
the input keys are possible, and every permutation deĄnes a unique path from
the root to an external node; it follows that there are exactly n! external nodes
in a comparison tree that sorts n elements with no redundant comparisons.

The best worst case. The Ąrst problem that arises naturally is to Ąnd
comparison trees that minimize the maximum number of comparisons made.
(Later we shall consider the average number of comparisons.)

Let S(n) be the minimum number of comparisons that will suffice to sort
n elements. If all the internal nodes of a comparison tree are at levels < k, it is
obvious that there can be at most 2k external nodes in the tree. Hence, letting
k = S(n), we have

n! ≤ 2S(n).

Since S(n) is an integer, we can rewrite this formula to obtain the lower bound

S(n) ≥ ⌈lg n!⌉. (1)

StirlingŠs approximation tells us that

⌈lg n!⌉ = n lg n− n/ln 2 + 1
2 lg n + O(1), (2)

hence roughly n lg n comparisons are needed.

5.3.1 MINIMUM-COMPARISON SORTING 183

Relation (1) is often called the information-theoretic lower bound, since
cognoscenti of information theory would say that lg n! Şbits of informationŤ are
being acquired during a sorting process; each comparison yields at most one bit of
information. Trees such as Fig. 34 have also been called ŞquestionnairesŤ; their
mathematical properties were Ąrst explored systematically in Claude PicardŠs
book Théorie des Questionnaires (Paris: Gauthier-Villars, 1965).

Of all the sorting methods we have seen, the three that require fewest com-
parisons are binary insertion (see Section 5.2.1), tree selection (see Section 5.2.3),
and straight two-way merging (see Algorithm 5.2.4L). The maximum number of
comparisons for binary insertion is readily seen to be

B(n) =
n

k=1

⌈lg k⌉ = n⌈lg n⌉ − 2⌈lg n⌉ + 1, (3)

by exercise 1.2.4Ű42, and the maximum number of comparisons in two-way
merging is given in exercise 5.2.4Ű14. We will see in Section 5.3.3 that tree
selection has the same bound on its comparisons as either binary insertion or
two-way merging, depending on how the tree is set up. In all three cases we
achieve an asymptotic value of n lg n; combining these lower and upper bounds
for S(n) proves that

lim
n→∞

S(n)
n lg n

= 1. (4)

Thus we have an approximate formula for S(n), but it is desirable to obtain
more precise information. The following table gives exact values of the lower
and upper bounds discussed above, for small n:

n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
⌈lg n!⌉ = 0 1 3 5 7 10 13 16 19 22 26 29 33 37 41 45 49
B(n) = 0 1 3 5 8 11 14 17 21 25 29 33 37 41 45 49 54
L(n) = 0 1 3 5 9 11 14 17 25 27 30 33 38 41 45 49 65

Here B(n) and L(n) refer respectively to binary insertion and two-way list
merging. It can be shown that B(n) ≤ L(n) for all n (see exercise 2).

From the table above, we can see that S(4) = 5, but S(5) might be either
7 or 8. This brings us back to a problem stated at the beginning of Section 5.2:
What is the best way to sort Ąve elements? Can Ąve elements be sorted using
only seven comparisons?

The answer is yes, but a seven-step procedure is not especially easy to
discover. We begin by Ąrst comparing K1 :K2, then K3 :K4, then the larger
elements of these pairs. This produces a conĄguration that may be diagrammed

a c e

b d

(5)

to indicate that a < b < d and c < d. (It is convenient to represent known
ordering relations between elements by drawing directed graphs such as this,

184 SORTING 5.3.1

where x is known to be less than y if and only if there is a path from x to y in
the graph.) At this point we insert the Ąfth element K5 = e into its proper place
among {a, b, d}; only two comparisons are needed, since we may compare it Ąrst
with b and then with a or d. This leaves one of four possibilities,

e a c

b d

a c

e b d

a c

b e d

a c

b d e

(6)

and in each case we can insert c among the remaining elements less than d in
one or two more comparisons. This method for sorting Ąve elements was Ąrst
found by H. B. Demuth [Ph.D. thesis, Stanford University (1956), 41Ű43].

Merge insertion. A pleasant generalization of the method above has been
discovered by Lester Ford, Jr. and Selmer Johnson. Since it involves some aspects
of merging and some aspects of insertion, we shall call it merge insertion. For
example, consider the problem of sorting 21 elements. We start by comparing
the ten pairs K1 :K2, K3 :K4, . . . , K19 :K20; then we sort the ten larger elements
of the pairs, using merge insertion. As a result we obtain the conĄguration

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

(7)

analogous to (5). The next step is to insert b3 among {b1, a1, a2}, then b2 among
the other elements less than a2; we arrive at the conĄguration

b4 b5 b6 b7 b8 b9 b10 b11

c1 c2 c3 c4 c5 c6 a4 a5 a6 a7 a8 a9 a10

(8)

Let us call the upper-line elements the main chain. We can insert b5 into its
proper place in the main chain, using three comparisons (Ąrst comparing it to
c4, then c2 or c6, etc.); then b4 can be moved into the main chain in three more
steps, leading to

b6 b7 b8 b9 b10 b11

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 a6 a7 a8 a9 a10

(9)

The next step is crucial; is it clear what to do? We insert b11 (not b7) into the
main chain, using only four comparisons. Then b10, b9, b8, b7, b6 (in this order)
can also be inserted into their proper places in the main chain, using at most
four comparisons each.

A careful count of the comparisons involved here shows that the 21 elements
have been sorted in at most 10 + S(10) + 2 + 2 + 3 + 3 + 4 + 4 + 4 + 4 + 4 + 4 = 66
steps. Since

265 < 21! < 266,

5.3.1 MINIMUM-COMPARISON SORTING 185

we also know that no fewer than 66 would be possible in any event; hence

S(21) = 66. (10)

(Binary insertion would have required 74 comparisons.)
In general, merge insertion proceeds as follows for n elements:

i) Make pairwise comparisons of ⌊n/2⌋ disjoint pairs of elements. (If n is odd,
leave one element out.)

ii) Sort the ⌊n/2⌋ larger numbers, found in step (i), by merge insertion.
iii) Name the elements a1, a2, . . . , a⌊n/2⌋, b1, b2, . . . , b⌈n/2⌉ as in (7), where a1 ≤

a2 ≤ · · · ≤ a⌊n/2⌋ and bi ≤ ai for 1 ≤ i ≤ ⌊n/2⌋; call b1 and the aŠs the
Şmain chain.Ť Insert the remaining bŠs into the main chain, using binary
insertion, in the following order, leaving out all bj for j > ⌈n/2⌉:

b3, b2; b5, b4; b11, b10, . . . , b6; . . . ; btk , btk−1, . . . , btk−1+1; (11)

We wish to deĄne the sequence (t1, t2, t3, t4, . . .) = (1, 3, 5, 11, . . .), which
appears in (11), in such a way that each of btk , btk−1, . . . , btk−1+1 can be inserted
into the main chain with at most k comparisons. Generalizing (7), (8), and (9),
we obtain the diagram

x1 x2 x2tk−1
atk−1+1 atk−1+2 atk−1

btk−1+1 btk−1+2 btk−1 btk

where the main chain up to and including atk−1 contains 2tk−1 + (tk − tk−1− 1)
elements. This number must be less than 2k; our best bet is to set it equal to
2k − 1, so that

tk−1 + tk = 2k. (12)

Since t1 = 1, we may set t0 = 1 for convenience, and we Ąnd that

tk = 2k − tk−1 = 2k − 2k−1 + tk−2 = · · · = 2k − 2k−1 + · · ·+ (−1)k20

=

2k+1 + (−1)k

/3 (13)

by summing a geometric series. (Curiously, this same sequence arose in our
study of an algorithm for calculating the greatest common divisor of two integers;
see exercise 4.5.2Ű36.)

Let F (n) be the number of comparisons required to sort n elements by merge
insertion. Clearly

F (n) = ⌊n/2⌋+ F (⌊n/2⌋) + G

⌈n/2⌉

, (14)

where G represents the amount of work involved in step (iii). If tk−1 ≤ m ≤ tk,
we have

G(m) =
k−1

j=1

j(tj − tj−1) + k(m− tk−1) = km− (t0 + t1 + · · ·+ tk−1), (15)

186 SORTING 5.3.1

summing by parts. Let us set

wk = t0 + t1 + · · ·+ tk−1 = ⌊2k+1/3⌋, (16)

so that (w0, w1, w2, w3, w4, . . .) = (0, 1, 2, 5, 10, 21, . . .). Exercise 13 shows that

F (n)− F (n− 1) = k if and only if wk < n ≤ wk+1, (17)

and the latter condition is equivalent to

2k+1

3
< n ≤ 2k+2

3
,

or k + 1 < lg 3n ≤ k + 2; hence

F (n)− F (n− 1) =

lg 3

4 n

. (18)

(This formula is due to A. Hadian [Ph.D. thesis, Univ. of Minnesota (1969),
38Ű42].) It follows that F (n) has a remarkably simple expression,

F (n) =
n

k=1

lg 3

4 k

, (19)

quite similar to the corresponding formula (3) for binary insertion. A closed
form for this sum appears in exercise 14.

Equation (19) makes it easy to construct a table of F (n); we have

n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
⌈lg n!⌉ = 0 1 3 5 7 10 13 16 19 22 26 29 33 37 41 45 49

F (n) = 0 1 3 5 7 10 13 16 19 22 26 30 34 38 42 46 50

n = 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
⌈lg n!⌉ = 53 57 62 66 70 75 80 84 89 94 98 103 108 113 118 123

F (n) = 54 58 62 66 71 76 81 86 91 96 101 106 111 116 121 126

Notice that F (n) = ⌈lg n!⌉ for 1 ≤ n ≤ 11 and for 20 ≤ n ≤ 21, so we know that
merge insertion is optimum for those n:

S(n) = ⌈lg n!⌉ = F (n) for n = 1, . . . , 11, 20, and 21. (20)

Hugo Steinhaus posed the problem of Ąnding S(n) in the second edition of his
classic book Mathematical Snapshots (Oxford University Press, 1950), 38Ű39. He
described the method of binary insertion, which is the best possible way to sort n
objects if we start by sorting n−1 of them Ąrst before the nth is considered; and
he conjectured that binary insertion would be optimum in general. Several years
later [Calcutta Math. Soc. Golden Jubilee Commemoration 2 (1959), 323Ű327],
he reported that two of his colleagues, S. Trybuşa and P. Czen, had ŞrecentlyŤ
disproved his conjecture, and that they had determined S(n) for n ≤ 11. Trybuşa
and Czen may have independently discovered the method of merge insertion,
which was published soon afterwards by Ford and Johnson [AMM 66 (1959),
387Ű389].

After the discovery of merge insertion, the Ąrst unknown value of S(n) was
S(12). Table 1 shows that 12! is quite close to 229, hence the existence of a

5.3.1 MINIMUM-COMPARISON SORTING 187

Table 1

VALUES OF FACTORIALS IN BINARY NOTATION

(1)2 = 1!
(10)2 = 2!

(110)2 = 3!
(11000)2 = 4!

(1111000)2 = 5!
(1011010000)2 = 6!

(1001110110000)2 = 7!
(1001110110000000)2 = 8!

(1011000100110000000)2 = 9!
(1101110101111100000000)2 = 10!

(10011000010001010100000000)2 = 11!
(11100100011001111110000000000)2 = 12!

(101110011001010001100110000000000)2 = 13!
(1010001001100001110110010100000000000)2 = 14!

(10011000001110111011101110101100000000000)2 = 15!
(100110000011101110111011101011000000000000000)2 = 16!

(1010000110111111011101110110011011000000000000000)2 = 17!
(10110101111101110110011001010011100110000000000000000)2 = 18!

(110110000001010111001001100000110100010010000000000000000)2 = 19!
(10000111000011011001110111110010000010101101000000000000000000)2 = 20!

29-step sorting procedure for 12 elements is somewhat unlikely. An exhaustive
search (about 60 hours on a Maniac II computer) was therefore carried out by
Mark Wells, who discovered that S(12) = 30 [Proc. IFIP Congress 65 2 (1965),
497Ű498; Elements of Combinatorial Computing (Pergamon, 1971), 213Ű215].
Thus the merge insertion procedure turns out to be optimum for n = 12 as well.

*A slightly deeper analysis. In order to study S(n) more carefully, let us look
more closely at partial ordering diagrams such as (5). After several comparisons
have been made, we can represent the knowledge we have gained in terms of a
directed graph. This directed graph contains no cycles, in view of the transitivity
of the < relation, so we can draw it in such a way that all arcs go from left to
right; it is therefore convenient to leave arrows off the diagram. In this way (5)
becomes

a c e

b d

(21)

If G is such a directed graph, let T (G) be the number of permutations consistent
with G, that is, the number of ways to assign the integers {1, 2, . . . , n} to the
vertices of G so that the number on vertex x is less than the number on vertex
y whenever x → y in G. For example, one of the permutations consistent with
(21) has a = 1, b = 4, c = 2, d = 5, e = 3. We have studied T (G) for various G
in Section 5.1.4, where we observed that T (G) is the number of ways in which
G can be sorted topologically.

188 SORTING 5.3.1

If G is a graph on n elements that can be obtained after k comparisons, we
deĄne the efficiency of G to be

E(G) =
n!

2kT (G)
. (22)

(This idea is due to Frank Hwang and Shen Lin.) Strictly speaking, the efficiency
is not a function of the graph G alone, it depends on the way we arrived at G
during a sorting process, but it is convenient to be a little careless in our language.
After making one more comparison, between elements i and j, we obtain two
graphs G1 and G2, one for the case Ki < Kj and one for the case Ki > Kj .
Clearly

T (G) = T (G1) + T (G2).

If T (G1) ≥ T (G2), we have

T (G) ≤ 2T (G1),

E(G1) =
n!

2k+1T (G1)
=

E(G)T (G)
2T (G1)

≤ E(G). (23)

Therefore each comparison leads to at least one graph of less or equal efficiency;
we canŠt improve the efficiency by making further comparisons.

When G has no arcs at all, we have k = 0 and T (G) = n!, so the initial
efficiency is 1. At the other extreme, when G is a graph representing the Ąnal
result of sorting, G looks like a straight line and T (G) = 1. Thus, for example,
if we want to Ąnd a sorting procedure that sorts Ąve elements in at most seven
steps, we must obtain the linear graph q q q qq , whose efficiency is 5!/(27×1) =
120/128 = 15/16. It follows that all of the graphs arising in the sorting procedure
must have efficiency ≥ 15

16 ; if any less efficient graph were to appear, at least one
of its descendants would also be less efficient, and we would ultimately reach
a linear graph whose efficiency is < 15

16 . In general, this argument proves that
all graphs corresponding to the tree nodes of a sorting procedure for n elements
must have efficiency ≥ n!/2l, where l is the number of levels of the tree (not
counting external nodes). This is another way to prove that S(n) ≥ ⌈lg n!⌉,
although the argument is not really much different from what we said before.

The graph (21) has efficiency 1, since T (G) = 15 and since G has been
obtained in three comparisons. In order to see what vertices should be compared
next, we can form the comparison matrix

C(G) =

a b c d e

a 0 15 10 15 11
b 0 0 5 15 7
c 5 10 0 15 9
d 0 0 0 0 3
e 4 8 6 12 0

, (24)

where Cij is T (G1) for the graph G1 obtained by adding the arc i → j to G.
For example, if we compare Kc with Ke, the 15 permutations consistent with G

5.3.1 MINIMUM-COMPARISON SORTING 189

split up into Cec = 6 having Ke < Kc and Cce = 9 having Kc < Ke. The
latter graph would have efficiency 15/(2× 9) = 5

6 < 15
16 , so it could not lead to a

seven-step sorting procedure. The next comparison must be Kb :Ke in order to
keep the efficiency ≥ 15

16 .
The concept of efficiency is especially useful when we consider the connected

components of graphs. Consider for example the graph

G =

a b

c

d e

f g

;

it has two components

G′ =

a b

c

and G′′ =

d e

f g

with no arcs connecting G′ to G′′, so it has been formed by making some
comparisons entirely within G′ and others entirely within G′′. In general, assume
that G = G′ ⊕ G′′ has no arcs between G′ and G′′, where G′ and G′′ have
respectively n′ and n′′ vertices; it is easy to see that

T (G) =

n′ + n′′

n′

T (G′)T (G′′), (25)

since each consistent permutation of G is obtained by choosing n′ elements
to assign to G′ and then making consistent permutations within G′ and G′′

independently. If k′ comparisons have been made within G′ and k′′ within G′′,
we have the basic result

E(G) =
(n′ + n′′)!

2k′+k′′T (G)
=

n′ !
2k′T (G′)

n′′ !
2k′′T (G′′)

= E(G′)E(G′′), (26)

showing that the efficiency of a graph is related in a simple way to the efficiency
of its components. Therefore we may restrict consideration to graphs having
only one component.

Now suppose that G′ and G′′ are one-component graphs, and suppose that
we want to hook them together by comparing a vertex x of G′ with a vertex y
of G′′. We want to know how efficient this will be. For this purpose we need a
function that can be denoted by

p

m
<

q

n

, (27)

deĄned to be the number of permutations consistent with the graph

a1 a2 ap am

b1 b2 bq bn

(28)

190 SORTING 5.3.1

Thus

p
m< q

n

is

m+n
m

times the probability that the pth smallest of a set of

m numbers is less than the qth smallest of an independently chosen set of n
numbers. Exercise 17 shows that we can express

p
m< q

n

in two ways in terms

of binomial coefficients,

p

m
<

q

n

=

0≤k<q

m− p + n− k

m− p

p− 1 + k

p− 1

=

p≤j≤m

n− q + m− j

n− q

q − 1 + j

q − 1

. (29)

(Incidentally, it is by no means obvious on algebraic grounds that these two sums
of products of binomial coefficients should come out to be equal.) We also have
the formulas

p

m
<

q

n

+

q

n
<

p

m

=

m + n

m

; (30)

q

n
<

p

m

=

m+1−p

m
<

n+1−q

n

; (31)

p

m
<

q

n

=

p

m−1
<

q

n

+

p

m
<

q

n−1

+ [p≤m][q = n]

m+n−1

m

. (32)

For deĄniteness, let us now consider the two graphs

G′ =
x1

x2

x3

x4

x5

x6

x7

, G′′ =

y1 y3

y2 y4

. (33)

It is not hard to show by direct enumeration that T (G′) = 42 and T (G′′) = 5; so
if G is the 11-vertex graph having G′ and G′′ as components, we have T (G) =

11
4

· 42 · 5 = 69300 by Eq. (25). This is a formidable number of permutations

to list, if we want to know how many of them have xi < yj for each i and j.
But the calculation can be done by hand, in less than an hour, as follows. We
form the matrices A(G′) and A(G′′), where Aik is the number of consistent
permutations of G′ (or G′′) in which xi (or yi) is equal to k. Thus the number of
permutations of G in which xi is less than yj is the (i, p) element of A(G′) times
p
7 < q

4

times the (j, q) element of A(G′′), summed over 1 ≤ p ≤ 7 and 1 ≤ q ≤ 4.

In other words, we want to form the matrix product A(G′) · L · A(G′′)T , where
Lpq =

p
7 < q

4

. This comes to

21 16 5 0 0 0 0
0 5 10 12 10 5 0

21 16 5 0 0 0 0
0 0 12 18 12 0 0
0 0 0 0 5 16 21
0 5 10 12 10 5 0
0 0 0 0 5 16 21

210 294 322 329
126 238 301 325
70 175 265 315
35 115 215 295
15 65 155 260
5 29 92 204
1 8 36 120

2 3 0 0
2 2 0 1
1 0 2 2
0 0 3 2

=

48169 42042 66858 64031
22825 16005 53295 46475
48169 42042 66858 64031
22110 14850 54450 47190
5269 2442 27258 21131

22825 16005 53295 46475
5269 2442 27258 21131

.

5.3.1 MINIMUM-COMPARISON SORTING 191

G1 G2 G3 G4

G5 G6 G7 G8

G9 G10 G11 G12

G13 G14 G15 G16

G17 G18 G19 G20

G21 G22 G23 G24

1 1 1
15

16

15

16

15

16

15

16

15

16

105

116

315

352

315

352
1

1 1 1
63

64

35

36

21

22

315

332

315

316

315

326

15

16

15

16

63

64

Fig. 36. Some graphs and their efficiencies, obtained at the beginning of a long proof
that S(12) > 29.

Thus the ŞbestŤ way to hook up G′ and G′′ is to compare x1 with y2; this gives
42042 cases with x1 < y2 and 69300 − 42042 = 27258 cases with x1 > y2. (By
symmetry, we could also compare x3 with y2, x5 with y3, or x7 with y3, leading to
essentially the same results.) The efficiency of the resulting graph for x1 < y2 is

69300
84084

E(G′)E(G′′),

which is none too good; hence it is probably a bad idea to hook G′ up with G′′

in any sorting method. The point of this example is that we are able to make
such a decision without excessive calculation.

These ideas can be used to provide independent conĄrmation of Mark WellsŠs
proof that S(12) = 30. Starting with a graph containing one vertex, we can
repeatedly try to add a comparison to one of our graphs G or to G′⊕G′′ (a pair
of graph components G′ and G′′) in such a way that the two resulting graphs
have 12 or fewer vertices and efficiency ≥ 12!/229 ≈ 0.89221. Whenever this is
possible, we take the resulting graph of least efficiency and add it to our set,
unless one of the two graphs is isomorphic to a graph we already have included.
If both of the resulting graphs have the same efficiency, we arbitrarily choose
one of them. A graph can be identiĄed with its dual (obtained by reversing the
order), so long as we consider adding comparisons to G′ ⊕ dual(G′′) as well as
to G′ ⊕G′′. A few of the smallest graphs obtained in this way are displayed in
Fig. 36 together with their efficiencies.

Exactly 1649 graphs were generated, by computer, before this process ter-
minated. Since the graph q q q q q q q q q q qq was not obtained, we may
conclude that S(12) > 29. It is plausible that a similar experiment could be
performed to deduce that S(22) > 70 in a fairly reasonable amount of time, since
22!/270 ≈ 0.952 requires extremely high efficiency to sort in 70 steps. (Only 91
of the 1649 graphs found on 12 or fewer vertices had such high efficiency.)

192 SORTING 5.3.1

Marcin Peczarski [see Algorithmica 40 (2004), 133Ű145; Information Proc.
Letters 101 (2007), 126Ű128] extended WellsŠs method and proved that S(13) =
34, S(14) = 38, S(15) = 42, S(22) = 71; thus merge insertion is optimum
in those cases as well. Intuitively, it seems likely that S(16) will some day be
shown to be less than F (16), since F (16) involves no fewer steps than sorting
ten elements with S(10) comparisons and then inserting six others by binary
insertion, one at a time. There must be a way to improve upon this! But at
present, the smallest case where F (n) is deĄnitely known to be nonoptimum is
n = 47: After sorting 5 and 42 elements with F (5) + F (42) = 178 comparisons,
we can merge the results with 22 further comparisons, using a method due to
J. Schulte Mönting, Theoretical Comp. Sci. 14 (1981), 19Ű37; this strategy beats
F (47) = 201. (Glenn K. Manacher [JACM 26 (1979), 441Ű456] had previously
proved that inĄnitely many n exist with S(n) < F (n), starting with n = 189.)

The average number of comparisons. So far we have been considering
procedures that are best possible in the sense that their worst case isnŠt bad;
in other words, we have looked for ŞminimaxŤ procedures that minimize the
maximum number of comparisons. Now let us look for a ŞminimeanŤ procedure
that minimizes the average number of comparisons, assuming that the input is
random so that each permutation is equally likely.

Consider once again the tree representation of a sorting procedure, as shown
in Fig. 34. The average number of comparisons in that tree is

2 + 3 + 3 + 3 + 3 + 2
6

= 2 2
3 ,

averaging over all permutations. In general, the average number of comparisons
in a sorting method is the external path length of the tree divided by n!. (Recall
that the external path length is the sum of the distances from the root to each of
the external nodes; see Section 2.3.4.5.) It is easy to see from the considerations
of Section 2.3.4.5 that the minimum external path length occurs in a binary tree
with N external nodes if there are 2q − N external nodes at level q − 1 and
2N − 2q at level q, where q = ⌈lg N⌉. (The root is at level zero.) The minimum
external path length is therefore

(q − 1)(2q −N) + q(2N − 2q) = (q + 1)N − 2q. (34)

The minimum path length can also be characterized in another interesting way:
An extended binary tree has minimum external path length for a given number
of external nodes if and only if there is a number l such that all external nodes
appear on levels l and l + 1. (See exercise 20.)

If we set q = lg N + θ, where 0 ≤ θ < 1, the formula for minimum external
path length becomes

N (lg N + 1 + θ − 2θ). (35)

The function 1 + θ− 2θ is shown in Fig. 37; for 0 < θ < 1 it is positive but very
small, never exceeding

1− (1 + ln ln 2)/ ln 2 = 0.08607 13320 55934+. (36)

5.3.1 MINIMUM-COMPARISON SORTING 193

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

Fig. 37. The function 1 + θ − 2θ.

Thus the minimum possible average number of comparisons, obtained by dividing
(35) by N, is never less than lg N and never more than lg N +0.0861. [This result
was Ąrst obtained by A. Gleason in an internal IBM memorandum (1956).]

Now if we set N = n!, we get a lower bound for the average number of
comparisons in any sorting scheme. Asymptotically speaking, this lower bound is

lg n! + O(1) = n lg n− n/ ln 2 + O(log n). (37)

Let F (n) be the average number of comparisons performed by the merge
insertion algorithm; we have

n = 1 2 3 4 5 6 7 8

lower bound (34) = 0 2 16 112 832 6896 62368 619904

n! F (n) = 0 2 16 112 832 6912 62784 623232

Thus merge insertion is optimum in both senses for n ≤ 5, but for n = 6
it averages 6912/720 = 9.6 comparisons while our lower bound says that an
average of 6896/720 = 9.577777 . . . comparisons might be possible. A momentŠs
reĆection shows why this is true: Some ŞfortunateŤ permutations of six elements
are sorted by merge insertion after only eight comparisons, so the comparison
tree has external nodes appearing on three levels instead of two. This forces
the overall path length to be higher. Exercise 24 shows that it is possible to
construct a six-element sorting procedure that requires nine or ten comparisons
in each case; it follows that this method is superior to merge insertion, on the
average, and no worse than merge insertion in its worst case.

When n = 7, Y. Césari [Thesis (Univ. of Paris, 1968), page 37] has shown
that no sorting method can attain the lower bound 62368 on external path
length. (It is possible to prove this fact without a computer, using the results of
exercise 22.) On the other hand, he has constructed procedures that do achieve
the lower bound (34) when n = 9 or 10. In general, the problem of minimizing
the average number of comparisons turns out to be substantially more difficult
than the problem of determining S(n). It may even be true that, for some n, all
methods that minimize the average number of comparisons require more than
S(n) comparisons in their worst case.

EXERCISES

1. [20] Draw the comparison trees for sorting four elements using the method of
(a) binary insertion; (b) straight two-way merging. What are the external path lengths
of these trees?

2. [M24] Prove that B(n) ≤ L(n), and Ąnd all n for which equality holds.

194 SORTING 5.3.1

3. [M22] (Weak orderings.) When equality between keys is allowed, there are 13
possible outcomes when sorting three elements:

K1 = K2 = K3, K1 = K2 < K3, K1 = K3 < K2,

K2 = K3 < K1, K1 < K2 = K3, K2 < K1 = K3,

K3 < K1 = K2, K1 < K2 < K3, K1 < K3 < K2,

K2 < K1 < K3, K2 < K3 < K1, K3 < K1 < K2, K3 < K2 < K1.

Let Pn denote the number of possible outcomes when n elements are sorted with ties
allowed, so that (P0, P1, P2, P3, P4, P5, . . .) = (1, 1, 3, 13, 75, 541, . . .). Prove that the
generating function P (z) =

n≥0 Pnz

n/n! is equal to 1/(2− ez). Hint: Show that

Pn =

k>0

n

k

Pn−k when n > 0.

4. [HM27] (O. A. Gross.) Determine the asymptotic value of the numbers Pn of
exercise 3, as n→∞. [Possible hint: Consider the partial fraction expansion of cot z.]

5. [16] When keys can be equal, each comparison may have three results instead
of two: Ki < Kj , Ki = Kj , Ki > Kj . Sorting algorithms for this general situation
can be represented as extended ternary trees, in which each internal node i :j has
three subtrees; the left, middle, and right subtrees correspond respectively to the three
possible outcomes of the comparison.

Draw an extended ternary tree that deĄnes a sorting algorithm for n = 3, when
equal keys are allowed. There should be 13 external nodes, corresponding to the 13
possible outcomes listed in exercise 3.

x 6. [M22] Let S′(n) be the minimum number of comparisons necessary to sort n
elements and to determine all equalities between keys, when each comparison has three
outcomes as in exercise 5. The information-theoretic argument of the text can readily
be generalized to show that S′(n) ≥ ⌈log3 Pn⌉, where Pn is the function studied in
exercises 3 and 4; but prove that, in fact, S′(n) = S(n).

7. [20] Draw an extended ternary tree in the sense of exercise 5 for sorting four
elements, when it is known that all keys are either 0 or 1. (Thus if K1 < K2 and
K3 < K4, we know that K1 = K3 and K2 = K4!) Use the minimum average number
of comparisons, assuming that the 24 possible inputs are equally likely. Be sure to
determine all equalities that are present; for example, donŠt stop sorting when you
know only that K1 ≤ K2 ≤ K3 ≤ K4.

8. [26] Draw an extended ternary tree as in exercise 7 for sorting four elements,
when it is known that all keys are either −1, 0, or +1. Use the minimum average
number of comparisons, assuming that the 34 possible inputs are equally likely.

9. [M20] When sorting n elements as in exercise 7, knowing that all keys are 0 or 1,
what is the minimum number of comparisons in the worst case?

x 10. [M25] When sorting n elements as in exercise 7, knowing that all keys are 0 or 1,
what is the minimum average number of comparisons as a function of n?

11. [HM27] When sorting n elements as in exercise 5, and knowing that all keys are
members of the set {1, 2, . . . ,m}, let Sm(n) be the minimum number of comparisons
needed in the worst case. [Thus by exercise 6, Sn(n) = S(n).] Prove that, for Ąxed m,
Sm(n) is asymptotically n lgm+O(1) as n→∞.

5.3.1 MINIMUM-COMPARISON SORTING 195

x 12. [M25] (W. G. Bouricius, circa 1954.) Suppose that equal keys may occur, but we
merely want to sort the elements {K1,K2, . . . ,Kn} so that a permutation a1 a2 . . . an

is determined with Ka1
≤ Ka2

≤ · · · ≤ Kan ; we do not need to know whether or not
equality occurs between Kai and Kai+1

.
Let us say that a comparison tree sorts a sequence of keys strongly if it will sort

the sequence in the stated sense no matter which branch is taken below the nodes i :j
for which Ki = Kj . (The tree is binary, not ternary.)

a) Prove that a comparison tree with no redundant comparisons sorts every sequence
of keys strongly if and only if it sorts every sequence of distinct keys.

b) Prove that a comparison tree sorts every sequence of keys strongly if and only if
it sorts every sequence of zeros and ones strongly.

13. [M28] Prove (17).

14. [M24] Find a closed form for the sum (19).

15. [M21] Determine the asymptotic behavior of B(n) and F (n) up to O(logn).
[Hint: Show that in both cases the coefficient of n involves the function shown in
Fig. 37.]

16. [HM26] (F. Hwang and S. Lin.) Prove that F (n) > ⌈lgn!⌉ for n ≥ 22.

17. [M20] Prove (29).

18. [20] If the procedure whose Ąrst steps are shown in Fig. 36 had produced the
linear graph q q q q q q q q q q qq with efficiency 12!/229, would this have proved
that S(12) = 29?

19. [40] Experiment with the following heuristic rule for deciding which pair of el-
ements to compare next while designing a comparison tree: At each stage of sorting
{K1, . . . ,Kn}, let ui be the number of keys known to be ≤ Ki as a result of the com-
parisons made so far, and let vi be the number of keys known to be ≥ Ki, for 1 ≤ i ≤ n.
Renumber the keys in terms of increasing ui/vi, so that u1/v1 ≤ u2/v2 ≤ · · · ≤ un/vn.
Now compare Ki :Ki+1 for some i that minimizes |uivi+1 − ui+1vi|. (Although this
method is based on far less information than a full comparison matrix as in (24), it
appears to give optimum results in many cases.)

x 20. [M26] Prove that an extended binary tree has minimum external path length if
and only if there is a number l such that all external nodes appear on levels l and l+ 1
(or perhaps all on a single level l).

21. [M21] The height of an extended binary tree is the maximum level number of its
external nodes. If x is an internal node of an extended binary tree, let t(x) be the
number of external nodes below x, and let l(x) denote the root of xŠs left subtree. If
x is an external node, let t(x) = 1. Prove that an extended binary tree has minimum
height among all binary trees with the same number of nodes if

t(x)− 2t(l(x))
 ≤ 2⌈lg t(x)⌉ − t(x)

for all internal nodes x.

22. [M24] Continuing exercise 21, prove that a binary tree has minimum external
path length among all binary trees with the same number of nodes if and only if
t(x)− 2t(l(x))

 ≤ 2⌈lg t(x)⌉ − t(x) and
t(x)− 2t(l(x))

 ≤ t(x)− 2⌊lg t(x)⌋

for all internal nodes x. [Thus, for example, if t(x) = 67, we must have t(l(x)) = 32,
33, 34, or 35. If we merely wanted to minimize the height of the tree we could have
3 ≤ t(l(x)) ≤ 64, by the preceding exercise.]

196 SORTING 5.3.1

23. [10] The text proves that the average number of comparisons made by any sorting
method for n elements must be at least ⌈lgn!⌉ ≈ n lgn. But multiple list insertion
(Program 5.2.1M) takes only O(n) units of time on the average. How can this be?

24. [27] (C. Picard.) Find a sorting tree for six elements such that all external nodes
appear on levels 10 and 11.

25. [11] If there were a sorting procedure for seven elements that achieves the min-
imum average number of comparisons predicted by the use of Eq. (34), how many
external nodes would there be on level 13?

26. [M42] Find a sorting procedure for seven elements that minimizes the average
number of comparisons performed.

x 27. [20] Suppose it is known that the conĄgurations K1 < K2 < K3, K1 < K3 < K2,
K2 < K1 < K3, K2 < K3 < K1, K3 < K1 < K2, K3 < K2 < K1 occur with respective
probabilities .01, .25, .01, .24, .25, .24. Find a comparison tree that sorts these three
elements with the smallest average number of comparisons.

28. [40] Write a MIX program that sorts Ąve one-word keys in the minimum possible
amount of time, and halts. (See the beginning of Section 5.2 for ground rules.)

29. [M25] (S. M. Chase.) Let a1 a2 . . . an be a permutation of {1, 2, . . . , n}. Prove that
any algorithm that decides whether this permutation is even or odd (that is, whether
it has an even or odd number of inversions), based solely on comparisons between the
aŠs, must make at least n lgn comparisons, even though the algorithm has only two
possible outcomes.

30. [M23] (Optimum exchange sorting.) Every exchange sorting algorithm as deĄned
in Section 5.2.2 can be represented as a comparison-exchange tree, namely a binary tree
structure whose internal nodes have the form i :j for i < j, interpreted as the following
operation: ŞIf Ki ≤ Kj , continue by taking the left branch of the tree; if Ki > Kj ,
continue by interchanging records i and j and then taking the right branch of the tree.Ť
When an external node is encountered, it must be true that K1 ≤ K2 ≤ · · · ≤ Kn.
Thus, a comparison-exchange tree differs from a comparison tree in that it speciĄes
data movement as well as comparison operations.

Let Se(n) denote the minimum number of comparison-exchanges needed, in the
worst case, to sort n elements by means of a comparison-exchange tree. Prove that
Se(n) ≤ S(n) + n− 1.

31. [M38] Continuing exercise 30, prove that Se(5) = 8.

32. [M42] Continuing exercise 31, investigate Se(n) for small values of n > 5.

33. [M30] (T. N. Hibbard.) A real-valued search tree of order x and resolution δ is
an extended binary tree in which all nodes contain a nonnegative real value such that
(i) the value in each external node is ≤ δ, (ii) the value in each internal node is at
most the sum of the values in its two children, and (iii) the value in the root is x. The
weighted path length of such a tree is deĄned to be the sum, over all external nodes, of
the level of that node times the value it contains.

Prove that a real-valued search tree of order x and resolution 1 has minimum
weighted path length, taken over all such trees of the same order and resolution, if and
only if equality holds in (ii) and the following further conditions hold for all pairs of
values x0 and x1 that are contained in sibling nodes: (iv) There is no integer k ≥ 0 such
that x0 < 2k < x1 or x1 < 2k < x0. (v) ⌈x0⌉−x0 + ⌈x1⌉−x1 < 1. (In particular if x is
an integer, condition (v) implies that all values in the tree are integers, and condition
(iv) is equivalent to the result of exercise 22.)

5.3.2 MINIMUM-COMPARISON MERGING 197

Also prove that the corresponding minimum weighted path length is x⌈lg x⌉ +
⌈x⌉ − 2⌈lg x⌉.

34. [M50] Determine the exact value of S(n) for inĄnitely many n.

35. [49] Determine the exact value of S(16).

36. [M50] (S. S. Kislitsyn, 1968.) Prove or disprove: Any directed acyclic graph G
with T (G) > 1 has two vertices u and v such that the digraphs G1 and G2 ob-
tained from G by adding the arcs u ← v and u → v are acyclic and satisfy 1 ≤
T (G1)/T (G2) ≤ 2. (Thus T (G1)/T (G) always lies between 1

3
and 2

3
, for some u and v.)

*5.3.2. Minimum-Comparison Merging

Let us now consider a related question: What is the best way to merge an
ordered set of m elements with an ordered set of n? Denoting the elements to
be merged by

A1 < A2 < · · · < Am and B1 < B2 < · · · < Bn, (1)

we shall assume as in Section 5.3.1 that the m + n elements are distinct. The
AŠs may appear among the BŠs in

m+n
m

ways, so the arguments we have used

for the sorting problem tell us immediately that at least

lg

m + n

m

(2)

comparisons are required. If we set m = αn and let n → ∞, while α is Ąxed,
StirlingŠs approximation tells us that

lg

αn + n

αn

= n

(1 + α) lg(1 + α)− α lg α

− 1

2 lg n + O(1). (3)

The normal merging procedure, Algorithm 5.2.4M, takes m + n− 1 comparisons
in its worst case.

Let M(m, n) denote the function analogous to S(n), namely the minimum
number of comparisons that will always suffice to merge m things with n. By
the observations we have just made,

lg

m + n

m

≤M(m, n) ≤ m + n− 1 for all m, n ≥ 1. (4)

Formula (3) shows how far apart this lower bound and upper bound can be.
When α = 1 (that is, m = n), the lower bound is 2n − 1

2 lg n + O(1), so both
bounds have the right order of magnitude but the difference between them can
be arbitrarily large. When α = 0.5 (that is, m = 1

2 n), the lower bound is

3
2 n(lg 3− 2

3) + O(log n),

which is about lg 3− 2
3 ≈ 0.918 times the upper bound. And as α decreases, the

bounds get farther and farther apart, since the standard merging algorithm is
primarily designed for Ąles with m ≈ n.

198 SORTING 5.3.2

When m = n, the merging problem has a fairly simple solution; it turns
out that the lower bound of (4), not the upper bound, is at fault. The follow-
ing theorem was discovered independently by R. L. Graham and R. M. Karp
about 1968:

Theorem M. For all m ≥ 1, we have M(m, m) = 2m− 1.

Proof. Consider any algorithm that merges A1 < · · · < Am with B1 < · · · < Bm.
When it compares Ai :Bj , take the branch Ai < Bj if i < j, the branch Ai > Bj

if i ≥ j. Merging must eventually terminate with the conĄguration

B1 < A1 < B2 < A2 < · · · < Bm < Am, (5)

since this is consistent with all the branches taken. And each of the 2m − 1
comparisons

B1 :A1, A1 :B2, B2 :A2, . . . , Bm :Am

must have been made explicitly, or else there would be at least two conĄgurations
consistent with the known facts. For example, if A1 has not been compared to
B2, the conĄguration

B1 < B2 < A1 < A2 < · · · < Bm < Am

is indistinguishable from (5).

A simple modiĄcation of this proof yields the companion formula

M(m, m+1) = 2m, for m ≥ 0. (6)

Constructing lower bounds. Theorem M shows that the Şinformation the-
oreticŤ lower bound (2) can be arbitrarily far from the true value; thus the
technique used to prove Theorem M gives us another way to discover lower
bounds. Such a proof technique is often viewed as the creation of an adversary,
a pernicious being who tries to make algorithms run slowly. When an algorithm
for merging decides to compare Ai :Bj , the adversary determines the fate of the
comparison so as to force the algorithm down the more difficult path. If we can
invent a suitable adversary, as in the proof of Theorem M, we can ensure that
every valid merging algorithm will have to make quite a few comparisons.

We shall make use of constrained adversaries, whose power is limited with
regard to the outcomes of certain comparisons. A merging method that is under
the inĆuence of a constrained adversary does not know about the constraints,
so it must make the necessary comparisons even though their outcomes have
been predetermined. For example, in our proof of Theorem M we constrained all
outcomes by condition (5), yet the merging algorithm was unable to make use
of that fact in order to avoid any of the comparisons.

The constraints we shall use in the following discussion apply to the left and
right ends of the Ąles. Left constraints are symbolized by

. (meaning no left constraint),

\ (meaning that all outcomes must be consistent with A1 < B1),

/ (meaning that all outcomes must be consistent with A1 > B1);

5.3.2 MINIMUM-COMPARISON MERGING 199

similarly, right constraints are symbolized by

. (meaning no right constraint),

\ (meaning that all outcomes must be consistent with Am < Bn),

/ (meaning that all outcomes must be consistent with Am > Bn).

There are nine kinds of adversaries, denoted by λMρ, where λ is a left constraint
and ρ is a right constraint. For example, a \M\ adversary must say that A1 < Bj

and Ai < Bn; a .M. adversary is unconstrained. For small values of m and n,
constrained adversaries of certain kinds are impossible; when m = 1 we obviously
canŠt have a \M/ adversary.

Let us now construct a rather complicated, but very formidable, adversary
for merging. It does not always produce optimum results, but it gives lower
bounds that cover a lot of interesting cases. Given m, n, and the left and right
constraints λ and ρ, suppose the adversary is asked which is the greater of Ai

or Bj . Six strategies can be used to reduce the problem to cases of smaller m+n:

Strategy A(k, l), for i ≤ k ≤ m and 1 ≤ l ≤ j. Say that Ai < Bj , and
require that subsequent operations merge {A1, . . . , Ak} with {B1, . . . , Bl−1} and
{Ak+1, . . . , Am} with {Bl, . . . , Bn}. Thus future comparisons Ap :Bq will result
in Ap < Bq if p ≤ k and q ≥ l; Ap > Bq if p > k and q < l; they will be
handled by a (k, l−1, λ, .) adversary if p ≤ k and q < l; they will be handled by
an (m−k, n+1−l, . , ρ) adversary if p > k and q ≥ l.

Strategy B(k, l), for i ≤ k ≤ m and 1 ≤ l < j. Say that Ai < Bj , and
require that subsequent operations merge {A1, . . . , Ak} with {B1, . . . , Bl} and
{Ak+1, . . . , Am} with {Bl, . . . , Bn}, stipulating that Ak < Bl < Ak+1. (Note
that Bl appears in both lists to be merged. The condition Ak < Bl < Ak+1

ensures that merging one group gives no information that could help to merge
the other.) Thus future comparisons Ap :Bq will result in Ap < Bq if p ≤ k and
q ≥ l; Ap > Bq if p > k and q ≤ l; they will be handled by a (k, l, λ, \) adversary
if p ≤ k and q ≤ l; by an (m−k, n+1−l, /, ρ) adversary if p > k and q ≥ l.

Strategy C(k, l), for i < k ≤ m and 1 ≤ l ≤ j. Say that Ai < Bj , and
require that subsequent operations merge {A1, . . . , Ak} with {B1, . . . , Bl−1} and
{Ak, . . . , Am} with {Bl, . . . , Bn}, stipulating that Bl−1 < Ak < Bl. (Analogous
to Strategy B, interchanging the roles of A and B.)

Strategy A′(k, l), for 1 ≤ k ≤ i and j ≤ l ≤ n. Say that Ai > Bj , and
require the merging of {A1, . . . , Ak−1} with {B1, . . . , Bl} and {Ak, . . . , Am} with
{Bl+1, . . . , Bn}. (Analogous to Strategy A.)

Strategy B′(k, l), for 1 ≤ k ≤ i and j < l ≤ n. Say that Ai > Bj , and
require the merging of {A1, . . . , Ak−1} with {B1, . . . , Bl} and {Ak, . . . , Am} with
{Bl, . . . , Bn}, subject to Ak−1 < Bl < Ak. (Analogous to Strategy B.)

Strategy C′(k, l), for 1 ≤ k < i and j ≤ l ≤ n. Say that Ai > Bj , and
require the merging of {A1, . . . , Ak} with {B1, . . . , Bl} and {Ak, . . . , Am} with
{Bl+1, . . . , Bn}, subject to Bl < Ak < Bl+1. (Analogous to Strategy C.)

200 SORTING 5.3.2

Because of the constraints, the strategies above cannot be used in certain
cases summarized here:

Strategy Must be omitted when

A(k, 1), B(k, 1), C(k, 1) λ = /

A′(1, l), B′(1, l), C′(1, l) λ = \
A(m, l), B(m, l), C(m, l) ρ = /

A′(k, n), B′(k, n), C′(k, n) ρ = \

Let λMρ(m, n) denote the maximum lower bound for merging that is ob-
tainable by an adversary of the class described above. Each strategy, when
applicable, gives us an inequality relating these nine functions, when the Ąrst
comparison is Ai :Bj , namely,

A(k, l): λMρ(m, n) ≥ 1 + λM.(k, l−1) + .Mρ(m−k, n+1−l);

B(k, l): λMρ(m, n) ≥ 1 + λM\(k, l) + /Mρ(m−k, n+1−l);

C(k, l): λMρ(m, n) ≥ 1 + λM/(k, l−1) + \Mρ(m+1−k, n+1−l);

A′(k, l): λMρ(m, n) ≥ 1 + λM.(k−1, l) + .Mρ(m+1−k, n−l);

B′(k, l): λMρ(m, n) ≥ 1 + λM\(k−1, l) + /Mρ(m+1−k, n+1−l);

C′(k, l): λMρ(m, n) ≥ 1 + λM/(k, l) + \Mρ(m+1−k, n−l).

For Ąxed i and j, the adversary will adopt a strategy that maximizes the lower
bound given by all possible right-hand sides, when k and l lie in the ranges
permitted by i and j. Then we deĄne λMρ(m, n) to be the minimum of these
lower bounds taken over 1 ≤ i ≤ m and 1 ≤ j ≤ n. When m or n is zero,
λMρ(m, n) is zero.

For example, consider the case m = 2 and n = 3, and suppose that our
adversary is unconstrained. If the Ąrst comparison is A1 :B1, the adversary may
adopt strategy A′(1, 1), requiring .M.(0, 1) + .M.(2, 2) = 3 further comparisons.
If the Ąrst comparison is A1 :B3, the adversary may adopt strategy B(1, 2),
requiring .M\(1, 2) + /M.(1, 2) = 4 further comparisons. No matter what
comparison Ai :Bj is made Ąrst, the adversary can guarantee that at least three
further comparisons must be made. Hence .M.(2, 3) = 4.

It isnŠt easy to do these calculations by hand, but a computer can grind out
tables of λMρ functions rather quickly. There are obvious symmetries, such as

/M.(m, n) = .M\(m, n) = \M.(n, m) = .M/(n, m), (7)

by means of which we can reduce the nine functions to just four,

.M.(m, n), /M.(m, n), /M\(m, n), and /M/(m, n).

Table 1 shows the resulting values for all m, n ≤ 10; our merging adversary has
been deĄned in such a way that

.M.(m, n) ≤M(m, n) for all m, n ≥ 0. (8)

5.3.2 MINIMUM-COMPARISON MERGING 201

Table 1

LOWER BOUNDS FOR MERGING, FROM THE ŞADVERSARYŤ

.M.(m, n) /M.(m, n)

1 2 3 4 5 6 7 8 9 10 n 1 2 3 4 5 6 7 8 9 10

1 1 2 2 3 3 3 3 4 4 4 1 2 2 3 3 3 3 4 4 4 1
2 2 3 4 5 5 6 6 6 7 7 1 3 4 4 5 5 6 6 7 7 2
3 2 4 5 6 7 7 8 8 9 9 1 3 5 6 7 7 8 8 9 9 3
4 3 5 6 7 8 9 10 10 11 11 1 4 5 7 8 9 9 10 10 11 4
5 3 5 7 8 9 10 11 12 12 13 1 4 6 8 9 10 11 12 12 13 5
6 3 6 7 9 10 11 12 13 14 15 1 4 6 8 10 11 12 13 14 14 6
7 3 6 8 10 11 12 13 14 15 16 1 4 7 9 10 12 13 14 15 16 7
8 4 6 8 10 12 13 14 15 16 17 1 5 7 9 11 13 14 15 16 17 8
9 4 7 9 11 12 14 15 16 17 18 1 5 8 10 11 13 15 16 17 18 9

10 4 7 9 11 13 15 16 17 18 19 1 5 8 10 12 14 15 17 18 19 10

m m
/M\(m, n) /M/(m, n)

1 −∞ 2 2 3 3 3 3 4 4 4 1 1 1 1 1 1 1 1 1 1 1
2 −∞ 2 4 4 5 5 6 6 7 7 1 3 3 4 4 4 4 5 5 5 2
3 −∞ 2 4 6 6 7 8 8 8 9 1 3 5 5 6 6 7 7 8 8 3
4 −∞ 2 5 6 8 8 9 10 10 11 1 4 5 7 7 8 9 9 9 10 4
5 −∞ 2 5 7 8 10 10 11 12 13 1 4 6 7 9 9 10 11 11 12 5
6 −∞ 2 5 7 9 10 12 13 14 14 1 4 6 8 9 11 11 12 13 14 6
7 −∞ 2 5 8 10 11 12 14 15 16 1 4 7 9 10 11 13 14 15 15 7
8 −∞ 2 6 8 10 12 13 15 16 17 1 5 7 9 11 12 14 15 16 17 8
9 −∞ 2 6 9 10 12 14 16 17 18 1 5 8 9 11 13 15 16 17 18 9

10 −∞ 2 6 9 11 13 15 16 18 19 1 5 8 10 12 14 15 17 18 19 10

1 2 3 4 5 6 7 8 9 10 n 1 2 3 4 5 6 7 8 9 10

This relation includes Theorem M as a special case, because our adversary will
use the simple strategy of that theorem when |m− n| ≤ 1.

Let us now consider some simple relations satisĄed by the M function:

M(m, n) = M(n, m); (9)

M(m, n) ≤M(m, n+1); (10)

M(k+m, n) ≤M(k, n) + M(m, n); (11)

M(m, n) ≤ max

M(m, n−1) + 1, M(m−1, n) + 1

, for m ≥ 1, n ≥ 1; (12)

M(m, n) ≤ max

M(m, n−2) + 1, M(m−1, n) + 2

, for m ≥ 1, n ≥ 2. (13)

Relation (12) comes from the usual merging procedure, if we Ąrst compare
A1 :B1. Relation (13) is derived similarly, by Ąrst comparing A1 :B2; if A1 > B2,
we need M(m, n−2) more comparisons, but if A1 < B2, we can insert A1 into
its proper place and merge {A2, . . . , Am} with {B1, . . . , Bn}. Generalizing, we
can see that if m ≥ 1 and n ≥ k we have

M(m, n) ≤ max

M(m, n−k) + 1, M(m−1, n) + 1 + ⌈lg k⌉

, (14)

by Ąrst comparing A1 :Bk and using binary search if A1 < Bk.
It turns out that M(m, n) = .M.(m, n) for all m, n ≤ 10, so Table 1 actually

gives the optimum values for merging. This can be proved by using (9)Ű(14)
together with special constructions for (m, n) = (2, 8), (3, 6), and (5, 9) given in
exercises 8, 9, and 10.

202 SORTING 5.3.2

On the other hand, our adversary doesnŠt always give the best possible
lower bounds; the simplest example is m = 3, n = 11, when .M.(3, 11) = 9
but M(3, 11) = 10. To see where the adversary has ŞfailedŤ in this case, we
must study the reasons for its decisions. Further scrutiny reveals that if (i, j) ̸=
(2, 6), the adversary can Ąnd a strategy that demands 10 comparisons; but when
(i, j) = (2, 6), no strategy beats Strategy A(2, 4), leading to the lower bound
1 + .M.(2, 3) + .M.(1, 8) = 9. It is necessary but not sufficient to Ąnish by
merging {A1, A2} with {B1, B2, B3} and {A3} with {B4, . . . , B11}, so the lower
bound fails to be sharp in this case.

Similarly it can be shown that .M.(2, 38) = 10 while M(2, 38) = 11, so our
adversary isnŠt even good enough to solve the case m = 2. But there is an inĄnite
class of values for which it excels:

Theorem K. M(m, m+2) = 2m + 1, for m ≥ 2;

M(m, m+3) = 2m + 2, for m ≥ 4;

M(m, m+4) = 2m + 3, for m ≥ 6.

Proof. We can in fact prove the result with M replaced by .M. ; for small m the
results have been obtained by computer, so we may assume that m is sufficiently
large. We may also assume that the Ąrst comparison is Ai :Bj where i ≤ ⌈m/2⌉.
If j ≤ i we use strategy A′(i, i), obtaining

.M.(m, m+d) ≥ 1 + .M.(i−1, i) + .M.(m+1−i, m+d−i) = 2m + d− 1

by induction on d, for d ≤ 4. If j > i we use strategy A(i, i+1), obtaining

.M.(m, m+d) ≥ 1 + .M.(i, i) + .M.(m−i, m+d−i) = 2m + d− 1

by induction on m.

The Ąrst two parts of Theorem K were obtained by F. K. Hwang and S. Lin
in 1969. Paul Stockmeyer and Frances Yao showed several years later that the
pattern evident in these three formulas holds in general, namely that the lower
bounds derived by the adversarial strategies above suffice to establish the values
M(m, m+d) = 2m + d− 1 for m ≥ 2d− 2. [SICOMP 9 (1980), 85Ű90.]

Upper bounds. Now let us consider upper bounds for M(m, n); good upper
bounds correspond to efficient merging algorithms.

When m = 1 the merging problem is equivalent to an insertion problem,
and there are n + 1 places in which A1 might fall among B1, . . . , Bn. For this
case it is easy to see that any extended binary tree with n + 1 external nodes is
the tree for some merging method! (See exercise 2.) Hence we may choose an
optimum binary tree, realizing the information-theoretic lower bound

1 + ⌊lg n⌋ = M(1, n) = ⌈lg(n + 1)⌉. (15)

Binary search (Section 6.2.1) is, of course, a simple way to attain this value.
The case m = 2 is extremely interesting, but considerably harder. It has

been solved completely by R. L. Graham, F. K. Hwang, and S. Lin (see exercises

5.3.2 MINIMUM-COMPARISON MERGING 203

11, 12, and 13), who proved the general formula

M(2, n) =

lg 7

12 (n + 1)

+

lg 14

17 (n + 1)

. (16)

We have seen that the usual merging procedure is optimum when m = n,
while the rather different binary search procedure is optimum when m = 1. What
we need is an in-between method that combines the normal merging algorithm
with binary search in such a way that the best features of both are retained.
Formula (14) suggests the following algorithm, due to F. K. Hwang and S. Lin
[SICOMP 1 (1972), 31Ű39]:

Algorithm H (Binary merging).

H1. [If not done, choose t.] If m or n is zero, stop. Otherwise, if m > n, set
t← ⌊lg(m/n)⌋ and go to step H4. Otherwise set t← ⌊lg(n/m)⌋.

H2. [Compare.] Compare Am :Bn+1−2t . If Am is smaller, set n ← n − 2t and
return to step H1.

H3. [Insert.] Using binary search (which requires exactly t more comparisons),
insert Am into its proper place among {Bn+1−2t , . . . , Bn}. If k is maximal
such that Bk < Am, set m← m− 1 and n← k. Return to H1.

H4. [Compare.] (Steps H4 and H5 are like H2 and H3, interchanging the roles
of m and n, A and B.) If Bn < Am+1−2t , set m ← m − 2t and return to
step H1.

H5. [Insert.] Insert Bn into its proper place among the AŠs. If k is maximal
such that Ak < Bn, set m← k and n← n− 1. Return to H1.

As an example of this algorithm, Table 2 shows the process of merging
the three keys {087, 503, 512} with thirteen keys {061, 154, . . . , 908}; eight
comparisons are required in this example. The elements compared at each step
are shown in boldface type.

Table 2
EXAMPLE OF BINARY MERGING

A B Output

087 503 512 061 154 170 275 426 509 612 653 677 703 765 897 908
087 503 512 061 154 170 275 426 509 612 653 677 703 765 897 908
087 503 512 061 154 170 275 426 509 612 653 677 703 765 897 908
087 503 512 061 154 170 275 426 509 612 653 677 703 765 897 908
087 503 061 154 170 275 426 509 512 612 653 677 703 765 897 908
087 503 061 154 170 275 426 509 512 612 653 677 703 765 897 908
087 061 154 170 275 426 503 509 512 612 653 677 703 765 897 908
087 061 154 170 275 426 503 509 512 612 653 677 703 765 897 908

061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908

Let H(m, n) be the maximum number of comparisons required by Hwang
and LinŠs algorithm. To calculate H(m, n), we may assume that k = n in step
H3 and k = m in step H5, since we shall prove that H(m−1, n) ≤ H(m−1, n+1)

204 SORTING 5.3.2

for all n ≥ m− 1 by induction on m. Thus when m ≤ n we have

H(m, n) = max

H(m, n−2t)+1, H(m−1, n)+t+1

, (17)

for 2tm ≤ n < 2t+1m. Replace n by 2n + ϵ, with ϵ = 0 or 1, to get

H(m, 2n+ϵ) = max

H(m, 2n+ϵ−2t+1) + 1, H(m−1, 2n+ϵ)+t+2

,

for 2tm ≤ n < 2t+1m; and it follows by induction on n that

H(m, 2n+ϵ) = H(m, n) + m, for m ≤ n and ϵ = 0 or 1. (18)

It is also easy to see that H(m, n) = m + n − 1 when m ≤ n < 2m; hence a
repeated application of (18) yields the general formula

H(m, n) = m + ⌊n/2t⌋ − 1 + tm, for m ≤ n, t = ⌊lg(n/m)⌋. (19)

This implies that H(m, n) ≤ H(m, n+1) for all n ≥ m, verifying our inductive
hypothesis about step H3.

Setting m = αn and θ = lg(n/m)− t gives

H(αn, n) = αn(1 + 2θ − θ − lg α) + O(1), (20)

as n→∞. We know by Eq. 5.3.1Ű(36) that 1.9139 < 1 + 2θ − θ ≤ 2; hence (20)
may be compared with the information-theoretic lower bound (3). Hwang and
Lin have proved (see exercise 17) that

H(m, n) <

lg

m + n

m

+ min (m, n). (21)

The HwangŰLin binary merging algorithm does not always give optimum
results, but it has the great virtue that it can be programmed rather easily.
It reduces to Şuncentered binary searchŤ when m = 1, and it reduces to the
usual merging procedure when m ≈ n, so it represents an excellent compromise
between those two methods. Furthermore, it is optimum in many cases (see
exercise 16). Improved algorithms have been found by F. K. Hwang and D. N.
Deutsch, JACM 20 (1973), 148Ű159; G. K. Manacher, JACM 26 (1979), 434Ű
440; and most notably by C. Christen, FOCS 19 (1978), 259Ű266. ChristenŠs
merging procedure, called forward-testing-backward-insertion, saves about m/3
comparisons over Algorithm H when n/m→∞. Moreover, ChristenŠs procedure
achieves the lower bound .M.(m, n) = ⌊(11m + n − 3)/4⌋ when 5m − 3 ≤ n ≤
7m + 2[m even]; hence it is optimum in such cases (and, remarkably, so is our
adversarial lower bound).

Formula (18) suggests that the M function itself might satisfy

M(m, n) ≤M(m, ⌊n/2⌋) + m. (22)

This is actually true (see exercise 19). Tables of M(m, n) suggest several other
plausible relations, such as

M(m+1, n) ≥ 1 + M(m, n) ≥M(m, n+1), for m ≤ n; (23)

M(m+1, n + 1) ≥ 2 + M(m, n); (24)

but no proof of these inequalities is known.

5.3.2 MINIMUM-COMPARISON MERGING 205

EXERCISES

1. [15] Find an interesting relation between M(m,n) and the function S deĄned in
Section 5.3.1. [Hint: Consider S(m+ n).]

x 2. [22] When m = 1, every merging algorithm without redundant comparisons
deĄnes an extended binary tree with

m+n

m

= n + 1 external nodes. Prove that,

conversely, every extended binary tree with n+ 1 external nodes corresponds to some
merging algorithm with m = 1.

3. [M24] Prove that .M.(1, n) = M(1, n) for all n.

4. [M42] Is .M.(m,n) ≥ ⌈lg m+n
m

⌉ for all m and n?

5. [M30] Prove that .M.(m,n) ≤ .M\(m,n+1).

6. [M26] The stated proof of Theorem K requires that a lot of cases be veriĄed by
computer. How can the number of such cases be drastically reduced?

7. [21] Prove (11).

x 8. [24] Prove that M(2, 8) ≤ 6, by Ąnding an algorithm that merges two elements
with eight others using at most six comparisons.

9. [27] Prove that three elements can be merged with six in at most seven steps.

10. [33] Prove that Ąve elements can be merged with nine in at most twelve steps.
[Hint: Experience with the adversary suggests Ąrst comparing A1 :B2, then trying
A5 :B8 if A1 < B2.]

11. [M40] (F. K. Hwang, S. Lin.) Let g2k = ⌊ 17
14

2k⌋ and g2k+1 = ⌊ 12
7

2k⌋, for k ≥ 0,
so that (g0, g1, g2, . . .) = (1, 1, 2, 3, 4, 6, 9, 13, 19, 27, 38, 54, 77, . . .). Prove that it takes
more than t comparisons to merge two elements with gt elements, in the worst case;
but two elements can be merged with gt − 1 in at most t steps. [Hint: Show that if
n = gt or n = gt − 1 and if we want to merge {A1, A2} with {B1, B2, . . . , Bn} in t
comparisons, we canŠt do better than to compare A2 :Bgt−1

on the Ąrst step.]

12. [M21] Let Rn(i, j) be the least number of comparisons required to sort the distinct
objects {α, β,X1, . . . , Xn}, given the relations

α < β, X1 < X2 < · · · < Xn, α < Xi+1, β > Xn−j .

(The condition α < Xi+1 or β > Xn−j becomes vacuous when i ≥ n or j ≥ n.
Therefore Rn(n, n) = M(2, n).)

Clearly, Rn(0, 0) = 0. Prove that

Rn(i, j) = 1 + min(min
1≤k≤i

max(Rn(k−1, j), Rn−k(i−k, j)),
min

1≤k≤j
max(Rn(i, k−1), Rn−k(i, j−k)))

for 0 ≤ i ≤ n, 0 ≤ j ≤ n, i+ j > 0.

13. [M42] (R. L. Graham.) Show that the solution to the recurrence in exercise 12
may be expressed as follows. DeĄne the function G(x), for 0 < x <∞, by the rules

G(x) =

1, if 0 < x ≤ 5
7
;

1
2

+ 1
8
G(8x− 5), if 5

7
< x ≤ 3

4
;

1
2
G(2x− 1), if 3

4
< x ≤ 1;

0, if 1 < x <∞.

206 SORTING 5.3.2

(See Fig. 38.) Since Rn(i, j) = Rn(j, i) and since Rn(0, j) = M(1, j), we may assume
that 1 ≤ i ≤ j ≤ n. Let p = ⌊lg i⌋, q = ⌊lg j⌋, r = ⌊lgn⌋, and let t = n− 2r + 1. Then

Rn(i, j) = p+ q + Sn(i, j) + Tn(i, j),

where Sn and Tn are functions that are either 0 or 1:

Sn(i, j) = 1 if and only if q < r or (i− 2p ≥ u and j − 2r ≥ u),
Tn(i, j) = 1 if and only if p < r or (t > 6

7
2r−2 and i− 2r ≥ v),

where u = 2pG(t/2p) and v = 2r−2G(t/2r−2).
(This may be the most formidable recurrence relation that will ever be solved!)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0

Fig. 38. GrahamŠs function (see exercise 13).

14. [41] (F. K. Hwang.) Let h3k = ⌊ 43
28

2k⌋ − 1, h3k+1 = h3k + 3 · 2k−3, h3k+2 =
⌊ 17

7
2k − 6

7
⌋ for k ≥ 3, and let the initial values be deĄned so that

(h0, h1, h2, . . .) = (1, 1, 2, 2, 3, 4, 5, 7, 9, 11, 14, 18, 23, 29, 38, 48, 60, 76, . . .) .

Prove that M(3, ht) > t and M(3, ht−1) ≤ t for all t, thereby establishing the exact
values of M(3, n) for all n.

15. [12] Step H1 of the binary merge algorithm may require the calculation of the
expression ⌊lg(n/m)⌋, for n ≥ m. Explain how to compute this easily without division
or calculation of a logarithm.

16. [18] For which m and n is Hwang and LinŠs binary merging algorithm optimum,
for 1 ≤ m ≤ n ≤ 10?

17. [M25] Prove (21). [Hint: The inequality isnŠt very tight.]

18. [M40] Study the average number of comparisons used by binary merge.

x 19. [23] Prove that the M function satisĄes (22).

20. [20] Show that if M(m, n+1) ≤ M(m+1, n) for all m ≤ n, then M(m, n+1) ≤
1 +M(m,n) for all m ≤ n.

21. [M47] Prove or disprove (23) and (24).

5.3.3 MINIMUM-COMPARISON SELECTION 207

22. [M43] Study the minimum average number of comparisons needed to merge m
things with n.

23. [M31] (E. Reingold.) Let {A1, . . . , An} and {B1, . . . , Bn} be sets containing
n elements each. Consider an algorithm that attempts to test equality of these two
sets solely by making comparisons for equality between elements. Thus, the algorithm
asks questions of the form ŞIs Ai = Bj?Ť for certain i and j, and it branches depending
on the answer.

By deĄning a suitable adversary, prove that any such algorithm must make at least
1
2
n(n+ 1) comparisons in its worst case.

24. [22] (E. L. Lawler.) What is the maximum number of comparisons needed by the
following algorithm for merging m elements with n ≥ m elements? ŞSet t← ⌊lg(n/m)⌋
and use Algorithm 5.2.4M to merge A1, A2, . . . , Am with B2t , B2·2t , . . . , Bq·2t , where
q = ⌊n/2t⌋. Then insert each Aj into its proper place among the Bk.Ť

x 25. [25] Suppose (xij) is an m × n matrix with nondecreasing rows and columns:
xij ≤ x(i+1)j for 1 ≤ i < m and xij ≤ xi(j+1) for 1 ≤ j < n. Show that M(m,n) is
the minimum number of comparisons needed to determine whether a given number x
is present in the matrix, if all comparisons are between x and some matrix element.

*5.3.3. Minimum-Comparison Selection

A similar class of interesting problems arises when we look for best possible
procedures to select the tth largest of n elements.

The history of this question goes back to Rev. C. L. DodgsonŠs amusing
(though serious) essay on lawn tennis tournaments, which appeared in St. JamesŠs
Gazette, August 1, 1883, pages 5Ű6. Dodgson Ů who is of course better known
as Lewis Carroll Ů was concerned about the unjust manner in which prizes were
awarded in tennis tournaments. Consider, for example, Fig. 39, which shows
a typical Şknockout tournamentŤ between 32 players labeled 01, 02 , . . . , 32.
In the Ąnals, player 01 defeats player 05, so it is clear that player 01 is the
champion and deserves the Ąrst prize. The inequity arises because player 05

usually gets second prize, although someone else might well be the second best.
You can win second prize even if you are worse than half of the players in the
competition! In fact, as Dodgson observed, the second-best player wins second
prize if and only if the champion and the next-best are originally in opposite
halves of the tournament; this occurs with probability 2n−1/(2n−1), when there
are 2n competitors, so the wrong player receives second prize almost half of the
time. If the losers of the semiĄnal round (players 25 and 17 in Fig. 39) compete
for third prize, it is highly unlikely that the third-best player receives third prize.

Dodgson therefore set out to design a tournament that determines the true
second- and third-best players, assuming a transitive ranking. (In other words, if
player A beats player B and B beats C, Dodgson assumed that A would beat C.)
He devised a procedure in which losers are allowed to play further games until
they are known to be deĄnitely inferior to three other players. An example of
DodgsonŠs scheme appears in Fig. 40, which is a supplementary tournament to
be run in conjunction with Fig. 39. He tried to pair off players whose records in
previous rounds were equivalent; he also tried to avoid matches in which both

208 SORTING 5.3.3

players had been defeated by the same person. In this particular example, 16

loses to 11 and 13 loses to 12 in Round 1; after 13 beats 16 in the second
round, we can eliminate 16, who is now known to be inferior to 11, 12, and 13.
In Round 3 Dodgson did not allow 19 to play with 21, since they have both
been defeated by 18 and we could not automatically eliminate the loser of 19

versus 21.

Champion = 01

Round 5 (Finals) 01 05

Round 4 01 25 05 17

Round 3 01 02 25 29 05 11 17 18

Round 2 01 03 02 04 25 26 29 30 05 06 11 12 17 20 18 21

Round 1 01 07 03 10 02 08 04 09 25 28 26 27 29 32 30 3105 15 06 14 11 16 12 13 17 24 20 23 18 19 21 22

Fig. 39. A knockout tournament with 32 players.

It would be nice to report that Lewis CarrollŠs tournament turns out to be
optimal, but unfortunately that is not the case. His diary entry for July 23,
1883, says that he composed the essay in about six hours, and he felt Şwe are
now so late in the [tennis] season that it is better it should appear soon than be
written well.Ť His procedure makes more comparisons than necessary, and it is
not formulated precisely enough to qualify as an algorithm. On the other hand, it
has some rather interesting aspects from the standpoint of parallel computation.
And it appears to be an excellent plan for a tennis tournament, because he
built in some dramatic effects; for example, he speciĄed that the two Ąnalists
should sit out round 5, playing an extended match during rounds 6 and 7. But
tournament directors presumably thought the proposal was too logical, and so
CarrollŠs system has apparently never been tried. Instead, a method of ŞseedingŤ
is used to keep the supposedly best players in different parts of the tree.

Third prize = 03

Round 9 03 05 Second prize = 02

Round 8 02 05

Round 7 02 03

Round 6 02 06 03 17

Round 5 02 06 07 03 11 17 25

Round 4 02 20 12 06 23 07 29 03 26 11 18 13

Round 3 20 21 12 19 06 27 23 31 07 08 03 04 26 30 13 14

Round 2 19 22 27 28 23 24 31 32 07 10 08 09 13 16 14 15

Fig. 40. Lewis CarrollŠs lawn tennis tournament (played in conjunction with Fig. 39).

5.3.3 MINIMUM-COMPARISON SELECTION 209

In a mathematical seminar during 1929Ű1930, Hugo Steinhaus posed the
problem of Ąnding the minimum number of tennis matches required to determine
the Ąrst and second best players in a tournament, when there are n ≥ 2 players
in all. J. Schreier [Mathesis Polska 7 (1932), 154Ű160] gave a procedure that
requires at most n−2+⌈lg n⌉ matches, using essentially the same method as the
Ąrst two stages in what we have called tree selection sorting (see Section 5.2.3,
Fig. 23), avoiding redundant comparisons that involve−∞. Schreier also claimed
that n− 2 + ⌈lg n⌉ is best possible, but his proof was incorrect, as was another
attempted proof by J. Sşupecki [Colloquium Mathematicum 2 (1951), 286Ű290].
Thirty-two years went by before a correct, although rather complicated, proof
was Ąnally published by S. S. Kislitsyn [Sibirskĭı Mat. Zhurnal 5 (1964), 557Ű564].

Let Vt(n) denote the minimum number of comparisons needed to determine
the tth largest of n elements, for 1 ≤ t ≤ n, and let Wt(n) be the minimum
number required to determine the largest, second largest, . . . , and the tth largest,
collectively. By symmetry, we have

Vt(n) = Vn+1−t(n), (1)

and it is obvious that

V1(n) = W1(n), (2)

Vt(n) ≤Wt(n), (3)

Wn(n) = Wn−1(n) = S(n). (4)

We have observed in Lemma 5.2.3M that

V1(n) = n− 1. (5)

In fact, there is an astonishingly simple proof of this fact, since everyone in a
tournament except the champion must lose at least one game! By extending this
idea and using an ŞadversaryŤ as in Section 5.3.2, we can prove the SchreierŰ
Kislitsyn theorem without much difficulty:

Theorem S. V2(n) = W2(n) = n− 2 + ⌈lg n⌉, for n ≥ 2.

Proof. Assume that n players have participated in a tournament that has
determined the second-best player by some given procedure, and let aj be the
number of players who have lost j or more matches. The total number of matches
played is then a1 + a2 + a3 + · · · . We cannot determine the second-best player
without also determining the champion (see exercise 2), so our previous argument
shows that a1 = n− 1. To complete the proof, we will show that there is always
some sequence of outcomes of the matches that makes a2 ≥ ⌈lg n⌉ − 1.

Suppose that at the end of the tournament the champion has played (and
beaten) p players; one of these is the second best, and the others must have lost
at least one other time, so a2 ≥ p− 1. Therefore we can complete the proof by
constructing an adversary who decides the results of the games in such a way
that the champion must play at least ⌈lg n⌉ other people.

Let the adversary declare A to be better than B if A is previously undefeated
and B has lost at least once, or if both are undefeated and B has won fewer

210 SORTING 5.3.3

matches than A at that time. In other circumstances the adversary may make
an arbitrary decision consistent with some partial ordering.

Consider the outcome of a complete tournament whose matches have been
decided by such an adversary. Let us say that ŞA supersedes BŤ if and only if A =
B or A supersedes the player who Ąrst defeated B. (Only a playerŠs Ąrst defeat
is relevant in this relation; a loserŠs subsequent games are ignored. According
to the mechanism of the adversary, any player who Ąrst defeats another must
be previously unbeaten.) It follows that a player who won the Ąrst p matches
supersedes at most 2p players on the basis of those p contests. (This is clear
for p = 0, and for p > 0 the pth match was against someone who was either
previously beaten or who supersedes at most 2p−1 players.) Hence the champion,
who supersedes everyone, must have played at least ⌈lg n⌉ matches.

Theorem S completely resolves the problem of Ąnding the second-best player,
in the minimax sense. Exercise 6 shows, in fact, that it is possible to give a simple
formula for the minimum number of comparisons needed to Ąnd the second
largest element of a set when an arbitrary partial ordering of the elements is
known beforehand.

What if t >> 2? In the paper cited above, Kislitsyn went on to consider larger
values of t, proving that

Wt(n) ≤ n− t +

n+1−t<j≤n

⌈lg j⌉, for 1 ≤ t ≤ n. (6)

For t = 1 and t = 2 we have seen that equality actually holds in this formula;
for t = 3 it can be slightly improved (see exercise 21).

We shall prove KislitsynŠs theorem by showing that the Ąrst t stages of tree

selection require at most n− t +

n+1−t<j≤n⌈lg j⌉ comparisons, ignoring all of
the comparisons that involve −∞. It is interesting to note that, by Eq. 5.3.1Ű(3),
the right-hand side of (6) equals B(n) when t = n, and also when t = n − 1;
hence tree selection and binary insertion yield the same upper bound for the
sorting problem, although they are quite different methods.

Let α be an extended binary tree with n external nodes, and let π be a
permutation of {1, 2, . . . , n}. Place the elements of π into the external nodes,
from left to right in symmetric order, and Ąll in the internal nodes according to
the rules of a knockout tournament as in tree selection. When the resulting tree is
subjected to repeated selection operations, it deĄnes a sequence cn−1 cn−2 . . . c1,
where cj is the number of comparisons required to bring element j to the root
of the tree when element j + 1 has been replaced by −∞. For example, if α is
the tree

(7)

5.3.3 MINIMUM-COMPARISON SELECTION 211

and if π = 5 3 1 4 2, we obtain the successive trees

5

5 4

5 3 4 2

1 4

4

3 4

4 2

1 4

c4 = 1

3

3 2

1 2

c3 = 2

2

1 2

c2 = 0

1

c1 = 0

If π had been 3 1 5 4 2, the sequence c4 c3 c2 c1 would have been 2 1 1 0 instead.
It is not difficult to see that c1 is always zero.

Let µ(α, π) be the multiset {cn−1, cn−2, . . . , c1} determined by α and π. If

α =
α
′

α
′′

and if elements 1 and 2 do not both appear in α′ or both in α′′, it is easy to see
that

µ(α, π) =

µ(α′, π′) + 1

⊎

µ(α′′, π′′) + 1

⊎ {0} (8)

for appropriate permutations π′ and π′′, where µ+1 denotes the multiset obtained
by adding 1 to each element of µ. (See exercise 7.) On the other hand, if elements
1 and 2 both appear in α′, we have

µ(α, π) =

µ(α′, π′) + ϵ

⊎

µ(α′′, π′′) + 1

⊎ {0},

where µ + ϵ denotes a multiset obtained by adding 1 to some elements of µ and
0 to the others. A similar formula holds when 1 and 2 both appear in α′′. Let us
say that multiset µ1 dominates µ2 if both µ1 and µ2 contain the same number
of elements, and if the kth largest element of µ1 is greater than or equal to the
kth largest element of µ2 for all k; and let us deĄne µ(α) to be the dominant
µ(α, π), taken over all permutations π, in the sense that µ(α) dominates µ(α, π)
for all π and µ(α) = µ(α, π) for some π. The formulas above show that

µ() = ∅, µ(✐
✓✓ ❙❙

α′ α′′

) =

µ(α′) + 1

⊎

µ(α′′) + 1

⊎ {0}; (9)

hence µ(α) is the multiset of all distances from the root to the internal nodes of α.
The reader who has followed this train of thought will now see that we are

ready to prove KislitsynŠs theorem (6). Indeed, Wt(n) is less than or equal to
n − 1 plus the t − 1 largest elements of µ(α), where α is any tree being used
in tree selection sorting. We may take α to be the complete binary tree with
n external nodes (see Section 2.3.4.5), when

µ(α) =

⌊lg 1⌋, ⌊lg 2⌋, . . . , ⌊lg(n−1)⌋

=

⌈lg 2⌉−1, ⌈lg 3⌉−1, . . . , ⌈lg n⌉−1

. (10)

Formula (6) follows when we consider the t− 1 largest elements of this multiset.

212 SORTING 5.3.3

KislitsynŠs theorem gives a good upper bound for Wt(n); he remarked that
V3(5) = 6 < W3(5) = 7, but he was unable to Ąnd a better bound for Vt(n) than
for Wt(n). A. Hadian and M. Sobel discovered a way to do this using replacement

selection instead of tree selection; their formula [Univ. of Minnesota, Dept. of
Statistics Report 121 (1969)],

Vt(n) ≤ n− t + (t− 1)

lg(n + 2− t)

, n ≥ t, (11)

is similar to KislitsynŠs upper bound for Wt(n) in (6), except that each term in
the sum has been replaced by the smallest term.

Hadian and SobelŠs theorem (11) can be proved by using the following
construction: First set up a binary tree for a knockout tournament on n− t + 2
items. (This takes n − t + 1 comparisons.) The largest item is greater than
n − t + 1 others, so it canŠt be tth largest. Replace it, where it appears at an
external node of the tree, by one of the t− 2 elements held in reserve, and Ąnd
the largest element of the resulting n− t+2; this requires at most

lg(n+2− t)

comparisons, because we need to recompute only one path in the tree. Repeat
this operation t−2 times in all, for each element held in reserve. Finally, replace
the currently largest element by −∞, and determine the largest of the remaining
n + 1 − t; this requires at most

lg(n + 2 − t)

− 1 comparisons, and it brings

the tth largest element of the original set to the root of the tree. Summing the
comparisons yields (11).

In relation (11) we should of course replace t by n + 1− t on the right-hand
side whenever n+1−t gives a better value (as when n = 6 and t = 3). Curiously,
the formula gives a smaller bound for V7(13) than it does for V6(13). The upper
bound in (11) is exact for n ≤ 6, but as n and t get larger it is possible to obtain
much better estimates of Vt(n).

For example, the following elegant method (due to David G. Doren) can be
used to show that V4(8) ≤ 12. Let the elements be X1, . . . , X8; Ąrst compare
X1 :X2 and X3 :X4 and the two winners, and do the same to X5 :X6 and X7 :X8

and their winners. Relabel elements so that X1 < X2 < X4 > X3, X5 < X6 <
X8 > X7, then compare X2 :X6; by symmetry assume that X2 < X6, so that we
have the conĄguration

1 2

3

4

5 6

7

8

(Now X1 and X8 are out of contention and we must Ąnd the third largest
of {X2, . . . , X7}.) Compare X2 :X7, and discard the smaller; in the worst case
we have X2 < X7 and we must Ąnd the third largest of

3 4

5 6

7

This can be done in V3(5)− 2 = 4 more steps, since the procedure of (11) that
achieves V3(5) = 6 begins by comparing two disjoint pairs of elements.

5.3.3 MINIMUM-COMPARISON SELECTION 213

Table 1

VALUES OF Vt(n) FOR SMALL n

n V1(n) V2(n) V3(n) V4(n) V5(n) V6(n) V7(n) V8(n) V9(n) V10(n)

1 0
2 1 1
3 2 3 2
4 3 4 4 3
5 4 6 6 6 4
6 5 7 8 8 7 5
7 6 8 10 10∗ 10 8 6
8 7 9 11 12 12 11 9 7
9 8 11 12 14 14∗ 14 12 11 8

10 9 12 14∗ 15 16∗∗ 16∗∗ 15 14∗ 12 9

∗ Exercises 10Ű12 give constructions that improve on Eq. (11) in these cases.
∗∗ See K. Noshita, Trans. of the IECE of Japan E59, 12 (December 1976), 17Ű18.

Other tricks of this kind can be used to produce the results shown in Table 1;
no general method is evident as yet. The values listed for V4(9) = V6(9) and
V5(10) = V6(10) were proved optimum in 1996 by W. Gasarch, W. Kelly, and
W. Pugh [SIGACT News 27, 2 (June 1996), 88Ű96], using a computer search.

A fairly good lower bound for the selection problem when t is small was
obtained by David G. Kirkpatrick [JACM 28 (1981), 150Ű165]: If 2 ≤ t ≤
(n + 1)/2, we have

Vt(n) ≥ n + t− 3 +
t−2

j=0

lg

n− t + 2
t + j

. (12)

In his Ph.D. thesis [U. of Toronto, 1974], Kirkpatrick also proved that

V3(n) ≤ n + 1 +

lg
n− 1

4

+

lg
n− 1

5

; (13)

this upper bound matches the lower bound (12) for lg 5
3 ≈ 74% of all integers n,

and it exceeds (12) by at most 1. KirkpatrickŠs analysis made it natural to
conjecture that equality holds in (13) for all n > 4, but Jutta Eusterbrock found
the surprising counterexample V3(22) = 28 [Discrete Applied Math. 41 (1993),
131Ű137]. Then Kirkpatrick discovered that V3(42) = 50; this may well be the
only other counterexample [see Lecture Notes in Comp. Sci. 8066 (2013), 61Ű76].
Improved lower bounds for larger values of t were found by S. W. Bent and J. W.
John (see exercise 27):

Vt(n) ≥ n + m− 2
√

m

, m = 2 +

lg
n

t

(n + 1− t)

. (14)

This formula proves in particular that

Vαn(n) ≥

1 + α lg
1
α

+ (1− α) lg
1

1− α

n + O

√
n

. (15)

214 SORTING 5.3.3

A linear method. When n is odd and t = ⌈n/2⌉, the tth largest (and tth
smallest) element is called the median. According to (11), we can Ąnd the median
of n elements in ≈ 1

2 n lg n comparisons; but this is only about twice as fast as
sorting, even though we are asking for much less information. For several years,
concerted efforts were made by a number of people to Ąnd an improvement
over (11) when t and n are large. Finally in 1971, Manuel Blum discovered a
method that needed only O(n log log n) steps. BlumŠs approach to the problem
suggested a new class of techniques, which led to the following construction due
to R. Rivest and R. Tarjan [J. Comp. and Sys. Sci. 7 (1973), 448Ű461]:

Theorem L. If n > 32 and 1 ≤ t ≤ n, we have Vt(n) ≤ 15n− 163.

Proof. The theorem is trivial when n is small, since Vt(n) ≤ S(n) ≤ 10n ≤
15n − 163 for 32 < n ≤ 210. By adding at most 13 dummy −∞ elements, we
may assume that n = 7(2q + 1) for some integer q ≥ 73. The following method
may now be used to select the tth largest:

Step 1. Divide the elements into 2q + 1 groups of seven elements each, and sort
each of the groups. This takes at most 13(2q + 1) comparisons.

Step 2. Find the median of the 2q + 1 median elements obtained in Step 1,
and call it x. By induction on q, this takes at most Vq+1(2q + 1) ≤ 30q − 148
comparisons.

Step 3. The n− 1 elements other than x have now been partitioned into three
sets (see Fig. 41):

4q + 3 elements known to be greater than x (Region B);

4q + 3 elements known to be less than x (Region C);

6q elements whose relation to x is unknown (Regions A and D).

By making 4q additional comparisons, we can tell exactly which of the elements
in regions A and D are less than x. (We Ąrst test x against the middle element
of each triple.)

Step 4. We have now found r elements greater than x and n − 1 − r elements
less than x, for some r. If t = r + 1, x is the answer; if t < r + 1, we need
to Ąnd the tth largest of the r large elements; and if t > r + 1, we need to
Ąnd the (t−1−r)th largest of the n − 1 − r small elements. The point is that
r and n − 1 − r are both less than or equal to 10q + 3 (the size of regions A
and D, plus either B or C). By induction on q this step therefore requires at
most 15(10q + 3)− 163 comparisons.

The total number of comparisons comes to at most

13(2q + 1) + 30q − 148 + 4q + 15(10q + 3)− 163 = 15(14q − 6)− 163.

Since we started with at least 14q − 6 elements, the proof is complete.

Theorem L shows that selection can always be done in linear time, namely
that Vt(n) = O(n). Of course, the method used in this proof is rather crude,
since it throws away good information in Step 4. Deeper study of the problem

5.3.3 MINIMUM-COMPARISON SELECTION 215

Region A

Region DRegion C

Region B

x

q

q

2q+1

Fig. 41. The selection algorithm of Rivest and Tarjan (q = 4).

has led to much sharper bounds; for example, A. Schönhage, M. Paterson, and
N. Pippenger [J. Comp. Sys. Sci. 13 (1976), 184Ű199] proved that the maximum
number of comparisons required to Ąnd the median is at most 3n+O(n log n)3/4.
See exercise 23 for a lower bound and for references to more recent results.

The average number. Instead of minimizing the maximum number of compar-
isons, we can ask instead for an algorithm that minimizes the average number
of comparisons, assuming random order. As usual, the minimean problem is
considerably harder than the minimax problem; indeed, the minimean problem
is still unsolved even in the case t = 2. Claude Picard mentioned the problem in
his book Théorie des Questionnaires (1965), and an extensive exploration was
undertaken by Milton Sobel [Univ. of Minnesota, Dept. of Statistics Reports
113 and 114 (November 1968); Revue Française dŠAutomatique, Informatique et
Recherche Opérationnelle 6, R-3 (December 1972), 23Ű68].

Sobel constructed the procedure of Fig. 42, which Ąnds the second largest
of six elements using only 6 1

2 comparisons on the average. In the worst case,
8 comparisons are required, and this is worse than V2(6) = 7; in fact, an
exhaustive computer search by D. Hoey has shown that the best procedure for
this problem, if restricted to at most 7 comparisons, uses 6 26

45 comparisons on
the average. Thus no procedure that Ąnds the second largest of six elements can
be optimum in both the minimax and the minimean senses simultaneously.

Let V t(n) denote the minimum average number of comparisons needed to
Ąnd the tth largest of n elements. Table 2 shows the exact values for small n, as
computed by D. Hoey.

R. W. Floyd discovered in 1970 that the median of n elements can be found
with only 3

2 n + O(n2/3 log n) comparisons, on the average. He and R. L. Rivest
reĄned this method a few years later and constructed an elegant algorithm to
prove that

V t(n) ≤ n + min(t, n−t) + O
√

n log n

. (16)

(See exercises 13 and 24.)

216 SORTING 5.3.3

2:5

4:5 2:6

4:6 5:6 4:6 2:3

5:6 4 5 4:6 3:5 4 6 3:6 3 4 2 4

5 6 6 5 4 6 3:6 5 4 3 4 6 4 3 4

6 4 3 4

2:4

3:4

1:2

12 8 6 24

3 3 4 12 3 8 2

4 1

Symmetrical

Symmetrical

Symmetrical

Fig. 42. A procedure that selects the second largest of {X1, X2, X3, X4, X5, X6}, using
6 1

2
comparisons on the average. Each ŞsymmetricalŤ branch is identical to its sibling,

with names permuted in some appropriate manner. External nodes contain Şj kŤ when
Xj is known to be the second largest and Xk the largest; the number of permutations
leading to such a node appears immediately below it.

Using another approach, based on a generalization of one of SobelŠs construc-
tions for t = 2, David W. Matula [Washington Univ. Tech. Report AMCS-73-9
(1973)] showed that

V t(n) ≤ n + t⌈lg t⌉(11 + ln ln n). (17)

Thus, for Ąxed t the average amount of work can be reduced to n + O(log log n)
comparisons. An elegant lower bound on V t(n) appears in exercise 25.

The sorting and selection problems are special cases of the much more
general problem of Ąnding a permutation of n given elements that is consistent
with a given partial ordering. A. C. Yao [SICOMP 18 (1989), 679Ű689] has
shown that, if the partial ordering is deĄned by an acyclic digraph G on n
vertices with k connected components, the minimum number of comparisons
necessary to solve such problems is always Θ

lg

n!/T (G)

+ n− k

, in both the

worst case and on the average, where T (G) is the total number of permutations
consistent with the partial ordering (the number of topological sortings of G).

EXERCISES

1. [15] In Lewis CarrollŠs tournament (Figs. 39 and 40), why was player 13 elimi-
nated in spite of winning in Round 3?

5.3.3 MINIMUM-COMPARISON SELECTION 217

Table 2

MINIMUM AVERAGE COMPARISONS FOR SELECTION

n V 1(n) V 2(n) V 3(n) V 4(n) V 5(n) V 6(n) V 7(n)

1 0
2 1 1
3 2 2 2

3
2

4 3 4 4 3
5 4 5 4

15
5 13

15
5 4

15
4

6 5 6 1
2

7 7
18

7 7
18

6 1
2

5
7 6 7 149

210
8 509

630
9 32

105
8 509

630
7 149

210
6

x 2. [M25] Prove that after we have found the tth largest of n elements by a sequence
of comparisons, we also know which t− 1 elements are greater than it, and which n− t
elements are less than it.

3. [20] Prove that Vt(n) > Vt(n− 1) and Wt(n) > Wt(n− 1), for 1 ≤ t < n.

x 4. [M25] (F. Fussenegger and H. N. Gabow.) Prove that Wt(n) ≥ n− t+ ⌈lgnt−1⌉.
5. [10] Prove that W3(n) ≤ V3(n) + 1.

x 6. [M26] (R. W. Floyd.) Given n distinct elements {X1, . . . , Xn} and a set of
relations Xi < Xj for certain pairs (i, j), we wish to Ąnd the second largest element.
If we know that Xi < Xj and Xi < Xk for j ̸= k, Xi cannot possibly be the second
largest, so it can be eliminated. The resulting relations now have a form such as

namely, m groups of elements that can be represented by a multiset {l1, l2, . . . , lm}; the
jth group contains lj +1 elements, one of which is known to be greater than the others.
For example, the conĄguration above can be described by the multiset {0, 1, 2, 2, 3, 5};
when no relations are known we have a multiset of n zeros.

Let f(l1, l2, . . . , lm) be the minimum number of comparisons needed to Ąnd the
second largest element of such a partially ordered set. Prove that

f(l1, l2, . . . , lm) = m− 2 + ⌈lg(2l1 + 2l2 + · · ·+ 2lm)⌉.
[Hint: Show that the best strategy is always to compare the largest elements of the two
smallest groups, until reducing m to unity; use induction on l1 + l2 + · · ·+ lm + 2m.]

7. [M20] Prove (8).

8. [M21] KislitsynŠs formula (6) is based on tree selection sorting using the complete
binary tree with n external nodes. Would a tree selection method based on some other

tree give a better bound, for any t and n?

x 9. [20] Draw a comparison tree that Ąnds the median of Ąve elements in at most six
steps, using the replacement-selection method of Hadian and Sobel [see (11)].

10. [35] Show that the median of seven elements can be found in at most 10 steps.

218 SORTING 5.3.3

11. [38] (K. Noshita.) Show that the median of nine elements can be found in at
most 14 steps, of which the Ąrst seven are identical to DorenŠs method.

12. [21] (Hadian and Sobel.) Prove that V3(n) ≤ V3(n − 1) + 2. [Hint: Start by
discarding the smallest of {X1, X2, X3, X4}.]

x 13. [HM28] (R. W. Floyd.) Show that if we start by Ąnding the median element of
{X1, . . . , Xn2/3}, using a recursively deĄned method, we can go on to Ąnd the median
of {X1, . . . , Xn} with an average of 3

2
n+O(n2/3 logn) comparisons.

x 14. [20] (M. Sobel.) Let Ut(n) be the minimum number of comparisons needed to
Ąnd the t largest of n elements, without necessarily knowing their relative order. Show
that U2(5) ≤ 5.

15. [22] (I. Pohl.) Suppose that we are interested in minimizing space instead of time.
What is the minimum number of data words needed in memory in order to compute
the tth largest of n elements, if each element Ąlls one word and if the elements are
input one at a time into a single register?

x 16. [25] (I. Pohl.) Show that we can Ąnd both the maximum and the minimum of a
set of n elements, using at most ⌈ 3

2
n⌉− 2 comparisons; and the latter number cannot

be lowered. [Hint: Any stage in such an algorithm can be represented as a quadruple
(a, b, c, d), where a elements have never been compared, b have won but never lost,
c have lost but never won, d have both won and lost. Construct an adversary.]

17. [20] (R. W. Floyd.) Show that it is possible to select, in order, both the k largest
and the l smallest elements of a set of n elements, using at most ⌈ 3

2
n⌉ − k − l +

n+1−k<j≤n⌈lg j⌉+

n+1−l<j≤n⌈lg j⌉ comparisons.

18. [M20] If groups of size 5, not 7, had been used in the proof of Theorem L, what
theorem would have been obtained?

19. [M42] Extend Table 2 to n = 8.

20. [M47] What is the asymptotic value of V 2(n)− n, as n→∞?

21. [32] (P. V. Ramanan and L. HyaĄl.) Prove that Wt(2k +2k+1−t) ≤ 2k +2k+1−t +
(t − 1)(k − 1), when k ≥ t ≥ 2; also show that equality holds for inĄnitely many k
and t, because of exercise 4. [Hint: Maintain two knockout trees and merge their results
cleverly.]

22. [24] (David G. Kirkpatrick.) Show that when 4 · 2k < n − 1 ≤ 5 · 2k, the upper
bound (11) for V3(n) can be reduced by 1 as follows: (i) Form four knockout trees of
size 2k. (ii) Find the minimum of the four maxima, and discard all 2k elements of its
tree. (iii) Using the known information, build a single knockout tree of size n− 1− 2k.
(iv) Continue as in the proof of (11).

23. [M49] What is the asymptotic value of V⌈n/2⌉(n), as n→∞?

24. [HM40] Prove that V t(n) ≤ n + t + O(
√
n logn) for t ≤ ⌈n/2⌉. Hint: Show

that with this many comparisons we can in fact Ąnd both the ⌊t − √t lnn⌋th and
⌈t+

√
t lnn ⌉th elements, after which the tth is easily located.

x 25. [M35] (W. Cunto and J. I. Munro.) Prove that V t(n) ≥ n+t−2 when t ≤ ⌈n/2⌉.
26. [M32] (A. Schönhage, 1974.) (a) In the notation of exercise 14, prove that Ut(n) ≥
min(2+Ut(n−1), 2+Ut−1(n−1)) for n ≥ 3. [Hint: Construct an adversary by reducing
from n to n − 1 as soon as the current partial ordering is not composed entirely of
components having the form q or q q .] (b) Similarly, prove that

Ut(n) ≥ min(2 + Ut(n− 1), 3 + Ut−1(n− 1), 3 + Ut(n− 2))

5.3.4 NETWORKS FOR SORTING 219

for n ≥ 5, by constructing an adversary that deals with components q , q q , qq q✏P ,
q qq q✏✏P . (c) Therefore we have Ut(n) ≥ n+ t+ min(⌊(n− t)/2⌋, t)− 3 for 1 ≤ t ≤ n/2.

[The inequalities in (a) and (b) apply also when V or W replaces U, thereby establishing
the optimality of several entries in Table 1.]

x 27. [M34] A randomized adversary is an adversary algorithm that is allowed to Ćip
coins as it makes decisions.

a) Let A be a randomized adversary and let Pr(l) be the probability that A reaches
leaf l of a given comparison tree. Show that if Pr(l) ≤ p for all l, the height of the
comparison tree is ≥ lg(1/p).

b) Consider the following adversary for the problem of selecting the tth largest of n
elements, given integer parameters q and r to be selected later:

A1. Choose a random set T of t elements; all

n
t

possibilities are equally likely.

(We will ensure that the t − 1 largest elements belong to T .) Let S =
{1, . . . , n} \T be the other elements, and set S0 ← S, T0 ← T ; S0 and T0 will
represent elements that might become the tth largest.

A2. While |T0| > r, decide all comparisons x :y as follows: If x ∈ S and y ∈ T , say
that x < y. If x ∈ S and y ∈ S, Ćip a coin to decide, and remove the smaller
element from S0 if it was in S0. If x ∈ T and y ∈ T , Ćip a coin to decide, and
remove the larger element from T0 if it was in T0.

A3. As soon as |T0| = r, partition the elements into three classes P,Q,R as follows:
If |S0| < q, let P = S, Q = T0, R = T \ T0. Otherwise, for each y ∈ T0, let
C(y) be the elements of S already compared with y, and choose y0 so that
|C(y0)| is minimum. Let P = (S \ S0) ∪ C(y0), Q = (S0 \ C(y0)) ∪ {y0},
R = T \{y0}. Decide all future comparisons x :y by saying that elements of P
are less than elements of Q, and elements of Q are less than elements of R;
Ćip a coin when x and y are in the same class.

Prove that if 1 ≤ r ≤ t and if |C(y0)| ≤ q − r at the beginning of step A3, each
leaf is reached with probability ≤ (n+ 1− t)/(2n−q

n
t

). Hint: Show that at least

n− q coin Ćips are made.
c) Continuing (b), show that we have

Vt(n) ≥ min(n− 1 + (r − 1)(q + 1− r), n− q + lg(

n
t

/(n+ 1− t))) ,

for all integers q and r.
d) Establish (14) by choosing q and r.

*5.3.4. Networks for Sorting

In this section we shall study a constrained type of sorting that is particularly
interesting because of its applications and its rich underlying theory. The new
constraint is to insist on an oblivious sequence of comparisons, in the sense that
whenever we compare Ki versus Kj the subsequent comparisons for the case
Ki < Kj are exactly the same as for the case Ki > Kj , but with i and j
interchanged.

Figure 43(a) shows a comparison tree in which this homogeneity condition is
satisĄed. Notice that every level has the same number of comparisons, so there
are 2m outcomes after m comparisons have been made. But n! is not a power
of 2; some of the comparisons must therefore be redundant, in the sense that

220
S

O
R

T
IN

G
5.3.4

1:2

3:4 3:4

1:3 1:4 2:3 2:4

2:4 2:4 2:3 2:3 1:4 1:4 1:3 1:3

2:3 4:3 2:1 4:1 2:4 3:4 2:1 3:1 1:3 4:3 1:2 4:2 1:4 3:4 1:2 3:2

1
2
3
4

1
3
2
4

X

1
3
4
2

X

3
1
2
4

3
4
1
2

3
1
4
2

1
2
4
3

1
4
2
3

X

1
4
3
2

X

4
1
2
3

4
3
1
2

4
1
3
2

2
1
3
4

2
3
1
4

X

2
3
4
1

X

3
2
1
4

3
4
2
1

3
2
4
1

2
1
4
3

2
4
1
3

X

2
4
3
1

X

4
2
1
3

4
3
2
1

4
2
3
1

(a)

K1 K2 K3 K4

K
′

1
K

′

2
K

′

3
K

′

4

(b)

Fig. 43. (a) An oblivious comparison tree. (b) The corresponding network.

5.3.4 NETWORKS FOR SORTING 221

one of their subtrees can never arise in practice. In other words, some branches
of the tree must make more comparisons than necessary, in order to ensure that
all of the corresponding branches of the tree will sort properly.

Since each path from top to bottom of such a tree determines the entire tree,
such a sorting scheme is most easily represented as a network; see Fig. 43(b).
The boxes in such a network represent Şcomparator modulesŤ that have two
inputs (represented as lines coming into the module from above) and two outputs
(represented as lines leading downward); the left-hand output is the smaller of
the two inputs, and the right-hand output is the larger. At the bottom of the
network, K ′

1 is the smallest of {K1, K2, K3, K4}, K ′
2 the second smallest, etc.

It is not difficult to prove that any sorting network corresponds to an oblivious
comparison tree in the sense above, and that any oblivious tree corresponds to
a network of comparator modules.

Incidentally, we may note that comparator modules are fairly easy to manu-
facture, from an engineering point of view. For example, assume that the lines
contain binary numbers, where one bit enters each module per unit time, most
signiĄcant bit Ąrst. Each comparator module has three states, and behaves as
follows:

Time t Time (t + 1)
State Inputs State Outputs

0 0 0 0 0 0
0 0 1 1 0 1
0 1 0 2 0 1
0 1 1 0 1 1
1 x y 1 x y
2 x y 2 y x

Initially all modules are in state 0 and are outputting 0 0. A module enters
either state 1 or state 2 as soon as its inputs differ. Numbers that begin to be
transmitted at the top of Fig. 43(b) at time t will begin to be output at the
bottom, in sorted order, at time t + 3, if a suitable delay element is attached to
the K ′

1 and K ′
4 lines.

K4 K
′

4

K3 K
′

3

K2 K
′

2

K1 K
′

1

1

1 1 1 1 1

2 2

2 2 2

2

3 3

3 3

3

3

4

4 4 4

4 4

Fig. 44. Another way to rep-
resent the network of Fig. 43,
as it sorts the sequence of four
numbers ⟨4, 1, 3, 2⟩.

In order to develop the theory of sorting networks it is convenient to repre-
sent them in a slightly different way, illustrated in Fig. 44. Here numbers enter at
the left, and comparator modules are represented by vertical connections between
two lines; each comparator causes an interchange of its inputs, if necessary, so
that the larger number sinks to the lower line after passing the comparator. At
the right of the diagram all the numbers are in order from top to bottom.

222 SORTING 5.3.4

Our previous studies of optimal sorting have concentrated on minimizing
the number of comparisons, with little or no regard for any underlying data
movement or for the complexity of the decision structure that may be necessary.
In this respect sorting networks have obvious advantages, since the data can be
maintained in n locations and the decision structure is Şstraight lineŤ Ů there
is no need to remember the results of previous comparisons, since the plan is
immutably Ąxed in advance. Another important advantage of sorting networks
is that we can usually overlap several of the operations, performing them simul-
taneously (on a suitable machine). For example, the Ąve steps in Figs. 43 and 44
can be collapsed into three when simultaneous nonoverlapping comparisons are
allowed, since the Ąrst two and the second two can be combined. We shall exploit
this property of sorting networks later in this section. Thus sorting networks can
be very useful, although it is not at all obvious that efficient n-element sorting
networks can be constructed for large n; we may Ąnd that many additional
comparisons are needed in order to keep the decision structure oblivious.

xn+1

xn

xn−1

x3

x2

x1

x
′

n+1

x
′

n

x
′

n−1

x
′

3

x
′

2

x
′

1

Sorting
network

for
n

elements

.

.

.
.
.
.

.

.

.

xn+1

xn

xn−1

x3

x2

x1

x
′

n+1

x
′

n

x
′

n−1

x
′

3

x
′

2

x
′

1

Sorting
network

for
n

elements

.

.

.
.
.
.

.

.

.

(a) (b)

Fig. 45. Making (n+ 1)-sorters from n-sorters: (a) insertion, (b) selection.

There are two simple ways to construct a sorting network for n + 1 elements
when an n-element network is given, using either the principle of insertion or
the principle of selection. Figure 45(a) shows how the (n + 1)st element can
be inserted into its proper place after the Ąrst n elements have been sorted;
and part (b) of the Ągure shows how the largest element can be selected before
we proceed to sort the remaining ones. Repeated application of Fig. 45(a) gives
the network analog of straight insertion sorting (Algorithm 5.2.1S), and repeated
application of Fig. 45(b) yields the network analog of the bubble sort (Algorithm
5.2.2B). Figure 46 shows the corresponding six-element networks.

(a) (b)

Fig. 46. Network analogs of elementary internal sorting schemes, obtained by applying
the constructions of Fig. 45 repeatedly: (a) straight insertion, (b) bubble sort.

5.3.4 NETWORKS FOR SORTING 223

Fig. 47. With parallelism, straight insertion = bubble sort!

Notice that when we collapse either network together to allow simultaneous
operations, both methods actually reduce to the same ŞtriangularŤ (2n − 3)-
stage procedure (Fig. 47).

It is easy to prove that the network of Figs. 43 and 44 will sort any set
of four numbers into order, since the Ąrst four comparators route the smallest
and the largest elements to the correct places, and the last comparator puts the
remaining two elements in order. But it is not always so easy to tell whether or
not a given network will sort all possible input sequences; for example, both

and

are valid 4-element sorting networks, but the proofs of their validity are not triv-
ial. It would be sufficient to test each n-element network on all n! permutations
of n distinct numbers, but in fact we can get by with far fewer tests:

Theorem Z (Zero-one principle). If a network with n input lines sorts all
2n sequences of 0s and 1s into nondecreasing order, it will sort any arbitrary
sequence of n numbers into nondecreasing order.

Proof. (This is a special case of BouriciusŠs theorem, exercise 5.3.1Ű12.) If f(x)
is any monotonic function, with f(x) ≤ f(y) whenever x ≤ y, and if a given
network transforms ⟨x1, . . . , xn⟩ into ⟨y1, . . . , yn⟩, then it is easy to see that the
network will transform ⟨f(x1), . . . , f(xn)⟩ into ⟨f(y1), . . . , f(yn)⟩. If yi > yi+1

for some i, consider the monotonic function f that takes all numbers < yi into 0
and all numbers ≥ yi into 1; this deĄnes a sequence ⟨f(x1), . . . , f(xn)⟩ of 0s and
1s that is not sorted by the network. Hence if all 0Ű1 sequences are sorted, we
have yi ≤ yi+1 for 1 ≤ i < n.

The zero-one principle is quite helpful in the construction of sorting net-
works. As a nontrivial example, we can derive a generalized version of BatcherŠs
Şmerge exchangeŤ sort (Algorithm 5.2.2M). The idea is to sort m+n elements by
(i) sorting the Ąrst m and the last n independently, then (ii) applying an (m, n)-
merging network to the result. An (m, n)-merging network can be constructed
inductively as follows:

a) If m = 0 or n = 0, the network is empty. If m = n = 1, the network is a
single comparator module.

b) If mn > 1, let the sequences to be merged be ⟨x1, . . . , xm⟩ and ⟨y1, . . . , yn⟩.
Merge the Şodd sequencesŤ ⟨x1, x3, . . . , x2⌈m/2⌉−1⟩ and ⟨y1, y3, . . . , y2⌈n/2⌉−1⟩,

224 SORTING 5.3.4

x1

x2

x3

x4

y1

y2

y3

y4

y5

y6

y7

S
o
r
t
e
d

S
o
r
t
e
d

z1

z2

z3

z4

z5

z6

z7

z8

z9

z10

z11

S
o
r
t
e
d

v1

v2

v3

v4

v5

v6

w1

w2

w3

w4

w5

Fig. 48. The odd-even merge, when m = 4 and n = 7.

obtaining the sorted result ⟨v1, v2, . . . , v⌈m/2⌉+⌈n/2⌉⟩; also merge the Şeven
sequencesŤ ⟨x2, x4, . . . , x2⌊m/2⌋⟩ and ⟨y2, y4, . . . , y2⌊n/2⌋⟩, obtaining the sorted
result ⟨w1, w2, . . . , w⌊m/2⌋+⌊n/2⌋⟩. Finally, apply the comparison-interchange
operations

w1 :v2, w2 :v3, w3 :v4, . . . , w⌊m/2⌋+⌊n/2⌋ :v∗ (1)

to the sequence

⟨v1, w1, v2, w2, v3, w3, . . . , v⌊m/2⌋+⌊n/2⌋, w⌊m/2⌋+⌊n/2⌋, v∗, v∗∗⟩; (2)

the result will be sorted(!). Here v∗ = v⌊m/2⌋+⌊n/2⌋+1 does not exist if both m
and n are even, and v∗∗ = v⌊m/2⌋+⌊n/2⌋+2 does not exist unless both m and n are
odd; the total number of comparator modules indicated in (1) is ⌊(m+n−1)/2⌋.
BatcherŠs (m, n)-merging network is called the odd-even merge. A (4, 7)-merge
constructed according to these principles is illustrated in Fig. 48.

To prove that this rather strange merging procedure actually works, when
mn > 1, we use the zero-one principle, testing it on all sequences of 0s and 1s.
After the initial m-sort and n-sort, the sequence ⟨x1, . . . , xm⟩ will consist of k
0s followed by m − k 1s, and the sequence ⟨y1, . . . , yn⟩ will be l 0s followed by
n− l 1s, for some k and l. Hence the sequence ⟨v1, v2, . . . ⟩ will consist of exactly
⌈k/2⌉ + ⌈l/2⌉ 0s, followed by 1s; and ⟨w1, w2, . . . ⟩ will consist of ⌊k/2⌋ + ⌊l/2⌋
0s, followed by 1s. Now hereŠs the point:

⌈k/2⌉+ ⌈l/2⌉

−

⌊k/2⌋+ ⌊l/2⌋

= 0, 1, or 2. (3)

If this difference is 0 or 1, the sequence (2) is already in order, and if the
difference is 2 one of the comparison-interchanges in (1) will Ąx everything up.
This completes the proof. (Note that the zero-one principle reduces the merging
problem from a consideration of

m+n
m

cases to only (m + 1)(n + 1), represented

by the two parameters k and l.)
Let C(m, n) be the number of comparator modules used in the odd-even

merge for m and n, not counting the initial m-sort and n-sort; we have

C(m, n) =

mn, if mn≤ 1;

C

⌈m/2⌉, ⌈n/2⌉

+C

⌊m/2⌋, ⌊n/2⌋

+

(m+n−1)/2

, if mn > 1.

(4)

5.3.4 NETWORKS FOR SORTING 225

This is not an especially simple function of m and n, in general, but by noting
that C(1, n) = n and that

C(m + 1, n + 1)− C(m, n)

= 1 + C

⌊m/2⌋+ 1, ⌊n/2⌋+ 1

− C

⌊m/2⌋, ⌊n/2⌋

, if mn ≥ 1,

we can derive the relation

C(m + 1, n + 1)− C(m, n) = ⌊lg m⌋+ 2 + ⌊n/2⌊lg m⌋+1⌋, if n ≥ m ≥ 1. (5)

Consequently

C(m, m + r) = B(m) + m + Rm(r), for m ≥ 0 and r ≥ 0, (6)

where B(m) is the Şbinary insertionŤ function
m

k=1⌈lg k⌉ of Eq. 5.3.1Ű(3), and
where Rm(r) denotes the sum of the Ąrst m terms of the series

r + 0
1

+

r + 1
2

+

r + 2
4

+

r + 3
4

+

r + 4
8

+ · · ·+

r + j

2⌊lg j⌋+1

+ · · · . (7)

In particular, when r = 0 we have the important special case

C(m, m) = B(m) + m. (8)

Furthermore if t = ⌈lg m⌉,
Rm(r + 2t) = Rm(r) + 1 · 2t−1 + 2 · 2t−2 + · · ·+ 2t−1 · 20 + m

= Rm(r) + m + t · 2t−1.

Hence C(m, n + 2t)− C(m, n) has a simple form, and

C(m, n) =

t

2
+

m

2t

n + O(1), for m Ąxed, n→∞, t = ⌈lg m⌉; (9)

the O(1) term is an eventually periodic function of n, with period length 2t. As
n→∞ we have C(n, n) = n lg n + O(n), by Eq. (8) and exercise 5.3.1Ű15.

Minimum-comparison networks. Let Ŝ(n) be the minimum number of
comparators needed in a sorting network for n elements; clearly Ŝ(n) ≥ S(n),
where S(n) is the minimum number of comparisons needed in a not-necessarily-
oblivious sorting procedure (see Section 5.3.1). We have Ŝ(4) = 5 = S(4), so
the new constraint causes no loss of efficiency when n = 4; but already when
n = 5 it turns out that Ŝ(5) = 9 while S(5) = 7. The problem of determining
Ŝ(n) seems to be even harder than the problem of determining S(n); even the
asymptotic behavior of Ŝ(n) is known only in a very weak sense.

It is interesting to trace the history of this problem, since each step was
forged with some difficulty. Sorting networks were Ąrst explored by P. N. Arm-
strong, R. J. Nelson, and D. G. OŠConnor, about 1954 [see U.S. Patent 3029413];
in the words of their patent attorney, ŞBy the use of skill, it is possible to
design economical n-line sorting switches using a reduced number of two-line
sorting switches.Ť After observing that Ŝ(n + 1) ≤ Ŝ(n) + n, they gave special
constructions for 4 ≤ n ≤ 8, using 5, 9, 12, 18, and 19 comparators, respectively.

226 SORTING 5.3.4

Then Nelson worked together with R. C. Bose to show that Ŝ(2n) ≤ 3n − 2n

for all n; hence Ŝ(n) = O(nlg 3) = O(n1.585). Bose and Nelson published their
interesting method in JACM 9 (1962), 282Ű296, where they conjectured that it
was best possible; T. N. Hibbard [JACM 10 (1963), 142Ű150] found a similar
but slightly simpler construction that used the same number of comparisons,
thereby reinforcing the conjecture.

In 1964, R. W. Floyd and D. E. Knuth found a new way to approach the
problem, leading to an asymptotic bound of the form Ŝ(n) = O

n1+c/

√
log n

.

Working independently, K. E. Batcher discovered the general merging strategy
outlined above. Using a number of comparators deĄned by the recursion

c(1) = 0, c(n) = c

⌈n/2⌉

+ c

⌊n/2⌋

+ C

⌈n/2⌉, ⌊n/2⌋

for n ≥ 2, (10)

he proved (see exercise 5.2.2Ű14) that

c(2t) = (t2 − t + 4)2t−2 − 1;

consequently Ŝ(n) = O

n(log n)2

. Neither Floyd and Knuth nor Batcher pub-

lished their constructions until some time later [Notices of the Amer. Math. Soc.
14 (1967), 283; Proc. AFIPS Spring Joint Computer Conf. 32 (1968), 307Ű314].

Several people have found ways to reduce the number of comparators used
by BatcherŠs merge-exchange construction; the following table shows the best
upper bounds currently known for Ŝ(n):

n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
c(n) = 0 1 3 5 9 12 16 19 26 31 37 41 48 53 59 63
Ŝ(n) ≤ 0 1 3 5 9 12 16 19 25 29 35 39 45 51 56 60

(11)

Since Ŝ(n) < c(n) for 8 < n ≤ 16, merge exchange is nonoptimal for all n > 8.
When n ≤ 8, merge exchange uses the same number of comparators as the
construction of Bose and Nelson. Floyd and Knuth proved in 1964Ű1966 that
the values listed for Ŝ(n) are exact when n ≤ 8 [see A Survey of Combinatorial
Theory (North-Holland, 1973), 163Ű172]; M. Codish, L. Cruz-Filipe, M. Frank,
and P. Schneider-Kamp [arXiv:1405.5754 [cs.DM] (2014), 17 pages] have also
veriĄed this when n ≤ 10. The remaining values of Ŝ(n) are still not known.

Constructions that lead to the values in (11) are shown in Fig. 49. The
network for n = 9, based on an interesting three-way merge, was found by R. W.
Floyd in 1964; its validity can be established by using the general principle
described in exercise 27. The network for n = 10 was discovered by A. Waksman
in 1969, by regarding the inputs as permutations of {1, 2, . . . , 10} and trying to
reduce as much as possible the number of values that can appear on each line at
a given stage, while maintaining some symmetry.

The network shown for n = 13 has quite a different pedigree: Hugues Juillé
[Lecture Notes in Comp. Sci. 929 (1995), 246Ű260] used a computer program
to construct it, by simulating an evolutionary process of genetic breeding. The
network exhibits no obvious rhyme or reason, but it works Ů and itŠs shorter
than any other construction devised so far by human ratiocination.

A 62-comparator sorting network for 16 elements was found by G. Shapiro
in 1969, and this was rather surprising since BatcherŠs method (63 comparisons)

5.3.4 NETWORKS FOR SORTING 227

n=9 25 modules, delay 9
n=10 29 modules, delay 9

n=12 39 modules, delay 9
n=13 45 modules, delay 10

n=16 60 modules, delay 10

Fig. 49. Efficient sorting networks.

would appear to be at its best when n is a power of 2. Soon after hearing of
ShapiroŠs construction, M. W. Green tripled the amount of surprise by Ąnding
the 60-comparison sorter in Fig. 49. The Ąrst portion of GreenŠs construction
is fairly easy to understand; after the 32 comparison/interchanges to the left of
the dotted line have been made, the lines can be labeled with the 16 subsets of
{a, b, c, d}, in such a way that the line labeled s is known to contain a number less
than or equal to the contents of the line labeled t whenever s is a subset of t. The
state of the sort at this point is discussed further in exercise 32. Comparisons
made on subsequent levels of GreenŠs network become increasingly mysterious,
however, and as yet nobody has seen how to generalize the construction in order
to obtain correspondingly efficient networks for higher values of n.

Shapiro and Green also discovered the network shown for n = 12. When
n = 11, 14, or 15, good networks can be found by removing the bottom line of
the network for n + 1, together with all comparators touching that line.

228 SORTING 5.3.4

The best sorting network currently known for 256 elements, due to D. Van
Voorhis, shows that Ŝ(256) ≤ 3651, compared to 3839 by BatcherŠs method.
[See R. L. Drysdale and F. H. Young, SICOMP 4 (1975), 264Ű270.] As n→∞,
it turns out in fact that Ŝ(n) = O(n log n); this astonishing upper bound was
proved by Ajtai, Komlós, and Szemerédi in Combinatorica 3 (1983), 1Ű19. The
networks they constructed are not of practical interest, since many comparators
were introduced just to save a factor of log n; BatcherŠs method is much better,
unless n exceeds the total memory capacity of all computers on earth! But the
theorem of Ajtai, Komlós, and Szemerédi does establish the true asymptotic
growth rate of Ŝ(n), up to a constant factor.

Minimum-time networks. In physical realizations of sorting networks, and
on parallel computers, it is possible to do nonoverlapping comparison-exchanges
at the same time; therefore it is natural to try to minimize the delay time. A
momentŠs reĆection shows that the delay time of a sorting network is equal to
the maximum number of comparators in contact with any ŞpathŤ through the
network, if we deĄne a path to consist of any left-to-right route that possibly
switches lines at the comparators. We can put a sequence number on each
comparator indicating the earliest time it can be executed; this is one higher than
the maximum of the sequence numbers of the comparators that occur earlier on
its input lines. (See Fig. 50(a); part (b) of the Ągure shows the same network
redrawn so that each comparison is done at the earliest possible moment.)

1 2 3 1 2 3 4 4 3 5 6 6

(a)

1 2 3 4 5 6

(b)

Fig. 50. Doing each comparison at the earliest possible time.

BatcherŠs odd-even merging network described above takes TB(m, n) units
of time, where TB(m, 0) = TB(0, n) = 0, TB(1, 1) = 1, and

TB(m, n) = 1 + max

TB(⌊m/2⌋, ⌊n/2⌋), TB(⌈m/2⌉, ⌈n/2⌉)

for mn ≥ 2.

We can use these relations to prove that TB(m, n+1) ≥ TB(m, n), by induction;
hence TB(m, n) = 1 + TB

⌈m/2⌉, ⌈n/2⌉

for mn ≥ 2, and it follows that

TB(m, n) = 1 +

lg max(m, n)

, for mn ≥ 1. (12)

Exercise 5 shows that BatcherŠs sorting method therefore has a delay time of

1 + ⌈lg n⌉
2

. (13)

Let T̂ (n) be the minimum achievable delay time in any sorting network for
n elements. It is possible to improve some of the networks described above so

5.3.4 NETWORKS FOR SORTING 229

n=6 12 modules, delay 5

n=9 25 modules, delay 7

n=10 31 modules, delay 7
n=11 35 modules, delay 8

n=12 40 modules, delay 8

n=16 61 modules, delay 9

Fig. 51. Sorting networks that are the fastest known, when comparisons are performed
in parallel.

that they have smaller delay time but use no more comparators, as shown for
n = 6, n = 9, and n = 11 in Fig. 51, and for n = 10 in exercise 7. Still smaller
delay time can be achieved if we add one or two extra comparator modules, as
shown in the remarkable networks for n = 10, 12, and 16 in Fig. 51. These
constructions yield the following upper bounds on T̂ (n) for small n:

n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
T̂ (n) ≤ 0 1 3 3 5 5 6 6 7 7 8 8 9 9 9 9

(14)

In fact all of the values given here are known to be exact (see the answer to
exercise 4). The networks in Fig. 51 merit careful study, because it is by no
means obvious that they always sort. Some of these networks were discovered in
1969Ű1971 by G. Shapiro (n = 6, 12) and D. Van Voorhis (n = 10, 16); the others
were found in 2001 by Loren Schwiebert, using genetic methods (n = 9, 11).

230 SORTING 5.3.4

Merging networks. Let M̂(m, n) denote the minimum number of comparator
modules needed in a network that merges m elements x1 ≤ · · · ≤ xm with n
elements y1 ≤ · · · ≤ yn to form the sorted sequence z1 ≤ · · · ≤ zm+n. At present
no merging networks have been discovered that are superior to the odd-even
merge described above; hence the function C(m, n) in (6) represents the best
upper bound known for M̂(m, n).

R. W. Floyd has discovered an interesting way to Ąnd lower bounds for this
merging problem.

Theorem F. For all n ≥ 1, we have M̂(2n, 2n) ≥ 2M̂(n, n) + n.

Proof. Consider a network with M̂(2n, 2n) comparator modules, capable of
sorting all input sequences ⟨z1, . . . , z4n⟩ such that z1 ≤ z3 ≤ · · · ≤ z4n−1 and
z2 ≤ z4 ≤ · · · ≤ z4n. We may assume that each module replaces (zi, zj) by
min(zi, zj), max(zi, zj)

, for some i < j (see exercise 16). The comparators can

therefore be divided into three classes:

a) i ≤ 2n and j ≤ 2n.

b) i > 2n and j > 2n.

c) i ≤ 2n and j > 2n.

Class (a) must contain at least M̂(n, n) comparators, since z2n+1, z2n+2, . . . , z4n

may be already in their Ąnal position when the merge starts; similarly, there
are at least M̂(n, n) comparators in class (b). Furthermore the input sequence
⟨0, 1, 0, 1, . . . , 0, 1⟩ shows that class (c) contains at least n comparators, since n
zeros must move from {z2n+1, . . . , z4n} to {z1, . . . , z2n}.

Repeated use of Theorem F proves that M̂(2m, 2m) ≥ 1
2 (m + 2)2m; hence

M̂(n, n) ≥ 1
2 n lg n+O(n). We know from Theorem 5.3.2M that merging without

the network restriction requires only M(n, n) = 2n − 1 comparisons; hence we
have proved that merging with networks is intrinsically harder than merging in
general.

The odd-even merge shows that

M̂(m, n) ≤ C(m, n) = 1
2 (m + n) lg min(m, n) + O(m + n).

P. B. Miltersen, M. Paterson, and J. Tarui [JACM 43 (1996), 147Ű165] have
improved Theorem F by establishing the lower bound

M̂(m, n) ≥ 1
2

(m + n) lg(m + 1)−m/ ln 2

for 1 ≤ m ≤ n.

Consequently M̂(m, n) = 1
2 (m + n) lg min(m, n) + O(m + n).

The exact formula M̂(2, n) = C(2, n) =

3
2 n

has been proved by A. C. Yao

and F. F. Yao [JACM 23 (1976), 566Ű571]. The value of M̂(m, n) is also known
to equal C(m, n) for m = n ≤ 5; see exercise 9.

Bitonic sorting. When simultaneous comparisons are allowed, we have seen
in Eq. (12) that the odd-even merge uses

lg(2n)

units of delay time, when

1 ≤ m ≤ n. Batcher has devised another type of network for merging, called a

5.3.4 NETWORKS FOR SORTING 231

z7

z6

z5

z4

z3

z2

z1

Fig. 52. BatcherŠs bitonic sorter of order 7.

bitonic sorter, which lowers the delay time to

lg(m + n)

although it requires

more comparator modules. [See U.S. Patent 3428946 (1969).]
Let us say that a sequence ⟨z1, . . . , zp⟩ of p numbers is bitonic if z1 ≥ · · · ≥

zk ≤ · · · ≤ zp for some k, 1 ≤ k ≤ p. (Compare this with the ordinary deĄnition
of ŞmonotonicŤ sequences.) A bitonic sorter of order p is a comparator network
that is capable of sorting any bitonic sequence of length p into nondecreasing
order. The problem of merging x1 ≤ · · · ≤ xm with y1 ≤ · · · ≤ yn is a special
case of the bitonic sorting problem, since merging can be done by applying a
bitonic sorter of order m + n to the sequence ⟨xm, . . . , x1, y1, . . . , yn⟩.

Notice that when a sequence ⟨z1, . . . , zp⟩ is bitonic, so are all of its sub-
sequences. Shortly after Batcher discovered the odd-even merging networks, he
observed that we can construct a bitonic sorter of order p in an analogous way,
by Ąrst sorting the bitonic subsequences ⟨z1, z3, z5, . . . ⟩ and ⟨z2, z4, z6, . . . ⟩ inde-
pendently, then comparing and interchanging z1 :z2, z3 :z4, (See exercise 10
for a proof.) If C ′(p) is the corresponding number of comparator modules, we
have

C ′(p) = C ′⌈p/2⌉

+ C ′⌊p/2⌋

+ ⌊p/2⌋, for p ≥ 2; (15)

and the delay time is clearly ⌈lg p⌉. Figure 52 shows the bitonic sorter of order 7
constructed in this way: It can be used as a (3, 4)- as well as a (2, 5)-merging
network, with three units of delay; the odd-even merge for m = 2 and n = 5
saves one comparator but adds one more level of delay.

BatcherŠs bitonic sorter of order 2t is particularly interesting; it consists of
t levels of 2t−1 comparators each. If we number the input lines z0, z1, . . . , z2t−1,
element zi is compared to zj on level l if and only if i and j differ only in the
lth most signiĄcant bit of their binary representations. This simple structure
leads to parallel sorting networks that are as fast as merge exchange, Algorithm
5.2.2M, but considerably easier to implement. (See exercises 11 and 13.)

Bitonic merging is optimum, in the sense that no parallel merging method
based on simultaneous disjoint comparisons can sort in fewer than

lg(m + n)

stages, whether it works obliviously or not. (See exercise 46.) Another way to
achieve this optimum time, with fewer comparisons but a slightly more compli-
cated control logic, is discussed in exercise 57.

When 1 ≤ m ≤ n, the nth smallest output of an (m, n)-merging network
depends on 2m + [m < n] of the inputs (see exercise 29). If it can be computed
by comparators with l levels of delay, it involves at most 2l of the inputs; hence
2l ≥ 2m + [m < n], and l ≥

lg(2m + [m < n])

. Batcher has shown [Report

GER-14122 (Akron, Ohio: Goodyear Aerospace Corporation, 1968)] that this

232 SORTING 5.3.4

y6

y5

y4

y3

y2

y1

x1

z7

z6

z5

z4

z3

z2

z1

Fig. 53. Merging one item with six others, with multiple fanout, in order to achieve
the minimum possible delay time.

minimum delay time is achievable if we allow Şmultiple fanoutŤ in the network,
namely the splitting of lines so that the same number is fed to many modules
at once. For example, one of his networks, capable of merging one item with n
others after only two levels of delay, is illustrated for n = 6 in Fig. 53. Of course,
networks with multiple fanout do not conform to our conventions, and it is fairly
easy to see that any (1, n)-merging network without multiple fanout must have
a delay time of lg(n + 1) or more. (See exercise 45.)

Selection networks. We can also use networks to approach the problem of
Section 5.3.3. Let Ût(n) denote the minimum number of comparators required
in a network that moves the t largest of n distinct inputs into t speciĄed output
lines; the numbers are allowed to appear in any order on these output lines.
Let V̂t(n) denote the minimum number of comparators required to move the tth
largest of n distinct inputs into a speciĄed output line; and let Ŵt(n) denote the
minimum number of comparators required to move the t largest of n distinct
inputs into t speciĄed output lines in nondecreasing order. It is not difficult to
deduce (see exercise 17) that

Ût(n) ≤ V̂t(n) ≤ Ŵt(n). (16)

Suppose Ąrst that we have 2t elements ⟨x1, . . . , x2t⟩ and we wish to select the
largest t. V. E. Alekseev [Kibernetika 5, 5 (1969), 99Ű103] has observed that we
can do the job by Ąrst sorting ⟨x1, . . . , xt⟩ and ⟨xt+1, . . . , x2t⟩, then comparing
and interchanging

x1 :x2t, x2 :x2t−1, . . . , xt :xt+1. (17)

Since none of these pairs can contain more than one of the largest t elements
(why?), AlekseevŠs procedure must select the largest t elements.

If we want to select the t largest of nt elements, we can apply AlekseevŠs
procedure n− 1 times, eliminating t elements each time; hence

Ût(nt) ≤ (n− 1)

2Ŝ(t) + t

. (18)

5.3.4 NETWORKS FOR SORTING 233

(1,8)

(1,8)

(1,8)

(1,8)

(1,8)

(1,8)

(1,8)

(1,8)

(2,8)

(1,7)

(2,8)

(1,7)

(2,8)

(1,7)

(2,8)

(1,7)

(4,8)

(2,7)

(2,7)

(1,5)

(4,8)

(2,7)

(2,7)

(1,5)

(4,8)

(3,7)

(2,6)

(1,5)

(4,8)

(3,7)

(2,6)

(1,5)

(5,8)

(1,4)

(5,8)

(1,4)

(5,7)

(2,4)

(5,7)

(2,4)

Fig. 54. Separating the largest four from the smallest four. (Numbers on these lines
are used in the proof of Theorem A.)

Alekseev also derived an interesting lower bound for the selection problem:

Theorem A. Ût(n) ≥ (n− t)

lg(t + 1)

.

Proof. It is most convenient to consider the equivalent problem of selecting the
smallest t elements. We can attach numbers (l, u) to each line of a comparator
network, as shown in Fig. 54, where l and u denote respectively the minimum
and maximum values that can appear at that position when the input is a
permutation of {1, 2, . . . , n}. Let li and lj be the lower bounds on lines i and j
before a comparison of xi :xj , and let l′i and l′j be the corresponding lower bounds
after the comparison. It is obvious that l′i = min(li, lj); exercise 24 proves the
(nonobvious) relation

l′j ≤ li + lj . (19)

0

0

0

0

0

0

0

0

1

0

1

0

1

0

1

0

2

1

1

0

2

1

1

0

2

2

1

0

2

2

1

0

3

0

3

0

3

1

3

1

Fig. 55. Another interpretation for the network of Fig. 54.

Now let us reinterpret the network operations in another way (see Fig. 55):
All input lines are assumed to contain zero, and each ŞcomparatorŤ now places
the smaller of its inputs on the upper line and the larger plus one on the lower
line. The resulting numbers ⟨m1, m2, . . . , mn⟩ have the property that

2mi ≥ li (20)

234 SORTING 5.3.4

Table 1

COMPARISONS NEEDED IN SELECTION NETWORKS (Ût(n), V̂t(n), Ŵt(n))
t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

n = 1 (0, 0, 0)
n = 2 (1, 1, 1) (0, 1, 1)
n = 3 (2, 2, 2) (2, 3, 3) (0, 2, 3)
n = 4 (3, 3, 3) (4, 5, 5) (3, 5, 5) (0, 3, 5)
n = 5 (4, 4, 4) (6, 7, 7) (6, 7, 8) (4, 7, 9) (0, 4, 9)
n = 6 (5, 5, 5) (8, 9, 9) (8, 10, 10) (8, 10, 12) (5, 9, 12) (0, 5, 12)

throughout the network, since this holds initially and it is preserved by each
comparator because of (19). Furthermore, the Ąnal value of

m1 + m2 + · · ·+ mn

is the total number of comparators in the network, since each comparator adds
unity to this sum.

If the network selects the smallest t numbers, n − t of the li are ≥ t + 1;
hence n− t of the mi must be ≥

lg(t + 1)

.

The lower bound in Theorem A turns out to be exact when t = 1 and when
t = 2 (see exercise 19). Table 1 gives some values of Ût(n), V̂t(n), and Ŵt(n) for
small t and n. Andrew Yao [Ph.D. thesis, U. of Illinois (1975)] determined the
asymptotic behavior of Ût(n) for Ąxed t, by showing that Û3(n) = 2n+lg n+O(1)
and Ût(n) = n

lg(t + 1)

+ O

(log n)⌊lg t⌋ as n→∞; the minimum delay time

is lg n + ⌊lg t⌋ lg lg n + O(log log log n). N. Pippenger [SICOMP 20 (1991), 878Ű
887] has proved by nonconstructive methods that for any ϵ > 0 there exist
selection networks with Û⌈n/2⌉(n) ≤ (2+ ϵ)n lg n, whenever n is sufficiently large
(depending on ϵ).

EXERCISES — First Set

Several of the following exercises develop the theory of sorting networks in detail, and
it is convenient to introduce some notation. We let [i :j] stand for a comparison/
interchange module. A network with n inputs and r comparator modules is written
[i1 :j1][i2 :j2] . . . [ir :jr], where each of the iŠs and jŠs is ≤ n; we shall call it an n-network

for short. A network is called standard if iq < jq for 1 ≤ q ≤ r. Thus, for example,
Fig. 44 on page 221 depicts a standard 4-network, denoted by the comparator sequence
[1 :2][3 :4][1 :3][2 :4][2 :3].

The textŠs convention for drawing network diagrams represents only standard
networks; all comparators [i :j] are represented by a line from i to j, where i < j. When
nonstandard networks must be drawn, we can use an arrow from i to j, indicating that
the larger number goes to the point of the arrow. For example, Fig. 56 illustrates a
nonstandard network for 16 elements, whose comparators are [1 :2][4 :3][5 :6][8 :7]
Exercise 11 proves that Fig. 56 is a sorting network.

If x = ⟨x1, . . . , xn⟩ is an n-vector and α is an n-network, we write xα for the
vector of numbers ⟨(xα)1, . . . , (xα)n⟩ produced by the network. For brevity, we also let
a∨b = max(a, b), a∧b = min(a, b), ā = 1−a. Thus (x[i :j])i = xi∧xj , (x[i :j])j = xi∨xj ,

5.3.4 NETWORKS FOR SORTING 235

Stage 1
︷ ︸︸ ︷

Stage 2
︷ ︸︸ ︷

Stage 3
︷ ︸︸ ︷

Stage 4
︷ ︸︸ ︷

Fig. 56. A nonstandard sorting network based on bitonic sorting.

and (x[i :j])k = xk when i ̸= k ̸= j. We say α is a sorting network if (xα)i ≤ (xα)i+1

for all x and for 1 ≤ i < n.
The symbol e(i) stands for a vector that has 1 in position i, 0 elsewhere; thus

(e(i))j = δij . The symbol Dn stands for the set of all 2n n-place vectors of 0s and 1s,
and Pn stands for the set of all n! vectors that are permutations of {1, 2, . . . , n}. We
write x ∧ y and x ∨ y for the vectors ⟨x1 ∧ y1, . . . , xn ∧ yn⟩ and ⟨x1 ∨ y1, . . . , xn ∨ yn⟩,
and we write x ⊆ y if xi ≤ yi for all i. Thus x ⊆ y if and only if x∨ y = y if and only if
x∧ y = x. If x and y are in Dn, we say that x covers y if x = (y ∨ e(i)) ̸= y for some i.
Finally for all x in Dn we let ν(x) be the number of 1s in x, and ζ(x) the number of 0s;
thus ν(x) + ζ(x) = n.

1. [20] Draw a network diagram for the odd-even merge when m = 3 and n = 5.

2. [22] Show that V. PrattŠs sorting algorithm (exercise 5.2.1Ű30) leads to a sorting
network for n elements that has approximately (log2 n)(log3 n) levels of delay. Draw
the corresponding network for n = 12.

3. [M20] (K. E. Batcher.) Find a simple relation between C(m,m−1) and C(m,m).

x 4. [M23] Prove that T̂ (6) = 5.

5. [M16] Prove that (13) is the delay time associated with the sorting network
outlined in (10).

6. [28] Let T (n) be the minimum number of stages needed to sort n distinct numbers
by making simultaneous disjoint comparisons (without necessarily obeying the network
constraint); such comparisons can be represented as a node containing a set of pairs
{i1 :j1, i2 :j2, . . . , ir :jr} where i1, j1, i2, j2, . . . , ir, jr are distinct, with 2r branches below
this node for the respective cases

⟨Ki1
< Kj1

, Ki2
< Kj2

, . . . , Kir < Kjr ⟩,
⟨Ki1

> Kj1
, Ki2

< Kj2
, . . . , Kir < Kjr ⟩, etc.

Prove that T (5) = T (6) = 5.

236
S

O
R

T
IN

G
5.3.4

0 0 0 0 0 0 + + + ++ + +

0 0 0 0 0 0 + + + +− − −

0 0 0 0 0 0 + + + ++ + +

0 0 0 0 0 0 + + + +− − −

0 0 0 0 0 0 + + + ++ + +

0 0 0 0 0 0 + + + +− − −

0 0 0 0 0 0 + + + ++ + +

0 0 0 0 0 0 + + + +− − −

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

+

−

Stage 1
︷ ︸︸ ︷

Stage 2
︷ ︸︸ ︷

Stage 3
︷ ︸︸ ︷

Stage 4
︷ ︸︸ ︷

z0 z0

z1 z1

z2 z2

z3 z3

z4 z4

z5 z5

z6 z6

z7 z7

z8 z8

z9 z9

z10 z10

z11 z11

z12 z12

z13 z13

z14 z14

z15 z15

0

x

y

x

y
+

x

y

min(x, y)

max(x, y)
−

x

y

max(x, y)

min(x, y)

Fig. 57. Sorting 16 elements with perfect shuffles.

5.3.4 NETWORKS FOR SORTING 237

7. [25] Show that if the Ąnal three comparators of the network for n = 10 in Fig. 49
are replaced by the ŞweakerŤ sequence [5 :6][4 :5][6 :7], the network will still sort.

8. [M20] Prove that M̂(m1+m2, n1+n2) ≥ M̂(m1, n1) + M̂(m2, n2) + min(m1, n2),
for m1,m2, n1, n2 ≥ 0.

9. [M25] (R. W. Floyd.) Prove that M̂(3, 3) = 6, M̂(4, 4) = 9, M̂(5, 5) = 13.

10. [M22] Prove that BatcherŠs bitonic sorter, as deĄned in the remarks preceding
(15), is valid. [Hint: It is only necessary to prove that all sequences consisting of k 1s
followed by l 0s followed by n− k − l 1s will be sorted.]

11. [M23] Prove that BatcherŠs bitonic sorter of order 2t will not only sort sequences
⟨z0, z1, . . . , z2t−1⟩ for which z0 ≥ · · · ≥ zk ≤ · · · ≤ z2t−1, it also will sort any sequence
for which z0 ≤ · · · ≤ zk ≥ · · · ≥ z2t−1. [As a consequence, the network in Fig. 56 will
sort 16 elements, since each stage consists of bitonic sorters or reverse-order bitonic
sorters, applied to sequences that have been sorted in opposite directions.]

12. [M20] Prove or disprove: If x and y are bitonic sequences of the same length, so
are x ∨ y and x ∧ y.

x 13. [24] (H. S. Stone.) Show that a sorting network for 2t elements can be constructed
by following the pattern illustrated for t = 4 in Fig. 57. Each of the t2 steps in this
scheme consists of a Şperfect shuffleŤ of the Ąrst 2t−1 elements with the last 2t−1,
followed by simultaneous operations performed on 2t−1 pairs of adjacent elements.
Each of the latter operations is either Ş0Ť (no operation), Ş+Ť (a standard comparator
module), or Ş−Ť (a reverse comparator module). The sorting proceeds in t stages of
t steps each; during the last stage all operations are Ş+Ť. During stage s, for s < t, we
do t−s steps in which all operations are Ş0Ť, followed by s steps in which the operations
within step q consist alternately of 2q−1 Ş+Ť followed by 2q−1 Ş−Ť, for q = 1, 2, . . . , s.

[Note that this sorting scheme could be performed by a fairly simple device whose
circuitry performs one Şshuffle-and-operateŤ step and feeds the output lines back into
the input. The Ąrst three steps in Fig. 57 could of course be eliminated; they have
been retained only to make the pattern clear. Stone notes that the same pattern
Şshuffle/operateŤ occurs in several other algorithms, such as the fast Fourier transform
(see 4.6.4Ű(40)).]

x 14. [M27] (V. E. Alekseev.) Let α = [i1 :j1] . . . [ir :jr] be an n-network; for 1 ≤ s ≤ r
we deĄne αs = [i′1 :j′1] . . . [i′s−1 :j′s−1][is :js] . . . [ir :jr], where the i′k and j′k are obtained
from ik and jk by changing is to js and changing js to is wherever they appear. For
example, if α = [1:2][3 :4][1 :3][2 :4][2 :3], then α4 = [1:4][3 :2][1 :3][2 :4][2 :3].

a) Prove that Dnα = Dn(αs).
b) Prove that (αs)t = (αt)s.
c) A conjugate of α is any network of the form (. . . ((αs1)s2) . . .)sk. Prove that α has

at most 2r−1 conjugates.
d) Let gα(x) = [x ∈ Dnα], and let fα(x) = (x̄i1

∨ xj1
) ∧ · · · ∧ (x̄ir ∨ xjr). Prove that

gα(x) =
{fα′(x) | α′ is a conjugate of α}.

e) Let Gα be the directed graph with vertices {1, . . . , n} and with arcs is → js for
1 ≤ s ≤ r. Prove that α is a sorting network if and only if Gα′ has an oriented
path from i to i+ 1 for 1 ≤ i < n and for all α′ conjugate to α. [This condition is
somewhat remarkable, since Gα does not depend on the order of the comparators
in α.]

15. [20] Find a nonstandard sorting network for four elements that has only Ąve
comparator modules.

238 SORTING 5.3.4

16. [M22] Prove that the following algorithm transforms any sorting network [i1 :j1]
. . . [ir :jr] into a standard sorting network of the same length:

T1. Let q be the smallest index such that iq > jq. If no such index exists, stop.

T2. Change all occurrences of iq to jq, and all occurrences of jq to iq, in all
comparators [is :js] for q ≤ s ≤ r. Return to T1.

Thus, [4:1][3:2][1:3][2:4][1:2][3:4] is Ąrst transformed into [1:4][3:2][4:3][2:1][4:2][3:1],
then [1 :4][2 :3][4 :2][3 :1][4 :3][2 :1], then [1 :4][2 :3][2 :4][3 :1][2 :3][4 :1], etc., until the
standard network [1 :4][2 :3][2 :4][1 :3][1 :2][3 :4] is obtained.

17. [M25] Let Dtn be the set of all

n
t

sequences ⟨x1, . . . , xn⟩ of 0s and 1s having

exactly t 1s. Show that Ût(n) is the minimum number of comparators needed in a
network that sorts all the elements of Dtn; V̂t(n) is the minimum number needed to
sort Dtn ∪D(t−1)n; and Ŵt(n) is the minimum number needed to sort

0≤k≤t Dkn.

x 18. [M20] Prove that a network that Ąnds the median of 2t− 1 elements requires at
least (t−1)⌈lg(t+1)⌉+⌈lg t⌉ comparator modules. [Hint: See the proof of Theorem A.]

19. [M22] Prove that Û2(n) = 2n− 4 and V̂2(n) = 2n− 3, for all n ≥ 2.

20. [28] Prove that (a) V̂3(5) = 7; (b) Û4(n) ≤ 3n− 10 for n ≥ 6.

21. [21] True or false: Inserting a new standard comparator into any standard sorting
network yields another standard sorting network.

22. [M17] Let α be any n-network, and let x and y be n-vectors.
a) Prove that x ⊆ y implies that xα ⊆ yα.
b) Prove that x ·y ≤ (xα) ·(yα), where x ·y denotes the dot product x1y1 + · · ·+xnyn.

23. [M18] Let α be an n-network. Prove that there is a permutation p ∈ Pn such
that (pα)i = j if and only if there are vectors x and y in Dn such that x covers y,
(xα)i = 1, (yα)i = 0, and ζ(y) = j.

x 24. [M21] (V. E. Alekseev.) Let α be an n-network, and for 1 ≤ k ≤ n let

lk = min{(pα)k | p ∈ Pn}, uk = max{(pα)k | p ∈ Pn}

denote the lower and upper bounds on the range of values that may appear in line k of
the output. Let l′k and u′

k be deĄned similarly for the network α′ = α[i :j]. Prove that

l′i = li ∧ lj , l′j ≤ li + lj , u′
i ≥ ui + uj − (n+ 1), u′

j = ui ∨ uj .

[Hint: Given vectors x and y in Dn with (xα)i = (yα)j = 0, ζ(x) = li, and ζ(y) = lj ,
Ąnd a vector z in Dn with (zα′)j = 0, ζ(z) ≤ li + lj .]

25. [M30] Let lk and uk be as deĄned in exercise 24. Prove that all integers between
lk and uk inclusive are in the set {(pα)k | p in Pn}.
26. [M24] (R. W. Floyd.) Let α be an n-network. Prove that one can determine the
set Dnα = {xα | x in Dn} from the set Pnα = {pα | p in Pn}; conversely, Pnα can be
determined from Dnα.

x 27. [M20] Let x and y be vectors, and let xα and yα be sorted. Prove that (xα)i ≤
(yα)j if and only if, for every choice of j elements from y, we can choose i elements
from x such that every chosen x element is ≤ some chosen y element. Use this principle
to prove that if we sort the rows of any matrix, then sort the columns, the rows will
remain in order.

5.3.4 NETWORKS FOR SORTING 239

x 28. [M20] The following diagram illustrates the fact that we can systematically write
down formulas for the contents of all lines in a sorting network in terms of the inputs:

a

b

c

d

a ∧ b

a ∨ b

c ∧ d

c ∨ d

(a ∧ b) ∧ (c ∧ d)

(a ∨ b) ∧ (c ∨ d)

(a ∧ b) ∨ (c ∧ d)

(a ∨ b) ∨ (c ∨ d)

(a ∧ b) ∧ (c ∧ d)

((a ∨ b) ∧ (c ∨ d)) ∧ ((a ∧ b) ∨ (c ∧ d))

((a ∨ b) ∧ (c ∨ d)) ∨ ((a ∧ b) ∨ (c ∧ d))

(a ∨ b) ∨ (c ∨ d)

Using the commutative laws x∧y = y∧x, x∨y = y∨x, the associative laws x∧(y∧z) =
(x∧ y)∧ z, x∨ (y ∨ z) = (x∨ y)∨ z, the distributive laws x∧ (y ∨ z) = (x∧ y)∨ (x∧ z),
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z), the absorption laws x ∧ (x ∨ y) = x ∨ (x ∧ y) = x,
and the idempotent laws x ∧ x = x ∨ x = x, we can reduce the formulas at the right
of this network to (a ∧ b ∧ c ∧ d), (a ∧ b ∧ c) ∨ (a ∧ b ∧ d) ∨ (a ∧ c ∧ d) ∨ (b ∧ c ∧ d),
(a ∧ b) ∨ (a ∧ c) ∨ (a ∧ d) ∨ (b ∧ c) ∨ (b ∧ d) ∨ (c ∧ d), and a ∨ b ∨ c ∨ d, respectively.

Prove that, in general, the tth largest element of {x1, . . . , xn} is given by the
Şelementary symmetric functionŤ

σt(x1, . . . , xn) =

{xi1

∧ xi2
∧ · · · ∧ xit | 1 ≤ i1 < i2 < · · · < it ≤ n}.

[There are

n
t

terms being ∨Šd together. Thus the problem of Ąnding minimum-cost

sorting networks is equivalent to the problem of computing the elementary symmetric
functions with a minimum of Şand/orŤ circuits, where at every stage we are required
to replace two quantities ϕ and ψ by ϕ ∧ ψ and ϕ ∨ ψ.]

29. [M20] Given that x1 ≤ x2 ≤ x3 and y1 ≤ y2 ≤ y3 ≤ y4 ≤ y5, and that z1 ≤ z2 ≤
· · · ≤ z8 is the result of merging the xŠs with the yŠs, Ąnd formulas for each of the zŠs
in terms of the xŠs and the yŠs, using the operators ∧ and ∨.

30. [HM24] Prove that any formula involving ∧ and ∨ and the independent variables
{x1, . . . , xn} can be reduced using the identities in exercise 28 to a ŞcanonicalŤ form
τ1 ∨ τ2 ∨ · · · ∨ τk, where k ≥ 1, each τi has the form

{xj | j in Si} where Si is a
subset of {1, 2, . . . , n}, and no set Si is included in Sj for i ̸= j. Prove also that two
such canonical forms are equal for all x1, . . . , xn if and only if they are identical (up to
order).

31. [M24] (R. Dedekind, 1897.) Let δn be the number of distinct canonical forms on
x1, . . . , xn in the sense of exercise 30. Thus δ1 = 1, δ2 = 4, and δ3 = 18. What is δ4?

32. [M28] (M. W. Green.) Let G1 = {00, 01, 11}, and let Gt+1 be the set of all strings
θϕψω such that θ, ϕ, ψ, ω have length 2t−1 and θϕ, ψω, θψ, and ϕω are in Gt. Let
α be the network consisting of the Ąrst four levels of the 16-sorter shown in Fig. 49.
Show that D16α = G4, and prove that it has exactly δ4 +2 elements. (See exercise 31.)

x 33. [M22] Not all δn of the functions of ⟨x1, . . . , xn⟩ in exercise 31 can appear in
comparator networks. In fact, prove that the function (x1 ∧ x2)∨ (x2 ∧ x3)∨ (x3 ∧ x4)
cannot appear as an output of any comparator network on ⟨x1, . . . , xn⟩.
34. [23] Is the following a sorting network?

240 SORTING 5.3.4

35. [20] Prove that any standard sorting network must contain each of the adjacent

comparators [i : i+1], for 1 ≤ i < n, at least once.

x 36. [22] The network of Fig. 47 involves only adjacent comparisons [i :i+1]; let us call
such a network primitive.

a) Prove that a primitive sorting network for n elements must have at least

n
2

comparators. [Hint: Consider the inversions of a permutation.]
b) (R. W. Floyd, 1964.) Let α be a primitive network for n elements, and let x be a

vector such that (xα)i > (xα)j for some i < j. Prove that (yα)i > (yα)j , where
y is the vector ⟨n, n−1, . . . , 1⟩.

c) As a consequence of (b), a primitive network is a sorting network if and only if it
sorts the single vector ⟨n, n−1, . . . , 1⟩.

37. [M22] The odd-even transposition sort for n numbers, n ≥ 3, is a network n levels
deep with 1

2
n(n− 1) comparators, arranged in a brick-like pattern as shown in Fig. 58.

(When n is even, there are two possibilities.) Such a sort is especially easy to implement
in hardware, since only two kinds of actions are performed alternatively. Prove that
such a network is, in fact, a valid sorting network. [Hint: See exercise 36.]

n=5 n=6 n=6

Fig. 58. The odd-even transposition sort.

x 38. [43] Let N =

n
2

. Find a one-to-one correspondence between Young tableaux of

shape (n−1, n−2, . . . , 1) and primitive sorting networks [i1 : i1+1] . . . [iN : iN +1]. [Con-
sequently by Theorem 5.1.4H there are exactly

N !
1n−1 3n−2 5n−3 . . . (2n− 3)1

such sorting networks.] Hint: Exercise 36(c) shows that primitive networks without
redundant comparators correspond to paths from 1 2 . . . n to n . . . 2 1 in polyhedra like
Fig. 1 in Section 5.1.1.

39. [25] Suppose that a primitive comparator network on n lines is known to sort the
single input 1 0 1 0 . . . 1 0 correctly. (See exercise 36; assume that n is even.) Show that
its Şmiddle third,Ť consisting of all comparators that involve only lines ⌈n/3⌉ through
⌈2n/3⌉ inclusive, will sort all inputs.

40. [HM44] Comparators [i1 : i1+1][i2 : i2+1] . . . [ir : ir+1] are chosen at random, with
each value of ik ∈ {1, 2, . . . , n − 1} equally likely; the process stops when the network
contains a bubble sort conĄguration like that of Fig. 47 as a subnetwork. Prove that
r ≤ 4n2 +O(n3/2 logn), except with probability O(n−1000).

41. [M47] Comparators [i1 :j1][i2 :j2] . . . [ir :jr] are chosen at random, with each irre-

dundant choice 1 ≤ ik < jk ≤ n equally likely; the process stops when a sorting network
has been obtained. Estimate the expected value of r; is it O(n1+ϵ) for all ϵ > 0?

x 42. [25] (D. Van Voorhis.) Prove that Ŝ(n) ≥ Ŝ(n− 1) + ⌈lgn⌉.

5.3.4 NETWORKS FOR SORTING 241

43. [48] Find an (m,n)-merging network with fewer than C(m,n) comparators, or
prove that no such network exists.

44. [50] Find the exact value of Ŝ(n) for some n > 8.

45. [M20] Prove that any (1, n)-merging network without multiple fanout must have
at least ⌈lg(n+ 1)⌉ levels of delay.

x 46. [30] (M. Aigner.) Show that the minimum number of stages needed to merge m
elements with n, using any algorithm that does simultaneous disjoint comparisons as in
exercise 6, is at least ⌈lg(m+n)⌉; hence the bitonic merging network has optimum delay.

47. [47] Is the function T (n) of exercise 6 strictly less than T̂ (n) for some n?

x 48. [26] We can interpret sorting networks in another way, letting each line carry
a multiset of m numbers instead of a single number; under this interpretation, the
operation [i :j] replaces xi and xj , respectively, by xi ∧∧ xj and xi ∨∨ xj , the least m and
the greatest m of the 2m numbers xi ⊎ xj . (For example, the diagram

{3, 5}

{1, 8}

{2, 9}

{2, 7}

{1, 3}

{5, 8}

{2, 9}

{2, 7}

{1, 3}

{5, 8}

{2, 2}

{7, 9}

{1, 2}

{5, 8}

{2, 3}

{7, 9}

{1, 2}

{5, 7}

{2, 3}

{8, 9}

{1, 2}

{2, 3}

{5, 7}

{8, 9}

illustrates this interpretation when m = 2; each comparator merges its inputs and
separates the lower half from the upper half.)

If a and b are multisets of m numbers each, we say that a ≪ b if and only if
a ∧∧ b = a (equivalently, a ∨∨ b = b; the largest element of a is less than or equal to the
smallest of b). Thus a ∧∧ b≪ a ∨∨ b.

Let α be an n-network, and let x = ⟨x1, . . . , xn⟩ be a vector in which each xi is a
multiset of m elements. Prove that if (xα)i is not≪ (xα)j in the interpretation above,
there is a vector y in Dn such that (yα)i = 1 and (yα)j = 0. [Consequently, a sorting
network for n elements becomes a sorting network for mn elements if we replace each
comparison by a merge network with M̂(m,m) modules. Figure 59 shows an 8-element
sorter constructed from a 4-element sorter by using this observation.]

Fig. 59. An 8-sorter constructed from a 4-sorter, by using the merging interpretation.

49. [M23] Show that, in the notation of exercise 48, (x ∧∧ y) ∧∧ z = x ∧∧ (y ∧∧ z) and
(x ∨∨ y) ∨∨ z = x ∨∨ (y ∨∨ z); however (x ∨∨ y) ∧∧ z is not always equal to (x ∧∧ z) ∨∨ (y ∧∧ z),
and (x∧∧ y)∨∨ (x∧∧ z)∨∨ (y∧∧ z) does not always equal the middle m elements of x⊎ y⊎ z.
Find a correct formula, in terms of x, y, z and the ∧∧ and ∨∨ operations, for those middle
elements.

242 SORTING 5.3.4

50. [HM46] Explore the properties of the ∧∧ and ∨∨ operations deĄned in exercise 48.
Is it possible to characterize all of the identities in this algebra in some nice way, or
to derive them all from a Ąnite set of identities? In this regard, identities such as
x ∧∧ x ∧∧ x = x ∧∧ x, or x ∧∧ (x ∨∨ (x ∧∧ (x ∨∨ y))) = x ∧∧ (x ∨∨ y), which hold only for m ≤ 2,
are of comparatively little interest; consider only the identities that are true for all m.

x 51. [M25] (R. L. Graham.) The comparator [i :j] is called redundant in the network
α1 [i :j]α2 if either (xα1)i ≤ (xα1)j for all vectors x, or (xα1)i ≥ (xα1)j for all
vectors x. Prove that if α is a network with r irredundant comparators, there are
at least r distinct ordered pairs (i, j) of distinct indices such that (xα)i ≤ (xα)j for all
vectors x. (Consequently, a network with no redundant comparators contains at most

n
2

modules.)

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

sp
e
c
ia
l

su
b
n
e
tw

o
rk

Fig. 60. A family of networks whose ability to sort is difficult to verify, illustrated for
m = 3 and n = 5. (See exercise 52.)

x 52. [32] (M. O. Rabin, 1980.) Prove that it is intrinsically difficult to decide in
general whether a sequence of comparators deĄnes a sorting network, by considering
networks of the form sketched in Fig. 60. It is convenient to number the inputs x0 to
xN , where N = 2mn + m + 2n; the positive integers m and n are parameters. The
Ąrst comparators are [j :j + 2nk] for 1 ≤ j ≤ 2n and 1 ≤ k ≤ m. Then we have
[2j−1:2j][0 :2j] for 1 ≤ j ≤ n, in parallel with a special subnetwork that uses only
indices > 2n. Next we compare [0 :2mn+2n+j] for 1 ≤ j ≤ m. And Ąnally there is
a complete sorting network for ⟨x1, . . . , xN ⟩, followed by [0:1][1 :2] . . . [N−t−1:N−t],
where t = mn+ n+ 1.

a) Describe all inputs ⟨x0, x1, . . . , xN ⟩ that are not sorted by such a network, in terms
of the behavior of the special subnetwork.

b) Given a set of clauses such as (y1 ∨ y2 ∨ ȳ3) ∧ (ȳ2 ∨ y3 ∨ ȳ4) ∧ . . . , explain how
to construct a special subnetwork such that Fig. 60 sorts all inputs if and only if
the clauses are unsatisĄable. [Hence the task of deciding whether a comparator
sequence forms a sorting network is co-NP-complete, in the sense of Section 7.9.]

5.3.4 NETWORKS FOR SORTING 243

53. [30] (Periodic sorting networks.) The following two 16-networks illustrate general
recursive constructions of t-level networks for n = 2t in the case t = 4:

(a) (b)

If we number the input lines from 0 to 2t− 1, the lth level in case (a) has comparators
[i :j] where imod 2t+1−l < 2t−l and j = i⊕ (2t+1−l − 1); there are t2t−1 comparators
altogether, as in the bitonic merge. In case (b) the Ąrst-level comparators are [2j :2j+1]
for 0 ≤ j < 2t−1, and the lth-level comparators for 2 ≤ l ≤ t are [2j + 1:2j + 2t+1−l]
for 0 ≤ j < 2t−1 − 2t−l; there are (t − 1)2t−1 + 1 comparators altogether, as in the
odd-even merge.

If the input numbers are 2k-ordered in the sense of Theorem 5.2.1H, for some
k ≥ 1, prove that both networks yield outputs that are 2k−1-ordered. Therefore we
can sort 2t numbers by passing them through either network t times. [When t is large,
these sorting networks use roughly twice as many comparisons as Algorithm 5.2.2M;
but the total delay time is the same as in Fig. 57, and the implementation is simpler
because the same network is used repeatedly.]

54. [42] Study the properties of sorting networks made from m-sorter modules instead
of 2-sorters. (For example, G. Shapiro has constructed the network

which sorts 16 elements using fourteen 4-sorters. Is this the best possible? Prove that
m2 elements can be sorted with at most 16 levels of m-sorters, when m is sufficiently
large.)

55. [23] A permutation network is a sequence of modules [i1 :j1] . . . [ir :jr] where each
module [i :j] can be set by external controls to pass its inputs unchanged or to switch
xi and xj (irrespective of the values of xi and xj), and such that each permutation

244 SORTING 5.3.4

of the inputs is achievable on the output lines by some setting of the modules. Every
sorting network is clearly a permutation network, but the converse is not true: Find a
permutation network for Ąve elements that has only eight modules.

x 56. [25] Suppose the bit vector x ∈ Dn is not sorted. Show that there is a standard
n-network αx that fails to sort x, although it sorts all other elements of Dn.

57. [M35] The even-odd merge is similar to BatcherŠs odd-even merge, except that
when mn > 2 it recursively merges the sequence ⟨xm mod 2+1, . . . , xm−3, xm−1⟩ with
⟨y1, y3, . . . , y2⌈n/2⌉−1⟩ and ⟨x(m+1) mod 2+1, . . . , xm−2, xm⟩ with ⟨y2, y4, . . . , y2⌊n/2⌋⟩ be-
fore making a set of ⌈m/2⌉ + ⌈n/2⌉ − 1 comparison-interchanges analogous to (1).
Show that the even-odd merge achieves the optimum delay time ⌈lg(m+n)⌉ of bitonic
merging, without making more comparisons than the bitonic method. In fact, prove
that the number of comparisons A(m,n) made by even-odd merging satisĄes C(m,n) ≤
A(m,n) < 1

2
(m+ n) lg min(m,n) +m+ 3

2
n.

EXERCISES — Second Set

The following exercises deal with several different types of optimality questions related
to sorting. The Ąrst few problems are based on an interesting ŞmultiheadŤ general-
ization of the bubble sort, investigated by P. N. Armstrong and R. J. Nelson as early
as 1954. [See U.S. Patents 3029413, 3034102.] Let 1 = h1 < h2 < · · · < hm = n be
an increasing sequence of integers; we shall call it a Şhead sequenceŤ of length m and
span n, and we shall use it to deĄne a special kind of sorting method. The sorting of
records R1 . . . RN proceeds in several passes, and each pass consists of N +n− 1 steps.
On step j, for j = 1 − n, 2 − n, . . . , N − 1, the records Rj+h[1], Rj+h[2], . . . , Rj+h[m]

are examined and rearranged if necessary so that their keys are in order. (We say
that Rj+h[1], . . . , Rj+h[m] are Şunder the read-write heads.Ť When j + h[k] is < 1 or
> N , record Rj+h[k] is left out of consideration; in effect, the keys K0,K−1,K−2, . . . are
treated as −∞ and KN+1,KN+2, . . . are treated as +∞. Therefore step j is actually
trivial when j ≤ −h[m− 1] or j > N − h[2].)

For example, the following table shows one pass of a sort when m = 3, N = 9,
and h1 = 1, h2 = 2, h3 = 4:

K−2 K−1 K0 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12

j = −3 3 1 4 5 9 2 6 8 7
j = −2 3 1 4 5 9 2 6 8 7
j = −1 3 1 4 5 9 2 6 8 7
j = 0 1 3 4 5 9 2 6 8 7
j = 1 1 3 4 5 9 2 6 8 7
j = 2 1 3 2 4 9 5 6 8 7
j = 3 1 3 2 4 6 5 9 8 7
j = 4 1 3 2 4 5 6 9 8 7
j = 5 1 3 2 4 5 6 7 8 9
j = 6 1 3 2 4 5 6 7 8 9
j = 7 1 3 2 4 5 6 7 8 9
j = 8 1 3 2 4 5 6 7 8 9

When m = 2, h1 = 1, and h2 = 2, this multihead method reduces to the bubble sort
(Algorithm 5.2.2B).

5.3.4 NETWORKS FOR SORTING 245

58. [21] (James Dugundji.) Prove that if h[k + 1] = h[k] + 1 for some k, 1 ≤ k < m,
the multihead sorter deĄned above will eventually sort any input Ąle in a Ąnite number
of passes. But if h[k + 1] ≥ h[k] + 2 for 1 ≤ k < m, the input might never become
sorted.

x 59. [30] (Armstrong and Nelson.) Given that h[k + 1] ≤ h[k] + k for 1 ≤ k < m, and
N ≥ n− 1, prove that the largest n− 1 elements always move to their Ąnal destination
on the Ąrst pass. [Hint: Use the zero-one principle; when sorting 0s and 1s, with fewer
than n 1s, prove that it is impossible to have all heads sensing a 1 unless all 0s lie to
the left of the heads.]

Prove that sorting will be complete in at most ⌈(N − 1)/(n− 1)⌉ passes when the
heads satisfy the given conditions. Is there an input Ąle that requires this many passes?

60. [26] If n = N, prove that the Ąrst pass can be guaranteed to place the smallest
key into position R1 if and only if h[k + 1] ≤ 2h[k] for 1 ≤ k < m.

61. [34] (J. Hopcroft.) A Şperfect sorterŤ for N elements is a multihead sorter
with N = n that always Ąnishes in one pass. Exercise 59 proves that the sequence
⟨h1, h2, h3, h4, . . . , hm⟩ = ⟨1, 2, 4, 7, . . . , 1 +

m
2

⟩ gives a perfect sorter for N =

m
2

+ 1

elements, using m = (
√

8N − 7+1)/2 heads. For example, the head sequence ⟨1, 2, 4, 7,
11, 16, 22⟩ is a perfect sorter for 22 elements.

Prove that, in fact, the head sequence ⟨1, 2, 4, 7, 11, 16, 23⟩ is a perfect sorter for
23 elements.

62. [49] Study the largest N for which m-head perfect sorters exist, given m. Is
N = O(m2)?

63. [23] (V. Pratt.) When each head hk is in position 2k−1 for 1 ≤ k ≤ m, how many
passes are necessary to sort the sequence z1 z2 . . . z2m−1 of 0s and 1s where zj = 0 if
and only if j is a power of 2?

64. [24] (Uniform sorting.) The tree of Fig. 34 in Section 5.3.1 makes the comparison
2:3 in both branches on level 1, and on level 2 it compares 1:3 in each branch unless
that comparison would be redundant. In general, we can consider the class of all sorting
algorithms whose comparisons are uniform in that way; assuming that the M =

N
2

pairs {(a, b) | 1 ≤ a < b ≤ N} have been arranged into a sequence

(a1, b1), (a2, b2), . . . , (aM , bM),

we can successively make each of the comparisons Ka1
:Kb1

, Ka2
:Kb2

, . . . whose
outcome is not already known. Each of the M ! arrangements of the (a, b) pairs deĄnes a
uniform sorting algorithm. The concept of uniform sorting is due to H. L. Beus [JACM
17 (1970), 482Ű495], whose work has suggested the next few exercises.

It is convenient to deĄne uniform sorting formally by means of graph theory. Let
G be the directed graph on the vertices {1, 2, . . . , N} having no arcs. For i = 1, 2,
. . . , M we add arcs to G as follows:

Case 1. G contains a path from ai to bi. Add the arc ai → bi to G.

Case 2. G contains a path from bi to ai. Add the arc bi → ai to G.

Case 3. G contains no path from ai to bi or bi to ai. Compare Kai :Kbi ; then add
the arc ai → bi to G if Kai ≤ Kbi , the arc bi → ai if Kai > Kbi .

We are concerned primarily with the number of key comparisons made by a uniform
sorting algorithm, not with the mechanism by which redundant comparisons are ac-
tually avoided. Thus the graph G need not be constructed explicitly; it is used here
merely to help deĄne the concept of uniform sorting.

246 SORTING 5.3.4

We shall also consider restricted uniform sorting, in which only paths of length 2
are counted in cases 1, 2, and 3 above. (A restricted uniform sorting algorithm may
make some redundant comparisons, but exercise 65 shows that the analysis is somewhat
simpler in the restricted case.)

Prove that the restricted uniform algorithm is the same as the uniform algorithm
when the sequence of pairs is taken in lexicographic order

(1, 2)(1, 3)(1, 4) . . . (1, N)(2, 3)(2, 4) . . . (2, N) . . . (N−1, N).

Show in fact that both algorithms are equivalent to quicksort (Algorithm 5.2.2Q) when
the keys are distinct and when quicksortŠs redundant comparisons are removed as in
exercise 5.2.2Ű24. (Disregard the order in which the comparisons are actually made in
quicksort; consider only which pairs of keys are compared.)

65. [M38] Given a pair sequence (a1, b1) . . . (aM , bM) as in exercise 64, let ci be the
number of pairs (j, k) such that j < k < i and (ai, bi), (aj , bj), (ak, bk) forms a triangle.

a) Prove that the average number of comparisons made by the restricted uniform
sorting algorithm is

M
i=1 2/(ci + 2).

b) Use the results of (a) and exercise 64 to determine the average number of irredun-
dant comparisons performed by quicksort.

c) The following pair sequence is inspired by (but not equivalent to) merge sorting:

(1, 2)(3, 4)(5, 6) . . . (1, 3)(1, 4)(2, 3)(2, 4)(5, 7) . . . (1, 5)(1, 6)(1, 7)(1, 8)(2, 5) . . .

Does the uniform method based on this sequence do more or fewer comparisons
than quicksort, on the average?

66. [M29] In the worst case, quicksort does

N
2

comparisons. Do all restricted

uniform sorting algorithms (in the sense of exercise 64) perform

N
2

comparisons in

their worst case?

67. [M48] (H. L. Beus.) Does quicksort have the minimum average number of com-
parisons, over all (restricted) uniform sorting algorithms?

68. [25] The Ph.D. thesis ŞElectronic Data SortingŤ by Howard B. Demuth (Stanford
University, October 1956) was perhaps the Ąrst publication to deal in any detail with
questions of computational complexity. Demuth considered several abstract models
for sorting devices, and established lower and upper bounds on the mean and maxi-
mum execution times achievable with each model. His simplest model, the Şcircular
nonreversible memoryŤ (Fig. 61), is the subject of this exercise.

R
N
−

1

R
N

R1

R2

R
i
−
1

R
i

Switch

Register R

Write Read

Fig. 61. A device for which the bubble-sort strategy is optimum.

5.3.4 NETWORKS FOR SORTING 247

Consider a machine that sorts R1 R2 . . . RN in a number of passes, where each
pass contains the following N + 1 steps:

Step 1. Set R← R1. (R is an internal machine register.)

Step i, for 1 < i ≤ N. Either (i) set Ri−1 ← R, R ← Ri, or (ii) set Ri−1 ← Ri,
leaving R unchanged.

Step N+1. Set RN ← R.

The problem is to Ąnd a way to choose between alternatives (i) and (ii) each time, in
order to minimize the number of passes required to sort.

Prove that the Şbubble sortŤ technique is optimum for this model. In other words,
show that the strategy that selects alternative (i) whenever R ≤ Ri and alternative (ii)
whenever R > Ri will achieve the minimum number of passes.

They that weave networks shall be confounded.

Ů Isaiah 19:9

248 SORTING 5.4

5.4. EXTERNAL SORTING

Now it is time for us to study the interesting problems that arise when the
number of records to be sorted is larger than our computer can hold in its
high-speed internal memory. External sorting is quite different from internal
sorting, even though the problem in both cases is to sort a given Ąle into
nondecreasing order, since efficient storage accessing on external Ąles is rather
severely limited. The data structures must be arranged so that comparatively
slow peripheral memory devices (tapes, disks, drums, etc.) can quickly cope with
the requirements of the sorting algorithm. Consequently most of the internal
sorting techniques we have studied (insertion, exchange, selection) are virtually
useless for external sorting, and it is necessary to reconsider the whole question.

Suppose, for example, that we are supposed to sort a Ąle of Ąve million
records R1 R2 . . . R5000000, and that each record Ri is 20 words long (although
the keys Ki are not necessarily this long). If only one million of these records
will Ąt in the internal memory of our computer at one time, what shall we do?

One fairly obvious solution is to start by sorting each of the Ąve subĄles
R1 . . . R1000000, R1000001 . . . R2000000, . . . , R4000001 . . . R5000000 independently,
then to merge the resulting subĄles together. Fortunately the process of merging
uses only very simple data structures, namely linear lists that are traversed in
a sequential manner as stacks or as queues; hence merging can be done without
difficulty on the least expensive external memory devices.

The process just described Ů internal sorting followed by external merging Ů
is very commonly used, and we shall devote most of our study of external sorting
to variations on this theme.

The ascending sequences of records that are produced by the initial internal
sorting phase are often called strings in the published literature about sorting;
this terminology is fairly widespread, but it unfortunately conĆicts with even
more widespread usage in other branches of computer science, where ŞstringsŤ are
arbitrary sequences of symbols. Our study of permutations has already given us
a perfectly good name for the sorted segments of a Ąle, which are conventionally
called ascending runs or simply runs. Therefore we shall consistently use the
word ŞrunsŤ to describe sorted portions of a Ąle. In this way it is possible to
distinguish between Şstrings of runsŤ and Şruns of stringsŤ without ambiguity.
(Of course, Şruns of a programŤ means something else again; we canŠt have
everything.)

Let us consider Ąrst the process of external sorting when magnetic tapes

are used for auxiliary storage. Perhaps the simplest and most appealing way to
merge with tapes is the balanced two-way merge following the central idea that
was used in Algorithms 5.2.4N, S, and L. We use four Şworking tapesŤ in this
process. During the Ąrst phase, ascending runs produced by internal sorting are
placed alternately on Tapes 1 and 2, until the input is exhausted. Then Tapes 1
and 2 are rewound to their beginnings, and we merge the runs from these tapes,
obtaining new runs that are twice as long as the original ones; the new runs
are written alternately on Tapes 3 and 4 as they are being formed. (If Tape
1 contains one more run than Tape 2, an extra ŞdummyŤ run of length 0 is

5.4 EXTERNAL SORTING 249

assumed to be present on Tape 2.) Then all tapes are rewound, and the contents
of Tapes 3 and 4 are merged into quadruple-length runs recorded alternately on
Tapes 1 and 2. The process continues, doubling the length of runs each time,
until only one run is left (namely the entire sorted Ąle). If S runs were produced
during the internal sorting phase, and if 2k−1 < S ≤ 2k, this balanced two-way
merge procedure makes exactly k = ⌈lg S⌉ merging passes over all the data.

For example, in the situation above where 5000000 records are to be sorted
with an internal memory capacity of 1000000, we have S = 5. The initial
distribution phase of the sorting process places Ąve runs on tape as follows:

Tape 1 R1 . . . R1000000; R2000001 . . . R3000000; R4000001 . . . R5000000.

Tape 2 R1000001 . . . R2000000; R3000001 . . . R4000000.

Tape 3 (empty)

Tape 4 (empty)

(1)

The Ąrst pass of merging then produces longer runs on Tapes 3 and 4, as it reads
Tapes 1 and 2, as follows:

Tape 3 R1 . . . R2000000; R4000001 . . . R5000000.

Tape 4 R2000001 . . . R4000000.
(2)

(A dummy run has implicitly been added at the end of Tape 2, so that the last
run R4000001 . . . R5000000 on Tape 1 is merely copied onto Tape 3.) After all tapes
are rewound, the next pass over the data produces

Tape 1 R1 . . . R4000000.

Tape 2 R4000001 . . . R5000000.
(3)

(Again that run R4000001 . . . R5000000 was simply copied; but if we had started
with 8000000 records, Tape 2 would have contained R4000001 . . . R8000000 at this
point.) Finally, after another spell of rewinding, R1 . . . R5000000 is produced on
Tape 3, and the sorting is complete.

Balanced merging can easily be generalized to the case of T tapes, for any
T ≥ 3. Choose any number P with 1 ≤ P < T, and divide the T tapes into two
Şbanks,Ť with P tapes on the left bank and T − P on the right. Distribute the
initial runs as evenly as possible onto the P tapes in the left bank; then do a
P -way merge from the left to the right, followed by a (T − P)-way merge from
the right to the left, etc., until sorting is complete. The best choice of P usually
turns out to be ⌈T/2⌉ (see exercises 3 and 4).

Balanced two-way merging is the special case T = 4, P = 2. Let us
reconsider the example above using more tapes, taking T = 6 and P = 3. The
initial distribution now gives us

Tape 1 R1 . . . R1000000; R3000001 . . . R4000000.

Tape 2 R1000001 . . . R2000000; R4000001 . . . R5000000.

Tape 3 R2000001 . . . R3000000.

(4)

250 SORTING 5.4

And the Ąrst merging pass produces

Tape 4 R1 . . . R3000000.

Tape 5 R3000001 . . . R5000000.

Tape 6 (empty)

(5)

(A dummy run has been assumed on Tape 3.) The second merging pass completes
the job, placing R1 . . . R5000000 on Tape 1. In this special case T = 6 is essentially
the same as T = 5, since the sixth tape is used only when S ≥ 7.

Three-way merging requires more computer processing than two-way merg-
ing; but this is generally negligible compared to the cost of reading, writing,
and rewinding the tapes. We can get a fairly good estimate of the running time
by considering only the amount of tape motion. The example in (4) and (5)
required only two passes over the data, compared to three passes when T = 4,
so the merging takes only about two-thirds as long when T = 6.

Balanced merging is quite simple, but if we look more closely, we Ąnd
immediately that it isnŠt the best way to handle the particular cases treated
above. Instead of going from (1) to (2) and rewinding all of the tapes, we should
have stopped the Ąrst merging pass after Tapes 3 and 4 contained R1 . . . R2000000

and R2000001 . . . R4000000, respectively, with Tape 1 poised ready to read the
records R4000001 . . . R5000000. Then Tapes 2, 3, 4 could be rewound and we could
complete the sort by doing a three-way merge onto Tape 2. The total number of
records read from tape during this procedure would be only 4000000+5000000 =
9000000, compared to 5000000 + 5000000 + 5000000 = 15000000 in the balanced
scheme. A smart computer would be able to Ągure this out.

Indeed, when we have Ąve runs and four tapes we can do even better by
distributing them as follows:

Tape 1 R1 . . . R1000000; R3000001 . . . R4000000.

Tape 2 R1000001 . . . R2000000; R4000001 . . . R5000000.

Tape 3 R2000001 . . . R3000000.

Tape 4 (empty)

Then a three-way merge to Tape 4, followed by a rewind of Tapes 3 and 4,
followed by a three-way merge to Tape 3, would complete the sort with only
3000000 + 5000000 = 8000000 records read.

And, of course, if we had six tapes we could put the initial runs on Tapes 1
through 5 and complete the sort in one pass by doing a Ąve-way merge to Tape 6.
These considerations indicate that simple balanced merging isnŠt the best, and
it is interesting to look for improved merging patterns.

Subsequent portions of this chapter investigate external sorting more deeply.
In Section 5.4.1, we will consider the internal sorting phase that produces the
initial runs; of particular interest is the technique of Şreplacement selection,Ť
which takes advantage of the order present in most data to produce long initial
runs that actually exceed the internal memory capacity by a signiĄcant amount.
Section 5.4.1 also discusses a suitable data structure for multiway merging.

5.4 EXTERNAL SORTING 251

The most important merging patterns are discussed in Sections 5.4.2 through
5.4.5. It is convenient to have a rather naïve conception of tape sorting as we
learn the characteristics of these patterns, before we come to grips with the
harsh realities of real tape drives and real data to be sorted. For example, we
may blithely assume (as we did above) that the original input records appear
magically during the initial distribution phase; in fact, these input records might
well occupy one of our tapes, and they may even Ąll several tape reels since
tapes arenŠt of inĄnite length! It is best to ignore such mundane considerations
until after an academic understanding of the classical merging patterns has been
gained. Then Section 5.4.6 brings the discussion down to earth by discussing
real-life constraints that strongly inĆuence the choice of a pattern. Section 5.4.6
compares the basic merging patterns of Sections 5.4.2 through 5.4.5, using a
variety of assumptions that arise in practice.

Some other approaches to external sorting, not based on merging, are dis-
cussed in Sections 5.4.7 and 5.4.8. Finally Section 5.4.9 completes our survey of
external sorting by treating the important problem of sorting on bulk memories
such as disks and drums.

When this book was Ąrst written, magnetic tapes were abundant and disk
drives were expensive. But disks became enormously better during the 1980s,
and by the late 1990s they had almost completely replaced magnetic tape units
on most of the worldŠs computer systems. Therefore the once-crucial topic of
patterns for tape merging has become of limited relevance to current needs.

Yet many of the patterns are quite beautiful, and the associated algorithms
reĆect some of the best research done in computer science during its early years;
the techniques are just too nice to be discarded abruptly onto the rubbish heap
of history. Indeed, the ways in which these methods blend theory with practice
are especially instructive. Therefore merging patterns are discussed carefully
and completely below, in what may be their last grand appearance before they
accept a Ąnal curtain call.

For all we know now,

these techniques may well become crucial once again.

— PAVEL CURTIS (1997)

EXERCISES

1. [15] The text suggests internal sorting Ąrst, followed by external merging. Why
donŠt we do away with the internal sorting phase, simply merging the records into
longer and longer runs right from the start?

2. [10] What will the sequence of tape contents be, analogous to (1) through (3),
when the example records R1 R2 . . . R5000000 are sorted using a 3-tape balanced method
with P = 2? Compare this to the 4-tape merge; how many passes are made over all
the data, after the initial distribution of runs?

3. [20] Show that the balanced (P, T−P)-way merge applied to S initial runs takes
2k passes, when P k(T − P)k−1 < S ≤ P k(T − P)k; and it takes 2k + 1 passes, when
P k(T − P)k < S ≤ P k+1(T − P)k.

Give simple formulas for (a) the exact number of passes, as a function of S, when
T = 2P ; and (b) the approximate number of passes, as S →∞, for general P and T.

4. [HM15] What value of P , for 1 ≤ P < T, makes P (T − P) a maximum?

252 SORTING 5.4.1

5.4.1. Multiway Merging and Replacement Selection

In Section 5.2.4, we studied internal sorting methods based on two-way merging,
the process of combining two ordered sequences into a single ordered sequence.
It is not difficult to extend this to the notion of P -way merging, where P runs
of input are combined into a single run of output.

LetŠs assume that we have been given P ascending runs, that is, sequences
of records whose keys are in nondecreasing order. The obvious way to merge
them is to look at the Ąrst record of each run and to select the record whose
key is smallest; this record is transferred to the output and removed from the
input, and the process is repeated. At any given time we need to look at only P
keys (one from each input run) and select the smallest. If two or more keys are
smallest, an arbitrary one is selected.

When P isnŠt too large, it is convenient to make this selection by simply
doing P − 1 comparisons to Ąnd the smallest of the current keys. But when
P is, say, 8 or more, we can save work by using a selection tree as described in
Section 5.2.3; then only about lg P comparisons are needed each time, once the
tree has been set up.

Consider, for example, the case of four-way merging, with a two-level selec-
tion tree:

Step 1. 087

087
 087 503 ∞

170 908 ∞

154
 154 426 653 ∞

612 ∞

Step 2. 087 154

170
 503 ∞

170 908 ∞

154
 154 426 653 ∞

612 ∞

Step 3. 087 154 170

170
 503 ∞

170 908 ∞

426
 426 653 ∞

612 ∞
...

Step 9. 087 154 170 426 503 612 653 908 ∞

∞
 ∞
∞

∞
 ∞
∞

An additional key Ş∞Ť has been placed at the end of each run in this example,
so that the merging terminates gracefully. Since external merging generally
deals with very long runs, the addition of records with ∞ keys does not add
substantially to the length of the data or to the amount of work involved in
merging, and such sentinel records frequently serve as a useful way to delimit
the runs on a Ąle.

5.4.1 MULTIWAY MERGING AND REPLACEMENT SELECTION 253

061

154 061

170 154 087 061

170 275 426 154 503 087 512 061

908 170 897 275 653 426 154 509

1

2 3

4 5 6 7

8 9 10 11
12 13 14 15

16 17 18 19 20 21 22 23

Fig. 62. A tournament to select the smallest key, using a complete binary tree
whose nodes are numbered from 1 to 23. There are P = 12 external nodes.

Each step after the Ąrst in this process consists of replacing the smallest
element by the succeeding element in its run, and changing the corresponding
path in the selection tree. Thus the three positions of the tree that contain 087
in Step 1 are changed in Step 2; the three positions containing 154 in Step 2 are
changed in Step 3; and so on. The process of replacing one key by another in
the selection tree is called replacement selection.

We can look at this four-way merge in several ways. From one standpoint it
is equivalent to three two-way merges performed concurrently as coroutines; each
node in the selection tree represents one of the sequences involved in concurrent
merging processes. The selection tree is also essentially operating as a priority
queue, with a smallest-in-Ąrst-out discipline.

As in Section 5.2.3 we could implement the priority queue by using a heap
instead of a selection tree. (The heap would, of course, be arranged so that the
smallest element appears at the top, instead of the largest, reversing the order of
Eq. 5.2.3Ű(3).) Since a heap does not have a Ąxed size, we could therefore avoid
the use of ∞ keys; merging would be complete when the heap becomes empty.
On the other hand, external sorting applications usually deal with comparatively
long records and keys, so that the heap is Ąlled with pointers to keys instead of
the keys themselves; we shall see below that selection trees can be represented by
pointers in such a convenient manner that they are probably superior to heaps
in this situation.

A tree of losers. Figure 62 shows the complete binary tree with 12 external
(rectangular) nodes and 11 internal (circular) nodes. The external nodes have
been Ąlled with keys, and the internal nodes have been Ąlled with the Şwinners,Ť
if the tree is regarded as a tournament to select the smallest key. The smaller
numbers above each node show the traditional way to allocate consecutive stor-
age positions for complete binary trees.

254 SORTING 5.4.1

061

154

170 087

275 426 503 512

908 897 653 509 503 087 512 061

908 170 897 275 653 426 154 509

0

1

2 3

4 5 6 7

8 9 10 11
12 13 14 15

16 17 18 19 20 21 22 23

Fig. 63. The same tournament as Fig. 62, but showing the losers instead of the
winners; the champion appears at the very top.

When the smallest key, 061, is to be replaced by another key in the selection
tree of Fig. 62, we will have to look at the keys 512, 087, and 154, and no
other existing keys, in order to determine the new state of the selection tree.
Considering the tree as a tournament, these three keys are the losers in the
matches played by 061. This suggests that the loser of a match should actually
be stored in each internal node of the tree, instead of the winner; then the
information required for updating the tree will be readily available.

Figure 63 shows the same tree as Fig. 62, but with the losers represented
instead of the winners. An extra node number 0 has been appended at the top
of the tree, to indicate the champion of the tournament. Each key except the
champion is a loser exactly once (see Section 5.3.3), so each key appears just
once in an external node and once in an internal node.

In practice, the external nodes at the bottom of Fig. 63 will represent fairly
long records stored in computer memory, and the internal nodes will represent
pointers to those records. Note that P -way merging calls for exactly P external
nodes and P internal nodes, each in consecutive positions of memory, hence
several efficient methods of storage allocation suggest themselves. It is not
difficult to see how to use a loser-oriented tree for replacement selection; we
shall discuss the details later.

Initial runs by replacement selection. The technique of replacement se-
lection can be used also in the Ąrst phase of external sorting, if we essentially
do a P -way merge of the input data with itself! In this case we take P to be
quite large, so that the internal memory is essentially Ąlled. When a record is
output, it is replaced by the next record from the input. If the new record has a
smaller key than the one just output, we cannot include it in the current run; but

5.4.1 MULTIWAY MERGING AND REPLACEMENT SELECTION 255

Table 1

EXAMPLE OF FOUR-WAY REPLACEMENT SELECTION

Memory contents Output

503 087 512 061 061
503 087 512 908 087
503 170 512 908 170
503 897 512 908 503

(275) 897 512 908 512
(275) 897 653 908 653
(275) 897 (426) 908 897
(275) (154) (426) 908 908
(275) (154) (426) (509) (end of run)
275 154 426 509 154
275 612 426 509 275

etc.

otherwise we can enter it into the selection tree in the usual way and it will form
part of the run currently being produced. Thus the runs can contain more than
P records each, even though we never have more than P in the selection tree at
any time. Table 1 illustrates this process for P = 4; parenthesized numbers are
waiting for inclusion in the following run.

This important method of forming initial runs was Ąrst described by Har-
old H. Seward [MasterŠs Thesis, Digital Computer Laboratory Report R-232
(Mass. Inst. of Technology, 1954), 29Ű30], who gave reason to believe that the
runs would contain more than 1.5P records when applied to random data. A. I.
Dumey had also suggested the idea about 1950 in connection with a special sort-
ing device planned by Engineering Research Associates, but he did not publish it.
The name Şreplacement selectingŤ was coined by E. H. Friend [JACM 3 (1956),
154], who remarked that Şthe expected length of the sequences produced eludes
formulation but experiment suggests that 2P is a reasonable expectation.Ť

A clever way to show that 2P is indeed the expected run length was discov-
ered by E. F. Moore, who compared the situation to a snowplow on a circular
track [U.S. Patent 2983904 (1961), columns 3Ű4]. Consider the situation shown
in Fig. 64: Flakes of snow are falling uniformly on a circular road, and a lone
snowplow is continually clearing the snow. Once the snow has been plowed off
the road, it disappears from the system. Points on the road may be designated by
real numbers x, 0 ≤ x < 1; a Ćake of snow falling at position x represents an input
record whose key is x, and the snowplow represents the output of replacement
selection. The ground speed of the snowplow is inversely proportional to the
height of snow it encounters, and the situation is perfectly balanced so that the
total amount of snow on the road at all times is exactly P . A new run is formed
in the output whenever the plow passes point 0.

After this system has been in operation for awhile, it is intuitively clear that
it will approach a stable situation in which the snowplow runs at constant speed
(because of the circular symmetry of the track). This means that the snow is at

256 SORTING 5.4.1

Fig. 64. The perpetual plow on its ceaseless cycle.

constant height when it meets the plow, and the height drops off linearly in front
of the plow as shown in Fig. 65. It follows that the volume of snow removed in
one revolution (namely the run length) is twice the amount present at any one
time (namely P).

Fig. 65. Cross-section, showing the varying height of snow in front of the plow when
the system is in its steady state.

In many commercial applications the input data is not completely random;
it already has a certain amount of existing order. Therefore the runs produced by
replacement selection will tend to contain even more than 2P records. We shall
see that the time required for external merge sorting is largely governed by the
number of runs produced by the initial distribution phase, so that replacement
selection becomes especially desirable; other types of internal sorting would pro-
duce about twice as many initial runs because of the limitations on memory size.

Let us now consider the process of creating initial runs by replacement
selection in detail. The following algorithm is due to John R. Walters, James
Painter, and Martin Zalk, who used it in a merge-sort program for the Philco
2000 in 1958. It incorporates a rather nice way to initialize the selection tree
and to distinguish records belonging to different runs, as well as to Ćush out the
last run, with comparatively simple and uniform logic. (The proper handling
of the last run produced by replacement selection turns out to be a bit tricky,

5.4.1 MULTIWAY MERGING AND REPLACEMENT SELECTION 257

R1. Initialize

R2. End of run?

R3. Output

top of tree

R4. Input

new record

R5. Prepare

to update

R6. Set new loserR7. Move upEnd
of
file

T=root

Fig. 66. Making initial runs by replacement selection.

and it has tended to be a stumbling block for programmers.) The principal idea
is to consider each key as a pair (S, K), where K is the original key and S is
the run number to which this record belongs. When such extended keys are
lexicographically ordered, with S as major key and K as minor key, we obtain
the output sequence produced by replacement selection.

The algorithm below uses a data structure containing P nodes to represent
the selection tree; the jth node X[j] is assumed to contain c words beginning
in LOC(X[j]) = L0 + cj, for 0 ≤ j < P , and it represents both internal node
number j and external node number P + j in Fig. 63. There are several named
Ąelds in each node:

KEY = the key stored in this external node;

RECORD = the record stored in this external node (including KEY as a subĄeld);

LOSER = pointer to the ŞloserŤ stored in this internal node;

RN = run number of the record stored in this external node;

PE = pointer to internal node above this external node in the tree;

PI = pointer to internal node above this internal node in the tree.

For example, when P = 12, internal node number 5 and external node number 17
of Fig. 63 would both be represented in X[5], by the Ąelds KEY = 170, LOSER =
L0 + 9c (the address of external node number 21), PE = L0 + 8c, PI = L0 + 2c.

The PE and PI Ąelds have constant values, so they need not appear explicitly
in memory; however, the initial phase of external sorting sometimes has trouble
keeping up with the I/O devices, and it might be worthwhile to store these
redundant values with the data instead of recomputing them each time.

Algorithm R (Replacement selection). This algorithm reads records sequen-
tially from an input Ąle and writes them sequentially onto an output Ąle, pro-
ducing RMAX runs whose length is P or more (except for the Ąnal run). There
are P ≥ 2 nodes, X[0], . . . , X[P − 1], having Ąelds as described above.
R1. [Initialize.] Set RMAX ← 0, RC ← 0, LASTKEY ← ∞, and Q ← LOC(X[0]).

(Here RC is the number of the current run and LASTKEY is the key of the

258 SORTING 5.4.1

last record output. The initial setting of LASTKEY should be larger than any
possible key; see exercise 8.) For 0 ≤ j < P , set the initial contents of X[j]
as follows:

J← LOC(X[j]); LOSER(J)← J; RN(J)← 0;

PE(J)← LOC(X[⌊(P + j)/2⌋]); PI(J)← LOC(X[⌊j/2⌋]).

(The settings of LOSER(J) and RN(J) are artiĄcial ways to get the tree
initialized by considering a Ąctitious run number 0 that is never output.
This is tricky; see exercise 10.)

R2. [End of run?] If RN(Q) = RC, go on to step R3. (Otherwise RN(Q) = RC + 1
and we have just completed run number RC; any special actions required by
a merging pattern for subsequent passes of the sort would be done at this
point.) If RC = RMAX, stop; otherwise set RC← RC + 1.

R3. [Output top of tree.] (Now Q points to the Şchampion,Ť and RN(Q) = RC.)
If RC ̸= 0, output RECORD(Q) and set LASTKEY← KEY(Q).

R4. [Input new record.] If the input Ąle is exhausted, set RN(Q) ← RMAX + 1
and go on to step R5. Otherwise set RECORD(Q) to the next record from the
input Ąle. If KEY(Q) < LASTKEY (so that this new record does not belong to
the current run), set RMAX← RN(Q)← RC + 1.

R5. [Prepare to update.] (Now Q points to a new record.) Set T ← PE(Q).
(Variable T is a pointer that will move up the tree.)

R6. [Set new loser.] Set L ← LOSER(T). If RN(L) < RN(Q) or if RN(L) = RN(Q)

and KEY(L) < KEY(Q), then set LOSER(T) ← Q and Q ← L. (Variable Q

keeps track of the current winner.)

R7. [Move up.] If T = LOC(X[1]) then go back to R2, otherwise set T← PI(T)

and return to R6.

Algorithm R speaks of input and output of records one at a time, while in
practice it is best to read and write relatively large blocks of records. Therefore
some input and output buffers are actually present in memory, behind the scenes,
effectively lowering the size of P . We shall illustrate this in Section 5.4.6.

*Delayed reconstitution of runs. A very interesting way to improve on
replacement selection has been suggested by R. J. Dinsmore [CACM 8 (1965),
48] using a concept that we shall call degrees of freedom. As we have seen,
each block of records on tape within a run is in nondecreasing order, so that its
Ąrst element is the lowest and its last element is the highest. In the ordinary
process of replacement selection, the lowest element of each block within a run
is never less than the highest element of the preceding block in that run; this is
Ş1 degree of freedom.Ť Dinsmore suggests relaxing this condition to Şm degrees
of freedom,Ť where the lowest element of each block may be less than the highest
element of the preceding block so long as it is not less than the highest elements

in m different preceding blocks of the same run. Records within individual blocks
are ordered, as before, but adjacent blocks need not be in order.

5.4.1 MULTIWAY MERGING AND REPLACEMENT SELECTION 259

For example, suppose that there are just two records per block; the following
sequence of blocks is a run with three degrees of freedom:

| 08 50 | 06 90 | 17 27 | 42 67 | 51 89 | (1)

A subsequent block that is to be part of the same run must begin with an
element not less than the third largest element of {50, 90, 27, 67, 89}, namely 67.
The sequence (1) would not be a run if there were only two degrees of freedom,
since 17 is less than both 50 and 90.

A run with m degrees of freedom can be ŞreconstitutedŤ while it is being
read during the next phase of sorting, so that for all practical purposes it is a run
in the ordinary sense. We start by reading the Ąrst m blocks into m buffers, and
doing an m-way merge on them; when one buffer is exhausted, we replace it with
the (m + 1)st block, and so on. In this way we can recover the run as a single
sequence, for the Ąrst word of every newly read block must be greater than or
equal to the last word of the just-exhausted block (lest it be less than the highest
elements in m different blocks that precede it). This method of reconstituting
the run is essentially like an m-way merge using a single tape unit for all the
input blocks! The reconstitution procedure acts as a coroutine that is called
upon to deliver one record of the run at a time. We could be reconstituting
different runs from different tape units with different degrees of freedom, and
merging the resulting runs, all at the same time, in essentially the same way as
the four-way merge illustrated at the beginning of this section may be thought
of as several two-way merges going on at once.

This ingenious idea is difficult to analyze precisely, but T. O. Espelid has
shown how to extend the snowplow analogy to obtain an approximate formula
for the behavior [BIT 16 (1976), 133Ű142]. According to his approximation,
which agrees well with empirical tests, the run length will be about

2P + (m− 1.5)

2P + (m− 2)b
2P + (2m− 3)b

b,

when b is the block size and m ≥ 2. Such an increase may not be enough to
justify the added complication; on the other hand, it may be advantageous when
there is room for a rather large number of buffers during the second phase of
sorting.

*Natural selection. Another way to increase the run lengths produced by
replacement selection has been explored by W. D. Frazer and C. K. Wong [CACM
15 (1972), 910Ű913]. Their idea is to proceed as in Algorithm R, except that
a new record is not placed in the tree when its key is less than LASTKEY; it is
output into an external reservoir instead, and another new record is read in. This
process continues until the reservoir is Ąlled with a certain number of records, P ′;
then the remainder of the current run is output from the tree, and the reservoir
items are used as input for the next run.

The use of a reservoir tends to produce longer runs than replacement selec-
tion, because it reroutes the ŞdeadŤ records that belong to the next run instead
of letting them clutter up the tree; but it requires extra time for input and output

260 SORTING 5.4.1

Fig. 67. Equal amounts of snow are input and output; the plow moves dx in time dt.

to and from the reservoir. When P ′ > P it is possible that some records will be
placed into the reservoir twice, but when P ′ ≤ P this will never happen.

Frazer and Wong made extensive empirical tests of their method, noticing
that when P is reasonably large (say P ≥ 32) and P ′ = P the average run
length for random data is approximately given by eP , where e ≈ 2.718 is the
base of natural logarithms. This phenomenon, and the fact that the method
is an evolutionary improvement over simple replacement selection, naturally led
them to call their method natural selection.

The ŞnaturalŤ law for run lengths can be proved by considering the snowplow
of Fig. 64 again, and applying elementary calculus. Let L be the length of the
track, and let x(t) be the position of the snowplow at time t, for 0 ≤ t ≤ T.
The reservoir is assumed to be full at time T, when the snow stops temporarily
while the plow returns to its starting position (clearing the P units of snow
remaining in its path). The situation is the same as before except that the
Şbalance conditionŤ is different; instead of P units of snow on the road at all
times, we have P units of snow in front of the plow, and the reservoir (behind
the plow) gets up to P ′ = P units. The snowplow advances by dx during a
time interval dt if h(x, t) dx records are output, where h(x, t) is the height of
the snow at time t and position x = x(t), measured in suitable units; hence
h(x, t) = h(x, 0) + Kt for all x, where K is the rate of snowfall. Since the
number of records in memory stays constant, h(x, t) dx is also the number of
records that are input ahead of the plow, namely K dt(L − x) (see Fig. 67).
Thus

dx

dt
=

K(L− x)
h(x, t)

. (2)

Fortunately, it turns out that h(x, t) is constant, equal to KT, whenever x = x(t)
and 0 ≤ t ≤ T, since the snow falls steadily at position x(t) for T−t units of time
after the plow passes that point, plus t units of time before it comes back. In
other words, the plow sees all snow at the same height on its journey, assuming
that a steady state has been reached where each journey is the same. Hence
the total amount of snow cleared (the run length) is LKT ; and the amount of
snow in memory is the amount cleared after time T, namely KT

L−x(T)

. The

solution to (2) such that x(0) = 0 is

x(t) = L(1− e−t/T); (3)

hence P = LKTe−1 = (run length)/e; and this is what we set out to prove.

5.4.1 MULTIWAY MERGING AND REPLACEMENT SELECTION 261

Exercises 21 through 23 show that this analysis can be extended to the case
of general P ′; for example, when P ′ = 2P the average run length turns out to
be eθ(e− θ)P , where θ =

e−
√

e2 − 4

2, a result that probably wouldnŠt have
been guessed offhand! Table 2 shows the dependence of run length on reservoir
size; the usefulness of natural selection in a given computer environment can be
estimated by referring to this table. The table entries for reservoir size < P use
an improved technique that is discussed in exercise 27.

The ideas of delayed run reconstitution and natural selection can be com-
bined, as discussed by T. C. Ting and Y. W. Wang in Comp. J. 20 (1977),
298Ű301.

Table 2

RUN LENGTHS BY NATURAL SELECTION

Reservoir size Run length k + θ Reservoir size Run length k + θ

0.10000P 2.15780P 0.32071 0.00000P 2.00000P 0.00000
0.50000P 2.54658P 0.69952 0.43428P 2.50000P 0.65348
1.00000P 2.71828P 1.00000 1.30432P 3.00000P 1.15881
2.00000P 3.53487P 1.43867 1.95014P 3.50000P 1.42106
3.00000P 4.16220P 1.74773 2.72294P 4.00000P 1.66862
4.00000P 4.69446P 2.01212 4.63853P 5.00000P 2.16714
5.00000P 5.16369P 2.24938 21.72222P 10.00000P 4.66667

10.00000P 7.00877P 3.17122 5.29143P 5.29143P 2.31329

The quantity k + θ is deĄned in exercise 22, or (when k = 0) in exercise 27.

*Analysis of replacement selection. Let us now return to the case of replace-
ment selection without an auxiliary reservoir. The snowplow analogy gives us
a fairly good indication of the average length of runs obtained by replacement
selection in the steady-state limit, but it is possible to get much more precise
information about Algorithm R by applying the facts about runs in permutations
that we have studied in Section 5.1.3. For this purpose it is convenient to assume
that the input Ąle is an arbitrarily long sequence of independent random real
numbers between 0 and 1.

Let

gP (z1, z2, . . . , zk) =

l1,l2,...,lk≥0

aP (l1, l2, . . . , lk)zl1
1 zl2

2 . . . zlk
k

be the generating function for run lengths produced by P -way replacement
selection on such a Ąle, where aP (l1, l2, . . . , lk) is the probability that the Ąrst
run has length l1, the second has length l2, . . . , the kth has length lk. The
following Şindependence theoremŤ is basic, since it reduces the analysis to the
case P = 1:

Theorem K. gP (z1, z2, . . . , zk) = g1(z1, z2, . . . , zk)P.

Proof. Let the input keys be K1, K2, K3, Algorithm R partitions them into
P subsequences, according to which external node position they occupy in the

262 SORTING 5.4.1

tree; the subsequence containing Kn is determined by the values of K1, . . . , Kn−1.
Each of these subsequences is therefore an independent sequence of independent
random numbers between 0 and 1. Furthermore, the output of replacement
selection is precisely what would be obtained by doing a P -way merge on these
subsequences; an element belongs to the jth run of a subsequence if and only if
it belongs to the jth run produced by replacement selection (since LASTKEY and
KEY(Q) belong to the same subsequence in step R4).

In other words, we might just as well assume that Algorithm R is being
applied to P independent random input Ąles, and that step R4 reads the next
record from the Ąle corresponding to external node Q; in this sense, the algorithm
is equivalent to a P -way merge, with ŞstepdownsŤ marking the ends of the runs.

Thus the output has runs of lengths (l1, . . . , lk) if and only if the sub-
sequences have runs of respective lengths (l11, . . . , l1k), . . . , (lP1, . . . , lPk), where
the lij are some nonnegative integers satisfying

1≤i≤P lij = lj for 1 ≤ j ≤ k.

It follows that

aP (l1, . . . , lk) =

l11+···+lP1=l1
···

l1k+···+lPk=lk

a1(l11, . . . , l1k) . . . a1(lP1, . . . , lPk),

and this is equivalent to the desired result.

We have discussed the average length Lk of the kth run, when P = 1,
in Section 5.1.3, where the values are tabulated in Table 5.1.3Ű2. Theorem K
implies that the average length of the kth run for general P is P times as long
as the average when P = 1, namely LkP ; and the variance is also P times as
large, so the standard deviation of the run length is proportional to

√
P . These

results were Ąrst derived by B. J. Gassner about 1958.
Thus the Ąrst run produced by Algorithm R will be about (e−1)P ≈ 1.718P

records long, for random data; the second run will be about (e2−2e)P ≈ 1.952P
records long; the third, about 1.996P ; and subsequent runs will be very close
to 2P records long until we get to the last two runs (see exercise 14). The
standard deviation of most of these run lengths is approximately

(4e− 10)P ≈

0.934
√

P [CACM 6 (1963), 685Ű688]. Furthermore, exercise 5.1.3Ű10 shows that
the total length of the Ąrst k runs will be fairly close to

2k − 1

3

P , with a

standard deviation of

2
3 k + 2

9

P
1/2. The generating functions g1(z, z, . . . , z)

and g1(1, . . . , 1, z) are derived in exercises 5.1.3Ű9 and 11.
The analysis above has assumed that the input Ąle is inĄnitely long, but

the proof of Theorem K shows that the same probability ap(l1, . . . , lk) would
be obtained in any random input sequence containing at least l1 + · · · + lk + P
elements. So the results above are applicable for, say, Ąles of size N > (2k +1)P ,
in view of the small standard deviation.

We will be seeing some applications in which the merging pattern wants
some of the runs to be ascending and some to be descending. Since the residue
accumulated in memory at the end of an ascending run tends to contain numbers
somewhat smaller on the average than random data, a change in the direction

5.4.1 MULTIWAY MERGING AND REPLACEMENT SELECTION 263

of ordering decreases the average length of the runs. Consider, for example, a
snowplow that must make a U-turn every time it reaches an end of a straight
road; it will go very speedily over the area just plowed. The run lengths
when directions are reversed vary between 1.5P and 2P for random data (see
exercise 24).

EXERCISES

1. [10] What is Step 4, in the example of four-way merging at the beginning of this
section?

2. [12] What changes would be made to the tree of Fig. 63 if the key 061 were
replaced by 612?

3. [16] (E. F. Moore.) What output is produced by four-way replacement selection
when it is applied to successive words of the following sentence:

fourscore and seven years ago our fathers brought forth
on this continent a new nation conceived in liberty and
dedicated to the proposition that all men are created equal.

(Use ordinary alphabetic order, treating each word as one key.)

4. [16] Apply four-way natural selection to the sentence in exercise 3, using a reser-
voir of capacity 4.

5. [00] True or false: Replacement selection using a tree works only when P is a
power of 2 or the sum of two powers of 2.

6. [15] Algorithm R speciĄes that P must be ≥ 2; what comparatively small changes
to the algorithm would make it valid for all P ≥ 1?

7. [17] What does Algorithm R do when there is no input at all?

8. [20] Algorithm R makes use of an artiĄcial key Ş∞Ť that must be larger than
any possible key. Show that the algorithm might fail if an actual key were equal to ∞,
and explain how to modify the algorithm in case the implementation of a true ∞ is
inconvenient.

x 9. [23] How would you modify Algorithm R so that it causes certain speciĄed runs
(depending on RC) to be output in ascending order, and others in descending order?

10. [26] The initial setting of the LOSER pointers in step R1 usually doesnŠt correspond
to any actual tournament, since external node P + j may not lie in the subtree below
internal node j. Explain why Algorithm R works anyway. [Hint: Would the algorithm
work if {LOSER(LOC(X[0])), . . . , LOSER(LOC(X[P − 1]))} were set to an arbitrary per-
mutation of {LOC(X[0]), . . . , LOC(X[P − 1])} in step R1?]

11. [M20] True or false: The probability that KEY(Q) < LASTKEY in step R4 is
approximately 50%, assuming random input.

12. [M46] Carry out a detailed analysis of the number of times each portion of
Algorithm R is executed; for example, how often does step R6 set LOSER← Q?

13. [13] Why is the second run produced by replacement selection usually longer than
the Ąrst run?

x 14. [HM25] Use the snowplow analogy to estimate the average length of the last two

runs produced by replacement selection on a long sequence of input data.

264 SORTING 5.4.1

15. [20] True or false: The Ąnal run produced by replacement selection never contains
more than P records. Discuss your answer.

16. [M26] Find a ŞsimpleŤ necessary and sufficient condition that a Ąle R1 R2 . . . RN

will be completely sorted in one pass by P -way replacement selection. What is the
probability that this happens, as a function of P and N, when the input is a random
permutation of {1, 2, . . . , N}?
17. [20] What is output by Algorithm R when the input keys are in decreasing order,
K1 > K2 > · · · > KN ?

x 18. [22] What happens if Algorithm R is applied again to an output Ąle that was
produced by Algorithm R?

19. [HM22] Use the snowplow analogy to prove that the Ąrst run produced by re-
placement selection is approximately (e− 1)P records long.

20. [HM24] Approximately how long is the Ąrst run produced by natural selection,
when P = P ′?

x 21. [HM23] Determine the approximate length of runs produced by natural selection
when P ′ < P .

22. [HM40] The purpose of this exercise is to determine the average run length
obtained in natural selection, when P ′ > P . Let κ = k + θ be a real number ≥ 1,
where k = ⌊κ⌋ and θ = κmod 1, and consider the function F (κ) = Fk(θ), where Fk(θ)
is the polynomial deĄned by the generating function

k≥0

Fk(θ)zk = e−θz/(1− ze1−z).

Thus, F0(θ) = 1, F1(θ) = e− θ, F2(θ) = e2 − e− eθ + 1
2
θ2, etc.

Suppose that a snowplow starts out at time 0 to simulate the process of natural
selection, and suppose that after T units of time exactly P snowĆakes have fallen behind
it. At this point a second snowplow begins on the same journey, occupying the same
position at time t+ T as the Ąrst snowplow did at time t. Finally, at time κT, exactly
P ′ snowĆakes have fallen behind the Ąrst snowplow; it instantaneously plows the rest
of the road and disappears.

Using this model to represent the process of natural selection, show that a run
length equal to eθF (κ)P is obtained when

P ′/P = k + 1 + eθ

κF (κ)−

k

j=0

F (κ− j)

.

23. [HM35] The preceding exercise analyzes natural selection when the records from
the reservoir are always read in the same order as they were written, Ąrst-in-Ąrst-
out. Find the approximate run length that would be obtained if the reservoir contents
from the preceding run were read in completely random order, as if the records in the
reservoir had been thoroughly shuffled between runs.

24. [HM39] The purpose of this exercise is to analyze the effect caused by haphazardly
changing the direction of runs in replacement selection.

a) Let gP (z1, z2, . . . , zk) be a generating function deĄned as in Theorem K, but with
each of the k runs speciĄed as to whether it is to be ascending or descending.

5.4.1 MULTIWAY MERGING AND REPLACEMENT SELECTION 265

For example, we might say that all odd-numbered runs are ascending, all even-
numbered runs are descending. Show that Theorem K is valid for each of the 2k

generating functions of this type.

b) As a consequence of (a), we may assume that P = 1. We may also assume that the
input is a uniformly distributed sequence of independent random numbers between
0 and 1. Let

a(x, y) =

e1−x − ey−x, if x ≤ y;
e1−x, if x > y.

Given that f(x) dx is the probability that a certain ascending run begins with x,
prove that (

 1

0
a(x, y)f(x) dx) dy is the probability that the following run begins

with y. [Hint: Consider, for each n ≥ 0, the probability that x ≤ X1 ≤ · · · ≤
Xn > y, when x and y are given.]

c) Consider runs that change direction with probability p; in other words, the direc-
tion of each run after the Ąrst is randomly chosen to be the same as that of the
previous run, q = (1− p) of the time, but it is to be in the opposite direction p of
the time. (Thus when p = 0, all runs have the same direction; when p = 1, the
runs alternate in direction; and when p = 1

2
, the runs are independently random.)

Let

f1(x) = 1, fn+1(y) = p

 1

0

a(x, y)fn(1− x) dx+ q

 1

0

a(x, y)fn(x) dx.

Show that the probability that the nth run begins with x is fn(x) dx when the
(n− 1)st run is ascending, fn(1− x) dx when the (n− 1)st run is descending.

d) Find a solution f to the steady-state equations

f(y) = p

 1

0

a(x, y)f(1− x) dx+ q

 1

0

a(x, y)f(x) dx,
 1

0

f(x) dx = 1.

[Hint: Show that f ′′(x) is independent of x.]

e) Show that the sequence fn(x) in part (c) converges rather rapidly to the function
f(x) in part (d).

f) Show that the average length of an ascending run starting with x is e1−x.

g) Finally, put all these results together to prove the following theorem: If the
directions of consecutive runs are independently reversed with probability p in
replacement selection, the average run length approaches (6/(3 + p))P .

(The case p = 1 of this theorem was Ąrst derived by Knuth [CACM 6 (1963),
685Ű688]; the case p = 1

2
was Ąrst proved by A. G. Konheim in 1970.)

25. [HM40] Consider the following procedure:

N1. Read a record into a one-word Şreservoir.Ť Then read another record, R, and
let K be its key.

N2. Output the reservoir, set LASTKEY to its key, and set the reservoir empty.

N3. If K < LASTKEY then output R and set LASTKEY← K and go to N5.

N4. If the reservoir is nonempty, return to N2; otherwise enter R into the reservoir.

N5. Read in a new record, R, and let K be its key. Go to N3.

This is essentially equivalent to natural selection with P = 1 and with P ′ = 1 or 2
(depending on whether you choose to empty the reservoir at the moment it Ąlls or at

266 SORTING 5.4.1

the moment it is about to overĄll), except that it produces descending runs, and it
never stops. The latter anomalies are convenient and harmless assumptions for the
purposes of this problem.

Proceeding as in exercise 24, let fn(x, y) dy dx be the probability that x and y are
the respective values of LASTKEY and K just after the nth time step N2 is performed.
Prove that there is a function gn(x) of one variable such that fn(x, y) = gn(x) when
x < y, and fn(x, y) = gn(x)− e−y(gn(x)− gn(y)) when x > y. This function gn(x) is
deĄned by the relations g1(x) = 1,

gn+1(x) =
 x

0

eugn(u) du+
 x

0

dv (v + 1)
 1

v

du ((ev − 1)gn(u) + gn(v))

+ x

 1

x

dv

 1

v

du ((ev − 1)gn(u) + gn(v)).

Show further that the expected length of the nth run is
 1

0

dx

 x

0

dy (gn(x)(ey − 1) + gn(y))(2− 1
2
y2) +

 1

0

dx (1− x)gn(x)ex.

[Note: The steady-state solution to these equations appears to be very complicated;
it has been obtained numerically by J. McKenna, who showed that the run lengths
approach a limiting value≈ 2.61307209. Theorem K does not apply to natural selection,
so the case P = 1 does not carry over to other P .]

26. [M33] Considering the algorithm in exercise 25 as a deĄnition of natural selection
when P ′ = 1, Ąnd the expected length of the Ąrst run when P ′ = r, for any r ≥ 0, as
follows.

a) Show that the Ąrst run has length n with probability

(n+ r)

n+ r

n

(n+ r + 1)!.

b) DeĄne Şassociated Stirling numbersŤ [[n
m

]] by the rules
 0
m

= δm0,

n

m

= (n+m−1)

n− 1
m

+

n− 1
m− 1

for n > 0.

Prove that
n+ r

n

=

r

k=0

n+ r

k + r

r

k

.

c) Prove that the average length of the Ąrst run is therefore cre− r − 1, where

cr =
r

k=0

r

k

r + k + 1
(r + k)!

.

x 27. [HM30] (W. Dobosiewicz.) When natural selection is used with P ′ < P , we need
not stop forming a run when the reservoir becomes full; we can store records that do
not belong to the current run in the main priority queue, as in replacement selection,
until only P ′ records of the current run are left. Then we can Ćush them to the output
and replace them with the reservoir contents.

How much better is this method than the simpler approach analyzed in exercise 21?

28. [25] The text considers only the case that all records to be sorted have a Ąxed size.
How can replacement selection be done reasonably well on variable-length records?

5.4.2 THE POLYPHASE MERGE 267

29. [22] Consider the 2k nodes of a complete binary tree that has been right-threaded,
illustrated here when k = 3:

(Compare with 2.3.1Ű(10); the top node is the list head, and the dotted lines are thread
links. In this exercise we are not concerned with sorting but rather with the structure
of complete binary trees when a list-head-like node 0 has been added above node 1, as
in the Ştree of losers,Ť Fig. 63.)

Show how to assign the 2n+k internal nodes of a large tree of losers onto these
2k host nodes so that (i) every host node holds exactly 2n nodes of the large tree;
(ii) adjacent nodes in the large tree either are assigned to the same host node or to
host nodes that are adjacent (linked); and (iii) no two pairs of adjacent nodes in the
large tree are separated by the same link in the host tree. [Multiple virtual processors
in a large binary tree network can thereby be mapped to actual processors without
undue congestion in the communication links.]

30. [M29] Prove that if n ≥ k ≥ 1, the construction in the preceding exercise is
optimum, in the sense that any 2k-node host graph satisfying (i), (ii), and (iii) must
have at least 2k + 2k−1 − 1 edges (links) between nodes.

*5.4.2. The Polyphase Merge

Now that we have seen how initial runs can be built up, we shall consider various
patterns that can be used to distribute them onto tapes and to merge them
together until only a single run remains.

Let us begin by assuming that there are three tape units, T1, T2, and T3,
available; the technique of Şbalanced merging,Ť described near the beginning of
Section 5.4, can be used with P = 2 and T = 3, when it takes the following form:

B1. Distribute initial runs alternately on tapes T1 and T2.
B2. Merge runs from T1 and T2 onto T3; then stop if T3 contains only one run.
B3. Copy the runs of T3 alternately onto T1 and T2, then return to B2.

If the initial distribution pass produces S runs, the Ąrst merge pass will produce
⌈S/2⌉ runs on T3, the second will produce ⌈S/4⌉, etc. Thus if, say, 17 ≤ S ≤ 32,
we will have 1 distribution pass, 5 merge passes, and 4 copy passes; in general,
if S > 1, the number of passes over all the data is 2⌈lg S⌉.

The copying passes in this procedure are undesirable, since they do not
reduce the number of runs. Half of the copying can be avoided if we use a
two-phase procedure:

A1. Distribute initial runs alternately on tapes T1 and T2.
A2. Merge runs from T1 and T2 onto T3; then stop if T3 contains only one run.
A3. Copy half of the runs from T3 onto T1.
A4. Merge runs from T1 and T3 onto T2; then stop if T2 contains only one run.
A5. Copy half of the runs from T2 onto T1. Return to A2.

268 SORTING 5.4.2

The number of passes over the data has been reduced to 3
2⌈lg S⌉+ 1

2 , since steps
A3 and A5 do only Şhalf a passŤ; about 25 percent of the time has therefore
been saved.

The copying can actually be eliminated entirely, if we start with Fn runs
on T1 and Fn−1 runs on T2, where Fn and Fn−1 are consecutive Fibonacci
numbers. Consider, for example, the case n = 7, S = Fn + Fn−1 = 13 + 8 = 21:

Phase Contents of T1 Contents of T2 Contents of T3 Remarks

1 1,1,1,1,1,1,1,1,1,1,1,1,1 1,1,1,1,1,1,1,1 Initial distribution
2 1,1,1,1,1 Ů 2,2,2,2,2,2,2,2 Merge 8 runs to T3
3 Ů 3,3,3,3,3 2,2,2 Merge 5 runs to T2
4 5,5,5 3,3 Ů Merge 3 runs to T1
5 5 Ů 8,8 Merge 2 runs to T3
6 Ů 13 8 Merge 1 run to T2
7 21 Ů Ů Merge 1 run to T1

Here, for example, Ş2,2,2,2,2,2,2,2Ť denotes eight runs of relative length 2, con-
sidering each initial run to be of relative length 1. Fibonacci numbers are
omnipresent in this chart!

Only phases 1 and 7 are complete passes over the data; phase 2 processes
only 16/21 of the initial runs, phase 3 only 15/21, etc., and so the total number
of ŞpassesŤ comes to (21 + 16 + 15 + 15 + 16 + 13 + 21)/21 = 5 4

7 if we assume
that the initial runs have approximately equal length. By comparison, the two-
phase procedure above would have required 8 passes to sort these 21 initial runs.
We shall see that in general this ŞFibonacciŤ pattern requires approximately
1.04 lg S + 0.99 passes, making it competitive with a four-tape balanced merge
although it requires only three tapes.

The same idea can be generalized to T tapes, for any T ≥ 3, using (T − 1)-
way merging. We shall see, for example, that the four-tape case requires only
about .703 lg S + 0.96 passes over the data. The generalized pattern involves
generalized Fibonacci numbers. Consider the following six-tape example:

Phase T1 T2 T3 T4 T5 T6 Initial runs processed

1 131 130 128 124 116 Ů 31 + 30 + 28 + 24 + 16 = 129
2 115 114 112 18 Ů 516 16× 5 = 80
3 17 16 14 Ů 98 58 8× 9 = 72
4 13 12 Ů 174 94 54 4× 17 = 68
5 11 Ů 332 172 92 52 2× 33 = 66
6 Ů 651 331 171 91 51 1× 65 = 65
7 1291 Ů Ů Ů Ů Ů 1× 129 = 129

Here 131 stands for 31 runs of relative length 1, etc.; Ąve-way merges have
been used throughout. This general pattern was developed by R. L. Gilstad
[Proc. Eastern Joint Computer Conf. 18 (1960), 143Ű148], who called it the
polyphase merge. The three-tape case had been discovered earlier by B. K. Betz
[unpublished memorandum, MinneapolisŰHoneywell Regulator Co. (1956)].

In order to make polyphase merging work as in the examples above, we
need to have a Şperfect Fibonacci distributionŤ of runs on the tapes after each

5.4.2 THE POLYPHASE MERGE 269

phase. By reading the table above from bottom to top, we can see that the Ąrst
seven perfect Fibonacci distributions when T = 6 are {1, 0, 0, 0, 0}, {1, 1, 1, 1, 1},
{2,2,2,2,1}, {4,4,4,3,2}, {8,8,7,6,4}, {16,15,14,12,8}, and {31,30,28,24,16}.
The big questions now facing us are

1. What is the rule underlying these perfect Fibonacci distributions?
2. What do we do if S does not correspond to a perfect Fibonacci distribution?
3. How should we design the initial distribution pass so that it produces the

desired conĄguration on the tapes?
4. How many ŞpassesŤ over the data will a T -tape polyphase merge require, as

a function of S (the number of initial runs)?

We shall discuss these four questions in turn, Ąrst giving Şeasy answersŤ and
then making a more intensive analysis.

The perfect Fibonacci distributions can be obtained by running the pattern
backwards, cyclically rotating the tape contents. For example, when T = 6 we
have the following distribution of runs:

Final output
Level T1 T2 T3 T4 T5 Total will be on

0 1 0 0 0 0 1 T1
1 1 1 1 1 1 5 T6
2 2 2 2 2 1 9 T5
3 4 4 4 3 2 17 T4
4 8 8 7 6 4 33 T3
5 16 15 14 12 8 65 T2
6 31 30 28 24 16 129 T1
7 61 59 55 47 31 253 T6
8 120 116 108 92 61 497 T5

. .
n an bn cn dn en tn T(k)

n+ 1 an + bn an + cn an + dn an + en an tn + 4an T(k − 1) (1)
. .

(Tape T6 will always be empty after the initial distribution.)
The rule for going from level n to level n + 1 shows that the condition

an ≥ bn ≥ cn ≥ dn ≥ en (2)

will hold in every level. In fact, it is easy to see from (1) that

en = an−1,

dn = an−1 + en−1 = an−1 + an−2,

cn = an−1 + dn−1 = an−1 + an−2 + an−3,

bn = an−1 + cn−1 = an−1 + an−2 + an−3 + an−4,

an = an−1 + bn−1 = an−1 + an−2 + an−3 + an−4 + an−5,

(3)

where a0 = 1 and where we let an = 0 for n = −1, −2, −3, −4.

270 SORTING 5.4.2

The pth-order Fibonacci numbers F
(p)
n are deĄned by the rules

F (p)
n = F

(p)
n−1 + F

(p)
n−2 + · · ·+ F

(p)
n−p, for n ≥ p;

F (p)
n = 0, for 0 ≤ n ≤ p − 2; F

(p)
p−1 = 1.

(4)

In other words, we start with p− 1 0s, then 1, and then each number is the sum
of the preceding p values. When p = 2, this is the usual Fibonacci sequence,
and when p = 3 it has been called the Tribonacci sequence. Such sequences were
apparently Ąrst studied for p > 2 by Nārāyan. a Pan.d. ita in 1356 [see P. Singh,
Historia Mathematica 12 (1985), 229Ű244], then many years later by V. Schlegel
in El Progreso Matemático 4 (1894), 173Ű174. Schlegel derived the generating
function

n≥0

F (p)
n zn =

zp−1

1− z − z2 − · · · − zp
=

zp−1 − zp

1− 2z + zp+1
. (5)

The last equation of (3) shows that the number of runs on T1 during a six-tape
polyphase merge is a Ąfth-order Fibonacci number: an = F

(5)
n+4.

In general, if we set P = T−1, the polyphase merge distributions for T tapes
will correspond to P th order Fibonacci numbers in the same way. The kth tape
gets

F
(P)
n+P−2 + F

(P)
n+P−3 + · · ·+ F

(P)
n+k−2

initial runs in the perfect nth level distribution, for 1 ≤ k ≤ P , and the total
number of initial runs on all tapes is therefore

tn = PF
(P)
n+P−2 + (P − 1)F

(P)
n+P−3 + · · ·+ F

(P)
n−1. (6)

This settles the issue of Şperfect Fibonacci distributions.Ť But what should
we do if S is not exactly equal to tn, for any n? And how do we get the runs
onto the tapes in the Ąrst place?

When S isnŠt perfect (and so few values are), we can do just as we did in
balanced P -way merging, adding artiĄcial Şdummy runsŤ so that we can pretend
S is perfect after all. There are several ways to add the dummy runs, and we
arenŠt ready yet to analyze the ŞbestŤ way of doing this. We shall discuss Ąrst
a method of distribution and dummy-run assignment that isnŠt strictly optimal,
although it has the virtue of simplicity and appears to be better than all other
equally simple methods.

Algorithm D (Polyphase merge sorting with ŞhorizontalŤ distribution). This
algorithm takes initial runs and disperses them to tapes, one run at a time, until
the supply of initial runs is exhausted. Then it speciĄes how the tapes are to
be merged, assuming that there are T = P + 1 ≥ 3 available tape units, using
P -way merging. Tape T may be used to hold the input, since it does not receive
any initial runs. The following tables are maintained:

A[j], 1 ≤ j ≤ T : The perfect Fibonacci distribution we are striving for.

D[j], 1 ≤ j ≤ T : Number of dummy runs assumed to be present at the
beginning of logical tape unit number j.

5.4.2 THE POLYPHASE MERGE 271

D1. Initialize

D2. Input
to tape j

D3. Advance j D4. Up a level

D5. Merge D6. Down a level

Input complete

Sorting complete

D≡0

Fig. 68. Polyphase merge sorting.

TAPE[j], 1 ≤ j ≤ T : Number of the physical tape unit corresponding to logical
tape unit number j.

(It is convenient to deal with Şlogical tape unit numbersŤ whose assignment to
physical tape units varies as the algorithm proceeds.)

D1. [Initialize.] Set A[j] ← D[j] ← 1 and TAPE[j] ← j, for 1 ≤ j < T. Set
A[T]← D[T]← 0 and TAPE[T]← T. Then set l← 1, j ← 1.

D2. [Input to tape j.] Write one run on tape number j, and decrease D[j] by 1.
Then if the input is exhausted, rewind all the tapes and go to step D5.

D3. [Advance j.] If D[j] < D[j + 1], increase j by 1 and return to D2. Other-
wise if D[j] = 0, go on to D4. Otherwise set j ← 1 and return to D2.

D4. [Up a level.] Set l ← l + 1, a ← A[1], and then for j = 1, 2, . . . , P (in
this order) set D[j] ← a + A[j + 1] − A[j] and A[j] ← a + A[j + 1].
(See (1) and note that A[P + 1] is always zero. At this point we will have
D[1] ≥ D[2] ≥ · · · ≥ D[T].) Now set j ← 1 and return to D2.

D5. [Merge.] If l = 0, sorting is complete and the output is on TAPE[1]. Other-
wise, merge runs from TAPE[1], . . . , TAPE[P] onto TAPE[T] until TAPE[P]

is empty and D[P] = 0. The merging process should operate as follows,
for each run merged: If D[j] > 0 for all j, 1 ≤ j ≤ P , then increase D[T]
by 1 and decrease each D[j] by 1 for 1 ≤ j ≤ P ; otherwise merge one run
from each TAPE[j] such that D[j] = 0, and decrease D[j] by 1 for each
other j. (Thus the dummy runs are imagined to be at the beginning of the
tape instead of at the ending.)

D6. [Down a level.] Set l← l−1. Rewind TAPE[P] and TAPE[T]. (Actually the
rewinding of TAPE[P] could have been initiated during step D5, just after
its last block was input.) Then set (TAPE[1], TAPE[2], . . . , TAPE[T]) ←
(TAPE[T], TAPE[1], . . . , TAPE[T − 1]), (D[1], D[2], . . . , D[T]) ← (D[T],
D[1], . . . , D[T − 1]), and return to step D5.

272 SORTING 5.4.2

Fig. 69. The order in which runs 34 through 65 are
distributed to tapes, when advancing from level 4 to
level 5. (See the table of perfect distributions, Eq. (1).)
Shaded areas represent the Ąrst 33 runs that were dis-
tributed when level 4 was reached. The bottom row
corresponds to the beginning of each tape.

34

35

38

42

46

51

56

61

36

39

43

47

52

57

62

37

40

44

48

53

58

63

41

45

49

54

59

64

50

55

60

65

T1 T2 T3 T4 T5

The distribution rule that is stated so succinctly in step D3 of this algorithm
is intended to equalize the number of dummies on each tape as well as possible.
Figure 69 illustrates the order of distribution when we go from level 4 (33 runs)
to level 5 (65 runs) in a six-tape sort; if there were only, say, 53 initial runs,
all runs numbered 54 and higher would be treated as dummies. (The runs are
actually being written at the end of the tape, but it is best to imagine them being
written at the beginning, since the dummies are assumed to be at the beginning.)

We have now discussed the Ąrst three questions listed above, and it remains
to consider the number of ŞpassesŤ over the data. Comparing our six-tape
example to the table (1), we see that the total number of initial runs processed
when S = t6 was a5t1 + a4t2 + a3t3 + a2t4 + a1t5 + a0t6, excluding the initial
distribution pass. Exercise 4 derives the generating functions

a(z) =

n≥0

anzn =
1

1− z − z2 − z3 − z4 − z5
,

t(z) =

n≥1

tnzn =
5z + 4z2 + 3z3 + 2z4 + z5

1− z − z2 − z3 − z4 − z5
.

(7)

It follows that, in general, the number of initial runs processed when S = tn
is exactly the coefficient of zn in a(z) t(z), plus tn (for the initial distribution
pass). This makes it possible to calculate the asymptotic behavior of polyphase
merging, as shown in exercises 5 through 7, and we obtain the following results:

Table 1

APPROXIMATE BEHAVIOR OF POLYPHASE MERGE SORTING

Tapes Phases Passes Pass/phase Growth ratio

3 2.078 lnS + 0.672 1.504 lnS + 0.992 72% 1.6180340
4 1.641 lnS + 0.364 1.015 lnS + 0.965 62% 1.8392868
5 1.524 lnS + 0.078 0.863 lnS + 0.921 57% 1.9275620
6 1.479 lnS − 0.185 0.795 lnS + 0.864 54% 1.9659482
7 1.460 lnS − 0.424 0.762 lnS + 0.797 52% 1.9835828
8 1.451 lnS − 0.642 0.744 lnS + 0.723 51% 1.9919642

10 1.445 lnS − 1.017 0.728 lnS + 0.568 50% 1.9980295
20 1.443 lnS − 2.170 0.721 lnS − 0.030 50% 1.9999981

5.4.2 THE POLYPHASE MERGE 273

In Table 1, the Şgrowth ratioŤ is limn→∞ tn+1/tn, the approximate factor by
which the number of runs increases at each level. ŞPassesŤ denotes the average
number of times each record is processed, namely 1/S times the total number
of initial runs processed during the distribution and merge phases. The stated
number of passes and phases is correct in each case up to O(S−ϵ), for some ϵ > 0,
for perfect distributions as S →∞.

Figure 70 shows the average number of times each record is merged, as
a function of S, when Algorithm D is used to handle the case of nonperfect
numbers. Note that with three tapes there are ŞpeaksŤ of relative inefficiency
occurring just after the perfect distributions, but this phenomenon largely dis-
appears when there are four or more tapes. The use of eight or more tapes gives
comparatively little improvement over six or seven tapes.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0
1 2 5 10 20 50 100 200 500 1000 2000 5000

N
u
m
b
e
r
o
f
“
p
a
ss
e
s”

w
h
il
e
m
e
rg
in
g

Initial runs, S

T = 3

T = 4

T = 5

T = 6

T = 8
T = 10

Fig. 70. Efficiency of polyphase merge using Algorithm D.

A closer look. In a balanced merge requiring k passes, every record is processed
exactly k times during the course of the sort. But the polyphase procedure does
not have this lack of bias; some records may get processed many more times
than others, and we can gain speed if we arrange to put dummy runs into the
oft-processed positions.

274 SORTING 5.4.2

Let us therefore study the polyphase distribution more closely; instead of
merely looking at the number of runs on each tape, as in (1), let us associate
with each run its merge number, the number of times it will be processed during
the complete polyphase sort. We get the following table in place of (1):

Level T1 T2 T3 T4 T5

0 0 Ů Ů Ů Ů
1 1 1 1 1 1
2 21 21 21 21 2
3 3221 3221 3221 322 32
4 43323221 43323221 4332322 433232 4332
5 5443433243323221 544343324332322 54434332433232 544343324332 54434332

. .
n An Bn Cn Dn En

n + 1 (An + 1)Bn (An + 1)Cn (An + 1)Dn (An + 1)En An + 1 (8)
. .

Here An is a string of an values representing the merge numbers for each run
on T1, if we begin with the level n distribution; Bn is the corresponding string
for T2; etc. The notation Ş(An + 1)BnŤ means ŞAn with all values increased
by 1, followed by Bn.Ť

Figure 71(a) shows A5, B5, C5, D5, E5 tipped on end, showing how the
merge numbers for each run appear on tape; notice, for example, that the run at
the beginning of each tape will be processed Ąve times, while the run at the end
of T1 will be processed only once. This discriminatory practice of the polyphase
merge makes it much better to put a dummy run at the beginning of the tape
than at the end. Figure 71(b) shows an optimum order in which to distribute runs
for a Ąve-level polyphase merge, placing each new run into a position with the
smallest available merge number. Algorithm D is not quite as good (see Fig. 69),
since it Ąlls some Ş4Ť positions before all of the Ş3Ť positions are used up.

1
2
2
3
2
3
3
4
2
3
3
4
3
4
4
5

2
2
3
2
3
3
4
2
3
3
4
3
4
4
5

2
3
2
3
3
4
2
3
3
4
3
4
4
5

2
3
3
4
2
3
3
4
3
4
4
5

2
3
3
4
3
4
4
5

1
2
4

16
7

19
23
42
11
27
32
46
37
51
56
61

3
5

17
8

20
24
43
12
28
33
47
38
52
57
62

6
18
9

21
25
44
13
29
34
48
39
53
58
63

10
22
26
45
14
30
35
49
40
54
59
64

15
31
36
50
41
55
60
65

(a) (b)

Beginning of tape

Fig. 71. Analysis of the Ąfth-level polyphase distribution for six tapes: (a) merge
numbers, (b) optimum distribution order.

5.4.2 THE POLYPHASE MERGE 275

The recurrence relations (8) show that each of Bn, Cn, Dn, and En are
initial substrings of An. In fact, we can use (8) to derive the formulas

En = (An−1) + 1,

Dn = (An−1An−2) + 1,

Cn = (An−1An−2An−3) + 1,

Bn = (An−1An−2An−3An−4) + 1,

An = (An−1An−2An−3An−4An−5) + 1,

(9)

generalizing Eqs. (3), which treated only the lengths of these strings. Further-
more, the rule deĄning the AŠs implies that essentially the same structure is
present at the beginning of every level; we have

An = n−Qn, (10)

where Qn is a string of an values deĄned by the law

Qn = Qn−1(Qn−2 + 1)(Qn−3 + 2)(Qn−4 + 3)(Qn−5 + 4), for n ≥ 1;

Q0 = 0; Qn = ϵ (the empty string) for n < 0. (11)

Since Qn begins with Qn−1, we can consider the inĄnite string Q∞, whose Ąrst
an elements are equal to Qn; this string Q∞ essentially characterizes all the
merge numbers in polyphase distribution. In the six-tape case,

Q∞ = 011212231223233412232334233434412232334233434452334344534454512232 · · · .
(12)

Exercise 11 contains an interesting interpretation of this string.

Given that An is the string m1m2 . . . man
, let

An(x) = xm1 + xm2 + · · ·+ xman

be the corresponding generating function that counts the number of times each
merge number appears; and deĄne Bn(x), Cn(x), Dn(x), En(x) similarly. For
example, A4(x) = x4 + x3 + x3 + x2 + x3 + x2 + x2 + x = x4 + 3x3 + 3x2 + x.
Relations (9) tell us that

En(x) = x

An−1(x)

,

Dn(x) = x

An−1(x) + An−2(x)

,

Cn(x) = x

An−1(x) + An−2(x) + An−3(x)

,

Bn(x) = x

An−1(x) + An−2(x) + An−3(x) + An−4(x)

,

An(x) = x

An−1(x) + An−2(x) + An−3(x) + An−4(x) + An−5(x)

,

(13)

for n ≥ 1, where A0(x) = 1 and An(x) = 0 for n = −1, −2, −3, −4. Hence

n≥0

An(x)zn =
1

1− x(z + z2 + z3 + z4 + z5)
=

k≥0

xk(z + z2 + z3 + z4 + z5)k.
(14)

276 SORTING 5.4.2

Considering the runs on all tapes, we let

Tn(x) = An(x) + Bn(x) + Cn(x) + Dn(x) + En(x), n ≥ 1; (15)

from (13) we immediately have

Tn(x) = 5An−1(x) + 4An−2(x) + 3An−3(x) + 2An−4(x) + An−5(x),

hence

n≥1

Tn(x)zn =
x(5z + 4z2 + 3z3 + 2z4 + z5)
1− x(z + z2 + z3 + z4 + z5)

. (16)

The form of (16) shows that it is easy to compute the coefficients of Tn(x):

z z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14

x 5 4 3 2 1 0 0 0 0 0 0 0 0 0
x2 0 5 9 12 14 15 10 6 3 1 0 0 0 0
x3 0 0 5 14 26 40 55 60 57 48 35 20 10 4 (17)
x4 0 0 0 5 19 45 85 140 195 238 260 255 220 170
x5 0 0 0 0 5 24 69 154 294 484 703 918 1088 1168

The columns of this tableau give Tn(x); for example, T4(x) = 2x + 12x2 +
14x3 + 5x4. After the Ąrst row, each entry in the tableau is the sum of the Ąve
entries just above and to the left in the previous row.

The number of runs in a ŞperfectŤ nth level distribution is Tn(1), and the
total amount of processing as these runs are merged is the derivative, T ′

n(1).
Now

n≥1

T ′
n(x)zn =

5z + 4z2 + 3z3 + 2z4 + z5

1− x(z + z2 + z3 + z4 + z5)

2

; (18)

setting x = 1 in (16) and (18) gives a result in agreement with our earlier
demonstration that the merge processing for a perfect nth level distribution is
the coefficient of zn in a(z)t(z); see (7).

We can use the functions Tn(x) to determine the work involved when dummy
runs are added in an optimum way. Let Σn(m) be the sum of the smallest m
merge numbers in an nth level distribution. These values are readily calculated
by looking at the columns of (17), and we Ąnd that Σn(m) is given by

m = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

n = 1 1 2 3 4 5 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
n = 2 1 2 3 4 6 8 10 12 14 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
n = 3 1 2 3 5 7 9 11 13 15 17 19 21 24 27 30 33 36 ∞ ∞ ∞ ∞
n = 4 1 2 4 6 8 10 12 14 16 18 20 22 24 26 29 32 35 38 41 44 47
n = 5 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 32 35 38 41 44 47
n = 6 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 33 36 39 42 45 48
n = 7 2 4 6 8 10 12 14 16 18 20 23 26 29 32 35 38 41 44 47 50 53

(19)

For example, if we wish to sort 17 runs using a level-3 distribution, the total
amount of processing is Σ3(17) = 36; but if we use a level-4 or level-5 distribution

5.4.2 THE POLYPHASE MERGE 277

Table 2

NUMBER OF RUNS FOR WHICH A GIVEN LEVEL IS OPTIMUM

Level T = 3 T = 4 T = 5 T = 6 T = 7 T = 8 T = 9 T = 10

1 2 2 2 2 2 2 2 2 M1

2 3 4 5 6 7 8 9 10 M2

3 4 6 8 10 12 14 16 18 M3

4 6 10 14 14 17 20 23 26 M4

5 9 18 23 29 20 24 28 32 M5

6 14 32 35 43 53 27 32 37 M6

7 22 55 76 61 73 88 35 41 M7

8 35 96 109 154 98 115 136 44 M8

9 56 173 244 216 283 148 171 199 M9

10 90 280 359 269 386 168 213 243 M10

11 145 535 456 779 481 640 240 295 M11

12 234 820 1197 1034 555 792 1002 330 M12

13 378 1635 1563 1249 1996 922 1228 1499 M13

14 611 2401 4034 3910 2486 1017 1432 1818 M14

15 988 4959 5379 4970 2901 4397 1598 2116 M15

16 1598 7029 6456 5841 10578 5251 1713 2374 M16

17 2574 14953 18561 19409 13097 5979 8683 2576 M17

18 3955 20583 22876 23918 15336 6499 10069 2709 M18

19 6528 44899 64189 27557 17029 30164 11259 15787 M19

and position the dummy runs optimally, the total amount of processing during
the merge phases is only Σ4(17) = Σ5(17) = 35. It is better to use level 4, even
though 17 corresponds to a ŞperfectŤ level-3 distribution! Indeed, as S gets large
it turns out that the optimum number of levels is many more than that used in
Algorithm D.

Exercise 14 proves that there is a nondecreasing sequence of numbers Mn

such that level n is optimum for Mn ≤ S < Mn+1, but not for S ≥ Mn+1. In
the six-tape case the table of Σn(m) we have just calculated shows that

M0 = 0, M1 = 2, M2 = 6, M3 = 10, M4 = 14.

The discussion above treats only the case of six tapes, but it is clear that the
same ideas apply to polyphase merging with T tapes for any T ≥ 3; we simply
replace 5 by P = T − 1 in all appropriate places. Table 2 shows the sequences
Mn obtained for various values of T. Table 3 and Fig. 72 indicate the total
number of initial runs that are processed after making an optimum distribution
of dummy runs. (The formulas that appear at the bottom of Table 3 should
be taken with a grain of salt, since they are least-squares Ąts over the range
1 ≤ S ≤ 5000, or 1 ≤ S ≤ 10000 for T = 3; this leads to somewhat erratic
behavior because the given range of S values is not equally favorable for all T.
As S → ∞, the number of initial runs processed after an optimum polyphase
distribution is asymptotically S logP S, but convergence to this asymptotic limit
is extremely slow.)

278 SORTING 5.4.2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0
1 2 5 10 20 50 100 200 500 1000 2000 5000

N
u
m
b
e
r
o
f
“
p
a
ss
e
s”

w
h
il
e
m
e
rg
in
g

Initial runs, S

T = 3

T = 4

T = 5

T = 6
T = 7
T = 8
T = 10

Fig. 72. Efficiency of polyphase merge with optimum initial distribution, using the
same assumptions as Fig. 70.

Table 3

INITIAL RUNS PROCESSED DURING AN OPTIMUM POLYPHASE MERGE

S T = 3 T = 4 T = 5 T = 6 T = 7 T = 8 T = 9 T = 10

10 36 24 19 17 15 14 13 12
20 90 60 49 44 38 36 34 33
50 294 194 158 135 128 121 113 104

100 702 454 362 325 285 271 263 254
500 4641 3041 2430 2163 1904 1816 1734 1632

1000 10371 6680 5430 4672 4347 3872 3739 3632
5000 63578 41286 32905 28620 26426 23880 23114 22073

S

(1.51

(−.11
0.951
+.14

0.761
+.16

0.656
+.19

0.589
+.21

0.548
+.20

0.539
+.02

0.488)× S lnS +
+.18)× S

Table 4 shows how the distribution method of Algorithm D compares with
the results of optimum distribution in Table 3. It is clear that Algorithm D is
not very close to the optimum when S and T become large; but it is not clear

5.4.2 THE POLYPHASE MERGE 279

Table 4

INITIAL RUNS PROCESSED DURING THE STANDARD POLYPHASE MERGE

S T = 3 T = 4 T = 5 T = 6 T = 7 T = 8 T = 9 T = 10

10 36 24 19 17 15 14 13 12
20 90 62 49 44 41 37 34 33
50 294 194 167 143 134 131 120 114

100 714 459 393 339 319 312 292 277
500 4708 3114 2599 2416 2191 2100 2047 2025

1000 10730 6920 5774 5370 4913 4716 4597 4552
5000 64740 43210 36497 32781 31442 29533 28817 28080

how to do much better than Algorithm D without considerable complication in
such cases, especially if we do not know S in advance. Fortunately, we rarely
have to worry about large S (see Section 5.4.6), so Algorithm D is not too bad
in practice; in fact, itŠs pretty good.

Polyphase sorting was Ąrst analyzed mathematically by W. C. Carter [Proc.
IFIP Congress (1962), 62Ű66]. Many of the results stated above about optimal
dummy run placement are due originally to B. Sackman and T. Singer [ŞA vector
model for merge sort analysis,Ť an unpublished paper presented at the ACM Sort
Symposium (November 1962), 21 pages]. Sackman later suggested the horizontal
method of distribution used in Algorithm D. Donald Shell [CACM 14 (1971),
713Ű719; 15 (1972), 28] developed the theory independently, noted relation (10),
and made a detailed study of several different distribution algorithms. Further
instructive developments and reĄnements have been made by Derek A. Zave
[SICOMP 6 (1977), 1Ű39]; some of ZaveŠs results are discussed in exercises 15
through 17. The generating function (16) was Ąrst investigated by W. Burge
[Proc. IFIP Congress (1971), 1, 454Ű459].

But what about rewind time? So far we have taken Şinitial runs processedŤ
as the sole measure of efficiency for comparing tape merge strategies. But after
each of phases 2 through 6, in the examples at the beginning of this section,
it is necessary for the computer to wait for two tapes to rewind; both the
previous output tape and the new current output tape must be repositioned at
the beginning, before the next phase can proceed. This can cause a signiĄcant
delay, since the previous output tape generally contains a signiĄcant percentage
of the records being sorted (see the Şpass/phaseŤ column in Table 1). It is
a shame to have the computer twiddling its thumbs during all these rewind
operations, since useful work could be done with the other tapes if we used a
different merging pattern.

A simple modiĄcation of the polyphase procedure will overcome this prob-
lem, although it requires at least Ąve tapes [see Y. Césari, Thesis, U. of Paris
(1968), 25Ű27, where the idea is credited to J. Caron]. Each phase in CaronŠs
scheme merges runs from T − 3 tapes onto another tape, while the remaining
two tapes are rewinding.

280 SORTING 5.4.2

For example, consider the case of six tapes and 49 initial runs. In the
following tableau, R denotes rewinding during the phase, and T5 is assumed to
contain the original input:

Phase T1 T2 T3 T4 T5 T6 Write time Rewind time

1 111 117 113 18 Ů (R) 49 17
2 (R) 19 15 Ů R 38 8× 3 = 24 49− 17 = 32
3 16 14 Ů R 35 R 5× 3 = 15 max(8, 24)
4 12 Ů R 54 R 34 4× 5 = 20 max(13, 15)
5 Ů R 72 R 33 32 2× 7 = 14 max(17, 20)
6 R 112 R 52 31 Ů 2× 11 = 22 max(11, 14)
7 151 R 71 51 Ů R 1× 15 = 15 max(22, 24)
8 R 111 70 Ů R 231 1× 23 = 23 max(15, 15)
9 151 111 Ů R 330 R 0× 33 = 0 max(20, 23)

10 (150) Ů R 491 (R) (230) 1× 49 = 49 14

Here all the rewind time is essentially overlapped, except in phase 9 (a Şdummy
phaseŤ that prepares for the Ąnal merge), and after the initial distribution phase
(when all tapes are rewound). If t is the time to merge the number of records in
one initial run, and if r is the time to rewind over one initial run, this process
takes about 182t+40r plus the time for initial distribution and Ąnal rewind. The
corresponding Ągures for standard polyphase using Algorithm D are 140t+104r,
which is slightly worse when r = 3

4 t, slightly better when r = 1
2 t.

Everything we have said about standard polyphase can be adapted to CaronŠs
polyphase; for example, the sequence an now satisĄes the recurrence

an = an−2 + an−3 + an−4 (20)

instead of (3). The reader will Ąnd it instructive to analyze this method in the
same way we analyzed standard polyphase, since it will enhance an understand-
ing of both methods. (See, for example, exercises 19 and 20.)

Table 5 gives statistics about Polyphase Caron that are analogous to the
facts about Polyphase Ordinaire in Table 1. Notice that CaronŠs method actually
becomes superior to polyphase on eight or more tapes, in the number of runs
processed as well as in the rewind time, even though it does (T −3)-way merging
instead of (T − 1)-way merging!

Table 5

APPROXIMATE BEHAVIOR OF CARONŠS POLYPHASE MERGE SORTING

Tapes Phases Passes Pass/phase Growth ratio

5 3.556 lnS + 0.158 1.463 lnS + 1.016 41% 1.3247180
6 2.616 lnS − 0.166 0.951 lnS + 1.014 36% 1.4655712
7 2.337 lnS − 0.472 0.781 lnS + 1.001 33% 1.5341577
8 2.216 lnS − 0.762 0.699 lnS + 0.980 32% 1.5701473
9 2.156 lnS − 1.034 0.654 lnS + 0.954 30% 1.5900054

10 2.124 lnS − 1.290 0.626 lnS + 0.922 29% 1.6013473
20 2.078 lnS − 3.093 0.575 lnS + 0.524 28% 1.6179086

5.4.2 THE POLYPHASE MERGE 281

This may seem paradoxical until we realize that a high order of merge does

not necessarily imply an efficient sort. As an extreme example, consider placing
one run on T1 and n runs on T2, T3, T4, T5; if we alternately do Ąve-way
merging to T6 and T1 until T2, T3, T4, T5 are empty, the processing time is
(2n2 + 3n) initial run lengths, essentially proportional to S2 instead of S log S,
although Ąve-way merging was done throughout.

Tape splitting. Efficient overlapping of rewind time is a problem that arises
in many applications, not just sorting, and there is a general approach that can
often be used. Consider an iterative process that uses two tapes in the following
way:

T1 T2

Phase 1 Output 1 Ů
Rewind Ů

Phase 2 Input 1 Output 2
Rewind Rewind

Phase 3 Output 3 Input 2
Rewind Rewind

Phase 4 Input 3 Output 4
Rewind Rewind

and so on, where ŞOutput kŤ means write the kth output Ąle and ŞInput kŤ
means read it. The rewind time can be avoided when three tapes are used, as
suggested by C. Weisert [CACM 5 (1962), 102]:

T1 T2 T3

Phase 1 Output 1.1 Ů Ů
Output 1.2 Ů Ů
Rewind Output 1.3 Ů

Phase 2 Input 1.1 Output 2.1 Ů
Input 1.2 Rewind Output 2.2
Rewind Input 1.3 Output 2.3

Phase 3 Output 3.1 Input 2.1 Rewind
Output 3.2 Rewind Input 2.2
Rewind Output 3.3 Input 2.3

Phase 4 Input 3.1 Output 4.1 Rewind
Input 3.2 Rewind Output 4.2
Rewind Input 3.3 Output 4.3

and so on. Here ŞOutput k.jŤ means write the jth third of the kth output
Ąle, and ŞInput k.jŤ means read it. Virtually all of the rewind time will be
eliminated if rewinding is at least twice as fast as the read/write speed. Such a
procedure, in which the output of each phase is divided between tapes, is called
Ştape splitting.Ť

282 SORTING 5.4.2

R. L. McAllester [CACM 7 (1964), 158Ű159] has shown that tape splitting
leads to an efficient way of overlapping the rewind time in a polyphase merge.
His method can be used with four or more tapes, and it does (T−2)-way merging.

Assuming once again that we have six tapes, let us try to design a merge
pattern that operates as follows, splitting the output on each level, where ŞIŤ,
ŞOŤ, and ŞRŤ, respectively, denote input, output, and rewinding:

Level T1 T2 T3 T4 T5 T6 Number of runs output
7 I I I I R O u7

I I I I O R v7

6 I I I R O I u6

I I I O R I v6

5 I I R O I I u5

I I O R I I v5

4 I R O I I I u4

I O R I I I v4

3 R O I I I I u3

O R I I I I v3

2 O I I I I R u2

R I I I I O v2

1 I I I I R O u1

I I I I O R v1

0 I I I R O I u0

I I I O R I v0 (21)

In order to end with one run on T4 and all other tapes empty, we need to have

v0 = 1,

u0 + v1 = 0,

u1 + v2 = u0 + v0,

u2 + v3 = u1 + v1 + u0 + v0,

u3 + v4 = u2 + v2 + u1 + v1 + u0 + v0,

u4 + v5 = u3 + v3 + u2 + v2 + u1 + v1 + u0 + v0,

u5 + v6 = u4 + v4 + u3 + v3 + u2 + v2 + u1 + v1,

etc.; in general, the requirement is that

un + vn+1 = un−1 + vn−1 + un−2 + vn−2 + un−3 + vn−3 + un−4 + vn−4 (22)

for all n ≥ 0, if we regard uj = vj = 0 for all j < 0.
There is no unique solution to these equations; indeed, if we let all the uŠs be

zero, we get the usual polyphase merge with one tape wasted! But if we choose
un ≈ vn+1, the rewind time will be satisfactorily overlapped.

McAllester suggested taking

un = vn−1 + vn−2 + vn−3 + vn−4,

vn+1 = un−1 + un−2 + un−3 + un−4,

5.4.2 THE POLYPHASE MERGE 283

so that the sequence

⟨x0, x1, x2, x3, x4, x5, . . . ⟩ = ⟨v0, u0, v1, u1, v2, u2, . . . ⟩
satisĄes the uniform recurrence xn = xn−3 + xn−5 + xn−7 + xn−9. However, it
turns out to be better to let

vn+1 = un−1 + vn−1 + un−2 + vn−2,

un = un−3 + vn−3 + un−4 + vn−4;
(23)

this sequence not only leads to a slightly better merging time, it also has the
great virtue that its merging time can be analyzed mathematically. McAllesterŠs
choice is extremely difficult to analyze because runs of different lengths may
occur during a single phase; we shall see that this does not happen with (23).

We can deduce the number of runs on each tape on each level by working
backwards in the pattern (21), and we obtain the following sorting scheme:

Level T1 T2 T3 T4 T5 T6 Write time Rewind time

123 121 117 110 Ů 111 82 23
7 119 117 113 16 R 11144 4× 4 = 16 82− 23

113 111 17 Ů 46 R 6× 4 = 24 27
6 110 18 14 R 49 1844 3× 4 = 12 10

16 14 Ů 44 R 1444 4× 4 = 16 36
5 15 13 R 4471 48 1344 1× 7 = 7 17

12 Ů 73 R 45 44 3× 7 = 21 23
4 11 R 73131 4371 44 43 1× 13 = 13 21

Ů 131 R 4271 43 42 1× 13 = 13 34
3 R 131191 72131 4171 42 41 1× 19 = 19 23

191 R 71131 71 41 Ů 1× 19 = 19 32
2 191310 131191 71131 71 41 R 0× 31 = 0 27

R 130191 131 70 Ů 311 1× 31 = 31 19
1 191310 130191 131 70 R 311520 0× 52 = 0

191310 191 131 Ů 520 R 0× 52 = 0

max(36, 31, 23)

0 191310 191 131 R 520820 311520 0× 82 = 0
(310) (190) Ů 821 (R) (310520) 1× 82 = 82 0

Unoverlapped rewinding occurs in three places: when the input tape T5 is being
rewound (82 units), during the Ąrst half of the level 2 phase (27 units), and
during the Ąnal Şdummy mergeŤ phases in levels 1 and 0 (36 units). So we may
estimate the time as 273t + 145r; the corresponding amount for Algorithm D,
268t + 208r, is almost always inferior.

Exercise 23 proves that the run lengths output during each phase are suc-
cessively

4, 4, 7, 13, 19, 31, 52, 82, 133, . . . , (24)

a sequence ⟨t1, t2, t3, . . . ⟩ satisfying the law

tn = tn−2 + 2tn−3 + tn−4 (25)

if we regard tn = 1 for n ≤ 0. We can also analyze the optimum placement
of dummy runs, by looking at strings of merge numbers as we did for standard

284 SORTING 5.4.2

polyphase in Eq. (8):
Final

Level T1 T2 T3 T4 T6 output on

1 1 1 1 1 Ů T5
2 1 1 1 Ů 1 T4
3 21 21 2 2 1 T3
4 2221 222 222 22 2 T2
5 23222 23222 2322 23 222 T1
6 333323222 33332322 333323 3333 2322 T6
. .
n An Bn Cn Dn En T(k)

n+1 (A′′
nEn+1)Bn (A′′

nEn+1)Cn (A′′
nEn+1)Dn A′′

nEn+1 A′
n T(k−1) (26)

. .

where An = A′
nA′′

n, and A′′
n consists of the last un merge numbers of An. The rule

above for going from level n to level n+1 is valid for any scheme satisfying (22).
When we deĄne the uŠs and vŠs by (23), the strings An, . . . , En can be expressed
in the following rather simple way analogous to (9):

An = (Wn−1Wn−2Wn−3Wn−4) + 1,

Bn = (Wn−1Wn−2Wn−3) + 1,

Cn = (Wn−1Wn−2) + 1,

Dn = (Wn−1) + 1,

En = (Wn−2Wn−3) + 1, (27)

where
Wn = (Wn−3Wn−4Wn−2Wn−3) + 1 for n > 0,

W0 = 0, and Wn = ϵ for n < 0.
(28)

From these relations it is easy to make a detailed analysis of the six-tape case.
In general, when there are T ≥ 5 tapes, we let P = T − 2, and we deĄne the

sequences ⟨un⟩, ⟨vn⟩ by the rules

vn+1 = un−1 + vn−1 + · · ·+ un−r + vn−r,

un = un−r−1 + vn−r−1 + · · ·+ un−P + vn−P , for n ≥ 0,
(29)

where r = ⌊P/2⌋; v0 = 1, and un = vn = 0 for n < 0. So if wn = un+vn, we have

wn = wn−2 + · · ·+ wn−r + 2wn−r−1 + wn−r−2 + · · ·+ wn−P , for n > 0; (30)

w0 = 1; and wn = 0 for n < 0. The initial distribution on tapes for level
n + 1 places wn + wn−1 + · · · + wn−P+k runs on tape k, for 1 ≤ k ≤ P , and
wn−1 + · · · + wn−r on tape T ; tape T − 1 is used for input. Then un runs are
merged to tape T while T − 1 is being rewound; vn are merged to T − 1 while T
is rewinding; un−1 to T − 1 while T − 2 is rewinding; etc.

Table 6 shows the approximate behavior of this procedure when S is not too
small. The Şpass/phaseŤ column indicates approximately how much of the entire
Ąle is being rewound during each half of a phase, and approximately how much
of the Ąle is being written during each full phase. The tape splitting method is

superior to standard polyphase on six or more tapes, and probably also on Ąve,
at least for large S.

5.4.2 THE POLYPHASE MERGE 285

Table 6

APPROXIMATE BEHAVIOR OF POLYPHASE MERGE WITH TAPE SPLITTING

Tapes Phases Passes Pass/phase Growth ratio

4 2.885 lnS + 0.000 1.443 lnS + 1.000 50% 1.4142136
5 2.078 lnS + 0.232 0.929 lnS + 1.022 45% 1.6180340
6 2.078 lnS − 0.170 0.752 lnS + 1.024 36% 1.6180340
7 1.958 lnS − 0.408 0.670 lnS + 1.007 34% 1.6663019
8 2.008 lnS − 0.762 0.624 lnS + 0.994 31% 1.6454116
9 1.972 lnS − 0.987 0.595 lnS + 0.967 30% 1.6604077

10 2.013 lnS − 1.300 0.580 lnS + 0.941 29% 1.6433803
20 2.069 lnS − 3.164 0.566 lnS + 0.536 27% 1.6214947

When T = 4 the procedure above would become essentially equivalent to
balanced two-way merging, without overlapping the rewind time, since w2n+1

would be 0 for all n. So the entries in Table 6 for T = 4 have been obtained by
making a slight modiĄcation, letting v2 = 0, u1 = 1, v1 = 0, u0 = 0, v0 = 1,
and vn+1 = un−1 + vn−1, un = un−2 + vn−2 for n ≥ 2. This leads to a very
interesting sorting scheme (see exercises 25 and 26).

EXERCISES

1. [16] Figure 69 shows the order in which runs 34 through 65 are distributed to Ąve
tapes with Algorithm D; in what order are runs 1 through 33 distributed?

x 2. [21] True or false: After two merge phases in Algorithm D (that is, on the second
time we reach step D6), all dummy runs have disappeared.

x 3. [22] Prove that the condition D[1] ≥ D[2] ≥ · · · ≥ D[T] is always satisĄed at the
conclusion of step D4. Explain why this condition is important, in the sense that the
mechanism of steps D2 and D3 would not work properly otherwise.

4. [M20] Derive the generating functions (7).

5. [HM26] (E. P. Miles, Jr., 1960.) For all p ≥ 2, prove that the polynomial fp(z) =
zp− zp−1−· · ·− z− 1 has p distinct roots, of which exactly one has magnitude greater
than unity. [Hint: Consider the polynomial zp+1 − 2zp + 1.]

6. [HM24] The purpose of this exercise is to consider how Tables 1, 5, and 6 were
prepared. Assume that we have a merging pattern whose properties are characterized
by polynomials p(z) and q(z) in the following way: (i) The number of initial runs present
in a Şperfect distributionŤ requiring n merging phases is [zn] p(z)/q(z). (ii) The number
of initial runs processed during these n merging phases is [zn] p(z)/q(z)2. (iii) There
is a Şdominant rootŤ α of q(z−1) such that q(α−1) = 0, q′(α−1) ̸= 0, p(α−1) ̸= 0, and
q(β−1) = 0 implies that β = α or |β| < |α|.

Prove that there is a number ϵ > 0 such that, if S is the number of runs in a
perfect distribution requiring n merging phases, and if ρS initial runs are processed
during those phases, we have n = a lnS + b + O(S−ϵ) and ρ = c lnS + d + O(S−ϵ),
where

a = (lnα)−1, b = −a ln

p(α−1)
−q′(α−1)

− 1, c = a

α

−q′(α−1)
,

d =
(b+ 1)α− p′(α−1)/p(α−1) + q′′(α−1)/q′(α−1)

−q′(α−1)
.

286 SORTING 5.4.2

7. [HM22] Let αp be the dominant root of the polynomial fp(z) in exercise 5. What
is the asymptotic behavior of αp as p→∞?

8. [M20] (E. Netto, 1901.) Let N (p)
m be the number of ways to express m as an

ordered sum of the integers {1, 2, . . . , p}. For example, when p = 3 and m = 5, there
are 13 ways, namely 1+1+1+1+1 = 1+1+1+2 = 1+1+2+1 = 1+1+3 = 1+2+1+1 =
1 + 2 + 2 = 1 + 3 + 1 = 2 + 1 + 1 + 1 = 2 + 1 + 2 = 2 + 2 + 1 = 2 + 3 = 3 + 1 + 1 = 3 + 2.
Show that N (p)

m is a generalized Fibonacci number.

9. [M20] Let K(p)
m be the number of sequences of m 0s and 1s such that there are

no p consecutive 1s. For example, when p = 3 and m = 5 there are 24 such sequences:
00000, 00001, 00010, 00011, 00100, 00101, 00110, 01000, 01001, . . . , 11011. Show that
K

(p)
m is a generalized Fibonacci number.

10. [M27] (Generalized Fibonacci number system.) Prove that every nonnegative
integer n has a unique representation as a sum of distinct pth order Fibonacci numbers
F

(p)
j , for j ≥ p, subject to the condition that no p consecutive Fibonacci numbers are

used.

11. [M24] Prove that the nth element of the string Q∞ in (12) is equal to the number
of distinct Fibonacci numbers in the Ąfth-order Fibonacci representation of n− 1. [See
exercise 10.]

x 12. [M18] Find a connection between powers of the matrix

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 1 1 1 1

 and

the perfect Fibonacci distributions in (1).

x 13. [22] Prove the following rather odd property of perfect Fibonacci distributions:
When the Ąnal output will be on tape number T, the number of runs on each other
tape is odd; when the Ąnal output will be on some tape other than T, the number of
runs will be odd on that tape, and it will be even on the others. [See (1).]

14. [M35] Let Tn(x) =

k≥0 Tnkx
k, where Tn(x) is the polynomial deĄned in (16).

a) Show that for each k there is a number n(k) such that T1k ≤ T2k ≤ · · · ≤ Tn(k)k >
T(n(k)+1)k ≥ · · · .

b) Given that Tn′k′ < Tnk′ and n′ < n, prove that Tn′k ≤ Tnk for all k ≥ k′.
c) Prove that there is a nondecreasing sequence ⟨Mn⟩ such thatΣn(S) = minj≥1Σj(S)

when Mn ≤ S < Mn+1, but Σn(S) > minj≥1 Σj(S) when S ≥Mn+1. [See (19).]

15. [M43] Prove or disprove: Σn−1(m) < Σn(m) implies that Σn(m) ≤ Σn+1(m) ≤
Σn+2(m) ≤ · · · . [Such a result would greatly simplify the calculation of Table 2.]

16. [HM43] Determine the asymptotic behavior of the polyphase merge with optimum
distribution of dummy runs.

17. [32] Prove or disprove: There is a way to disperse runs for an optimum polyphase
distribution in such a way that the distribution for S + 1 initial runs is formed by
adding one run (on an appropriate tape) to the distribution for S initial runs.

18. [30] Does the optimum polyphase distribution produce the best possible merging
pattern, in the sense that the total number of initial runs processed is minimized, if we
insist that the initial runs be placed on at most T−1 of the tapes? (Ignore rewind time.)

19. [21] Make a table analogous to (1), for CaronŠs polyphase sort on six tapes.

5.4.2 THE POLYPHASE MERGE 287

20. [M24] What generating functions for CaronŠs polyphase sort on six tapes corre-
spond to (7) and to (16)? What relations, analogous to (9) and (27), deĄne the strings
of merge numbers?

21. [11] What should appear on level 7 in (26)?

22. [M21] Each term of the sequence (24) is approximately equal to the sum of the
previous two. Does this phenomenon hold for the remaining numbers of the sequence?
Formulate and prove a theorem about tn − tn−1 − tn−2.

x 23. [29] What changes would be made to (25), (27), and (28), if (23) were changed
to vn+1 = un−1 + vn−1 + un−2, un = vn−2 + un−3 + vn−3 + un−4 + vn−4?

24. [HM41] Compute the asymptotic behavior of the tape-splitting polyphase proce-
dure, when vn+1 is deĄned to be the sum of the Ąrst q terms of un−1 + vn−1 + · · · +
un−P + vn−P , for various P = T − 2 and for 0 ≤ q ≤ 2P . (The text treats only the
case q = 2⌊P/2⌋; see exercise 23.)

25. [19] Show how the tape-splitting polyphase merge on four tapes, mentioned at
the end of this section, would sort 32 initial runs. (Give a phase-by-phase analysis like
the 82-run six-tape example in the text.)

26. [M21] Analyze the behavior of the tape-splitting polyphase merge on four tapes,
when S = 2n and when S = 2n + 2n−1. (See exercise 25.)

27. [23] Once the initial runs have been distributed to tapes in a perfect distribution,
the polyphase strategy is simply to Şmerge until emptyŤ: We merge runs from all
nonempty input tapes until one of them has been entirely read; then we use that tape
as the next output tape, and let the previous output tape serve as an input.

Does this merge-until-empty strategy always sort, no matter how the initial runs
are distributed, as long as we distribute them onto at least two tapes? (One tape will,
of course, be left empty so that it can be the Ąrst output tape.)

28. [M26] The previous exercise deĄnes a rather large family of merging patterns.
Show that polyphase is the best of them, in the following sense: If there are six tapes,
and if we consider the class of all initial distributions (a, b, c, d, e) such that the merge-
until-empty strategy requires at most n phases to sort, then a + b + c + d + e ≤ tn,
where tn is the corresponding value for polyphase sorting (1).

29. [M47] Exercise 28 shows that the polyphase distribution is optimal among all
merge-until-empty patterns in the minimum-phase sense. But is it optimal also in the
minimum-pass sense?

Let a be relatively prime to b, and assume that a+ b is the Fibonacci number Fn.
Prove or disprove the following conjecture due to R. M. Karp: The number of initial
runs processed during the merge-until-empty pattern starting with distribution (a, b)
is greater than or equal to ((n− 5)Fn+1 + (2n+ 2)Fn)/5. (The latter Ągure is achieved
when a = Fn−1, b = Fn−2.)

30. [42] Prepare a table analogous to Table 2, for the tape-splitting polyphase merge.

31. [M22] (R. Kemp.) Let Kd(n) be the number of n-node ordered trees in which
every leaf is at distance d from the root. For example, K3(8) = 7 because of the trees

Show that Kd(n) is a generalized Fibonacci number, and Ąnd a one-to-one correspon-
dence between such trees and the ordered partitions considered in exercise 8.

288 SORTING 5.4.3

*5.4.3. The Cascade Merge

Another basic pattern, called the Şcascade merge,Ť was actually discovered
before polyphase [B. K. Betz and W. C. Carter, ACM National Meeting 14

(1959), Paper 14]. This approach is illustrated for six tapes and 190 initial runs
in the following table, using the notation developed in Section 5.4.2:

Initial runs
T1 T2 T3 T4 T5 T6 processed

Pass 1 155 150 141 129 115 Ů 190
Pass 2 Ů ∗15 29 312 414 515 190
Pass 3 155 144 123 92 ∗51 Ů 190
Pass 4 Ů ∗151 291 411 501 551 190
Pass 5 1901 Ů Ů Ů Ů Ů 190

A cascade merge, like polyphase, starts out with a Şperfect distributionŤ of
runs on tapes, although the rule for perfect distributions is somewhat different
from those in Section 5.4.2. Each line in the table represents a complete pass
over all the data. Pass 2, for example, is obtained by doing a Ąve-way merge
from {T1, T2, T3, T4, T5} to T6, until T5 is empty (this puts 15 runs of relative
length 5 on T6), then a four-way merge from {T1, T2, T3, T4} to T5, then a
three-way merge to T4, a two-way merge to T3, and Ąnally a one-way merge
(a copying operation) from T1 to T2. Pass 3 is obtained in the same way, Ąrst
doing a Ąve-way merge until one tape becomes empty, then a four-way merge,
and so on. (Perhaps the present section of this book should be numbered 5.4.3.2.1
instead of 5.4.3!)

It is clear that the copying operations are unnecessary, and they could be
omitted. Actually, however, in the six-tape case this copying takes only a small
percentage of the total time. The items marked with an asterisk in the table
above are those that were simply copied; only 25 of the 950 runs processed are
of this type. Most of the time is devoted to Ąve-way and four-way merging.

Table 1

APPROXIMATE BEHAVIOR OF CASCADE MERGE SORTING

Tapes Passes (with copying) Passes (without copying) Growth ratio

3 2.078 lnS + 0.672 1.504 lnS + 0.992 1.6180340
4 1.235 lnS + 0.754 1.102 lnS + 0.820 2.2469796
5 0.946 lnS + 0.796 0.897 lnS + 0.800 2.8793852
6 0.796 lnS + 0.821 0.773 lnS + 0.808 3.5133371
7 0.703 lnS + 0.839 0.691 lnS + 0.822 4.1481149
8 0.639 lnS + 0.852 0.632 lnS + 0.834 4.7833861
9 0.592 lnS + 0.861 0.587 lnS + 0.845 5.4189757

10 0.555 lnS + 0.869 0.552 lnS + 0.854 6.0547828
20 0.397 lnS + 0.905 0.397 lnS + 0.901 12.4174426

At Ąrst it may seem that the cascade pattern is a rather poor choice, by
comparison with polyphase, since standard polyphase uses (T − 1)-way merging

5.4.3 THE CASCADE MERGE 289

throughout while the cascade uses (T − 1)-way, (T − 2)-way, (T − 3)-way, etc.
But in fact it is asymptotically better than polyphase, on six or more tapes! As
we have observed in Section 5.4.2, a high order of merge is not a guarantee of
efficiency. Table 1 shows the performance characteristics of cascade merge, by
analogy with the similar tables in Section 5.4.2.

The Şperfect distributionsŤ for a cascade merge are easily derived by working
backwards from the Ąnal state (1, 0, . . . , 0). With six tapes, they are

Level T1 T2 T3 T4 T5

0 1 0 0 0 0
1 1 1 1 1 1
2 5 4 3 2 1
3 15 14 12 9 5
4 55 50 41 29 15
5 190 175 146 105 55

. .
n an bn cn dn en

n+1 an+bn+cn+dn+en an+bn+cn+dn an+bn+cn an+bn an (1)

It is interesting to note that the relative magnitudes of these numbers appear
also in the diagonals of a regular (2T − 1)-sided polygon. For example, the Ąve
diagonals in the hendecagon of Fig. 73 have relative lengths very nearly equal
to 190, 175, 146, 105, and 55! We shall prove this remarkable fact later in this
section, and we shall also see that the relative amount of time spent in (T−1)-way
merging, (T −2)-way merging, . . . , 1-way merging is approximately proportional
to the squares of the lengths of these diagonals.

a

b

c

d

e

Fig. 73. Geometrical interpretation of cascade numbers.

Initial distribution of runs. When the actual number of initial runs isnŠt
perfect, we can insert dummy runs as usual. A superĄcial analysis of this situ-
ation would indicate that the method of dummy run assignment is immaterial,

290 SORTING 5.4.3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0
1 2 5 10 20 50 100 200 500 1000 2000 5000

N
u
m
b
e
r
o
f
“
p
a
ss
e
s”

w
h
il
e
m
e
rg
in
g

Initial runs, S

T = 3

T = 4

T = 5

T = 6

T = 7
T = 8

T = 10

Fig. 74. Efficiency of cascade merge with the distribution of Algorithm D.

since cascade merging operates by complete passes; if we have 190 initial runs,
each record is processed Ąve times as in the example above, but if there are 191
we must apparently go up a level so that every record is processed six times.
Fortunately this abrupt change is not actually necessary; David E. Ferguson has
found a way to distribute initial runs so that many of the operations during the
Ąrst merge pass reduce to copying the contents of a tape. When such copying
relations are bypassed (by simply changing ŞlogicalŤ tape unit numbers relative
to the ŞphysicalŤ numbers as in Algorithm 5.4.2D), we obtain a relatively smooth
transition from level to level, as shown in Fig. 74.

Suppose that (a, b, c, d, e) is a perfect distribution, where a ≥ b ≥ c ≥ d ≥ e.
By redeĄning the correspondence between logical and physical tape units, we
can imagine that the distribution is actually (e, d, c, b, a), with a runs on T5,
b on T4, etc. The next perfect distribution is (a+b+c+d+e, a+b+c+d, a+b+c,
a+b, a); and if the input is exhausted before we reach this next level, let us
assume that the tapes contain, respectively, (D1, D2, D3, D4, D5) dummy runs,
where

D1 ≤ a + b + c + d, D2 ≤ a + b + c, D3 ≤ a + b, D4 ≤ a, D5 = 0;

D1 ≥ D2 ≥ D3 ≥ D4 ≥ D5. (2)

5.4.3 THE CASCADE MERGE 291

We are free to imagine that the dummy runs appear in any convenient place
on the tapes. The Ąrst merge pass is supposed to produce a runs by Ąve-way
merging, then b by four-way merging, etc., and our goal is to arrange the dummies
so as to replace merging by copying. It is convenient to do the Ąrst merge pass
as follows:

1. If D4 = a, subtract a from each of D1, D2, D3, D4 and pretend that
T5 is the result of the merge. If D4 < a, merge a runs from tapes T1 through
T5, using the minimum possible number of dummies on tapes T1 through T5 so
that the new values of D1, D2, D3, D4 will satisfy

D1 ≤ b + c + d, D2 ≤ b + c, D3 ≤ b, D4 = 0;

D1 ≥ D2 ≥ D3 ≥ D4. (3)

Thus, if D2 was originally ≤ b + c, we use no dummies from it at this step, while
if b + c < D2 ≤ a + b + c we use exactly D2 − b− c of them.

2. (This step is similar to step 1, but Şshifted.Ť) If D3 = b, subtract b from
each of D1, D2, D3 and pretend that T4 is the result of the merge. If D3 < b,
merge b runs from tapes T1 through T4, reducing the number of dummies if
necessary in order to make

D1 ≤ c + d, D2 ≤ c, D3 = 0; D1 ≥ D2 ≥ D3.

3. And so on.

Table 2

EXAMPLE OF CASCADE DISTRIBUTION STEPS

Add to T1 Add to T2 Add to T3 Add to T4 Add to T5 ŞAmount savedŤ

Step (1,1) 9 0 0 0 0 15+14+12+5
Step (2,2) 3 12 0 0 0 15+14+9+5
Step (2,1) 9 0 0 0 0 15+14+5
Step (3,3) 2 2 14 0 0 15+12+5
Step (3,2) 3 12 0 0 0 15+9+5
Step (3,1) 9 0 0 0 0 15+5
Step (4,4) 1 1 1 15 0 14+5
Step (4,3) 2 2 14 0 0 12+5
Step (4,2) 3 12 0 0 0 9+5
Step (4,1) 9 0 0 0 0 5

FergusonŠs method of distributing runs to tapes can be illustrated by con-
sidering the process of going from level 3 to level 4 in (1). Assume that ŞlogicalŤ
tapes (T1, . . . , T5) contain respectively (5, 9, 12, 14, 15) runs and that we want
eventually to bring this up to (55, 50, 41, 29, 15). The procedure can be summa-
rized as shown in Table 2. We Ąrst put nine runs on T1, then (3, 12) on T1
and T2, etc. If the input becomes exhausted during, say, Step (3,2), then the
Şamount savedŤ is 15 + 9 + 5, meaning that the Ąve-way merge of 15 runs, the
two-way merge of 9 runs, and the one-way merge of 5 runs are avoided by the
dummy run assignment. In other words, 15 + 9 + 5 of the runs present at level
3 are not processed during the Ąrst merge phase.

292 SORTING 5.4.3

The following algorithm deĄnes the process in detail.

Algorithm C (Cascade merge sorting with special distribution). This algorithm
takes initial runs and disperses them to tapes, one run at a time, until the supply
of initial runs is exhausted. Then it speciĄes how the tapes are to be merged,
assuming that there are T ≥ 3 available tape units, using at most (T − 1)-way
merging and avoiding unnecessary one-way merging. Tape T may be used to
hold the input, since it does not receive any initial runs. The following tables
are maintained:

A[j], 1 ≤ j ≤ T : The perfect cascade distribution we have most recently
reached.

AA[j], 1 ≤ j ≤ T : The perfect cascade distribution we are striving for.

D[j], 1 ≤ j ≤ T : Number of dummy runs assumed to be present on logical
tape unit number j.

M[j], 1 ≤ j < T : Maximum number of dummy runs desired on logical tape
unit number j.

TAPE[j], 1 ≤ j ≤ T : Number of the physical tape unit corresponding to logical
tape unit number j.

C1. [Initialize.] Set A[k] ← AA[k] ← D[k] ← 0 for 2 ≤ k ≤ T ; and set
A[1]← 0, AA[1]← 1, D[1]← 1. Set TAPE[k]← k for 1 ≤ k ≤ T. Finally
set i ← T − 2, j ← 1, k ← 1, l ← 0, m ← 1, and go to step C5. (This
maneuvering is one way to get everything started, by jumping right into the
inner loop with appropriate settings of the control variables.)

C2. [Begin new level.] (We have just reached a perfect distribution, and since
there is more input we must get ready for the next level.) Increase l by 1. Set
A[k]← AA[k], for 1 ≤ k ≤ T ; then set AA[T − k]← AA[T − k + 1]+A[k],
for k = 1, 2, . . . , T−1 in this order. Set (TAPE[1], . . . , TAPE[T−1]) ←
(TAPE[T−1], . . . , TAPE[1]), and set D[k] ← AA[k + 1] for 1 ≤ k < T.
Finally set i← 1.

C3. [Begin ith sublevel.] Set j ← i. (The variables i and j represent ŞStep
(i, j)Ť in the example shown in Table 2.)

C4. [Begin Step (i, j).] Set k ← j and m ← A[T − j − 1]. If m = 0 and i = j,
set i← T − 2 and return to C3; if m = 0 and i ̸= j, return to C2. (Variable
m represents the number of runs to be written onto TAPE[k]; m = 0 occurs
only when l = 1.)

C5. [Input to TAPE[k].] Write one run on tape number TAPE[k], and decrease
D[k] by 1. Then if the input is exhausted, rewind all the tapes and go to
step C7.

C6. [Advance.] Decrease m by 1. If m > 0, return to C5. Otherwise decrease k
by 1; if k > 0, set m← A[T − j − 1]−A[T − j] and return to C5 if m > 0.
Otherwise decrease j by 1; if j > 0, go to C4. Otherwise increase i by 1; if
i < T − 1, return to C3. Otherwise go to C2.

5.4.3 THE CASCADE MERGE 293

C1. Initialize

C2. Begin new level

C3. Begin ith sublevel

C4. Begin Step (i, j)

C5. Input to TAPE[k] C6. Advance

C7. Prepare to merge

C8. Cascade C9. Down a level

Input complete

Sorting complete

Fig. 75. The cascade merge, with special distribution.

C7. [Prepare to merge.] (At this point the initial distribution is complete, and
the AA, D, and TAPE tables describe the present states of the tapes.) Set
M[k] ← AA[k + 1] for 1 ≤ k < T, and set FIRST ← 1. (Variable FIRST is
nonzero only during the Ąrst merge pass.)

C8. [Cascade.] If l = 0, stop; sorting is complete and the output is on TAPE[1].
Otherwise, for p = T −1, T −2, . . . , 1, in this order, do a p-way merge from
TAPE[1], . . . , TAPE[p] to TAPE[p + 1] as follows:
If p = 1, simulate the one-way merge by simply rewinding TAPE[2], then
interchanging TAPE[1]↔ TAPE[2].
Otherwise if FIRST = 1 and D[p− 1] = M[p− 1], simulate the p-way merge
by simply interchanging TAPE[p] ↔ TAPE[p + 1], rewinding TAPE[p], and
subtracting M[p− 1] from each of D[1], . . . , D[p−1], M[1], . . . , M[p−1].
Otherwise, subtract M[p− 1] from each of M[1], . . . , M[p− 1]. Then merge
one run from each TAPE[j] such that 1 ≤ j ≤ p and D[j] ≤ M[j]; subtract
one from each D[j] such that 1 ≤ j ≤ p and D[j] > M[j]; and put the
output run on TAPE[p + 1]. Continue doing this until TAPE[p] is empty.
Then rewind TAPE[p] and TAPE[p + 1].

C9. [Down a level.] Decrease l by 1, set FIRST ← 0, and set (TAPE[1], . . . ,
TAPE[T]) ← (TAPE[T], . . . , TAPE[1]). (At this point all DŠs and MŠs are
zero and will remain so.) Return to C8.

Steps C1ŰC6 of this algorithm do the distribution, and steps C7ŰC9 do the
merging; the two parts are fairly independent of each other, and it would be
possible to store M[k] and AA[k + 1] in the same memory locations.

294 SORTING 5.4.3

Analysis of cascade merging. The cascade merge is somewhat harder to
analyze than polyphase, but the analysis is especially interesting because so many
remarkable formulas are present. Readers who enjoy discrete mathematics are
urged to study the cascade distribution for themselves, before reading further,
since the numbers have extraordinary properties that are a pleasure to discover.
We shall discuss here one of the many ways to approach the analysis, emphasizing
the way in which the results might be discovered.

For convenience, let us consider the six-tape case, looking for formulas that
generalize to all T. Relations (1) lead to the Ąrst basic pattern:

an = an =

0
0

an,

bn = an−en−1

= an−an−2 =

1
0

an−

2
2

an−2,

cn = bn−dn−1

= bn−an−2−bn−2 =

2
0

an−

3
2

an−2+

4
4

an−4, (4)

dn = cn−cn−1

= cn−an−2−bn−2−cn−2 =

3
0

an−

4
2

an−2+

5
4

an−4−

6
6

an−6,

en = dn−bn−1

= dn−an−2−bn−2−cn−2−dn−2 =

4
0

an−

5
2

an−2+

6
4

an−4−

7
6

an−6+

8
8

an−8.

Let A(z) =

n≥0 anzn, . . . , E(z) =

n≥0 enzn, and deĄne the polynomials

qm(z) =

m

0

−

m + 1
2

z2 +

m + 2

4

z4 − · · ·

=

k

m + k

2k

(−1)kz2k =

m

k=0

2m− k

k

(−1)m−kz2m−2k. (5)

The result of (4) can be summarized by saying that the generating functions
B(z) − q1(z)A(z), C(z) − q2(z)A(z), D(z) − q3(z)A(z), and E(z) − q4(z)A(z)
reduce to Ąnite sums, corresponding to the values of a−1, a−2, a−3, . . . that appear
in (4) for small n but do not appear in A(z). In order to supply appropriate
boundary conditions, let us run the recurrence backwards to negative levels,
through level −8:

n an bn cn dn en

0 1 0 0 0 0
−1 0 0 0 0 1
−2 1 −1 0 0 0
−3 0 0 0 −1 2
−4 2 −3 1 0 0
−5 0 0 1 −4 5
−6 5 −9 5 −1 0
−7 0 −1 6 −14 14
−8 14 −28 20 −7 1

5.4.3 THE CASCADE MERGE 295

(On seven tapes the table would be similar, with entries for odd n shifted right
one column.) The sequence a0, a−2, a−4, . . . = 1, 1, 2, 5, 14, . . . is a dead giveaway
for computer scientists, since it occurs in connection with so many recursive
algorithms (see, for example, exercise 2.2.1Ű4 and Eq. 2.3.4.4Ű(14)); therefore we
conjecture that in the T -tape case

a−2n =
2n

n

 1
n + 1

, for 0 ≤ n ≤ T − 2;

a−2n−1 = 0, for 0 ≤ n ≤ T − 3.

(6)

To verify that this choice is correct, it suffices to show that (6) and (4) yield the
correct results for levels 0 and 1. On level 1 this is obvious, and on level 0 we
have to verify that

m

0

a0 −

m + 1

2

a−2 +

m + 2

4

a−4 −

m + 3

6

a−6 + · · ·

=

k≥0

m + k

2k

2k

k

 (−1)k

k + 1
= δm0 (7)

for 0 ≤ m ≤ T − 2. Fortunately this sum can be evaluated by standard tech-
niques; it is, in fact, Example 2 in Section 1.2.6.

Now we can compute the coefficients of B(z)− q1(z)A(z), etc. For example,
consider the coefficient of z2m in D(z)− q3(z)A(z): It is

k≥0

3 + m + k

2m + 2k

(−1)m+ka−2k =

k≥0

3 + m + k

2m + 2k

2k

k

 (−1)m+k

k + 1

= (−1)m
 2 + m

2m− 1

−
3 + m

2m

= (−1)m+1
2 + m

2m

,

by the result of Example 3 in Section 1.2.6. Therefore we have deduced that

A(z) = q0(z)A(z),

B(z) = q1(z)A(z)− q0(z),

D(z) = q3(z)A(z)− q2(z),

C(z) = q2(z)A(z)− q1(z),

E(z) = q4(z)A(z)− q3(z). (8)

Furthermore we have en+1 = an; hence zA(z) = E(z), and

A(z) = q3(z)/

q4(z)− z

. (9)

The generating functions have now been derived in terms of the q polyno-
mials, and so we want to understand the qŠs better. Exercise 1.2.9Ű15 is useful
in this regard, since it gives us a closed form that may be written

qm(z) =

(
√

4− z2 + iz)/2
2m+1

+

(
√

4− z2 − iz)/2
2m+1

√
4− z2

. (10)

296 SORTING 5.4.3

Everything simpliĄes if we now set z = 2 sin θ:

qm(2 sin θ) =
(cos θ+ i sin θ)2m+1 +(cos θ− i sin θ)2m+1

2 cos θ
=

cos(2m+1)θ
cos θ

. (11)

(This coincidence leads us to suspect that the polynomial qm(z) is well known in
mathematics; and indeed, a glance at appropriate tables will show that qm(z) is
essentially a Chebyshev polynomial of the second kind, namely (−1)mU2m(z/2)
in conventional notation.)

We can now determine the roots of the denominator in (9): The equation
q4(2 sin θ) = 2 sin θ reduces to

cos 9θ = 2 sin θ cos θ = sin 2θ.

We can obtain solutions to this relation whenever ±9θ = 2θ + (2n − 1
2)π; and

all such θ yield roots of the denominator in (9) provided that cos θ ̸= 0. (When
cos θ = 0, qm(±2) = (2m + 1) is never equal to ±2.) The following eight distinct
roots for q4(z)− z = 0 are therefore obtained:

2 sin −5
14 π, 2 sin −1

14 π, 2 sin 3
14 π; 2 sin −7

22 π, 2 sin −3
22 π, 2 sin 1

22 π, 2 sin 5
22 π, 2 sin 9

22 π.

Since q4(z) is a polynomial of degree 8, this accounts for all the roots. The Ąrst
three of these values make q3(z) = 0, so q3(z) and q4(z) − z have a polynomial
of degree three as a common factor. The other Ąve roots govern the asymptotic
behavior of the coefficients of A(z), if we expand (9) in partial fractions.

Considering the general T -tape case, let θk = (4k + 1)π/(4T − 2). The
generating function A(z) for the T -tape cascade distribution numbers takes the
form

4
2T − 1

−T/2<k<⌊T/2⌋

cos2 θk
1− z/(2 sin θk)

(12)

(see exercise 8); hence

an =
4

2T − 1

−T/2<k<⌊T/2⌋
cos2 θk

1

2 sin θk

n

. (13)

The equations in (8) now lead to the similar formulas

bn =
4

2T − 1

−T/2<k<⌊T/2⌋
cos θk cos 3θk

1

2 sin θk

n

,

cn =
4

2T − 1

−T/2<k<⌊T/2⌋
cos θk cos 5θk

1

2 sin θk

n

, (14)

dn =
4

2T − 1

−T/2<k<⌊T/2⌋
cos θk cos 7θk

1

2 sin θk

n

,

and so on. Exercise 9 shows that these equations hold for all n ≥ 0, not only
for large n. In each sum the term for k = 0 dominates all the others, especially

5.4.3 THE CASCADE MERGE 297

when n is reasonably large; therefore the Şgrowth ratioŤ is

1
2 sin θ0

=
2
π

T − 1
π

+
π

48T
+ O(T−2). (15)

Cascade sorting was Ąrst analyzed by W. C. Carter [Proc. IFIP Congress
(1962), 62Ű66], who obtained numerical results for small T, and by David E.
Ferguson [see CACM 7 (1964), 297], who discovered the Ąrst two terms in the
asymptotic behavior (15) of the growth ratio. During the summer of 1964,
R. W. Floyd discovered the explicit form 1/(2 sin θ0) of the growth ratio, so that
exact formulas could be used for all T. An intensive analysis of the cascade
numbers was independently carried out by G. N. Raney [Canadian J. Math. 18

(1966), 332Ű349], who came across them in quite another way having nothing to
do with sorting. Raney observed the Şratio of diagonalsŤ principle of Fig. 73,
and derived many other interesting properties of the numbers. Floyd and Raney
used matrix manipulations in their proofs (see exercise 6).

ModiĄcations of cascade sorting. If one more tape is added, it is possible
to overlap nearly all of the rewind time during a cascade sort. For example,
we can merge T1ŰT5 to T7, then T1ŰT4 to T6, then T1ŰT3 to T5 (which by
now is rewound), then T1ŰT2 to T4, and the next pass can begin when the
comparatively short data on T4 has been rewound. The efficiency of this process
can be predicted from the analysis of cascading. (See Section 5.4.6 for further
information.)

A Şcompromise mergeŤ scheme, which includes both polyphase and cascade
as special cases, was suggested by D. E. Knuth in CACM 6 (1963), 585Ű587.
Each phase consists of (T − 1)-way, (T − 2)-way, . . . , P -way merges, where P
is any Ąxed number between 1 and T − 1. When P = T − 1, this is polyphase,
and when P = 1 it is pure cascade; when P = 2 it is cascade without copy
phases. Analyses of this scheme have been made by C. E. Radke [IBM Systems
J. 5 (1966), 226Ű247] and by W. H. Burge [Proc. IFIP Congress (1971), 1, 454Ű
459]. Burge found the generating function

Tn(x)zn for each (P, T) compromise

merge, generalizing Eq. 5.4.2Ű(16); he showed that the best value of P , from the
standpoint of fewest initial runs processed as a function of S as S → ∞ (using
a straightforward distribution scheme and ignoring rewind time), is respectively
(2, 3, 3, 4, 4, 4, 3, 3, 4) for T = (3, 4, 5, 6, 7, 8, 9, 10, 11). These values of P lean
more towards cascade than polyphase as T increases; and it turns out that the
compromise merge is never substantially better than cascade itself. On the other
hand, with an optimum choice of levels and optimum distribution of dummy
runs, as described in Section 5.4.2, pure polyphase seems to be best of all the
compromise merges; unfortunately the optimum distribution is comparatively
difficult to implement.

Th. L. Johnsen [BIT 6 (1966), 129Ű143] has studied a combination of bal-
anced and polyphase merging; a rewind-overlap variation of balanced merging
has been proposed by M. A. Goetz [Digital Computer UserŠs Handbook, edited
by M. Klerer and G. A. Korn (New York: McGrawŰHill, 1967), 1.311Ű1.312];
and many other hybrid schemes can be imagined.

298 SORTING 5.4.3

EXERCISES

1. [10] Using Table 1, compare cascade merging with the tape-splitting version of
polyphase described in Section 5.4.2. Which is better? (Ignore rewind time.)

x 2. [22] Compare cascade sorting on three tapes, using Algorithm C, to polyphase
sorting on three tapes, using Algorithm 5.4.2D. What similarities and differences can
you Ąnd?

3. [23] Prepare a table that shows what happens when 100 initial runs are sorted
on six tapes using Algorithm C.

4. [M20] (G. N. Raney.) An Şnth level cascade distributionŤ is a multiset deĄned
as follows (in the case of six tapes): {1, 0, 0, 0, 0} is a 0th level cascade distribution;
and if {a, b, c, d, e} is an nth level cascade distribution, {a+b+c+d+e, a+b+c+d,
a+b+c, a+b, a} is an (n + 1)st level cascade distribution. (A multiset is unordered,
hence up to 5! different (n + 1)st level distributions can be formed from a single nth
level distribution.)

a) Prove that any multiset {a, b, c, d, e} of relatively prime integers is an nth level
cascade distribution, for some n.

b) Prove that the distribution deĄned for cascade sorting is optimum, in the sense
that, if {a, b, c, d, e} is any nth level distribution with a ≥ b ≥ c ≥ d ≥ e, we have
a ≤ an, b ≤ bn, c ≤ cn, d ≤ dn, e ≤ en, where (an, bn, cn, dn, en) is the distribution
deĄned in (1).

x 5. [20] Prove that the cascade numbers deĄned in (1) satisfy the law

akan−k + bkbn−k + ckcn−k + dkdn−k + eken−k = an, for 0 ≤ k ≤ n.
[Hint: Interpret this relation by considering how many runs of various lengths are
output during the kth pass of a complete cascade sort.]

6. [M20] Find a 5× 5 matrix Q such that the Ąrst row of Qn contains the six-tape
cascade numbers an bn cn dn en for all n ≥ 0.

7. [M20] Given that cascade merge is being applied to a perfect distribution of an

initial runs, Ąnd a formula for the amount of processing saved when one-way merging
is suppressed.

8. [HM23] Derive (12).

9. [HM26] Derive (14).

x 10. [M28] Instead of using the pattern (4) to begin the study of the cascade numbers,
start with the identities

en = an−1 =

1
1

an−1,

dn = 2an−1 − en−2 =

2
1

an−1 −

3
3

an−3,

cn = 3an−1 − dn−2 − 2en−2 =

3
1

an−1 −

4
3

an−3 −

5
5

an−5,

etc. Letting

rm(z) =

m

1

z −

m+ 1

3

z3 +

m+ 2

5

z5 − · · · ,

express A(z), B(z), etc. in terms of these r polynomials.

11. [M38] Let

fm(z) =
m

k=0

⌊(m+ k)/2⌋
k

(−1)⌈k/2⌉zk.

5.4.4 READING TAPE BACKWARDS 299

Prove that the generating function A(z) for the T -tape cascade numbers is equal to
fT−3(z)/fT−1(z), where the numerator and denominator in this expression have no
common factor.

12. [M40] Prove that FergusonŠs distribution scheme is optimum, in the sense that
no method of placing the dummy runs, satisfying (2), will cause fewer initial runs to
be processed during the Ąrst pass, provided that the strategy of steps C7ŰC9 is used
during this pass.

13. [40] The text suggests overlapping most of the rewind time, by adding an extra
tape. Explore this idea. (For example, the textŠs scheme involves waiting for T4 to
rewind; would it be better to omit T4 from the Ąrst merge phase of the next pass?)

*5.4.4. Reading Tape Backwards

Many magnetic tape units have the ability to read tape in the opposite direction
from which it was written. The merging patterns we have encountered so far
always write information onto tape in the ŞforwardŤ direction, then rewind the
tape, read it forwards, and rewind again. The tape Ąles therefore behave as
queues, operating in a Ąrst-in-Ąrst-out manner. Backwards reading allows us to
eliminate both of these rewind operations: We write the tape forwards and read
it backwards. In this case the Ąles behave as stacks, since they are used in a
last-in-Ąrst-out manner.

The balanced, polyphase, and cascade merge patterns can all be adapted to
backward reading. The main difference is that merging reverses the order of the

runs when we read backwards and write forwards. If two runs are in ascending
order on tape, we can merge them while reading backwards, but this produces
descending order. The descending runs produced in this way will subsequently
become ascending on the next pass; so the merging algorithms must be capable
of dealing with runs in either order. Programmers who are confronted with
read-backwards for the Ąrst time often feel like they are standing on their heads!

As an example of backwards reading, consider the process of merging 8 initial
runs, using a balanced merge on four tapes. The operations can be summarized
as follows:

T1 T2 T3 T4

Pass 1 A1A1A1A1 A1A1A1A1 Ů Ů Initial distribution
Pass 2 Ů Ů D2D2 D2D2 Merge to T3 and T4
Pass 3 A4 A4 Ů Ů Merge to T1 and T2
Pass 4 Ů Ů D8 Ů Final merge to T3

Here Ar stands for a run of relative length r that appears on tape in ascending
order, if the tape is read forwards as in our previous examples; Dr is the
corresponding notation for a descending run of length r. During Pass 2 the
ascending runs become descending: They appear to be descending in the input,
since we are reading T1 and T2 backwards. Then the runs switch orientation
again on Pass 3.

Notice that the process above Ąnishes with the result on tape T3, in de-

scending order. If this is bad (depending on whether the output is to be read

300 SORTING 5.4.4

backwards, or to be dismounted and put away for future use), we could copy it
to another tape, reversing the direction. A faster way would be to rewind T1
and T2 after Pass 3, producing A8 during Pass 4. Still faster would be to start
with eight descending runs during Pass 1, since this would interchange all the
AŠs and DŠs. However, the balanced merge on 16 initial runs would require the
initial runs to be ascending; and we usually donŠt know in advance how many
initial runs will be formed, so it is necessary to choose one consistent direction.
Therefore the idea of rewinding after Pass 3 is probably best.

The cascade merge carries over in the same way. For example, consider
sorting 14 initial runs on four tapes:

T1 T2 T3 T4

Pass 1 A1A1A1A1A1A1 A1A1A1A1A1 A1A1A1 Ů
Pass 2 Ů D1 D2D2 D3D3D3

Pass 3 A6 A5 A3 Ů
Pass 4 Ů Ů Ů D14

Again, we could produce A14 instead of D14, if we rewound T1, T2, T3 just
before the Ąnal pass. This tableau illustrates a ŞpureŤ cascade merge, in the
sense that all of the one-way merges have been performed explicitly. If we had
suppressed the copying operations, as in Algorithm 5.4.3C, we would have been
confronted with the situation

A1 Ů D2D2 D3D3D3

after Pass 2, and it would have been impossible to continue with a three-way
merge since we cannot merge runs that are in opposite directions! The operation
of copying T1 to T2 could be avoided if we rewound T1 and proceeded to read
it forward during the next merge phase (while reading T3 and T4 backwards).
But it would then be necessary to rewind T1 again after merging, so this trick
trades one copy for two rewinds.

Thus the distribution method of Algorithm 5.4.3C does not work as efficient-
ly for read-backwards as for read-forwards; the amount of time required jumps
rather sharply every time the number of initial runs passes a ŞperfectŤ cas-
cade distribution number. Another dispersion technique can be used to give a
smoother transition between perfect cascade distributions (see exercise 17).

Read-backward polyphase. At Ąrst glance (and even at second and third
glance), the polyphase merge scheme seems to be totally unĄt for reading back-
wards. For example, suppose that we have 13 initial runs and three tapes:

T1 T2 T3

Phase 1 A1A1A1A1A1 A1A1A1A1A1A1A1A1 Ů
Phase 2 Ů A1A1A1 D2D2D2D2D2

Now weŠre stuck; we could rewind either T2 or T3 and then read it forwards,
while reading the other tape backwards, but this would jumble things up and
we would have gained comparatively little by reading backwards.

5.4.4 READING TAPE BACKWARDS 301

An ingenious idea that saves the situation is to alternate the direction of

runs on each tape. Then the merging can proceed in perfect synchronization:

T1 T2 T3

Phase 1 A1D1A1D1A1 D1A1D1A1D1A1D1A1 Ů
Phase 2 Ů D1A1D1 D2A2D2A2D2

Phase 3 A3D3A3 Ů D2A2

Phase 4 A3 D5A5 Ů
Phase 5 Ů D5 D8

Phase 6 A13 Ů Ů

This principle was mentioned brieĆy by R. L. Gilstad in his original article on
polyphase merging, and he described it more fully in CACM 6 (1963), 220Ű223.

The ADA . . . technique works properly for polyphase merging on any num-
ber of tapes; for we can show that the AŠs and DŠs will be properly synchronized
at each phase, provided only that the initial distribution pass produces alter-
nating AŠs and DŠs on each tape and that each tape ends with A (or each tape
ends with D): Since the last run written on the output Ąle during one phase is
in the opposite direction from the last runs used from the input Ąles, the next
phase always Ąnds its runs in the proper orientation. Furthermore we have seen
in exercise 5.4.2Ű13 that most of the perfect Fibonacci distributions call for an
odd number of runs on one tape (the eventual output tape), and an even number
of runs on each other tape. If T1 is designated as the Ąnal output tape, we can
therefore guarantee that all tapes end with an A run, if we start T1 with an A
and let the remaining tapes start with a D. A distribution method analogous to
Algorithm 5.4.2D can be used, modiĄed so that the distributions on each level
have T1 as the Ąnal output tape. (We skip levels 1, T +1, 2T +1, . . . , since they
are the levels in which the initially empty tape is the Ąnal output tape.) For
example, in the six-tape case, we can use the following distribution numbers in
place of 5.4.2Ű(1):

Final output
Level T1 T2 T3 T4 T5 Total will be on

0 1 0 0 0 0 1 T1
2 1 2 2 2 2 9 T1
3 3 4 4 4 2 17 T1
4 7 8 8 6 4 33 T1 (1)
5 15 16 14 12 8 65 T1
6 31 30 28 24 16 129 T1
8 61 120 116 108 92 497 T1

Thus, T1 always gets an odd number of runs, while T2 through T5 get the even
numbers, in decreasing order for Ćexibility in dummy run assignment. Such a
distribution has the advantage that the Ąnal output tape is known in advance,
regardless of the number of initial runs that happen to be present. It turns out
(see exercise 3) that the output will always appear in ascending order on T1
when this scheme is used.

302 SORTING 5.4.4

Another way to handle the distribution for read-backward polyphase has
been suggested by D. T. Goodwin and J. L. Venn [CACM 7 (1964), 315]. We
can distribute runs almost as in Algorithm 5.4.2D, beginning with a D run on
each tape. When the input is exhausted, a dummy A run is imagined to be
at the beginning of the unique ŞoddŤ tape, unless a distribution with all odd
numbers has been reached. Other dummies are imagined at the end of the
tapes, or grouped into pairs in the middle. The question of optimum placement
of dummy runs is analyzed in exercise 5 below.

Optimum merge patterns. So far we have been discussing various patterns
for merging on tape, without asking for Şbest possibleŤ methods. It appears
to be quite difficult to determine the optimal patterns, especially in the read-
forward case where the interaction of rewind time with merge time is hard to
handle. On the other hand, when merging is done by reading backwards and
writing forwards, all rewinding is essentially eliminated, and it is possible to
get a fairly good characterization of optimal ways to merge. Richard M. Karp
has introduced some very interesting approaches to this problem, and we shall
conclude this section by discussing the theory he has developed.

In the Ąrst place we need a more satisfactory way to describe merging
patterns, instead of the rather mysterious tape-content tableaux that have been
used above. Karp has suggested two ways to do this, the vector representation

and the tree representation of a merge pattern. Both forms of representation are
useful in practice, so we shall describe them in turn.

The vector representation of a merge pattern consists of a sequence of Şmerge
vectorsŤ y(m) . . . y(1) y(0), each of which has T components. The ith-last merge
step is represented by y(i) in the following way:

y
(i)
j =

+1, if tape number j is an input to the merge;
0, if tape number j is not used in the merge;
−1, if tape number j gets the output of the merge.

(2)

Thus, exactly one component of y(i) is −1, and the other components are 0s and
1s. The Ąnal vector y(0) is special; it is a unit vector, having 1 in position j if the
Ąnal sorted output appears on unit j, and 0 elsewhere. These deĄnitions imply
that the vector sum

v(i) = y(i) + y(i−1) + · · ·+ y(0) (3)

represents the distribution of runs on tape just before the ith-last merge step,
with v

(i)
j runs on tape j. In particular, v(m) tells how many runs the initial

distribution pass places on each tape.
It may seem awkward to number these vectors backwards, with y(m) coming

Ąrst and y(0) last, but this peculiar viewpoint turns out to be advantageous for
developing the theory. One good way to search for an optimal method is to start
with the sorted output and to imagine ŞunmergingŤ it to various tapes, then
unmerging these, etc., considering the successive distributions v(0), v(1), v(2), . . .
in the reverse order from which they actually occur during the sorting process.

5.4.4 READING TAPE BACKWARDS 303

In fact that is essentially the approach we have taken already in our analysis of
polyphase and cascade merging.

The three merge patterns described in tabular form earlier in this section
have the following vector representations:

Balanced (T = 4, S = 8) Cascade (T = 4, S = 14) Polyphase (T = 3, S = 13)

v(7) = (4, 4, 0, 0) v(10) = (6, 5, 3, 0) v(12) = (5, 8, 0)
y(7) = (+1,+1,−1, 0) y(10) = (+1,+1,+1,−1) y(12) = (+1,+1,−1)
y(6) = (+1,+1, 0,−1) y(9) = (+1,+1,+1,−1) y(11) = (+1,+1,−1)
y(5) = (+1,+1,−1, 0) y(8) = (+1,+1,+1,−1) y(10) = (+1,+1,−1)
y(4) = (+1,+1, 0,−1) y(7) = (+1,+1,−1, 0) y(9) = (+1,+1,−1)
y(3) = (−1, 0,+1,+1) y(6) = (+1,+1,−1, 0) y(8) = (+1,+1,−1)
y(2) = (0,−1,+1,+1) y(5) = (+1,−1, 0, 0) y(7) = (−1,+1,+1)
y(1) = (+1,+1,−1, 0) y(4) = (−1,+1,+1,+1) y(6) = (−1,+1,+1)
y(0) = (0, 0, 1, 0) y(3) = (0,−1,+1,+1) y(5) = (−1,+1,+1)

y(2) = (0, 0,−1,+1) y(4) = (+1,−1,+1)
y(1) = (+1,+1,+1,−1) y(3) = (+1,−1,+1)
y(0) = (0, 0, 0, 1) y(2) = (+1,+1,−1)

y(1) = (−1,+1,+1)
y(0) = (1, 0, 0)

Every merge pattern obviously has a vector representation. Conversely, it is
easy to see that the sequence of vectors y(m) . . . y(1) y(0) corresponds to an actual
merge pattern if and only if the following three conditions are satisĄed:

i) y(0) is a unit vector.

ii) y(i) has exactly one component equal to −1, all other components equal to
0 or +1, for m ≥ i ≥ 1.

iii) All components of y(i) + · · ·+ y(1) + y(0) are nonnegative, for m ≥ i ≥ 1.

The tree representation of a merge pattern gives another picture of the same
information. We construct a tree with one external leaf node for each initial
run, and one internal node for each run that is merged, in such a way that the
descendants of each internal node are the runs from which it was fabricated.
Each internal node is labeled with the step number on which the corresponding
run was formed, numbering steps backwards as in the vector representation;
furthermore, the line just above each node is labeled with the name of the tape
on which that run appears. For example, the three merge patterns above have
the tree representations depicted in Fig. 76, if we call the tapes A, B, C, D
instead of T1, T2, T3, T4.

This representation displays many of the relevant properties of the merge
pattern in convenient form; for example, if the run on level 0 of the tree (the
root) is to be ascending, then the runs on level 1 must be descending, those
on level 2 must be ascending, etc.; an initial run is ascending if and only if the
corresponding external node is on an even-numbered level. Furthermore the total
number of initial runs processed during the merging (not including the initial
distribution) is exactly equal to the external path length of the tree, since each
initial run on level k is processed exactly k times.

304 SORTING 5.4.4

1

3 2

5 4 7 6

A B

A B A B A B A B

C D C D

Balanced (T =4, S=8)

C

1

4 3 2

5 6 8 7 9 10

A

A A AA B C A B C A B C

B

B

B B

C

C CD D D

Cascade (T =4, S=14)

D

1

4 2

5 11 7 3

10 8 6 12

9

A A

A

A

A

A

A

A

B

B

B B

BB

B

B

B

B

C

C

C C C

C

Polyphase (T =3, S=13)

A

Fig. 76. Tree representations of three merge patterns.

Every merge pattern has a tree representation, but not every tree deĄnes a
merge pattern. A tree whose internal nodes have been labeled with the numbers
1 through m, and whose lines have been labeled with tape names, represents a
valid read-backward merge pattern if and only if

a) no two lines adjacent to the same internal node have the same tape name;

b) if i > j, and if A is a tape name, the tree does not contain the conĄguration

i

j

A ;

c) if i < j < k < l, and if A is a tape name, the tree does not contain

both

i

k

A and

j

l

A or both

i

k

A and

j

A . (4)

5.4.4 READING TAPE BACKWARDS 305

Condition (a) is self-evident, since the input and output tapes in a merge must be
distinct; similarly, (b) is obvious. The Şno crossoverŤ condition (c) mirrors the
last-in-Ąrst-out restriction that characterizes read-backward operations on tape:
The run formed at step k must be removed before any runs formed previously on
that same tape; hence the conĄgurations in (4) are impossible. It is not difficult
to verify that any labeled tree satisfying conditions (a), (b), (c) does indeed
correspond to a read-backward merge pattern.

If there are T tape units, condition (a) implies that the degree of each
internal node is T − 1 or less. It is not always possible to attach suitable labels
to all such trees; for example, when T = 3 there is no merge pattern whose tree
has the shape

(5)

This shape would lead to an optimal merge pattern if we could attach step
numbers and tape names in a suitable way, since it is the only way to achieve
the minimum external path length in a tree having four external nodes. But
there is essentially only one way to do the labeling according to conditions (a)
and (b), because of the symmetries of the diagram, namely,

1

2 3

B C

A AC B

A

(6)

and this violates condition (c). A shape that can be labeled according to the
conditions above, using at most T tape names, is called a T-lifo tree.

Another way to characterize all labeled trees that can arise from merge
patterns is to consider how all such trees can be Şgrown.Ť Start with some tape
name, say A, and with the seedling

A

.

Step number i in the treeŠs growth consists of choosing distinct tape names
B, B1, B2, . . . , Bk, and changing the most recently formed external node corre-

306 SORTING 5.4.4

sponding to B

from B to
i

B1 B2 Bk· · ·

B

. (7)

This Şlast formed, Ąrst grown onŤ rule explains how the tree representation can
be constructed directly from the vector representation.

The determination of strictly optimum T -tape merge patterns Ů that is, of
T -lifo trees whose path length is minimum for a given number of external nodes Ů
seems to be quite difficult. For example, the following nonobvious pattern turns
out to be an optimum way to merge seven initial runs on four tapes, reading
backwards:

1

2

3

4

B C D

CA

A

AD DB

A

(8)

A one-way merge is actually necessary to achieve the optimum! (See exercise 8.)
On the other hand, it is not so difficult to give constructions that are asymptot-

ically optimal, for any Ąxed T.
Let KT (n) be the minimum external path length achievable in a T -lifo tree

with n external nodes. From the theory developed in Section 2.3.4.5, it is not
difficult to prove that

KT (n) ≥ nq −

(T − 1)q − n

/(T − 2)

, q = ⌈logT−1 n⌉, (9)

since this is the minimum external path length of any tree with n external nodes
and all nodes of degree < T. At the present time comparatively few values of
KT (n) are known exactly. Here are some upper bounds that are probably exact:

n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

K3(n) ≤ 0 2 5 9 12 16 21 25 30 34 39 45 50 56 61 (10)

K4(n) ≤ 0 2 3 6 8 11 14 17 20 24 27 31 33 37 40

Karp discovered that any tree whose internal nodes have degrees < T is
almost T -lifo, in the sense that it can be made T -lifo by changing some of the
external nodes to one-way merges. In fact, the construction of a suitable labeling
is fairly simple. Let A be a particular tape name, and proceed as follows:

5.4.4 READING TAPE BACKWARDS 307

Step 1. Attach tape names to the lines of the tree diagram, in any manner
consistent with condition (a) above, provided that the special name A is used
only in the leftmost line of a branch.

Step 2. Replace each external node of the form

B by
A

B

whenever B ̸= A.

Step 3. Number the internal nodes of the tree in preorder. The result will be a
labeling satisfying conditions (a), (b), and (c).

For example, if we start with the tree

(11)

and three tapes, this procedure might assign labels as follows:

1

2

3

4 5

6

7

8

9

10 11

12

13

A A

A A

A

A A A

A

A

B

B B

B

B

C

C

C C C

A

(12)

It is not difficult to verify that KarpŠs construction satisĄes the Şlast formed,
Ąrst grown onŤ discipline, because of the nature of preorder (see exercise 12).

The result of this construction is a merge pattern for which all of the initial
runs appear on tape A. This suggests the following distribution and sorting
scheme, which we may call the preorder merge:

308 SORTING 5.4.4

P1. Distribute initial runs onto Tape A until the input is exhausted. Let S be
the total number of initial runs.

P2. Carry out the construction above, using a minimum-path-length (T − 1)-
ary tree with S external nodes, obtaining a T -lifo tree whose external path
length is within S of the lower bound in (9).

P3. Merge the runs according to this pattern.

This scheme will produce its output on any desired tape. But it has one serious

Ćaw Ů does the reader see what will go wrong? The problem is that the merge
pattern requires some of the runs initially on tape A to be ascending, and some to
be descending, depending on whether the corresponding external node appears
on an odd or an even level. This problem can be resolved without knowing S
in advance, by copying runs that should be descending onto an auxiliary tape
or tapes, just before they are needed. Then the total amount of processing, in
terms of initial run lengths, comes to

S logT−1 S + O(S). (13)

Thus the preorder merge is deĄnitely better than polyphase or cascade, as
S →∞; indeed, it is asymptotically optimum, since (9) shows that S logT−1 S +
O(S) is the best we could ever hope to achieve on T tapes. On the other
hand, for the comparatively small values of S that usually arise in practice, the
preorder merge is rather inefficient; polyphase or cascade methods are simpler
and faster, when S is reasonably small. Perhaps it will be possible to invent a
simple distribution-and-merge scheme that is competitive with polyphase and
cascade for small S, and that is asymptotically optimum for large S.

The second set of exercises below shows how Karp has formulated the
question of read-forward merging in a similar way. The theory turns out to
be rather more complicated in this case, although some very interesting results
have been discovered.

EXERCISES — First Set

1. [17] It is often convenient, during read-forward merging, to mark the end of each
run on tape by including an artiĄcial sentinel record whose key is +∞. How should
this practice be modiĄed, when reading backwards?

2. [20] Will the columns of an array like (1) always be nondecreasing, or is there a
chance that we will have to ŞsubtractŤ runs from some tape as we go from one level to
the next?

x 3. [20] Prove that when read-backward polyphase merging is used with the perfect
distributions of (1), we will always obtain an A run on tape T1 when sorting is complete,
if T1 originally starts with ADA . . . and T2 through T5 start with DAD

4. [M22] Is it a good idea to do read-backward polyphase merging after distributing
all runs in ascending order, imagining all the D positions to be initially Ąlled with
dummies?

x 5. [23] What formulas for the strings of merge numbers replace (8), (9), (10), and
(11) of Section 5.4.2, when read-backward polyphase merging is used? Show the

5.4.4 READING TAPE BACKWARDS 309

merge numbers for the Ąfth level distribution on six tapes, by drawing a diagram
like Fig. 71(a).

6. [07] What is the vector representation of the merge pattern whose tree represen-
tation is (8)?

7. [16] Draw the tree representation for the read-backward merge pattern deĄned
by the following sequence of vectors:

v(33) = (20, 9, 5) y(16) = (+1,+1,−1)
y(33) = (+1,−1,+1) y(15) = (+1,+1,−1)
y(32) = (+1,+1,−1) y(14) = (+1,−1,+1)
y(31) = (+1,+1,−1) y(13) = (+1,−1,+1)
y(30) = (+1,+1,−1) y(12) = (−1,+1,+1)
y(29) = (+1,−1,+1) y(11) = (+1,+1,−1)
y(28) = (−1,+1,+1) y(10) = (+1,+1,−1)
y(27) = (+1,−1,+1) y(9) = (+1,−1,+1)
y(26) = (+1,−1,+1) y(8) = (+1,+1,−1)
y(25) = (+1,+1,−1) y(7) = (+1,+1,−1)
y(24) = (+1,−1,+1) y(6) = (+1,+1,−1)
y(23) = (+1,−1,+1) y(5) = (−1,+1,+1)
y(22) = (+1,−1,+1) y(4) = (+1,−1,+1)
y(21) = (−1,+1,+1) y(3) = (−1,+1,+1)
y(20) = (+1,+1,−1) y(2) = (+1,−1,+1)
y(19) = (−1,+1,+1) y(1) = (−1,+1,+1)
y(18) = (+1,+1,−1) y(0) = (1, 0, 0)
y(17) = (+1,+1,−1)

8. [23] Prove that (8) is an optimum way to merge, reading backwards, when S = 7
and T = 4, and that all methods that avoid one-way merging are inferior.

9. [M22] Prove the lower bound (9).

10. [41] Prepare a table of the exact values of KT (n), using a computer.

x 11. [20] True or false: Any read-backward merge pattern that uses nothing but
(T − 1)-way merging must always have the runs alternating ADAD . . . on each tape;
it will not work if two adjacent runs appear in the same order.

12. [22] Prove that KarpŠs preorder construction always yields a labeled tree satisfy-
ing conditions (a), (b), and (c).

13. [16] Make (12) more efficient, by removing as many of the one-way merges as
possible so that preorder still gives a valid labeling of the internal nodes.

14. [40] Devise an algorithm that carries out the preorder merge without explicitly
representing the tree in steps P2 and P3, using only O(logS) words of memory to
control the merging pattern.

15. [M39] KarpŠs preorder construction in the text yields trees with one-way merges at
several terminal nodes. Prove that when T = 3 it is possible to construct asymptotically
optimal 3-lifo trees in which two-way merging is used throughout.

In other words, let K̂T (n) be the minimum external path length over all T -lifo
trees with n external nodes, such that every internal node has degree T −1. Prove that
K̂3(n) = n lgn+O(n).

16. [M46] In the notation of exercise 15, is K̂T (n) = n logT−1 n+O(n) for all T ≥ 3,
when n ≡ 1 (modulo T − 2)?

310 SORTING 5.4.4

x 17. [28] (Richard D. Pratt.) To achieve ascending order in a read-backward cascade
merge, we could insist on an even number of merging passes; this suggests a technique
of initial distribution that is somewhat different from Algorithm 5.4.3C.

a) Change 5.4.3Ű(1) so that it shows only the perfect distributions that require an
even number of merging passes.

b) Design an initial distribution scheme that interpolates between these perfect dis-
tributions. (Thus, if the number of initial runs falls between perfect distributions,
it is desirable to merge some, but not all, of the runs twice, in order to reach a
perfect distribution.)

x 18. [M38] Suppose that T tape units are available, for some T ≥ 3, and that T1
contains N records while the remaining tapes are empty. Is it possible to reverse the
order of the records on T1 in fewer than Ω(N logN) steps, without reading backwards?
(The operation is, of course, trivial if backwards reading is allowed.) See exercise
5.2.5Ű14 for a class of such algorithms that do require order N logN steps.

EXERCISES — Second Set

The following exercises develop the theory of tape merging on read-forward tapes; in
this case each tape acts as a queue instead of as a stack. A merge pattern can be
represented as a sequence of vectors y(m) . . . y(1)y(0) exactly as in the text, but when
we convert the vector representation to a tree representation we change Şlast formed,
Ąrst grown onŤ to ŞĄrst formed, Ąrst grown on.Ť Thus the invalid conĄgurations (4)
would be changed to

both

i

l

A and

j

k

A or both

i

A and

j

k

A . (4′)

A tree that can be labeled so as to represent a read-forward merge on T tapes is called
T -Ąfo, analogous to the term ŞT -lifoŤ in the read-backward case.

When tapes can be read backwards, they make very good stacks. But unfortu-
nately they donŠt make very good general-purpose queues. If we randomly write and
read, in a Ąrst-in-Ąrst-out manner, we waste a lot of time moving from one part of the
tape to another. Even worse, we will soon run off the end of the tape! We run into the
same problem as the queue overrunning memory in 2.2.2Ű(4) and (5), but the solution
in 2.2.2Ű(6) and (7) doesnŠt apply to tapes since they arenŠt circular loops. Therefore
we shall call a tree strongly T -Ąfo if it can be labeled so that the corresponding merge
pattern makes each tape follow the special queue discipline Şwrite, rewind, read all,
rewind; write, rewind, read all, rewind; etc.Ť

x 19. [22] (R. M. Karp.) Find a binary tree that is not 3-Ąfo.

x 20. [22] Formulate the condition Şstrongly T -ĄfoŤ in terms of a fairly simple rule
about invalid conĄgurations of tape labels, analogous to (4′).

21. [18] Draw the tree representation for the read-forwards merge pattern deĄned by
the vectors in exercise 7. Is this tree strongly 3-Ąfo?

22. [28] (R. M. Karp.) Show that the tree representations for polyphase and cascade
merging with perfect distributions are exactly the same for both the read-backward
and the read-forward case, except for the numbers that label the internal nodes. Find
a larger class of vector representations of merging patterns for which this is true.

5.4.5 THE OSCILLATING SORT 311

23. [24] (R. M. Karp.) Let us say that a segment y(q) . . . y(r) of a merge pattern is a
stage if no output tape is subsequently used as an input tape Ů that is, if there do not
exist i, j, k with q ≥ i > k ≥ r, y(i)

j = −1, and y(k)
j = +1. The purpose of this exercise

is to prove that cascade merge minimizes the number of stages, over all merge patterns
having the same number of tapes and initial runs.

It is convenient to deĄne some notation. Let us write v → w if v and w are T -
vectors such that w reduces to v in the Ąrst stage of some merge pattern. (Thus there
is a merge pattern y(m) . . . y(0) such that y(m) . . . y(l+1) is a stage, w = y(m) + · · ·+ y(0),
and v = y(l) + · · · + y(0).) Let us write v ⪯ w if v and w are T -vectors such that
the sum of the largest k elements of v is ≤ the sum of the largest k elements of w, for
1 ≤ k ≤ T. Thus, for example, (2, 1, 2, 2, 2, 1) ⪯ (1, 2, 3, 0, 3, 1), since 2 ≤ 3, 2+2 ≤ 3+3,
. . . , 2 + 2 + 2 + 2 + 1 + 1 ≤ 3 + 3 + 2 + 1 + 1 + 0. Finally, if v = (v1, . . . , vT), let
C(v) = (sT , sT−2, sT−3, . . . , s1, 0) where sk is the sum of the largest k elements of v.

a) Prove that v → C(v).
b) Prove that v ⪯ w implies C(v) ⪯ C(w).
c) Assuming the result of exercise 24, prove that cascade merge minimizes the number

of stages.

24. [M35] In the notation of exercise 23, prove that v → w implies w ⪯ C(v).

25. [M36] (R. M. Karp.) Let us say that a segment y(q) . . . y(r) of a merge pattern
is a phase if no tape is used both for input and for output Ů that is, if there do not
exist i, j, k with q ≥ i ≥ r, q ≥ k ≥ r, yȷ

(i) = +1, and yȷ
(k) = −1. The purpose of this

exercise is to investigate merge patterns that minimize the number of phases. We shall
write v ⇒ w if w can be reduced to v in one phase (a similar notation was introduced
in exercise 23); and we let

Dk(v) = (sk +tk+1, sk +tk+2, . . . , sk +tT , 0, . . . , 0),

where tj denotes the jth largest element of v and sk = t1 + · · ·+ tk.
a) Prove that v ⇒ Dk(v) for 1 ≤ k < T.
b) Prove that v ⪯ w implies Dk(v) ⪯ Dk(w), for 1 ≤ k < T.
c) Prove that v ⇒ w implies w ⪯ Dk(v), for some k, 1 ≤ k < T.
d) Consequently, a merge pattern that sorts the maximum number of initial runs on

T tapes in q phases can be represented by a sequence of integers k1 k2 . . . kq, such
that the initial distribution is Dkq (. . . (Dk2

(Dk1
(u))) . . .), where u = (1, 0, . . . , 0).

This minimum-phase strategy has a strongly T -Ąfo representation, and it also
belongs to the class of patterns in exercise 22. When T = 3 it is the polyphase

merge, and for T = 4, 5, 6, 7 it is a variation of the balanced merge.

26. [M46] (R. M. Karp.) Is the optimum sequence k1 k2 . . . kq mentioned in exercise 25
equal to 1⌈T/2⌉⌊T/2⌋⌈T/2⌉⌊T/2⌋ . . . , for all T ≥ 4 and all sufficiently large q?

*5.4.5. The Oscillating Sort

A somewhat different approach to merge sorting was introduced by Sheldon
Sobel in JACM 9 (1962), 372Ű375. Instead of starting with a distribution pass
where all the initial runs are dispersed to tapes, he proposed an algorithm that
oscillates back and forth between distribution and merging, so that much of the
sorting takes place before the input has been completely examined.

312 SORTING 5.4.5

Suppose, for example, that there are Ąve tapes available for merging. SobelŠs
method would sort 16 initial runs as follows:

Operation T1 T2 T3 T4 T5 Cost

Phase 1 Distribute A1 A1 A1 A1 Ů 4
Phase 2 Merge Ů Ů Ů Ů D4 4
Phase 3 Distribute Ů A1 A1 A1 D4A1 4
Phase 4 Merge D4 Ů Ů Ů D4 4
Phase 5 Distribute D4A1 Ů A1 A1 D4A1 4
Phase 6 Merge D4 D4 Ů Ů D4 4
Phase 7 Distribute D4A1 D4A1 Ů A1 D4A1 4
Phase 8 Merge D4 D4 D4 Ů D4 4
Phase 9 Merge Ů Ů Ů A16 Ů 16

Here, as in Section 5.4.4, we use Ar and Dr to stand respectively for ascending
and descending runs of relative length r. The method begins by writing an initial
run onto each of four tapes, and merges them (reading backwards) onto the Ąfth
tape. Distribution resumes again, this time cyclically shifted one place to the
right with respect to the tapes, and a second merge produces another run D4.
When four D4Šs have been formed in this way, an additional merge creates A16.
We could go on to create three more A16Šs, merging them into a D64, and so on
until the input is exhausted. It isnŠt necessary to know the length of the input
in advance.

When the number of initial runs, S, is 4m, it is not difficult to see that this
method processes each record exactly m + 1 times: once during the distribution,
and m times during a merge. When S is between 4m−1 and 4m, we could assume
that dummy runs are present, bringing S up to 4m; hence the total sorting time
would essentially amount to

log4 S

+ 1 passes over all the data. This is just

what would be achieved by a balanced sort on eight tapes; in general, oscillating
sort with T work tapes is equivalent to balanced merging with 2(T −1) tapes,
since it makes

logT−1 S

+ 1

passes over the data. When S is a power of T − 1, this is the best any T -tape
method could possibly do, since it achieves the lower bound in Eq. 5.4.4Ű(9). On
the other hand, when S is

(T − 1)m−1 + 1,

just one higher than a power of T − 1, the method wastes nearly a whole pass.
Exercise 2 shows how to eliminate part of this penalty for non-perfect-

powers S, by using a special ending routine. A further reĄnement was discovered
in 1966 by Dennis L. Bencher, who called his procedure the Şcriss-cross mergeŤ
[see H. Wedekind, Datenorganisation (Berlin: W. de Gruyter, 1970), 164Ű166;
see also U.S. Patent 3540000 (1970)]. The main idea is to delay merging until
more knowledge of S has been gained. We shall discuss a slightly modiĄed form
of BencherŠs original scheme.

5.4.5 THE OSCILLATING SORT 313

This improved oscillating sort proceeds as follows:

Operation T1 T2 T3 T4 T5 Cost

Phase 1 Distribute Ů A1 A1 A1 A1 4
Phase 2 Distribute Ů A1 A1A1 A1A1 A1A1 3
Phase 3 Merge D4 Ů A1 A1 A1 4
Phase 4 Distribute D4A1 Ů A1 A1A1 A1A1 3
Phase 5 Merge D4 D4 Ů A1 A1 4
Phase 6 Distribute D4A1 D4A1 Ů A1 A1A1 3
Phase 7 Merge D4 D4 D4 Ů A1 4
Phase 8 Distribute D4A1 D4A1 D4A1 Ů A1 3
Phase 9 Merge D4 D4 D4 D4 Ů 4

We do not merge the D4Šs into an A16 at this point (unless the input happens
to be exhausted); only after building up to

Phase 15 Merge D4D4 D4D4 D4D4 D4 Ů 4

will we get

Phase 16 Merge D4 D4 D4 Ů A16 16

The second A16 will occur after three more D4Šs have been made,

Phase 22 Merge D4D4 D4D4 D4 Ů A16D4 4
Phase 23 Merge D4 D4 Ů A16 A16 16

and so on (compare with Phases 1Ű5). The advantage of BencherŠs scheme can be
seen for example if there are only Ąve initial runs: Oscillating sort as modiĄed
in exercise 2 would do a four-way merge (in Phase 2) followed by a two-way
merge, for a total cost of 4 + 4 + 1 + 5 = 14, while BencherŠs scheme would do
a two-way merge (in Phase 3) followed by a four-way merge, for a total cost of
4 + 1 + 2 + 5 = 12. Both methods also involve a small additional cost, namely
one unit of rewind before the Ąnal merge.

A precise description of BencherŠs method appears in Algorithm B below.
Unfortunately it seems to be a procedure that is harder to understand than to
code; it is much easier to explain the technique to a computer than to a computer
scientist! This is partly because it is an inherently recursive method that has
been expressed in iterative form and then optimized somewhat; the reader may
Ąnd it necessary to trace through the operation of this algorithm several times
before discovering what is really going on.

Algorithm B (Oscillating sort with Şcriss-crossŤ distribution). This algorithm
takes initial runs and disperses them to tapes, occasionally interrupting the
distribution process in order to merge some of the tape contents. The algorithm
uses P -way merging, assuming that T = P + 1 ≥ 3 tape units are available Ů
not counting the unit that may be necessary to hold the input data. The tape
units must allow reading in both forward and backward directions, and they are
designated by the numbers 0, 1, . . . , P . The following tables are maintained:

314 SORTING 5.4.5

D[j], 0 ≤ j ≤ P : Number of dummy runs assumed to be present at the end of
tape j.

A[l, j], 0 ≤ l ≤ L,
0 ≤ j ≤P

Here L is a number such that at most PL+1 initial runs will
be input. When A[l, j] = k ≥ 0, a run of nominal length
P k is present on tape j, corresponding to Şlevel lŤ of the
algorithmŠs operation. This run is ascending if k is even,
descending if k is odd. When A[l, j] < 0, level l does not use
tape j.

The statement ŞWrite an initial run on tape jŤ is an abbreviation for the
following operations:

Set A[l, j] ← 0. If the input is exhausted, increase D[j] by 1; otherwise
write an initial run (in ascending order) onto tape j.

The statement ŞMerge to tape jŤ is an abbreviation for the following operations:

If D[i] > 0 for all i ̸= j, decrease D[i] by 1 for all i ̸= j and increase D[j]
by 1. Otherwise merge one run to tape j, from all tapes i ̸= j such that
D[i] = 0, and decrease D[i] by 1 for all other i ̸= j.

B1. Initialize

B2. Input
complete?

B3. Begin
new level

B4. Ready
to merge?

B5. Merge
B6. Is level
complete?

No

Yes

Yes

No Yes No

l=0

Fig. 77. Oscillating sort, with a Şcriss-crossŤ distribution.

B1. [Initialize.] Set D[j] ← 0 for 0 ≤ j ≤ P . Set A[0, 0] ← −1, l ← 0, q ← 0.
Then write an initial run on tape j, for 1 ≤ j ≤ P .

B2. [Input complete?] (At this point tape q is empty and the other tapes contain
at most one run each.) If there is more input, go on to step B3. But if
the input is exhausted, rewind all tapes j ̸= q such that A[0, j] is even;
then merge to tape q, reading forwards on tapes just rewound, and reading
backwards on the other tapes. This completes the sort, with the output in
ascending order on tape q.

B3. [Begin new level.] Set l ← l + 1, r ← q, s ← 0, and q ← (q + 1) mod T .
Write an initial run on tape (q + j) mod T, for 1 ≤ j ≤ T − 2. (Thus an
initial run is written onto each tape except tapes q and r.) Set A[l, q]← −1
and A[l, r]← −2.

B4. [Ready to merge?] If A[l−1, q] ̸= s, go back to step B3.

5.4.5 THE OSCILLATING SORT 315

B5. [Merge.] (At this point A[l−1, q] = A[l, j] = s for all j ̸= q, j ̸= r.)
Merge to tape r, reading backwards. (See the deĄnition of this operation
above.) Then set s ← s + 1, l ← l − 1, A[l, r] ← s, and A[l, q] ← −1. Set
r ← (2q− r) mod T . (In general, we have r = (q− 1) mod T when s is even,
r = (q + 1) mod T when s is odd.)

B6. [Is level complete?] If l = 0, go to B2. Otherwise if A[l, j] = s for all j ̸= q
and j ̸= r, go to B4. Otherwise return to B3.

We can use a Şrecursion inductionŤ style of proof to show that this al-
gorithm is valid, just as we have done for Algorithm 2.3.1T. Suppose that
we begin at step B3 with l = l0, q = q0, s+ = A[l0, (q0+1) mod T], and
s− = A[l0, (q0−1) mod T]; and assume furthermore that either s+ = 0 or s− = 1
or s+ = 2 or s− = 3 or · · · . It is possible to verify by induction that the algorithm
will eventually get to step B5 without changing rows 0 through l0 of A, and with
l = l0 + 1, q = q0 ± 1, r = q0, and s = s+ or s−, where we choose the + sign if
s+ = 0 or (s+ = 2 and s− ̸= 1) or (s+ = 4 and s− ̸= 1, 3) or · · · , and we choose
the − sign if (s− = 1 and s+ ̸= 0) or (s− = 3 and s+ ̸= 0, 2) or · · · . The proof
sketched here is not very elegant, but the algorithm has been stated in a form
more suited to implementation than to veriĄcation.

Figure 78 shows the efficiency of Algorithm B, in terms of the average num-
ber of times each record is merged as a function of the number S of initial runs,
assuming that the initial runs are approximately equal in length. (Corresponding
graphs for polyphase and cascade sort have appeared in Figs. 70 and 74.) A slight
improvement, mentioned in exercise 3, has been used in preparing this chart.

A related method called the gyrating sort was developed by R. M. Karp,
based on the theory of preorder merging that we have discussed in Section 5.4.4;
see Combinatorial Algorithms, edited by Randall Rustin (Algorithmics Press,
1972), 21Ű29.

Reading forwards. The oscillating sort pattern appears to require a read-
backwards capability, since we need to store long runs somewhere as we merge
newly input short runs. However, M. A. Goetz [Proc. AFIPS Spring Joint
Comp. Conf. 25 (1964), 599Ű607] has discovered a way to perform an oscillating
sort using only forward reading and simple rewinding. His method is radically
different from the other schemes we have seen in this chapter, in two ways:

a) Data is sometimes written at the front of the tape, with the understanding
that the existing data in the middle of the tape is not destroyed.

b) All initial runs have a Ąxed maximum length.

Condition (a) violates the Ąrst-in-Ąrst-out property we have assumed to be
characteristic of forward reading, but it can be implemented reliably if a sufficient
amount of blank tape is left between runs and if parity errors are ignored at
appropriate times. Condition (b) tends to be somewhat incompatible with an
efficient use of replacement selection.

GoetzŠs read-forward oscillating sort has the somewhat dubious distinction
of being one of the Ąrst algorithms to be patented as an algorithm instead of as

316 SORTING 5.4.5

a physical device [U.S. Patent 3380029 (1968)]; between 1968 and 1988, no one in
the U.S.A. could legally use the algorithm in a program without permission of the
patentee. BencherŠs read-backward oscillating sort technique was patented by
IBM several years later. [Alas, we have reached the end of the era when the joy of
discovering a new algorithm was satisfaction enough! Fortunately the oscillating
sort isnŠt especially good; letŠs hope that community-minded folks who invent
the best algorithms continue to make their ideas freely available. Of course the
specter of people keeping new techniques completely secret is far worse than the
public appearance of algorithms that are proprietary for a limited time.]

The central idea in GoetzŠs method is to arrange things so that each tape
begins with a run of relative length 1, followed by one of relative length P , then
P 2, etc. For example, when T = 5 the sort begins as follows, using Ş .Ť to
indicate the current position of the read-write head on each tape:

Operation T1 T2 T3 T4 T5 ŞCostŤ Remarks

Phase 1 Distribute .A1 .A1 .A1 .A1 A1. 5 [T5 not rewound]
Phase 2 Merge A\ 1. A\ 1. A\ 1. A\ 1. A1 A4. 4 [Now rewind all]
Phase 3 Distribute .A1 .A1 .A1 A1. .A1 A4 4 [T4 not rewound]
Phase 4 Merge A\ 1. A\ 1. A\ 1. A1 A4. A\ 1.A4 4 [Now rewind all]
Phase 5 Distribute .A1 .A1 A1. .A1 A4 .A1 A4 4 [T3 not rewound]
Phase 6 Merge A\ 1. A\ 1. A1 A4. A\ 1.A4 A\ 1.A4 4 [Now rewind all]
Phase 7 Distribute .A1 A1. .A1 A4 .A1 A4 .A1 A4 4 [T2 not rewound]
Phase 8 Merge A\ 1. A1 A4. A\ 1.A4 A\ 1.A4 A\ 1.A4 4 [Now rewind all]
Phase 9 Distribute A1. .A1 A4 .A1 A4 .A1 A4 .A1 A4 4 [T1 not rewound]
Phase 10 Merge A1A4. A\ 1.A4 A\ 1.A4 A\ 1.A4 A\ 1.A4 4 [No rewinding]
Phase 11 Merge A1A4A16. A\ 1 A\ 4. A\ 1 A\ 4. A\ 1 A\ 4. A\ 1 A\ 4. 16 [Now rewind all]

And so on. During Phase 1, T1 was rewinding while T2 was receiving its input,
then T2 was rewinding while T3 was receiving input, etc. Eventually, when the
input is exhausted, dummy runs will start to appear, and we will sometimes
need to imagine that they were written explicitly on the tape at full length. For
example, if S = 18, the A1Šs on T4 and T5 would be dummies during Phase 9;
we would have to skip forwards on T4 and T5 while merging from T2 and T3
to T1 during Phase 10, because we have to get to the A4Šs on T4 and T5 in
preparation for Phase 11. On the other hand, the dummy A1 on T1 need not
appear explicitly. Thus the ŞendgameŤ is a bit tricky.

Another example of this method appears in the next section.

EXERCISES

1. [22] The text illustrates SobelŠs original oscillating sort for T = 5 and S = 16.
Give a precise speciĄcation of an algorithm that generalizes the procedure, sorting
S = PL initial runs on T = P + 1 ≥ 3 tapes. Strive for simplicity.

2. [24] If S = 6 in SobelŠs original method, we could pretend that S = 16 and that
10 dummy runs were present. Then Phase 3 in the textŠs example would put dummy
runs A0 on T4 and T5; Phase 4 would merge the A1Šs on T2 and T3 into a D2 on T1;
Phases 5Ű8 would do nothing; and Phase 9 would produce A6 on T4. It would be better

5.4.6 PRACTICAL CONSIDERATIONS FOR TAPE MERGING 317

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0
1 2 5 10 20 50 100 200 500 1000 2000 5000

N
u
m
b
e
r
o
f
“
p
a
ss
e
s”

w
h
il
e
m
e
rg
in
g

Initial runs, S

T = 3

T = 4

T = 5

T = 6

T = 8

T = 10

Fig. 78. Efficiency of oscillating sort, using the technique of Algorithm B and exercise 3.

to rewind T2 and T3 just after Phase 3, then to produce A6 immediately on T4 by
three-way merging.

Show how to modify the algorithm of exercise 1, so that an improved ending like
this is obtained when S is not a perfect power of P .

x 3. [29] Prepare a chart showing the behavior of Algorithm B when T = 3, assuming
that there are nine initial runs. Show that the procedure is obviously inefficient in one
place, and prescribe corrections to Algorithm B that will remedy the situation.

4. [21] Step B3 sets A[l, q] and A[l, r] to negative values. Show that one of these
two operations is always superĆuous, since the corresponding A table entry is never
looked at.

5. [M25] Let S be the number of initial runs present in the input to Algorithm B.
Which values of S require no rewinding in step B2?

*5.4.6. Practical Considerations for Tape Merging

Now comes the nitty-gritty: We have discussed the various families of merge
patterns, so it is time to see how they actually apply to real conĄgurations of
computers and magnetic tapes, and to compare them in a meaningful way. Our
study of internal sorting showed that we canŠt adequately judge the efficiency of a
sorting method merely by counting the number of comparisons it performs; sim-
ilarly we canŠt properly evaluate an external sorting method by simply knowing
the number of passes it makes over the data.

318 SORTING 5.4.6

In this section we shall discuss the characteristics of typical tape units, and
the way they affect initial distribution and merging. In particular we shall study
some schemes for buffer allocation, and the corresponding effects on running
time. We also shall consider brieĆy the construction of sort generator programs.

How tape works. Different manufacturers have provided tape units with widely
varying characteristics. For convenience, we shall deĄne a hypothetical MIXT tape
unit, which is reasonably typical of the equipment that was being manufactured
at the time this book was Ąrst written. MIXT reads and writes 800 characters per
inch of tape, at a rate of 75 inches per second. This means that one character
is read or written every 1

60 ms, or 16 2
3 microseconds, when the tape is active.

Actual tape units that were available in 1970 had densities ranging from 200 to
1600 characters per inch, and tape speeds ranging from 371

2 to 150 inches per
second, so their effective speed varied from 1/8 to 4 times as fast as MIXT.

Of course, we observed near the beginning of Section 5.4 that magnetic tapes
in general are now pretty much obsolete. But many lessons were learned during
the decades when tape sorting was of major importance, and those lessons are
still valuable. Thus our main concern here is not to obtain particular answers; it
is to learn how to combine theory and practice in a reasonable way. Methodology
is much more important than phenomenology, because the principles of problem
solving remain useful despite technological changes. Readers will beneĄt most
from this material by transplanting themselves temporarily into the mindset of
the 1970s. Let us therefore pretend that we still live in that bygone era.

One of the important considerations to keep in mind, as we adopt the
perspective of the early days, is the fact that individual tapes have a strictly
limited capacity. Each reel contains 2400 feet of tape or less; hence there is
room for at most 23,000,000 or so characters per reel of MIXT tape, and it takes
about 23000000/3600000 ≈ 6.4 minutes to read them all. If larger Ąles must be
sorted, it is generally best to sort one reelful at a time, and then to merge the
individually sorted reels, in order to avoid excessive tape handling. This means
that the number of initial runs, S, actually present in the merge patterns we have
been studying is never extremely large. We will never Ąnd S > 5000, even with a
very small internal memory that produces initial runs only 5000 characters long.
Consequently the formulas that give asymptotic efficiency of the algorithms as
S →∞ are primarily of academic interest.

Data appears on tape in blocks (Fig. 79), and each read/write instruction
transmits a single block. Tape blocks are often called Şrecords,Ť but we shall
avoid that terminology because it conĆicts with the fact that we are sorting a
Ąle of ŞrecordsŤ in another sense. Such a distinction was unnecessary on many
of the early sorting programs written during the 1950s, since one record was
written per block; but we shall see that it is usually advantageous to have quite
a few records in every block on the tape.

An interblock gap, 480 character positions long, appears between adjacent
blocks, in order to allow the tape to stop and to start between individual read
or write commands. The effect of interblock gaps is to decrease the number of

5.4.6 PRACTICAL CONSIDERATIONS FOR TAPE MERGING 319

Block 1 Block 2 Block 3

Load Point Interblock Gaps

Block 4

Fig. 79. Magnetic tape with variable-size blocks.

characters per reel of tape, depending on the number of characters per block (see
Fig. 80); and the average number of characters transmitted per second decreases
in the same way, since tape moves at a fairly constant speed.

1000 2000 3000 4000 50000

Characters per block

10,000,000

20,000,000

0

C
h
a
ra
c
te
rs

p
e
r
ta
p
e

Fig. 80. The number of characters per reel of MIXT tape, as a function of the block size.

Many old-fashioned computers had Ąxed block sizes that were rather small;
their design was reĆected in the MIX computer as deĄned in Chapter 1, which
always reads and writes 100-word blocks. But MIXŠs convention corresponds to
about 500 characters per block, and 480 characters per gap, hence almost half
the tape is wasted! Most machines of the 1970s therefore allowed the block size
to be variable; we shall discuss the choice of appropriate block sizes below.

At the end of a read or write operation, the tape unit ŞcoastsŤ at full speed
over the Ąrst 66 characters (or so) of the gap. If the next operation for the same
tape is initiated during this time, the tape motion continues without interruption.
But if the next operation doesnŠt come soon enough, the tape will stop and it
will also require some time to accelerate to full speed on the next operation. The
combined stop/start time delay is 5 ms, 2 for the stop and 3 for the start (see
Fig. 81). Thus if we just miss the chance to have continuous full-speed reading,
the effect on running time is essentially the same as if there were 780 characters
instead of 480 in the interblock gap.

Now let us consider the operation of rewinding. Unfortunately, the exact
time needed to rewind over a given number n of characters is not easy to
characterize. On some machines there is a high-speed rewind that applies only
when n is greater than 5 million or so; for smaller values of n, rewinding goes at

320 SORTING 5.4.6

1 2 3 4 5 6 7 80

Time from completion of previous operation to initiation
of next command to tape controller (ms)

1
2
3
4
5
6
7
8
9

10
11
12

0

S
to
p
/
st
a
rt

d
el
a
y
b
et
w
ee
n

ta
p
e
o
p
er
a
ti
o
n
s
(m

s)

Continuous read/write is possible if the
command is initiated soon enough, on the same tape

Minimum stop/start delay
for noncontinuous read/write

Fig. 81. How to compute the stop/start delay time. (This gets added to the time used
for reading or writing the blocks and the gaps.)

normal read/write speed. On other machines a special motor is used to control
all of the rewind operations; it gradually accelerates the tape reel to a certain
number of revolutions per minute, then puts on the brakes when it is time to
stop, and the actual tape speed varies with the fullness of the reel. For simplicity,
we shall assume that MIXT requires max(30, n/150) ms to rewind over n character
positions (including gaps), roughly two-Ąfths as long as it took to write them.
This is a reasonably good approximation to the behavior of many actual tape
units, where the ratio of read/write time to rewind time is generally between 2
and 3, but it does not adequately model the effect of combined low-speed and
high-speed rewind that is present on many other machines. (See Fig. 82.)

Initial loading and/or rewinding will position a tape at Şload point,Ť and an
extra 110 ms are necessary for any read or write operation initiated at load point.
When the tape is not at load point, it may be read backwards; an extra 32 ms is
added to the time of any backward operation following a forward operation or
any forward operation following a backward one.

5,000,000 15,000,000 23,000,0000

Number of characters from load point

1

2

0

T
im

e
(m

in
)

read/write speed
Rewind at 2.5 times

Combined
low-speed/high-speed rewind

Fig. 82. Approximate running time for two commonly used rewind techniques.

5.4.6 PRACTICAL CONSIDERATIONS FOR TAPE MERGING 321

Merging revisited. Let us now look again at the process of P -way merging,
with an emphasis on input and output activities, assuming that P +1 tape units
are being used for the input Ąles and the output Ąle. Our goal is to overlap
the input/output operations as much as possible with each other and with the
computations of the program, so that the overall merging time is minimized.

It is instructive to consider the following special case, in which serious
restrictions are placed on the amount of simultaneity possible. Suppose that

a) at most one tape may be written on at any one time;

b) at most one tape may be read from at any one time;

c) reading, writing, and computing may take place simultaneously only when
the read and write operations have been initiated simultaneously.

It turns out that a system of 2P input buffers and 2 output buffers is sufficient
to keep the tape moving at essentially its maximum speed, even though these
three restrictions are imposed, unless the computer is unusually slow. Note that
condition (a) is not really a restriction, since there is only one output tape.
Furthermore the amount of input is equal to the amount of output, so there is
only one tape being read, on the average, at any given time; if condition (b) is
not satisĄed, there will necessarily be periods when no input at all is occurring.
Thus we can minimize the merging time if we keep the output tape busy.

An important technique called forecasting leads to the desired effect. While
we are doing a P -way merge, we generally have P current input buffers, which
are being used as the source of data; some of them are more full than others,
depending on how much of their data has already been scanned. If all of them
become empty at about the same time, we will need to do a lot of reading before
we can proceed further, unless we have foreseen this eventuality in advance.
Fortunately it is always possible to tell which buffer will empty Ąrst, by simply
looking at the last record in each buffer. The buffer whose last record has the
smallest key will always be the Ąrst one empty, regardless of the values of any
other keys; so we always know which Ąle should be the source of our next input
command. The following algorithm spells out this principle in detail.

Algorithm F (Forecasting with Ćoating buffers). This algorithm controls the
buffering during a P -way merge of long input Ąles, for P ≥ 2. Assume that the
input tapes and Ąles are numbered 1, 2, . . . , P . The algorithm uses 2P input
buffers I[1], . . . , I[2P]; two output buffers O[0] and O[1]; and the following
auxiliary tables:

A[j], 1≤ j≤ 2P : 0 if I[j] is available for input, 1 otherwise.

B[i], 1≤ i≤P : Index of the buffer holding the last block read so far from Ąle i.

C[i], 1≤ i≤P : Index of the buffer currently being used for the input from Ąle i.

L[i], 1≤ i≤P : The last key read so far from Ąle i.

S[j], 1≤ j≤ 2P : Index of the buffer to use when I[j] becomes empty.

The algorithm described here does not terminate; an appropriate way to shut it
off is discussed below.

322 SORTING 5.4.6

F1. Initialize F2. Merge

F3. I/O complete

F4. Forecast

F5. Read/write

Fig. 83. Forecasting with Ćoating buffers.

F1. [Initialize.] Read the Ąrst block from tape i into buffer I[i], set A[i] ← 1,
A[P + i] ← 0, B[i] ← i, C[i] ← i, and set L[i] to the key of the Ąnal
record in buffer I[i], for 1 ≤ i ≤ P . Then Ąnd m such that L[m] =
min{L[1], . . . , L[P]}; and set t ← 0, k ← P + 1. Begin to read from tape
m into buffer I[k].

F2. [Merge.] Merge records from buffers I[C[1]], . . . , I[C[P]] to O[t], until
O[t] is full. If during this process an input buffer, say I[C[i]], becomes
empty and O[t] is not yet full, set A[C[i]] ← 0, C[i] ← S[C[i]], and
continue to merge.

F3. [I/O complete.] Wait until the previous read (or read/write) operation is
complete. Then set A[k]← 1, S[B[m]]← k, B[m]← k, and set L[m] to
the key of the Ąnal record in I[k].

F4. [Forecast.] Find m such that L[m] = min{L[1], . . . , L[P]}, and Ąnd k such
that A[k] = 0.

F5. [Read/write.] Begin to read from tape m into buffer I[k], and to write from
buffer O[t] onto the output tape. Then set t← 1− t and return to F2.

The example in Fig. 84 shows how forecasting works when P = 2, assuming
that each block on tape contains only two records. The input buffer contents are
illustrated each time we get to the beginning of step F2. Algorithm F essentially
forms P queues of buffers, with C[i] pointing to the front and B[i] to the rear
of the ith queue, and with S[j] pointing to the successor of buffer I[j]; these
pointers are shown as arrows in Fig. 84. Line 1 illustrates the state of affairs
after initialization: There is one buffer for each input Ąle, and another block is
being read from File 1 (since 03 < 05). Line 2 shows the status of things after the
Ąrst block has been merged: We are outputting a block containing 01 02 , and
inputting the next block from File 2 (since 05 < 09). Note that in line 3, three
of the four input buffers are essentially committed to File 2, since we are reading
from that Ąle and we already have a full buffer and a partly full buffer in its

5.4.6 PRACTICAL CONSIDERATIONS FOR TAPE MERGING 323

File 1 contains 01 03 04 09 11 13 16 18 · · ·

File 2 contains 02 05 06 07 08 10 12 14 · · ·

Line No. Buffers for File 1 Buffers for File 2
Next input being

read from

1

2

3

4

5

6

7

01 03

03 04 09

09

09

09 11 13

11 13

13 16 18

02 05

05

05 06 07

07 08 10

10

12 14

14

File 1

File 1

File 1

File 2

File 2

File 2

File 2

Fig. 84. Buffer queuing, according to Algorithm F.

queue. This Ćoating-buffer arrangement is an important feature of Algorithm F,
since we would be unable to proceed in line 4 if we had chosen File 1 instead of
File 2 for the input on line 3.

In order to prove that Algorithm F is valid, we must show two things:

i) There is always an input buffer available (that is, we can always Ąnd a k in
step F4).

ii) If an input buffer is exhausted while merging, its successor is already present
in memory (that is, S[C[i]] is meaningful in step F2).

Suppose (i) is false, so that all buffers are unavailable at some point when we
reach step F4. Each time we get to that step, the total amount of unprocessed
data among all the buffers is exactly P bufferloads, just enough data to Ąll
P buffers if it were redistributed, since we are inputting and outputting data
at the same rate. Some of the buffers are only partially full; but at most one
buffer for each Ąle is partially full, so at most P buffers are in that condition. By
hypothesis all 2P of the buffers are unavailable; therefore at least P of them must
be completely full. This can happen only if P are full and P are empty, otherwise
we would have too much data. But at most one buffer can be unavailable and
empty at any one time; hence (i) cannot be false.

Suppose (ii) is false, so that we have no unprocessed records in memory,
for some Ąle, but the current output buffer is not yet full. By the principle of
forecasting, we must have no more than one block of data for each of the other
Ąles, since we do not read in a block for a Ąle unless that block will be needed
before the buffers on any other Ąle are exhausted. Therefore the total number of
unprocessed records amounts to at most P −1 blocks; adding the unĄlled output
buffer leads to less than P bufferloads of data in memory, a contradiction.

324 SORTING 5.4.6

This argument establishes the validity of Algorithm F; and it also indicates
the possibility of pathological circumstances under which the algorithm just
barely avoids disaster. An important subtlety that we have not mentioned,
regarding the possibility of equal keys, is discussed in exercise 5. See also
exercise 4, which considers the case P = 1.

One way to terminate Algorithm F gracefully is to set L[m] to∞ in step F3
if the block just read is the last of a run. (It is customary to indicate the end of
a run in some special way.) After all of the data on all of the Ąles has been read,
we will eventually Ąnd all of the LŠs equal to ∞ in step F4; then it is usually
possible to begin reading the Ąrst blocks of the next run on each Ąle, beginning
initialization of the next merge phase as the Ąnal P + 1 blocks are output.

Thus we can keep the output tape going at essentially full speed, without
reading more than one tape at a time. An exception to this rule occurs in step F1,
where it would be beneĄcial to read several tapes at once in order to get things
going in the beginning; but step F1 can usually be arranged to overlap with the
preceding part of the computation.

The idea of looking at the last record in each block, to predict which buffer
will empty Ąrst, was discovered in 1953 by F. E. Holberton. The technique was
Ąrst published by E. H. Friend [JACM 3 (1956), 144Ű145, 165]. His rather
complicated algorithm used 3P input buffers, with three dedicated to each
input Ąle; Algorithm F improves the situation by making use of Ćoating buffers,
allowing any single Ąle to claim as many as P + 1 input buffers at once, yet
never needing more than 2P in all. A discussion of merging with fewer than 2P
input buffers appears at the end of this section. Some interesting improvements
to Algorithm F are discussed in Section 5.4.9.

Comparative behavior of merge patterns. Let us now use what we know
about tapes and merging to compare the effectiveness of the various merge
patterns that we have studied in Sections 5.4.2 through 5.4.5. It is very in-
structive to work out the details when each method is applied to the same task.
Consider therefore the problem of sorting a Ąle whose records each contain 100
characters, when there are 100,000 character positions of memory available for
data storage Ů not counting the space needed for the program and its auxiliary
variables, or the space occupied by links in a selection tree. (Remember that
we are pretending to live in the days when memories were small.) The input
appears in random order on tape, in blocks of 5000 characters each, and the
output is to appear in the same format. There are Ąve scratch tapes to work
with, in addition to the unit containing the input tape.

The total number of records to be sorted is 100,000, but this information is
not known in advance to the sorting algorithm.

The foldout illustration in Chart A summarizes the actions that transpire
when ten different merging schemes are applied to this data. The best way to look
at this important illustration is to imagine that you are actually watching the
sort take place: Scan each line slowly from left to right, pretending that you can
actually see six tapes reading, writing, rewinding, and/or reading backwards, as

5.4.6 PRACTICAL CONSIDERATIONS FOR TAPE MERGING 325

This page left blank on purpose

5.4.6 PRACTICAL CONSIDERATIONS FOR TAPE MERGING 325

indicated on the diagram. During a P -way merge the input tapes will be moving
only 1/P times as often as the output tape. When the original input tape has
been completely read (and rewound Şwith lockŤ), Chart A assumes that a skilled
computer operator dismounts it and replaces it with a scratch tape, in just 30
seconds. In examples 2, 3, and 4 this is Şcritical path timeŤ when the computer
is idly waiting for the operator to Ąnish; but in the remaining examples, the
dismount-reload operation is overlapped by other processing.

Example 1. Read-forward balanced merge. LetŠs review the speciĄcations
of the problem: The records are 100 characters long, there is enough internal
memory to hold 1000 records at a time, and each block on the input tape contains
5000 characters (50 records). There are 100,000 records (= 10,000,000 characters
= 2000 blocks) in all.

We are free to choose the block size for intermediate Ąles. A six-tape
balanced merge uses three-way merging, so the technique of Algorithm F calls for
8 buffers; we may therefore use blocks containing 1000/8 = 125 records (= 12500
characters) each.

The initial distribution pass can make use of replacement selection (Algo-
rithm 5.4.1R), and in order to keep the tapes running smoothly we may use two
input buffers of 50 records each, plus two output buffers of 125 records each.
This leaves room for 650 records in the replacement selection tree. Most of the
initial runs will therefore be about 1300 records long (10 or 11 blocks); it turns
out that 78 initial runs are produced in Chart A, the last one being rather short.

The Ąrst merge pass indicated shows nine runs merged to tape 4, instead of
alternating between tapes 4, 5, and 6. This makes it possible to do useful work
while the computer operator is loading a scratch tape onto unit 6; since the total
number S of runs is known once the initial distribution has been completed, the
algorithm knows that ⌈S/9⌉ runs should be merged to tape 4, then ⌈(S − 3)/9⌉
to tape 5, then ⌈(S − 6)/9⌉ to tape 6.

The entire sorting procedure for this example can be summarized in the
following way, using the notation introduced in Section 5.4.2:

126 126 126 Ů Ů Ů

Ů Ů Ů 39 39 38

93 93 9261 Ů Ů Ů

Ů Ů Ů 271 271 241

781 Ů Ů Ů Ů Ů

Example 2. Read-forward polyphase merge. The second example in
Chart A carries out the polyphase merge, according to Algorithm 5.4.2D. In
this case we do Ąve-way merging, so the memory is split into 12 buffers of 83
records each. During the initial replacement selection we have two 50-record
input buffers and two 83-record output buffers, leaving 734 records in the tree;
so the initial runs this time are about 1468 records long (17 or 18 blocks). The
situation illustrated shows that S = 70 initial runs were obtained, the last two

326 SORTING 5.4.6

actually being only four blocks and one block long, respectively. The merge
pattern can be summarized thus:

013118 013117 013115 012112 0818 Ů

115 114 112 18 Ů 08142153

17 16 14 Ů 48 142153

13 12 Ů 84 44 2153

11 Ů 161191 82 42 52

Ů 341 191 81 41 51

701 Ů Ů Ů Ů Ů

Curiously, polyphase actually took about 25 seconds longer than the far less
sophisticated balanced merge! There are two main reasons for this:

1) Balanced merge was particularly lucky in this case, since S = 78 is just
less than a perfect power of 3. If 82 initial runs had been produced, the balanced
merge would have needed an extra pass.

2) Polyphase merge wasted 30 seconds while the input tape was being
changed, and a total of more than 5 minutes went by while it was waiting for
rewind operations to be completed. By contrast the balanced merge needed
comparatively little rewind time. In the second phase of the polyphase merge,
13 seconds were saved because the 8 dummy runs on tape 6 could be assumed
present even while that tape was rewinding; but no other rewind overlap oc-
curred. Therefore polyphase lost out even though it required signiĄcantly less
read/write time.

Example 3. Read-forward cascade merge. This case is analogous to the
preceding, but using Algorithm 5.4.3C. The merging may be summarized thus:

114 115 112 114 115 Ů

15 19 Ů 114 115 132336

5163 53 5362 Ů 11 22

Ů 121 61 181 181 161

701 Ů Ů Ů Ů Ů

(Remember to watch each of these examples in action, by scanning Chart A in
the foldout illustration.)

Example 4. Tape-splitting polyphase merge. This procedure, described at
the end of Section 5.4.2, allows most of the rewind time to be overlapped. It uses
four-way merging, so we divide the memory into ten 100-record buffers; there are
700 records in the replacement selection tree, so it turns out that 72 initial runs
are formed. The last run, again, is very short. A distribution scheme analogous
to Algorithm 5.4.2D has been used, followed by a simple but somewhat ad hoc

5.4.6 PRACTICAL CONSIDERATIONS FOR TAPE MERGING 327

method of placing dummy runs:

121 119 115 18 Ů 0219

02117 02115 02111 0214 Ů 021944

113 111 17 Ů 0244 021944

110 18 14 Ů 02443241 1844

16 14 Ů 44 02443241 1444

15 13 Ů 4431 01443241 1344

12 Ů 3172 4431 423241 44

11 Ů 3172131 4331 413241 43

Ů 131 3172131 4231 3241 42

Ů 131141 72131 4131 3141 41

181 131141 71131 31 41 Ů

181 141 131 Ů Ů 271

Ů Ů Ů 721 Ů Ů

This turns out to give the best running time of all the examples in Chart A that
do not read backwards. Since S will never be very large, it would be possible to
develop a more complicated algorithm that places dummy runs in an even better
way; see Eq. 5.4.2Ű(26).

Example 5. Cascade merge with rewind overlap. This procedure runs
almost as fast as the previous example, although the algorithm governing it is
much simpler. We simply use the cascade sort method as in Algorithm 5.4.3C
for the initial distribution, but with T = 5 instead of T = 6. Then each phase
of each ŞcascadeŤ staggers the tapes so that we ordinarily donŠt write on a tape
until after it has had a chance to be rewound. The pattern, very brieĆy, is

121 122 119 110 Ů Ů

14 17 Ů Ů 122235 410

72 Ů 83 7282 Ů 41

Ů 261 Ů 81 221 161

721 Ů Ů Ů Ů Ů

Example 6. Read-backward balanced merge. This is like example 1 but
with all the rewinding eliminated:

A26
1 A26

1 A26
1 Ů Ů Ů

Ů Ů Ů D9
3 D9

3 D8
3

A3
9 A3

9 A2
9A1

6 Ů Ů Ů

Ů Ů Ů D1
24 D1

27 D1
27

A1
78 Ů Ů Ů Ů Ů

328 SORTING 5.4.6

Since there was comparatively little rewinding in example 1, this scheme is not a
great deal better than the read-forward case. In fact, it turns out to be slightly
slower than tape-splitting polyphase, in spite of the fortunate value S = 78.

Example 7. Read-backward polyphase merge. In this example only Ąve of
the six tapes are used, in order to eliminate the time for rewinding and changing
the input tape. Thus, the merging is only four-way, and the buffer allocation
is like that in examples 4 and 5. A distribution like Algorithm 5.4.2D is used,
but with alternating directions of runs, and with tape 1 Ąxed as the Ąnal output
tape. First an ascending run is written on tape 1; then descending runs on tapes
2, 3, 4; then ascending runs on 2, 3, 4; then descending on 1, 2, 3; etc. Each time
we switch direction, replacement selection usually produces a shorter run, so it
turns out that 77 initial runs are formed instead of the 72 in examples 4 and 5.

This procedure results in a distribution of (22, 21, 19, 15) runs, and the next
perfect distribution is (29, 56, 52, 44). Exercise 5.4.4Ű5 shows how to generate
strings of merge numbers that can be used to place dummy runs in optimum
positions; such a procedure is feasible in practice because the Ąniteness of a tape
reel ensures that S is never too large. Therefore the example in Chart A has
been constructed using such a method for dummy run placement (see exercise 7).
This turns out to be the fastest of all the examples illustrated.

Example 8. Read-backward cascade merge. As in example 7, only Ąve
tapes are used here. This procedure follows Algorithm 5.4.3C, using rewind and
forward read to avoid one-way merging (since rewinding is more than twice as
fast as reading on MIXT units). Distribution is therefore the same as in example 5.
The pattern may be summarized brieĆy as follows, using ↓ to denote rewinding:

A21
1 A22

1 A19
1 A10

1 Ů

A4
1↓ A7

1↓ Ů D2
1D2

2D5
3 D10

4

A8A2
7 A2

5 A4
9 Ů D1

4↓
Ů D17 A9↓ D25 D21

A72 Ů Ů Ů Ů

Example 9. Read-backward oscillating sort. Oscillating sort with T = 5
(Algorithm 5.4.5B) can use buffer allocation as in examples 4, 5, 7, and 8, since
it does four-way merging. However, replacement selection does not behave in
the same way, since a run of length 700 (not 1400 or so) is output just before
entering each merge phase, in order to clear the internal memory. Consequently
85 runs are produced in this example, instead of 72. Some of the key steps in
the process are

Ů A1 A1A1 A1A1 A1A1

D4 Ů A1 A1 A1

. .

5.4.6 PRACTICAL CONSIDERATIONS FOR TAPE MERGING 329

D4D4 D4D4 D4D4 D4 Ů

D4 D4 D4 Ů A16

. .

D4 A16D4D4 A16D4 A16D4A1 A16

D4 A16D4D4 A16D4D1 A16D4 A16

Ů A16D4 A16D4 A16 A16A13

Ů A16D4 A16 A16A4 A16A13

Ů A16 A16A4 A16A4 A16A13

D37 Ů A16↓ A16↓ A16↓
Ů A85 Ů Ů Ů

Example 10. Read-forward oscillating sort. In the Ąnal example, replace-
ment selection is not used because all initial runs must be the same length.
Therefore full core loads of 1000 records are sorted internally whenever an initial
run is required; this makes S = 100. Some key steps in the process are

A1 A1 A1 A1 A1

Ů Ů Ů Ů A1A4

. .

A1 A1 A1 A1 A1A4

Ů Ů Ů A1A4 A\ 1A4

A1 A1 A1 A1A4 A1A4

. .

A1 A1A4 A1A4 A1A4 A1A4

A1A4 A\ 1A4 A\ 1A4 A\ 1A4 A\ 1A4

A1A4A16 Ů Ů Ů Ů

. .

Ů A1A4 A1A4 A1A4 A1A4A16A64

A4 A\ 1A4 A\ 1A4 A\ 1A4 A\ 1A4A16A64

A4A16 Ů Ů Ů A\ 1A\ 4A16A64

A\ 4A16 A4 Ů Ů A\ 1A\ 4A16A64

Ů Ů Ů A36 A\ 1A\ 4A\ 16A64

A100 Ů Ů Ů Ů

This routine turns out to be slowest of all, partly because it does not use
replacement selection, but mostly because of its rather awkward ending (a two-
way merge).

330 SORTING 5.4.6

1

2

3

4

5

6

7

8

9

10

0
1 2 5 10 20 50 100 200 500 1000 2000 5000

N
u
m
b
er

o
f
“
p
a
ss
es
”
w
h
il
e
m
er
g
in
g

Initial runs, S

Balanced (T =6)
Cascade (T =5)
Polyphase (T =5)

Oscillating (T =5)

Fig. 85. A somewhat misleading way to compare merge patterns.

Estimating the running time. LetŠs see now how to Ągure out the ap-
proximate execution time of a sorting method using MIXT tapes. Could we
have predicted the outcomes shown in Chart A without carrying out a detailed
simulation?

One way that has traditionally been used to compare different merge pat-
terns is to superimpose graphs such as we have seen in Figs. 70, 74, and 78.
These graphs show the effective number of passes over the data, as a function of
the number of initial runs, assuming that each initial run has approximately the
same length. (See Fig. 85.) But this is not a very realistic comparison, because
we have seen that different methods lead to different numbers of initial runs;
furthermore there is a different overhead time caused by the relative frequency
of interblock gaps, and the rewind time also has signiĄcant effects. All of these
machine-dependent features make it impossible to prepare charts that provide
a valid machine-independent comparison of the methods. On the other hand,
Fig. 85 does show us that, except for balanced merge, the effective number
of passes can be reasonably well approximated by smooth curves of the form
α ln S + β. Therefore we can make a fairly good comparison of the methods
in any particular situation, by studying formulas that approximate the running
time. Our goal, of course, is to Ąnd formulas that are simple yet sufficiently
realistic.

Let us now attempt to develop such formulas, in terms of the following
parameters:

N = number of records to be sorted,

C = number of characters per record,

M = number of character positions available in the internal memory (assumed to
be a multiple of C),

5.4.6 PRACTICAL CONSIDERATIONS FOR TAPE MERGING 331

τ = number of seconds to read or write one character,

ρτ = number of seconds to rewind over one character,

στ = number of seconds for stop/start time delay,

γ = number of characters per interblock gap,

δ = number of seconds for operator to dismount and replace input tape,

Bi = number of characters per block in the unsorted input,

Bo = number of characters per block in the sorted output.

For MIXT we have τ = 1/60000, ρ = 2/5, σ = 300, γ = 480. The example
application treated above has N = 100000, C = 100, M = 100000, δ = 30, Bi =
Bo = 5000. These parameters are usually the machine and data characteristics
that affect sorting time most critically (although rewind time is often given by a
more complicated expression than a simple ratio ρ). Given the parameters above
and a merge pattern, we shall compute further quantities such as

P = maximum order of merge in the pattern,

P ′ = number of records in replacement selection tree,

S = number of initial runs,

π = α ln S + β = approximate average number of times each character is read
and written, not counting the initial distribution or the Ąnal
merge,

π′ = α′ ln S + β ′ = approximate average number of times rewinding over each
character during intermediate merge phases,

B = number of characters per block in the intermediate merge
phases,

ωi, ω, ωo = Şoverhead ratio,Ť the effective time required to read or write
a character (due to gaps and stop/start) divided by the hard-
ware time τ .

The examples of Chart A have chosen block and buffer sizes according to
the formula

B =

M

C(2P + 2)

C, (1)

so that the blocks can be as large as possible consistent with the buffering scheme
of Algorithm F. (In order to avoid trouble during the Ąnal pass, P should be
small enough that (1) makes B ≥ Bo.) The size of the tree during replacement
selection is then

P ′ = (M − 2Bi − 2B)/C. (2)

For random data the number of initial runs S can be estimated as

S ≈

N

2P ′ +
7
6

, (3)

332 SORTING 5.4.6

using the results of Section 5.4.1. Assuming that Bi < B and that the input
tape can be run at full speed during the distribution (see below), it takes about
NCωiτ seconds to distribute the initial runs, where

ωi = (Bi + γ)/Bi. (4)

While merging, the buffering scheme allows simultaneous reading, writing, and
computing, but the frequent switching between input tapes means that we must
add the stop/start time penalty; therefore we set

ω = (B + γ + σ)/B, (5)

and the merge time is approximately

(π + ρπ′)NCωτ. (6)

This formula penalizes rewind slightly, since ω includes stop/start time, but
other considerations, such as rewind interlock and the penalty for reading from
load point, usually compensate for this. The Ąnal merge pass, assuming that
Bo ≤ B, is constrained by the overhead ratio

ωo = (Bo + γ)/Bo. (7)

We may estimate the running time of the Ąnal merge and rewind as

NC(1 + ρ)ωoτ ;

in practice it might take somewhat longer due to the presence of unequal block
lengths (input and output are not synchronized as in Algorithm F), but the
running time will be pretty much the same for all merge patterns.

Before going into more speciĄc formulas for individual patterns, let us try
to justify two of the assumptions made above.

a) Can replacement selection keep up with the input tape? In the examples
of Chart A it probably can, since it takes about ten iterations of the inner
loop of Algorithm 5.4.1R to select the next record, and we have Cωiτ > 1667
microseconds in which to do this. With careful programming of the replacement
selection loop, this can be done on most machines (even in the 1970s). Notice
that the situation is somewhat less critical while merging: The computation time
per record is almost always less than the tape time per record during a P -way
merge, since P isnŠt very large.

b) Should we really choose B to be the maximum possible buffer size, as

in (1)? A large buffer size cuts down the overhead ratio ω in (5); but it also
increases the number of initial runs S, since P ′ is decreased. It is not immediately
clear which factor is more important. Considering the merging time as a function
of x = CP ′, we can express it in the approximate form

θ1 ln

N

x
+

7
6

+ θ2

θ3 − x

θ4 − x

(8)

for some appropriate constants θ1, θ2, θ3, θ4, with θ3 > θ4. Differentiating with
respect to x shows that there is some N0 such that for all N ≥ N0 it does not pay

5.4.6 PRACTICAL CONSIDERATIONS FOR TAPE MERGING 333

to increase x at the expense of buffer size. In the sorting application of Chart A,
for example, N0 turns out to be roughly 10000; when sorting more than 10000
records the large buffer size is superior.

Note, however, that with balanced merge the number of passes jumps sharply
when S passes a power of P . If an approximation to N is known in advance,
the buffer size should be chosen so that S will most likely be slightly less than a
power of P . For example, the buffer size for the Ąrst line of Chart A was 12500;
since S = 78, this was very satisfactory, but if S had turned out to be 82 it
would have been much better to decrease the buffer size a little.

Formulas for the ten examples. Returning to Chart A, let us try to give
formulas that approximate the running time in each of the ten methods. In most
cases the basic formula

NCωiτ + (π + ρπ′)NCωτ + (1 + ρ)NCωoτ (9)

will be a sufficiently good approximation to the overall sorting time, once we
have speciĄed the number of intermediate merge passes π = α ln S + β and the
number of intermediate rewind passes π′ = α′ ln S+β ′. Sometimes it is necessary
to add a further correction to (9); details for each method can be worked out as
follows:

Example 1. Read-forward balanced merge. The formulas

π = ⌈ln S/ln P ⌉ − 1, π′ = ⌈ln S/ln P ⌉/P

may be used for P -way merging on 2P tapes.

Example 2. Read-forward polyphase merge. We may take π′ ≈ π, since
every phase is usually followed by a rewind of about the same length as the
previous merge. From Table 5.4.2Ű1 we get the values α ≈ 0.795, β ≈ 0.864− 2,
in the case of six tapes. (We subtract 2 because the table entry includes the
initial and Ąnal passes as well as the intermediate ones.) The time for rewinding
the input tape after the initial distribution, namely ρNCωiτ +δ, should be added
to (9).

Example 3. Read-forward cascade merge. Table 5.4.3Ű1 gives the values
α ≈ 0.773, β ≈ 0.808 − 2. Rewind time is comparatively difficult to estimate;
perhaps setting π′ ≈ π is accurate enough. As in example 2, we need to add the
initial rewind time to (9).

Example 4. Tape-splitting polyphase merge. Table 5.4.2Ű6 tells us that
α ≈ 0.752, β ≈ 1.024 − 2. The rewind time is almost overlapped except after
the initialization (ρNCωiτ + δ) and two phases near the end (2ρNCωτ times
36 percent). We may also subtract 0.18 from β since the Ąrst half phase is
overlapped by the initial rewind.

Example 5. Cascade merge with rewind overlap. In this case we use
Table 5.4.3Ű1 for T = 5, to get α ≈ 0.897, β ≈ 0.800 − 2. Nearly all of the
unoverlapped rewind occurs just after the initial distribution and just after each

334 SORTING 5.4.6

two-way merge. After a perfect initial distribution, the longest tape contains
about 1/g of the data, where g is the Şgrowth ratio.Ť After each two-way merge
the amount of rewind in the six-tape case is dkdn−k (see exercise 5.4.3Ű5), hence
the amount of rewind after two-way merges in the T -tape case can be shown to
be approximately

2/(2T − 1)

1− cos

4π/(2T − 1)

of the Ąle. In our case, T = 5, this is 2
9 (1− cos 80◦) ≈ 0.184 of the Ąle, and the

number of times it occurs is 0.946 ln S + 0.796− 2.

Example 6. Read-backward balanced merge. This is like example 1, ex-
cept that most of the rewinding is eliminated. The change in direction from
forward to backward causes some delays, but they are not signiĄcant. There is
a 50-50 chance that rewinding will be necessary before the Ąnal pass, so we may
take π′ = 1/(2P).

Example 7. Read-backward polyphase merge. Since replacement selec-
tion in this case produces runs that change direction about every P times, we
must replace (3) by another formula for S. A reasonably good approximation,
suggested by exercise 5.4.1Ű24, is S =

N(3 + 1/P)/(6P ′)

+ 1. All rewind time

is eliminated, and Table 5.4.2Ű1 gives α ≈ 0.863, β ≈ 0.921− 2.

Example 8. Read-backward cascade merge. From Table 5.4.3Ű1 we have
α ≈ 0.897, β ≈ 0.800 − 2. The rewind time can be estimated as twice the
difference between Şpasses with copyingŤ minus Şpasses without copyingŤ in
that table, plus 1/(2P) in case the Ąnal merge must be preceded by rewinding
to get ascending order.

Example 9. Read-backward oscillating sort. In this case replacement se-
lection has to be started and stopped many times; bursts of P − 1 to 2P − 1
runs are distributed at a time, averaging P in length; the average length of runs
therefore turns out to be approximately P ′(2P − 4/3)/P , and we may estimate
S =

N/

2− 4/(3P)

P ′ + 1. A little time is used to switch from merging to

distribution and vice-versa; this is approximately the time to read in P ′ records
from the input tape, namely P ′Cωiτ , and it occurs about S/P times. Rewind
time and merging time may be estimated as in example 6.

Example 10. Read-forward oscillating sort. This method is not easy to
analyze, because the Ąnal ŞcleanupŤ phases performed after the input is ex-
hausted are not as efficient as the earlier phases. Ignoring this troublesome
aspect, and simply calling it one extra pass, we can estimate the merging time by
setting α = 1/ ln P , β = 0, and π′ = π/P . The distribution of runs is somewhat
different in this case, since replacement selection is not used; we set P ′ = M/C
and S = ⌈N/P ′⌉. With care we will be able to overlap computing, reading, and
writing during the distribution, with an additional factor of about (M+2B)/M in
the overhead. The Şmode-switchingŤ time mentioned in example 9 is not needed
in the present case because it is overlapped by rewinding. So the estimated
sorting time in this case is (9) plus 2BNCωiτ/M.

5.4.6 PRACTICAL CONSIDERATIONS FOR TAPE MERGING 335

Table 1

SUMMARY OF SORTING TIME ESTIMATES

Additions Est. Actual
Ex. P B P ′ S ω α β α′ β ′ (9) to (9) total total

1 3 12500 650 79 1.062 0.910 −1.000 0.303 0.000 1064 1064 1076
2 5 8300 734 70 1.094 0.795 −1.136 0.795 −1.136 1010 ρNCωiτ + δ 1113 1103
3 5 8300 734 70 1.094 0.773 −1.192 0.773 −1.192 972 ρNCωiτ + δ 1075 1127
4 4 10000 700 73 1.078 0.752 −0.994 0.000 0.720 844 ρNCωiτ + δ 947 966
5 4 10000 700 73 1.078 0.897 −1.200 0.173 0.129 972 972 992
6 3 12500 650 79 1.062 0.910 −1.000 0.000 0.167 981 981 980
7 4 10000 700 79 1.078 0.863 −1.079 0.000 0.000 922 922 907
8 4 10000 700 73 1.078 0.897 −1.200 0.098 0.117 952 952 949
9 4 10000 700 87 1.078 0.721 −1.000 0.000 0.125 846 P ′SCωiτ/P 874 928

10 4 10000 Ů 100 1.078 0.721 0.000 0.180 0.000 1095 2BNCωiτ/M 1131 1158

Table 1 shows that the estimates are not too bad in these examples, although
in a few cases there is a discrepancy of 50 seconds or so. The formulas in
examples 2 and 3 indicate that cascade merge should be preferable to polyphase
on six tapes, yet in practice polyphase was better. The reason is that graphs
like Fig. 85 (which shows the Ąve-tape case) are more nearly straight lines for
the polyphase algorithm; cascade is superior to polyphase on six tapes for 14 ≤
S ≤ 15 and 43 ≤ S ≤ 55, near the ŞperfectŤ cascade numbers 15 and 55, but
the polyphase distribution of Algorithm 5.4.2D is equal or better for all other
S ≤ 100. Cascade will win over polyphase as S → ∞, but S doesnŠt actually
approach ∞. The underestimate in example 9 is due to similar circumstances;
polyphase was superior to oscillating even though the asymptotic theory tells us
that oscillating will be better for large S.

Some miscellaneous remarks. It is now appropriate to make a few more or
less random observations about tape merging.

• The formulas above show that the cost of tape sorting is essentially a
function of N times C, not of N and C independently. Except for a few relatively
minor considerations (such as the fact that B was taken to be a multiple of C),
our formulas say that it takes about as long to sort one million records of 10
characters each as to sort 100,000 records of 100 characters each. Actually there
may be a difference, not revealed in our formulas, because of the space used by
link Ąelds during replacement selection. In any event the size of the key makes
hardly any difference, unless keys get so long and complicated that internal
computation cannot keep up with the tapes.

With long records and short keys it is tempting to ŞdetachŤ the keys, sort
them Ąrst, and then somehow rearrange the records as a whole. But this idea
doesnŠt really work; it merely postpones the agony, because the Ąnal rearrange-
ment procedure takes about as long as a conventional merge sort would take.

• When writing a sort routine that is to be used repeatedly, it is wise to
estimate the running time very carefully and to compare the theory with actual
observed performance. Since the theory of sorting has been fairly well developed,
this procedure has been known to turn up bugs in the input/output hardware or

336 SORTING 5.4.6

software on existing systems; the service was substantially slower than it should
have been, yet nobody had noticed it until the sorting routine ran too slowly!

• Our analysis of replacement selection has been carried out for ŞrandomŤ
Ąles, but the Ąles that actually arise in practice very often have a good deal of
existing order. (In fact, sometimes people will sort a Ąle that is already in order,
just to be sure.) Therefore experience has shown that replacement selection
is preferable to other kinds of internal sort, even more so than our formulas
indicate. This advantage is slightly mitigated in the case of read-backward
polyphase sorting, since a number of descending runs must be produced; indeed,
R. L. Gilstad (who Ąrst published the polyphase merge) originally rejected the
read-backward technique for that reason. But he noticed later that alternating
directions will still pick up long ascending runs. Furthermore, read-backward
polyphase is the only standard technique that likes descending input Ąles as well
as ascending ones.

• Another advantage of replacement selection is that it allows simultaneous
reading, writing, and computing. If we merely did the internal sort in an obvious
way Ů Ąlling the memory, sorting it, then writing it out as it becomes Ąlled with
the next load Ů the distribution pass would take about twice as long.

The only other internal sort we have discussed that appears to be amenable
to simultaneous reading, writing, and computing is heapsort. Suppose for con-
venience that the internal memory holds 1000 records, and that each block on
tape holds 100. Example 10 of Chart A was prepared with the following strategy,
letting B1 B2 . . . B10 stand for the contents of memory divided into ten 100-record
blocks:

Step 0. Fill memory, and make the elements of B2 . . . B10 satisfy the inequalities
for a heap (with smallest element at the root).

Step 1. Make B1 . . . B10 into a heap, then select out the least 100 records and
move them to B10.

Step 2. Write out B10, while selecting the smallest 100 records of B1 . . . B9 and
moving them to B9.

Step 3. Read into B10, and write out B9, while selecting the smallest 100 records
of B1 . . . B8 and moving them to B8.

...
Step 9. Read into B4, and write out B3, while selecting the smallest 100 records
of B1 B2 and moving them to B2 and while making the heap inequalities valid
in B5 . . . B10.

Step 10. Read into B3, and write out B2, while sorting B1 and while making
the heap inequalities valid in B4 . . . B10.

Step 11. Read into B2, and write out B1, while making the heap inequalities
valid in B3 . . . B10.

Step 12. Read into B1, while making the heap inequalities valid in B2 . . . B10.
Return to step 1.

5.4.6 PRACTICAL CONSIDERATIONS FOR TAPE MERGING 337

• We have been assuming that the number N of records to be sorted is not
known in advance. Actually in most computer applications it would be possible
to keep track of the number of records in all Ąles at all times, and we could assume
that our computer system is capable of telling us the value of N. How much help
would this be? Unfortunately, not very much! We have seen that replacement
selection is very advantageous, but it leads to an unpredictable number of initial
runs. In a balanced merge we could use information about N to set the buffer
size B in such a way that S will probably be just less than a power of P ; and in
a polyphase distribution with optimum placement of dummy runs we could use
information about N to decide what level to shoot for (see Table 5.4.2Ű2).

• Tape drives tend to be the least reliable part of a computer. Therefore the

original input tape should never be destroyed until it is known that the entire sort

has been satisfactorily completed. The Şoperator dismount timeŤ is annoying in
some of the examples of Chart A, but it would be too risky to overwrite the input
in view of the probability that something might go wrong during a long sort.

• When changing from forward write to backward read, we could save some
time by never writing the last bufferload onto tape; it will just be read back in
again anyway. But Chart A shows that this trick actually saves comparatively
little time, except in the oscillating sort where directions are reversed frequently.

• Although a large computer system might have lots of tape units, we might
be better off not using them all. The percentage difference between logP S and
logP+1 S is not very great when P is large, and a higher order of merge usually
implies a smaller block size. (Consider also the poor computer operator who
has to mount all those scratch tapes.) On the other hand, exercise 12 describes
an interesting way to make use of additional tape units, grouping them so as to
overlap input/output time without increasing the order of merge.

• On machines like MIX, which have Ąxed rather small block sizes, hardly any
internal memory is needed while merging. Oscillating sort then becomes more
attractive, because it becomes possible to maintain the replacement selection
tree in memory while merging. In fact we can improve on oscillating sort in this
case (as suggested by Colin J. Bell in 1962), merging a new initial run into the
output every time we merge from the working tapes.

• We have observed that multireel Ąles should be sorted one reel at a time,
in order to avoid excessive tape handling. This is sometimes called a Şreel timeŤ
application. Actually a balanced merge on six tapes can sort three reelfuls, up
until the time of the Ąnal merge, if it has been programmed carefully.

To merge a fairly large number of individually sorted reels, a minimum-
path-length merging tree will be fastest (see Section 5.4.4). This construction
was Ąrst made by E. H. Friend [JACM 3 (1956), 166Ű167]; then W. H. Burge
[Information and Control 1 (1958), 181Ű197] pointed out that an optimum way
to merge runs of given (possibly unequal) lengths is obtained by constructing a
tree with minimum weighted path length, using the run lengths as weights (see
Sections 2.3.4.5 and 5.4.9), if we ignore tape handling time.

338 SORTING 5.4.6

• Our discussions have blithely assumed that we have direct control over
the input/output instructions for tape units, and that no complicated operating
system keeps us from using tape as efficiently as the tape designers intended.
These idealistic assumptions give us insights into the tape merging problem, and
may give some insights into the proper design of operating system interfaces,
but we should realize that multiprogramming and multiprocessing can make the
situation considerably more complicated.

• The issues we have studied in this section were Ąrst discussed in print
by E. H. Friend [JACM 3 (1956), 134Ű168], W. Zoberbier [Elektronische Daten-
verarbeitung 5 (1960), 28Ű44], and M. A. Goetz [Digital Computer UserŠs Hand-
book (New York: McGrawŰHill, 1967), 1.292Ű1.320].

Summary. We can sum up what we have learned about the relative efficiencies
of different approaches to tape sorting in the following way:

Theorem A. It is difficult to decide which merge pattern is best in a given
situation.

The examples we have seen in Chart A show how 100,000 randomly ordered
100-character records (or 1 million 10-character records) might be sorted using
six tapes under realistic assumptions. This much data Ąlls about half of a tape,
and it can be sorted in about 15 to 19 minutes on the MIXT tapes. However, there
is considerable variation in available tape equipment, and running times for such
a job could vary between about four minutes and about two hours on different
machines of the 1970s. In our examples, about 3 minutes of the total time were
used for initial distribution of runs and internal sorting; about 41

2 minutes were
used for the Ąnal merge and rewinding the output tape; and about 71

2 to 11 1
2

minutes were spent in intermediate stages of merging.
Given six tapes that cannot read backwards, the best sorting method under

our assumptions was the Ştape-splitting polyphase mergeŤ (example 4); and for
tapes that do allow backward reading, the best method turned out to be read-
backward polyphase with a complicated placement of dummy runs (example 7).
Oscillating sort (example 9) was a close second. In both cases the cascade merge
provided a simpler alternative that was only slightly slower (examples 5 and 8).
In the read-forward case, a straightforward balanced merge (example 1) was
surprisingly effective, partly by luck in this particular example but partly also
because it spends comparatively little time rewinding.

The situation would change somewhat if we had a different number of
available tapes.

Sort generators. Given the wide variability of data and equipment charac-
teristics, it is almost impossible to write a single external sorting program that is
satisfactory in a variety of different applications. And it is also rather difficult to
prepare a program that really handles tapes efficiently. Therefore the preparation
of sorting software is a particularly challenging job. A sort generator is a program
that produces machine code specially tailored to particular sorting applications,

5.4.6 PRACTICAL CONSIDERATIONS FOR TAPE MERGING 339

based on parameters that describe the data format and the hardware conĄgura-
tion. Such a program is often tied to high-level languages such as COBOL or PL/I.

One of the features normally provided by a sort generator is the ability
to insert the userŠs Şown coding,Ť a sequence of special instructions to be in-
corporated into the Ąrst and last passes of the sorting routine. First-pass own
coding is usually used to edit the input records, often shrinking them or slightly
expanding them into a form that is easier to sort. For example, suppose that
the input records are to be sorted on a nine-character key that represents a date
in month-day-year format:

JUL041776 OCT311517 NOV051605 JUL141789 NOV071917

On the Ąrst pass the three-letter month code can be looked up in a table, and
the month codes can be replaced by numbers with the most signiĄcant Ąelds at
the left:

17760704 15171031 16051105 17890714 19171107

This decreases the record length and makes subsequent comparisons much sim-
pler. (An even more compact code could also be substituted.) Last-pass own
coding can be used to restore the original format, and/or to make other desired
changes to the Ąle, and/or to compute some function of the output records. The
merging algorithms we have studied are organized in such a way that it is easy
to distinguish the last pass from other merges. Notice that when own coding
is present there must be at least two passes over the Ąle even if it is initially
in order. Own coding that changes the record size can make it difficult for the
oscillating sort to overlap some of its input/output operations.

Sort generators also take care of system details like tape label conventions,
and they often provide for Şhash totalsŤ or other checks to make sure that none
of the data has been lost or altered. Sometimes there are provisions for stopping
the sort at convenient places and resuming later. The fanciest generators allow
records to have dynamically varying lengths [see D. J. Waks, CACM 6 (1963),
267Ű272].

*Merging with fewer buffers. We have seen that 2P + 2 buffers are sufficient
to keep tapes moving rapidly during a P -way merge. Let us conclude this section
by making a mathematical analysis of the merging time when fewer than 2P + 2
buffers are present.

Two output buffers are clearly desirable, since we can be writing from one
while forming the next block of output in the other. Therefore we may ignore
the output question entirely, and concentrate only on the input.

Suppose there are P + Q input buffers, where 1 ≤ Q ≤ P . We shall use the
following approximate model of the situation, as suggested by L. J. Woodrum
[IBM Systems J. 9 (1970), 118Ű144]: It takes one unit of time to read a block of
tape. During this time there is a probability p0 that no input buffers have been
emptied, p1 that one has been emptied, p≥2 that two or more have been, etc.
When completing a tape read we are in one of Q + 1 states:

340 SORTING 5.4.6

State 0. Q buffers are empty; we begin to read a block into one of them from the
appropriate Ąle, using the forecasting technique explained earlier in this section.
After one unit of time we go to state 1 with probability p0, otherwise we remain
in state 0.
State 1. Q− 1 buffers are empty; we begin to read into one of them, forecasting
the appropriate Ąle. After one unit of time we go to state 2 with probability p0,
to state 1 with probability p1, and to state 0 with probability p≥2.

...
State Q − 1. One buffer is empty; we begin to read into it, forecasting the
appropriate Ąle. After one unit of time we go to state Q with probability p0, to
state Q − 1 with probability p1, . . . , to state 1 with probability pQ−1, and to
state 0 with probability p≥Q.
State Q. All buffers are Ąlled. Tape reading stops for an average of µ units of
time and then we go to state Q− 1.

We start in state 0. This model of the situation corresponds to a Markov

process (see exercise 2.3.4.2Ű26), which can be analyzed via generating functions
in the following interesting way: Let z be an arbitrary parameter, and assume
that each time we have a chance to read from tape we make a decision to do so
with probability z, but we decide to terminate the algorithm with probability
1− z. Now let gQ(z) =

n≥0 a(Q)

n zn(1− z) be the average number of times that
state Q occurs in such a process; it follows that a(Q)

n is the average number of
times state Q occurs when exactly n blocks have been read. Then n + a(Q)

n µ is
the average total time for input plus computation. If we had perfect overlap, as
in the (2P + 2)-buffer algorithm, the total time would be only n units, so a(Q)

n µ
represents the Şreading hangupŤ time.

Let Aij be the probability that we go from state i to state j in this process,
for 0 ≤ i, j ≤ Q + 1, where Q + 1 is a new ŞstoppedŤ state. For example, the
A-matrix takes the following forms for small Q:

Q = 1:

p≥1z p0z 1− z

1 0 0
0 0 0

 ,

Q = 2:

p≥1z p0z 0 1− z

p≥2z p1z p0z 1− z

0 1 0 0
0 0 0 0

 ,

Q = 3:

p≥1z p0z 0 0 1− z

p≥2z p1z p0z 0 1− z

p≥3z p2z p1z p0z 1− z

0 0 1 0 0
0 0 0 0 0

.

5.4.6 PRACTICAL CONSIDERATIONS FOR TAPE MERGING 341

Exercise 2.3.4.2Ű26(b) tells us that gQ(z) = cofactorQ0(I −A)/det(I −A). Thus
for example when Q = 1 we have

g1(z) = det

0 −p0z z − 1
1 0 0
0 0 1

det

1− p≥1z −p0z z − 1
−1 1 0

0 0 1

=
p0z

1− p≥1z − p0z
=

p0z

1− z
=

n≥0

np0zn(1− z),

so a
(1)
n = np0. This of course was obvious a priori, since the problem is very

simple when Q = 1. A similar calculation when Q = 2 (see exercise 14) gives
the less obvious formula

a(2)
n =

p2
0n

1− p1
− p2

0(1− pn
1)

(1− p1)2
. (10)

In general we can show that a
(Q)
n has the form α(Q)n + O(1) as n → ∞, where

the constant α(Q) is not terribly difficult to calculate. (See exercise 15.) It turns
out that α(3) = p3

0

(1− p1)2 − p0p2

.

The nature of merging makes it fairly reasonable to assume that µ = 1/P
and that we have a binomial distribution

pk =

P

k

 1
P

kP − 1
P

P−k

.

For example, when P = 5 we have p0 = .32768, p1 = .4096, p2 = .2048,
p3 = .0512, p4 = .0064, and p5 = .00032; hence α(1) ≈ 0.328, α(2) ≈ 0.182, and
α(3) ≈ 0.125. In other words, if we use 5 + 3 input buffers instead of 5 + 5, we
can expect an additional Şreading hangupŤ time of about 0.125/5 ≈ 2.5 percent.

Of course this model is only a very rough approximation; we know that when
Q = P there is no hangup time at all, but the model says that there is. The
extra reading hangup time for smaller Q just about counterbalances the savings
in overhead gained by having larger blocks, so the simple scheme with Q = P
seems to be vindicated.

EXERCISES

1. [13] Give a formula for the exact number of characters per tape, when every block
on the tape contains n characters. Assume that the tape could hold exactly 23000000
characters if there were no interblock gaps.

2. [15] Explain why the Ąrst buffer for File 2, in line 6 of Fig. 84, is completely
blank.

3. [20] Would Algorithm F work properly if there were only 2P − 1 input buffers
instead of 2P? If so, prove it; if not, give an example where it fails.

4. [20] How can Algorithm F be changed so that it works also when P = 1?

x 5. [21] When equal keys are present on different Ąles, it is necessary to be very
careful in the forecasting process. Explain why, and show how to avoid difficulty by
deĄning the merging and forecasting operations of Algorithm F more precisely.

342 SORTING 5.4.6

6. [22] What changes should be made to Algorithm 5.4.3C in order to convert it
into an algorithm for cascade merge with rewind overlap, on T + 1 tapes?

x 7. [26] The initial distribution in example 7 of Chart A produces

(A1D1)11 D1(A1D1)10 D1(A1D1)9 D1(A1D1)7

on tapes 1Ű4, where (A1D1)7 means A1D1A1D1A1D1A1D1A1D1A1D1A1D1. Show
how to insert additional A0Šs and D0Šs in a Şbest possibleŤ way (in the sense that
the overall number of initial runs processed while merging is minimized), bringing the
distribution up to

A(DA)14 (DA)28 (DA)26 (DA)22.

Hint: To preserve parity it is necessary to insert many of the A0Šs and D0Šs as adjacent
pairs. The merge numbers for each initial run may be computed as in exercise 5.4.4Ű5;
some simpliĄcation occurs since adjacent runs always have adjacent merge numbers.

8. [20] Chart A shows that most of the schemes for initial distribution of runs (with
the exception of the initial distribution for the cascade merge) tend to put consecutive
runs onto different tapes. If consecutive runs went onto the same tape we could save the
stop/start time; would it therefore be a good idea to modify the distribution algorithms
so that they switch tapes less often?

x 9. [22] Estimate how long the read-backward polyphase algorithm would have taken
in Chart A, if we had used all T = 6 tapes for sorting, instead of T = 5 as in example 7.
Was it wise to avoid using the input tape?

10. [M23] Use the analyses in Sections 5.4.2 and 5.4.3 to show that the length of
each rewind during a standard six-tape polyphase or cascade merge is rarely more than
about 54 percent of the Ąle (except for the initial and Ąnal rewinds, which cover the
entire Ąle).

11. [23] By modifying the appropriate entries in Table 1, estimate how long the Ąrst
nine examples of Chart A would have taken if we had a combined low speed/high speed
rewind. Assume that ρ = 1 when the tape is less than about one-fourth full, and that
the rewind time for fuller tapes is approximately Ąve seconds plus the time that would
be obtained for ρ = 1

5
. Change example 8 so that it uses cascade merge with copying,

since rewinding and reading forward is slower than copying in this case. [Hint: Use the
result of exercise 10.]

12. [40] Consider partitioning six tapes into three pairs of tapes, with each pair
playing the role of a single tape in a polyphase merge with T = 3. One tape of each
pair will contains blocks 1, 3, 5, . . . and the other tape will contain blocks 2, 4, 6, . . . ; in
this way we can essentially have two input tapes and two output tapes active at all
times while merging, effectively doubling the merging speed.

a) Find an appropriate way to extend Algorithm F to this situation. How many
buffers should there be?

b) Estimate the total running time that would be obtained if this method were used
to sort 100,000 100-character records, considering both the read-forward and read-
backward cases.

13. [20] Can a Ąve-tape oscillating sort, as deĄned in Algorithm 5.4.5B, be used to
sort four reelfuls of input data, up until the time of the Ąnal merge?

14. [M19] Derive (10).

5.4.7 EXTERNAL RADIX SORTING 343

15. [HM29] Prove that gQ(z) = hQ(z)/(1−z), where hQ(z) is a rational function of z
having no singularities inside the unit circle; hence a(Q)

n = hQ(1)n + O(1) as n → ∞.
In particular, show that

h3(1) = det

0 −p0 0 0
0 1− p1 −p0 0
0 −p2 1− p1 −p0

1 0 0 0

det

1 −p0 0 0
1 1− p1 −p0 0
1 −p2 1− p1 −p0

0 0 −1 1

 .

16. [41] Carry out detailed studies of the problem of sorting 100,000 100-character
records, drawing charts such as those in Chart A, assuming that 3, 4, or 5 tapes are
available.

*5.4.7. External Radix Sorting

The previous sections have discussed the process of tape sorting by merging;
but there is another way to sort with tapes, based on the radix sorting principle
that was once used in mechanical card sorters (see Section 5.2.5). This method
is sometimes called distribution sorting, column sorting, pocket sorting, digital
sorting, separation sorting, etc.; it turns out to be essentially the opposite of
merging!

Suppose, for example, that we have four tapes and that there are only eight
possible keys: 0, 1, 2, 3, 4, 5, 6, 7. If the input data is on tape T1, we can begin
by transferring all even keys to T3, all odd keys to T4:

T1 T2 T3 T4

Given {0, 1, 2, 3, 4, 5, 6, 7} Ů Ů Ů
Pass 1 Ů Ů {0, 2, 4, 6} {1, 3, 5, 7}

Now we rewind, and read T3 and then T4, putting {0, 1, 4, 5} on T1 and
{2, 3, 6, 7} on T2:

Pass 2 {0, 4}{1, 5} {2, 6}{3, 7} Ů Ů

(The notation Ş{0, 4}{1, 5}Ť stands for a Ąle that contains some records whose
keys are all 0 or 4 followed by records whose keys are all 1 or 5. Notice that T1
now contains those keys whose middle binary digit is 0.) After rewinding again
and distributing 0, 1, 2, 3 to T3 and 4, 5, 6, 7 to T4, we have

Pass 3 {0}{1}{2}{3} {4}{5}{6}{7}

Now we can Ąnish up by copying T4 to the end of T3. In general, if the keys
range from 0 to 2k−1, we could sort the Ąle in an analogous way using k passes,
followed by a Ąnal collection phase that copies about half of the data from one
tape to another. With six tapes we could use radix 3 representations in a similar
way, to sort keys from 0 to 3k − 1 in k passes.

Partial-pass methods can also be used. For example, suppose that there
are ten possible keys {0, 1, . . . , 9}, and consider the following procedure due to

344 SORTING 5.4.7

R. L. Ashenhurst [Theory of Switching, Progress Report BL-7 (Harvard Univ.
Comp. Laboratory: May 1954), I.1ŰI.76]:

Phase T1 T2 T3 T4 passes

{0, 1, . . . , 9} Ů Ů Ů
1 Ů {0, 2, 4, 7} {1, 5, 6} {3, 8, 9} 1.0
2 {0} Ů {1, 5, 6}{2, 7} {3, 8, 9}{4} 0.4
3 {0}{1}{2} {6}{7} Ů {3, 8, 9}{4}{5} 0.5
4 {0}{1}{2}{3} {6}{7}{8} {9} {4}{5} 0.3
C {0}{1}{2}{3}{4} . . . {9} 0.6

2.8

Here C represents the collection phase. If each key value occurs about one-tenth
of the time, the procedure above takes only 2.8 passes to sort ten keys, while the
Ąrst example required 3.5 passes to sort only eight keys. Therefore we Ąnd that
a clever distribution pattern can make a signiĄcant difference, for radix sorting
as well as for merging.

The distribution patterns in the examples above can conveniently be repre-
sented as tree structures:

Example 1

1

2 3

4 56 7

8 910 11

A AB B

C

C

0

C

1

C

2

C

3
C

4

C

5

C

6

C

7

D

D DD D

A

Example 2

1

2 3

4

5

6 78

9

10 11

A

0

A

1
A

2

A

3
A

4

A

5

A

6
A

7

A

8

A

9

B

B

B

B

C

C C

D

D D

A

The circular internal nodes of these trees are numbered 1, 2, 3, . . . , corre-
sponding to steps 1, 2, 3, . . . of the process. Tape names A, B, C, D (instead
of T1, T2, T3, T4) have been placed next to the lines of the trees, in order to
show where the records go. Square external nodes represent portions of a Ąle
that contain only one key, and that key is shown in boldface type just below the
node. The lines just above square nodes all carry the name of the output tape
(C in the Ąrst example, A in the second).

Thus, step 3 of example 1 consists of reading from tape D and writing 1s
and 5s on tape A, 3s and 7s on tape B. It is not difficult to see that the number
of passes performed is equal to the external path length of the tree divided by
the number of external nodes, if we assume that each key occurs equally often.

5.4.7 EXTERNAL RADIX SORTING 345

Because of the sequential nature of tape, and the Ąrst-in-Ąrst-out discipline
of forwards reading, we canŠt simply use any labeled tree as the basis of a
distribution pattern. In the tree of example 1, data gets written on tape A
during step 2 and step 3; it is necessary to use the data written during step 2
before we use the data written during step 3. In general if we write onto a tape
during steps i and j, where i < j, we must use the data written during step i
Ąrst; when the tree contains two branches of the form

i

k

A

j

l

A , i < j,

we must have k < l. Furthermore we cannot write anything onto tape A between

steps k and l, because we must rewind between reading and writing.
The reader who has worked the exercises of Section 5.4.4 will now immedi-

ately perceive that the allowable trees for read-forward radix sorting on T tapes
are precisely the strongly T -Ąfo trees, which characterize read-forward merge

sorting on T tapes! (See exercise 5.4.4Ű20.) The only difference is that all of
the external nodes on the trees we are considering here have the same tape
labels. We could remove this restriction by assuming a Ąnal collection phase
that transfers all records to an output tape, or we could add that restriction to
the rules for T -Ąfo trees by requiring that the initial distribution pass of a merge
sort be explicitly represented in the corresponding merge tree.

In other words, every merge pattern corresponds to a distribution pattern,
and every distribution pattern corresponds to a merge pattern. A momentŠs
reĆection shows why this is so, if we consider the actions of a merge sort and
imagine that time could run backwards: The Ąnal output is ŞunmergedŤ into
subĄles, which are unmerged into others, etc.; at time zero the output has been
unmerged into S runs. Such a pattern is possible with tapes if and only if
the corresponding radix sort distribution pattern, for S keys, is possible. This
duality between merging and distribution is almost perfect; it breaks down only
in one respect, namely that the input tape must be saved at different times.

The eight-key example treated at the beginning of this section is clearly
dual to a balanced merge on four tapes. The ten-key example with partial
passes corresponds to the following ten-run merge pattern (if we suppress the
copy phases, steps 6Ű11 in the tree):

T1 T2 T3 T4

Initial distribution 14 13 11 12

Tree step 5 13 12 Ů 1231

Tree step 4 12 11 21 1231

Tree step 3 11 Ů 2131 1131

Tree step 2 Ů 41 31 31

Tree step 1 101 Ů Ů Ů

If we compare this to the radix sort, we see that the methods have essentially
the same structure but are reversed in time, with the tape contents also reversed

346 SORTING 5.4.7

from back to front: 1231 (two runs each of length 1 followed by one of length 3)
corresponds to {3, 8, 9}{4}{5} (two subĄles containing one key each, preceded
by one subĄle containing three).

Going the other way, we can in principle construct a radix sort dual to
polyphase merge, another one dual to cascade merge, etc. For example, the
21-run polyphase merge on three tapes, illustrated at the beginning of Section
5.4.2, corresponds to the following interesting radix sort:

Phase T1 T2 T3

{0,1, ... ,20} Ů Ů

1 Ů {0,2,4,5,7,9,10,12,13,15,17,18,20} {1,3,6,8,11,14,16,19}

2 {0,5,10,13,18} Ů
{1,3,6,8,11,14,16,19}
{2,4,7,9,12,15,17,20}

3
{0,5,10,13,18}{1,6,11,14,19}

{2,7,12,15,20}
{3,8,16}{4,9,17} Ů

4 Ů
{3,8,16}{4,9,17}{5,10,18}
{6,11,19}{7,12,20}

{0,13}{1,14}{2,15}

5 {8}{9}{10}{11}{12} Ů
{0,13}{1,14}{2,15}
{3,16}...{7,20}

6 {8}{9}{10}{11}{12}{13}...{20} {0}{1}...{7} Ů

The distribution rule used here to decide which keys go on which tapes at
each step appears to be magic, but in fact it has a simple connection with the
Fibonacci number system. (See exercise 2.)

Reading backwards. Duality between radix sorting and merging applies also
to algorithms that read tapes backwards. We have deĄned ŞT -lifo treesŤ in
Section 5.4.4, and it is easy to see that they correspond to radix sorts as well as
to merge sorts.

A read-backward radix sort was actually considered by John Mauchly al-
ready in 1946, in one of the Ąrst papers ever to be published about sorting
(see Section 5.5); Mauchly essentially gave the following construction:

Phase T1 T2 T3 T4

Ů {0, 1, 2, . . . , 9} Ů Ů
1 {4, 5} Ů {2, 3, 6, 7} {0, 1, 8, 9}
2 {4, 5}{2, 7} {3, 6} Ů {0, 1, 8, 9}
3 {4, 5}{2, 7}{0, 9} {3, 6}{1, 8} Ů Ů
4 {4, 5}{2, 7} {3, 6}{1, 8} {9} {0}
. .
8 Ů Ů {9}{8}{7}{6}{5} {0}{1}{2}{3}{4}
C Ů Ů Ů {0}{1}{2}{3}{4}{5} . . . {9}

His scheme is not the most efficient one possible, but it is interesting because
it shows that partial pass methods were considered for radix sorting already in
1946, although they did not appear in the literature for merging until about 1960.

An efficient construction of read-backward distribution patterns has been
suggested by A. Bayes [CACM 11 (1968), 491Ű493]: Given P + 1 tapes and
S keys, divide the keys into P subĄles each containing ⌊S/P ⌋ or ⌈S/P ⌉ keys,

5.4.7 EXTERNAL RADIX SORTING 347

and apply this procedure recursively to each subĄle. When S < 2P , one subĄle
should consist of the smallest key alone, and it should be written onto the output
Ąle. (R. M. KarpŠs general preorder construction, which appears at the end of
Section 5.4.4, includes this method as a special case.)

Backward reading makes merging a little more complicated because it re-
verses the order of runs. There is a corresponding effect on radix sorting: The
outcome is stable or Şanti-stableŤ depending on what level is reached in the tree.
After a read-backward radix sort in which some of the external nodes are at odd
levels and some are at even levels, the relative order of different records with
equal keys will be the same as the original order for some keys, but it will be
the opposite of the original order for the other keys. (See exercise 6.)

Oscillating merge sorts have their counterparts too, under duality. In an
oscillating radix sort we continue to separate out the keys until reaching subĄles
that have only one key or are small enough to be internally sorted; such subĄles
are sorted and written onto the output tape, then the separation process is
resumed. For example, if we have three work tapes and one output tape, and if
the keys are binary numbers, we may start by putting keys of the form 0x on tape
T1, keys 1x on T2. If T1 receives more than one memory load, we scan it again
and put 00x on T2 and 01x on T3. Now if the 00x subĄle is short enough to be
internally sorted, we do so and output the result, then continue by processing
the 01x subĄle. Such a method was called a Şcascading pseudo-radix sortŤ by
E. H. Friend [JACM 3 (1956), 157Ű159]; it was developed further by H. Nagler
[JACM 6 (1959), 459Ű468], who gave it the colorful name Şamphisbaenic sort,Ť
and by C. H. Gaudette [IBM Tech. Disclosure Bull. 12 (April 1970), 1849Ű1853].
Does radix sorting beat merging? One important consequence of the duality
principle is that radix sorting is usually inferior to merge sorting. This happens
because the technique of replacement selection gives merge sorting a deĄnite
advantage; there is no apparent way to arrange radix sorts so that we can make
use of internal sorts encompassing more than one memory load at a time. Indeed,
the oscillating radix sort will often produce subĄles that are somewhat smaller
than one memory load, so the distribution pattern will correspond to a tree with
many more external nodes than would be present if merging and replacement
selection were used. Consequently the external path length of the tree Ů the
sorting time Ů will be increased. (See exercise 5.3.1Ű33.)

On the other hand, external radix sorting does have its uses. Suppose,
for example, that we have a Ąle containing the names of all employees of a
large corporation, in alphabetic order; the corporation has 10 divisions, and
it is desired to sort the Ąle by division, retaining the alphabetic order of the
employees in each division. This is a perfect situation in which to apply a stable
radix sort, if the Ąle is long, since the number of records that belong to each
of the 10 divisions is likely to be more than the number of records that would
be obtained in initial runs produced by replacement selection. In general, if the
range of key values is so small that the collection of records having a given key
is expected to Ąll the internal memory more than twice, it is wise to use a radix
sort technique.

348 SORTING 5.4.7

We have seen in Section 5.2.5 that internal radix sorting is superior to
merging, on certain high-speed computers, because the inner loop of the radix
sort algorithm avoids complicated branching. If the external memory is especially
fast, it may be impossible for such machines to merge data rapidly enough to
keep up with the input/output equipment. Radix sorting may therefore turn out
to be superior to merging in such a situation, especially if the keys are known to
be uniformly distributed.

EXERCISES

1. [20] The general T -tape balanced merge with parameter P , 1 ≤ P < T, was
deĄned near the beginning of Section 5.4. Show that this corresponds to a radix sort
based on a mixed-radix number system.

2. [M28] The text illustrates the three-tape polyphase radix sort for 21 keys. Gener-
alize to the case of Fn keys; explain what keys appear on what tapes at the end of each
phase. [Hint: Consider the Fibonacci number system, exercise 1.2.8Ű34.]

3. [M35] Extend the results of exercise 2 to the polyphase radix sort on four or more
tapes. (See exercise 5.4.2Ű10.)

4. [M23] Prove that AshenhurstŠs distribution pattern is the best way to sort 10
keys on four tapes without reading backwards, in the sense that the associated tree has
minimum external path length over all strongly 4-Ąfo trees. (Thus, it is essentially the
best method if we ignore rewind time.)

5. [15] Draw the 4-lifo tree corresponding to MauchlyŠs read-backwards radix sort
for 10 keys.

x 6. [20] A certain Ąle contains two-digit keys 00, 01, . . . , 99. After performing
MauchlyŠs radix sort on the least signiĄcant digits, we can repeat the same scheme
on the most signiĄcant digits, interchanging the roles of tapes T2 and T4. In what
order will the keys Ąnally appear on T2?

7. [21] Does the duality principle apply also to multireel Ąles?

*5.4.8. Two-Tape Sorting

Since we need three tapes to carry out a merge process without excessive tape
motion, it is interesting to speculate about how we could perform a reasonable
external sort using only two tapes.

One approach, suggested by H. B. Demuth in 1956, is sort of a combined
replacement-selection and bubble sort. Assume that the input is on tape T1,
and begin by reading P + 1 records into memory. Now output the record whose
key is smallest, to tape T2, and replace it by the next input record. Continue
outputting a record whose key is currently the smallest in memory, maintaining
a selection tree or a priority queue of P + 1 elements. When the input is Ąnally
exhausted, the largest P keys of the Ąle will be present in memory; output them
in ascending order. Now rewind both tapes and repeat the process by reading
from T2 and writing to T1; each such pass puts at least P more records into
their proper place. A simple test can be built into the program that determines
when the entire Ąle is in sort. At most ⌈(N − 1)/P ⌉ passes will be necessary.

5.4.8 TWO-TAPE SORTING 349

A few momentsŠ reĆection shows that each pass of this procedure is essen-
tially equivalent to P consecutive passes of the bubble sort (Algorithm 5.2.2B). If
an element has P or more inversions, it will be smaller than everything in the tree
when it is input, so it will be output immediately Ů thereby losing P inversions.
If an element has fewer than P inversions, it will go into the selection tree and
will be output before all greater keys Ů thereby losing all its inversions. When
P = 1, this is exactly what happens in the bubble sort, by Theorem 5.2.2I.

The total number of passes will therefore be ⌈I/P ⌉, where I is the maximum
number of inversions of any element. By the theory developed in Section 5.2.2,
the average value of I is N −

πN/2 + 2/3 + O

1/
√

N

.

If the Ąle is not too much larger than the memory size, or if it is nearly in
order to begin with, this order-P bubble sort will be fairly rapid; in fact, such a
method might be advantageous even when extra tape units are available, because
scratch tapes must be mounted by a human operator. But a two-tape bubble
sort will run quite slowly on fairly long, randomly ordered Ąles, since its average
running time will be approximately proportional to N2.

Let us consider how this method might be implemented for the 100,000-
record example of Section 5.4.6. We need to choose P intelligently, in order to
compensate for interblock gaps while doing simultaneous reading, writing, and
computing. Since the example assumes that each record is 100 characters long
and that 100,000 characters will Ąt into memory, we can make room for two
input buffers and two output buffers of size B by setting

100(P + 1) + 4B = 100000. (1)

Using the notation of Section 5.4.6, the running time for each pass will be about

NCωτ(1 + ρ), ω = (B + γ)/B. (2)

Since the number of passes is inversely proportional to P , we want to choose B to
be a multiple of 100 that minimizes the quantity ω/P . Elementary calculus shows
that this occurs when B is approximately

24975γ + γ2 − γ, so we take B =

3000, P = 879. Setting N = 100000 in the formulas above shows that the number
of passes ⌈I/P ⌉ will be about 114, and the total estimated running time will be
approximately 8.57 hours (assuming for convenience that the initial input and
the Ąnal output also have B = 3000). This represents approximately 0.44 reelfuls
of data; a full reel would take about Ąve times as long. Some improvements could
be made if the algorithm were interrupted periodically, writing the records with
largest keys onto an auxiliary tape that is dismounted, since such records are
merely copied back and forth once they have been put into order.

Application of quicksort. Another internal sorting method that traverses
the data in a nearly sequential manner is the partition exchange or quicksort
procedure, Algorithm 5.2.2Q. Can we adapt it to two tapes? [N. B. Yoash,
CACM 8 (1965), 649.]

It is not difficult to see how this can indeed be done, using backward reading.
Assume that the two tapes are numbered 0 and 1, and imagine that the Ąle is

350 SORTING 5.4.8

laid out as follows:
Tape 0 Tape 1

Beginning
of tape
(“bottom”)

Beginning
of tape

(“bottom”)

Current
position
(“top”)

Current
position
(“top”)

Each tape serves as a stack; putting them together like this makes it possible to
view the Ąle as a linear list in which we can move the current position left or
right by copying from one stack to the other. The following recursive subroutines
deĄne a suitable sorting procedure:

• SORT00 [Sort the top subĄle on tape 0 and return it to tape 0].
If the subĄle Ąts in the internal memory, sort it internally and return it to tape.
Otherwise select one record R from the subĄle, and let its key be K. Reading
backwards on tape 0, copy all records whose key is > K, forming a new subĄle
on the top of tape 1. Now read forward on tape 0, copying all records whose key
is = K onto tape 1. Then read backwards again, copying all records whose key is
< K onto tape 1. Complete the sort by executing SORT10 on the < K keys, then
copying the = K keys to tape 0, and Ąnally executing SORT10 on the > K keys.

• SORT01 [Sort the top subĄle on tape 0 and write it on tape 1].
Same as SORT00, but the Ąnal ŞSORT10Ť is changed to ŞSORT11Ť followed by
copying the ≤ K keys to tape 1.

• SORT10 [Sort the top subĄle on tape 1 and write it on tape 0].
Same as SORT01, interchanging 0 with 1 and < with >.

• SORT11 [Sort the top subĄle on tape 1 and return it to tape 1].
Same as SORT00, interchanging 0 with 1 and < with >.

The recursive nature of these subroutines can be handled without difficulty by
storing appropriate control information on the tapes.

The running time for this algorithm can be estimated as follows, if we assume
that the data are in random order, with negligible probability of equal keys. Let
M be the number of records that Ąt into internal memory. Let XN be the
average number of records read while applying SORT00 or SORT11 to a subĄle of
N records, when N > M, and let YN be the corresponding quantity for SORT01

or SORT10. Then we have

XN =

0, if N ≤M ;
3N + 1 + 1

N

0≤k<N (Yk + YN−1−k), if N > M ;

YN =

0, if N ≤M ;
3N + 2 + 1

N

0≤k<N (Yk + XN−1−k + k), if N > M.

(3)

The solution to these recurrences (see exercise 2) shows that the total amount of
tape reading during the external partitioning phases will be 62

3 N ln N + O(N),
on the average, as N →∞. We also know from Eq. 5.2.2Ű(25) that the average
number of internal sort phases will be 2(N + 1)/(M + 2)− 1.

5.4.8 TWO-TAPE SORTING 351

If we apply this analysis to the 100,000-record example of Section 5.4.6,
using 25,000-character buffers and assuming that the sorting time is 2nCωτ
for a subĄle of n ≤ M = 1000 records, we obtain an average sorting time of
approximately 103 minutes (including the Ąnal rewind as in Chart A). Thus the
quicksort method isnŠt bad, on the average; but of course its worst case turns
out to be even more awful than the bubble sort discussed above. Randomization
will make the worst case extremely unlikely.

Radix sorting. The radix exchange method (Algorithm 5.2.2R) can be adapted
to two-tape sorting in a similar way, since it is so much like quicksort. The trick
that makes both of these methods work is the idea of reading a Ąle more than
once, something we never did in our previous tape algorithms.

The same trick can be used to do a conventional least-signiĄcant-digit-Ąrst
radix sort on two tapes. Given the input data on T1, we copy all records onto
T2 whose key ends with 0 in binary notation; then after rewinding T1 we read it
again, copying the records whose key ends with 1. Now both tapes are rewound
and a similar pair of passes is made, interchanging the roles of T1 and T2, and
using the second least signiĄcant binary digit. At this point T1 will contain all
records whose keys are (. . . 00)2, followed by those whose keys are (. . . 01)2, then
(. . . 10)2, then (. . . 11)2. If the keys are b bits long, we need only 2b passes over
the Ąle in order to complete the sort.

Such a radix sort could be applied only to the leading b bits of the keys, for
some judiciously chosen number b; that would reduce the number of inversions
by a factor of about 2b, if the keys were uniformly distributed, so a few passes of
the P -way bubble sort could then be used to complete the job. This approach
reads tape in the forward direction only.

A novel but somewhat more complicated approach to two-tape distribution
sorting has been suggested by A. I. Nikitin and L. I. Sholmov [Kibernetika 2, 6
(1966), 79Ű84]. Counts are made of the number of keys having each possible
conĄguration of leading bits, and artiĄcial keys κ1, κ2, . . . , κM based on these
counts are constructed so that the number of actual keys lying between κi and
κi+1 is between predetermined limits P1 and P2, for each i. Thus, M lies between
⌈N/P2⌉ and ⌈N/P1⌉. If the leading bit counts do not give sufficient information
to determine such κ1, κ2, . . . , κM, one or more further passes are made to count
the frequency of less signiĄcant bit patterns, for certain conĄgurations of most
signiĄcant bits. After the table of artiĄcial keys κ1, κ2, . . . , κM has been con-
structed, 2⌈lg M⌉ further passes will suffice to complete the sort. (This method
requires memory space proportional to N, so it canŠt be used for external sorting
as N →∞. In practice we would not use the technique for multireel Ąles, so M
will be comparatively small and the table of artiĄcial keys will Ąt comfortably
in memory.)

Simulation of more tapes. F. C. Hennie and R. E. Stearns have devised a
general technique for simulating k tapes on only two tapes, in such a way that
the tape motion required is increased by a factor of only O(log L), where L is the
maximum distance to be traveled on any one tape [JACM 13 (1966), 533Ű546].

352 SORTING 5.4.8

Track 1

Track 2

Track 3

Track 4

Zone 0 Zone 1 Zone 2 Zone 3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Fig. 86. Layout of tape T1 in the HennieŰStearns construction; nonblank zones are
shaded.

Their construction can be simpliĄed slightly in the case of sorting, as in the
following method suggested by R. M. Karp.

We shall simulate an ordinary four-tape balanced merge, using two tapes T1
and T2. The Ąrst of these, T1, holds the simulated tape contents in a way that
may be diagrammed as in Fig. 86; we imagine that the data is written in four
Ştracks,Ť one for each simulated tape. (In actual fact the tape doesnŠt have such
tracks; blocks 1, 5, 9, 13, . . . are thought of as Track 1, blocks 2, 6, 10, 14, . . .
as Track 2, etc.) The other tape, T2, is used only for auxiliary storage, to help
move things around on T1.

The blocks of each track are divided into zones, containing, respectively,
1, 2, 4, 8, . . . , 2k, . . . blocks per zone. Zone k on each track is either Ąlled with
exactly 2k blocks of data, or it is completely blank. In Fig. 86, for example,
Track 1 has data in zones 1 and 3; Track 2 in zones 0, 1, 2; Track 3 in zones 0
and 2; Track 4 in zone 1; and the other zones are blank.

Suppose that we are merging data from Tracks 1 and 2 to Track 3. The
internal computer memory contains two buffers used for input to a two-way
merge, plus a third buffer for output. When the input buffer for Track 1 becomes
empty, we can reĄll it as follows: Find the Ąrst nonempty zone on Track 1, say
zone k, and copy its Ąrst block into the input buffer; then copy the other 2k − 1
blocks of data onto T2, and move them to zones 0, 1, . . . , k−1 of Track 1. (Zones
0, 1, . . . , k−1 are now full and zone k is blank.) An analogous procedure is used
to reĄll the input buffer for Track 2, whenever it becomes empty. When the
output buffer is ready to be written on Track 3, we reverse the process, scanning
across T1 to Ąnd the Ąrst blank zone on Track 3, say zone k, while copying the
data from zones 0, 1, . . . , k−1 onto T2. The data on T2, augmented by the
contents of the output buffer, is now used to Ąll zone k of Track 3.

This procedure requires the ability to write in the middle of tape T1, without
destroying subsequent information on that tape. As in the case of read-forward
oscillating sort (Section 5.4.5), it is possible to do this reliably if suitable pre-
cautions are taken.

The amount of tape motion required to bring 2l − 1 blocks of Track 1 into
memory is

0≤k<l 2l−1−k · c · 2k = c l2l−1, for some constant c, since we scan up

to zone k only once in every 2k steps. Thus each merge pass requires O(N log N)
steps. Since there are O(log N) passes in a balanced merge, the total time to

5.4.8 TWO-TAPE SORTING 353

sort is guaranteed to be O

N(log N)2

in the worst case; this is asymptotically

much better than the worst case of quicksort.
But this method wouldnŠt work very well if we applied it to the 100,000-

record example of Section 5.4.6, since the information speciĄed for tape T1 would
overĆow the contents of one tape reel. Even if we ignore this fact, and if we use
optimistic assumptions about read/write/compute overlap and interblock gap
lengths, etc., we Ąnd that roughly 37 hours would be required to complete the
sort! So this method is purely of academic interest; the constant in O

N(log N)2

is much too high to be satisfactory when N is in a practical range.

One-tape sorting. Could we live with only one tape? It is not difficult to see
that the order-P bubble sort described above could be converted into a one-tape
sort, but the result would be ghastly.

H. B. Demuth [Ph.D. thesis (Stanford University, 1956), 85] observed that a
computer with bounded internal memory cannot reduce the number of inversions
of a permutation by more than a bounded amount as it moves a bounded distance
on tape; hence every one-tape sorting algorithm must take at least N2d units of
time on the average, for some positive constant d that depends on the computer
conĄguration.

R. M. Karp has pursued this topic in a very interesting way, discovering an
essentially optimum way to sort with one tape. It is convenient to discuss KarpŠs
algorithm by reformulating the problem as follows: What is the fastest way

to transport people between Ćoors using a single elevator? [See Combinatorial
Algorithms, edited by Randall Rustin (Algorithmics Press, 1972), 17Ű21.]

Consider a building with n Ćoors, having room for exactly b people on each
Ćoor. The building contains no doors, windows, or stairs, but it does have an
elevator that can stop on each Ćoor. There are bn people in the building, and
exactly b of them want to be on each particular Ćoor. The elevator holds at most
m people, and it takes one unit of time to go from Ćoor i to Ćoor i ± 1. We
wish to Ąnd the quickest way to get all the people onto the proper Ćoors, if the
elevator is required to start and Ąnish on Ćoor 1.

The connection between this elevator problem and one-tape sorting is not
hard to see: The people are the records and the building is the tape. The Ćoors
are individual blocks on the tape, and the elevator is the internal computer
memory. A computer program has more Ćexibility than an elevator operator
(it can, for example, duplicate people, or temporarily chop them into two parts
on different Ćoors, etc.); but the solution below solves the problem in the fastest
conceivable time without doing such operations.

The following two auxiliary tables are required by KarpŠs algorithm.

uk, 1 ≤ k ≤ n: Number of people on Ćoors ≤ k whose destination is > k;

dk, 1 ≤ k ≤ n: Number of people on Ćoors ≥ k whose destination is < k.
(4)

When the elevator is empty, we always have uk = dk+1 for 1 ≤ k < n, since there
are b people on every Ćoor; the number of misĄts on Ćoors {1, . . . , k} must equal
the corresponding number on Ćoors {k+1, . . . , n}. By deĄnition, un = d1 = 0.

354 SORTING 5.4.8

K1. Move up
K2. Still
going up? K3. Move down

K4. Still
going down?

uk = 0

uk > 0 k > 1, uk−1 > 0

k > 1, uk−1 = 0
or k = 1, u1 > 0

k = 1, u1 = 0

Fig. 87. KarpŠs elevator algorithm.

It is clear that the elevator must make at least ⌈uk/m⌉ trips from Ćoor k
to Ćoor k + 1, for 1 ≤ k < n, since only m passengers can ascend on each trip.
Similarly it must make at least ⌈dk/m⌉ trips from Ćoor k to Ćoor k−1. Therefore
the elevator must necessarily take at least

n

k=1

⌈uk/m⌉+ ⌈dk/m⌉

(5)

units of time on any correct schedule. Karp discovered that this lower bound
can actually be achieved, when u1, . . . , un−1 are nonzero.

Theorem K. If uk > 0 for 1 ≤ k < n, there is an elevator schedule that delivers
everyone to the correct Ćoor in the minimum time (5).

Proof. Assume that there are m extra people in the building; they start in
the elevator and their destination Ćoor is artiĄcially set to 0. The elevator can
operate according to the following algorithm, starting with k (the current Ćoor)
equal to 1:

K1. [Move up.] From among the b + m people currently in the elevator or on
Ćoor k, those m with the highest destinations get into the elevator, and the
others remain on Ćoor k.

Let there be u people now in the elevator whose destination is > k,
and d whose destination is ≤ k. (It will turn out that u = min(m, uk);
if uk < m we may therefore be transporting some people away from their
destination. This represents their sacriĄce to the common good.) Decrease
uk by u, increase dk+1 by d, and then increase k by 1.

K2. [Still going up?] If uk > 0, return to step K1.

K3. [Move down.] From among the b + m people currently in the elevator or on
Ćoor k, those m with the lowest destinations get into the elevator, and the
others remain on Ćoor k.

Let there be u people now in the elevator whose destination is ≥ k, and
d whose destination is < k. (It will always turn out that u = 0 and d = m,
but the algorithm is described here in terms of general u and d in order to
make the proof a little clearer.) Decrease dk by d, increase uk−1 by u, and
then decrease k by 1.

5.4.8 TWO-TAPE SORTING 355

Floor 9: 45

Floor 8: 25

Floor 7: 19

Floor 6: 24

Floor 5: 89

Floor 4: 78

Floor 3: 13

Floor 2: 67

Floor 1: 36

✄
✄
.Begin

.000
r✄
✄

.00
.036
r✄
✄

.03
.667
r✄
✄

.13
.667
r✄
✄

.66
.778
r✄
✄

.77
.889
r✄
✄

.24
.889
r✁
✁

.18
.899
r✓
✓
.25

.899
r
❙
❙

.99
.458r
❆
❆

.58
.245r
❈
❈

.58
.124r
❆
❆

.44
.122r
❙
❙

.77
.122 r✓

✓
.12

.266
r✁
✁

.26
.677
r✄
✄

.44
.677
r✓
✓
.56

.778
r
❙
❙

.88
.577r
❈
❈

.77
.556r
❙
❙

.56
.445 r✓

✓
.24

.456
r
❙
❙

.66
.455r
❈
❈

.55
.244r
❈
❈

.44
.122r
❙
❙

.23
.112 r✓

✓
.01

.123
r
❙
❙

.33
.122r
❈
❈

.22
.011r
❆
❆

.11
.000

.End

Fig. 88. An optimum way to rearrange people using a small, slow elevator. (People
are each represented by the number of their destination Ćoor.)

K4. [Still going down?] If k > 1 and uk−1 > 0, return to step K3. If k = 1
and u1 = 0, terminate the algorithm (everyone has arrived safely and the
m ŞextrasŤ are back in the elevator). Otherwise return to step K2.

Figure 88 shows an example of this algorithm, with a nine-Ćoor building and
b = 2, m = 3. Note that one of the 6s is temporarily transported to Ćoor 7, in
spite of the fact that the elevator travels the minimum possible distance. The
idea of testing uk−1 in step K4 is the crux of the algorithm, as we shall see.

To verify the validity of this algorithm, we note that steps K1 and K3 always
keep the u and d tables (4) up to date, if we regard the people in the elevator as
being on the ŞcurrentŤ Ćoor k. It is now possible to prove by induction that the
following properties hold at the beginning of each step:

ul = dl+1, for k ≤ l < n; (6)

ul = dl+1 −m, for 1 ≤ l < k; (7)

ul+1 = 0, if ul = 0 and k ≤ l < n. (8)

Furthermore, at the beginning of step K1, the min (uk, m) people with highest
destinations, among all people on Ćoors ≤ k with destination > k, are in the
elevator or on Ćoor k. At the beginning of step K3, the min (dk, m) people with
lowest destinations, among all people on Ćoors ≥ k with destination < k, are in
the elevator or on Ćoor k.

From these properties it follows that the parenthesized remarks in steps K1
and K3 are valid. Each execution of step K1 therefore decreases ⌈uk/m⌉ by 1
and leaves ⌈dk+1/m⌉ unchanged; each execution of K3 decreases ⌈dk/m⌉ by 1
and leaves ⌈uk−1/m⌉ unchanged. The algorithm must therefore terminate in a
Ąnite number of steps, and everybody must then be on the correct Ćoor because
of (6) and (8).

356 SORTING 5.4.8

When uk = 0 and uk+1 > 0 we have a ŞdisconnectedŤ situation; the elevator
must journey up to Ćoor k + 1 in order to rearrange the people up there, even
though nobody wants to move from Ćoors ≤ k to Ćoors ≥ k + 1. Without loss
of generality, we may assume that un−1 > 0; then every valid elevator schedule
must include at least

2

1≤k<n

max

1, ⌈uk/m⌉

(9)

moves, since we require the elevator to return to Ćoor 1. A schedule achieving
this lower bound is readily constructed (exercise 4).

EXERCISES

1. [20] The order-P bubble sort discussed in the text uses only forward reading and
rewinding. Can the algorithm be modiĄed to take advantage of backward reading?

2. [M26] Find explicit closed-form solutions for the numbers XN, YN deĄned in (3).
[Hint: Study the solution to Eq. 5.2.2Ű(19).]

3. [38] Is there a two-tape sorting method, based only on comparisons of keys (not
digital properties), whose tape motion is O(N logN) in the worst case, when sorting
N records? [Quicksort achieves this on the average, but not in the worst case, and the
HennieŰStearns method (Fig. 86) achieves O(N(logN)2).]

4. [M23] In the elevator problem, suppose there are indices p and q, with q ≥ p+ 2,
up > 0, uq > 0, and up+1 = · · · = uq−1 = 0. Explain how to construct a schedule
requiring at most (9) units of time.

x 5. [M23] True or false: After step K1 of the algorithm in Theorem K, nobody on
the elevator has a lower destination than any person on Ćoors < k.

6. [M30] (R. M. Karp.) Generalize the elevator problem (Fig. 88) to the case that
there are bj passengers initially on Ćoor j, and b′j passengers whose destination is Ćoor j,
for 1≤ j ≤ n. Show that a schedule exists that takes 2

n−1
k=1 max(1, ⌈uk/m⌉, ⌈dk+1/m⌉)

units of time, never allowing more than max(bj , b
′
j) passengers to be on Ćoor j at any

one time. [Hint: Introduce Ąctitious people, if necessary, to make bj = b′j for all j.]

7. [M40] (R. M. Karp.) Generalize the problem of exercise 6, replacing the linear
path of an elevator by a network of roads to be traveled by a bus, given that the network
forms any free tree. The bus has Ąnite capacity, and the goal is to transport passengers
to their destinations in such a way that the bus travels a minimum distance.

8. [M32] Let b = 1 in the elevator problem treated in the text. How many permu-
tations of the n people on the n Ćoors will make uk ≤ 1 for 1 ≤ k ≤ n in (4)? [For
example, 3 1 4 5 9 2 6 8 7 is such a permutation.]

x 9. [M25] Find a signiĄcant connection between the Şcocktail-shaker sortŤ described
in Section 5.2.2, Fig. 16, and the numbers u1, u2, . . . , un of (4) in the case b = 1.

10. [20] How would you sort a multireel Ąle with only two tapes?

*5.4.9. Disks and Drums

So far we have considered tapes as the vehicles for external sorting, but more
Ćexible types of mass storage devices are generally available. Although such
Şbulk memoryŤ or Şdirect-access storageŤ units come in many different forms,
they may be roughly characterized by the following properties:

5.4.9 DISKS AND DRUMS 357

i) Any speciĄed part of the stored information can be accessed quickly.

ii) Blocks of consecutive words can be transmitted rapidly between the internal
and external memory.

Magnetic tape satisĄes (ii) but not (i), because it takes a long time to get from
one end of a tape to the other.

Every external memory unit has idiosyncrasies that ought to be studied
carefully before major programs are written for it; but technology changes so
rapidly, it is impossible to give a complete discussion here of all the available
varieties of hardware. Therefore we shall consider only some typical memory
devices that illustrate useful approaches to the sorting problem.

One of the most common types of external memories satisfying (i) and (ii) is
a disk device (see Fig. 89). Data is kept on a number of rapidly rotating circular
disks, covered with magnetic material; a comb-like access arm, containing one
or more Şread/write headsŤ for each disk surface, is used to store and retrieve
the information. Each individual surface is divided into concentric rings called
tracks, so that an entire track of data passes a read/write head every time the
disk completes one revolution. The access arm can move in and out, shifting
the read/write heads from track to track; but this motion takes time. A set
of tracks that can be read or written without repositioning the access arm is
called a cylinder. For example, Fig. 89 illustrates a disk unit that has just one
read/write head per surface; the light gray circles show one of the cylinders,
consisting of all tracks currently being scanned by the read/write heads.

Disks

Access

arm

Fig. 89. A disk device.

To Ąx the ideas, let us consider hypothetical MIXTEC disk units, for which

1 track = 5000 characters

1 cylinder = 20 tracks

1 disk unit = 200 cylinders

Such a disk unit contains 20 million characters, slightly less than the amount
of data that can be stored on a single MIXT magnetic tape. On some machines,
tracks near the center have fewer characters than tracks near the rim; this tends

358 SORTING 5.4.9

to make the programming much more complicated, and MIXTEC fortunately
avoids such problems. (See Section 5.4.6 for a discussion of MIXT tapes. As
in that section, we are studying classical techniques by considering machine
characteristics that were typical of the early 1970s; modern disks are much bigger
and faster.)

The amount of time required to read or write on a disk device is essentially
the sum of three quantities:

• seek time (the time to move the access arm to the proper cylinder);

• latency time (rotational delay until the read/write head reaches the right spot);

• transmission time (rotational delay while the data passes the read/write head).

On MIXTEC devices the seek time required to go from cylinder i to cylinder j is
25+ 1

2 |i−j| milliseconds. If i and j are randomly selected integers between 1 and
200, the average value of |i− j| is 2

201

3

/2002 ≈ 66.7, so the average seek time is

about 60 ms. MIXTEC disks rotate once every 25 ms, so the latency time averages
about 12.5 ms. The transmission time for n characters is (n/5000) × 25 ms =
5n µs. (This is about 3 1

3 times as fast as the transmission rate of the MIXT tapes
that were used in the examples of Section 5.4.6.)

Thus the main differences between MIXTEC disks and MIXT tapes are these:

a) Tapes can only be accessed sequentially.

b) Individual disk operations tend to require signiĄcantly more overhead (seek
time + latency time compared to stop/start time).

c) The disk transmission rate is faster.

By using clever merge patterns on tape, we were able to compensate somewhat
for disadvantage (a). Our goal now is to think of some clever algorithms for disk
sorting that will compensate for disadvantage (b).

Overcoming latency time. Let us consider Ąrst the problem of minimizing
the delays caused by the fact that the disks arenŠt always positioned properly
when we want to start an I/O command. We canŠt make the disk spin faster,
but we can still apply some tricks that reduce or even eliminate all of the latency
time. The addition of more access arms would obviously help, but that would
be an expensive hardware modiĄcation. Here are some software ideas:

• If we read or write several tracks of a cylinder at a time, we avoid the
latency time (and the seek time) on all tracks but the Ąrst. In general it is often
possible to synchronize the computing time with the disk movement in such a
way that a sequence of input/output instructions can be carried out without
latency delays.

• Consider the problem of reading half a track of data (Fig. 90): If the read
command begins when the heads are at axis A, there is no latency delay, and the
total time for reading is just the transmission time, 1

2 × 25 ms. If the command
begins with the heads at B, we need 1

4 of a revolution for latency and 1
2 for

transmission, totalling 3
4 × 25 ms. The most interesting case occurs when the

5.4.9 DISKS AND DRUMS 359

Half-track

of data

A

B

C

Fig. 90. Analysis of the latency time when reading half of a track.

heads are initially at C: With proper hardware and software we need not waste
3
4 of a revolution for latency delay. Reading can begin immediately, into the
second half of the input buffer; then after a 1

2 ×25 ms pause, reading can resume
into the Ąrst half of the buffer, so that the instruction is completed when axis C
is reached again. In a similar manner, we can ensure that the total latency plus
transmission time will never exceed the time for one revolution, regardless of the
initial position of the disk. The average amount of latency delay is reduced by
this scheme from half a revolution to 1

2 (1− x2) of a revolution, if we are reading
or writing a given fraction x of a track, for 0 < x ≤ 1. When an entire track is
being read or written (x = 1), this technique eliminates all the latency time.

Drums: The no-seek case. Some external memory units, traditionally called
drum memories, eliminate the seek time by having one read/write head for every
track. If the technique of Fig. 90 is employed on such devices, both seek time
and latency time reduce to zero, provided that we always read or write a track
at a time; this is the ideal situation in which transmission time is the only
limiting factor.

Let us consider again the example application of Section 5.4.6, sorting
100,000 records of 100 characters each, with a 100,000-character internal memory.
The total amount of data to be sorted Ąlls half of a MIXTEC disk. It is usually
impossible to read and write simultaneously on a single disk unit; we shall assume
that two disks are available, so that reading and writing can overlap each other.
For the moment we shall assume, in fact, that the disks are actually drums,
containing 4000 tracks of 5000 characters each, with no seek time required.

What sorting algorithm should be used? The method of merging is a fairly
natural choice; other methods of internal sorting do not lend themselves so well
to a disk implementation, except for the radix techniques of Section 5.2.5. The
considerations of Section 5.4.7 show that radix sorting is usually inferior to
merging for general-purpose applications, because the duality theorem of that
section applies to disks as well as to tapes. Radix sorting does have a strong
advantage, however, when the keys are uniformly distributed and many disks
can be used in parallel, because an initial distribution by the most signiĄcant
digits of the keys will divide the work up into independent subproblems that
need no further communication. (See, for example, R. C. Agarwal, SIGMOD
Record 25, 2 (June 1996), 240Ű246.)

360 SORTING 5.4.9

We will concentrate on merge sorting in the following discussion. To begin
a merge sort for the stated problem we can use replacement selection, with two
5000-character input buffers and two 5000-character output buffers. In fact, it is
possible to reduce this to three 5000-character buffers, if records in the current
input buffer are replaced by records that come off the selection tree. That leaves
85,000 characters (850 records) for a selection tree, so one pass over our example
data will form about 60 initial runs. (See Eq. 5.4.6Ű(3).) This pass takes only
about 50 seconds, if we assume that the internal processing time is fast enough
to keep up with the input/output rate, with one record moving to the output
buffer every 500 microseconds. If the input to be sorted appeared on a MIXT

tape, instead of a drum, this pass would be slower, governed by the tape speed.
With two drums and full-track reading/writing, it is not hard to see that

the total transmission time for P -way merging is minimized if we let P be as
large as possible. Unfortunately we canŠt simply do a 60-way merge on all of the
initial runs, since there isnŠt room for 60 buffers in memory. (A buffer of fewer
than 5000 characters would introduce unwanted latency time. Remember that
we are still pretending to be living in the 1970s, when internal memory space was
signiĄcantly limited.) If we do P -way merges, passing all the data from one drum
to the other so that reading and writing are overlapped, the number of merge
passes is

logP 60

, so we may complete the job in two passes if 8 ≤ P ≤ 59.

The smallest such P reduces the amount of internal computing, so we choose
P = 8; if 65 initial runs had been formed we would take P = 9. If 82 or more
initial runs had been formed, we could take P = 10, but since there is room
for only 18 input buffers and 2 output buffers there would be a possibility of
hangup during the merge (see Algorithm 5.4.6F); it may be better in such a case
to do two partial passes over a small portion of the data, reducing the number
of initial runs to 81 or less.

Under our assumptions, both of the merging passes will take about 50
seconds, so the entire sort in this ideal situation will be completed in just 2.5
minutes (plus a few seconds for bookkeeping, initialization, etc.). This is six
times faster than the best six-tape sort considered in Section 5.4.6; the reasons
for this speedup are the improved external/internal transmission rate (3.5 times
faster), the higher order of merge (we canŠt do an eight-way tape merge unless we
have nine or more tapes), and the fact that the output was left on disk (no Ąnal
rewind, etc., was necessary). If the initial input and sorted output were required
to be on MIXT tapes, with the drums used for merging only, the corresponding
sorting time would have been about 8.2 minutes.

If only one drum were available instead of two, the input-output time would
take twice as long, since reading and writing must be done separately. (In fact,
the input-output operations might take three times as long, since we would be
overwriting the initial input data; in such a case it is prudent to follow each write
by a Şread-back checkŤ operation, lest some of the input data be irretrievably
lost, if the hardware does not provide automatic veriĄcation of written informa-
tion.) But some of this excess time can be recovered because we can use partial
pass methods that process some data records more often than others. The two-

5.4.9 DISKS AND DRUMS 361

drum case requires all data to be processed an even number or an odd number
of times, but the one-drum case can use more general merge patterns.

We observed in Section 5.4.4 that merge patterns can be represented by trees,
and that the transmission time corresponding to a merge pattern is proportional
to the external path length of its tree. Only certain trees (T -lifo or strongly
T -Ąfo) could be used as efficient tape merging patterns, because some runs get
buried in the middle of a tape as the merging proceeds. But on disks or drums,

all trees deĄne usable merge patterns if the degrees of their internal nodes are
not too large for the available internal memory size.

Therefore we can minimize transmission time by choosing a tree with mini-
mum external path length, such as a complete P -ary tree where P is as large as
possible. By Eq. 5.4.4Ű(9), the external path length of such a tree is equal to

qS −

(P q − S)/(P − 1)

, q =

logP S

, (1)

if there are S external nodes (leaves).
It is particularly easy to design an algorithm that merges according to

the complete P -ary tree pattern. See, for example, Fig. 91, which shows the
case P = 3, S = 6. First we add dummy runs, if necessary, to make S ≡ 1
(modulo P − 1); then we combine runs according to a Ąrst-in-Ąrst-out discipline,
at every stage merging the P oldest runs at the front of the queue into a single
run that is placed at the rear.

12345

678

9

0 0 1 2 3 4 5 6 7 8 9

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

Fig. 91. Complete ternary tree with six leaves, and the corresponding merge pattern.

The complete P -ary tree gives an optimum pattern if all of the initial runs
are the same length, but we can often do better if some runs are longer than
others. An optimum pattern for this general situation can be constructed without
difficulty by using HuffmanŠs method (exercise 2.3.4.5Ű10), which may be stated
in merging language as follows: ŞFirst add (1− S) mod (P − 1) dummy runs of
length 0. Then repeatedly merge together the P shortest existing runs until only
one run is left.Ť When all initial runs have the same length this method reduces
to the FIFO discipline described above.

In our 100,000-record example we can do nine-way merging, since 18 input
buffers and two output buffers will Ąt in memory and Algorithm 5.4.6F will
overlap all compute time. The complete 9-ary tree with 60 leaves corresponds
to a merging pattern with 129

30 passes, if all initial runs have the same length.
The total sorting time with one drum, using read-back check after every write,

362 SORTING 5.4.9

therefore comes to about 7.4 minutes. A higher value of P may reduce this
running time slightly; but the situation is complicated because Şreading hangupŤ
might occur when the buffers become too full or too empty.

The inĆuence of seek time. Our discussion shows that it is relatively easy to
construct optimum merging patterns for drums, because seek time and latency
time can be essentially nonexistent. But when disks are used with small buffers
we often spend more time seeking information than reading it, so the seek time
has a considerable inĆuence on the sorting strategy. Decreasing the order of
merge, P , makes it possible to use larger buffers, so fewer seeks are required;
this often compensates for the extra transmission time demanded by the smaller
value of P .

Seek time depends on the distance traveled by the access arm, and we could
try to arrange things so that this distance is minimized. For example, it may be
wise to sort the records within cylinders Ąrst. However, large-scale merging
requires a good deal of jumping around between cylinders (see exercise 2).
Furthermore, the multiprogramming capability of modern operating systems
means that users tend to lose control over the position of disk access arms.
We are often justiĄed, therefore, in assuming that each disk command involves
a ŞrandomŤ seek.

Our goal is to discover a merge pattern that achieves the best balance
between seek time and transmission time. For this purpose we need some way
to estimate the goodness of any particular tree with respect to a particular
hardware conĄguration. Consider, for example, the tree in Fig. 92; we want to
estimate how long it will take to carry out the corresponding merge, so that we
can compare this tree to other trees.

In the following discussion we shall make some simple assumptions about
disk merging, in order to illustrate some of the general ideas. Let us suppose that
(i) it takes 72.5 + 0.005n milliseconds to read or write n characters; (ii) 100,000
characters of internal memory are available for working storage; (iii) an average
of 0.004 milliseconds of computation time are required to transmit each character
from input to output; (iv) there is to be no overlap between reading, writing,
or computing; and (v) the buffer size used on output need not be the same as
the buffer size used to read the data on the following pass. An analysis of the
sorting problem under these simple assumptions will give us some insights when
we turn to more complicated situations.

If we do a P -way merge, we can divide the internal working storage into P +1
buffer areas, P for input and one for output, with B = 100000/(P +1) characters
per buffer. Suppose the Ąles being merged contain a total of L characters; then
we will do approximately L/B output operations and about the same number
of input operations, so the total merging time under our assumptions will be
approximately

2

72.5
L

B
+ 0.005L

+ 0.004L = (0.00145P + 0.01545)L (2)

milliseconds.

5.4.9 DISKS AND DRUMS 363

1 2 3

4 5

6

7 8

9

10 11

12

Fig. 92. A tree whose external path length is 16 and whose degree path length is 52.

In other words, a P -way merge of L characters takes about (αP + β)L units
of time, for some constants α and β depending on the seek time, latency time,
compute time, and memory size. This formula leads to an interesting way to
construct good merge patterns for disks. Consider Fig. 92, for example, and
assume that all initial runs (represented by square leaf nodes) have length L0.
Then the merges at nodes 9 and 10 each take (2α + β)(2L0) units of time, the
merge at node 11 takes (3α + β)(4L0), and the Ąnal merge at node 12 takes
(4α + β)(8L0). The total merging time therefore comes to (52α + 16β)L0 units.
The coefficient Ş16Ť here is well-known to us, it is simply the external path
length of the tree. The coefficient Ş52Ť of α is, however, a new concept, which
we may call the degree path length of the tree; it is the sum, taken over all leaf
nodes, of the internal-node degrees on the path from the leaf to the root. For
example, in Fig. 92 the degree path length is

(2 + 4) + (2 + 4) + (3 + 4) + (2 + 3 + 4) + (2 + 3 + 4) + (3 + 4) + (4) + (4)

= 52.

If T is any tree, let D(T) and E(T) denote its degree path length and its
external path length, respectively. Our analysis may be summarized as follows:

Theorem H. If the time required to do a P -way merge on L characters has
the form (αP + β)L, and if there are S equal-length runs to be merged, the best
merge pattern corresponds to a tree T for which αD(T)+ βE(T) is a minimum,
over all trees having S leaves.

(This theorem was implicitly contained in an unpublished paper that George U.
Hubbard presented at the ACM National Conference in 1963.)

Let α and β be Ąxed constants; we shall say a tree is optimal if it has the
minimum value of αD(T) + βE(T) over all trees, T , with the same number of
leaves. It is not difficult to see that all subtrees of an optimal tree are optimal,
and therefore we can construct optimal trees with n leaves by piecing together
optimal trees with < n leaves.

364 SORTING 5.4.9

Theorem K. Let the sequence of numbers Am(n) be deĄned for 1 ≤ m ≤ n by
the rules

A1(1) = 0; (3)

Am(n) = min
1≤k≤n/m

A1(k) + Am−1(n− k)

, for 2 ≤ m ≤ n; (4)

A1(n) = min
2≤m≤n

αmn + βn + Am(n)

, for n ≥ 2. (5)

Then A1(n) is the minimum value of αD(T) + βE(T), over all trees T with
n leaves.

Proof. Equation (4) implies that Am(n) is the minimum value of A1(n1) + · · ·+
A1(nm) taken over all positive integers n1, . . . , nm such that n1 + · · ·+ nm = n.
The result now follows by induction on n.

The recurrence relations (3), (4), (5) can also be used to construct the
optimal trees themselves: Let km(n) be a value for which the minimum occurs
in the deĄnition of Am(n). Then we can construct an optimal tree with n leaves
by joining m = k1(n) subtrees at the root; the subtrees are optimal trees with
km(n), km−1

n − km(n)

, km−2

n − km(n) − km−1(n − km(n))

, . . . leaves,

respectively.
For example, Table 1 illustrates this construction when α = β = 1. A com-

pact speciĄcation of the corresponding optimal trees appears at the right of the
table; the entry Ş4:9:9Ť when n = 22 means, for example, that an optimal tree
T22 with 22 leaves may be obtained by combining T4, T9, and T9 (see Fig. 93).
Optimal trees are not unique; for instance, 5:8:9 would be just as good as 4:9:9.

Fig. 93. An optimum way to merge 22 initial runs of equal length, when α = β in
Theorem H. This pattern minimizes the seek time, under the assumptions leading to
Eq. (2) in the text.

Our derivation of (2) shows that the relation α ≤ β will hold whenever
P + 1 equal buffer areas are used. The limiting case α = β, shown in Table 1
and Fig. 93, occurs when the seek time itself is to be minimized without regard
to transmission time.

Returning to our original application, we still havenŠt considered how to
get the initial runs in the Ąrst place; without read/write/compute overlap,
replacement selection loses some of its advantages. Perhaps we should Ąll the
entire internal memory, sort it, and output the results; such input and output

5.4.9 DISKS AND DRUMS 365

Table 1

OPTIMAL TREE CHARACTERISTICS Am(n), km(n) WHEN α = β = 1

m

n 1 2 3 4 5 6 7 8 9 10 11 12 Tree n

1 0,0 Ů 1
2 6,2 0,1 1:1 2
3 12,3 6,1 0,1 1:1:1 3
4 20,4 12,1 6,1 0,1 1:1:1:1 4
5 30,5 18,2 12,1 6,1 0,1 1:1:1:1:1 5
6 42,2 24,3 18,1 12,1 6,1 0,1 3:3 6
7 52,3 32,3 24,1 18,1 12,1 6,1 0,1 1:3:3 7
8 62,3 40,4 30,2 24,1 18,1 12,1 6,1 0,1 2:3:3 8
9 72,3 50,4 36,3 30,1 24,1 18,1 12,1 6,1 0,1 3:3:3 9

10 84,3 60,5 44,3 36,1 30,1 24,1 18,1 12,1 6,1 0,1 3:3:4 10
11 96,3 72,4 52,3 42,2 36,1 30,1 24,1 18,1 12,1 6,1 0,1 3:4:4 11
12 108,3 82,4 60,4 48,3 42,1 36,1 30,1 24,1 18,1 12,1 6,1 0,1 4:4:4 12
13 121,4 92,4 70,4 56,3 48,1 42,1 36,1 30,1 24,1 18,1 12,1 6,1 3:3:3:4 13
14 134,4 102,5 80,4 64,3 54,2 48,1 42,1 36,1 30,1 24,1 18,1 12,1 3:3:4:4 14
15 147,4 114,5 90,4 72,3 60,3 54,1 48,1 42,1 36,1 30,1 24,1 18,1 3:4:4:4 15
16 160,4 124,7 102,4 80,4 68,3 60,1 54,1 48,1 42,1 36,1 30,1 24,1 4:4:4:4 16
17 175,4 134,8 112,4 90,4 76,3 66,2 60,1 54,1 48,1 42,1 36,1 30,1 4:4:4:5 17
18 190,4 144,9 122,4 100,4 84,3 72,3 66,1 60,1 54,1 48,1 42,1 36,1 4:4:5:5 18
19 205,4 156,9 132,5 110,4 92,3 80,3 72,1 66,1 60,1 54,1 48,1 42,1 4:5:5:5 19
20 220,4 168,9 144,4 120,5 100,4 88,3 78,2 72,1 66,1 60,1 54,1 48,1 5:5:5:5 20
21 236,5 180,9 154,4 132,4 110,4 96,3 84,3 78,1 72,1 66,1 60,1 54,1 4:4:4:4:5 21
22 252,3 192,10 164,4 142,4 120,4 104,3 92,3 84,1 78,1 72,1 66,1 60,1 4:9:9 22
23 266,3 204,11 174,5 152,4 130,4 112,3 100,3 90,2 84,1 78,1 72,1 66,1 5:9:9 23
24 282,3 216,12 186,5 162,5 140,4 120,4 108,3 96,3 90,1 84,1 78,1 72,1 5:9:10 24
25 296,3 229,12 196,7 174,4 150,5 130,4 116,3 104,3 96,1 90,1 84,1 78,1 7:9:9 25

operations can each be done with one seek. Or perhaps we are better off using,
say, 20 percent of the memory as a combination input/output buffer, and doing
replacement selection. This requires Ąve times as many seeks (an extra 60
seconds or so!), but it reduces the number of initial runs from 100 to 64; the reduc-
tion would be more dramatic if the input Ąle were pretty much in order already.

If we decide not to use replacement selection, the optimum tree for S = 100,
α = 0.00145, β = 0.01545 [see (2)] turns out to be rather prosaic: It is simply a
10-way merge, completed in two passes over the data. Allowing 30 seconds for
internal sorting (100 quicksorts, say), the initial distribution pass takes about
2.5 minutes, and the merge passes each take almost 5 minutes, for a total of
12.4 minutes. If we decide to use replacement selection, the optimal tree for
S = 64 turns out to be equally uninteresting (two 8-way merge passes); the initial
distribution pass takes about 3.5 minutes, the merge passes each take about 4.5
minutes, and the estimated total time comes to 12.6 minutes. Remember that
both of these methods give up virtually all read/write/compute overlap in order
to have larger buffers, reducing seek time. None of these estimated times includes
the time that might be necessary for read-back check operations.

In practice the Ąnal merge pass tends to be quite different from the others;
for example, the output is often expanded and/or written onto tape. In such
cases the tree pattern should be chosen using a different optimality criterion at
the root.

366 SORTING 5.4.9

*A closer look at optimal trees. It is interesting to examine the extreme case
β = 0 in Theorems H and K, even though practical situations usually lead to
parameters with 0 ≤ α ≤ β. What tree with n leaves has the smallest possible
degree path length? Curiously it turns out that three-way merging is best.

Theorem L. The degree path length of a tree with n leaves is never less than

f(n) =

3qn + 2(n− 3q), if 2 · 3q−1 ≤ n ≤ 3q;
3qn + 4(n− 3q), if 3q ≤ n ≤ 2 · 3q.

(6)

Ternary trees Tn deĄned by the rules

T1 = , T2 = , Tn =

T⌊n

3

⌋ T⌊n+1

3

⌋ T⌊n+2

3

⌋

(7)

have the minimum degree path length.

Proof. It is important to observe that f(n) is a convex function, namely that

f(n + 1)− f(n) ≥ f(n)− f(n− 1) for all n ≥ 2. (8)

The relevance of this property is due to the following lemma, which is dual to
the result of exercise 2.3.4.5Ű17.

Lemma C. A function g(n) deĄned on the positive integers satisĄes

min
1≤k<n

g(k) + g(n− k)

= g

⌊n/2⌋

+ g

⌈n/2⌉

, n ≥ 2, (9)

if and only if it is convex.

Proof. If g(n + 1)− g(n) < g(n)− g(n− 1) for some n ≥ 2, we have g(n + 1) +
g(n − 1) < g(n) + g(n), contradicting (9). Conversely, if (8) holds for g, and if
1 ≤ k < n−k, we have g(k +1)+g(n−k−1) ≤ g(k)+g(n−k) by convexity.

The latter part of Lemma CŠs proof can be extended for any m ≥ 2 to show
that

min
n1+···+nm=n
n1,...,nm≥1

g(n1) + · · ·+ g(nm)

= g

⌊n/m⌋

+ g

⌊(n + 1)/m⌋

+ · · ·+ g

⌊(n + m− 1)/m⌋

(10)

whenever g is convex. Let

fm(n) = f

⌊n/m⌋

+ f

⌊(n + 1)/m⌋

+ · · ·+ f

⌊(n + m− 1)/m⌋

; (11)

the proof of Theorem L is completed by proving that f3(n) + 3n = f(n) and
fm(n) + mn ≥ f(n) for all m ≥ 2. (See exercise 11.)

It would be very nice if optimal trees could always be characterized neatly
as in Theorem L. But the results we have seen for α = β in Table 1 show that
the function A1(n) is not always convex. In fact, Table 1 is sufficient to disprove
most simple conjectures about optimal trees! We can, however, salvage part of
Theorem L in the general case; M. Schlumberger and J. Vuillemin have shown
that large orders of merge can always be avoided:

5.4.9 DISKS AND DRUMS 367

Theorem M. Given α and β as in Theorem H, there exists an optimal tree in
which the degree of every node is at most

d(α, β) =

min
k≥1

k +

1 +

1
k

1 +

β

α

. (12)

Proof. Let n1, . . . , nm be positive integers such that n1 + · · ·+ nm = n, A(n1) +
· · · + A(nm) = Am(n), and n1 ≤ · · · ≤ nm, and assume that m ≥ d(α, β) + 1.
Let k be the value that minimizes (12); we shall show that

αn(m− k) + βn + Am−k(n) ≤ αnm + βn + Am(n), (13)

hence the minimum value in (5) is always achieved for some m ≤ d(α, β).
By deĄnition, since m ≥ k + 2, we must have

Am−k(n) ≤ A1(n1 +· · ·+nk+1)+A1(nk+2)+· · ·+A1(nm)

≤ α(n1 +· · ·+nk+1)(k+1)+β(n1 +· · ·+nk+1)+A1(n1)+· · ·+A1(nm)

=

α(k+1)+β

(n1 +· · ·+nk+1)+Am(n)

≤

α(k+1)+β

(k+1)n/m+Am(n),

and (13) now follows easily. (Careful inspection of this proof shows that (12) is
best possible, in the sense that some optimal trees must have nodes of degree
d(α, β); see exercise 13.)

The construction in Theorem K needs O(N2) memory cells and O(N2 log N)
steps to evaluate Am(n) for 1 ≤ m ≤ n ≤ N ; Theorem M shows that only O(N)
cells and O(N2) steps are needed. Schlumberger and Vuillemin have discovered
several more very interesting properties of optimal trees [Acta Informatica 3

(1973), 25Ű36]. Furthermore the asymptotic value of A1(n) can be worked out
as shown in exercise 9.

*Another way to allocate buffers. David E. Ferguson [CACM 14 (1971),
476Ű478] pointed out that seek time can be reduced if we donŠt make all buffers
the same size. The same idea occurred at about the same time to several other
people [S. J. Waters, Comp. J. 14 (1971), 109Ű112; Ewing S. Walker, Software
Age 4 (AugustŰSeptember, 1970), 16Ű17].

Suppose we are doing a four-way merge on runs of equal length L0, with
M characters of memory. If we divide the memory into equal buffers of size
B = M/5, we need about L0/B seeks on each input Ąle and 4L0/B seeks for the
output, totalling 8L0/B = 40L0/M seeks. But if we use four input buffers of
size M/6 and one output buffer of size M/3, we need only about 4× (6L0/M) +
4× (3L0/M) = 36L0/M seeks! The transmission time is the same in both cases,
so we havenŠt lost anything by the change.

In general, suppose that we want to merge sorted Ąles of lengths L1, . . . , LP

into a sorted Ąle of length

LP+1 = L1 + · · ·+ LP ,

368 SORTING 5.4.9

and assume that a buffer of size Bk is being used for the kth Ąle. Thus

B1 + · · ·+ BP + BP+1 = M, (14)

where M is the total size of available internal memory. The number of seeks will
be approximately

L1

B1
+ · · ·+ LP

BP
+

LP+1

BP+1
. (15)

LetŠs try to minimize this quantity, subject to condition (14), assuming for
convenience that the BkŠs donŠt have to be integers. If we increase Bj by δ
and decrease Bk by the same amount, the number of seeks changes by

Lj

Bj + δ
− Lj

Bj
+

Lk

Bk − δ
− Lk

Bk
=

Lk

Bk(Bk − δ)
− Lj

Bj(Bj + δ)

δ,

so the allocation can be improved if Lj/B2
j ̸= Lk/B2

k. Therefore we get the
minimum number of seeks only if

L1

B2
1

= · · · = LP

B2
P

=
LP+1

B2
P+1

. (16)

Since a minimum does exist it must occur when

Bk =

Lk M

L1 + · · ·+

LP+1

, 1 ≤ k ≤ P + 1; (17)

these are the only values of B1, . . . , BP+1 that satisfy both (14) and (16). Plug-
ging (17) into (15) gives a fairly simple formula for the total number of seeks,

L1 + · · ·+

LP+1

2
/M, (18)

which may be compared with the number (P + 1)(L1 + · · ·+ LP+1)/M obtained
if all buffers are equal in length. By exercise 1.2.3Ű31, the improvement is

1≤j<k≤P+1

√
Lj −

√
Lk

2
/M.

Unfortunately formula (18) does not lend itself to an easy determination of
optimum merge patterns as in Theorem K (see exercise 14).

The use of chaining. M. A. Goetz [CACM 6 (1963), 245Ű248] has suggested
an interesting way to avoid seek time on output, by linking individual tracks
together. His idea requires a fairly fancy set of disk storage management routines,
but it applies to many problems besides sorting, and it may therefore be a very
worthwhile technique for general-purpose use.

The concept is simple: Instead of allocating tracks sequentially within cyl-
inders of the disk, we link them together and maintain lists of available space,
one for each cylinder. When it is time to output a track of information, we write
it on the current cylinder (wherever the access arm happens to be), unless that
cylinder is full. In this way the seek time usually disappears.

5.4.9 DISKS AND DRUMS 369

The catch is that we canŠt store a link-to-next-track within the track itself,
since the necessary information isnŠt known at the right time. (We could store a
link-to-previous-track and read the Ąle backwards on the next pass, if that were
suitable.) A table of link addresses for the tracks of each Ąle can be maintained
separately, because it requires comparatively little space. The available space
lists can be represented compactly by using bit tables, with 1000 bits specifying
the availability or unavailability of 1000 tracks.
Forecasting revisited. Algorithm 5.4.6F shows that we can forecast which
input buffer of a P -way merge will empty Ąrst, by looking at the last keys in
each buffer. Therefore we can be reading and computing at the same time.
That algorithm uses Ćoating input buffers, not dedicated to a particular Ąle; so
the buffers must all be the same size, and the buffer allocation technique above
cannot be used. But the restriction to a uniform buffer size is no great loss, since
computers now have much larger internal memories than they used to. Nowadays
a natural buffer size, such as the capacity of a full disk track, often suggests itself.

Let us therefore imagine that the P runs to be merged each consist of a
sequence of data blocks, where each block (except possibly the last) contains
exactly B records. D. L. Whitlow and A. Sasson developed an interesting
algorithm called SyncSort [U.S. Patent 4210961 (1980)], which improves on
Algorithm 5.4.6F by needing only three buffers of size B together with a memory
pool holding PB records and PB pointers. By contrast, Algorithm 5.4.6F
requires 2P input buffers and 2 output buffers, but no pointers.

SyncSort begins by reading the Ąrst block of each run and putting these PB
records into the memory pool. Each record in the memory pool is linked to its
successor in the run it belongs to, except that the Ąnal record in each block has
no successor as yet. The smallest of the keys in those Ąnal records determines
the run that will need to replenished Ąrst, so we begin to read the second block
of that run into the Ąrst buffer. Merging begins as soon as that second block has
been read; by looking at its Ąnal key we can accurately forecast the next relevant
block, and we can continue in the same way to prefetch exactly the right blocks
to input, just before they are needed.

The three SyncSort buffers are arranged in a circle. As merging proceeds,
the computer is processing data in the current buffer, while input is being read
into the next buffer and output is being written from the third. The merging
algorithm exchanges each record in the current buffer with the next record of
output, namely the record in the memory pool that has the smallest key. The
selection tree and the successor links are also updated appropriately as we make
each exchange. Once the end of the current buffer is reached, we are ready to
rotate the buffer circle: The reading buffer becomes current, the writing buffer
is used for reading, and we begin to write from the former current buffer.

Many extensions of this basic idea are possible, depending on hardware
capabilities. For example, we might use two disks, one for reading and one for
writing, so that input and output and merging can all take place simultaneously.
Or we might be able to overlap seek time by extending the circle to four or more
buffers, as in Fig. 26 of Section 1.4.4, and deviating from the forecast input order.

370 SORTING 5.4.9

Using several disks. Disk devices once were massive both in size and weight,
but they became dramatically smaller, lighter, and less expensive during the
late 1980s Ů although they began to hold more data than ever before. Therefore
people began to design algorithms for once-unimaginable clusters of 5 or 10 or
50 disk devices or for even larger disk farms.

One easy way to gain speed with additional disks is to use the technique
of disk striping for large Ąles. Suppose we have D disk units, numbered 0, 1,
. . . , D − 1, and consider a Ąle that consists of L blocks a0a1 . . . aL−1. Striping
this Ąle on D disks means that we put block aj on disk number j mod D; thus,
disk 0 holds a0aDa2D . . . , disk 1 holds a1aD+1a2D+1 . . . , etc. Then we can
perform D reads or D writes simultaneously on D-block groups a0a1 . . . aD−1,
aDaD+1 . . . a2D−1, . . . , which are called superblocks. The individual blocks of
each superblock should be on corresponding cylinders on different disks so that
the seek time will be the same on each unit. In essence, we are acting as if we
had a single disk unit with blocks and buffers of size DB, but the input and
output operations run up to D times faster.

An elegant improvement on superblock striping can be used when weŠre
doing 2-way merging, or in general whenever we want to match records with
equal keys in two Ąles that are in order by keys. Suppose the blocks a0a1a2 . . . of
the Ąrst Ąle are striped on D disks as above, but the blocks b0b1b2 . . . of the other
Ąle are striped in the reverse direction, with block bj on disk (D− 1− j) mod D.
For example, if D = 5 the blocks aj appear respectively on disks 0, 1, 2, 3, 4,
0, 1, . . . , while the blocks bj for j ≥ 0 appear on 4, 3, 2, 1, 0, 4, 3, Let αj

be the last key of block aj and let βj be the last key of block bj . By examining
the αŠs and βŠs we can forecast the sequence in which we will want to read the
data blocks; this sequence might, for example, be

a0b0a1a2b1 a3a4b2a5a6 a7a8b3 b4 b5 b6 b7 b8 b9b10

These blocks appear respectively on disks

0 4 1 2 3 3 4 2 0 1 2 3 1 0 4 3 2 1 0 4 . . .

when D = 5, and if we read them Ąve at a time we will be inputting successively
from disks {0, 4, 1, 2, 3}, {3, 4, 2, 0, 1}, {2, 3, 1, 0, 4}, {3, 2, 1, 0, 4}, . . . ; there will
never be a conĆict in which we need to read two blocks from the same disk at the
same time! In general, with D disks we can read D at a time without conĆict,
because the Ąrst group will have k blocks a0 . . . ak−1 on disks 0 through k−1 and
D−k blocks b0 . . . bD−k−1 on disks D− 1 through k, for some k; then we will be
poised to continue in the same way but with disk numbers shifted cyclically by k.

This trick is well known to card magicians, who call it the Gilbreath principle;
it was invented during the 1960s by Norman Gilbreath [see Martin Gardner,
Mathematical Magic Show (New York: Knopf, 1977), Chapter 7; N. Gilbreath,
Genii 52 (1989), 743Ű744]. We need to know the αŠs and βŠs, to decide what
blocks should be read next, but that information takes up only a small fraction of
the space needed by the aŠs and bŠs, and it can be kept in separate Ąles. Therefore
we need fewer buffers to keep the input going at full speed (see exercise 23).

5.4.9 DISKS AND DRUMS 371

Randomized striping. If we want to do P -way merging with D disks when
P and D are large, we cannot keep reading the information simultaneously from
D disks without conĆict unless we have a large number of buffers, because there
is no analog of the Gilbreath principle when P > 2. No matter how we allocate
the blocks of a Ąle to disks, there will be a chance that we might need to read
many blocks into memory before we are ready to use them, because the blocks
that we really need might all happen to reside on the same disk.

Suppose, for example, that we want to do 8-way merging on 5 disks, and
suppose that the blocks a0a1a2 . . . , b0b1b2 . . . , . . . , h0h1h2 . . . of 8 runs have
been striped with aj on disk j mod D, bj on disk (j + 1) mod D, . . . , hj on disk
(j + 7) mod D. We might need to access these blocks in the order

a0b0 c0d0e0 f0g0h0d1e1 d2e2d3a1f1 b1g1a2f2e3 d4c1h1b2g2 a3f3e4d5d6 . . . ; (19)

then they appear on the respective disks

0 1 2 3 4 0 1 2 4 0 0 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 . . . , (20)

so our best bet is to input them as follows:

Time 1 Time 2 Time 3 Time 4 Time 5
a0b0 c0d0e0 f0g0h0c1d1 e1e2 b1h1d6 d2d3g1b2 ? ? a1a2g2 ?

Time 6 Time 7 Time 8 Time 9
? f1f2a3 ? ? ? e3f3 ? ? ? d4e4 ? ? ? ? d5 ?

(21)

By the time we are able to look at block d5, we need to have read d6 as well as
15 blocks of future data denoted by Ş?Ť, because of congestion on disk 3. And
we will not yet be done with the seven buffers containing remnants of a3, b2, c1,
e4, f3, g2, and h1; so we will need buffer space for at least (16 + 8 + 5)B input
records in this particular example.

The simple superblock approach to disk striping would proceed instead to
read blocks a0a1a2a3a4 at time 1, b0b1b2b3b4 at time 2, . . . , h0h1h2h3h4 at time 8,
then d5d6d7d8d9 at time 9 (since d5d6d7d8d9 is the superblock needed next), and
so on. Using the SyncSort strategy, it would require buffers for (P + 3)DB
records and PDB pointers in memory. The more versatile approach indicated
above can be shown to need only about half as much buffer space; but the
memory requirement is still approximately proportional to PDB when P and D
are large (see exercise 24).

R. D. Barve, E. F. Grove, and J. S. Vitter [Parallel Computing 23 (1997),
601Ű631] showed that a slight modiĄcation of the independent-block approach
leads to an algorithm that keeps the disk input/output running at nearly its full
speed while needing only O(P + D log D) buffer blocks instead of Ω(PD). Their
technique of randomized striping puts block j of run k on disk (xk + j) mod D,
where xk is a random integer selected just before run k is Ąrst written. Instead
of insisting that D blocks are constantly being input, one from each disk, they
introduced a simple mechanism for holding back when there isnŠt enough space
to keep reading ahead on certain disks, and they proved that their method is
asymptotically optimal.

372 SORTING 5.4.9

To do P -way merging on D disks with randomized striping, we can maintain
2D + P + Q− 1 Ćoating input buffers, each holding a block of B records. Input
is typically being read into D of these buffers, called active read buffers, while P
of the others contain the leading blocks from which records are currently being
merged; these are called active merge buffers. The remaining D +Q−1 Şscratch
buffersŤ are either empty or they hold prefetched data that will be needed later;
Q is a nonnegative parameter that can be increased in order to lessen the chance
that reading will be held back on any of the disks.

The blocks of all runs can be arranged into chronological order as in (19):
First we list block 0 of each run, then we list the others by determining the order
in which active merge buffers will become empty. As explained above, this order
is determined by the Ąnal keys in each block, so we can readily forecast which
blocks ought to be prefetched Ąrst.

LetŠs consider example (19) again, with P = 8, D = 5, and Q = 4. Now we
will have only 2D + P + Q − 1 = 21 input buffer blocks to work with instead
of the 29 that were needed above for maximum-speed reading. We will use the
offsets

x1 = 3, x2 = 1, x3 = 4, x4 = 1, x5 = 0, x6 = 4, x7 = 2, x8 = 1 (22)

(suggested by the decimal digits of π) for runs a, b, . . . , h; thus the respective
disks contain
Disk Blocks
0: e0 f1 a2 d4c1 . . .
1: b0 d0 h0 e1 f2 a3 d5 . . .
2: g0 d1 e2 b1 h1 f3 d6 . . .
3: a0 d2 g1 e3 b2 . . .
4: c0 f0 d3a1 g2 e4 . . .

(23)

if we list their blocks in chronological order. The ŞrandomŤ offsets of (22),
together with sequential striping within each run, will tend to minimize the
congestion of any particular chronological sequence. The actual processing now
goes like this:

Active reading Active merging Scratch Waiting for
Time 1 e0 b0g0a0c0 −−−−−−−− (−−−−−−−−) a0

Time 2 f1d0d1d2f0 a0−−−−−−− b0 c0(e0g0−−−−) d0

Time 3 a2h0e2g1d3 a0b0 c0d0−−−− e0f0g0(d1d2f1−−) h0

Time 4 a2e1 b1g1a1 a0b0 c0d0e0f0g0h0 d1(d2e2d3f1g1a2−) e1

Time 5 d4f2h1e3g2 a0b0 c0d1e1f0g0h0 d2e2d3a1f1b1g1a2() f2

Time 6 c1a3f3b2 e4 a2b1 c0d3e2f2g1h0 e3d4(h1g2−−−−) c1

Time 7 ? d5d6 ? ? a2b1 c1d4e3f2g1h0 h1b2g2a3f3e4(−−) d5

(24)

At each unit of time we are waiting for the chronologically Ąrst block that is
not yet merged and not yet in a scratch buffer; this is one of the blocks that is
currently being input to an active read buffer. We assume that the computer
is much faster than the disks; thus, all blocks before the one we are waiting for
will have already entered the merging process before input is complete. We also

5.4.9 DISKS AND DRUMS 373

assume that sufficient output buffers are available so that merging will not be
delayed by the lack of a place to place the output (see exercise 26). When a round
of input is complete, the block we were waiting for is immediately classiĄed as an
active merge buffer, and the empty merge buffer it replaces will be used for the
next active reading. The other D−1 active read buffers now trade places with the
D−1 least important scratch buffers; scratch buffers are ranked by chronological
order of their contents. On the next round we will wait for the Ąrst unmerged
block that isnŠt present in the scratch buffers. Any scratch buffers preceding that
block in chronological order will become part of the active merge before the next
input cycle, but the others Ů shown in parentheses above Ů will be carried over
and they will remain as scratch buffers on the next round. However, at most Q
of the buffers in parentheses can be carried over, because we will need to convert
D− 1 scratch buffers to active read status immediately after the input is ready.
Any additional scratch buffers are effectively blanked out, as if they hadnŠt been
read. This blanking-out occurs at Time 4 in (24): We cannot carry all six of
the blocks d2e2d3f1g1a2 over to Time 5, because Q = 4, so we reread g1 and a2.
Otherwise the reading operations in this example take place at full speed.

Exercise 29 proves that, given any chronological sequence of runs to be
merged, the method of randomized striping will achieve the minimum number
of disk reads within a factor of r(D, Q + 2), on the average, where the function r
is tabulated in Table 2. For example, if D = 4 and Q = 18, the average time
to do a P -way merge on L blocks of data with 4 disks and P + 25 input buffers
will be at most the time to read r(4, 20)L/D ≈ 1.785L/4 blocks on a single disk.
This theoretical upper bound is quite conservative; in practice the performance
is even better, very near the optimum time L/4.

Table 2

GUARANTEES ON THE PERFORMANCE OF RANDOMIZED STRIPING

r(d, d) r(d, 2d) r(d, 3d) r(d, 4d) r(d, 5d) r(d, 6d) r(d, 7d) r(d, 8d) r(d, 9d) r(d, 10d)

d = 2 1.500 1.500 1.499 1.467 1.444 1.422 1.393 1.370 1.353 1.339
d = 4 2.460 2.190 1.986 1.888 1.785 1.724 1.683 1.633 1.597 1.570
d = 8 3.328 2.698 2.365 2.183 2.056 1.969 1.889 1.836 1.787 1.743
d = 16 4.087 3.103 2.662 2.434 2.277 2.156 2.067 1.997 1.933 1.890
d = 32 4.503 3.392 2.917 2.654 2.458 2.319 2.218 2.130 2.062 2.005
d = 64 5.175 3.718 3.165 2.847 2.613 2.465 2.346 2.249 2.174 2.107
d = 128 5.431 3.972 3.356 2.992 2.759 2.603 2.459 2.358 2.273 2.201
d = 256 5.909 4.222 3.536 3.155 2.910 2.714 2.567 2.464 2.363 2.289
d = 512 6.278 4.455 3.747 3.316 3.024 2.820 2.675 2.556 2.450 2.375
d = 1024 6.567 4.689 3.879 3.434 3.142 2.937 2.780 2.639 2.536 2.452

Will keysorting help? When records are long and keys are short, it is very
tempting to create a new Ąle consisting simply of the keys together with a serial
number specifying their original Ąle location. After sorting this key Ąle, we can
replace the keys by the successive numbers 1, 2, . . . ; the new Ąle can then be
sorted by original Ąle location and we will have a convenient speciĄcation of how
to unshuffle the records for the Ąnal rearrangement. Schematically, the process

374 SORTING 5.4.9

has the following form:

i) Original Ąle (K1, I1)(K2, I2) . . . (KN , IN) long

ii) Key Ąle (K1, 1)(K2, 2) . . . (KN , N) short

iii) Sorted (ii) (Kp1
, p1)(Kp2

, p2) . . . (KpN
, pN) short

iv) Edited (iii) (1, p1)(2, p2) . . . (N, pN) short

v) Sorted (iv) (q1, 1)(q2, 2) . . . (qN , N) short

vi) Edited (i) (q1, I1)(q2, I2) . . . (qN , IN) long

Here pj = k if and only if qk = j. The two sorting processes in (iii) and (v) are
comparatively fast (perhaps even internal sorts), since the records arenŠt very
long. In stage (vi) we have reduced the problem to sorting a Ąle whose keys are
simply the numbers {1, 2, . . . , N}; each record now speciĄes exactly where it is
to be moved.

The external rearrangement problem that remains after stage (vi) seems
trivial, at Ąrst glance; but in fact it is rather difficult, and no really good
algorithms (signiĄcantly better than sorting) have yet been found. We could
obviously do the rearrangement in N steps, moving one record at a time; for
large enough N this is better than the N log N of a sorting method. But N is
never that large; N is, however, sufficiently large that N seeks are unthinkable.

A radix sorting method can be used efficiently on the edited records of (vi),
since their keys have a perfectly uniform distribution. On modern computers, the
processing time for an eight-way distribution is much faster than the processing
time for an eight-way merge; hence a distribution sort is probably the best
procedure. (See Section 5.4.7, and see also exercise 19.)

On the other hand, it seems wasteful to do a full sort after the keys have
already been sorted. One reason the external rearrangement problem is unex-
pectedly difficult has been discovered by R. W. Floyd, who found a nontrivial
lower bound on the number of seeks required to rearrange records on a disk device
[Complexity of Computer Computations (New York: Plenum, 1972), 105Ű109].

It is convenient to describe FloydŠs result in terms of the elevator problem of
Section 5.4.8; but this time we want to Ąnd an elevator schedule that minimizes
the number of stops, instead of minimizing the distance traveled. Minimizing
the number of stops is not precisely equivalent to Ąnding the minimum-seek
rearrangement algorithm, since a stop combines input to the elevator with output
from the elevator; but the stop-minimization criterion is close enough to indicate
the basic ideas.

We shall make use of the Şdiscrete entropyŤ function

F (n) =

1<k≤n

⌈lg k⌉+ 1

= B(n) + n− 1 = n⌈lg n⌉ − 2⌈lg n⌉ + n, (25)

where B(n) is the binary insertion function, Eq. 5.3.1Ű(3). By Eq. 5.3.1Ű(34),
F (n) is the minimum external path length of a binary tree with n leaves, and

n lg n ≤ F (n) ≤ n lg n + 0.0861n. (26)

5.4.9 DISKS AND DRUMS 375

Since F (n) is convex and satisĄes F (n) = n + F

⌊n/2⌋

+ F

⌈n/2⌉

, we know

by Lemma C above that

F (n) ≤ F (k) + F (n− k) + n, for 0 ≤ k ≤ n. (27)

This relation is also evident from the external path length characterization of F ;
it is the crucial fact we need in the following argument.

As in Section 5.4.8 we shall assume that each Ćoor holds b people, the
elevator holds m people, and there are n Ćoors. Let sij be the number of people
currently on Ćoor i whose destination is Ćoor j. The togetherness rating of any
conĄguration of people in the building is deĄned to be the sum

1≤i,j≤n F (sij).

For example, assume that b = m = n = 6 and that the 36 people are initially
scattered among the Ćoors as follows:

␣␣␣␣␣␣

123456 123456 123456 123456 123456 123456
(28)

The elevator is empty, sitting on Ćoor 1; Ş␣Ť denotes a vacant position. Each
Ćoor contains one person with each possible destination, so all sij are 1 and the
togetherness rating is zero. If the elevator now transports six people to Ćoor 2,
we have the conĄguration

123456
␣␣␣␣␣␣ 123456 123456 123456 123456 123456

(29)

and the togetherness rating becomes 6F (0) + 24F (1) + 6F (2) = 12. Suppose the
elevator now carries 1, 1, 2, 3, 3, and 4 to Ćoor 3:

112334
␣␣␣␣␣␣ 245566 123456 123456 123456 123456

(30)

The togetherness rating has jumped to 4F (2) + 2F (3) = 18. When all people
have Ąnally been transported to their destinations, the togetherness rating will
be 6F (6) = 96.

Floyd observed that the togetherness rating can never increase by more than
b+m at each stop, since a set of s equal-destination people joining with a similar
set of size s′ improves the rating by F (s + s′)−F (s)−F (s′) ≤ s + s′. Therefore
we have the following result.

Theorem F. Let t be the togetherness rating of an initial conĄguration of
bn people, in terms of the deĄnitions above. The elevator must make at least

(F (b)n− t)/(b + m)

stops in order to bring them all to their destinations.

Translating this result into disk terminology, let there be bn records, with
b per block, and suppose the internal memory can hold m records at a time.
Every disk read brings one block into memory, every disk write stores one block,
and sij is the number of records in block i that belong in block j. If n ≥ b,
there are initial conĄgurations in which all the sij are ≤ 1; so t = 0 and at least
f(b)n/(b + m) ≈ (bn lg b)/m block-reading operations are necessary to rearrange

376 SORTING 5.4.9

the records. (The factor lg b makes this lower bound nontrivial when b is large.)
Exercise 17 derives a substantially stronger lower bound for the common case
that m is substantially larger than b.

EXERCISES

1. [M22] The text explains a method by which the average latency time required to
read a fraction x of a track is reduced from 1

2
to 1

2
(1 − x2) revolutions. This is the

minimum possible value, when there is one access arm. What is the corresponding
minimum average latency time if there are two access arms, 180◦ apart, assuming that
only one arm can transmit data at any one time?

2. [M30] (A. G. Konheim.) The purpose of this problem is to investigate how far the
access arm of a disk must move while merging Ąles that are allocated ŞorthogonallyŤ
to the cylinders. Suppose there are P Ąles, each containing L blocks of records, and
assume that the Ąrst block of each Ąle appears on cylinder 1, the second on cylinder 2,
etc. The relative order of the last keys in each block governs the access arm motion
during the merge, hence we may represent the situation in the following mathematically
tractable way: Consider a set of PL ordered pairs

(a11, 1) (a21, 1) . . . (aP 1, 1)
(a12, 2) (a22, 2) . . . (aP 2, 2)

...
...

...
(a1L, L) (a2L, L) . . . (aPL, L)

where the set {aij | 1 ≤ i ≤ P, 1 ≤ j ≤ L} consists of the numbers {1, 2, . . . , PL} in
some order, and where aij < ai(j+1) for 1 ≤ j < L. (Rows represent cylinders, columns
represent input Ąles.) Sort the pairs on their Ąrst components and let the resulting
sequence be (1, j1) (2, j2) . . . (PL, jPL). Show that, if each of the (PL)!/L!P choices of
the aij is equally likely, the average value of

|j2 − j1|+ |j3 − j2|+ · · ·+ |jPL − jPL−1|

is

(L− 1)

1 + (P − 1)22L−2

2L
L

.

[Hint: See exercise 5.2.1Ű14.] Notice that as L→∞ this value is asymptotically equal
to 1

4
(P − 1)L

√
πL+O(PL).

3. [M15] Suppose the internal memory is limited so that 10-way merging is not
feasible. How can recurrence relations (3), (4), (5) be modiĄed so that A1(n) is the
minimum value of αD(T) + βE(T), over all n-leaved trees T having no internal nodes
of degree greater than 9?

x 4. [M21] Consider a modiĄed form of the square root buffer allocation scheme, in
which all P of the input buffers have equal length, but the output buffer size should
be chosen so as to minimize seek time.

a) Derive a formula corresponding to (2), for the running time of an L-character
P -way merge.

b) Show that the construction in Theorem K can be modiĄed in order to obtain a
merge pattern that is optimal according to your formula from part (a).

5.4.9 DISKS AND DRUMS 377

5. [M20] When two disks are being used, so that reading on one is overlapped with
writing on the other, we cannot use merge patterns like that of Fig. 93 since some leaves
are at even levels and some are at odd levels. Show how to modify the construction of
Theorem K in order to produce trees that are optimal subject to the constraint that
all leaves appear on even levels or all on odd levels.

x 6. [22] Find a tree that is optimum in the sense of exercise 5, when n = 23 and
α = β = 1. (You may wish to use a computer.)

x 7. [M24] When the initial runs are not all the same length, the best merge pattern
(in the sense of Theorem H) minimizes αD(T) + βE(T), where D(T) and E(T) now
represent weighted path lengths: Weights w1, . . . , wn (corresponding to the lengths of
the initial runs) are attached to each leaf of the tree, and the degree sums and path
lengths are multiplied by the appropriate weights. For example, if T is the tree of
Fig. 92, we would have D(T) = 6w1 + 6w2 + 7w3 + 9w4 + 9w5 + 7w6 + 4w7 + 4w8,
E(T) = 2w1 + 2w2 + 2w3 + 3w4 + 3w5 + 2w6 + w7 + w8.

Prove that there is always an optimal pattern in which the shortest k runs are
merged Ąrst, for some k.

8. [49] Is there an algorithm that Ąnds optimal trees for given α, β and weights
w1, . . . , wn, in the sense of exercise 7, taking only O(nc) steps for some c?

9. [HM39] (L. HyaĄl, F. Prusker, J. Vuillemin.) Prove that, for Ąxed α and β,

A1(n) =

min
m≥2

αm+ β

logm

n logn+O(n)

as n→∞, where the O(n) term is ≥ 0.

10. [HM44] (L. HyaĄl, F. Prusker, J. Vuillemin.) Prove that when α and β are Ąxed,
A1(n) = αmn + βn + Am(n) for all sufficiently large n, if m minimizes the coefficient
in exercise 9.

11. [M29] In the notation of (6) and (11), prove that fm(n)+mn ≥ f(n) for all m ≥ 2
and n ≥ 2, and determine all m and n for which equality holds.

12. [25] Prove that, for all n > 0, there is a tree with n leaves and minimum degree
path length (6), with all leaves at the same level.

13. [M24] Show that for 2 ≤ n ≤ d(α, β), where d(α, β) is deĄned in (12), the unique
best merge pattern in the sense of Theorem H is an n-way merge.

14. [40] Using the square root method of buffer allocation, the seek time for the
merge pattern in Fig. 92 would be proportional to (

√
2 +
√

4 +
√

1 +
√

1 +
√

8)2 +
(
√

1 +
√

1 +
√

2)2 + (
√

1 +
√

2 +
√

1 +
√

4)2 + (
√

1 +
√

1 +
√

2)2; this is the sum,
over each internal node, of (

√
n1 + · · ·+√nm +

√
n1 + · · ·+ nm)2, where that nodeŠs

respective subtrees have (n1, . . . , nm) leaves. Write a computer program that generates
minimum-seek time trees having 1, 2, 3, . . . leaves, based on this formula.

15. [M22] Show that Theorem F can be improved slightly if the elevator is initially
empty and if F (b)n ̸= t: At least ⌈(F (b)n + m − t)/(b + m)⌉ stops are necessary in
such a case.

16. [23] (R. W. Floyd.) Find an elevator schedule that transports all the people
of (28) to their destinations in at most 12 stops. (ConĄguration (29) shows the situation
after one stop, not two.)

378 SORTING 5.4.9

x 17. [HM25] (R. W. Floyd, 1980.) Show that the lower bound of Theorem F can be
improved to

n(b lnn− ln b− 1)
lnn+ b(1 + ln(1 +m/b))

,

in the sense that some initial conĄguration must require at least this many stops. [Hint:

Count the conĄgurations that can be obtained after s stops.]

18. [HM26] Let L be the lower bound of exercise 17. Show that the average number
of elevator stops needed to take all people to their desired Ćoors is at least L− 1, when
the (bn)! possible permutations of people into bn desks are equally likely.

x 19. [25] (B. T. Bennett and A. C. McKellar.) Consider the following approach to
keysorting, illustrated on an example Ąle with 10 keys:

i) Original Ąle: (50,I0)(08,I1)(51,I2)(06,I3)(90,I4)(17,I5)(89,I6)(27,I7)(65,I8)(42,I9)
ii) Key Ąle: (50, 0)(08, 1)(51, 2)(06, 3)(90, 4)(17, 5)(89, 6)(27, 7)(65, 8)(42, 9)

iii) Sorted (ii): (06, 3)(08, 1)(17, 5)(27, 7)(42, 9)(50, 0)(51, 2)(65, 8)(89, 6)(90, 4)
iv) Bin assignments (see below): (2, 1)(2, 3)(2, 5)(2, 7)(2, 8)(2, 9)(1, 0)(1, 2)(1, 4)(1, 6)
v) Sorted (iv): (1, 0)(2, 1)(1, 2)(2, 3)(1, 4)(2, 5)(1, 6)(2, 7)(2, 8)(2, 9)

vi) (i) distributed into bins using (v):
Bin 1: (50, I0)(51, I2)(90, I4)(89, I6)
Bin 2: (08, I1)(06, I3)(17, I5)(27, I7)(65, I8)(42, I9)

vii) The result of replacement selection, reading Ąrst bin 2, then bin 1:
(06, I3)(08, I1)(17, I5)(27, I7)(42, I9)(50, I0)(51, I2)(65, I8)(89, I6)(90, I4)

The assignment of bin numbers in step (iv) is made by doing replacement selection

on (iii), from right to left, in decreasing order of the second component. The bin
number is the run number. The example above uses replacement selection with only
two elements in the selection tree; the same size tree should be used for replacement
selection in both (iv) and (vii). Notice that the bin contents are not necessarily in
sorted order!

Prove that this method will sort, namely that the replacement selection in (vii)
will produce only one run. (This technique reduces the number of bins needed in a
conventional keysort by distribution, especially if the input is largely in order already.)

x 20. [25] Modern hardware/software systems provide programmers with a virtual mem-

ory: Programs are written as if there were a very large internal memory, able to contain
all of the data. This memory is divided into pages, only a few of which are in the actual
internal memory at any one time; the others are on disks or drums. Programmers need
not concern themselves with such details, since the system takes care of everything;
new pages are automatically brought into memory when needed.

It would seem that the advent of virtual memory technology makes external sorting
methods obsolete, since the job can simply be done using the techniques developed for
internal sorting. Discuss this situation; in what ways might a hand-tailored external
sorting method be better than the application of a general-purpose paging technique
to an internal sorting method?

x 21. [M15] How many blocks of an L-block Ąle go on disk j when the Ąle is striped on
D disks?

22. [22] If you are merging two Ąles with the Gilbreath principle and you want to
store the keys αj with the a blocks and the keys βj with the b blocks, in which block
should αj be placed in order to have the information available when it is needed?

5.4.9 DISKS AND DRUMS 379

x 23. [20] How much space is needed for input buffers to keep input going continuously
when two-way merging is done by (a) superblock striping? (b) the Gilbreath principle?

24. [M36] Suppose P runs have been striped on D disks so that block j of run k
appears on disk (xk + j) modD. A P -way merge will read those blocks in some
chronological order such as (19). If groups of D blocks are to be input continuously, we
will read at time t the chronologically tth block stored on each disk, as in (21). What
is the minimum number of buffer records needed in memory to hold input data that
has not yet been merged, regardless of the chronological order? Explain how to choose
the offsets x1, x2, . . . , xP so that the fewest buffers are needed in the worst case.

25. [23] Rework the textŠs example of randomized striping for the case Q = 3 instead
of Q = 4. What buffer contents would occur in place of (24)?

26. [26] How many output buffers will guarantee that a P -way merge with random-
ized striping will never have to pause for lack of a place in internal memory to put
newly merged output? Assume that the time to write a block equals the time to read
a block.

27. [HM27] (The cyclic occupancy problem.) Suppose n empty urns have been ar-
ranged in a circle and assigned the numbers 0, 1, . . . , n − 1. For k = 1, 2, . . . , p, we
throw mk balls into urns (Xk + j) mod n for j = 0, 1, . . . , mk − 1, where the integers
Xk are chosen at random. Let Sn(m1, . . . ,mp) be the number of balls in urn 0, and let
En(m1, . . . ,mp) be the expected number of balls in the fullest urn.

a) Prove that En(m1, . . . ,mp) ≤ m
t=1 min(1, nPr(Sn(m1, . . . ,mp) ≥ t)), where

m = m1 + · · ·+mp.
b) Use the tail inequality, Eq. 1.2.10Ű(25), to prove that

En(m1, . . . ,mp) ≤
m

t=1

min

1,
n(1 + αt/n)m

(1 + αt)t

for any nonnegative real numbers α1, α2, . . . , αm. What values of α1, . . . , αm

give the best upper bound?

28. [HM47] Continuing exercise 27, is En(m1, . . . ,mp) ≥ En(m1 +m2,m3, . . . ,mp)?

x 29. [M30] The purpose of this exercise is to derive an upper bound on the average
time needed to input any sequence of blocks in chronological order by the randomized
striping procedure, when the blocks represent P runs and D disks. We say that
the block being waited for at each time step as the algorithm proceeds (see (24))
is ŞmarkedŤ; thus the total input time is proportional to the number of marked blocks.
Marking depends only on the chronological sequence of disk accesses (see (20)).

a) Prove that if Q + 1 consecutive blocks in chronological order have Nj blocks on
disk j, then at most max(N0, N1, . . . , ND−1) of those blocks are marked.

b) Strengthen the result of (a) by showing that it holds also for Q + 2 consecutive
blocks.

c) Now use the cyclic occupancy problem of exercise 27 to obtain an upper bound on
the average running time in terms of a function r(D,Q + 2) as in Table 2, given
any chronological order.

30. [HM30] Prove that the function r(d,m) of exercise 29 satisĄes r(d, sd log d) =
1 +O(1/

√
s) for Ąxed d as s→∞.

31. [HM48] Analyze randomized striping to determine its true average behavior, not
merely an upper bound, as a function of P , Q, and D. (Even the case Q = 0, which
needs an average of Θ(L/

√
D) read cycles, is interesting.)

380 SORTING 5.5

5.5. SUMMARY, HISTORY, AND BIBLIOGRAPHY

Now that we have nearly reached the end of this enormously long chapter, we
had better Şsort outŤ the most important facts that we have studied.

An algorithm for sorting is a procedure that rearranges a Ąle of records so
that the keys are in ascending order. This orderly arrangement is useful because
it brings equal-key records together, it allows efficient processing of several Ąles
that are sorted on the same key, it leads to efficient retrieval algorithms, and it
makes computer output look less chaotic.

Internal sorting is used when all of the records Ąt in the computerŠs high
speed internal memory. We have studied more than two dozen algorithms for
internal sorting, in various degrees of detail; and perhaps we would be happier
if we didnŠt know so many different approaches to the problem! It was fun to
learn all the techniques, but now we must face the horrible prospect of actually
deciding which method ought to be used in a given situation.

It would be nice if only one or two of the sorting methods would dominate
all of the others, regardless of the application or the computer being used. But
in fact, each method has its own peculiar virtues. For example, the bubble sort
(Algorithm 5.2.2B) has no apparent redeeming features, since there is always
a better way to do what it does; but even this technique, suitably generalized,
turns out to be useful for two-tape sorting (see Section 5.4.8). Thus we Ąnd
that nearly all of the algorithms deserve to be remembered, since there are some
applications in which they turn out to be best.

The following brief survey gives the highlights of the most signiĄcant al-
gorithms we have encountered for internal sorting. As usual, N stands for the
number of records in the given Ąle.

1. Distribution counting, Algorithm 5.2D, is very useful when the keys have
a small range. It is stable (doesnŠt affect the order of records with equal keys),
but requires memory space for counters and for 2N records. A modiĄcation that
saves N of these record spaces at the cost of stability appears in exercise 5.2Ű13.

2. Straight insertion, Algorithm 5.2.1S, is the simplest method to program,
requires no extra space, and is quite efficient for small N (say N ≤ 25). For
large N it is unbearably slow unless the input is nearly in order.

3. Shellsort, Algorithm 5.2.1D, is also quite easy to program, and uses
minimum memory space; and it is reasonably efficient for moderately large N
(say N ≤ 1000).

4. List insertion, Algorithm 5.2.1L, uses the same basic idea as straight
insertion, so it is suitable only for small N. Like the other list sorting methods
described below, it saves the cost of moving long records by manipulating links;
this is particularly advantageous when the records have variable length or are
part of other data structures.

5. Address calculation techniques are efficient when the keys have a known
(usually uniform) distribution; the principal variants of this approach are mul-

tiple list insertion (Program 5.2.1M), and MacLarenŠs combined radix-insertion

5.5 SUMMARY, HISTORY, AND BIBLIOGRAPHY 381

method (discussed at the close of Section 5.2.5). The latter can be done with only
O
√

N

cells of additional memory. A two-pass method that learns a nonuniform
distribution is discussed in Theorem 5.2.5T.

6. Merge exchange, Algorithm 5.2.2M (BatcherŠs method) and its cousin the
bitonic sort (exercise 5.3.4Ű10) are useful when a large number of comparisons
can be made simultaneously.

7. Quicksort, Algorithm 5.2.2Q (HoareŠs method) is probably the most useful
general-purpose technique for internal sorting, because it requires very little
memory space and its average running time on most computers beats that of
its competitors when it is well implemented. It can run very slowly in its worst
case, however, so a careful choice of the partitioning elements should be made
whenever nonrandom data are likely. Choosing the median of three elements, as
suggested in exercise 5.2.2Ű55, makes the worst-case behavior extremely unlikely
and also improves the average running time slightly.

8. Straight selection, Algorithm 5.2.3S, is a simple method especially suitable
when special hardware is available to Ąnd the smallest element of a list rapidly.

9. Heapsort, Algorithm 5.2.3H, requires minimum memory and is guaran-
teed to run pretty fast; its average time and its maximum time are both roughly
twice the average running time of quicksort.

10. List merging, Algorithm 5.2.4L, is a list sort that, like heapsort, is
guaranteed to be rather fast even in its worst case; moreover, it is stable with
respect to equal keys.

11. Radix sorting, using Algorithm 5.2.5R, is a list sort especially appropri-
ate for keys that are either rather short or that have an unusual lexicographic
collating sequence. The method of distribution counting (point 1 above) can also
be used, as an alternative to linking; such a procedure requires 2N record spaces,
plus a table of counters, but the simple form of its inner loop makes it especially
good for ultra-fast, Şnumber-crunchingŤ computers that have look-ahead control.
Caution: Radix sorting should not be used for small N !

12. Merge insertion, see Section 5.3.1, is especially suitable for very small
values of N, in a Şstraight-line-codedŤ routine; for example, it would be the
appropriate method in an application that requires the sorting of numerous
Ąve- or six-record groups.

13. Hybrid methods, combining one or more of the techniques above, are also
possible. For example, merge insertion could be used for sorting short subĄles
that arise in quicksort.

14. Finally, an unnamed method appearing in the answer to exercise 5.2.1Ű3
seems to require the shortest possible sorting program. But its average running
time, proportional to N3, makes it the slowest sorting routine in this book!

Table 1 summarizes the speed and space characteristics of many of these
methods, when programmed for MIX. It is important to realize that the Ągures
in this table are only rough indications of the relative sorting times; they apply
to one computer only, and the assumptions made about input data are not

382
S

O
R

T
IN

G
5.5

Table 1

A COMPARISON OF INTERNAL SORTING METHODS USING THE MIX COMPUTER

Running Time

Method Reference St
ab

le
?

L
en

gt
h

of
M
I
X

co
de

Space Average Maximum N = 16 N = 1000 Notes

Comparison counting Ex. 5.2Ű5 Yes 22 N(1 + ϵ) 4N2 + 10N 5.5N2 1065 3992432 c
Distribution counting Ex. 5.2Ű9 Yes 26 2N + 1000ϵ 22N + 10010 22N 10362 32010 a
Straight insertion Ex. 5.2.1Ű33 Yes 10 N + 1 1.5N2 + 9.5N 3N2 412 1491928
Shellsort Prog. 5.2.1D No 21 N + ϵ lgN 3.9N7/6 + 10N lgN + 166N cN4/3 567 128758 d, h
List insertion Ex. 5.2.1Ű33 Yes 19 N(1 + ϵ) 1.25N2 + 13.25N 2.5N2 433 1248615 b, c
Multiple list insertion Prog. 5.2.1M No 18 N + ϵ(N + 100) .0175N2 + 18N 3.5N2 645 35246 b, c, f, i
Merge exchange Ex. 5.2.2Ű12 No 35 N 2.875N(lgN)2 4N(lgN)2 939 284366
Quicksort Prog. 5.2.2Q No 63 N + 2ϵ lgN 11.67N lnN − 1.74N ≥ 2N2 470 81486
Median-of-3 quicksort Ex. 5.2.2Ű55 No 100 N + 2ϵ lgN 10.63N lnN + 2.12N ≥ N2 487 74574 e
Radix exchange Prog. 5.2.2R No 45 N + 68ϵ 14.43N lnN + 23.9N 272N 1135 137614 g, i, j
Straight selection Prog. 5.2.3S No 15 N 2.5N2 + 3N lnN 3.25N2 853 2525287 j
Heapsort Prog. 5.2.3H No 30 N 23.08N lnN + 0.01N 24.5N lnN 1068 159714 h, j
List merge Prog. 5.2.4L Yes 44 N(1 + ϵ) 14.43N lnN + 4.92N 14.4N lnN 761 104716 b, c, j
Radix list sort Prog. 5.2.5R Yes 36 N + ϵ(N + 200) 32N + 4838 32N 4250 36838 b, c

a: Three-digit keys only.
b: Six-digit (that is, three-byte) keys only.
c: Output not rearranged; Ąnal sequence is speciĄed implicitly by links or counters.
d: Increments chosen as in 5.2.1Ű(11); a slightly better sequence appears in exercise 5.2.1Ű29.
e: M = 9, using SRB; for the version with DIV, add 1.60N to the average running time.
f: M = 100 (the byte size).
g: M = 34, since 234 > 1010 > 233.
h: The average time is based on an empirical estimate, since the theory is incomplete.
i: The average time is based on the assumption of uniformly distributed keys.
j: Further reĄnements, mentioned in the text and exercises accompanying this program, would reduce the running time.

5.5 SUMMARY, HISTORY, AND BIBLIOGRAPHY 383

completely consistent for all programs. Comparative tables such as this have
been given by many authors, with no two people reaching the same conclusions.
On the other hand, the timings do give at least an indication of the kind of
speed to be expected from each algorithm, when sorting a rather small array of
one-word records, since MIX is a fairly typical computer.

The ŞspaceŤ column in Table 1 gives some information about the amount
of auxiliary memory used by each program, in units of record length. Here
ϵ denotes the fraction of a record needed for one link Ąeld; thus, for example,
N(1 + ϵ) means that the method requires space for N records plus N link Ąelds.

The asymptotic average and maximum times appearing in Table 1 give only
the leading terms that dominate for large N, assuming random input; c denotes
an unspeciĄed constant. These formulas can often be misleading, so actual total
running times have also been listed, for sample runs of the program on two
particular sequences of input data. The case N = 16 refers to the sixteen keys
that appear in so many of the examples of Section 5.2; and the case N = 1000
refers to the sequence K1, K2, . . . , K1000 deĄned by

K1001 = 0; Kn−1 = (3141592621Kn + 2113148651) mod 1010.

A MIX program of reasonably high quality has been used to represent each algo-
rithm in the table, often incorporating improvements that have been suggested
in the exercises. The byte size for these runs was 100.

External sorting techniques are different from internal sorting, because they
must use comparatively primitive data structures, and because there is a great
emphasis on minimizing their input/output time. Section 5.4.6 summarizes the
interesting methods that have been developed for tape merging, and Section 5.4.9
discusses the use of disks and drums.

Of course, sorting isnŠt the whole story. While studying all of these sorting
techniques, we have learned a good deal about how to handle data structures,
how to deal with external memories, and how to analyze algorithms; and perhaps
we have even learned a little about how to discover new algorithms.

Early developments. A search for the origin of todayŠs sorting techniques
takes us back to the nineteenth century, when the Ąrst machines for sorting
were invented. The United States conducts a census of all its citizens every ten
years, and by 1880 the problem of processing the voluminous census data was
becoming very acute; in fact, the total number of single (as opposed to married)
people was never tabulated that year, although the necessary information had
been gathered. Herman Hollerith, a 20-year-old employee of the Census Bureau,
devised an ingenious electric tabulating machine to meet the need for better
statistics-gathering, and about 100 of his machines were successfully used to
tabulate the 1890 census rolls.

Figure 94 shows HollerithŠs original battery-driven apparatus; of chief inter-
est to us is the Şsorting boxŤ at the right, which has been opened to show half of
the 26 inner compartments. The operator would insert a 65

8
′′ × 3 1

4
′′ punched card

into the ŞpressŤ and lower the handle; this caused spring-actuated pins in the

384 SORTING 5.5

upper plate to make contact with pools of mercury in the lower plate, wherever
a hole was punched in the card. The corresponding completed circuits would
cause associated dials on the panel to advance by one unit; and furthermore,
one of the 26 lids of the sorting box would pop open. At this point the operator
would reopen the press, put the card into the open compartment, and close the
lid. One man reportedly ran 19071 cards through this machine in a single 61

2 -
hour working day, an average of about 49 cards per minute! (A typical operator
would work at about one-third this speed.)

Fig. 94. HollerithŠs original tabulating and sorting machine. (Photo courtesy of IBM
archives.)

Population continued its inexorable growth, and the original tabulator-
sorters were not fast enough to handle the 1900 census; so Hollerith devised
another machine to stave off another data processing crisis. His new device
(patented in 1901 and 1904) had an automatic card feed, and in fact it looked
essentially like modern card sorters. The story of HollerithŠs early machines
has been told in interesting detail by Leon E. Truesdell, The Development of
Punch Card Tabulation (Washington: U.S. Bureau of the Census, 1965); see also
the contemporary accounts in Columbia College School of Mines Quarterly 10

(1889), 238Ű255; J. Franklin Inst. 129 (1890), 300Ű306; The Electrical Engineer
12 (November 11, 1891), 521Ű530; J. Amer. Statistical Assn. 2 (1891), 330Ű
341, 4 (1895), 365; J. Royal Statistical Soc. 55 (1892), 326Ű327; Allgemeines
statistisches Archiv 2 (1892), 78Ű126; J. Soc. Statistique de Paris 33 (1892),
87Ű96; U.S. Patents 395781 (1889), 685608 (1901), 777209 (1904). Hollerith and

5.5 SUMMARY, HISTORY, AND BIBLIOGRAPHY 385

another former Census Bureau employee, James Powers, went on to found rival
companies that eventually became part of IBM and Remington Rand corpora-
tions, respectively.

HollerithŠs sorting machine is, of course, the basis for radix sorting methods
now used in digital computers. His patent mentions that two-column numerical
items are to be sorted Şseparately for each column,Ť but he didnŠt say whether
the units or the tens columns should be considered Ąrst. Patent number 518240
by John K. Gore in 1894, which described another early machine for sorting
cards, suggested starting with the tens column. The nonobvious trick of using
the units column Ąrst was presumably discovered by some anonymous machine
operator and passed on to others (see Section 5.2.5); it appears in the earliest
extant IBM sorter manual (1936). The Ąrst known mention of this right-to-left
technique is in a book by Robert Feindler, Das Hollerith-Lochkarten-Verfahren
(Berlin: Reimar Hobbing, 1929), 126Ű130; it was also mentioned at about the
same time in an article by L. J. Comrie, Transactions of the Office Machinery
UsersŠ Association (London: 1929Ű1930), 25Ű37. Incidentally, Comrie was the
Ąrst person to make the important observation that tabulating machines could
fruitfully be employed in scientiĄc calculations, even though they were originally
designed for statistical and accounting applications. His article is especially
interesting because it gives a detailed description of the tabulating equipment
available in England in 1930. Sorting machines at that time processed 360 to
400 cards per minute, and could be rented for $9 per month.

The idea of merging goes back to another card-walloping machine, the
collator, which was a much later invention (1936). With its two feeding stations,
it could merge two sorted decks of cards into one, in only one pass; the technique
for doing this was clearly explained in the Ąrst IBM collator manual (April 1939).
[See Ralph E. Page, U.S. Patent 2359670 (1944).]

Then computers arrived on the scene, and sorting was intimately involved
in this development; in fact, there is evidence that a sorting routine was the
Ąrst program ever written for a stored-program computer. The designers of
EDVAC were especially interested in sorting, because it epitomized the potential
nonnumerical applications of computers; they realized that a satisfactory order
code should not only be capable of expressing programs for the solution of differ-
ence equations, it must also have enough Ćexibility to handle the combinatorial
Şdecision-makingŤ aspects of algorithms. John von Neumann therefore prepared
programs for internal merge sorting in 1945, in order to test the adequacy of some
instruction codes he was proposing for the EDVAC computer. The existence
of efficient special-purpose sorting machines provided a natural standard by
which the merits of his proposed computer organization could be evaluated.
Details of this interesting development have been described in an article by D. E.
Knuth, Computing Surveys 2 (1970), 247Ű260; see also von NeumannŠs Collected
Works 5 (New York: Macmillan, 1963), 196Ű214, for the Ąnal polished form of
his original sorting programs.

In Germany, K. Zuse independently constructed a program for straight inser-
tion sorting in 1945, as one of the simplest examples of linear list operations in his

386 SORTING 5.5

ŞPlankalkülŤ language. (This pioneering work remained unpublished for nearly
30 years; see Berichte der Gesellschaft für Mathematik und Datenverarbeitung
63 (Bonn: 1972), part 4, 84Ű85.)

The limited internal memory size planned for early computers made it
natural to think of external sorting as well as internal sorting, and a ŞProgress
Report on the EDVACŤ prepared by J. P. Eckert and J. W. Mauchly of the
Moore School of Electrical Engineering (30 September 1945) pointed out that
a computer augmented with magnetic wire or tape devices could simulate the
operations of card equipment, achieving a faster sorting speed. This progress
report described balanced two-way radix sorting, and balanced two-way merging
(called ŞcollatingŤ), using four magnetic wire or tape units, reading or writing
Şat least 5000 pulses per second.Ť

John Mauchly lectured on ŞSorting and CollatingŤ at the special session
on computing presented at the Moore School in 1946, and the notes of his
lecture constitute the Ąrst published discussion of computer sorting [Theory and
Techniques for the Design of Electronic Digital Computers, edited by G. W.
Patterson, 3 (1946), 22.1Ű22.20]. Mauchly began his presentation with an inter-
esting remark: ŞTo ask that a single machine combine the abilities to compute
and to sort might seem like asking that a single device be able to perform both
as a can opener and a fountain pen.Ť Then he observed that machines capable of
carrying out sophisticated mathematical procedures must also have the ability
to sort and classify data, and he showed that sorting may even be useful in
connection with numerical calculations. He described straight insertion and
binary insertion, observing that the former method uses about N2/4 comparisons
on the average, while the latter never needs more than about N lg N. Yet binary
insertion requires a rather complex data structure, and he went on to show
that two-way merging achieves the same low number of comparisons using only
sequential accessing of lists. The last half of his lecture notes were devoted to a
discussion of partial-pass radix sorting methods that simulate digital card sorting
on four tapes, using fewer than four passes per digit (see Section 5.4.7).

Shortly afterwards, Eckert and Mauchly started a company that produced
some of the earliest electronic computers, the BINAC (for military applications)
and the UNIVAC (for commercial applications). Again the U.S. Census Bureau
played a part in this development, receiving the Ąrst UNIVAC. At this time it
was not at all clear that computers would be economically proĄtable; computing
machines could sort faster than card equipment, but they cost more. Therefore
the UNIVAC programmers, led by Frances E. Snyder, put considerable effort
into the design of high-speed external sorting routines, and their preliminary
programs also inĆuenced the hardware design. According to their estimates, 100
million 10-word records could be sorted on UNIVAC in 9000 hours, or 375 days.

UNIVAC I, officially dedicated in July 1951, had an internal memory of 1000
12-character (72-bit) words. It was designed to read and write 60-word blocks
on tapes, at a rate of 500 words per second; reading could be either forward
or backward, and simultaneous reading, writing, and computing was possible.
In 1948, Snyder devised an interesting way to do two-way merging with perfect

5.5 SUMMARY, HISTORY, AND BIBLIOGRAPHY 387

overlap of reading, writing, and computing, using six input buffers: Let there be
one Şcurrent bufferŤ and two Şauxiliary buffersŤ for each input Ąle; it is possible
to merge in such a way that, whenever it is time to output one block, the two
current input buffers contain a total of exactly one blockŠs worth of unprocessed
records. Therefore exactly one input buffer becomes empty while each output
block is being formed, and we can arrange to have three of the four auxiliary
buffers full at all times while we are reading into the other. This method is
slightly faster than the forecasting method of Algorithm 5.4.6F, since it is not
necessary to inspect the result of one input before initiating the next. [See
Collation Methods for the UNIVAC System (EckertŰMauchly Computer Corp.,
1950), 2 volumes.]

The culmination of this work was a sort generator program, which was the
Ąrst major software routine ever developed for automatic programming. The user
would specify the record size, the positions of up to Ąve keys in partial Ąelds of
each record, and the sentinel keys that mark ĄleŠs end; then the sort generator
would produce a copyrighted sorting program for one-reel Ąles. The Ąrst pass
of this program was an internal sort of 60-word blocks, using comparison count-
ing (Algorithm 5.2C); then came a number of balanced two-way merge passes,
reading backwards and avoiding tape interlock as described above. [See ŞMaster
Generating Routine for 2-way SortingŤ (EckertŰMauchly Division of Remington
Rand, 1952); the Ąrst draft of this report was entitled ŞMaster Prefabrication
Routine for 2-way Collation.Ť See also Frances E. [Snyder] Holberton, Sympo-
sium on Automatic Programming (Office of Naval Research, 1954), 34Ű39.]

By 1952, many approaches to internal sorting were well known in the pro-
gramming folklore, but comparatively little theory had been developed. Daniel
Goldenberg [ŞTime analyses of various methods of sorting data,Ť Digital Compu-
ter Laboratory memo M-1680 (Mass. Inst. of Tech., 17 October 1952)] coded Ąve
different methods for the Whirlwind computer, and made best-case and worst-
case analyses of each program. When sorting one hundred 15-bit words on an
8-bit key, he found that the fastest method was to use a 256-word table, storing
each record into a unique position corresponding to its key, then compressing the
table. But this technique had an obvious disadvantage, since it would eliminate a
record whenever a subsequent one had the same key. The other four methods he
analyzed were ranked as follows: Straight two-way merging beat radix-2 sorting
beat straight selection beat bubble sort.

GoldenbergŠs results were extended by Harold H. Seward in his 1954 MasterŠs
thesis [ŞInformation sorting in the application of electronic digital computers to
business operations,Ť Digital Computer Lab. report R-232 (Mass. Inst. of Tech.,
24 May 1954; 60 pages)]. Seward introduced the ideas of distribution counting
and replacement selection; he showed that the Ąrst run in a random permutation
has an average length of e−1; and he analyzed external sorting as well as internal
sorting, on various types of bulk memories as well as tapes.

An even more noteworthy thesis Ů a Ph.D. thesis in fact Ů was written by
Howard B. Demuth in 1956 [ŞElectronic Data SortingŤ (Stanford University,
October 1956), 92 pages; IEEE Trans. C-34 (1985), 296Ű310]. This work helped

388 SORTING 5.5

to lay the foundations of computational complexity theory. It considered three
abstract models of the sorting problem, using cyclic, linear, and random-access
memories; and optimal or near-optimal methods were developed for each model.
(See exercise 5.3.4Ű68.) Although no practical consequences Ćowed immediately
from DemuthŠs thesis, it established important ideas about how to link theory
with practice.

Thus the history of sorting has been closely associated with many ŞĄrstsŤ
in computing: the Ąrst data-processing machines, the Ąrst stored programs, the
Ąrst software, the Ąrst buffering methods, the Ąrst work on algorithmic analysis
and computational complexity.

None of the computer-related documents mentioned so far actually appeared
in the Şopen literatureŤ; in fact, most of the early history of computing appears
in comparatively inaccessible reports, because comparatively few people were
involved with computers at the time. Literature about sorting Ąnally broke into
print in 1955Ű1956, in the form of three major survey articles.

The Ąrst paper was prepared by J. C. Hosken [Proc. Eastern Joint Computer
Conference 8 (1955), 39Ű55]. He began with an astute observation: ŞTo lower
costs per unit of output, people usually increase the size of their operations. But
under these conditions, the unit cost of sorting, instead of falling, rises.Ť Hosken
surveyed all the available special-purpose equipment then being marketed, as
well as the methods of sorting on computers. His bibliography of 54 items was
based mostly on manufacturersŠ brochures.

The comprehensive paper ŞSorting on Electronic Computer SystemsŤ by
E. H. Friend [JACM 3 (1956), 134Ű168] was a major milestone in the devel-
opment of sorting. Although numerous techniques have been developed since
1956, this paper is still remarkably up-to-date in many respects. Friend gave
careful descriptions of quite a few internal and external sorting algorithms,
and he paid special attention to buffering techniques and the characteristics
of magnetic tape units. He introduced some new methods (for example, tree
selection, amphisbaenic sorting, and forecasting), and developed some of the
mathematical properties of the older methods.

The third survey of sorting to appear about this time was prepared by
D. W. Davies [Proc. Inst. Elect. Engineers 103B, Supplement 1 (1956), 87Ű93].
In the following years several other notable surveys were published, by D. A. Bell
[Comp. J. 1 (1958), 71Ű77]; A. S. Douglas [Comp. J. 2 (1959), 1Ű9]; D. D. Mc-
Cracken, H. Weiss, and T. Lee [Programming Business Computers (New York:
Wiley, 1959), Chapter 15, pages 298Ű332]; I. Flores [JACM 8 (1961), 41Ű80];
K. E. Iverson [A Programming Language (New York: Wiley, 1962), Chapter 6,
176Ű245]; C. C. Gotlieb [CACM 6 (1963), 194Ű201]; T. N. Hibbard [CACM 6

(1963), 206Ű213]; M. A. Goetz [Digital Computer UserŠs Handbook, edited by
M. Klerer and G. A. Korn (New York: McGrawŰHill, 1967), Chapter 1.10, pages
1.292Ű1.320]. A symposium on sorting was sponsored by ACM in November
1962; most of the papers presented at that symposium were published in the
May 1963 issue of CACM, and they constitute a good representation of the state
of the art at that time. C. C. GotliebŠs survey of contemporary sort generators,

5.5 SUMMARY, HISTORY, AND BIBLIOGRAPHY 389

T. N. HibbardŠs survey of minimal storage internal sorting, and G. U. HubbardŠs
early exploration of disk Ąle sorting are particularly noteworthy articles in this
collection.

New sorting methods were being discovered throughout this period: Address
calculation (1956), merge insertion (1959), radix exchange (1959), cascade merge
(1959), shellsort (1959), polyphase merge (1960), tree insertion (1960), oscillating
sort (1962), HoareŠs quicksort (1962), WilliamsŠs heapsort (1964), BatcherŠs
merge exchange (1964). The history of each individual algorithm has been traced
in the particular section of this chapter where that method is described. The
late 1960s saw an intensive development of the corresponding theory.

A complete bibliography of all papers on sorting examined by the author
as this chapter was Ąrst being written, compiled with the help of R. L. Rivest,
appeared in Computing Reviews 13 (1972), 283Ű289.

Later developments. Dozens of sorting algorithms have been invented since
1970, although nearly all of them are variations on earlier themes. Multikey

quicksort, which is discussed in the answer to exercise 5.2.2Ű30, is an excellent
example of such more recent methods.

Another trend, primarily of theoretical interest so far, has been to study
sorting schemes that are adaptive, in the sense that they are guaranteed to
run faster when the input is already pretty much in order according to various
criteria. See, for example, H. Mannila, IEEE Transactions C-34 (1985), 318Ű
325; V. Estivill-Castro and D. Wood, Computing Surveys 24 (1992), 441Ű476;
C. Levcopoulos and O. Petersson, Journal of Algorithms 14 (1993), 395Ű413;
A. Moffat, G. Eddy, and O. Petersson, Software Practice & Experience 26 (1996),
781Ű797.

Changes in computer hardware have prompted many interesting studies
of the efficiency of sorting algorithms when the cost criteria change; see, for
example, the discussion of virtual memory in exercise 5.4.9Ű20. The effect of
hardware caches on internal sorting has been studied by A. LaMarca and R. E.
Ladner, J. Algorithms 31 (1999), 66Ű104. One of their conclusions is that step Q9
of Algorithm 5.2.2Q is a bad idea on modern machines (although it worked well
on traditional computers like MIX): Instead of Ąnishing quicksort with a straight
insertion sort, it is now better to sort the short subĄles earlier, while their keys
are still in the cache.

What is the current state of the art for sorting large amounts of data? One
popular benchmark since 1985 has been the task of sorting one million 100-
character records that have uniformly random 10-character keys. The input and
output are supposed to reside on disk, and the objective is to minimize the total
elapsed time, including the time it takes to launch the program. R. C. Agarwal
[SIGMOD Record 25, 2 (June 1996), 240Ű246] used a desktop RISC computer,
the IBM RS/6000 model 39H, to implement radix sorting with Ąles that were
striped on 8 disk units, and he Ąnished this task in 5.1 seconds. Input/output was
the main bottleneck; indeed, the processor needed only 0.6 seconds to control the
actual sorting! Even faster times have been achieved when several processors are

390 SORTING 5.5

available: A network of 32 UltraSPARC I workstations, each with two internal
disks, can sort a million records in 2.41 seconds using a hybrid method called
NOW-Sort [A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, D. E. Culler, J. M.
Hellerstein, and D. A. Patterson, SIGMOD Record 26, 2 (June 1997), 243Ű254].

Such advances mean that the million-record benchmark has become mostly
a test of startup and shutdown time; larger data sets are needed to give more
meaningful results. For example, the present world record for terabyte sorting Ů
1010 records of 100 characters each Ů is 2.5 hours, achieved in September 1997 on
a Silicon Graphics Origin2000 system with 32 processors, 8 gigabytes of internal
memory, and 559 disks of 4 gigabytes each. This record was set by a commercially
available sorting routine called NsortTM, developed by C. Nyberg, C. Koester, and
J. Gray using methods that have not yet been published.

Perhaps even the terabyte benchmark will be considered too small some day.
The best current candidate for a benchmark that will live forever is MinuteSort:
How many 100-character records can be sorted in 60 seconds? As this book
went to press, the current record holder for this task was NOW-Sort; 95 work-
stations needed only 59.21 seconds to put 90.25 million records into order, on 30
March 1997. But present-day methods are not yet pushing up against any truly
fundamental limitations on speed.

In summary, the problem of efficient sorting remains just as fascinating today
as it ever was.

EXERCISES

1. [05] Summarize the contents of this chapter by stating a generalization of Theo-
rem 5.4.6A.

2. [20] Based on the information in Table 1, what is the best list-sorting method for
six-digit keys, for use on the MIX computer?

3. [37] (Stable sorting in minimum storage.) A sorting algorithm is said to require
minimum storage if it uses only O((logN)2) bits of memory space for its variables
besides the space needed to store the N records. The algorithm must be general in
the sense that it works for all N, not just for a particular value of N, assuming that
a sufficient amount of random access memory has been made available whenever the
algorithm is actually called upon to sort.

Many of the sorting methods we have studied violate this minimum-storage re-
quirement; in particular, the use of N link Ąelds is forbidden. Quicksort (Algorithm
5.2.2Q) satisĄes the minimum-storage requirement, but its worst case running time is
proportional to N2. Heapsort (Algorithm 5.2.3H) is the only O(N logN) algorithm we
have studied that uses minimum storage, although another such algorithm could be
formulated using the idea of exercise 5.2.4Ű18.

The fastest general algorithm we have considered that sorts keys in a stable manner
is the list merge sort (Algorithm 5.2.4L), but it does not use minimum storage. In fact,
the only stable minimum-storage sorting algorithms we have seen are Ω(N2) methods
(straight insertion, bubble sorting, and a variant of straight selection).

Design a stable minimum-storage sorting algorithm that needs only O(N(logN)2)
units of time in its worst case. [Hint: It is possible to do stable minimum-storage merg-
ing Ů namely, sorting when there are at most two runs Ů in O(N logN) units of time.]

5.5 SUMMARY, HISTORY, AND BIBLIOGRAPHY 391

x 4. [28] A sorting algorithm is called parsimonious if it makes decisions entirely by
comparing keys, and if it never makes a comparison whose outcome could have been
predicted from the results of previous comparisons. Which of the methods listed in
Table 1 are parsimonious?

5. [46] It is much more difficult to sort nonrandom data with numerous equal keys
than to sort uniformly random data. Devise a sorting benchmark that (i) is interesting
now and will probably be interesting 100 years from now; (ii) does not involve uniformly
random keys; and (iii) does not use data sets that change with time.

I shall have accomplished my purpose if I have sorted and put in logical order

the gist of the great volume of material which has been generated about sorting

over the past few years.

— J. C. HOSKEN (1955)

CHAPTER SIX

SEARCHING

LetŠs look at the record.

— AL SMITH (1928)

This chapter might have been given the more pretentious title ŞStorage and
Retrieval of InformationŤ; on the other hand, it might simply have been called
ŞTable Look-Up.Ť We are concerned with the process of collecting information
in a computerŠs memory, in such a way that the information can subsequently be
recovered as quickly as possible. Sometimes we are confronted with more data
than we can really use, and it may be wisest to forget and to destroy most of it;
but at other times it is important to retain and organize the given facts in such
a way that fast retrieval is possible.

Most of this chapter is devoted to the study of a very simple search problem:
how to Ąnd the data that has been stored with a given identiĄcation. For
example, in a numerical application we might want to Ąnd f(x), given x and
a table of the values of f ; in a nonnumerical application, we might want to Ąnd
the English translation of a given Russian word.

In general, we shall suppose that a set of N records has been stored, and
the problem is to locate the appropriate one. As in the case of sorting, we
assume that each record includes a special Ąeld called its key ; this terminology
is especially appropriate, because many people spend a great deal of time every
day searching for their keys. We generally require the N keys to be distinct, so
that each key uniquely identiĄes its record. The collection of all records is called
a table or Ąle, where the word ŞtableŤ is usually used to indicate a small Ąle,
and ŞĄleŤ is usually used to indicate a large table. A large Ąle or a group of Ąles
is frequently called a database.

Algorithms for searching are presented with a so-called argument, K, and the
problem is to Ąnd which record has K as its key. After the search is complete,
two possibilities can arise: Either the search was successful, having located the
unique record containing K; or it was unsuccessful, having determined that K
is nowhere to be found. After an unsuccessful search it is sometime desirable to
enter a new record, containing K, into the table; a method that does this is called
a search-and-insertion algorithm. Some hardware devices known as associative

memories solve the search problem automatically, in a way that might resemble
the functioning of a human brain; but we shall study techniques for searching
on a conventional general-purpose digital computer.

Although the goal of searching is to Ąnd the information stored in the record
associated with K, the algorithms in this chapter generally ignore everything but

392

6 SEARCHING 393

the keys themselves. In practice we can Ąnd the associated data once we have
located K; for example, if K appears in location TABLE + i, the associated data
(or a pointer to it) might be in location TABLE + i + 1, or in DATA + i, etc. It is
therefore convenient to gloss over the details of what should be done after K has
been successfully found.

Searching is the most time-consuming part of many programs, and the
substitution of a good search method for a bad one often leads to a substantial
increase in speed. In fact we can often arrange the data or the data structure
so that searching is eliminated entirely, by ensuring that we always know just
where to Ąnd the information we need. Linked memory is a common way to
achieve this; for example, a doubly linked list makes it unnecessary to search for
the predecessor or successor of a given item. Another way to avoid searching
occurs if we are allowed to choose the keys freely, since we might as well let
them be the numbers {1, 2, . . . , N}; then the record containing K can simply
be placed in location TABLE + K. Both of these techniques were used to elimi-
nate searching from the topological sorting algorithm discussed in Section 2.2.3.
However, searches would have been necessary if the objects in the topological
sorting algorithm had been given symbolic names instead of numbers. Efficient
algorithms for searching turn out to be quite important in practice.

Search methods can be classiĄed in several ways. We might divide them
into internal versus external searching, just as we divided the sorting algorithms
of Chapter 5 into internal versus external sorting. Or we might divide search
methods into static versus dynamic searching, where ŞstaticŤ means that the
contents of the table are essentially unchanging (so that it is important to min-
imize the search time without regard for the time required to set up the table),
and ŞdynamicŤ means that the table is subject to frequent insertions and perhaps
also deletions. A third possible scheme is to classify search methods according to
whether they are based on comparisons between keys or on digital properties of
the keys, analogous to the distinction between sorting by comparison and sorting
by distribution. Finally we might divide searching into those methods that use
the actual keys and those that work with transformed keys.

The organization of this chapter is essentially a combination of the latter two
modes of classiĄcation. Section 6.1 considers Şbrute forceŤ sequential methods of
search, then Section 6.2 discusses the improvements that can be made based on
comparisons between keys, using alphabetic or numeric order to govern the deci-
sions. Section 6.3 treats digital searching, and Section 6.4 discusses an important
class of methods called hashing techniques, based on arithmetic transformations
of the actual keys. Each of these sections treats both internal and external
searching, in both the static and the dynamic case; and each section points out
the relative advantages and disadvantages of the various algorithms.

Searching and sorting are often closely related to each other. For example,
consider the following problem: Given two sets of numbers, A = {a1, a2, . . . , am}
and B = {b1, b2, . . . , bn}, determine whether or not A ⊆ B. Three solutions
suggest themselves:

394 SEARCHING 6

1. Compare each ai sequentially with the bjŠs until Ąnding a match.
2. Sort the aŠs and bŠs, then make one sequential pass through both Ąles,

checking the appropriate condition.
3. Enter the bjŠs in a table, then search for each of the ai.

Each of these solutions is attractive for a different range of values of m and n.
Solution 1 will take roughly c1mn units of time, for some constant c1, and
solution 2 will take about c2(m lg m+n lg n) units, for some (larger) constant c2.
With a suitable hashing method, solution 3 will take roughly c3m + c4n units of
time, for some (still larger) constants c3 and c4. It follows that solution 1 is good
for very small m and n, but solution 2 soon becomes better as m and n grow
larger. Eventually solution 3 becomes preferable, until n exceeds the internal
memory size; then solution 2 is usually again superior until n gets much larger
still. Thus we have a situation where sorting is sometimes a good substitute for
searching, and searching is sometimes a good substitute for sorting.

More complicated search problems can often be reduced to the simpler case
considered here. For example, suppose that the keys are words that might be
slightly misspelled; we might want to Ąnd the correct record in spite of this
error. If we make two copies of the Ąle, one in which the keys are in normal
lexicographic order and another in which they are ordered from right to left (as
if the words were spelled backwards), a misspelled search argument will probably
agree up to half or more of its length with an entry in one of these two Ąles. The
search methods of Sections 6.2 and 6.3 can therefore be adapted to Ąnd the key
that was probably intended.

A related problem has received considerable attention in connection with
airline reservation systems, and in other applications involving peopleŠs names
when there is a good chance that the name will be misspelled due to poor
handwriting or voice transmission. The goal is to transform the argument into
some code that tends to bring together all variants of the same name. The
following contemporary form of the ŞSoundexŤ method, a technique that was
originally developed by Margaret K. Odell and Robert C. Russell [see U.S.
Patents 1261167 (1918), 1435663 (1922)], has often been used for encoding
surnames:

1. Retain the Ąrst letter of the name, and drop all occurrences of a, e, h, i, o,
u, w, y in other positions.

2. Assign the following numbers to the remaining letters after the Ąrst:
b, f, p, v → 1 l → 4
c, g, j, k, q, s, x, z → 2 m, n → 5
d, t → 3 r → 6

3. If two or more letters with the same code were adjacent in the original name
(before step 1), or adjacent except for intervening hŠs and wŠs, omit all but
the Ąrst.

4. Convert to the form Şletter, digit, digit, digitŤ by adding trailing zeros (if
there are less than three digits), or by dropping rightmost digits (if there
are more than three).

6 SEARCHING 395

For example, the names Euler, Gauss, Hilbert, Knuth, Lloyd, Lukasiewicz, and
Wachs have the respective codes E460, G200, H416, K530, L300, L222, W200.
Of course this system will bring together names that are somewhat different,
as well as names that are similar; the same seven codes would be obtained for
Ellery, Ghosh, Heilbronn, Kant, Liddy, Lissajous, and Waugh. And on the other
hand a few related names like Rogers and Rodgers, or Sinclair and St. Clair,
or Tchebysheff and Chebyshev, remain separate. But by and large the Soundex
code greatly increases the chance of Ąnding a name in one of its disguises. [For
further information, see C. P. Bourne and D. F. Ford, JACM 8 (1961), 538Ű
552; Leon Davidson, CACM 5 (1962), 169Ű171; Federal Population Censuses
1790Ű1890 (Washington, D.C.: National Archives, 1971), 90.]

When using a scheme like Soundex, we need not give up the assumption
that all keys are distinct; we can make lists of all records with equivalent codes,
treating each list as a unit.

Large databases tend to make the retrieval process more complex, since
people often want to consider many different Ąelds of each record as potential
keys, with the ability to locate items when only part of the key information is
speciĄed. For example, given a large Ąle about stage performers, a producer
might wish to Ąnd all unemployed actresses between 25 and 30 with dancing
talent and a French accent; given a large Ąle of baseball statistics, a sportswriter
may wish to determine the total number of runs scored by the Chicago White
Sox in 1964, during the seventh inning of night games, against left-handed
pitchers. Given a large Ąle of data about anything, people like to ask arbitrarily
complicated questions. Indeed, we might consider an entire library as a database,
and a searcher may want to Ąnd everything that has been published about
information retrieval. An introduction to the techniques for such secondary key

(multi-attribute) retrieval problems appears below in Section 6.5.
Before entering into a detailed study of searching, it may be helpful to put

things in historical perspective. During the pre-computer era, many books of
logarithm tables, trigonometry tables, etc., were compiled, so that mathematical
calculations could be replaced by searching. Eventually these tables were trans-
ferred to punched cards, and used for scientiĄc problems in connection with
collators, sorters, and duplicating punch machines. But when stored-program
computers were introduced, it soon became apparent that it was now cheaper to
recompute log x or cos x each time, instead of looking up the answer in a table.

Although the problem of sorting received considerable attention already in
the earliest days of computers, comparatively little was done about algorithms
for searching. With small internal memories, and with nothing but sequential
media like tapes for storing large Ąles, searching was either trivially easy or
almost impossible.

But the development of larger and larger random-access memories during
the 1950s eventually led to the recognition that searching was an interesting
problem in its own right. After years of complaining about the limited amounts
of space in the early machines, programmers were suddenly confronted with
larger amounts of memory than they knew how to use efficiently.

396 SEARCHING 6

The Ąrst surveys of the searching problem were published by A. I. Dumey,
Computers & Automation 5, 12 (December 1956), 6Ű9; W. W. Peterson, IBM
J. Research & Development 1 (1957), 130Ű146; A. D. Booth, Information and
Control 1 (1958), 159Ű164; A. S. Douglas, Comp. J. 2 (1959), 1Ű9. More
extensive treatments were given later by Kenneth E. Iverson, A Programming
Language (New York: Wiley, 1962), 133Ű158, and by Werner Buchholz, IBM
Systems J. 2 (1963), 86Ű111.

During the early 1960s, a number of interesting new search procedures based
on tree structures were introduced, as we shall see; and research about searching
is still actively continuing at the present time.

6.1. SEQUENTIAL SEARCHING

“Begin at the beginning, and go on till you Ąnd the right key; then stop.Ť
This sequential procedure is the obvious way to search, and it makes a useful
starting point for our discussion of searching because many of the more intricate
algorithms are based on it. We shall see that sequential searching involves some
very interesting ideas, in spite of its simplicity.

The algorithm might be formulated more precisely as follows:

Algorithm S (Sequential search). Given a table of records R1, R2, . . . , RN ,
whose respective keys are K1, K2, . . . , KN, this algorithm searches for a given
argument K. We assume that N ≥ 1.

S1. [Initialize.] Set i← 1.

S2. [Compare.] If K = Ki, the algorithm terminates successfully.

S3. [Advance.] Increase i by 1.

S4. [End of Ąle?] If i ≤ N, go back to S2. Otherwise the algorithm terminates
unsuccessfully.

Notice that this algorithm can terminate in two different ways, successfully

(having located the desired key) or unsuccessfully (having established that the
given argument is not present in the table). The same will be true of most other
algorithms in this chapter.

S1. Initialize S2. Compare S3. Advance
S4. End
of file?

6=

=

SUCCESS

Yes

FAILURE

No

Fig. 1. Sequential or Şhouse-to-houseŤ search.

6.1 SEQUENTIAL SEARCHING 397

A MIX program can be written down immediately.

Program S (Sequential search). Assume that Ki appears in location KEY + i,
and that the remainder of record Ri appears in location INFO+ i. The following
program uses rA ≡ K, rI1 ≡ i−N.

01 START LDA K 1 S1. Initialize.
02 ENT1 1-N 1 i← 1.
03 2H CMPA KEY+N,1 C S2. Compare.
04 JE SUCCESS C Exit if K = Ki.
05 INC1 1 C − S S3. Advance.
06 J1NP 2B C − S S4. End of Ąle?
07 FAILURE EQU * 1− S Exit if not in table.

At location SUCCESS, the instruction ‘LDA INFO+N,1Š will now bring the desired
information into rA.

The analysis of this program is straightforward; it shows that the running
time of Algorithm S depends on two things,

C = the number of key comparisons;

S = 1 if successful, 0 if unsuccessful. (1)

Program S takes 5C − 2S + 3 units of time. If the search successfully Ąnds
K = Ki, we have C = i, S = 1; hence the total time is (5i + 1)u. On the other
hand if the search is unsuccessful, we have C = N, S = 0, for a total time of
(5N + 3)u. If every input key occurs with equal probability, the average value
of C in a successful search will be

1 + 2 + · · ·+ N

N
=

N + 1
2

; (2)

the standard deviation is, of course, rather large, about 0.289N (see exercise 1).
The algorithm above is surely familiar to all programmers. But too few

people know that it is not always the right way to do a sequential search! A
straightforward change makes the algorithm faster, unless the list of records is
quite short:

Algorithm Q (Quick sequential search). This algorithm is the same as Algo-
rithm S, except that it assumes the presence of a dummy record RN+1 at the
end of the Ąle.

Q1. [Initialize.] Set i← 1, and set KN+1 ← K.

Q2. [Compare.] If K = Ki, go to Q4.

Q3. [Advance.] Increase i by 1 and return to Q2.

Q4. [End of Ąle?] If i ≤ N, the algorithm terminates successfully; otherwise it
terminates unsuccessfully (i = N + 1).

Program Q (Quick sequential search). rA ≡ K, rI1 ≡ i−N.

01 START LDA K 1 Q1. Initialize.
02 STA KEY+N+1 1 KN+1 ← K.

398 SEARCHING 6.1

03 ENT1 -N 1 i← 0.
04 INC1 1 C + 1− S Q3. Advance.
05 CMPA KEY+N,1 C + 1− S Q2. Compare.
06 JNE *-2 C + 1− S To Q3 if Ki ̸= K.
07 J1NP SUCCESS 1 Q4. End of Ąle?
08 FAILURE EQU * 1− S Exit if not in table.

In terms of the quantities C and S in the analysis of Program S, the running
time has decreased to (4C − 4S + 10)u; this is an improvement whenever C ≥ 6
in a successful search, and whenever N ≥ 8 in an unsuccessful search.

The transition from Algorithm S to Algorithm Q makes use of an impor-
tant speed-up principle: When an inner loop of a program tests two or more
conditions, we should try to reduce the testing to just one condition.

Another technique will make Program Q still faster.

Program Q′ (Quicker sequential search). rA ≡ K, rI1 ≡ i−N.

01 START LDA K 1 Q1. Initialize.
02 STA KEY+N+1 1 KN+1 ← K.
03 ENT1 -1-N 1 i← −1.
04 3H INC1 2 ⌊(C − S + 2)/2⌋ Q3. Advance. (twice)
05 CMPA KEY+N,1 ⌊(C − S + 2)/2⌋ Q2. Compare.
06 JE 4F ⌊(C − S + 2)/2⌋ To Q4 if K = Ki.
07 CMPA KEY+N+1,1 ⌊(C − S + 1)/2⌋ Q2. Compare. (next)
08 JNE 3B ⌊(C − S + 1)/2⌋ To Q3 if K ̸= Ki+1.
09 INC1 1 (C − S) mod 2 Advance i.
10 4H J1NP SUCCESS 1 Q4. End of Ąle?
11 FAILURE EQU * 1− S Exit if not in table.

The inner loop has been duplicated; this avoids about half of the Şi ← i + 1Ť
instructions, so it reduces the running time to

3.5C − 3.5S + 10 +
(C − S) mod 2

2
units. We have saved 30 percent of the running time of Program S, when large
tables are being searched; many existing programs can be improved in this way.
The same ideas apply to programming in high-level languages. [See, for example,
D. E. Knuth, Computing Surveys 6 (1974), 266Ű269.]

A slight variation of the algorithm is appropriate if we know that the keys
are in increasing order:

Algorithm T (Sequential search in ordered table). Given a table of records
R1, R2, . . . , RN whose keys are in increasing order K1 < K2 < · · · < KN ,
this algorithm searches for a given argument K. For convenience and speed,
the algorithm assumes that there is a dummy record RN+1 whose key value is
KN+1 =∞ > K.

T1. [Initialize.] Set i← 1.

T2. [Compare.] If K ≤ Ki, go to T4.

T3. [Advance.] Increase i by 1 and return to T2.

6.1 SEQUENTIAL SEARCHING 399

T4. [Equality?] If K = Ki, the algorithm terminates successfully. Otherwise it
terminates unsuccessfully.

If all input keys are equally likely, this algorithm takes essentially the same
average time as Algorithm Q, for a successful search. But unsuccessful searches
are performed about twice as fast, since the absence of a record can be established
more quickly.

Each of the algorithms above uses subscripts to denote the table entries. It
is convenient to describe the methods in terms of these subscripts, but the same
search procedures can be used for tables that have a linked representation, since
the data is being traversed sequentially. (See exercises 2, 3, and 4.)

Frequency of access. So far we have been assuming that every argument occurs
as often as every other. This is not always a realistic assumption; in a general
situation, key Kj will occur with probability pj , where p1 + p2 + · · · + pN = 1.
The time required to do a successful search is essentially proportional to the
number of comparisons, C, which now has the average value

CN = p1 + 2p2 + · · ·+ NpN . (3)

If we have the option of putting the records into the table in any desired order,
this quantity CN is smallest when

p1 ≥ p2 ≥ · · · ≥ pN , (4)

that is, when the most frequently used records appear near the beginning.
LetŠs look at several probability distributions, in order to see how much of a

saving is possible when the records are arranged in the optimal manner speciĄed
in (4). If p1 = p2 = · · · = pN = 1/N, formula (3) reduces to CN = (N + 1)/2;
we have already derived this in Eq. (2). Suppose, on the other hand, that

p1 =
1
2

, p2 =
1
4

, . . . , pN−1 =
1

2N−1
, pN =

1
2N−1

. (5)

Then CN = 2 − 21−N , by exercise 7; the average number of comparisons is
less than two, for this distribution, if the records appear in the proper order
within the table.

Another probability distribution that suggests itself is

p1 = Nc, p2 = (N − 1)c, . . . , pN = c, where c =
2

N(N + 1)
. (6)

This wedge-shaped distribution is not as dramatic a departure from uniformity
as (5). In this case we Ąnd

CN = c

N

k=1

k(N + 1− k) =
N + 2

3
; (7)

the optimum arrangement saves about one-third of the search time that would
have been obtained if the records had appeared in random order.

400 SEARCHING 6.1

Of course the probability distributions in (5) and (6) are rather artiĄcial,
and they may never be a very good approximation to reality. A more typical
sequence of probabilities, called ŞZipfŠs law,Ť has

p1 = c/1, p2 = c/2, . . . , pN = c/N, where c = 1/HN . (8)

This distribution was popularized by G. K. Zipf, who observed that the nth most
common word in natural language text seems to occur with a frequency approx-
imately proportional to 1/n. [The Psycho-Biology of Language (Boston, Mass.:
Houghton Mifflin, 1935); Human Behavior and the Principle of Least Effort
(Reading, Mass.: AddisonŰWesley, 1949).] He observed the same phenomenon
in census tables, when metropolitan areas are ranked in order of decreasing
population. If ZipfŠs law governs the frequency of the keys in a table, we have
immediately

CN = N/HN ; (9)

searching such a Ąle is about 1
2 ln N times faster than searching the same Ąle

with randomly ordered records. [See A. D. Booth, L. Brandwood, and J. P.
Cleave, Mechanical Resolution of Linguistic Problems (New York: Academic
Press, 1958), 79.]

Another approximation to realistic distributions is the Ş80-20Ť rule of thumb
that has commonly been observed in commercial applications [see, for example,
W. P. Heising, IBM Systems J. 2 (1963), 114Ű115]. This rule states that 80 per-
cent of the transactions deal with the most active 20 percent of a Ąle; and the
same rule applies in fractal fashion to the top 20 percent, so that 64 percent of
the transactions deal with the most active 4 percent, etc. In other words,

p1 + p2 + · · ·+ p.20n

p1 + p2 + p3 + · · ·+ pn
≈ .80 for all n. (10)

One distribution that satisĄes this rule exactly whenever n is a multiple of 5 is

p1 = c, p2 = (2θ−1)c, p3 = (3θ−2θ)c, . . . , pN =

Nθ−(N−1)θ

c, (11)

where

c = 1/Nθ, θ =
log .80
log .20

≈ 0.1386, (12)

since p1 + p2 + · · · + pn = cnθ for all n in this case. It is not especially easy
to work with the probabilities in (11); we have, however, nθ − (n − 1)θ =
θnθ−1

1 + O(1/n)

, so there is a simpler distribution that approximately fulĄlls

the 80-20 rule, namely

p1 = c/11−θ, p2 = c/21−θ, . . . , pN = c/N1−θ, where c = 1/H
(1−θ)
N . (13)

Here θ = log .80/ log .20 as before, and H
(s)
N is the Nth harmonic number of

order s, namely 1−s + 2−s + · · ·+ N−s. Notice that this probability distribution
is very similar to that of ZipfŠs law (8); as θ varies from 1 to 0, the probabilities

6.1 SEQUENTIAL SEARCHING 401

vary from a uniform distribution to a ZipĄan one. Applying (3) to (13) yields

CN = H
(−θ)
N

H

(1−θ)
N =

θN

θ + 1
+ O(N1−θ) ≈ 0.122N (14)

as the mean number of comparisons for the 80-20 law (see exercise 8).
A study of word frequencies carried out by E. S. Schwartz [see the interesting

graph on page 422 of JACM 10 (1963)] suggests that distribution (13) with a
slightly negative value of θ gives a better Ąt to the data than ZipfŠs law (8). In
this case the mean value

CN = H
(−θ)
N

H

(1−θ)
N =

N1+θ

(1 + θ)ζ(1− θ)
+ O(N1+2θ) (15)

is substantially smaller than (9) as N →∞.
Distributions like (11) and (13) were Ąrst studied by Vilfredo Pareto in

connection with disparities of personal income and wealth [Cours dŠÉconomie
Politique 2 (Lausanne: Rouge, 1897), 304Ű312]. If pk is proportional to the
wealth of the kth richest individual, the probability that a personŠs wealth
exceeds or equals x times the wealth of the poorest individual is k/N when
x = pk/pN . Thus, when pk = ckθ−1 and x = (k/N)θ−1, the stated probability
is x−1/(1−θ); this is now called a Pareto distribution with parameter 1/(1− θ).

Curiously, Pareto didnŠt understand his own distribution; he believed that
a value of θ near 0 would correspond to a more egalitarian society than a
value near 1! His error was corrected by Corrado Gini [Atti della III Riunione
della Società Italiana per il Progresso delle Scienze (1910), reprinted in his
Memorie di Metodologia Statistica 1 (Rome: 1955), 3Ű120], who was the Ąrst
person to formulate and explain the signiĄcance of ratios like the 80-20 law (10).
People still tend to misunderstand such distributions; they often speak about a
Ş75-25 lawŤ or a Ş90-10 lawŤ as if an a-b law makes sense only when a+b = 100,
while (12) shows that the sum 80 + 20 is quite irrelevant.

Another discrete distribution analogous to (11) and (13) was introduced by
G. Udny Yule when he studied the increase in biological species as a function of
time, assuming various models of evolution [Philos. Trans. B213 (1924), 21Ű87].
YuleŠs distribution applies when θ < 2:

p1 = c, p2 =
c

2− θ
, p3 =

2c

(3− θ)(2− θ)
, . . . , pN =

(N − 1)! c

(N − θ) . . . (2− θ)
=

c
N−θ
N−1

 ;

c =
θ

1− θ

N−θ
N

1−

N−θ
N

 . (16)

The limiting value c = 1/HN or c = 1/N is used when θ = 0 or θ = 1.

A Şself-organizingŤ Ąle. These calculations with probabilities are very nice,
but in most cases we donŠt know what the probabilities are. We could keep a
count in each record of how often it has been accessed, reallocating the records on
the basis of those counts; the formulas derived above suggest that this procedure
would often lead to a worthwhile savings. But we probably donŠt want to devote

402 SEARCHING 6.1

so much memory space to the count Ąelds, since we can make better use of that
memory by using one of the nonsequential search techniques that are explained
later in this chapter.

A simple scheme, which has been in use for many years although its origin
is unknown, can be used to keep the records in a pretty good order without
auxiliary count Ąelds: Whenever a record has been successfully located, it is
moved to the front of the table.

The idea behind this Şself-organizingŤ technique is that the oft-used items
will tend to be located fairly near the beginning of the table, when we need them.
If we assume that the N keys occur with respective probabilities {p1, p2, . . . , pN},
with each search being completely independent of previous searches, it can be
shown that the average number of comparisons needed to Ąnd an item in such a
self-organizing Ąle tends to the limiting value

CN = 1 + 2

1≤i<j≤N

pipj
pi + pj

=
1
2

+

i,j

pipj
pi + pj

. (17)

(See exercise 11.) For example, if pi = 1/N for 1 ≤ i ≤ N, the self-organizing
table is always in completely random order, and this formula reduces to the
familiar expression (N + 1)/2 derived above. In general, the average number of
comparisons (17) is always less than twice the optimal value (3), since CN ≤
1 + 2

N
j=1(j − 1)pj = 2CN − 1. In fact, CN is always less than π/2 times the

optimal value CN [Chung, Hajela, and Seymour, J. Comp. Syst. Sci. 36 (1988),
148Ű157]; this ratio is the best possible constant in general, since it is approached
when pj is proportional to 1/j2.

Let us see how well the self-organizing procedure works when the key prob-
abilities obey ZipfŠs law (8). We have

CN =
1
2

+

1≤i,j≤N

(c/i)(c/j)
c/i + c/j

=
1
2

+ c

1≤i,j≤N

1
i + j

=
1
2

+ c

N

i=1

(HN+i −Hi) =
1
2

+ c

2N

i=1

Hi − 2c

N

i=1

Hi

= 1
2 + c

(2N + 1)H2N − 2N − 2(N + 1)HN + 2N

= 1
2 + c

N ln 4− ln N + O(1)

≈ 2N/ lg N, (18)

by Eqs. 1.2.7Ű(8) and 1.2.7Ű(3). This is substantially better than 1
2 N, when N

is reasonably large, and it is only about ln 4 ≈ 1.386 times as many comparisons
as would be obtained in the optimum arrangement; see (9).

Computational experiments involving actual compiler symbol tables indicate
that the self-organizing method works even better than our formulas predict,
because successive searches are not independent (small groups of keys tend to
occur in bunches).

This self-organizing scheme was Ąrst analyzed by John McCabe [Operations
Research 13 (1965), 609Ű618], who established (17). McCabe also introduced

6.1 SEQUENTIAL SEARCHING 403

another interesting scheme, under which each successfully located key that is not
already at the beginning of the table is simply interchanged with the preceding

key, instead of being moved all the way to the front. He conjectured that the
limiting average search time for this method, assuming independent searches,
never exceeds (17). Several years later, Ronald L. Rivest proved in fact that the
transposition method uses strictly fewer comparisons than the move-to-front
method, in the long run, except of course when N ≤ 2 or when all the nonzero
probabilities are equal [CACM 19 (1976), 63Ű67]. However, convergence to the
asymptotic limit is much slower than for the move-to-front heuristic, so move-to-
front is better unless the process is prolonged [J. R. Bitner, SICOMP 8 (1979),
82Ű110]. Moreover, J. L. Bentley, C. C. McGeoch, D. D. Sleator, and R. E.
Tarjan have proved that the move-to-front method never makes more than four
times the total number of memory accesses made by any algorithm on linear
lists, given any sequence of accesses whatever to the data Ů even if the algorithm
knows the future; the frequency-count and transposition methods do not have
this property [CACM 28 (1985), 202Ű208, 404Ű411]. See SODA 8 (1997), 53Ű62,
for an interesting empirical study of more than 40 heuristics for self-organizing
lists, carried out by R. Bachrach and R. El-Yaniv.

Tape searching with unequal-length records. Now letŠs give the problem
still another twist: Suppose the table we are searching is stored on tape, and
the individual records have varying lengths. For example, in an old-fashioned
operating system, the Şsystem library tapeŤ was such a Ąle; standard system
programs such as compilers, assemblers, loading routines, and report generators
were the ŞrecordsŤ on this tape, and most user jobs would start by searching
down the tape until the appropriate routine had been input. This setup makes
our previous analysis of Algorithm S inapplicable, since step S3 takes a variable
amount of time each time we reach it. The number of comparisons is therefore
not the only criterion of interest.

Let Li be the length of record Ri, and let pi be the probability that this
record will be sought. The average running time of the search method will now
be approximately proportional to

p1L1 + p2(L1 + L2) + · · ·+ pN (L1 + L2 + L3 + · · ·+ LN). (19)

When L1 = L2 = · · · = LN = 1, this reduces to (3), the case already studied.
It seems logical to put the most frequently needed records at the beginning

of the tape; but this is sometimes a bad idea! For example, assume that the tape
contains just two programs, A and B, where A is needed twice as often as B but
it is four times as long. Thus,

N = 2, pA = 2
3 , LA = 4, pB = 1

3 , LB = 1.

If we place A Ąrst on tape, according to the ŞlogicalŤ principle stated above, the
average running time is 2

3 ·4+ 1
3 ·5 = 13

3 ; but if we use an ŞillogicalŤ idea, placing
B Ąrst, the average running time is reduced to 1

3 · 1 + 2
3 · 5 = 11

3 .
The optimum arrangement of programs on a library tape may be determined

as follows.

404 SEARCHING 6.1

Theorem S. Let Li and pi be as deĄned above. The arrangement of records
in the table is optimal if and only if

p1/L1 ≥ p2/L2 ≥ · · · ≥ pN/LN . (20)

In other words, the minimum value of

pa1
La1

+ pa2
(La1

+ La2
) + · · ·+ paN

(La1
+ · · ·+ LaN

),

over all permutations a1 a2 . . . aN of {1, 2, . . . , N}, is equal to (19) if and only if
(20) holds.

Proof. Suppose that Ri and Ri+1 are interchanged on the tape; the cost (19)
changes from

· · · + pi(L1 + · · ·+ Li−1 + Li) + pi+1(L1 + · · ·+ Li+1) + · · ·
to

· · · + pi+1(L1 + · · ·+ Li−1 + Li+1) + pi(L1 + · · ·+ Li+1) + · · · ,
a net change of piLi+1 − pi+1Li. Therefore if pi/Li < pi+1/Li+1, such an
interchange will improve the average running time, and the given arrangement
is not optimal. It follows that (20) holds in any optimal arrangement.

Conversely, assume that (20) holds; we need to prove that the arrangement
is optimal. The argument just given shows that the arrangement is Şlocally
optimalŤ in the sense that adjacent interchanges make no improvement; but there
may conceivably be a long, complicated sequence of interchanges that leads to a
better Şglobal optimum.Ť We shall consider two proofs, one that uses computer
science and one that uses a mathematical trick.

First proof. Assume that (20) holds. We know that any permutation of the
records can be sorted into the order R1 R2 . . . RN by using a sequence of inter-
changes of adjacent records. Each of these interchanges replaces . . . RjRi . . . by
. . . RiRj . . . for some i < j, so it decreases the search time by the nonnegative
amount piLj − pjLi. Therefore the order R1 R2 . . . RN must have minimum
search time.

Second proof. Replace each probability pi by

pi(ϵ) = pi + ϵi − (ϵ1 + ϵ2 + · · ·+ ϵN)/N, (21)

where ϵ is an extremely small positive number. When ϵ is sufficiently small, we
will never have x1p1(ϵ)+ · · ·+xNpN (ϵ) = y1p1(ϵ)+ · · ·+yNpN (ϵ) unless x1 = y1,
. . . , xN = yN ; in particular, equality will not hold in (20). Consider now the
N ! permutations of the records; at least one of them is optimum, and we know
that it satisĄes (20). But only one permutation satisĄes (20) because there are
no equalities. Therefore (20) uniquely characterizes the optimum arrangement
of records in the table for the probabilities pi(ϵ), whenever ϵ is sufficiently small.
By continuity, the same arrangement must also be optimum when ϵ is set equal
to zero. (This Ştie-breakingŤ type of proof is often useful in connection with
combinatorial optimization.)

6.1 SEQUENTIAL SEARCHING 405

Theorem S is due to W. E. Smith, Naval Research Logistics Quarterly 3

(1956), 59Ű66. The exercises below contain further results about optimum Ąle
arrangements.

EXERCISES

1. [M20] When all the search keys are equally probable, what is the standard devi-
ation of the number of comparisons made in a successful sequential search through a
table of N records?

2. [15] Restate the steps of Algorithm S, using linked-memory notation instead of
subscript notation. (If P points to a record in the table, assume that KEY(P) is the key,
INFO(P) is the associated information, and LINK(P) is a pointer to the next record.
Assume also that FIRST points to the Ąrst record, and that the last record points to Λ.)

3. [16] Write a MIX program for the algorithm of exercise 2. What is the running
time of your program, in terms of the quantities C and S in (1)?

x 4. [17] Does the idea of Algorithm Q carry over from subscript notation to linked-
memory notation? (See exercise 2.)

5. [20] Program Q′ is, of course, noticeably faster than Program Q, when C is large.
But are there any small values of C and S for which Program Q′ actually takes more
time than Program Q?

x 6. [20] Add three more instructions to Program Q′, reducing its running time to
about (3.33C + constant)u.

7. [M20] Evaluate the average number of comparisons, (3), using the ŞbinaryŤ prob-
ability distribution (5).

8. [HM22] Find an asymptotic series for H(x)
n as n→∞, when x ̸= 1.

x 9. [HM28] The text observes that the probability distributions given by (11), (13),
and (16) are roughly equivalent when 0 < θ < 1, and that the mean number of
comparisons using (13) is θ

θ+1
N +O(N1−θ).

a) Is the mean number of comparisons equal to θ
θ+1

N + O(N1−θ) also when the
probabilities of (11) are used?

b) What about (16)?
c) How do (11) and (16) compare to (13) when θ < 0?

10. [M20] The best arrangement of records in a sequential table is speciĄed by (4);
what is the worst arrangement? Show that the average number of comparisons in the
worst arrangement has a simple relation to the average number of comparisons in the
best arrangement.

11. [M30] The purpose of this exercise is to analyze the limiting behavior of a self-
organizing Ąle with the move-to-front heuristic. First we need to deĄne some notation:
Let fm(x1, x2, . . . , xm) be the inĄnite sum of all distinct ordered products xi1

xi2
. . . xik

such that 1 ≤ i1, . . . , ik ≤ m, where each of x1, x2, . . . , xm appears in every term. For
example,

f2(x, y) =

j,k≥0

(x1+jy(x+ y)k + y1+jx(x+ y)k) =
xy

1− x− y
 1

1− x +
1

1− y

.

406 SEARCHING 6.1

Given a set X of n variables {x1, . . . , xn}, let

Pnm =

1≤j1<···<jm≤n

fm(xj1
, . . . , xjm); Qnm =

1≤j1<···<jm≤n

1
1−xj1

−· · ·−xjm

.

For example, P32 = f2(x1, x2) + f2(x1, x3) + f2(x2, x3) and Q32 = 1/(1 − x1 − x2) +
1/(1− x1 − x3) + 1/(1− x2 − x3). By convention we set Pn0 = Qn0 = 1.

a) Assume that the textŠs self-organizing Ąle has been servicing requests for item Ri

with probability pi. After the system has been running a long time, show that
Ri will be the mth item from the front with limiting probability piP(N−1)(m−1),
where the set of variables X is {p1, . . . , pi−1, pi+1, . . . , pN}.

b) By summing the result of (a) for m = 1, 2, . . . , we obtain the identity

Pnn + Pn(n−1) + · · ·+ Pn0 = Qnn.

Prove that, consequently,

Pnm +

n−m+ 1

1

Pn(m−1) + · · ·+

n−m+m

m

Pn0 = Qnm;

Qnm −

n−m+ 1

1

Qn(m−1) + · · ·+ (−1)m

n−m+m

m

Qn0 = Pnm.

c) Compute the limiting average distance di =

m≥1 mpiP(N−1)(m−1) of Ri from

the front of the list; then evaluate CN =
N

i=1 pidi.

12. [M23] Use (17) to evaluate the average number of comparisons needed to search
the self-organizing Ąle when the search keys have the binary probability distribution (5).

13. [M27] Use (17) to evaluate CN for the wedge-shaped probability distribution (6).

14. [M21] Given two sequences ⟨x1, x2, . . . , xn⟩ and ⟨y1, y2, . . . , yn⟩ of real numbers,
what permutation a1 a2 . . . an of the subscripts will make

i xiyai a maximum? What

permutation will make it a minimum?

x 15. [M22] The text shows how to arrange programs optimally on a system library
tape, when only one program is being sought. But another set of assumptions is more
appropriate for a subroutine library tape, from which we may wish to load various
subroutines called for in a userŠs program.

For this case let us suppose that subroutine j is desired with probability Pj ,
independently of whether or not other subroutines are desired. Then, for example,
the probability that no subroutines at all are needed is (1 − P1)(1 − P2) . . . (1 − PN);
and the probability that the search will end just after loading the jth subroutine is
Pj (1− Pj+1) . . . (1− PN). If Lj is the length of subroutine j, the average search time
will therefore be essentially proportional to

L1P1(1−P2) . . . (1−PN) + (L1 +L2)P2(1−P3) . . . (1−PN) + · · ·+ (L1 + · · ·+LN)PN .

What is the optimum arrangement of subroutines on the tape, under these assump-
tions?

16. [M22] (H. Riesel.) We often need to test whether or not n given conditions are
all simultaneously true. (For example, we may want to test whether both x > 0 and
y < z2, and it is not immediately clear which condition should be tested Ąrst.) Suppose
that the testing of condition j costs Tj units of time, and that the condition will be
true with probability pj , independent of the outcomes of all the other conditions. In
what order should we make the tests?

6.1 SEQUENTIAL SEARCHING 407

p1 p2 p
N

Fig. 2. An Şorgan-pipe arrangementŤ of probabilities minimizes the average seek time
in a catenated search.

17. [M23] (J. R. Jackson.) Suppose you have to do n jobs; the jth job takes Tj units
of time, and it has a deadline Dj . In other words, the jth job is supposed to be Ąnished
after at most Dj units of time have elapsed. What schedule a1 a2 . . . an for processing
the jobs will minimize the maximum tardiness, namely

max(Ta1
−Da1

, Ta1
+Ta2

−Da2
, . . . , Ta1

+Ta2
+ · · ·+Tan−Dan) ?

18. [M30] (Catenated search.) Suppose that N records are located in a linear array
R1 . . . RN, with probability pj that record Rj will be sought. A search process is called
ŞcatenatedŤ if each search begins where the last one left off. If consecutive searches
are independent, the average time required will be

1≤i,j≤N pipjd(i, j), where d(i, j)

represents the amount of time to do a search that starts at position i and ends at
position j. This model can be applied, for example, to disk Ąle seek time, if d(i, j) is
the time needed to travel from cylinder i to cylinder j.

The object of this exercise is to characterize the optimum placement of records for
catenated searches, whenever d(i, j) is an increasing function of |i− j|, that is, whenever
we have d(i, j) = d|i−j| for d1 < d2 < · · · < dN−1. (The value of d0 is irrelevant.) Prove
that in this case the records are optimally placed, among all N ! permutations, if and
only if either p1 ≤ pN ≤ p2 ≤ pN−1 ≤ · · · ≤ p⌊N/2⌋+1 or pN ≤ p1 ≤ pN−1 ≤ p2 ≤
· · · ≤ p⌈N/2⌉. (Thus, an Şorgan-pipe arrangementŤ of probabilities is best, as shown
in Fig. 2.) Hint: Consider any arrangement where the respective probabilities are
q1 q2 . . . qk s rk . . . r2 r1 t1 . . . tm, for some m ≥ 0 and k > 0; N = 2k+m+ 1. Show that
the rearrangement q′1 q

′
2 . . . q

′
k s r

′
k . . . r

′
2 r

′
1 t1 . . . tm is better, where q′i = min (qi, ri) and

r′i = max (qi, ri), except when q′i = qi and r′i = ri for all i or when q′i = ri and r′i = qi

and tj = 0 for all i and j. The same holds true when s is not present and N = 2k+m.

19. [M20] Continuing exercise 18, what are the optimal arrangements for catenated
searches when the function d(i, j) has the property that d(i, j) + d(j, i) = c for all
i ̸= j? [This situation occurs, for example, on tapes without read-backwards capability,
when we do not know the appropriate direction to search; for i < j we have, say,
d(i, j) = a+b(Li+1 + · · ·+Lj) and d(j, i) = a+b(Lj+1 + · · ·+LN)+r+b(L1 + · · ·+Li),
where r is the rewind time.]

20. [M28] Continuing exercise 18, what are the optimal arrangements for catenated
searches when the function d(i, j) is min(d|i−j|, dn−|i−j|), for d1 < d2 < · · · ? [This
situation occurs, for example, in a two-way linked circular list, or in a two-way shift-
register storage device.]

408 SEARCHING 6.1

21. [M28] Consider an n-dimensional cube whose vertices have coordinates (d1,. . .,dn)
with dj = 0 or 1; two vertices are called adjacent if they differ in exactly one coordinate.
Suppose that a set of 2n numbers x0 ≤ x1 ≤ · · · ≤ x2n−1 is to be assigned to the 2n

vertices in such a way that

i,j |xi − xj | is minimized, where the sum is over all i and j
such that xi and xj have been assigned to adjacent vertices. Prove that this minimum
will be achieved if, for all j, xj is assigned to the vertex whose coordinates are the
binary representation of j.

x 22. [20] Suppose you want to search a large Ąle, not for equality but to Ąnd the 1000
records that are closest to a given key, in the sense that these 1000 records have the
smallest values of d(Kj ,K) for some given distance function d. What data structure is
most appropriate for such a sequential search?

Attempt the end, and never stand to doubt;

NothingŠs so hard, but search will Ąnd it out.

— ROBERT HERRICK, Seeke and Ąnde (1648)

6.2.1 SEARCHING AN ORDERED TABLE 409

6.2. SEARCHING BY COMPARISON OF KEYS

In this section we shall discuss search methods that are based on a linear
ordering of the keys, such as alphabetic order or numeric order. After comparing
the given argument K to a key Ki in the table, the search continues in three
different ways, depending on whether K < Ki, K = Ki, or K > Ki. The
sequential search methods of Section 6.1 were essentially limited to a two-way
decision (K = Ki versus K ̸= Ki), but if we free ourselves from the restriction
of sequential access we are able to make effective use of an order relation.

6.2.1. Searching an Ordered Table

What would you do if someone handed you a large telephone directory and
told you to Ąnd the name of the person whose number is 795-6841? There is
no better way to tackle this problem than to use the sequential methods of
Section 6.1. (Well, you might try to dial the number and talk to the person who
answers; or you might know how to obtain a special directory that is sorted by
number instead of by name.) The point is that it is much easier to Ąnd an entry
by the partyŠs name, instead of by number, although the telephone directory
contains all the information necessary in both cases. When a large Ąle must
be searched, sequential scanning is almost out of the question, but an ordering
relation simpliĄes the job enormously.

With so many sorting methods at our disposal (Chapter 5), we will have little
difficulty rearranging a Ąle into order so that it may be searched conveniently.
Of course, if we need to search the table only once, a sequential search would
be faster than to do a complete sort of the Ąle; but if we need to make repeated
searches in the same Ąle, we are better off having it in order. Therefore in this
section we shall concentrate on methods that are appropriate for searching a
table whose keys satisfy

K1 < K2 < · · · < KN ,

assuming that we can easily access the key in any given position. After comparing
K to Ki in such a table, we have either

• K < Ki [Ri, Ri+1, . . . , RN are eliminated from consideration];

or • K = Ki [the search is done];

or • K > Ki [R1, R2, . . . , Ri are eliminated from consideration].

In each of these three cases, substantial progress has been made, unless i is
near one of the ends of the table; this is why the ordering leads to an efficient
algorithm.

Binary search. Perhaps the Ąrst such method that suggests itself is to start by
comparing K to the middle key in the table; the result of this probe tells which
half of the table should be searched next, and the same procedure can be used
again, comparing K to the middle key of the selected half, etc. After at most
about lg N comparisons, we will have found the key or we will have established

410 SEARCHING 6.2.1

B1. Initialize

B2. Get midpoint

B3. Compare

B4. Adjust u B5. Adjust l

u<l
FAILURE

SUCCESS

=
< >

Fig. 3. Binary search.

that it is not present. This procedure is sometimes known as Şlogarithmic searchŤ
or Şbisection,Ť but it is most commonly called binary search.

Although the basic idea of binary search is comparatively straightforward,
the details can be surprisingly tricky, and many good programmers have done it
wrong the Ąrst few times they tried. One of the most popular correct forms of
the algorithm makes use of two pointers, l and u, that indicate the current lower
and upper limits for the search, as follows:

Algorithm B (Binary search). Given a table of records R1, R2, . . . , RN whose
keys are in increasing order K1 < K2 < · · · < KN, this algorithm searches for a
given argument K.

B1. [Initialize.] Set l← 1, u← N.

B2. [Get midpoint.] (At this point we know that if K is in the table, it satisĄes
Kl ≤ K ≤ Ku. A more precise statement of the situation appears in exer-
cise 1 below.) If u < l, the algorithm terminates unsuccessfully. Otherwise,
set i←

(l + u)/2

, the approximate midpoint of the relevant table area.

B3. [Compare.] If K < Ki, go to B4; if K > Ki, go to B5; and if K = Ki, the
algorithm terminates successfully.

B4. [Adjust u.] Set u← i− 1 and return to B2.

B5. [Adjust l.] Set l← i + 1 and return to B2.

Figure 4 illustrates two cases of this binary search algorithm: Ąrst to search
for the argument 653, which is present in the table, and then to search for 400,
which is absent. The brackets indicate l and u, and the underlined key repre-
sents Ki. In both examples the search terminates after making four comparisons.

6.2.1 SEARCHING AN ORDERED TABLE 411

a) Searching for 653:

[061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908]
061 087 154 170 275 426 503 509 [512 612 653 677 703 765 897 908]
061 087 154 170 275 426 503 509 [512 612 653] 677 703 765 897 908
061 087 154 170 275 426 503 509 512 612 [653] 677 703 765 897 908

b) Searching for 400:

[061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908]
[061 087 154 170 275 426 503] 509 512 612 653 677 703 765 897 908
061 087 154 170 [275 426 503] 509 512 612 653 677 703 765 897 908
061 087 154 170 [275] 426 503 509 512 612 653 677 703 765 897 908
061 087 154 170 275] [426 503 509 512 612 653 677 703 765 897 908

Fig. 4. Examples of binary search.

Program B (Binary search). As in the programs of Section 6.1, we assume
here that Ki is a full-word key appearing in location KEY+ i. The following code
uses rI1 ≡ l, rI2 ≡ u, rI3 ≡ i.
01 START ENT1 1 1 B1. Initialize. l← 1.
02 ENT2 N 1 u← N.
03 JMP 2F 1 To B2.
04 5H JE SUCCESS C1 Jump if K = Ki.
05 ENT1 1,3 C1− S B5. Adjust l. l← i+ 1.
06 2H ENTA 0,1 C + 1− S B2. Get midpoint.
07 INCA 0,2 C + 1− S rA← l + u.
08 SRB 1 C + 1− S rA← ⌊rA/2⌋. (rX changes too.)
09 STA TEMP C + 1− S
10 CMP1 TEMP C + 1− S
11 JG FAILURE C + 1− S Jump if u < l.
12 LD3 TEMP C i← midpoint.
13 3H LDA K C B3. Compare.
14 CMPA KEY,3 C
15 JGE 5B C Jump if K ≥ Ki.
16 ENT2 -1,3 C2 B4. Adjust u. u← i− 1.
17 JMP 2B C2 To B2.

This procedure doesnŠt blend with MIX quite as smoothly as the other
algorithms we have seen, because MIX does not allow much arithmetic in index
registers. The running time is (18C − 10S + 12)u, where C = C1 + C2 is the
number of comparisons made (the number of times step B3 is performed), and
S = [outcome is successful]. The operation on line 08 of this program is Şshift
right binary 1,Ť which is legitimate only on binary versions of MIX; for general
byte size, this instruction should be replaced by ŞMUL =1//2+1=Ť, increasing the
running time to (26C − 18S + 20)u.

A tree representation. In order to really understand what is happening in
Algorithm B, our best bet is to think of the procedure as a binary decision tree,
as shown in Fig. 5 for the case N = 16.

412 SEARCHING 6.2.1

8

4 12

2 6 10 14

1 3 5 7 9 11 13 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16

15 16

Fig. 5. A comparison tree that corresponds to binary search when N = 16.

When N is 16, the Ąrst comparison made by the algorithm is K : K8; this is
represented by the root node ❦8 in the Ągure. Then if K < K8, the algorithm
follows the left subtree, comparing K to K4; similarly if K > K8, the right
subtree is used. An unsuccessful search will lead to one of the external square
nodes numbered 0 through N ; for example, we reach node 6 if and only if
K6 < K < K7.

The binary tree corresponding to a binary search on N records can be
constructed as follows: If N = 0, the tree is simply 0 . Otherwise the root
node is ☛ ✟

✡ ✠⌈N/2⌉ ,

the left subtree is the corresponding binary tree with ⌈N/2⌉ − 1 nodes, and the
right subtree is the corresponding binary tree with ⌊N/2⌋ nodes and with all
node numbers increased by ⌈N/2⌉.

In an analogous fashion, any algorithm for searching an ordered table of
length N by means of comparisons can be represented as an N -node binary tree
in which the nodes are labeled with the numbers 1 to N (unless the algorithm
makes redundant comparisons). Conversely, any binary tree corresponds to a
valid method for searching an ordered table; we simply label the nodes

0 ❦1 1 ❦2 2 . . . N−1 ❦N N (1)

in symmetric order, from left to right.
If the search argument input to Algorithm B is K10, the algorithm makes the

comparisons K > K8, K < K12, K = K10. This corresponds to the path from
the root to ❦10 in Fig. 5. Similarly, the behavior of Algorithm B on other keys
corresponds to the other paths leading from the root of the tree. The method of
constructing the binary trees corresponding to Algorithm B therefore makes it
easy to prove the following result by induction on N :

Theorem B. If 2k−1 ≤ N < 2k, a successful search using Algorithm B requires
(min 1, max k) comparisons. If N = 2k − 1, an unsuccessful search requires

6.2.1 SEARCHING AN ORDERED TABLE 413

k comparisons; and if 2k−1 ≤ N < 2k − 1, an unsuccessful search requires either
k − 1 or k comparisons.

Further analysis of binary search.

Nonmathematical readers should skip

to Eq. (4).

The tree representation shows us also how to compute the average

number of comparisons in a simple way. Let CN be the average number of
comparisons in a successful search, assuming that each of the N keys is an
equally likely argument; and let C ′

N be the average number of comparisons in
an unsuccessful search, assuming that each of the N + 1 intervals between and
outside the extreme values of the keys is equally likely. Then we have

CN = 1 +
internal path length of tree

N
, C ′

N =
external path length of tree

N + 1
,

by the deĄnition of internal and external path length. We saw in Eq. 2.3.4.5Ű(3)
that the external path length is always 2N more than the internal path length.
Hence there is a rather unexpected relationship between CN and C ′

N :

CN =

1 +
1
N

C ′
N − 1. (2)

This formula, which is due to T. N. Hibbard [JACM 9 (1962), 16Ű17], holds
for all search methods that correspond to binary trees; in other words, it holds
for all methods that are based on nonredundant comparisons. The variance of
successful-search comparisons can also be expressed in terms of the corresponding
variance for unsuccessful searches (see exercise 25).

From the formulas above we can see that the ŞbestŤ way to search by
comparisons is one whose tree has minimum external path length, over all binary
trees with N internal nodes. Fortunately it can be proved that Algorithm B is
optimum in this sense, for all N ; for we have seen (exercise 5.3.1Ű20) that a
binary tree has minimum path length if and only if its external nodes all occur
on at most two adjacent levels. It follows that the external path length of the
tree corresponding to Algorithm B is

(N + 1)

⌊lg N⌋+ 2

− 2⌊lg N⌋+1. (3)

See Eq. 5.3.1Ű(34).

From this formula and (2) we can compute the exact

average number of comparisons, assuming that all search arguments are equally
probable.

N = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CN = 1 1 1
2 1 2

3 2 2 1
5 2 2

6 2 3
7 2 5

8 2 7
9 2 9

10 3 3 1
12 3 2

13 3 3
14 3 4

15 3 6
16

C ′
N = 1 1 2

3 2 2 2
5 2 4

6 2 6
7 3 3 2

9 3 4
10 3 6

11 3 8
12 3 10

13 3 12
14 3 14

15 4 4 2
17

In general, if k = ⌊lg N⌋, we have

CN = k + 1− (2k+1 − k − 2)/N

C ′
N = k + 2− 2k+1/(N + 1)

= lg N − 1 + ϵ + (k + 2)/N,

= lg(N + 1) + ϵ′
(4)

where 0 ≤ ϵ, ϵ′ < 0.0861; see Eq. 5.3.1Ű(35).

414 SEARCHING 6.2.1

To summarize: Algorithm B never makes more than ⌊lg N⌋+1 comparisons,
and it makes about lg N − 1 comparisons in an average successful search. No
search method based on comparisons can do better than this. The average
running time of Program B is approximately

(18 lg N − 16)u for a successful search,

(18 lg N + 12)u for an unsuccessful search,
(5)

if we assume that all outcomes of the search are equally likely.

An important variation. Instead of using three pointers l, i, and u in the
search, it is tempting to use only two, namely the current position i and its rate
of change, δ; after each unequal comparison, we could then set i ← i ± δ and
δ ← δ/2 (approximately). It is possible to do this, but only if extreme care
is paid to the details, as in the following algorithm. Simpler approaches are
doomed to failure!

Algorithm U (Uniform binary search). Given a table of records R1, R2, . . . , RN

whose keys are in increasing order K1 < K2 < · · · < KN, this algorithm searches
for a given argument K. If N is even, the algorithm will sometimes refer to a
dummy key K0 that should be set to −∞ (or any value less than K). We assume
that N ≥ 1.

U1. [Initialize.] Set i← ⌈N/2⌉, m← ⌊N/2⌋.
U2. [Compare.] If K < Ki, go to U3; if K > Ki, go to U4; and if K = Ki, the

algorithm terminates successfully.

U3. [Decrease i.] (We have pinpointed the search to an interval that contains
either m or m−1 records; i points just to the right of this interval.) If m = 0,
the algorithm terminates unsuccessfully. Otherwise set i← i−⌈m/2⌉; then
set m← ⌊m/2⌋ and return to U2.

U4. [Increase i.] (We have pinpointed the search to an interval that contains
either m or m−1 records; i points just to the left of this interval.) If m = 0,
the algorithm terminates unsuccessfully. Otherwise set i← i + ⌈m/2⌉; then
set m← ⌊m/2⌋ and return to U2.

Figure 6 shows the corresponding binary tree for the search, when N = 10.
In an unsuccessful search, the algorithm may make a redundant comparison just
before termination; those nodes are shaded in the Ągure. We may call the search
process uniform because the difference between the number of a node on level l
and the number of its ancestor on level l− 1 has a constant value δ for all nodes
on level l.

The theory underlying Algorithm U can be understood as follows: Suppose
that we have an interval of length n− 1 to search; a comparison with the middle
element (for n even) or with one of the two middle elements (for n odd) leaves us
with two intervals of lengths ⌊n/2⌋−1 and ⌈n/2⌉−1. After repeating this process
k times, we obtain 2k intervals, of which the smallest has length ⌊n/2k⌋ − 1 and
the largest has length ⌈n/2k⌉−1. Hence the lengths of two intervals at the same

6.2.1 SEARCHING AN ORDERED TABLE 415

5

2 8

1 3 7 9

0 2 2 4 6 8 8 10

0 1 2 3 4 5 6 7 8 9 10

δ=3

δ=1

δ=1

Fig. 6. The comparison tree for a ŞuniformŤ binary search, when N = 10.

level differ by at most unity; this makes it possible to choose an appropriate
ŞmiddleŤ element, without keeping track of the exact lengths.

The principal advantage of Algorithm U is that we need not maintain the
value of m at all; we need only refer to a short table of the various δ to use at
each level of the tree. Thus the algorithm reduces to the following procedure,
which is equally good on binary or decimal computers:

Algorithm C (Uniform binary search). This algorithm is just like Algorithm U,
but it uses an auxiliary table in place of the calculations involving m. The table
entries are

DELTA[j] =

N + 2j−1

2j

, for 1 ≤ j ≤ ⌊lg N⌋+ 2. (6)

C1. [Initialize.] Set i← DELTA[1], j ← 2.

C2. [Compare.] If K < Ki, go to C3; if K > Ki, go to C4; and if K = Ki, the
algorithm terminates successfully.

C3. [Decrease i.] If DELTA[j] = 0, the algorithm terminates unsuccessfully.
Otherwise, set i← i− DELTA[j], j ← j + 1, and go to C2.

C4. [Increase i.] If DELTA[j] = 0, the algorithm terminates unsuccessfully.
Otherwise, set i← i + DELTA[j], j ← j + 1, and go to C2.

Exercise 8 proves that this algorithm refers to the artiĄcial key K0 = −∞
only when N is even.

Program C (Uniform binary search). This program does the same job as
Program B, using Algorithm C with rA ≡ K, rI1 ≡ i, rI2 ≡ j, rI3 ≡ DELTA[j].
01 START ENT1 N+1/2 1 C1. Initialize. i← ⌊(N + 1)/2⌋.
02 ENT2 2 1 j ← 2.
03 LDA K 1
04 JMP 2F 1
05 3H JE SUCCESS C1 Jump if K = Ki.
06 J3Z FAILURE C1− S Jump if DELTA[j] = 0.
07 DEC1 0,3 C1− S −A C3. Decrease i.

416 SEARCHING 6.2.1

8

4 9

2 6 8 10

1 3 5 7 8 9 10

0 1 2 3 4 5 6 7

Fig. 7. The comparison tree for SharŠs almost uniform search, when N = 10.

08 5H INC2 1 C − 1 j ← j + 1.
09 2H LD3 DELTA,2 C C2. Compare.
10 CMPA KEY,1 C
11 JLE 3B C Jump if K ≤ Ki.
12 INC1 0,3 C2 C4. Increase i.
13 J3NZ 5B C2 Jump if DELTA[j] ̸= 0.
14 FAILURE EQU * 1− S Exit if not in table.

In a successful search, this algorithm corresponds to a binary tree with the
same internal path length as the tree of Algorithm B, so the average number of
comparisons CN is the same as before. In an unsuccessful search, Algorithm C
always makes exactly ⌊lg N⌋ + 1 comparisons. The total running time of Pro-
gram C is not quite symmetrical between left and right branches, since C1 is
weighted more heavily than C2, but exercise 11 shows that we have K < Ki

roughly as often as K > Ki; hence Program C takes approximately

(8.5 lg N − 6)u for a successful search,

(8.5⌊lg N⌋+ 12)u for an unsuccessful search.
(7)

This is more than twice as fast as Program B, without using any special prop-
erties of binary computers, even though the running times (5) for Program B
assume that MIX has a Şshift right binaryŤ instruction.

Another modiĄcation of binary search, suggested in 1971 by L. E. Shar, will
be still faster on some computers, because it is uniform after the Ąrst step, and
it requires no table. The Ąrst step is to compare K with Ki, where i = 2k,
k = ⌊lg N⌋. If K < Ki, we use a uniform search with the δŠs equal to 2k−1,
2k−2, . . . , 1, 0. On the other hand, if K > Ki we reset i to i′ = N + 1 − 2l,
where l =

lg(N − 2k + 1)

, and pretend that the Ąrst comparison was actually

K > Ki′ , using a uniform search with the δŠs equal to 2l−1, 2l−2, . . . , 1, 0.
SharŠs method is illustrated for N = 10 in Fig. 7. Like the previous

algorithms, it never makes more than ⌊lg N⌋ + 1 comparisons; hence it makes
at most one more than the minimum possible average number of comparisons,
in spite of the fact that it occasionally goes through several redundant steps in
succession (see exercise 12).

6.2.1 SEARCHING AN ORDERED TABLE 417

8

5 11

3 7 10 12

2 4 6 7 9 10 11 12

1 2 3 4 5 6 8 9

0 1

Fig. 8. The Fibonacci tree of order 6.

Still another modiĄcation of binary search, which increases the speed of all

the methods above when N is extremely large, is discussed in exercise 23. See
also exercise 24, for a method that is faster yet.

*Fibonaccian search. In the polyphase merge we have seen that the Fibonacci
numbers can play a role analogous to the powers of 2. A similar phenomenon
occurs in searching, where Fibonacci numbers provide us with an alternative to
binary search. The resulting method is preferable on some computers, because it
involves only addition and subtraction, not division by 2. The procedure we are
about to discuss should be distinguished from an important numerical procedure
called ŞFibonacci search,Ť which is used to locate the maximum of a unimodal
function [see Fibonacci Quarterly 4 (1966), 265Ű269]; the similarity of names
has led to some confusion.

The Fibonaccian search technique looks very mysterious at Ąrst glance, if
we simply take the program and try to explain what is happening; it seems to
work by magic. But the mystery disappears as soon as the corresponding search
tree is displayed. Therefore we shall begin our study of the method by looking
at Fibonacci trees.

Figure 8 shows the Fibonacci tree of order 6. It looks somewhat more like
a real-life shrub than the other trees we have been considering, perhaps because
many natural processes satisfy a Fibonacci law. In general, the Fibonacci tree of
order k has Fk+1−1 internal (circular) nodes and Fk+1 external (square) nodes,
and it is constructed as follows:

If k = 0 or k = 1, the tree is simply 0 .

If k ≥ 2, the root is Fk; the left subtree is the Fibonacci tree of order k− 1;
and the right subtree is the Fibonacci tree of order k − 2 with all numbers
increased by Fk.

Except for the external nodes, the numbers on the two children of each internal
node differ from their parentŠs number by the same amount, and this amount

418 SEARCHING 6.2.1

is a Fibonacci number. For example, 5 = 8 − F4 and 11 = 8 + F4 in Fig. 8.
When the difference is Fj , the corresponding Fibonacci difference for the next
branch on the left is Fj−1, while on the right it skips down to Fj−2. For example,
3 = 5− F3 while 10 = 11− F2.

If we combine these observations with an appropriate mechanism for recog-
nizing the external nodes, we arrive at the following method:

Algorithm F (Fibonaccian search). Given a table of records R1, R2, . . . , RN

whose keys are in increasing order K1 < K2 < · · · < KN, this algorithm searches
for a given argument K.

For convenience in description, we assume that N + 1 is a perfect Fibonacci
number, Fk+1. It is not difficult to make the method work for arbitrary N, if a
suitable initialization is provided (see exercise 14).

F1. [Initialize.] Set i ← Fk, p ← Fk−1, q ← Fk−2. (Throughout the algorithm,
p and q will be consecutive Fibonacci numbers.)

F2. [Compare.] If K < Ki, go to step F3; if K > Ki, go to F4; and if K = Ki,
the algorithm terminates successfully.

F3. [Decrease i.] If q = 0, the algorithm terminates unsuccessfully. Otherwise
set i← i− q, and set (p, q)← (q, p−q); then return to F2.

F4. [Increase i.] If p = 1, the algorithm terminates unsuccessfully. Otherwise
set i← i + q, p← p− q, then q ← q − p, and return to F2.

The following MIX implementation gains speed by making two copies of the
inner loop, one in which p is in rI2 and q in rI3, and one in which the registers are
reversed; this simpliĄes step F3. In fact, the program actually keeps p − 1 and
q − 1 in the registers, instead of p and q, in order to simplify the test Şp = 1?Ť
in step F4.

Program F (Fibonaccian search). We follow the previous conventions, with
rA ≡ K, rI1 ≡ i, (rI2 or rI3) ≡ p− 1, (rI3 or rI2) ≡ q − 1.
01 START LDA K 1 F1. Initialize.
02 ENT1 Fk 1 i← Fk.
03 ENT2 Fk−1-1 1 p← Fk−1.
04 ENT3 Fk−2-1 1 q ← Fk−2.
05 JMP F2A 1 To step F2.
06 F4A INC1 1,3 C2− S −A F4. Increase i. i← i+ q.
07 DEC2 1,3 C2− S −A p← p− q.
08 DEC3 1,2 C2− S −A q ← q − p.
09 F2A CMPA KEY,1 C F2. Compare.
10 JL F3A C To F3 if K < Ki.
11 JE SUCCESS C2 Exit if K = Ki.
12 J2NZ F4A C2− S To F4 if p ̸= 1.
13 JMP FAILURE A Exit if not in table.
14 F3A DEC1 1,3 C1 F3. Decrease i. i← i− q.
15 DEC2 1,3 C1 p← p− q.
16 J3NN F2B C1 Swap registers if q > 0.
17 JMP FAILURE 1− S −A Exit if not in table.

6.2.1 SEARCHING AN ORDERED TABLE 419

18 F4B INC1 1,2 (Lines 18Ű29 are parallel to 06Ű17.)
19 DEC3 1,2

20 DEC2 1,3

21 F2B CMPA KEY,1

22 JL F3B

23 JE SUCCESS

24 J3NZ F4B

25 JMP FAILURE

26 F3B DEC1 1,2

27 DEC3 1,2

28 J2NN F2A

29 JMP FAILURE

The running time of this program is analyzed in exercise 18. Figure 8 shows,
and the analysis proves, that a left branch is taken somewhat more often than a
right branch. Let C, C1, and (C2− S) be the respective number of times steps
F2, F3, and F4 are performed. Then we have

C = (ave ϕk/
√

5 + O(1), max k − 1),

C1 = (ave k/
√

5 + O(1), max k − 1),

C2− S = (ave ϕ−1k/
√

5 + O(1), max ⌊k/2⌋).
(8)

Thus the left branch is taken about ϕ ≈ 1.618 times as often as the right branch
(a fact that we might have guessed, since each probe divides the remaining
interval into two parts, with the left part about ϕ times as large as the right).
The total average running time of Program F therefore comes to approximately

1
5

(18 + 4ϕ)k + 31− 26ϕ

u ≈ (7.050 lg N + 1.08)u (9)

for a successful search, plus (9−3ϕ)u ≈ 4.15u for an unsuccessful search. This is
faster than Program C, although the worst-case running time (roughly 8.6 lg N)
is slightly slower.

Interpolation search. LetŠs forget computers for a moment, and consider how
people actually carry out a search. Sometimes everyday life provides us with
clues that lead to good algorithms.

Imagine yourself looking up a word in a dictionary. You probably donŠt

begin by looking Ąrst at the middle page, then looking at the 1/4 or 3/4 point,
etc., as in a binary search. ItŠs even less likely that you use a Fibonaccian search!

If the word you want starts with the letter A, you probably begin near the
front of the dictionary. In fact, many dictionaries have thumb indexes that show
the starting page or the middle page for the words beginning with a Ąxed letter.
This thumb-index technique can readily be adapted to computers, and it will
speed up the search; such algorithms are explored in Section 6.3.

Yet even after the initial point of search has been found, your actions still
are not much like the methods we have discussed. If you notice that the desired
word is alphabetically much greater than the words on the page being examined,
you will turn over a fairly large chunk of pages before making the next reference.

420 SEARCHING 6.2.1

This is quite different from the algorithms above, which make no distinction
between Şmuch greaterŤ and Şslightly greater.Ť

Such considerations suggest an algorithm that might be called interpolation

search: When we know that K lies between Kl and Ku, we can choose the next
probe to be about (K −Kl)/(Ku −Kl) of the way between l and u, assuming
that the keys are numeric and that they increase in a roughly constant manner
throughout the interval.

Interpolation search is asymptotically superior to binary search. One step of
binary search essentially reduces the amount of uncertainty from n to 1

2 n, while
one step of interpolation search essentially reduces it to

√
n, when the keys in the

table are randomly distributed. Hence interpolation search takes about lg lg N
steps, on the average, to reduce the uncertainty from N to 2. (See exercise 22.)

However, computer simulation experiments show that interpolation search
does not decrease the number of comparisons enough to compensate for the
extra computing time involved, unless the table is rather large. Typical Ąles
arenŠt sufficiently random, and the difference between lg lg N and lg N is not
substantial unless N exceeds, say, 216 = 65,536. Interpolation is most successful
in the early stages of searching a large possibly external Ąle; after the range has
been narrowed down, binary search Ąnishes things off more quickly. (Note that
dictionary lookup by hand is essentially an external, not an internal, search. We
shall discuss external searching later.)

History and bibliography. The earliest known example of a long list of items
that was sorted into order to facilitate searching is the remarkable Babylonian
reciprocal table of Inakibit-Anu, dating from about 200 B.C. This clay tablet
contains more than 100 pairs of values, which appear to be the beginning of
a list of approximately 500 multiple-precision sexagesimal numbers and their
reciprocals, sorted into lexicographic order. For example, the list included the
following sequence of entries:

01 13 09 34 29 08 08 53 20
01 13 14 31 52 30
01 13 43 40 48
01 13 48 40 30
01 14 04 26 40

49 12 27
49 09 07 12
48 49 41 15
48 46 22 59 25 25 55 33 20
48 36

The task of sorting 500 entries like this, given the technology available at that
time, must have been phenomenal. [See D. E. Knuth, Selected Papers on Com-
puter Science (Cambridge Univ. Press, 1996), Chapter 11, for further details.]

It is fairly natural to sort numerical values into order, but an order relation
between letters or words does not suggest itself so readily. Yet a collating
sequence for individual letters was present already in the most ancient alpha-
bets. For example, many of the Biblical psalms have verses that follow a strict
alphabetic sequence, the Ąrst verse starting with aleph, the second with beth,
etc.; this was an aid to memory. Eventually the standard sequence of letters
was used by Semitic and Greek peoples to denote numerals; for example, α, β, γ
stood for 1, 2, 3, respectively.

6.2.1 SEARCHING AN ORDERED TABLE 421

The use of alphabetic order for entire words seems to be a much later
invention; it is something we might think is obvious, yet it has to be taught
to children, and at some point in history it was necessary to teach it to adults.
Several lists from about 300 B.C. have been found on the Aegean Islands, giving
the names of people in certain religious cults; these lists have been alphabetized,
but only by the Ąrst letter, thus representing only the Ąrst pass of a left-
to-right radix sort. Some Greek papyri from the years A.D. 134Ű135 contain
fragments of ledgers that show the names of taxpayers alphabetized by the Ąrst
two letters. Apollonius Sophista used alphabetic order on the Ąrst two letters,
and often on subsequent letters, in his lengthy concordance of HomerŠs poetry
(Ąrst century A.D.). A few examples of more perfect alphabetization are known,
notably GalenŠs Hippocratic Glosses (c. 200), but they are very rare. Words were
arranged by their Ąrst letter only in the Etymologiarum of St. Isidorus (c. 630,
Book x); and the Corpus Glossary (c. 725) used only the Ąrst two letters of each
word. The latter two works were perhaps the largest nonnumerical Ąles of data
to be compiled during the Middle Ages.

It is not until Giovanni di GenoaŠs Catholicon (1286) that we Ąnd a speciĄc
description of true alphabetical order. In his preface, Giovanni explained that

amo precedes bibo

abeo precedes adeo

amatus precedes amor

imprudens precedes impudens

iusticia precedes iustus

polisintheton precedes polissenus

(thereby giving examples of situations in which the ordering is determined by the
1st, 2nd, . . . , 6th letters), Şand so in like manner.Ť He remarked that strenuous
effort was required to devise these rules. ŞI beg of you, therefore, good reader,
do not scorn this great labor of mine and this order as something worthless.Ť

A detailed study of the development of alphabetic order, up to the time
printing was invented, has been made by Lloyd W. Daly [Collection Latomus
90 (1967), 100 pages]. He found some interesting old manuscripts that were
evidently used as worksheets while sorting words by their Ąrst letters (see pages
89Ű90 of his monograph).

The Ąrst dictionary of English, Robert CawdreyŠs Table Alphabeticall (Lon-
don, 1604), contains the following instructions:

Nowe if the word, which thou art desirous to Ąnde, beginne with (a) then
looke in the beginning of this Table, but if with (v) looke towards the end.
Againe, if thy word beginne with (ca) looke in the beginning of the letter
(c) but if with (cu) then looke toward the end of that letter. And so of all
the rest. &c.

Cawdrey seems to have been teaching himself how to alphabetize as he prepared
his dictionary; numerous misplaced words appear on the Ąrst few pages, but the
alphabetic order in the last part is not as bad.

422 SEARCHING 6.2.1

Binary search was Ąrst mentioned by John Mauchly, in what was perhaps the
Ąrst published discussion of nonnumerical programming methods [Theory and
Techniques for the Design of Electronic Digital Computers, edited by G. W. Pat-
terson, 1 (1946), 9.7Ű9.8; 3 (1946), 22.8Ű22.9]. The method became well known
to programmers, but nobody seems to have worked out the details of what should
be done when N does not have the special form 2n−1. [See A. D. Booth, Nature
176 (1955), 565; A. I. Dumey, Computers and Automation 5 (December 1956), 7,
where binary search is called ŞTwenty QuestionsŤ; Daniel D. McCracken, Digital
Computer Programming (Wiley, 1957), 201Ű203; and M. Halpern, CACM 1, 1
(February 1958), 1Ű3.]

D. H. Lehmer [Proc. Symp. Appl. Math. 10 (1960), 180Ű181] was apparently
the Ąrst to publish a binary search algorithm that works for all N . The next
step was taken by H. Bottenbruch [JACM 9 (1962), 214], who presented an
interesting variation of Algorithm B that avoids a separate test for equality until
the very end: Using

i← ⌈(l + u)/2⌉
instead of i ← ⌊(l + u)/2⌋ in step B2, he set l ← i whenever K ≥ Ki; then
u− l decreases at every step. Eventually, when l = u, we have Kl ≤ K < Kl+1,
and we can test whether or not the search was successful by making one more
comparison. (He assumed that K ≥ K1 initially.) This idea speeds up the inner
loop slightly on many computers, and the same principle can be used with all
of the algorithms we have discussed in this section; but a successful search will
require about one more iteration, on the average, because of (2). Since the inner
loop is performed only about lg N times, this tradeoff between an extra iteration
and a faster loop does not save time unless n is extremely large. (See exercise 23.)
On the other hand BottenbruchŠs algorithm will Ąnd the rightmost occurrence of
a given key when the table contains duplicates, and this property is occasionally
important.

K. E. Iverson [A Programming Language (Wiley, 1962), 141] gave the proce-
dure of Algorithm B, but without considering the possibility of an unsuccessful
search. D. E. Knuth [CACM 6 (1963), 556Ű558] presented Algorithm B as
an example used with an automated Ćowcharting system. The uniform binary
search, Algorithm C, was suggested to the author by A. K. Chandra of Stanford
University in 1971.

Fibonaccian searching was invented by David E. Ferguson [CACM 3 (1960),
648]. Binary trees similar to Fibonacci trees appeared in the pioneering work
of the Norwegian mathematician Axel Thue as early as 1910 (see exercise 28).
A Fibonacci tree without labels was also exhibited as a curiosity in the Ąrst
edition of Hugo SteinhausŠs popular book Mathematical Snapshots (New York:
Stechert, 1938), page 28; he drew it upside down and made it look like a real
tree, with right branches twice as long as left branches so that all the leaves
would occur at the same level.

Interpolation searching was suggested by W. W. Peterson [IBM J. Res. &
Devel. 1 (1957), 131Ű132]. A correct analysis of its average behavior was not
discovered until many years later (see exercise 22).

6.2.1 SEARCHING AN ORDERED TABLE 423

EXERCISES

x 1. [21] Prove that if u < l in step B2 of the binary search, we have u = l − 1 and
Ku < K < Kl. (Assume by convention that K0 = −∞ and KN+1 = +∞, although
these artiĄcial keys are never really used by the algorithm so they need not be present
in the actual table.)

x 2. [22] Would Algorithm B still work properly when K is present in the table if we
(a) changed step B5 to Şl← iŤ instead of Şl← i+ 1Ť? (b) changed step B4 to Şu← iŤ
instead of Şu← i− 1Ť? (c) made both of these changes?

3. [15] What searching method corresponds to the tree ?

What is the average number of comparisons made in a successful search? in an
unsuccessful search?

4. [20] If a search using Program 6.1S (sequential search) takes exactly 638 units of
time, how long does it take with Program B (binary search)?

5. [M24] For what values of N is Program B actually slower than a sequential search
(Program 6.1Q′) on the average, assuming that the search is successful?

6. [28] (K. E. Iverson.) Exercise 5 suggests that it would be best to have a hybrid
method, changing from binary search to sequential search when the remaining interval
has length less than some judiciously chosen value. Write an efficient MIX program for
such a search and determine the best changeover value.

x 7. [M22] Would Algorithm U still work properly if we changed step U1 so that
a) both i and m are set equal to ⌊N/2⌋?
b) both i and m are set equal to ⌈N/2⌉?

[Hint: Suppose the Ąrst step were ŞSet i← 0, m← N (or N + 1), go to U4.Ť]

8. [M20] Let δj = DELTA[j] be the jth increment in Algorithm C, as deĄned in (6).
a) What is the sum

⌊lg N⌋+2
j=1 δj?

b) What are the minimum and maximum values of i that can occur in step C2?

9. [20] Is there any value of N > 1 for which Algorithm B and C are exactly
equivalent, in the sense that they will both perform the same sequence of comparisons
for all search arguments?

10. [21] Explain how to write a MIX program for Algorithm C containing approx-
imately 7 lgN instructions and having a running time of about 4.5 lgN units.

11. [M26] Find exact formulas for the average values of C1, C2, and A in the fre-
quency analysis of Program C, as a function of N and S.

12. [20] Draw the binary search tree corresponding to SharŠs method when N = 12.

13. [M24] Tabulate the average number of comparisons made by SharŠs method, for
1 ≤ N ≤ 16, considering both successful and unsuccessful searches.

14. [21] Explain how to extend Algorithm F so that it will apply for all N ≥ 1.

15. [M19] For what values of k does the Fibonacci tree of order k deĄne an optimal
search procedure, in the sense that the fewest comparisons are made on the average?

424 SEARCHING 6.2.1

16. [21] Figure 9 shows the lineal chart of the rabbits in FibonacciŠs original rabbit
problem (see Section 1.2.8). Is there a simple relationship between this and the
Fibonacci tree discussed in the text?

Initial pair

First month

Second month

Third month

Fourth month

Fifth month

Sixth month

Fig. 9. Pairs of rabbits breeding by FibonacciŠs rule.

17. [M21] From exercise 1.2.8Ű34 (or exercise 5.4.2Ű10) we know that every positive
integer n has a unique representation as a sum of Fibonacci numbers

n = Fa1
+ Fa2

+ · · ·+ Far ,

where r ≥ 1, aj ≥ aj+1 + 2 for 1 ≤ j < r, and ar ≥ 2. Prove that in the Fibonacci tree
of order k, the path from the root to node ❦n has length k + 1− r − ar.

18. [M30] Find exact formulas for the average values of C1, C2, and A in the fre-
quency analysis of Program F, as a function of k, Fk, Fk+1, and S.

19. [M42] Carry out a detailed analysis of the average running time of the algorithm
suggested in exercise 14.

20. [M22] The number of comparisons required in a binary search is approximately
log2 N, and in the Fibonaccian search it is roughly (ϕ/

√
5) logϕ N. The purpose of this

exercise is to show that these formulas are special cases of a more general result.
Let p and q be positive numbers with p+ q = 1. Consider a search algorithm that,

given a table of N numbers in increasing order, starts by comparing the argument with
the (pN)th key, and iterates this procedure on the smaller blocks. (The binary search
has p = q = 1/2; the Fibonaccian search has p = 1/ϕ, q = 1/ϕ2.)

If C(N) denotes the average number of comparisons required to search a table of
size N, it approximately satisĄes the relations

C(1) = 0; C(N) = 1 + pC(pN) + qC(qN) for N > 1.

This happens because there is probability p (roughly) that the search reduces to a
pN -element search, and probability q that it reduces to a qN -element search, after the
Ąrst comparison. When N is large, we may ignore the small-order effect caused by the
fact that pN and qN arenŠt exactly integers.

a) Show that C(N) = logb N satisĄes these relations exactly, for a certain choice of b.
For binary and Fibonaccian search, this value of b agrees with the formulas derived
earlier.

b) Consider the following argument: ŞWith probability p, the size of the interval
being scanned in this algorithm is divided by 1/p; with probability q, the interval
size is divided by 1/q. Therefore the interval is divided by p · (1/p) + q · (1/q) = 2
on the average, so the algorithm is exactly as good as the binary search, regardless
of p and q.Ť Is there anything wrong with this reasoning?

6.2.1 SEARCHING AN ORDERED TABLE 425

21. [20] Draw the binary tree corresponding to interpolation search when N = 10.

22. [M41] (A. C. Yao and F. F. Yao.) Show that an appropriate formulation of
interpolation search requires asymptotically lg lgN comparisons, on the average, when
applied to N independent uniform random keys that have been sorted. Furthermore
all search algorithms on such tables must make asymptotically lg lgN comparisons, on
the average.

x 23. [25] The binary search algorithm of H. Bottenbruch, mentioned at the close of
this section, avoids testing for equality until the very end of the search. (During the
algorithm we know that Kl ≤ K < Ku+1, and the case of equality is not examined
until l = u.) Such a trick would make Program B run a little bit faster for large N,
since the ‘JEŠ instruction could be removed from the inner loop. (However, the idea
wouldnŠt really be practical since lgN is always rather small; we would need N > 266

in order to compensate for the extra work necessary on a successful search, because the
running time (18 lgN − 16)u of (5) is ŞdecreasedŤ to (17.5 lgN + 17)u!)

Show that every search algorithm corresponding to a binary tree can be adapted to
a search algorithm that uses two-way branching (< versus ≥) at the internal nodes of
the tree, in place of the three-way branching (< , = , or >) used in the textŠs discussion.
In particular, show how to modify Algorithm C in this way.

x 24. [23] We have seen in Sections 2.3.4.5 and 5.2.3 that the complete binary tree is
a convenient way to represent a minimum-path-length tree in consecutive locations.
Devise an efficient search method based on this representation. [Hint: Is it possible to
use multiplication by 2 instead of division by 2 in a binary search?]

x 25. [M25] Suppose that a binary tree has ak internal nodes and bk external nodes
on level k, for k = 0, 1, (The root is at level zero.) Thus in Fig. 8 we have
(a0, a1, . . . , a5) = (1, 2, 4, 4, 1, 0) and (b0, b1, . . . , b5) = (0, 0, 0, 4, 7, 2).

a) Show that a simple algebraic relationship holds between the generating functions
A(z) =

k akz

k and B(z) =

k bkz
k.

b) The probability distribution for a successful search in a binary tree has the gen-
erating function g(z) = zA(z)/N, and for an unsuccessful search the generating
function is h(z) = B(z)/(N + 1). (Thus in the textŠs notation we have CN =
mean(g), C′

N = mean(h), and Eq. (2) gives a relation between these quantities.)
Find a relation between var(g) and var(h).

26. [22] Show that Fibonacci trees are related to polyphase merge sorting on three
tapes.

27. [M30] (H. S. Stone and John Linn.) Consider a search process that uses k
processors simultaneously and that is based solely on comparisons of keys. Thus at
every step of the search, k indices i1, . . . , ik are speciĄed, and we perform k simultaneous
comparisons; if K = Kij for some j, the search terminates successfully, otherwise
the search proceeds to the next step based on the 2k possible outcomes K < Kij or
K > Kij , for 1 ≤ j ≤ k.

Prove that such a process must always take at least approximately logk+1 N steps
on the average, as N → ∞, assuming that each key of the table is equally likely as a
search argument. (Hence the potential increase in speed over 1-processor binary search
is only a factor of lg(k+1), not the factor of k we might expect. In this sense it is more
efficient to assign each processor to a different, independent search problem, instead of
making them cooperate on a single search.)

426 SEARCHING 6.2.1

28. [M23] DeĄne Thue trees Tn by means of algebraic expressions in a binary opera-
tor ∗ as follows: T0(x) = x ∗ x, T1(x) = x, Tn+2(x) = Tn+1(x) ∗ Tn(x).

a) The number of leaves of Tn is the number of occurrences of x when Tn(x) is written
out in full. Express this number in terms of Fibonacci numbers.

b) Prove that if the binary operator ∗ satisĄes the axiom

(x ∗ (x ∗ x)) ∗ (x ∗ (x ∗ x)) = x ,

then Tm(Tn(x)) = Tm+n−1(x) for all m ≥ 0 and n ≥ 1.

x 29. [22] (Paul Feldman, 1985.) Instead of assuming that K1 < K2 < · · · < KN ,
assume only that Kp(1) < Kp(2) < · · · < Kp(N) where the permutation p(1)p(2) . . . p(N)
is an involution, and p(j) = j for all even values of j. Show that we can locate any given
key K, or determine that K is not present, by making at most 2⌊lgN⌋+1 comparisons.

30. [27] (Involution coding.) Using the idea of the previous exercise, Ąnd a way to
arrange N distinct keys in such a way that their relative order implicitly encodes an
arbitrarily given array of t-bit numbers x1, x2, . . . , xm, when m ≤ N/4 + 1 − 2t.
With your arrangement it should be possible to determine the leading k bits of xj by
making only k comparisons, for any given j, as well as to look up an arbitrary key with
≤ 2⌊lgN⌋+1 comparisons. (This result is used in theoretical studies of data structures
that are asymptotically efficient in both time and space.)

6.2.2. Binary Tree Searching

In the preceding section, we learned that an implicit binary tree structure makes
the behavior of binary search and Fibonaccian search easier to understand. For a
given value of N, the tree corresponding to binary search achieves the theoretical
minimum number of comparisons that are necessary to search a table by means
of key comparisons. But the methods of the preceding section are appropriate
mainly for Ąxed-size tables, since the sequential allocation of records makes
insertions and deletions rather expensive. If the table is changing dynamically,
we might spend more time maintaining it than we save in binary-searching it.

The use of an explicit binary tree structure makes it possible to insert and
delete records quickly, as well as to search the table efficiently. As a result, we
essentially have a method that is useful both for searching and for sorting. This
gain in Ćexibility is achieved by adding two link Ąelds to each record of the table.

Techniques for searching a growing table are often called symbol table algo-

rithms, because assemblers and compilers and other system routines generally
use such methods to keep track of user-deĄned symbols. For example, the key of
each record within a compiler might be a symbolic identiĄer denoting a variable
in some FORTRAN or C program, and the rest of the record might contain
information about the type of that variable and its storage allocation. Or the key
might be a symbol in a MIXAL program, with the rest of the record containing the
equivalent of that symbol. The tree search and insertion routines to be described
in this section are quite efficient for use as symbol table algorithms, especially in
applications where it is desirable to print out a list of the symbols in alphabetic
order. Other symbol table algorithms are described in Sections 6.3 and 6.4.

Figure 10 shows a binary search tree containing the names of eleven signs of
the zodiac. If we now search for the twelfth name, SAGITTARIUS, starting at the

6.2.2 BINARY TREE SEARCHING 427

CAPRICORN

AQUARIUS

ARIES

CANCER

PISCES

GEMINI

LEO

LIBRA

TAURUS

SCORPIO VIRGO

0

1

2 3

4

5

6 7

8 9 10 11

Fig. 10. A binary search tree.

root or apex of the tree, we Ąnd it is greater than CAPRICORN, so we move to the
right; it is greater than PISCES, so we move right again; it is less than TAURUS, so
we move left; and it is less than SCORPIO, so we arrive at external node 8 . The
search was unsuccessful; we can now insert SAGITTARIUS at the place the search
ended, by linking it into the tree in place of the external node 8 . In this way
the table can grow without the necessity of moving any of the existing records.
Figure 10 was formed by starting with an empty tree and successively inserting
the keys CAPRICORN, AQUARIUS, PISCES, ARIES, TAURUS, GEMINI, CANCER, LEO,
VIRGO, LIBRA, SCORPIO, in this order.

All of the keys in the left subtree of the root in Fig. 10 are alphabetically
less than CAPRICORN, and all keys in the right subtree are alphabetically greater.
A similar statement holds for the left and right subtrees of every node. It follows
that the keys appear in strict alphabetic sequence from left to right,

AQUARIUS, ARIES, CANCER, CAPRICORN, GEMINI, LEO, . . . , VIRGO

if we traverse the tree in symmetric order (see Section 2.3.1), since symmetric
order is based on traversing the left subtree of each node just before that node,
then traversing the right subtree.

The following algorithm spells out the searching and insertion processes in
detail.

Algorithm T (Tree search and insertion). Given a table of records that form a
binary tree as described above, this algorithm searches for a given argument K.
If K is not in the table, a new node containing K is inserted into the tree in the
appropriate place.

428 SEARCHING 6.2.2

The nodes of the tree are assumed to contain at least the following Ąelds:

KEY(P) = key stored in NODE(P);

LLINK(P) = pointer to left subtree of NODE(P);

RLINK(P) = pointer to right subtree of NODE(P).

Null subtrees (the external nodes in Fig. 10) are represented by the null pointer Λ.
The variable ROOT points to the root of the tree. For convenience, we assume
that the tree is not empty (that is, ROOT ̸= Λ), since the necessary operations
are trivial when ROOT = Λ.
T1. [Initialize.] Set P← ROOT. (The pointer variable P will move down the tree.)
T2. [Compare.] If K < KEY(P), go to T3; if K > KEY(P), go to T4; and if

K = KEY(P), the search terminates successfully.
T3. [Move left.] If LLINK(P) ̸= Λ, set P ← LLINK(P) and go back to T2.

Otherwise go to T5.
T4. [Move right.] If RLINK(P) ̸= Λ, set P← RLINK(P) and go back to T2.
T5. [Insert into tree.] (The search is unsuccessful; we will now put K into the

tree.) Set Q ⇐ AVAIL, the address of a new node. Set KEY(Q) ← K,
LLINK(Q) ← RLINK(Q) ← Λ. (In practice, other Ąelds of the new node
should also be initialized.) If K was less than KEY(P), set LLINK(P) ← Q,
otherwise set RLINK(P) ← Q. (At this point we could set P ← Q and
terminate the algorithm successfully.)

T1. Initialize

T2. Compare

T3. Move left T4. Move right

T5. Insert into tree

SUCCESS
=

< >

RLINK=ΛLLINK=Λ

Fig. 11. Tree search and insertion.

This algorithm lends itself to a convenient machine language implementa-
tion. We may assume, for example, that the tree nodes have the form

+ 0 LLINK RLINK

KEY
(1)

followed perhaps by additional words of INFO. Using an AVAIL list for the free
storage pool, as in Chapter 2, we can write the following MIX program:

6.2.2 BINARY TREE SEARCHING 429

Program T (Tree search and insertion). rA ≡ K, rI1 ≡ P, rI2 ≡ Q.

01 LLINK EQU 2:3

02 RLINK EQU 4:5

03 START LDA K 1 T1. Initialize.
04 LD1 ROOT 1 P← ROOT.
05 JMP 2F 1
06 4H LD2 0,1(RLINK) C2 T4. Move right. Q← RLINK(P).
07 J2Z 5F C2 To T5 if Q = Λ.
08 1H ENT1 0,2 C − 1 P← Q.
09 2H CMPA 1,1 C T2. Compare.
10 JG 4B C To T4 if K > KEY(P).
11 JE SUCCESS C1 Exit if K = KEY(P).
12 LD2 0,1(LLINK) C1− S T3. Move left. Q← LLINK(P).
13 J2NZ 1B C1− S To T2 if Q ̸= Λ.
14 5H LD2 AVAIL 1− S T5. Insert into tree.
15 J2Z OVERFLOW 1− S
16 LDX 0,2(RLINK) 1− S
17 STX AVAIL 1− S Q⇐ AVAIL.
18 STA 1,2 1− S KEY(Q)← K.
19 STZ 0,2 1− S LLINK(Q)← RLINK(Q)← Λ.
20 JL 1F 1− S Was K < KEY(P)?
21 ST2 0,1(RLINK) A RLINK(P)← Q.
22 JMP *+2 A
23 1H ST2 0,1(LLINK) 1− S −A LLINK(P)← Q.
24 DONE EQU * 1− S Exit after insertion.

The Ąrst 13 lines of this program do the search; the last 11 lines do the
insertion. The running time for the searching phase is (7C + C1 − 3S + 4)u,
where

C = number of comparisons made;

C1 = number of times K ≤ KEY(P);

C2 = number of times K > KEY(P);

S = [search is successful].

On the average we have C1 = 1
2 (C + S), since C1 + C2 = C and C1 − S has

the same probability distribution as C2; so the running time is about (7.5C −
2.5S + 4)u. This compares favorably with the binary search algorithms that use
an implicit tree (see Program 6.2.1C). By duplicating the code as in Program
6.2.1F we could effectively eliminate line 08 of Program T, reducing the running
time to (6.5C − 2.5S + 5)u. If the search is unsuccessful, the insertion phase of
the program costs an extra 14u or 15u.

Algorithm T can conveniently be adapted to variable-length keys and vari-
able-length records. For example, if we allocate the available space sequentially,
in a last-in-Ąrst-out manner, we can easily create nodes of varying size; the Ąrst
word of (1) could indicate the size. Since this is an efficient use of storage,
symbol table algorithms based on trees are often especially attractive for use in
compilers, assemblers, and loaders.

430 SEARCHING 6.2.2

But what about the worst case? Programmers are often skeptical of Algo-
rithm T when they Ąrst see it. If the keys of Fig. 10 had been entered into
the tree in alphabetic order AQUARIUS, . . . , VIRGO instead of the calendar order
CAPRICORN, . . . , SCORPIO, the algorithm would have built a degenerate tree that
essentially speciĄes a sequential search. All LLINKs would be null. Similarly, if
the keys come in the uncommon order

AQUARIUS, VIRGO, ARIES, TAURUS, CANCER, SCORPIO,

CAPRICORN, PISCES, GEMINI, LIBRA, LEO

we obtain a ŞzigzagŤ tree that is just as bad. (Try it!)
On the other hand, the particular tree in Fig. 10 requires only 3 2

11 com-
parisons, on the average, for a successful search; this is just a little higher than
the minimum possible average number of comparisons, 3, achievable in the best
possible binary tree.

When we have a fairly balanced tree, the search time is roughly propor-
tional to log N, but when we have a degenerate tree, the search time is roughly
proportional to N. Exercise 2.3.4.5Ű5 proves that the average search time would
be roughly proportional to

√
N if we considered each N -node binary tree to be

equally likely. What behavior can we really expect from Algorithm T?
Fortunately, it turns out that tree search will require only about 2 ln N ≈

1.386 lg N comparisons, if the keys are inserted into the tree in random order;
well-balanced trees are common, and degenerate trees are very rare.

There is a surprisingly simple proof of this fact. Let us assume that each of
the N ! possible orderings of the N keys is an equally likely sequence of insertions
for building the tree. The number of comparisons needed to Ąnd a key is exactly
one more than the number of comparisons that were needed when that key was
entered into the tree. Therefore if CN is the average number of comparisons
involved in a successful search and C ′

N is the average number in an unsuccessful
search, we have

CN = 1 +
C ′

0 + C ′
1 + · · ·+ C ′

N−1

N
. (2)

But the relation between internal and external path length tells us that

CN =

1 +
1
N

C ′
N − 1; (3)

this is Eq. 6.2.1Ű(2). Putting (3) together with (2) yields

(N + 1)C ′
N = 2N + C ′

0 + C ′
1 + · · ·+ C ′

N−1. (4)

This recurrence is easy to solve. Subtracting the equation

NC ′
N−1 = 2(N − 1) + C ′

0 + C ′
1 + · · ·+ C ′

N−2,

we obtain

(N + 1)C ′
N −NC ′

N−1 = 2 + C ′
N−1, hence C ′

N = C ′
N−1 + 2/(N + 1).

6.2.2 BINARY TREE SEARCHING 431

Since C ′
0 = 0, this means that

C ′
N = 2HN+1 − 2. (5)

Applying (3) and simplifying yields the desired result

CN = 2

1 +
1
N

HN − 3. (6)

Exercises 6, 7, and 8 below give more detailed information; it is possible to
compute the exact probability distribution of CN and C ′

N , not merely the average
values.

Tree insertion sorting. Algorithm T was developed for searching, but it can
also be used as the basis of an internal sorting algorithm; in fact, we can view
it as a natural generalization of list insertion, Algorithm 5.2.1L. When properly
programmed, its average running time will be only a little slower than some of the
best algorithms we discussed in Chapter 5. After the tree has been constructed
for all keys, a symmetric tree traversal (Algorithm 2.3.1T) will visit the records
in sorted order.

A few precautions are necessary, however. Something different needs to be
done if K = KEY(P) in step T2, since we are sorting instead of searching. One
solution is to treat K = KEY(P) exactly as if K > KEY(P); this leads to a stable
sorting method. (Equal keys will not necessarily be adjacent in the tree; they will
only be adjacent in symmetric order.) But if many duplicate keys are present,
this method will cause the tree to get badly unbalanced, and the sorting will
slow down. Another idea is to keep a list, for each node, of all records having
the same key; this requires another link Ąeld, but it will make the sorting faster
when a lot of equal keys occur.

Thus if we are interested only in sorting, not in searching, Algorithm T isnŠt
the best, but it isnŠt bad. And if we have an application that combines searching
with sorting, the tree method can be warmly recommended.

It is interesting to note that there is a strong relation between the analysis
of tree insertion sorting and the analysis of quicksort, although the methods
are superĄcially dissimilar. If we successively insert N keys into an initially
empty tree, we make the same average number of comparisons between keys as
Algorithm 5.2.2Q does, with minor exceptions. For example, in tree insertion
every key gets compared with K1, and then every key less than K1 gets compared
with the Ąrst key less than K1, etc.; in quicksort, every key gets compared to
the Ąrst partitioning element K and then every key less than K gets compared
to a particular element less than K, etc. The average number of comparisons
needed in both cases is NCN −N. (However, Algorithm 5.2.2Q actually makes
a few more comparisons, in order to speed up the inner loops.)

Deletions. Sometimes we want to make the computer forget one of the table
entries it knows. We can easily delete a node in which either LLINK or RLINK = Λ;
but when both subtrees are nonempty, we have to do something special, since
we canŠt point two ways at once.

432 SEARCHING 6.2.2

For example, consider Fig. 10 again; how could we delete the root node,
CAPRICORN? One solution is to delete the alphabetically next node, which always
has a null LLINK, then reinsert it in place of the node we really wanted to delete.
For example, in Fig. 10 we could delete GEMINI, then replace CAPRICORN by
GEMINI. This operation preserves the essential left-to-right order of the table
entries. The following algorithm gives a detailed description of such a deletion
process.

Algorithm D (Tree deletion). Let Q be a variable that points to a node of a
binary search tree represented as in Algorithm T. This algorithm deletes that
node, leaving a binary search tree. (In practice, we will have either Q ≡ ROOT or
Q ≡ LLINK(P) or RLINK(P) in some node of the tree. This algorithm resets the
value of Q in memory, to reĆect the deletion.)

D1. [Is RLINK null?] Set T ← Q. If RLINK(T) = Λ, set Q ← LLINK(T) and go
to D4. (For example, if Q ≡ RLINK(P) for some P, we would set RLINK(P)←
LLINK(T).)

D2. [Find successor.] Set R ← RLINK(T). If LLINK(R) = Λ, set LLINK(R) ←
LLINK(T), Q← R, and go to D4.

D3. [Find null LLINK.] Set S ← LLINK(R). Then if LLINK(S) ̸= Λ, set R ← S

and repeat this step until LLINK(S) = Λ. (At this point S will be equal
to Q$, the symmetric successor of Q.) Finally, set LLINK(S) ← LLINK(T),
LLINK(R)← RLINK(S), RLINK(S)← RLINK(T), Q← S.

D4. [Free the node.] Set AVAIL⇐ T, thus returning the deleted node to the free
storage pool.

The reader may wish to try this algorithm by deleting AQUARIUS, CANCER,
and CAPRICORN from Fig. 10; each case is slightly different. An alert reader may
have noticed that no special test has been made for the case RLINK(T) ̸= Λ,
LLINK(T) = Λ; we will defer the discussion of this case until later, since the
algorithm as it stands has some very interesting properties.

Since Algorithm D is quite unsymmetrical between left and right, it stands
to reason that a sequence of deletions will make the tree get way out of balance,
so that the efficiency estimates we have made will be invalid. But deletions donŠt
actually make the trees degenerate at all!

N. Hibbard, 1962) + .

Theorem H (T. N. Hibbard, 1962). After a random element is deleted from a
random tree by Algorithm D, the resulting tree is still random.

[Nonmathematical readers, please skip to (10).] This statement of the theo-
rem is admittedly quite vague. We can summarize the situation more precisely
as follows: Let T be a tree of n elements, and let P (T) be the probability that
T occurs if its keys are inserted in random order by Algorithm T. Some trees
are more probable than others. Let Q(T) be the probability that T will occur if
n+1 elements are inserted in random order by Algorithm T and then one of these
elements is chosen at random and deleted by Algorithm D. In calculating P (T),
we assume that the n! permutations of the keys are equally likely; in calculating

6.2.2 BINARY TREE SEARCHING 433

Q(T), we assume that the (n + 1)! (n + 1) permutations of keys and selections
of the doomed key are equally likely. The theorem states that P (T) = Q(T)
for all T .

Proof. We are faced with the fact that permutations are equally probable, not
trees, and therefore we shall prove the result by considering permutations as the
random objects. We shall deĄne a deletion from a permutation, and then we
will prove that Şa random element deleted from a random permutation leaves a
random permutation.Ť

Let a1 a2 . . . an+1 be a permutation of {1, 2, . . . , n+1}; we want to deĄne the
operation of deleting ai, so as to obtain a permutation b1 b2 . . . bn of {1, 2, . . . , n}.
This operation should correspond to Algorithms T and D, so that if we start
with the tree constructed from the sequence of insertions a1, a2, . . . , an+1 and
delete ai, renumbering the keys from 1 to n, we obtain the tree constructed from
b1 b2 . . . bn.

It is not hard to deĄne such a deletion operation. There are two cases:
Case 1: ai = n + 1, or ai + 1 = aj for some j < i. (This is essentially the

condition ŞRLINK(ai) = Λ.Ť) Remove ai from the sequence, and subtract unity
from each element greater than ai.

Case 2: ai + 1 = aj for some j > i. Replace ai by aj , remove aj from its
original place, and subtract unity from each element greater than ai.

For example, suppose we have the permutation 4 6 1 3 5 2. If we circle the
element to be deleted, we have

❦4 6 1 3 5 2 = 4 5 1 3 2 4 6 1 ❦3 5 2 = 3 5 1 4 2

4 ❦6 1 3 5 2 = 4 1 3 5 2 4 6 1 3 ❦5 2 = 4 5 1 3 2

4 6 ❦1 3 5 2 = 3 5 1 2 4 4 6 1 3 5 ❦2 = 3 5 1 2 4

Since there are (n + 1)! (n + 1) possible deletion operations, the theorem will be
established if we can show that every permutation of {1, 2, . . . , n} is the result
of exactly (n + 1)2 deletions.

Let b1 b2 . . . bn be a permutation of {1, 2, . . . , n}. We shall deĄne (n + 1)2

deletions, one for each pair i, j with 1 ≤ i, j ≤ n + 1, as follows:
If i < j, the deletion is

b′1 . . . b′i−1
♠bi b′i+1 . . . b′j−1 (bi+1) b′j . . . b′n. (7)

Here, as below, b′k stands for either bk or bk + 1, depending on whether or not
bk is less than the circled element. This deletion corresponds to Case 2.

If i > j, the deletion is

b′1 . . . b′i−1
♠bj b′i . . . b′n; (8)

this deletion Ąts the deĄnition of Case 1.
Finally, if i = j, we have another Case 1 deletion, namely

b′1 . . . b′i−1

☛ ✟
✡ ✠n+1 b′i . . . b′n. (9)

434 SEARCHING 6.2.2

As an example, let n = 4 and consider the 25 deletions that map into 3 1 4 2:

j = 1

j = 2

j = 3

j = 4

j = 5

i = 1

❦5 3 1 4 2
❦3 4 1 5 2
❦3 1 4 5 2
❦3 1 5 4 2
❦3 1 5 2 4

i = 2

4 ❦3 1 5 2

3 ❦5 1 4 2

4 ❦1 2 5 3

4 ❦1 5 2 3

4 ❦1 5 3 2

i = 3

4 1 ❦3 5 2

4 2 ❦1 5 3

3 1 ❦5 4 2

3 1 ❦4 5 2

3 1 ❦4 2 5

i = 4

4 1 5 ❦3 2

4 2 5 ❦1 3

3 1 5 ❦4 2

3 1 4 ❦5 2

4 1 5 ❦2 3

i = 5

4 1 5 2 ❦3
4 2 5 3 ❦1
3 1 5 2 ❦4
4 1 5 3 ❦2
3 1 4 2 ❦5

The circled element is always in position i, and for Ąxed i we have con-
structed n+1 different deletions, one for each j; hence (n+1)2 different deletions
have been constructed for each permutation b1 b2 . . . bn. Since only (n + 1)2n!
deletions are possible, we must have found all of them.

The proof of Theorem H not only tells us about the result of deletions, it
also helps us analyze the running time in an average deletion. Exercise 12 shows
that we can expect to execute step D2 slightly less than half the time, on the
average, when deleting a random element from a random table.

Let us now consider how often the loop in step D3 needs to be performed:
Suppose that we are deleting a node on level l, and that the external node
immediately following in symmetric order is on level k. For example, if we are
deleting CAPRICORN from Fig. 10, we have l = 0 and k = 3 since node 4 is on
level 3. If k = l + 1, we have RLINK(T) = Λ in step D1; and if k > l + 1, we will
set S ← LLINK(R) exactly k − l − 2 times in step D3. The average value of l is
(internal path length)/N ; the average value of k is

(external path length− distance to leftmost external node)/N.

The distance to the leftmost external node is the number of left-to-right minima
in the insertion sequence, so it has the average value HN by the analysis of
Section 1.2.10. Since external path length minus internal path length is 2N, the
average value of k − l − 2 is −HN/N. Adding to this the average number of
times that k − l − 2 is −1, we see that the operation S← LLINK(R) in step D3
is performed only

1
2 +

1
2 −HN

/N (10)

times, on the average, in a random deletion. This is reassuring, since the worst
case can be pretty slow (see exercise 11).

Although Theorem H is rigorously true, in the precise form we have stated it,
it cannot be applied, as we might expect, to a sequence of deletions followed
by insertions. The shape of the tree is random after deletions, but the relative
distribution of values in a given tree shape may change, and it turns out that the
Ąrst random insertion after deletion actually destroys the randomness property
on the shapes. This startling fact, Ąrst observed by Gary Knott in 1972, must
be seen to be believed (see exercise 15). Even more startling is the empirical
evidence gathered by J. L. Eppinger [CACM 26 (1983), 663Ű669, 27 (1984),

6.2.2 BINARY TREE SEARCHING 435

235], who found that the path length decreases slightly when a few random
deletions and insertions are made, but then it increases until reaching a steady
state after about N2 deletion/insertion operations have been performed. This
steady state is worse than the behavior of a random tree, when N is greater
than about 150. Further study by Culberson and Munro [Comp. J. 32 (1989),
68Ű75; Algorithmica 5 (1990), 295Ű311] has led to a plausible conjecture that
the average search time in the steady state is asymptotically

2N/9π. However,

Eppinger also devised a simple modiĄcation that alternates between Algorithm D
and a left-right reĆection of the same algorithm; he found that this leads to an
excellent steady state in which the path length is reduced to about 88% of its
normal value for random trees. A theoretical explanation for this behavior is
still lacking.

As mentioned above, Algorithm D does not test for the case LLINK(T) = Λ,
although this is one of the easy cases for deletion. We could add a new step
between D1 and D2, namely,

D1.5. [Is LLINK null?] If LLINK(T) = Λ, set Q← RLINK(T) and go to D4.

Exercise 14 shows that Algorithm D with this extra step always leaves a tree
that is at least as good as the original Algorithm D, in the path-length sense, and
sometimes the result is even better. When this idea is combined with EppingerŠs
symmetric deletion strategy, the steady-state path length for repeated random
deletion/insertion operations decreases to about 86% of its insertion-only value.

Frequency of access. So far we have assumed that each key was equally likely
as a search argument. In a more general situation, let pk be the probability that
we will search for the kth element inserted, where p1 + · · · + pN = 1. Then a
straightforward modiĄcation of Eq. (2), if we retain the assumption of random
order so that the shape of the tree stays random and Eq. (5) holds, shows that
the average number of comparisons in a successful search will be

1 +
N

k=1

pk(2Hk − 2) = 2
N

k=1

pkHk − 1. (11)

For example, if the probabilities obey ZipfŠs law, Eq. 6.1Ű(8), the average
number of comparisons reduces to

HN − 1 + H
(2)
N /HN (12)

if we insert the keys in decreasing order of importance. (See exercise 18.) This
is about half as many comparisons as predicted by the equal-frequency analysis,
and it is fewer than we would make using binary search.

Figure 12 shows the tree that results when the most common 31 words of
English are entered in decreasing order of frequency. The relative frequency is
shown with each word, using statistics from Cryptanalysis by H. F. Gaines (New
York: Dover, 1956), 226. The average number of comparisons for a successful
search in this tree is 4.042; the corresponding binary search, using Algorithm
6.2.1B or 6.2.1C, would require 4.393 comparisons.

436 SEARCHING 6.2.2

OF

FOR

THE

AND

IN

THAT

TO

A

BE HE

IT

ON

THIS WITH

AS

BY

HAD

HIS

IS

NOT

OR

WAS YOU

ARE

AT

BUT

FROM

HAVE HER

I WHICH

4312

3017

5739

5074

1535 1727

2255

1155

1021 1849

1853

1392

1062

1732

2509

1496

1101

1761 1336

1222

1053

1379

1039

1344 1093

1291

9767

15568

7638

2292

1869

Fig. 12. The 31 most common English words, inserted in decreasing order of frequency.

Optimum binary search trees. These considerations make it natural to ask
about the best possible tree for searching a table of keys with given frequencies.
For example, the optimum tree for the 31 most common English words is shown
in Fig. 13; it requires only 3.437 comparisons for an average successful search.

Let us now explore the problem of Ąnding the optimum tree. When N = 3,
for example, let us assume that the keys K1 < K2 < K3 have respective
probabilities p, q, r. There are Ąve possible trees:

3

2

1

I

Cost: 3p+2q+r

3

1

2

II

2p+3q+r

2

1 3

III

2p+q+2r

1

3

2

IV

p+3q+2r

1

2

3

V

p+2q+3r

(13)

Figure 14 shows the ranges of p, q, r for which each tree is optimum; the balanced
tree is best about 45 percent of the time, if we choose p, q, r at random (see
exercise 21).

Unfortunately, when N is large there are
2N

N

(N + 1) ≈ 4N

√
π N3/2

binary trees, so we canŠt just try them all and see which is best. Let us therefore
study the properties of optimum binary search trees more closely, in order to
discover a better way to Ąnd them.

6.2.2 BINARY TREE SEARCHING 437

OF

FOR THE

AND IN THAT TO

A BE HE IT ON THIS WITH

AS BY HAD HIS IS NOT OR WAS YOU

ARE AT BUT FROM HAVE HER I WHICH

7638 3017 5739

5074 2255 1155 1021 1849

1853 1392 1062 1732 2509 1496 1101 1761 1336

1222 1053 1379 1039 1344 1093 2292 1291

9767

1869

4312

1535 1727

15568

Fig. 13. An optimum search tree for the 31 most common English words.

(0, 1, 0)

(1, 0, 0) (0, 0, 1)
(1
2
, 0, 1

2
)

(0, 1

2
,
1

2
)(1

2
,
1

2
, 0)

(2
5
,
1

5
,
2

5
)

(1
2
,
1

4
,
1

4
) (1

4
,
1

4
,
1

2
)

I

IIIV

V

III

q

p r

Fig. 14. If the relative frequencies of (K1,K2,K3) are (p, q, r), this graph shows which
of the Ąve trees in (13) is best. The fact that p + q + r = 1 makes the graph two-
dimensional although there are three coordinates.

So far we have considered only the probabilities for a successful search; in
practice, the unsuccessful case must usually be considered as well. For example,
the 31 words in Fig. 13 account for only about 36 percent of typical English text;
the other 64 percent will certainly inĆuence the structure of the optimum search
tree.

Therefore let us set the problem up in the following way: We are given 2n+1
probabilities p1, p2, . . . , pn and q0, q1, . . . , qn, where

pi = probability that Ki is the search argument;

qi = probability that the search argument lies between Ki and Ki+1.

(By convention, q0 is the probability that the search argument is less than K1,
and qn is the probability that the search argument is greater than Kn.) Thus,

438 SEARCHING 6.2.2

p1 + p2 + · · · + pn + q0 + q1 + · · · + qn = 1, and we want to Ąnd a binary tree
that minimizes the expected number of comparisons in the search, namely

n

j=1

pj

level(❦j) + 1

+

n

k=0

qk level(k), (14)

where ❦j is the jth internal node in symmetric order and k is the (k + 1)st
external node, and where the root has level zero. Thus the expected number of
comparisons for the binary tree

3

1 3

0 2

1 2

(15)

is 2q0 + 2p1 + 3q1 + 3p2 + 3q2 + p3 + q3. Let us call this the cost of the tree; and
let us say that a minimum-cost tree is optimum. In this deĄnition there is no
need to require that the pŠs and qŠs sum to unity; we can ask for a minimum-cost
tree with any given sequence of ŞweightsŤ (p1, . . . , pn; q0, . . . , qn).

We have studied HuffmanŠs procedure for constructing trees with minimum
weighted path length, in Section 2.3.4.5; but that method requires all the pŠs to
be zero, and the tree it produces will usually not have the external node weights
(q0, . . . , qn) in the proper symmetric order from left to right. Therefore we need
another approach.

What saves us is that all subtrees of an optimum tree are optimum. For
example, if (15) is an optimum tree for the weights (p1, p2, p3; q0, q1, q2, q3),
then the left subtree of the root must be optimum for (p1, p2; q0, q1, q2); any
improvement to a subtree leads to an improvement in the whole tree.

This principle suggests a computation procedure that systematically Ąnds
larger and larger optimum subtrees. We have used much the same idea in Sec-
tion 5.4.9 to construct optimum merge patterns; the general approach is known
as Şdynamic programming,Ť and we shall consider it further in Section 7.7.

Let c(i, j) be the cost of an optimum subtree with weights (pi+1, . . . , pj ;
qi, . . . , qj); and let w(i, j) = pi+1 + · · ·+ pj + qi + · · ·+ qj be the sum of all those
weights; thus c(i, j) and w(i, j) are deĄned for 0 ≤ i ≤ j ≤ n. It follows that

c(i, i) = 0,

c(i, j) = w(i, j) + min
i<k≤j

c(i, k−1) + c(k, j)

, for i < j, (16)

since the minimum possible cost of a tree with root ❦k is w(i, j) + c(i, k−1) +
c(k, j). When i < j, let R(i, j) be the set of all k for which the minimum is
achieved in (16); this set speciĄes the possible roots of the optimum trees.

Equation (16) makes it possible to evaluate c(i, j) for j − i = 1, 2, . . . , n;
there are about 1

2 n2 such values, and the minimization operation is carried out

6.2.2 BINARY TREE SEARCHING 439

for about 1
6 n3 values of k. This means we can determine an optimum tree in

O(n3) units of time, using O(n2) cells of memory.
A factor of n can actually be removed from the running time if we make

use of a monotonicity property. Let r(i, j) denote an element of R(i, j); we need
not compute the entire set R(i, j), a single representative is sufficient. Once we
have found r(i, j−1) and r(i+1, j), the result of exercise 27 proves that we may
always assume that

r(i, j−1) ≤ r(i, j) ≤ r(i+1, j) (17)

when the weights are nonnegative. This limits the search for the minimum, since
only r(i+1, j)− r(i, j−1) + 1 values of k need to be examined in (16) instead of
j−i. The total amount of work when j−i = d is now bounded by the telescoping
series

d≤j≤n
i=j−d

r(i+1, j)− r(i, j−1) + 1

= r(n−d+1, n)− r(0, d−1) + n− d + 1 < 2n;

hence the total running time is reduced to O(n2).
The following algorithm describes this procedure in detail.

Algorithm K (Find optimum binary search trees). Given 2n + 1 nonnegative
weights (p1, . . . , pn; q0, . . . , qn), this algorithm constructs binary trees t(i, j) that
have minimum cost for the weights (pi+1, . . . , pj ; qi, . . . , qj) in the sense deĄned
above. Three arrays are computed, namely

c[i, j], for 0 ≤ i ≤ j ≤ n, the cost of t(i, j);

r[i, j], for 0 ≤ i < j ≤ n, the root of t(i, j);

w[i, j], for 0 ≤ i ≤ j ≤ n, the total weight of t(i, j).

The results of the algorithm are speciĄed by the r array: If i = j, t(i, j) is null;
otherwise its left subtree is t(i, r[i, j]−1) and its right subtree is t(r[i, j], j).

K1. [Initialize.] For 0 ≤ i ≤ n, set c[i, i] ← 0 and w[i, i] ← qi and w[i, j] ←
w[i, j−1] + pj + qj for j = i + 1, . . . , n. Then for 1 ≤ j ≤ n set c[j−1, j]←
w[j−1, j] and r[j−1, j] ← j. (This determines all the 1-node optimum
trees.)

K2. [Loop on d.] Do step K3 for d = 2, 3, . . . , n, then terminate the algorithm.

K3. [Loop on j.] (We have already determined the optimum trees of fewer than
d nodes. This step determines all the d-node optimum trees.) Do step K4
for j = d, d + 1, . . . , n.

K4. [Find c[i, j], r[i, j].] Set i← j − d. Then set

c[i, j]← w[i, j] + minr[i,j−1]≤k≤r[i+1,j]

c[i, k−1] + c[k, j]

,

and set r[i, j] to a value of k for which the minimum occurs.

Exercise 22

proves that r[i, j−1] ≤ r[i+1, j].

As an example of Algorithm K, consider Fig. 15, which is based on a Şkey-
word-in-contextŤ (KWIC) indexing application. The titles of all articles in the

440 SEARCHING 6.2.2

Ąrst ten volumes of the Journal of the ACM were sorted to prepare a concordance
in which there was one line for every word of every title. However, certain words
like ŞTHEŤ and ŞEQUATIONŤ were felt to be sufficiently uninformative that they
were left out of the index. These special words and their frequency of occurrence
are shown in the internal nodes of Fig. 15. Notice that a title such as ŞOn the
solution of an equation for a certain new problemŤ would be so uninformative,
it wouldnŠt appear in the index at all! The idea of KWIC indexing is due to
H. P. Luhn, Amer. Documentation 11 (1960), 288Ű295. (See W. W. Youden,
JACM 10 (1963), 583Ű646, where the full KWIC index appears.)

O
F

2
6
6

F
O
R

1
2
9

S
O
L
U
T
I
O
N

2
7

C
O
M
P
U
T
A
T
I
O
N
S

9

I
T
S

5

P
R
O
B
L
E
M
S

1
8

T
H
E

1
8
0

A
N
D

5
8

E
Q
U
A
T
I
O
N

1
5

I
N

5
2

M
E
T
H
O
D

3
8

O
N

9
3

S
O
M
E

1
1

U
S
E

2
1

A
1
4
2

B
Y

2
0

E
Q
U
A
T
I
O
N
S

2
3

F
R
O
M

4

N
E
W

9

P
A
R
T

5

S
O
L
V
E

1
0

T
O

3
2

W
I
T
H

2
1

A
N

3
5

A
S

5

C
E
R
T
A
I
N

5

M
E
T
H
O
D
S

1
8

N
O
T
E
S

2

P
R
O
B
L
E
M

1
8

S
O
L
U
T
I
O
N
S

5

T
H
E
I
R

4

W
H
I
C
H

3

C
O
M
P
U
T
A
T
I
O
N

1
0

N
O
T
E

7

O
B
T
A
I
N
I
N
G

4

0

5
5

2
7

3
6

8
5

3
1

5
8 3

3
3
4

0

9
8

2
7

1
1
3

8
9

1
8
0

0

6
2

1
2 0

3
7 0

3

6
4

7
0 0

2
7
7

0 0

0

1
7
0

0

1
8

7
6

2
7 3

2
9

Fig. 15. An optimum binary search tree for a KWIC indexing application.

When preparing a KWIC index Ąle for sorting, we might want to use a
binary search tree in order to test whether or not each particular word is to be
indexed. The other words fall between two of the unindexed words, with the
frequencies shown in the external nodes of Fig. 15; thus, exactly 277 words that
are alphabetically between ŞPROBLEMSŤ and ŞSOLUTIONŤ appeared in the JACM
titles during 1954Ű1963.

Figure 15 shows the optimum tree obtained by Algorithm K, with n = 35.
The computed values of r[0, j] for j = 1, 2, . . . , 35 are (1, 1, 2, 3, 3, 3, 3, 8, 8, 8,
8, 8, 8, 11, 11, . . . , 11, 21, 21, 21, 21, 21, 21); the values of r[i, 35] for i = 0, 1, . . . , 34
are (21, 21, . . . , 21, 25, 25, 25, 25, 25, 25, 26, 26, 26, 30, 30, 30, 30, 30, 30, 30, 33, 33,
33, 35, 35).

The Şbetweenness frequenciesŤ qj have a noticeable effect on the optimum
tree structure; Fig. 16(a) shows the optimum tree that would have been obtained
with the qj set to zero. Similarly, the internal frequencies pi are important;
Fig. 16(b) shows the optimum tree when the pi are set to zero. Considering the
full set of frequencies, the tree of Fig. 15 requires only 4.15 comparisons, on the
average, while the trees of Fig. 16 require, respectively, 4.69 and 4.72.

6.2.2 BINARY TREE SEARCHING 441

a)

O
F

2
6
6

F
O
R

1
2
9

S
O
L
U
T
I
O
N

2
7

C
O
M
P
U
T
A
T
I
O
N
S

9

I
T
S

5

P
R
O
B
L
E
M
S

1
8

T
H
E

1
8
0

A
N
D

5
8

E
Q
U
A
T
I
O
N

1
5

I
N

5
2

M
E
T
H
O
D

3
8

O
N

9
3

S
O
M
E

1
1

U
S
E

2
1

A
1
4
2

B
Y

2
0

E
Q
U
A
T
I
O
N
S

2
3

F
R
O
M

4

N
E
W

9

P
A
R
T

5

S
O
L
V
E

1
0

T
O

3
2

W
I
T
H

2
1

A
N

3
5

A
S

5

C
E
R
T
A
I
N

5

M
E
T
H
O
D
S

1
8

N
O
T
E
S

2

P
R
O
B
L
E
M

1
8

S
O
L
U
T
I
O
N
S

5

T
H
E
I
R

4

W
H
I
C
H

3

C
O
M
P
U
T
A
T
I
O
N

1
0

N
O
T
E

7

O
B
T
A
I
N
I
N
G

4
b)

O
F

F
O
R

S
O
L
U
T
I
O
N

C
O
M
P
U
T
A
T
I
O
N
S

I
T
S

P
R
O
B
L
E
M
S

T
H
E

A
N
D

E
Q
U
A
T
I
O
N

I
N

M
E
T
H
O
D

O
N

S
O
M
E

U
S
E

A

B
Y

E
Q
U
A
T
I
O
N
S

F
R
O
M

N
E
W

P
A
R
T

S
O
L
V
E

T
O

W
I
T
H

A
N

A
S

C
E
R
T
A
I
N

M
E
T
H
O
D
S

N
O
T
E
S

P
R
O
B
L
E
M

S
O
L
U
T
I
O
N
S

T
H
E
I
R

W
H
I
C
H

C
O
M
P
U
T
A
T
I
O
N

N
O
T
E

O
B
T
A
I
N
I
N
G0

5
5

2
7

3
6

8
5

3
1

5
8 3

3
3
4

0

9
8

2
7

1
1
3

8
9

1
8
0

0

6
2

1
2 0

3
7

0 3

6
4

7
0 0

2
7
7

0

0 0

1
7
0

0

1
8

7
6

2
7 3

2
9

Fig. 16. Optimum binary search trees based on half of the data of Fig. 15: (a) external
frequencies suppressed; (b) internal frequencies suppressed.

Since Algorithm K requires time and space proportional to n2, it becomes
impractical when n is very large. Of course we may not really want to use binary
search trees for large n, in view of the other search techniques to be discussed
later in this chapter; but letŠs assume anyway that we want to Ąnd an optimum
or nearly optimum tree when n is large.

We have seen that the idea of inserting the keys in order of decreasing
frequency can tend to make a fairly good tree, on the average; but it can also be
very bad (see exercise 20), and it is not usually very near the optimum, since it
makes no use of the qj weights. Another approach is to choose the root k so that
the resulting maximum subtree weight, max

w(0, k−1), w(k, n)

, is as small as

possible. This approach can also be fairly poor, because it may choose a node
with very small pk to be the root; however, Theorem M below shows that the
resulting tree will not be extremely far from the optimum.

442 SEARCHING 6.2.2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5.0

5.1

4.0

100

200

300

0M
in
im

u
m

a
v
er
a
g
e
co

st
o
f
a
tr
ee

w
it
h
ro
o
t
k

F
re
q
u
en

cy
,
p
k

c(0, k−1)+ c(k, n)+w(0, n)

w(0, n)

pk

Fig. 17. Behavior of the cost as a function of the root, k.

A more satisfactory procedure can be obtained by combining these two
methods, as suggested by W. A. Walker and C. C. Gotlieb [Graph Theory and
Computing (Academic Press, 1972), 303Ű323]: Try to equalize the left-hand and
right-hand weights, but be prepared to move the root a few steps to the left or
right to Ąnd a node with relatively large pk. Figure 17 shows why this method is
reasonable: If we plot c(0, k−1) + c(k, n) as a function of k, for the KWIC data
of Fig. 15, we see that the result is quite sensitive to the magnitude of pk.

A top-down method such as this can be used for large n to choose the root
and then to work on the left and the right subtrees. When we get down to
a sufficiently small subtree we can apply Algorithm K. The resulting method
yields fairly good trees (reportedly within 2 or 3 percent of the optimum), and it
requires only O(n) units of space, O(n log n) units of time. In fact, M. Fredman
has shown that O(n) units of time suffice, if suitable data structures are used
[STOC 7 (1975), 240Ű244]; see K. Mehlhorn, Data Structures and Algorithms 1

(Springer, 1984), Section 4.2.

Optimum trees and entropy. The minimum cost is closely related to a
mathematical concept called entropy, which was introduced by Claude Shannon
in his seminal work on information theory [Bell System Tech. J. 27 (1948), 379Ű
423, 623Ű656]. If p1, p2, . . . , pn are probabilities with p1 + p2 + · · ·+ pn = 1, we
deĄne the entropy H(p1, p2, . . . , pn) by the formula

H(p1, p2, . . . , pn) =
n

k=1

pk lg
1
pk

. (18)

Intuitively, if n events are possible and the kth event occurs with probability pk,
we can imagine that we have received lg(1/pk) bits of information when the kth

6.2.2 BINARY TREE SEARCHING 443

event has occurred. (An event of probability 1
32 gives 5 bits of information, etc.)

Then H(p1, p2, . . . , pn) is the expected number of bits of information in a random
event. If pk = 0, we deĄne pk lg(1/pk) = 0, because

lim
ϵ→0+

ϵ lg
1
ϵ

= lim
m→∞

1
m

lg m = 0.

This convention allows us to use (18) when some of the probabilities are zero.
The function x lg(1/x) is concave; that is, its second derivative, −1/(x ln 2),

is negative. Therefore the maximum value of H(p1, p2, . . . , pn) occurs when
p1 = p2 = · · · = pn = 1/n, namely

H
 1

n
,

1
n

, . . . ,
1
n

= lg n. (19)

In general, if we specify p1, . . . , pn−k but allow the other probabilities pn−k+1,
. . . , pn to vary, we have

H(p1, . . . , pn−k, pn−k+1, . . . , pn) ≤ H

p1, . . . , pn−k,
q

k
, . . . ,

q

k

= H(p1, . . . , pn−k, q) + q lg k, (20)

H(p1, . . . , pn−k, pn−k+1, . . . , pn) ≥ H(p1, . . . , pn−k, q, 0, . . . , 0)

= H(p1, . . . , pn−k, q), (21)

where q = 1− (p1 + · · ·+ pn−k).
Consider any not-necessarily-binary tree in which probabilities have been

assigned to the leaves, say

A

B

C D

E

p1

p2 p3 p4

p5

p6 p7 p8 p9

1

2 3 4

5

6 7 8 9

(22)

Here pk represents the probability that a search procedure will end at leaf k .
Then the branching at each internal (nonleaf) node corresponds to a local prob-
ability distribution based on the sums of leaf probabilities below each branch.
For example, at node ❦A the Ąrst, second, and third branches are taken with
the respective probabilities

(p1 + p2 + p3 + p4, p5, p6 + p7 + p8 + p9),

and at node ❦B the probabilities are

(p1, p2, p3 + p4)/(p1 + p2 + p3 + p4).

444 SEARCHING 6.2.2

Let us say that each internal node has the entropy of its local probability
distribution; thus

H(A) = (p1+p2+p3+p4) lg
1

p1+p2+p3+p4

+ p5 lg
1
p5

+ (p6+p7+p8+p9) lg
1

p6+p7+p8+p9
,

H(B) =
p1

p1+p2+p3+p4
lg

p1+p2+p3+p4

p1
+

p2

p1+p2+p3+p4
lg

p1+p2+p3+p4

p2

+
p3+p4

p1+p2+p3+p4
lg

p1+p2+p3+p4

p3+p4
,

H(C) =
p2

p2
lg

p2

p2
,

H(D) =
p3

p3+p4
lg

p3+p4

p3
+

p4

p3+p4
lg

p3+p4

p4
,

H(E) =
p6

p6+p7+p8+p9
lg

p6+p7+p8+p9

p6
+

p7

p6+p7+p8+p9
lg

p6+p7+p8+p9

p7

+
p8

p6+p7+p8+p9
lg

p6+p7+p8+p9

p8
+

p9

p6+p7+p8+p9
lg

p6+p7+p8+p9

p9
.

Lemma E. The sum of p(α)H(α) over all internal nodes α of a tree, where
p(α) is the probability of reaching node α and H(α) is the entropy of α, equals
the entropy of the probability distribution on the leaves.

Proof. It is easy to establish this identity by induction from bottom to top. For
example, we have

H(A)+(p1+p2+p3+p4)H(B)+p2H(C)+(p3+p4)H(D)+(p6+p7+p8+p9)H(E)

= p1 lg
1
p1

+ p2 lg
1
p2

+ · · ·+ p9 lg
1
p9

with respect to the formulas above; all terms involving lg(p1 + p2 + p3 + p4),
lg(p3 + p4), and lg(p6 + p7 + p8 + p9) cancel out.

As a consequence of Lemma E, we can use entropy to establish a convenient
lower bound on the cost of any binary tree.

Theorem B. Let (p1, . . . , pn; q0, . . . , qn) be nonnegative weights as in Algo-
rithm K, normalized so that p1+· · ·+pn+q0+· · ·+qn = 1, and let P = p1+· · ·+pn
be the probability of a successful search. Let

H = H(p1, . . . , pn, q0, . . . , qn)

be the entropy of the corresponding probability distribution, and let C be the
minimum cost, (14). Then if H ≥ 2P/e we have

C ≥ H − P lg
eH

2P
. (23)

6.2.2 BINARY TREE SEARCHING 445

Proof. Take a binary tree of cost C and assign the probabilities qk to its leaves.
Also add a middle branch below each internal node, leading to a new leaf that
has probability pk. Then C =

p(α), summed over the internal nodes α of the

resulting ternary tree, and H =

p(α)H(α) by Lemma E.
The entropy H(α) corresponds to a three-way distribution, where one of the

probabilities is pj/p(α) if α is internal node ❦j . Exercise 35 proves that

H(p, q, r) ≤ p lg x + 1 + lg

1 +
1

2x

(24)

for all x > 0, whenever p + q + r = 1. Therefore we have the inequality

H =

α

p(α)H(α) ≤
n

j=1

pj lg x +

1 + lg

1 +
1

2x

C

for all positive x. Choosing 2x = H/P now leads to the desired result, since

C ≥ 1
1 + lg(1 + P/H)

H − P lg

H

2P

=
1

1 + lg(1 + P/H)
(H + P lg e)− P

1 + lg(1 + P/H)
lg

eH

2P

≥ H − P lg
eH

2P
,

using the fact that lg(1 + y) ≤ y lg e for all y > 0.

Equation (23) does not necessarily hold when the entropy is extremely low.
But the restriction to cases where H ≥ 2P/e is not severe, since the value of H is
usually near lg n; see exercise 37. Notice that the proof doesnŠt actually use the
left-to-right order of the nodes; the lower bound (23) holds for any binary search
tree that has internal node probabilities pj and external node probabilities qk in
any order.

Entropy calculations also yield an upper bound that is not too far from (23),
even when we do stick to the left-to-right order:

Theorem M. Under the assumptions of Theorem B, we also have

C ≤ H + 2− P. (25)

Proof. Form the n+1 sums s0 = 1
2 q0, s1 = q0+p1+ 1

2 q1, s2 = q0+p1+q1+p2+ 1
2 q2,

. . . , sn = q0 +p1 + · · ·+qn−1 +pn + 1
2 qn; we may assume that s0 < s1 < · · · < sn

(see exercise 38). Express each sk as a binary fraction, writing sn = (.111 . . .)2

if sn = 1. Then let the string σk be the leading bits of sk, retaining just enough
bits to distinguish sk from sj for j ̸= k. For example, we might have n = 3 and

s0 = (.0000001)2

s1 = (.0000101)2

s2 = (.0001011)2

s3 = (.1100000)2

σ0 = 00000

σ1 = 00001

σ2 = 0001

σ3 = 1

446 SEARCHING 6.2.2

Construct a binary tree with n + 1 leaves, in such a way that σk corresponds to
the path from the root to k for 0 ≤ k ≤ n, where ‘0Š denotes a left branch
and ‘1Š denotes a right branch. Also, if σk−1 has the form αk0βk and σk has the
form αk1γk for some αk, βk, and γk, let the internal node ❦k correspond to the
path αk. Thus we would have

0 1

1 2

2

3

3

in the example above. There may be some internal nodes that are still nameless;
replace each of them by their one and only child. The cost of the resulting tree
is at most

n
k=1 pk(|αk|+ 1) +

n
k=0 qk|σk|.

We have

pk ≤ 1
2 qk−1 + pk + 1

2 qk = sk − sk−1 ≤ 2−|αk|, (26)

because sk ≤ (.αk)2 + 2−|αk| and sk−1 ≥ (.αk)2. Furthermore, if qk ≥ 2−t we
have sk ≥ sk−1 + 2−t−1 and sk+1 ≥ sk + 2−t−1, hence |σk| ≤ t + 1. It follows
that qk < 2−|σk|+2, and we have constructed a binary tree of cost

≤
n

k=1

pk(1 + |αk|) +
n

k=0

qk|σk| ≤
n

k=1

pk

1 + lg

1
pk

+

n

k=0

qk

2 + lg

1
qk

= P + 2(1− P) + H = H + 2− P.

In the KWIC indexing application of Fig. 15, we have P = 1304/3288 ≈
0.39659, and H(p1, . . . , p35, q0, . . . , q35) ≈ 5.00635. Therefore Theorem B tells us
that C ≥ 3.3800, and Theorem M tells us that C < 6.6098.

*The GarsiaŰWachs algorithm. An amazing improvement on Algorithm K
is possible in the special case that p1 = · · · = pn = 0. This case, in which
only the leaf probabilities (q0, q1, . . . , qn) are relevant, is especially important
because it arises in several signiĄcant applications. Let us therefore assume in
the remainder of this section that the probabilities pj are zero. Notice that
Theorems B and M reduce to the inequalities

H(q0, q1, . . . , qn) ≤ C(q0, q1, . . . , qn) < H(q0, q1, . . . , qn) + 2 (27)

in this case, because we cannot have C = H + 2− P unless P = 1; and the cost
function (14) simpliĄes to

C =
n

k=0

qklk, lk = the level of k . (28)

A simpler algorithm is possible because of the following key property:

6.2.2 BINARY TREE SEARCHING 447

Lemma W. If qk−1 > qk+1 then lk ≤ lk+1 in every optimum tree. If qk−1 =
qk+1 then lk ≤ lk+1 in some optimum tree.

Proof. Suppose qk−1 ≥ qk+1 and consider a tree in which lk > lk+1. Then k

must be a right child, and its left sibling L is a subtree of weight w ≥ qk−1.
Replace the parent of k by L; replace k+1 by a node whose children are k

and k+1 . This changes the overall cost by −w − qk(lk − lk+1 − 1) + qk+1 ≤
qk+1−qk−1. So the given tree was not optimum if qk−1 > qk+1, and an optimum
tree has been transformed into another optimum tree if qk−1 = qk+1. In the
latter case we have found an optimum tree in which lk = lk+1.

A deeper analysis of the structure tells us considerably more.

Lemma X. Suppose j and k are indices such that j < k and we have
i) qi−1 > qi+1 for 1 ≤ i < k;
ii) qk−1 ≤ qk+1;
iii) qi < qk−1 + qk for j ≤ i < k − 1; and
iv) qj−1 ≥ qk−1 + qk.
Then there is an optimum tree in which lk−1 = lk and either
a) lj = lk − 1, or
b) lj = lk and j is a left child.

Proof. By reversing left and right in Lemma W, we see that (ii) implies the
existence of an optimum tree in which lk−1 ≥ lk. But Lemma W and (i) also
imply that l1 ≤ l2 ≤ · · · ≤ lk. Therefore lk−1 = lk.

Suppose ls < lk − 1 ≤ ls+1 for some s with j ≤ s < k − 1. Let t be the
smallest index < k such that lt = lk. Then li = lk − 1 for s < i < t, and
s+1 is a left child; possibly s + 1 = t. Furthermore t and t+1 are siblings.

Replace their parent by t+1 ; replace i by i+1 for s < i < t; and replace
the external node s by an internal node whose children are s and s+1 .
This change increases the cost by ≤ qs − qt − qt+1 ≤ qs − qk−1 − qk, so it is an
improvement if qs < qk−1 + qk. Therefore, by (iii), lj ≥ lk − 1.

We still have not used hypothesis (iv). If lj = lk and j is not a left
child, j must be the right sibling of j−1 . Replace their parent by j−1 ;
then replace leaf i by i−1 for j < i < k; and replace the external node
k by an internal node whose children are k−1 and k . The cost increases

by −qj−1 +qk−1 +qk ≤ 0, so we obtain an optimum tree satisfying (a) or (b).

Lemma Y. Let j and k be as in Lemma X, and consider the modiĄed probabil-
ities (q′0, . . . , q′n−1) = (q0, . . . , qj−1, qk−1 + qk, qj , . . . , qk−2, qk+1, . . . , qn) obtained
by removing qk−1 and qk and inserting qk−1 + qk after qj−1. Then

C(q′0, . . . , q′n−1) ≤ C(q0, . . . , qn)− (qk−1 + qk). (29)

Proof. It suffices to show that any optimum tree for (q0, . . . , qn) can be trans-
formed into a tree of the same cost in which k−1 and k are siblings and the
leaves appear in the permuted order

0 . . . j−1 k−1 k j . . . k−2 k+1 . . . n . (30)

448
S

E
A

R
C

H
IN

G
6.2.2

186 64 13 22 32 103 21 15 47 57 1 5 32 20 57 63 15 1 48 51 80 23 8 18 1 16 1

1000

586

414

333

253

228

186

147

122

114 67

114

131 58 41

67 83 38 64 18

35 36 6 16 26 17

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

2 4 6 6 5 4 6 6 5 4 7 7 6 5 4 4 6 6 5 4 4 6 6 6 8 8 7

0

1

1

2

2

2

3

3

3

3 4

3

3 4 5

4 4 5 4 6

5 5 6 5 5 7

Fig. 18. The GarsiaŰWachs algorithm applied to alphabetic frequency data: Phases 1 and 2.

6.2.2 BINARY TREE SEARCHING 449

We start with the tree constructed in Lemma X. If it is of type (b), we simply
rename the leaves, sliding k−1 and k to the left by k − 1− j places. If it is
of type (a), suppose ls−1 = lk − 1 and ls = lk; we proceed as follows: First slide
k−1 and k left by k− 1− s places; then replace their (new) parent by s−1 ;

Ąnally replace j by a node whose children are k−1 and k , and replace node
i by i−1 for j < i < s.

Lemma Z. Under the hypotheses of Lemma Y, equality holds in (29).

Proof. Every tree for (q′0, . . . , q′n−1) corresponds to a tree with leaves (30) in
which the two out-of-order leaf nodes k−1 and k are siblings. Let internal
node ❦x be their parent. We want to show that any optimum tree of that type
can be converted to a tree of the same cost in which the leaves appear in normal
order 0 . . . n .

There is nothing to prove if j = k − 1. Otherwise we have q′i−1 > q′i+1 for
j ≤ i < k − 1, because qj−1 ≥ qk−1 + qk > qj . Therefore by Lemma W we have
lx ≤ lj ≤ · · · ≤ lk−2, where lx is the level of ❦x and li is the level of i for
j ≤ i < k − 1. If lx = lk−2, we simply slide node ❦x to the right, replacing the
sequence ❦x j . . . k−2 by j . . . k−2 ❦x ; this straightens out the leaves
as desired.

Otherwise suppose ls = lx and ls+1 > lx. We Ąrst replace ❦x j . . . s

by j . . . s ❦x ; this makes l ≤ ls+1 ≤ · · · ≤ lk−2, where l = lx + 1 is the
common level of nodes k−1 and k . Finally replace nodes

k−1 k s+1 . . . k−2

by the cyclically shifted sequence

s+1 . . . k−2 k−1 k .

Exercise 40 proves that these changes decrease the cost, unless lk−2 = l. But the
cost cannot decrease, because of Lemma Y. Therefore lk−2 = l, and the proof is
complete.

These lemmas show that the problem for n + 1 weights q0, q1, . . . , qn can
be reduced to an n-weight problem: We Ąrst Ąnd the smallest index k with
qk−1 ≤ qk+1; then we Ąnd the largest j < k with qj−1 ≥ qk−1 + qk; then we
remove qk−1 and qk from the list, and insert the sum qk−1 + qk just after qj−1.
In the special cases j = 0 or k = n, the proofs show that we should proceed as
if inĄnite weights q−1 and qn+1 were present at the left and right. The proofs
also show that any optimum tree T ′ that is obtained from the new weights
(q′0, . . . , q′n−1) can be rearranged into a tree T that has the original weights
(q0, . . . , qn) in the correct left-to-right order; moreover, each weight will appear
at the same level in both T and T ′.

For example, Fig. 18 illustrates the construction when the weights qk are
the relative frequencies of the characters ␣, A, B, . . . , Z in English text. The Ąrst
few weights are

186, 64, 13, 22, 32, 103, . . .

450
S

E
A

R
C

H
IN

G
6.2.2

186

64

13 22

32

103

21 15

47

57

1 5

32

20

57 63

15 1

48

51 80

23 8 18

1 16

1

1000

503

317

131

67

186

83

36

497

235

115

58

38

6

120

262

115

64

16

147

67

31 36

18

17

35

A

B C

D

E

F G

H

I

J K

L

M

N O

P Q

R

S T

U V W

X Y

Z

2

4

6 6

5

4

6 6

5

4

7 7

6

5

4 4

6 6

5

4 4

6 6 6

8 8

7

2

3

4

5

3

4

5

2

3

4

5

6

3

2

3

4

5

3

4

5 5

6

7

0

1 1

Fig. 19. The GarsiaŰWachs algorithm applied to alphabetic frequency data: Phase 3.

6.2.2 BINARY TREE SEARCHING 451

and we have 186 > 13, 64 > 22, 13 ≤ 32; therefore we replace Ş13, 22Ť by 35. In
the new sequence

186, 64, 35, 32, 103, . . .

we replace Ş35, 32Ť by 67 and slide 67 to the left of 64, obtaining

186, 67, 64, 103,

Then Ş67, 64Ť becomes 131, and we begin to examine the weights that follow 103.
After the 27 original weights have been combined into the single weight 1000, the
history of successive combinations speciĄes a binary tree whose weighted path
length is the solution to the original problem.

But the leaves of the tree in Fig. 18 are not at all in the correct order,
because they get tangled up when we slide qk−1 + qk to the left (see exercise 41).
Still, the proof of Lemma Z guarantees that there is a tree whose leaves are in
the correct order and on exactly the same levels as in the tangled tree. This
untangled tree, Fig. 19, is therefore optimum; it is the binary tree output by the
GarsiaŰWachs algorithm.

Algorithm G (GarsiaŰWachs algorithm for optimum binary trees). Given a
sequence of nonnegative weights w0, w1, . . . , wn, this algorithm constructs a
binary tree with n internal nodes for which

n
k=0 wklk is minimum, where lk is

the distance of external node k from the root. It uses an array of 2n + 2 nodes
whose addresses are Xk for 0 ≤ k ≤ 2n + 1; each node has four Ąelds called
WT, LLINK, RLINK, and LEVEL. The leaves of the constructed tree will be nodes
X0 . . . Xn; the internal nodes will be Xn+1 . . . X2n; the root will be X2n; and X2n+1

is used as a temporary sentinel. The algorithm also maintains a working array
of pointers P0, P1, . . . , Pt, where t ≤ n + 1.

G1. [Begin phase 1.] Set WT(Xk) ← wk and LLINK(Xk) ← RLINK(Xk) ← Λ for
0 ≤ k ≤ n. Also set P0 ← X2n+1, WT(P0) ← ∞, P1 ← X0, t ← 1, m ← n.
Then perform step G2 for r = 1, 2, . . . , n, and go to G3.

G2. [Absorb wr.] (At this point we have the basic condition

WT(Pi−1) > WT(Pi+1) for 1 ≤ i < t; (31)

in other words, the weights in the working array are Ş2-descending.Ť) If
WT(Pt−1) ≤ wr, set k ← t, perform Subroutine C below, and repeat step G2.
Otherwise set t← t + 1 and Pt ← Xr.

G3. [Finish phase 1.] While t > 1, set k ← t and perform Subroutine C below.

G4. [Do phase 2.] (Now P1 = X2n is the root of a binary tree, and WT(P1) =
w0 +· · ·+wn.) Set lk to the distance of node Xk from node P1, for 0 ≤ k ≤ n.
(See exercise 43. An example is shown in Fig. 18, where level numbers
appear at the right of each node.)

G5. [Do phase 3.] By changing the links of Xn+1, . . . , X2n, construct a new binary
tree having the same level numbers lk, but with the leaf nodes in symmetric
order X0, . . . , Xn. (See exercise 44; an example appears in Fig. 19.)

452 SEARCHING 6.2.2

Subroutine C (Combination). This recursive subroutine is the heart of the
GarsiaŰWachs algorithm. It combines two weights, shifts them left as appropri-
ate, and maintains the 2-descending condition (31). Variables j and w are local,
but variables k, m, and t are global.

C1. [Create a new node.] (At this point we have k ≥ 2.) Set m ← m + 1,
LLINK(Xm)← Pk−1, RLINK(Xm)← Pk, WT(Xm)← w ← WT(Pk−1)+WT(Pk).

C2. [Shift the following nodes left.] Set t← t− 1, then Pj ← Pj+1 for k ≤ j ≤ t.

C3. [Shift the preceding nodes right.] Set j ← k− 2; then while WT(Pj) < w set
Pj+1 ← Pj and j ← j − 1.

C4. [Insert the new node.] Set Pj+1 ← Xm.

C5. [Done?] If j = 0 or WT(Pj−1) > w, exit the subroutine.

C6. [Restore (31).] Set k ← j, j ← t−j, and call Subroutine C recursively. Then
reset j ← t− j (note that t may have changed!) and return to step C5.

Subroutine C might need Ω(n) steps to create and insert a new node, because
it uses sequential memory instead of linked lists. Therefore the total running time
of Algorithm G might be Ω(n2). But more elaborate data structures can be used
to guarantee that phase 1 will require at most O(n log n) steps (see exercise 45).
Phases 2 and 3 need only O(n) steps.

Kleitman and Saks [SIAM J. Algeb. Discr. Methods 2 (1981), 142Ű146]
proved that the optimum weighted path length never exceeds the value of the
optimum weighted path length that occurs when the qŠs have been rearranged
in Şsawtooth orderŤ:

q0 ≤ q2 ≤ q4 ≤ · · · ≤ q2⌊n/2⌋ ≤ q2⌈n/2⌉−1 ≤ · · · ≤ q3 ≤ q1 . (32)

(This is the inverse of the organ-pipe order discussed in exercise 6.1Ű18.) In
the latter case the GarsiaŰWachs algorithm essentially reduces to HuffmanŠs
algorithm on the weights q0 +q1, q2 +q3, . . . , because the weights in the working
array will actually be nonincreasing (not merely Ş2-descendingŤ as in (31)).
Therefore we can improve the upper bound of Theorem M without knowing
the order of the weights.

The optimum binary tree in Fig. 19 has an important application to coding
theory as well as to searching: Using 0 to stand for a left branch in the tree and
1 to stand for a right branch, we obtain the following variable-length codewords:

␣ 00 I 1000 R 11001
A 0100 J 1001000 S 1101
B 010100 K 1001001 T 1110
C 010101 L 100101 U 111100
D 01011 M 10011 V 111101
E 0110 N 1010 W 111110
F 011100 O 1011 X 11111100
G 011101 P 110000 Y 11111101
H 01111 Q 110001 Z 1111111

(33)

6.2.2 BINARY TREE SEARCHING 453

Thus a message like ŞRIGHT ONŤ would be encoded by the string

1100110000111010111111100010111010.

Decoding from left to right is easy, in spite of the variable length of the codewords,
because the tree structure tells us when one codeword ends and another begins.
This method of coding preserves the alphabetical order of messages, and it uses
an average of about 4.2 bits per letter. Thus the code could be used to compress
data Ąles, without destroying lexicographic order of alphabetic information. (The
Ągure of 4.2 bits per letter is minimum over all binary tree codes, although it
could be reduced to 4.1 bits per letter if we disregarded the alphabetic ordering
constraint. A further reduction, preserving alphabetic order, could be achieved
if pairs of letters instead of single letters were encoded.)

History and bibliography. The tree search methods of this section were
discovered independently by several people during the 1950s. In an unpublished
memorandum dated August 1952, A. I. Dumey described a primitive form of
tree insertion in the following way:

Consider a drum with 2n item storages in it, each having a binary
address.

Follow this program:
1. Read in the Ąrst item and store it in address 2n−1, i.e., at the

halfway storage place.
2. Read in the next item. Compare it with the Ąrst.
3. If it is larger, put it in address 2n−1 + 2n−2. If it is smaller, put it

at 2n−2. . . .

Another early form of tree insertion was introduced by D. J. Wheeler, who
actually allowed multiway branching similar to what we shall discuss in Section
6.2.4; and a binary tree insertion technique was devised by C. M. Berners-Lee
[see Comp. J. 2 (1959), 5].

The Ąrst published descriptions of tree insertion were by P. F. Windley
[Comp. J. 3 (1960), 84Ű88], A. D. Booth and A. J. T. Colin [Information and
Control 3 (1960), 327Ű334], and Thomas N. Hibbard [JACM 9 (1962), 13Ű28].
Each of these authors seems to have developed the method independently of
the others, and each paper derived the average number of comparisons (6) in
a different way. The individual authors also went on to treat different aspects
of the algorithm: Windley gave a detailed discussion of tree insertion sorting;
Booth and Colin discussed the effect of preconditioning by making the Ąrst 2n−1
elements form a perfectly balanced tree (see exercise 4); Hibbard introduced the
idea of deletion and showed the connection between the analysis of tree insertion
and the analysis of quicksort.

The idea of optimum binary search trees was Ąrst developed for the special
case p1 = · · · = pn = 0, in the context of alphabetic binary encodings like
(33). A very interesting paper by E. N. Gilbert and E. F. Moore [Bell System
Tech. J. 38 (1959), 933Ű968] discussed this problem and its relation to other
coding problems. Gilbert and Moore proved Theorem M in the special case

454 SEARCHING 6.2.2

P = 0, and observed that an optimum tree could be constructed in O(n3) steps,
using a method like Algorithm K but without making use of the monotonicity
relation (17). K. E. Iverson [A Programming Language (Wiley, 1962), 142Ű144]
independently considered the other case, when all the qŠs are zero. He suggested
that an optimum tree would be obtained if the root is chosen so as to equalize the
left and right subtree probabilities as much as possible; unfortunately we have
seen that this idea doesnŠt work. D. E. Knuth [Acta Informatica 1 (1971), 14Ű25,
270] subsequently considered the case of general p and q weights and proved that
the algorithm could be reduced to O(n2) steps; he also presented an example
from a compiler application, where the keys in the tree are Şreserved wordsŤ in
an ALGOL-like language. T. C. Hu had been studying his own algorithm for the
case pj = 0 for several years; a rigorous proof of the validity of that algorithm
was difficult to Ąnd because of the complexity of the problem, but he eventually
obtained a proof jointly with A. C. Tucker [SIAM J. Applied Math. 21 (1971),
514Ű532]. SimpliĄcations leading to Algorithm G were found several years later
by A. M. Garsia and M. L. Wachs, SICOMP 6 (1977), 622Ű642, although their
proof was still rather complicated. Lemmas W, X, Y, and Z above are due to
J. H. Kingston, J. Algorithms 9 (1988), 129Ű136. Further properties have been
found by M. Karpinski, L. L. Larmore, and W. Rytter, Theoretical Comp. Sci.
180 (1997), 309Ű324. See also the paper by Hu, Kleitman, and Tamaki, SIAM
J. Applied Math. 37 (1979), 246Ű256, for an elementary proof of the HuŰTucker
algorithm and some generalizations to other cost functions.

Theorem B is due to Paul J. Bayer, report MIT/LCS/TM-69 (Mass. Inst.
of Tech., 1975), who also proved a slightly weaker form of Theorem M. The
stronger form above is due to K. Mehlhorn, SICOMP 6 (1977), 235Ű239.

EXERCISES

1. [15] Algorithm T has been stated only for nonempty trees. What changes should
be made so that it works properly for the empty tree too?

2. [20] Modify Algorithm T so that it works with right-threaded trees. (See Section
2.3.1; symmetric traversal is easier in such trees.)

x 3. [20] In Section 6.1 we found that a slight change to the sequential search Algo-
rithm 6.1S made it faster (Algorithm 6.1Q). Can a similar trick be used to speed up
Algorithm T?

4. [M24] (A. D. Booth and A. J. T. Colin.) Given N keys in random order, suppose
that we use the Ąrst 2n − 1 to construct a perfectly balanced tree, placing 2k keys on
level k for 0 ≤ k < n; then we use Algorithm T to insert the remaining keys. What is
the average number of comparisons in a successful search? [Hint: Modify Eq. (2).]

x 5. [M25] There are 11! = 39,916,800 different orders in which the names CAPRICORN,
AQUARIUS, etc. could have been inserted into a binary search tree.

a) How many of these arrangements will produce Fig. 10?
b) How many of these arrangements will produce a degenerate tree, in which LLINK

or RLINK is Λ in each node?

6. [M26] Let Pnk be the number of permutations a1 a2 . . . an of {1, 2, . . . , n} such
that, if Algorithm T is used to insert a1, a2, . . . , an successively into an initially empty

6.2.2 BINARY TREE SEARCHING 455

tree, exactly k comparisons are made when an is inserted. (In this problem, we will
ignore the comparisons made when a1, . . . , an−1 were inserted. In the notation of the
text, we have C′

n−1 = (

k kPnk)/n!, since this is the average number of comparisons
made in an unsuccessful search of a tree containing n− 1 elements.)

a) Prove that P(n+1)k = 2Pn(k−1) +(n−1)Pnk. [Hint: Consider whether or not an+1

falls below an in the tree.]
b) Find a simple formula for the generating function Gn(z) =

k Pnkz

k, and use
your formula to express Pnk in terms of Stirling numbers.

c) What is the variance of this distribution?

7. [M25] (S. R. Arora and W. T. Dent.) After n elements have been inserted into
an initially empty tree, in random order, what is the average number of comparisons
needed by Algorithm T to Ąnd the mth largest element, given the key of that element?

8. [M38] Let p(n, k) be the probability that k is the total internal path length of a
tree built by Algorithm T from n randomly ordered keys. (The internal path length is
the number of comparisons made by tree insertion sorting as the tree is being built.)

a) Find a recurrence relation that deĄnes the corresponding generating function.
b) Compute the variance of this distribution. [Several of the exercises in Section 1.2.7

may be helpful here.]

9. [41] We have proved that tree search and insertion requires only about 2 lnN
comparisons when the keys are inserted in random order; but in practice, the order
may not be random. Make empirical studies to see how suitable tree insertion really is
for symbol tables within a compiler and/or assembler. Do the identiĄers used in typical
large programs lead to fairly well-balanced binary search trees?

x 10. [22] (R. W. Floyd.) Perhaps we are not interested in the sorting property of
Algorithm T, but we expect that the input will come in nonrandom order. Devise a
way to keep tree search efficient, by making the input Şappear to beŤ in random order.

11. [20] What is the maximum number of times the assignment S← LLINK(R) might
be performed in step D3, when deleting a node from a tree of size N?

12. [M22] When making a random deletion from a random tree of N items, how often
does step D1 go to D4, on the average? (See the proof of Theorem H.)

x 13. [M23] If the root of a random tree is deleted by Algorithm D, is the resulting tree
still random?

x 14. [22] Prove that the path length of the tree produced by Algorithm D with step
D1.5 added is never more than the path length of the tree produced without that step.
Find a case where step D1.5 actually decreases the path length.

15. [23] Let a1 a2 a3 a4 be a permutation of {1, 2, 3, 4}, and let j = 1, 2, or 3. Take the
one-element tree with key a1 and insert a2, a3 using Algorithm T; then delete aj using
Algorithm D; then insert a4 using Algorithm T. How many of the 4! × 3 possibilities
produce trees of shape I, II, III, IV, V, respectively, in (13)?

x 16. [25] Is the deletion operation commutative? That is, if Algorithm D is used to
delete X and then Y , is the resulting tree the same as if Algorithm D is used to delete
Y and then X?

17. [25] Show that if the roles of left and right are completely reversed in Algorithm D,
it is easy to extend the algorithm so that it deletes a given node from a right-threaded

tree, preserving the necessary threads. (See exercise 2.)

18. [M21] Show that ZipfŠs law yields (12).

456 SEARCHING 6.2.2

19. [M23] What is the approximate average number of comparisons, (11), when the
input probabilities satisfy the 80-20 law deĄned in Eq. 6.1Ű(11)?

20. [M20] Suppose we have inserted keys into a tree in order of decreasing frequency
p1 ≥ p2 ≥ · · · ≥ pn. Can this tree be substantially worse than the optimum search
tree?

21. [M20] If p, q, r are probabilities chosen at random, subject to the condition that
p+ q+ r = 1, what are the probabilities that trees I, II, III, IV, V of (13) are optimal,
respectively? (Consider the relative areas of the regions in Fig. 14.)

22. [M20] Prove that r[i, j−1] is never greater than r[i+1, j] when step K4 of Algo-
rithm K is performed.

x 23. [M23] Find an optimum binary search tree for the case N = 40, with weights
p1 = 9, p2 = p3 = · · · = p40 = 1, q0 = q1 = · · · = q40 = 0. (DonŠt use a computer.)

24. [M25] Given that pn = qn = 0 and that the other weights are nonnegative, prove
that an optimum tree for (p1, . . . , pn; q0, . . . , qn) may be obtained by replacing

n−1
by

n

n−1 n

in any optimum tree for (p1, . . . , pn−1; q0, . . . , qn−1).

25. [M20] Let A and B be nonempty sets of real numbers, and deĄne A ≤ B if the
following property holds:

(a ∈ A, b ∈ B, and b < a) implies (a ∈ B and b ∈ A).

a) Prove that this relation is transitive on nonempty sets.
b) Prove or disprove: A ≤ B if and only if A ≤ A ∪B ≤ B.

26. [M22] Let (p1, . . . , pn; q0, . . . , qn) be nonnegative weights, where pn + qn = x.
Prove that as x varies from 0 to∞, while (p1, . . . , pn−1; q0, . . . , qn−1) are held constant,
the cost c(0, n) of an optimum binary search tree is a concave, continuous, piecewise
linear function of x with integer slopes. In other words, prove that there exist positive
integers l0 > l1 > · · · > lm and real constants 0 = x0 < x1 < · · · < xm < xm+1 = ∞
and y0 < y1 · · · < ym such that c(0, n) = yh + lhx when xh ≤ x ≤ xh+1, for 0 ≤ h ≤ m.

27. [M33] The object of this exercise is to prove that the sets of roots R(i, j) of
optimum binary search trees satisfy

R(i, j−1) ≤ R(i, j) ≤ R(i+1, j), for j − i ≥ 2,

in terms of the relation deĄned in exercise 25, when the weights (p1, . . . , pn; q0, . . . , qn)
are nonnegative. The proof is by induction on j−i; our task is to prove thatR(0, n−1)≤
R(0, n), assuming that n ≥ 2 and that the stated relation holds for j − i < n. [By
left-right symmetry it follows that R(0, n) ≤ R(1, n).]

a) Prove that R(0, n− 1) ≤ R(0, n) if pn = qn = 0. (See exercise 24.)
b) Let pn + qn = x. In the notation of exercise 26, let Rh be the set R(0, n) of

optimum roots when xh < x < xh+1, and let R′
h be the set of optimum roots when

x = xh. Prove that

R′
0 ≤ R0 ≤ R′

1 ≤ R1 ≤ · · · ≤ R′
m ≤ Rm.

6.2.2 BINARY TREE SEARCHING 457

Hence by part (a) and exercise 25 we have R(0, n−1) ≤ R(0, n) for all x. [Hint:

Consider the case x = xh, and assume that both the trees

r

t(0, r−1) t(r, n)

at level ln

s

t(0, s−1) t(s, n)

at level l′n

are optimum, with s < r and l ≥ l′. Use the induction hypothesis to prove that
there is an optimum tree with root ❦r such that n is at level l′, and an optimum
tree with root ❦s such that n is at level l.]

28. [24] Use some macro language to deĄne an Şoptimum binary searchŤ macro,
whose parameter is a nested speciĄcation of an optimum binary tree.

29. [40] What is the worst possible binary search tree for the 31 most common English
words, using the frequency data of Fig. 12?

30. [M34] Prove that the costs of optimum binary search trees satisfy the Şquadrangle
inequalityŤ c(i, j)− c(i, j−1) ≥ c(i+1, j)− c(i+1, j−1) when j ≥ i+ 2.

31. [M35] (K. C. Tan.) Prove that, among all possible sets of probabilities (p1, . . . , pn;
q0, . . . , qn) with p1 + · · · + pn + q0 + · · · + qn = 1, the most expensive minimum-cost
tree occurs when pi = 0 for all i, qj = 0 for all even j, and qj = 1/⌈n/2⌉ for all odd j.

x 32. [M25] Let n + 1 = 2m + k, where 0 ≤ k ≤ 2m. There are exactly

2m

k

binary

trees in which all external nodes appear on levels m and m+ 1. Show that, among all
these trees, we obtain one with the minimum cost for the weights (p1, . . . , pn; q0, . . . , qn)
if we apply Algorithm K to the weights (p1, . . . , pn;M+q0, . . . ,M+qn) for sufficiently
large M.

33. [M41] In order to Ąnd the binary search tree that minimizes the running time of
Program T, we should minimize the quantity 7C + C1 instead of simply minimizing
the number of comparisons C. Develop an algorithm that Ąnds optimum binary search
trees when different costs are associated with left and right branches in the tree.
(Incidentally, when the right cost is twice the left cost, and the node frequencies are all
equal, the Fibonacci trees turn out to be optimum; see L. E. Stanfel, JACM 17 (1970),
508Ű517. On machines that cannot make three-way comparisons at once, a program
for Algorithm T will have to make two comparisons in step T2, one for equality and
one for less-than; B. Sheil and V. R. Pratt have observed that these comparisons need
not involve the same key, and it may well be best to have a binary tree whose internal
nodes specify either an equality test or a less-than test but not both. This situation
would be interesting to explore as an alternative to the stated problem.)

34. [HM21] Show that the asymptotic value of the multinomial coefficient

N

p1N, p2N, . . . , pnN

as N →∞ is related to the entropy H(p1, p2, . . . , pn).

35. [HM22] Complete the proof of Theorem B by establishing the inequality (24).

x 36. [HM25] (Claude Shannon.) Let X and Y be random variables with Ąnite ranges
{x1, . . . , xm} and {y1, . . . , yn}, and let pi = Pr(X = xi), qj = Pr(Y = yj), rij =
Pr(X = xi and Y = yj). Let H(X) = H(p1, . . . , pm) and H(Y) = H(q1, . . . , qn) be the

458 SEARCHING 6.2.2

respective entropies of the variables singly, and let H(XY) = H(r11, . . . , rmn) be the
entropy of their joint distribution. Prove that

H(X) ≤ H(XY) ≤ H(X) +H(Y).

[Hint: If f is any concave function, we have E f(X) ≤ f(EX).]

37. [HM26] (P. J. Bayer, 1975.) Suppose (P1, . . . , Pn) is a random probability distri-
bution, namely a random point in the (n − 1)-dimensional simplex deĄned by Pk ≥ 0
for 1 ≤ k ≤ n and P1 + · · · + Pn = 1. (Equivalently, (P1, . . . , Pn) is a set of random
spacings, in the sense of exercise 3.3.2Ű26.) What is the expected value of the entropy
H(P1, . . . , Pn)?

38. [M20] Explain why Theorem M holds in general, although we have only proved
it in the case s0 < s1 < s2 < · · · < sn.

x 39. [M25] Let w1, . . . , wn be nonnegative weights with w1 + · · · + wn = 1. Prove
that the weighted path length of the Huffman tree constructed in Section 2.3.4.5 is less
than H(w1, . . . , wn) + 1. Hint: See the proof of Theorem M.

40. [M26] Complete the proof of Lemma Z.

41. [21] Figure 18 shows the construction of a tangled binary tree. List its leaves in
left-to-right order.

42. [23] Explain why Subroutine C preserves the 2-descending condition (31).

43. [20] Explain how to implement phase 2 of the GarsiaŰWachs algorithm efficiently.

x 44. [25] Explain how to implement phase 3 of the GarsiaŰWachs algorithm efficiently:
Construct a binary tree, given the levels l0, l1, . . . , ln of its leaves in symmetric order.

x 45. [30] Explain how to implement Subroutine C so that the total running time of
the GarsiaŰWachs algorithm is at most O(n logn).

46. [M30] (C. K. Wong and Shi-Kuo Chang.) Consider a scheme whereby a binary
search tree is constructed by Algorithm T, except that whenever the number of nodes
reaches a number of the form 2n − 1 the tree is reorganized into a perfectly balanced
uniform tree, with 2k nodes on level k for 0 ≤ k < n. Prove that the total number of
comparisons made while constructing such a tree is N lgN+O(N) on the average. (It is
not difficult to show that the amount of time needed for the reorganizations is O(N).)
47. [M40] Generalize Theorems B and M from binary trees to t-ary trees. If possible,
also allow the branching costs to be nonuniform as in exercise 33.

48. [M47] Carry out a rigorous analysis of the steady state of a binary search tree
subjected to random insertions and deletions.

49. [HM42] Analyze the average height of a random binary search tree.

6.2.3. Balanced Trees

The tree insertion algorithm we have just learned will produce good search trees,
when the input data is random, but there is still the annoying possibility that
a degenerate tree will occur. Perhaps we could devise an algorithm that keeps
the tree optimum at all times; but unfortunately that seems to be very difficult.
Another idea is to keep track of the total path length, and to reorganize the tree
completely whenever its path length exceeds 5N lg N, say. But such an approach
might require about

N/2 reorganizations as the tree is being built.

6.2.3 BALANCED TREES 459

A very pretty solution to the problem of maintaining a good search tree was
discovered in 1962 by two Russian mathematicians, G. M. Adelson-Velsky and E.
M. Landis [Doklady Akademii Nauk SSSR 146 (1962), 263Ű266; English trans-
lation in Soviet Math. Doklady 3 (1962), 1259Ű1263]. Their method requires
only two extra bits per node, and it never uses more than O(log N) operations
to search the tree or to insert an item. In fact, we shall see that their approach
also leads to a general technique that is good for representing arbitrary linear

lists of length N, so that each of the following operations can be done in only
O(log N) units of time:

i) Find an item having a given key.

ii) Find the kth item, given k.

iii) Insert an item at a speciĄed place.

iv) Delete a speciĄed item.

If we use sequential allocation for linear lists, operations (i) and (ii) are efficient
but operations (iii) and (iv) take order N steps; on the other hand, if we use
linked allocation, operations (iii) and (iv) are efficient but operations (i) and (ii)
take order N steps. A tree representation of linear lists can do all four operations
in O(log N) steps. And it is also possible to do other standard operations
with comparable efficiency, so that, for example, we can concatenate a list of
M elements with a list of N elements in O

log(M + N)

steps.

The method for achieving all this involves what we shall call balanced trees.
(Many authors also call them AVL trees, where the AV stands for Adelson-Velsky
and the L stands for Landis.) The preceding paragraph is an advertisement for
balanced trees, which makes them sound like a universal panacea that makes all
other forms of data representation obsolete; but of course we ought to have a
balanced attitude about balanced trees! In applications that do not involve all
four of the operations above, we may be able to get by with substantially less
overhead and simpler programming. Furthermore, there is no advantage to bal-
anced trees unless N is reasonably large; thus if we have an efficient method that
takes 64 lg N units of time and an inefficient method that takes 2N units of time,
we should use the inefficient method unless N is greater than 256. On the other
hand, N shouldnŠt be too large, either; balanced trees are appropriate chieĆy for
internal storage of data, and we shall study better methods for external direct-
access Ąles in Section 6.2.4. Since internal memories seem to be getting larger and
larger as time goes by, balanced trees are becoming more and more important.

The height of a tree is deĄned to be its maximum level, the length of the
longest path from the root to an external node. A binary tree is called balanced

if the height of the left subtree of every node never differs by more than ±1 from
the height of its right subtree. Figure 20 shows a balanced tree with 17 internal
nodes and height 5; the balance factor within each node is shown as +, • , or −

according as the right subtree height minus the left subtree height is +1, 0, or −1.
The Fibonacci tree in Fig. 8 (Section 6.2.1) is another balanced binary tree of
height 5, having only 12 internal nodes; most of the balance factors in that tree

460 SEARCHING 6.2.3

−

+

+

− −

0 1 2 3

4 5

6 7

8 9

10

11 12

13

14 15 16 17

A

B

C

D

E

F

G

H

I

J

L

M

N

O

P

Q

K

Fig. 20. A balanced binary tree.

are −1. The zodiac tree in Fig. 10 (Section 6.2.2) is not balanced, because the
height restriction on subtrees fails at both the AQUARIUS and GEMINI nodes.

This deĄnition of balance represents a compromise between optimum binary
trees (with all external nodes required to be on two adjacent levels) and arbitrary

binary trees (unrestricted). It is therefore natural to ask how far from optimum
a balanced tree can be. The answer is that its search paths will never be more
than 45 percent longer than the optimum:

Theorem A (Adelson-Velsky and Landis). The height of a balanced tree with
N internal nodes always lies between lg(N + 1) and 1.4405 lg(N + 2)− 0.3277.

Proof. A binary tree of height h obviously cannot have more than 2h external
nodes; so N + 1 ≤ 2h, that is, h ≥

lg(N + 1)

in any binary tree.

In order to Ąnd the maximum value of h, let us turn the problem around and
ask for the minimum number of nodes possible in a balanced tree of height h.
Let Th be such a tree with fewest possible nodes; then one of the subtrees of
the root, say the left subtree, has height h− 1, and the other subtree has height
h−1 or h−2. Since we want Th to have the minimum number of nodes, we may
assume that the left subtree of the root is Th−1, and that the right subtree is
Th−2. This argument shows that the Fibonacci tree of order h + 1 has the fewest
possible nodes among all possible balanced trees of height h. (See the deĄnition
of Fibonacci trees in Section 6.2.1.) Thus

N ≥ Fh+2 − 1 > ϕh+2
√

5− 2,

and the stated result follows as in the corollary to Theorem 4.5.3F.

The proof of this theorem shows that a search in a balanced tree will require
more than 25 comparisons only if the tree contains at least F28 − 1 = 317,810
nodes.

Consider now what happens when a new node is inserted into a balanced
tree using tree insertion (Algorithm 6.2.2T). In Fig. 20, the tree will still be
balanced if the new node takes the place of 4 , 5 , 6 , 7 , 10 , or 13 , but

6.2.3 BALANCED TREES 461

some adjustment will be needed if the new node falls elsewhere. The problem
arises when we have a node with a balance factor of +1 whose right subtree
got higher after the insertion; or, dually, if the balance factor is −1 and the left
subtree got higher. It is not difficult to see that trouble arises only in two cases:

Case 1

++

+
α

β γ

B

A

h

h
h+1

Case 2

++

−

α

δ

β γ

B

X

A

h

h

h
h−1

(1)

(Two other essentially identical cases occur if we reĆect these diagrams, inter-
changing left and right.) In these diagrams the large rectangles α, β, γ, δ
represent subtrees having the respective heights shown. Case 1 occurs when a
new element has just increased the height of node BŠs right subtree from h to
h + 1, and Case 2 occurs when the new element has increased the height of BŠs
left subtree. In the second case, we have either h = 0 (so that X itself was the
new node), or else node X has two subtrees of respective heights (h−1, h) or
(h, h−1).

Simple transformations will restore balance in both of these cases, while
preserving the symmetric order of the tree nodes:

Case 1 α β

γ

B

A

h
h+1

Case 2 α δβ γ

X

A B

h

(2)

In Case 1 we simply ŞrotateŤ the tree to the left, attaching β to A instead of B.
This transformation is like applying the associative law to an algebraic formula,
replacing α(βγ) by (αβ)γ. In Case 2 we use a double rotation, Ąrst rotating
(X, B) right, then (A, X) left. In both cases only a few links of the tree need to
be changed. Furthermore, the new trees have height h + 2, which is exactly the
height that was present before the insertion; hence the rest of the tree (if any)
that was originally above node A always remains balanced.

For example, if we insert a new node into position 17 of Fig. 20 we obtain
the balanced tree shown in Fig. 21, after a single rotation (Case 1). Notice that
several of the balance factors have changed.

The details of this insertion procedure can be worked out in several ways.
At Ąrst glance an auxiliary stack seems to be necessary, in order to keep track
of which nodes will be affected, but the following algorithm gains some speed by

462 SEARCHING 6.2.3

− +

−

−

+

+

+

0 1 2 3

4 5 6 7

8 9

10 11 12

13

14 15 16

17 18

A

B

C

D

E

F

G

H

I

J L

M

O

P

Q

R

K

N

Fig. 21. The tree of Fig. 20, rebalanced after a new key R has been inserted.

exploiting the fact that the balance factor of node B in (1) was zero before the
insertion.

Algorithm A (Balanced tree search and insertion). Given a table of records
that form a balanced binary tree as described above, this algorithm searches for
a given argument K. If K is not in the table, a new node containing K is inserted
into the tree in the appropriate place and the tree is rebalanced if necessary.

The nodes of the tree are assumed to contain KEY, LLINK, and RLINK Ąelds
as in Algorithm 6.2.2T. We also have a new Ąeld

B(P) = balance factor of NODE(P),

the height of the right subtree minus the height of the left subtree; this Ąeld
always contains either +1, 0, or −1. A special header node also appears at the
top of the tree, in location HEAD; the value of RLINK(HEAD) is a pointer to the
root of the tree, and LLINK(HEAD) is used to keep track of the overall height of
the tree. (Knowledge of the height is not really necessary for this algorithm, but
it is useful in the concatenation procedure discussed below.) We assume that
the tree is nonempty, namely that RLINK(HEAD) ̸= Λ.

For convenience in description, the algorithm uses the notation LINK(a,P)
as a synonym for LLINK(P) if a = −1, and for RLINK(P) if a = +1.

A1. [Initialize.] Set T← HEAD, S← P← RLINK(HEAD). (The pointer variable P

will move down the tree; S will point to the place where rebalancing may
be necessary, and T always points to the parent of S.)

A2. [Compare.] If K < KEY(P), go to A3; if K > KEY(P), go to A4; and if
K = KEY(P), the search terminates successfully.

A3. [Move left.] Set Q← LLINK(P). If Q = Λ, set Q⇐ AVAIL and LLINK(P)← Q

and go to step A5. Otherwise if B(Q) ̸= 0, set T ← P and S ← Q. Finally
set P← Q and return to step A2.

A4. [Move right.] Set Q← RLINK(P). If Q= Λ, set Q⇐ AVAIL and RLINK(P)← Q

and go to step A5. Otherwise if B(Q) ̸= 0, set T← P and S← Q. Finally set

6.2.3 BALANCED TREES 463

A1. Initialize

A2. Compare

A3. Move left A4. Move right

A5. Insert

A6. Adjust
balance factors

A7. Balancing
act

A8. Single
rotation

A9. Double
rotation

A10. Finish-
ing touch

K=KEY(P)
SUCCESS

K<KEY(P) K>KEY(P)

Leaf found Leaf found

Tree still
balanced

Search

Insert

Rebalance

Fig. 22. Balanced tree search and insertion.

P← Q and return to step A2. (The last part of this step may be combined
with the last part of step A3.)

A5. [Insert.] (We have just linked a new node, NODE(Q), into the tree, and its
Ąelds need to be initialized.) Set KEY(Q)←K, LLINK(Q)← RLINK(Q)←Λ,
and B(Q)← 0.

A6. [Adjust balance factors.] (Now the balance factors on nodes between S

and Q need to be changed from zero to ±1.) If K < KEY(S) set a ← −1,
otherwise set a ← +1. Then set R ← P ← LINK(a,S), and repeatedly do
the following operations zero or more times until P = Q: If K < KEY(P) set
B(P) ← −1 and P ← LLINK(P); if K > KEY(P), set B(P) ← +1 and P ←
RLINK(P). (If K = KEY(P), then P = Q and we proceed to the next step.)

A7. [Balancing act.] Several cases now arise:
i) If B(S) = 0 (the tree has grown higher), set B(S) ← a, LLINK(HEAD)
← LLINK(HEAD) + 1, and terminate the algorithm.

ii) If B(S) = −a (the tree has gotten more balanced), set B(S) ← 0 and
terminate the algorithm.

iii) If B(S) = a (the tree has gotten out of balance), go to step A8 if
B(R) = a, to A9 if B(R) = −a.
(Case (iii) corresponds to the situations depicted in (1) when a = +1;
S and R point, respectively, to nodes A and B, and LINK(−a,S) points
to α, etc.)

464 SEARCHING 6.2.3

A8. [Single rotation.] Set P ← R, LINK(a,S)←LINK(−a,R), LINK(−a,R)←S,
B(S)← B(R)← 0. Go to A10.

A9. [Double rotation.] Set P ← LINK(−a,R), LINK(−a,R) ← LINK(a,P),
LINK(a,P)← R, LINK(a,S)← LINK(−a,P), LINK(−a,P)← S. Now set

(B(S), B(R))←

(−a, 0), if B(P) = a;
(0, 0), if B(P) = 0;
(0, a), if B(P) = −a;

(3)

and then set B(P)← 0.

A10. [Finishing touch.] (We have completed the rebalancing transformation,
taking (1) to (2), with P pointing to the new subtree root and T pointing
to the parent of the old subtree root S.) If S = RLINK(T) then set
RLINK(T)← P, otherwise set LLINK(T)← P.

This algorithm is rather long, but it divides into three simple parts: Steps
A1ŰA4 do the search, steps A5ŰA7 insert a new node, and steps A8ŰA10 rebal-
ance the tree if necessary. Essentially the same method can be used if the tree
is threaded (see exercise 6.2.2Ű2), since the balancing act never needs to make
difficult changes to thread links.

We know that the algorithm takes about C log N units of time, for some C,
but it is important to know the approximate value of C so that we can tell how
large N should be in order to make balanced trees worth all the trouble. The
following MIX implementation gives some insight into this question.

Program A (Balanced tree search and insertion). This program for Algorithm A
uses tree nodes having the form

B LLINK RLINK

KEY
; (4)

rA ≡ K, rI1 ≡ P, rI2 ≡ Q, rI3 ≡ R, rI4 ≡ S, rI5 ≡ T. The code for steps A7ŰA9
is duplicated so that the value of a appears implicitly (not explicitly) in the
program.

01 B EQU 0:1

02 LLINK EQU 2:3

03 RLINK EQU 4:5

04 START LDA K 1 A1. Initialize.
05 ENT5 HEAD 1 T← HEAD.
06 LD2 0,5(RLINK) 1 Q← RLINK(HEAD).
07 JMP 2F 1 To A2 with S← P← Q.
08 4H LD2 0,1(RLINK) C2 A4. Move right. Q← RLINK(P).
09 J2Z 5F C2 To A5 if Q = Λ.
10 1H LDX 0,2(B) C − 1 rX← B(Q).
11 JXZ *+3 C − 1 Jump if B(Q) = 0.
12 ENT5 0,1 D − 1 T← P.

6.2.3 BALANCED TREES 465

13 2H ENT4 0,2 D S← Q.
14 ENT1 0,2 C P← Q.
15 CMPA 1,1 C A2. Compare.
16 JG 4B C To A4 if K > KEY(P).
17 JE SUCCESS C1 Exit if K = KEY(P).
18 LD2 0,1(LLINK) C1− S A3. Move left. Q← LLINK(P).
19 J2NZ 1B C1− S Jump if Q ̸= Λ.
20 5H LD2 AVAIL 1− S A5. Insert.
21 J2Z OVERFLOW 1− S
22 LDX 0,2(RLINK) 1− S
23 STX AVAIL 1− S Q⇐ AVAIL.
24 STA 1,2 1− S KEY(Q)← K.
25 STZ 0,2 1− S LLINK(Q)← RLINK(Q)← Λ.
26 JL 1F 1− S Was K < KEY(P)?
27 ST2 0,1(RLINK) A RLINK(P)← Q.
28 JMP *+2 A
29 1H ST2 0,1(LLINK) 1− S −A LLINK(P)← Q.
30 6H CMPA 1,4 1− S A6. Adjust balance factors.
31 JL *+3 1− S Jump if K < KEY(S).
32 LD3 0,4(RLINK) E R← RLINK(S).
33 JMP *+2 E
34 LD3 0,4(LLINK) 1− S − E R← LLINK(S).
35 ENT1 0,3 1− S P← R.
36 ENTX -1 1− S rX← −1.
37 JMP 1F 1− S To comparison loop.
38 4H JE 7F F2 + 1− S To A7 if K = KEY(P).
39 STX 0,1(1:1) F2 B(P)← +1 (it was +0).
40 LD1 0,1(RLINK) F2 P← RLINK(P).
41 1H CMPA 1,1 F + 1− S
42 JGE 4B F + 1− S Jump if K ≥ KEY(P).
43 STX 0,1(B) F1 B(P)← −1.
44 LD1 0,1(LLINK) F1 P← LLINK(P).
45 JMP 1B F1 To comparison loop.
46 7H LD2 0,4(B) 1− S A7. Balancing act. rI2← B(S).
47 STZ 0,4(B) 1− S B(S)← 0.
48 CMPA 1,4 1− S
49 JG A7R 1− S To a = +1 routine if K > KEY(S).
50 A7L J2P DONE U1 Exit if rI2 = −a.
51 J2Z 7F G1 + J1 Jump if B(S) was zero.
52 ENT1 0,3 G1 P← R.
53 LD2 0,3(B) G1 rI2← B(R).
54 J2N A8L G1 To A8 if rI2 = a.
55 A9L LD1 0,3(RLINK) H1 A9. Double rotation.
56 LDX 0,1(LLINK) H1 LINK(a,P← LINK(−a,R))
57 STX 0,3(RLINK) H1 → LINK(−a,R).
58 ST3 0,1(LLINK) H1 LINK(a,P)← R.
59 LD2 0,1(B) H1 rI2← B(P).
60 LDX T1,2 H1 −a, 0, or 0
61 STX 0,4(B) H1 → B(S).

466 SEARCHING 6.2.3

62 LDX T2,2 H1 0, 0, or a
63 STX 0,3(B) H1 → B(R).
64 A8L LDX 0,1(RLINK) G1 A8. Single rotation.
65 STX 0,4(LLINK) G1 LINK(a,S)← LINK(−a,P).
66 ST4 0,1(RLINK) G1 LINK(−a,P)← S.
67 JMP 8F G1 Join up with the other branch.
68 A7R J2N DONE U2 Exit if rI2 = −a.
69 J2Z 6F G2 + J2 Jump if B(S) was zero.
70 ENT1 0,3 G2 P← R.
71 LD2 0,3(B) G2 rI2← B(R).
72 J2P A8R G2 To A8 if rI2 = a.
73 A9R LD1 0,3(LLINK) H2 A9. Double rotation.
74 LDX 0,1(RLINK) H2 LINK(a,P← LINK(−a,R))
75 STX 0,3(LLINK) H2 → LINK(−a,R).
76 ST3 0,1(RLINK) H2 LINK(a,P)← R.
77 LD2 0,1(B) H2 rI2← B(P).
78 LDX T2,2 H2 −a, 0, or 0
79 STX 0,4(B) H2 → B(S).
80 LDX T1,2 H2 0, 0, or a
81 STX 0,3(B) H2 → B(R).
82 A8R LDX 0,1(LLINK) G2 A8. Single rotation.
83 STX 0,4(RLINK) G2 LINK(a,S)← LINK(−a,P).
84 ST4 0,1(LLINK) G2 LINK(−a,P)← S.
85 8H STZ 0,1(B) G B(P)← 0.
86 A10 CMP4 0,5(RLINK) G A10. Finishing touch.
87 JNE *+3 G Jump if RLINK(T) ̸= S.
88 ST1 0,5(RLINK) G3 RLINK(T)← P.
89 JMP DONE G3 Exit.
90 ST1 0,5(LLINK) G4 LLINK(T)← P.
91 JMP DONE G4 Exit.
92 CON +1

93 T1 CON 0 Table for (3).
94 T2 CON 0

95 CON -1

96 6H ENTX +1 J2 rX← +1.
97 7H STX 0,4(B) J B(S)← a.
98 LDX HEAD(LLINK) J LLINK(HEAD)
99 INCX 1 J + 1

100 STX HEAD(LLINK) J → LLINK(HEAD).
101 DONE EQU * 1− S Insertion is complete.

Analysis of balanced tree insertion. [Nonmathematical readers, please skip
to (10).] In order to Ągure out the running time of Algorithm A, we would like
to know the answers to the following questions:

• How many comparisons are made during the search?
• How far apart will nodes S and Q be? (In other words, how much adjustment

is needed in step A6?)
• How often do we need to do a single or double rotation?

6.2.3 BALANCED TREES 467

It is not difficult to derive upper bounds on the worst-case running time, using
Theorem A, but of course in practice we want to know the average behavior.
No theoretical determination of the average behavior has been successfully com-
pleted as yet, since the algorithm appears to be quite complicated, but several
interesting theoretical and empirical results have been obtained.

In the Ąrst place we can ask about the number Bnh of balanced binary trees
with n internal nodes and height h. It is not difficult to compute the generating
function Bh(z) =

n≥0 Bnhzn for small h, from the relations

B0(z) = 1, B1(z) = z, Bh+1(z) = zBh(z)

Bh(z) + 2Bh−1(z)

. (5)

(See exercise 6.) Thus

B2(z) = 2z2 + z3,

B3(z) = 4z4 + 6z5 + 4z6 + z7,

B4(z) = 16z7 + 32z8 + 44z9 + · · ·+ 8z14 + z15,

and in general Bh(z) has the form

2Fh+1−1zFh+2−1 + 2Fh+1−2Lh−1zFh+2 + complicated terms + 2h−1z2h−2 + z2h−1

(6)

for h ≥ 3, where Lk = Fk+1 +Fk−1. (This formula generalizes Theorem A.) The
total number of balanced trees with height h is Bh = Bh(1), which satisĄes the
recurrence

B0 = B1 = 1, Bh+1 = B2
h + 2BhBh−1, (7)

so that B2 = 3, B3 = 3 · 5, B4 = 32 · 5 · 7, B5 = 33 · 52 · 7 · 23; and, in general,

Bh = AFh
0 A

Fh−1

1 . . . AF1

h−1AF0

h , (8)

where A0 = 1, A1 = 3, A2 = 5, A3 = 7, A4 = 23, A5 = 347, . . . , Ah =
Ah−1Bh−2 + 2. The sequences Bh and Ah grow very rapidly; in fact, they are
doubly exponential: Exercise 7 shows that there is a real number θ ≈ 1.43687
such that

Bh =

θ2h−

θ2h−1

+

θ2h−2− · · ·+ (−1)h

θ20

. (9)

If we consider each of the Bh trees to be equally likely, exercise 8 shows that the
average number of nodes in a tree of height h is

B′
h(1)/Bh(1) ≈ (0.70118)2h − 1. (10)

This indicates that the height of a balanced tree with N nodes is usually much
closer to log2 N than to logϕ N .

Unfortunately, these results donŠt really have much to do with Algorithm A,
since the mechanism of that algorithm makes some trees signiĄcantly more
probable than others. For example, consider the case N = 7, where 17 balanced
trees are possible. There are 7! = 5040 possible orderings in which seven keys

468 SEARCHING 6.2.3

can be inserted, and the perfectly balanced ŞcompleteŤ tree

(11)

is obtained 2160 times. By contrast, the Fibonacci tree

(12)

occurs only 144 times, and the similar tree

(13)

occurs 216 times. Replacing the left subtrees of (12) and (13) by arbitrary four-
node balanced trees, and then reĆecting left and right, yields 16 different trees;
the eight generated from (12) each occur 144 times, and those generated from
(13) each occur 216 times. It is surprising that (13) is more common than (12).

The fact that the perfectly balanced tree is obtained with such high prob-
ability Ů together with (10), which corresponds to the case of equal probabili-
ties Ů makes it plausible that the average search time for a balanced tree should
be about lg N + c comparisons for some small constant c. But R. W. Floyd
has observed that the coefficient of lg N is unlikely to be exactly 1, because the
root of the tree would then be near the median, and the roots of its two subtrees
would be near the quartiles; then single and double rotation could not easily keep
the root near the median. Empirical tests indicate that the true average number
of comparisons needed to insert the Nth item is approximately 1.01 lg N + 0.1,
except when N is small.

In order to study the behavior of the insertion and rebalancing phases of
Algorithm A, we can classify the external nodes of balanced trees as shown
in Fig. 23. The path leading up from an external node can be speciĄed by a
sequence of +Šs and -Šs (+ for a right link, - for a left link); we write down the
link speciĄcations until reaching the Ąrst node with a nonzero balance factor,
or until reaching the root, if there is no such node. Then we write A or B

according as the new tree will be balanced or unbalanced when an internal node
is inserted in the given place. Thus the path up from 3 is ++-B, meaning
Şright link, right link, left link, unbalance.Ť A speciĄcation ending in A requires

6.2.3 BALANCED TREES 469

−

+

+

− −

0 1 2 3

4 5

6 7

8 9

10

11 12

13

14 15 16 17

-
-
-
B

+
-
-
B

-
+
-
B

+
+
-
B

-
+
A

+
+
A

-
-
A

+
-
A

-
-
B

+
-
B

+
A

-
-
B

+
-
B

+
A

-
-
+
+
+
B

+
-
+
+
+
B

-
+
+
+
+
B

+
+
+
+
+
B

Fig. 23. ClassiĄcation codes that specify the behavior of Algorithm A after insertion.

no rebalancing after insertion of a new node; a speciĄcation ending in ++B or --B
requires a single rotation; and a speciĄcation ending in +-B or -+B requires a
double rotation. When k links appear in the speciĄcation, step A6 has to adjust
exactly k−1 balance factors. Thus the speciĄcations give the essential facts that
govern the running time of steps A6 to A10.

Empirical tests on random numbers for 100 ≤ N ≤ 2000 gave the approxi-
mate probabilities shown in Table 1 for paths of various types; apparently these
probabilities rapidly approach limiting values as N → ∞. Table 2 gives the
exact probabilities corresponding to Table 1 when N = 10, considering the 10!
permutations of the input as equally probable. (The probabilities that show up
as .143 in Table 1 are actually equal to 1/7, for all N ≥ 7; see exercise 11. Single
and double rotations are equally likely when N ≤ 15, but double rotations occur
slightly less often when N ≥ 16.)

Table 1

APPROXIMATE PROBABILITIES FOR INSERTING THE NTH ITEM

Path length k No rebalancing Single rotation Double rotation

1 .143 .000 .000
2 .152 .143 .143
3 .092 .048 .048
4 .060 .024 .024
5 .036 .010 .010

> 5 .051 .009 .008

ave 2.78 total .534 .233 .232

From Table 1 we can see that k is ≤ 2 with probability about .143 + .152 +
.143 + .143 = .581; thus, step A6 is quite simple almost 60 percent of the time.
The average number of balance factors changed from 0 to ±1 in that step is

470 SEARCHING 6.2.3

Table 2

EXACT PROBABILITIES FOR INSERTING THE 10TH ITEM

Path length k No rebalancing Single rotation Double rotation

1 1/7 0 0
2 6/35 1/7 1/7
3 4/21 2/35 2/35
4 0 1/21 1/21

ave 247/105 53/105 26/105 26/105

about 1.8. The average number of balanced factors changed from ±1 to 0 in
steps A7 through A10 is approximately .534+2(.233+.232) ≈ 1.5; thus, inserting
one new node adds about 1.8−1.5 = 0.3 unbalanced nodes, on the average. This
agrees with the fact that about 68 percent of all nodes were found to be balanced
in random trees built by Algorithm A.

An approximate model of the behavior of Algorithm A has been proposed
by C. C. Foster [Proc. ACM Nat. Conf. 20 (1965), 192Ű205.] This model is
not rigorously accurate, but it is close enough to the truth to give some insight.
Let us assume that p is the probability that the balance factor of a given node
in a large tree built by Algorithm A is 0; then the balance factor is +1 with
probability 1

2 (1 − p), and it is −1 with the same probability 1
2 (1 − p). Let us

assume further (without justiĄcation) that the balance factors of all nodes are
independent. Then the probability that step A6 sets exactly k−1 balance factors
nonzero is pk−1(1 − p), so the average value of k is 1/(1 − p). The probability
that we need to rotate part of the tree is q ≈ 1

2 . Inserting a new node should
increase the number of balanced nodes by p, on the average; this number is
actually increased by 1 in step A5, by −p/(1 − p) in step A6, by q in step A7,
and by 2q in step A8 or A9, so we should have

p = 1− p/(1− p) + 3q ≈ 5/2− p/(1− p).

Solving for p yields fair agreement with Table 1:

p ≈ 9−
√

41
4

≈ 0.649; 1/(1− p) ≈ 2.851. (14)

The running time of the search phase of Program A (lines 01Ű19) is

10C + C1 + 2D + 2− 3S, (15)

where C, C1, S are the same as in previous algorithms of this chapter and D is
the number of unbalanced nodes encountered on the search path. Empirical tests
show that we may take D ≈ 1

3 C, C1 ≈ 1
2 (C + S), C + S ≈ 1.01 lg N + 0.1, so the

average search time is approximately 11.3 lg N + 3− 13.7S units. (If searching is
done much more often than insertion, we could of course use a separate, faster
program for searching, since it would be unnecessary to look at the balance
factors; the average running time for a successful search would then be only
about (6.6 lg N − 3.4)u, and the worst case running time would in fact be better
than the average running time obtained with Program 6.2.2T.)

6.2.3 BALANCED TREES 471

−

+

+

− −

1

2

1

4

1

6

1

2

1

2

5

1

2

3

1

2

1

Fig. 24. RANK Ąelds, used for searching by position.

The running time of the insertion phase of Program A (lines 20Ű45) is 8F +
26 + (0, 1, or 2) units, when the search is unsuccessful. The data of Table 1
indicate that F ≈ 1.8 on the average. The rebalancing phase (lines 46Ű101)
takes either 16.5, 8, 27.5, or 45.5 (±0.5) units, depending on whether we increase
the total height, or simply exit without rebalancing, or do a single or double
rotation. The Ąrst case almost never occurs, and the others occur with the
approximate probabilities .534, .233, .232, so the average running time of the
combined insertion-rebalancing portion of Program A is about 63u.

These Ągures indicate that maintenance of a balanced tree in memory is
reasonably fast, even though the program is rather lengthy. If the input data
are random, the simple tree insertion algorithm of Section 6.2.2 is roughly 50u
faster per insertion; but the balanced tree algorithm is guaranteed to be reliable
even with nonrandom input data.

One way to compare Program A with Program 6.2.2T is to consider the
worst case of the latter. If we study the amount of time necessary to insert N
keys in increasing order into an initially empty tree, it turns out that Program A
is slower for N ≤ 26 and faster for N ≥ 27.

Linear list representation. Now let us return to the claim made at the
beginning of this section, that balanced trees can be used to represent linear
lists in such a way that we can insert items rapidly (overcoming the difficulty
of sequential allocation), yet we can also perform random accesses to list items
(overcoming the difficulty of linked allocation).

The idea is to introduce a new Ąeld in each node, called the RANK Ąeld. The
Ąeld indicates the relative position of that node in its subtree, namely one plus
the number of nodes in its left subtree. Figure 24 shows the RANK values for the
binary tree of Fig. 23. We can eliminate the KEY Ąeld entirely; or, if desired, we
can have both KEY and RANK Ąelds, so that it is possible to retrieve items either
by their key value or by their relative position in the list.

Using such a RANK Ąeld, retrieval by position is a straightforward modiĄca-
tion of the search algorithms we have been studying.

472 SEARCHING 6.2.3

Algorithm B (Tree search by position). Given a linear list represented as a
binary tree, this algorithm Ąnds the kth element of the list (the kth node of the
tree in symmetric order), given k. The binary tree is assumed to have LLINK

and RLINK Ąelds and a header as in Algorithm A, plus a RANK Ąeld as described
above.

B1. [Initialize.] Set M← k, P← RLINK(HEAD).

B2. [Compare.] If P = Λ, the algorithm terminates unsuccessfully. (This can
happen only if k was greater than the number of nodes in the tree, or
k ≤ 0.) Otherwise if M < RANK(P), go to B3; if M > RANK(P), go to B4; and
if M = RANK(P), the algorithm terminates successfully (P points to the kth
node).

B3. [Move left.] Set P← LLINK(P) and return to B2.

B4. [Move right.] Set M← M−RANK(P) and P← RLINK(P) and return to B2.

The only new point of interest in this algorithm is the manipulation of M in
step B4. We can modify the insertion procedure in a similar way, although the
details are somewhat trickier:

Algorithm C (Balanced tree insertion by position). Given a linear list repre-
sented as a balanced binary tree, this algorithm inserts a new node just before
the kth element of the list, given k and a pointer Q to the new node. If k = N +1,
the new node is inserted just after the last element of the list.

The binary tree is assumed to be nonempty and to have LLINK, RLINK and
B Ąelds and a header, as in Algorithm A, plus a RANK Ąeld as described above.
This algorithm is merely a transcription of Algorithm A; the difference is that
it uses and updates the RANK Ąelds instead of the KEY Ąelds.

C1. [Initialize.] Set T← HEAD, S← P← RLINK(HEAD), U← M← k.

C2. [Compare.] If M ≤ RANK(P), go to C3, otherwise go to C4.

C3. [Move left.] Set RANK(P)← RANK(P) + 1 (we will be inserting a new node
to the left of P). Set R ← LLINK(P). If R = Λ, set LLINK(P) ← Q and go
to C5. Otherwise if B(R) ̸= 0 set T ← P, S ← R, and U ← M. Finally set
P← R and return to C2.

C4. [Move right.] Set M ← M − RANK(P), and R ← RLINK(P). If R = Λ, set
RLINK(P)← Q and go to C5. Otherwise if B(R) ̸= 0 set T← P, S← R, and
U← M. Finally set P← R and return to C2.

C5. [Insert.] Set RANK(Q)← 1, LLINK(Q)← RLINK(Q)← Λ, B(Q)← 0.

C6. [Adjust balance factors.] Set M ← U. (This restores the former value of M
when P was S; all RANK Ąelds are now properly set.) If M < RANK(S), set
R ← P ← LLINK(S) and a ← −1; otherwise set R ← P ← RLINK(S), a ←
+1, and M ← M − RANK(S). Then repeatedly do the following operations
until P = Q: If M < RANK(P), set B(P) ← −1 and P ← LLINK(P); if
M > RANK(P), set B(P) ← +1 and M ← M − RANK(P) and P ← RLINK(P).
(If M = RANK(P), then P = Q and we proceed to the next step.)

C7. [Balancing act.] Several cases now arise.

6.2.3 BALANCED TREES 473

i) If B(S) = 0, set B(S) ← a, LLINK(HEAD) ← LLINK(HEAD) + 1, and
terminate the algorithm.

ii) If B(S) = −a, set B(S)← 0 and terminate the algorithm.

iii) If B(S) = a, go to step C8 if B(R) = a, to C9 if B(R) = −a.

C8. [Single rotation.] Set P←R, LINK(a,S)← LINK(−a,R), LINK(−a,R)← S,
B(S) ← B(R) ← 0. If a = +1, set RANK(R) ← RANK(R) + RANK(S); if
a = −1, set RANK(S)← RANK(S)− RANK(R). Go to C10.

C9. [Double rotation.] Do all the operations of step A9 (Algorithm A). Then
if a = +1, set RANK(R) ← RANK(R) − RANK(P), RANK(P) ← RANK(P) +
RANK(S); if a = −1, set RANK(P)← RANK(P) + RANK(R), then RANK(S)←
RANK(S)− RANK(P).

C10. [Finishing touch.] If S = RLINK(T) then set RLINK(T) ← P, otherwise set
LLINK(T)← P.

*Deletion, concatenation, etc. It is possible to do many other things to
balanced trees and maintain the balance, but the algorithms are sufficiently
lengthy that the details are beyond the scope of this book. We shall discuss
the general ideas here, and an interested reader will be able to Ąll in the details
without much difficulty.

The problem of deletion can be solved in O(log N) steps if we approach it
correctly [C. C. Foster, ŞA Study of AVL Trees,Ť Goodyear Aerospace Corp.
report GER-12158 (April 1965)]. In the Ąrst place we can reduce deletion of
an arbitrary node to the simple deletion of a node P for which LLINK(P) or
RLINK(P) is Λ, as in Algorithm 6.2.2D. The algorithm should also be modiĄed
so that it constructs a list of pointers that specify the path to node P, namely

(P0, a0), (P1, a1), . . . , (Pl, al), (16)

where P0 = HEAD, a0 = +1; LINK(ai,Pi) = Pi+1, for 0 ≤ i < l; Pl = P; and
LINK(al,Pl) = Λ. This list can be placed on an auxiliary stack as we search down
the tree. The process of deleting node P sets LINK(al−1,Pl−1)← LINK(−al,Pl),
and we must adjust the balance factor at node Pl−1. Suppose that we need to
adjust the balance factor at node Pk, because the ak subtree of this node has
just decreased in height; the following adjustment procedure should be used: If
k = 0, set LLINK(HEAD)← LLINK(HEAD)− 1 and terminate the algorithm, since
the whole tree has decreased in height. Otherwise look at the balance factor
B(Pk); there are three cases:

i) B(Pk) = ak. Set B(Pk) ← 0, decrease k by 1, and repeat the adjustment
procedure for this new value of k.

ii) B(Pk) = 0. Set B(Pk) to −ak and terminate the deletion algorithm.
iii) B(Pk) = −ak. Rebalancing is required!

The situations that require rebalancing are almost the same as we met in the
insertion algorithm; referring again to (1), A is node Pk, and B is the node
LINK(−ak,Pk), on the opposite branch from where the deletion has occurred.
The only new feature is that node B might be balanced; this leads to a new

474 SEARCHING 6.2.3

Case 3, which is like Case 1 except that β has height h + 1. In the for-
mer cases, rebalancing as in (2) means that we decrease the height, so we set
LINK(ak−1,Pk−1) to the root of (2), decrease k by 1, and restart the adjustment
procedure for this new value of k. In Case 3 we do a single rotation, and this
leaves the balance factors of both A and B nonzero without changing the overall
height; after making LINK(ak−1,Pk−1) point to node B, we therefore terminate
the algorithm.

The important difference between deletion and insertion is that deletion
might require up to log N rotations, while insertion never needs more than one.
The reason for this becomes clear if we try to delete the rightmost node of a
Fibonacci tree (see Fig. 8 in Section 6.2.1). But empirical tests show that only
about 0.21 rotations per deletion are actually needed, on the average.

The use of balanced trees for linear list representation suggests also the
need for a concatenation algorithm, where we want to insert an entire tree L2 to
the right of tree L1, without destroying the balance. An elegant algorithm for
concatenation was Ąrst devised by Clark A. Crane: Assume that height(L1) ≥
height(L2); the other case is similar. Delete the Ąrst node of L2, calling it the
juncture node J , and let L′

2 be the new tree for L2 \{J}. Now go down the right
links of L1 until reaching a node P such that

height(P)− height(L′
2) = 0 or 1;

this is always possible, since the height changes by 1 or 2 each time we go down
one level. Then replace P by

J

P L
′

2

and proceed to adjust L1 as if the new node J had just been inserted by
Algorithm A.

Crane also solved the more difficult inverse problem, to split a list into two
parts whose concatenation would be the original list. Consider, for example,
the problem of splitting the list in Fig. 20 to obtain two lists, one containing
{A, . . . , I} and the other containing {J, . . . , Q}; a major reassembly of the subtrees
is required. In general, when we want to split a tree at some given node P , the
path to P will be something like that in Fig. 25. We wish to construct a left
tree that contains the nodes of α1, P1, α4, P4, α6, P6, α7, P7, α, P in symmetric
order, and a right tree that contains β, P8, β8, P5, β5, P3, β3, P2, β2. This can be
done by a sequence of concatenations: First insert P at the right of α, then
concatenate β with β8 using P8 as juncture node, concatenate α7 with αP using
P7 as juncture node, α6 with α7P7αP using P6, βP8β8 with β5 using P5, etc.; the
nodes P8, P7, . . . , P1 on the path to P are used as juncture nodes. Crane proved
that this splitting algorithm takes only O(log N) units of time, when the original
tree contains N nodes; the essential reason is that concatenation using a given
juncture node takes O(k) steps, where k is the difference in heights between the

6.2.3 BALANCED TREES 475

α

α7

α6

α4

α1

β2

β3

β5

β8

β

P1

P4

P6

P7

P

P2

P3

P5

P8

Fig. 25. The problem of splitting a list.

trees being concatenated, and the values of k that must be summed essentially
form a telescoping series for both the left and right trees being constructed.

All of these algorithms can be used with either KEY or RANK Ąelds or both,
although in the case of concatenation the keys of L2 must all be greater than
the keys of L1. For general purposes it is often preferable to use a triply linked

tree, with UP links as well as LLINKs and RLINKs, together with a new one-bit
Ąeld that speciĄes whether a node is the left or right child of its parent. The
triply linked tree representation simpliĄes the algorithms slightly, and allows us
to specify nodes in the tree without explicitly tracing the path to that node; we
can write a subroutine to delete NODE(P), given P, or to delete the node that
follows NODE(P) in symmetric order, or to Ąnd the list containing NODE(P), etc.
In the deletion algorithm for triply linked trees it is unnecessary to construct the
list (16), since the UP links provide the information we need. Of course, a triply
linked tree requires us to change a few more links when insertions, deletions, and
rotations are being performed. The use of a triply linked tree instead of a doubly
linked tree is analogous to the use of two-way linking instead of one-way: We can
start at any point and go either forward or backward. A complete description of
list algorithms based on triply linked balanced trees appears in Clark A. CraneŠs
Ph.D. thesis (Stanford University, 1972).

Alternatives to AVL trees. Many other ways have been proposed to organize
trees so that logarithmic accessing time is guaranteed. For example, C. C. Foster
[CACM 16 (1973), 513Ű517] considered the binary trees that arise when we allow
the height difference of subtrees to be at most k. Such structures have been called
HB(k) (meaning Şheight-balancedŤ), so that ordinary balanced trees represent
the special case HB(1).

476 SEARCHING 6.2.3

The interesting concept of weight-balanced trees has been studied by J. Nie-
vergelt, E. Reingold, and C. K. Wong. Instead of considering the height of trees,
they stipulate that the subtrees of all nodes must satisfy

√
2− 1 <

left weight
right weight

<
√

2 + 1, (17)

where the left and right weights count the number of external nodes in the
left and right subtrees, respectively. It is possible to show that weight balance
can be maintained under insertion, using only single and double rotations for
rebalancing as in Algorithm A (see exercise 25). However, it may be necessary
to do several rebalancings during a single insertion. It is possible to relax
the conditions of (17), decreasing the amount of rebalancing at the expense
of increased search time.

Weight-balanced trees may seem at Ąrst glance to require more memory
than plain balanced trees, but in fact they sometimes require slightly less! If we
already have a RANK Ąeld in each node, for the linear list representation, this is
precisely the left weight, and it is possible to keep track of the corresponding
right weights as we move down the tree. But it appears that the bookkeeping
required for maintaining weight balance takes more time than Algorithm A, and
the elimination of two bits per node is probably not worth the trouble.

Why donŠt you pair Šem up in threes?

— attributed to YOGI BERRA (c. 1970)

Another interesting alternative to AVL trees, called Ş2-3 trees,Ť was intro-
duced by John Hopcroft in 1970 [see Aho, Hopcroft, and Ullman, The Design
and Analysis of Computer Algorithms (Reading, Mass.: AddisonŰWesley, 1974),
Chapter 4]. The idea is to have either 2-way or 3-way branching at each node,
and to stipulate that all external nodes appear on the same level. Every internal
node contains either one or two keys, as shown in Fig. 26.

J

E L,T

A,C G K N,R V,X

Fig. 26. A 2-3 tree.

Insertion into a 2-3 tree is somewhat easier to explain than insertion into an
AVL tree: If we want to put a new key into a node that contains just one key,
we simply insert it as the second key. On the other hand, if the node already
contains two keys, we divide it into two one-key nodes, and insert the middle key
into the parent node. This may cause the parent node to be divided in a similar
way, if it already contains two keys. Figure 27 shows the process of inserting a
new key into the 2-3 tree of Fig. 26.

6.2.3 BALANCED TREES 477

J

E L,T

A,C G K M,N,R V,X

⇒
J

E L,N,T

A,C G K M V,XR

⇒
J,N

E L

A,C G K M V,XR

T

Fig. 27. Inserting the new key ŞMŤ into the 2-3 tree of Fig. 26.

Hopcroft observed that deletion, concatenation, and splitting can all be
done with 2-3 trees, in a reasonably straightforward manner analogous to the
corresponding operations with AVL trees.

R. Bayer [Proc. ACMŰSIGFIDET Workshop (1971), 219Ű235] proposed an
interesting binary tree representation for 2-3 trees. See Fig. 28, which shows the
binary tree representation of Fig. 26; one bit in each node is used to distinguish
ŞhorizontalŤ RLINKs from ŞverticalŤ ones. Note that the keys of the tree appear
from left to right in symmetric order, just as in any binary search tree. It turns
out that the transformations we need to perform on such a binary tree, while in-
serting a new key as in Fig. 27, are precisely the single and double rotations used
while inserting a new key into an AVL tree, although we need just one version
of each rotation, not the left-right reĆections needed by Algorithms A and C.

J

E L T

A C G K N R V X

Fig. 28. The 2-3 tree of Fig. 26 represented as a binary search tree.

Elaboration of these ideas has led to many additional Ćavors of balanced
trees, most notably the red-black trees, also called symmetric binary B-trees or
half-balanced trees [R. Bayer, Acta Informatica 1 (1972), 290Ű306; L. Guibas
and R. Sedgewick, FOCS 19 (1978), 8Ű21; H. J. Olivié, RAIRO Informatique
Théorique 16 (1982), 51Ű71; R. E. Tarjan, Inf. Proc. Letters 16 (1983), 253Ű257;
T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms
(MIT Press, 1990), Chapter 14; R. Sedgewick, Algorithms in C (AddisonŰWesley,
1997), §13.4]. There is also a strongly related family called hysterical B-trees or
(a, b)-trees, notably (2, 4)-trees [D. Maier and S. C. Salveter, Inf. Proc. Letters 12

(1981), 199Ű202; S. Huddleston and K. Mehlhorn, Acta Informatica 17 (1982),
157Ű184].

478 SEARCHING 6.2.3

When some keys are accessed much more frequently than others, we want
the important ones to be relatively close to the root, as in the optimum binary
search trees of Section 6.2.2. Dynamic trees that make it possible to maintain
weighted balance within a constant factor of the optimum, called biased trees,
have been developed by S. W. Bent, D. D. Sleator, and R. E. Tarjan, SICOMP
14 (1985), 545Ű568; J. Feigenbaum and R. E. Tarjan, Bell System Tech. J. 62

(1983), 3139Ű3158. The algorithms are, however, quite complicated.
A much simpler self-adjusting data structure called a splay tree was devel-

oped subsequently by D. D. Sleator and R. E. Tarjan [JACM 32 (1985), 652Ű686],
based on ideas like the move-to-front and transposition heuristics discussed in
Section 6.1; similar techniques had previously been explored by B. Allen and
I. Munro [JACM 25 (1978), 526Ű535] and by J. Bitner [SICOMP 8 (1979),
82Ű110]. Splay trees, like the other kinds of balanced trees already mentioned,
support the operations of concatenation and splitting as well as insertion and
deletion, and in a particularly simple way. Moreover, the time needed to access
data in a splay tree is known to be at most a small constant multiple of the access
time of a statically optimum tree, when amortized over any series of operations.
Indeed, Sleator and Tarjan conjectured that the total splay tree access time is
at most a constant multiple of the optimum time to access data and to perform
rotations dynamically by any binary tree algorithm whatsoever.

Randomization leads to methods that appear to be even simpler and faster
than splay trees. Jean Vuillemin [CACM 23 (1980), 229Ű239] introduced Car-

tesian trees, in which every node has two keys (x, y). The x parts are ordered
from left to right as in binary search trees; the y parts are ordered from top to
bottom as in the priority queue trees of Section 5.2.3. C. R. Aragon and R. G.
Seidel gave this data structure the more colorful name treap, because it neatly
combines the notions of trees and heaps. Exactly one treap can be formed with
n given key pairs (x1, y1), . . . , (xn, yn), if the xŠs and yŠs are distinct. One way to
obtain it is to insert the xŠs by Algorithm 6.2.2T according to the order of the yŠs;
but there is also a simple algorithm that inserts any new key pair directly into any
treap. Aragon and Seidel observed [FOCS 30 (1989), 540Ű546] that if the xŠs are
ordinary keys while the yŠs are chosen at random, we can be sure that the treap
has the shape of a random binary search tree. In particular, a treap with random
y values will always be reasonably well balanced, except with exponentially small
probability (see exercise 5.2.2Ű42). Aragon and Seidel also showed that treaps
can readily be biased so that, for example, a key x with relative frequency f
will appear suitably near the root when it is associated with y = U1/f , where
U is a random number between 0 and 1. Treaps performed consistently better
than splay trees in some experiments conducted by D. E. Knuth relating to the
calculation of convex hulls [Lecture Notes in Comp. Sci. 606 (1992), 53Ű55].

A new Section 6.2.5 devoted to randomized data structures is planned for
the next edition of the present book. It will discuss Şskip listsŤ [W. Pugh,

CACM 33 (1990), 668Ű676] and Şrandomized binary search treesŤ [S. Roura and
C. Martínez, JACM 45 (1998), 288Ű323] as well as treaps.

6.2.3 BALANCED TREES 479

EXERCISES

1. [01] In Case 2 of (1), why isnŠt it a good idea to restore the balance by simply
interchanging the left subtrees of A and B?

2. [16] Explain why the tree has gotten one level higher if we reach step A7 with
B(S) = 0.

x 3. [M25] Prove that a balanced tree with N internal nodes never contains more than
(ϕ− 1)N ≈ 0.61803N nodes whose balance factor is nonzero.

4. [M22] Prove or disprove: Among all balanced trees with Fh+1− 1 internal nodes,
the Fibonacci tree of order h has the greatest internal path length.

x 5. [M25] Prove or disprove: If Algorithm A is used to insert the keys K2, . . . ,KN

successively in increasing order into a tree that initially contains only the single key
K1, where K1 < K2 < · · · < KN, then the tree produced is always optimum (that is,
it has minimum internal path length over all N -node binary trees).

6. [M21] Prove that Eq. (5) deĄnes the generating function for balanced trees of
height h.

7. [M27] (A. V. Aho and N. J. A. Sloane.) Prove the remarkable formula (9) for the
number of balanced trees of height h. [Hint: Let Cn = Bn + Bn−1, and use the fact
that log(Cn+1/C

2
n) is exceedingly small for large n.]

8. [M24] (L. A. Khizder.) Show that there is a constant β such that B′
h(1)/Bh(1) =

2hβ − 1 +O(2h/Bh−1) as h→∞.

9. [HM44] What is the asymptotic number of balanced binary trees with n internal
nodes,

h≥0 Bnh? What is the asymptotic average height,

h≥0 hBnh/

h≥0 Bnh?

x 10. [27] (R. C. Richards.) Show that the shape of a balanced tree can be constructed
uniquely from the list of its balance factors B(1)B(2) . . . B(N) in symmetric order.

11. [M24] (Mark R. Brown.) Prove that when n ≥ 6 the average number of external
nodes of each of the types +A, -A, ++B, +-B, -+B, --B is exactly (n+ 1)/14, in a random
balanced tree of n internal nodes constructed by Algorithm A.

x 12. [24] What is the maximum possible running time of Program A when the eighth
node is inserted into a balanced tree? What is the minimum possible running time for
this insertion?

13. [05] Why is it better to use RANK Ąelds as deĄned in the text, instead of simply
to store the index of each node as its key (calling the Ąrst node Ş1Ť, the second node
Ş2Ť, and so on)?

14. [11] Could Algorithms 6.2.2T and 6.2.2D be adapted to work with linear lists,
using a RANK Ąeld, just as the balanced tree algorithms of this section have been so
adapted?

15. [18] (C. A. Crane.) Suppose that an ordered linear list is being represented as
a binary tree, with both KEY and RANK Ąelds in each node. Design an algorithm that
searches the tree for a given key, K, and determines the position of K in the list; that is,
it Ąnds the number m such that K is the mth smallest key.

x 16. [20] Draw the balanced tree that is obtained after node E and the root node F are
deleted from Fig. 20, using the deletion algorithm suggested in the text.

x 17. [21] Draw the balanced trees that are obtained after the Fibonacci tree (12)
is concatenated (a) to the right, (b) to the left, of the tree in Fig. 20, using the
concatenation algorithm suggested in the text.

480 SEARCHING 6.2.3

18. [22] Draw the balanced trees that are obtained after Fig. 20 is split into two parts
{A, . . . , I} and {J, . . . , Q}, using the splitting algorithm suggested in the text.

x 19. [26] Find a way to transform a given balanced tree so that the balance factor at
the root is not −1. Your transformation should preserve the symmetric order of the
nodes; and it should produce another balanced tree in O(1) units of time, regardless of
the size of the original tree.

20. [40] Explore the idea of using the restricted class of balanced trees whose nodes
all have balance factors of 0 or +1. (Then the length of the B Ąeld can be reduced to
one bit.) Is there a reasonably efficient insertion procedure for such trees?

x 21. [30] (Perfect balancing.) Design an algorithm to construct N -node binary trees
that are optimum in the sense of exercise 5. Your algorithm should use O(N) steps and
it should be Şonline,Ť in the sense that it inputs the nodes one by one in increasing order
and builds partial trees as it goes, without knowing the Ąnal value of N in advance. (It
would be appropriate to use such an algorithm when restructuring a badly balanced
tree, or when merging the keys of two trees into a single tree.)

22. [M20] What is the analog of Theorem A, for weight-balanced trees?

23. [M20] (E. Reingold.) Demonstrate that there is no simple relation between
height-balanced trees and weight-balanced trees:

a) Prove that there exist height-balanced trees that have an arbitrarily small ratio
(left weight)/(right weight) in the sense of (17).

b) Prove that there exist weight-balanced trees that have an arbitrarily large differ-
ence between left and right subtree heights.

24. [M22] (E. Reingold.) Prove that if we strengthen condition (17) to

1
2
<

left weight
right weight

< 2,

the only binary trees that satisfy this condition are perfectly balanced trees with 2n−1
internal nodes. (In such trees, the left and right weights are exactly equal at all nodes.)

25. [27] (J. Nievergelt, E. Reingold, C. Wong.) Show that it is possible to design
an insertion algorithm for weight-balanced trees so that condition (17) is preserved,
making at most O(logN) rotations per insertion.

26. [40] Explore the properties of balanced t-ary trees, for t > 2.

x 27. [M23] Estimate the maximum number of comparisons needed to search in a 2-3
tree with N internal nodes.

28. [41] Prepare efficient implementations of 2-3 tree algorithms.

29. [M47] Analyze the average behavior of 2-3 trees under random insertions.

30. [26] (E. McCreight.) Section 2.5 discusses several strategies for dynamic storage
allocation, including best-Ąt (choosing an available area as small as possible from among
all those that fulĄll the request) and Ąrst-Ąt (choosing the available area with lowest
address among all those that fulĄll the request). Show that if the available space is
linked together as a balanced tree in an appropriate way, it is possible to do (a) best-Ąt
(b) Ąrst-Ąt allocation in only O(logn) units of time, where n is the number of available
areas. (The algorithms given for those methods in Section 2.5 take order n steps.)

31. [34] (M. L. Fredman, 1975.) Invent a representation of linear lists with the
property that insertion of a new item between positions m− 1 and m, given m, takes
O(logm) units of time.

6.2.4 MULTIWAY TREES 481

32. [M27] Given two n-node binary trees, T and T ′, let us say that T ⪯ T ′ if T ′ can
be obtained from T by a sequence of zero or more rotations to the right. Prove that
T ⪯ T ′ if and only if rk ≤ r′k for 1 ≤ k ≤ n, where rk and r′k denote the respective sizes
of the right subtrees of the kth nodes of T and T ′ in symmetric order.

x 33. [25] (A. L. Buchsbaum.) Explain how to encode the balance factors of an AVL
tree implicitly, thus saving two bits per node, at the expense of additional work when
the tree is accessed.

Samuel considered the nation of Israel, tribe by tribe,

and the tribe of Benjamin was picked by lot.

Then he considered the tribe of Benjamin, family by family,

and the family of Matri was picked by lot.

Then he considered the family of Matri, man by man,

and Saul son of Kish was picked by lot.

But when they looked for Saul he could not be found.

Ů 1 Samuel 10:20Ű21

6.2.4. Multiway Trees

The tree search methods we have been discussing were developed primarily for
internal searching, when we want to look at a table that is contained entirely
within a computerŠs high-speed internal memory. LetŠs now consider the problem
of external searching, when we want to retrieve information from a very large
Ąle that appears on direct access storage units such as disks or drums. (An
introduction to disks and drums appears in Section 5.4.9.)

Tree structures lend themselves nicely to external searching, if we choose
an appropriate way to represent the tree. Consider the large binary search
tree shown in Fig. 29, and imagine that it has been stored in a disk Ąle. (The
LLINKs and RLINKs of the tree are now disk addresses instead of internal memory
addresses.) If we search this tree in a naïve manner, simply applying the
algorithms we have learned for internal tree searching, we will have to make
about lg N disk accesses before our search is complete. When N is a million,
this means we will need 20 or so seeks. But suppose we divide the table into
7-node Şpages,Ť as shown by the dotted lines in Fig. 29; if we access one page at
a time, we need only about one third as many seeks, so the search goes about
three times as fast!

Grouping the nodes into pages in this way essentially changes the tree from
a binary tree to an octonary tree, with 8-way branching at each page-node. If
we let the pages be still larger, with 128-way branching after each disk access,
we can Ąnd any desired key in a million-entry table after looking at only three
pages. We can keep the root page in the internal memory at all times, so that
only two references to the disk are required even though the internal memory
never needs to hold more than 254 keys at any time.

Of course we donŠt want to make the pages arbitrarily large, since the
internal memory size is limited and also since it takes a long time to read a
large page. For example, suppose that it takes 72.5 + 0.05m milliseconds to read
a page that allows m-way branching. The internal processing time per page will

482 SEARCHING 6.2.4

Fig. 29. A large binary search tree can be divided into Şpages.Ť

be about a + b lg m, where a is small compared to 72.5 ms, so the total amount
of time needed for searching a large table is approximately proportional to lg N
times

(72.5 + 0.05m)/ lg m + b.

This quantity achieves a minimum when m ≈ 307; actually the minimum is
very ŞbroadŤ Ů a nearly optimum value is achieved for all m between 200 and
500. In practice there will be a similar range of good values for m, based on the
characteristics of particular external memory devices and on the length of the
records in the table.

W. I. Landauer [IEEE Trans. EC-12 (1963), 863Ű871] suggested building an
m-ary tree by requiring level l to become nearly full before anything is allowed
to appear on level l + 1. This scheme requires a rather complicated rotation
method, since we may have to make major changes throughout the tree just to
insert a single new item; Landauer was assuming that we need to search for items
in the tree much more often than we need to insert or delete them.

When a Ąle is stored on disk, and is subject to comparatively few insertions
and deletions, a three-level tree is appropriate, where the Ąrst level of branching
determines what cylinder is to be used, the second level of branching determines
the appropriate track on that cylinder, and the third level contains the records
themselves. This method is called indexed-sequential Ąle organization [see JACM
16 (1969), 569Ű571].

R. Muntz and R. Uzgalis [Proc. Princeton Conf. on Inf. Sciences and Systems
4 (1970), 345Ű349] suggested modifying the tree search and insertion method,
Algorithm 6.2.2T, so that all insertions go onto nodes belonging to the same
page as their parent node, whenever possible; if that page is full, a new page
is started, whenever possible. If the number of pages is unlimited, and if the
data arrives in random order, it can be shown that the average number of page
accesses is approximately HN/(Hm−1), only slightly more than we would obtain
in the best possible m-ary tree. (See exercise 8.)

B-trees. A new approach to external searching by means of multiway tree
branching was discovered in 1970 by R. Bayer and E. McCreight [Acta Informa-

6.2.4 MULTIWAY TREES 483

tica 1 (1972), 173Ű189], and independently at about the same time by M. Kauf-
man [unpublished]. Their idea, based on a versatile new kind of data structure
called a B-tree, makes it possible both to search and to update a large Ąle with
guaranteed efficiency, in the worst case, using comparatively simple algorithms.

A B-tree of order m is a tree that satisĄes the following properties:

i) Every node has at most m children.

ii) Every node, except for the root and the leaves, has at least m/2 children.

iii) The root has at least 2 children (unless it is a leaf).

iv) All leaves appear on the same level, and carry no information.

v) A nonleaf node with k children contains k − 1 keys.

(As usual, a ŞleafŤ is a terminal node, one with no children. Since the leaves
carry no information, we may regard them as external nodes that arenŠt really
in the tree, so that Λ is a pointer to a leaf.)

Figure 30 shows a B-tree of order 7. Each node (except for the root and the
leaves) has between ⌈7/2⌉ and 7 children, so it contains 3, 4, 5, or 6 keys. The
root node is allowed to contain from 1 to 6 keys; in this case it has 2. All of the
leaves are at level 3. Notice that (a) the keys appear in increasing order from
left to right, using a natural extension of the concept of symmetric order; and
(b) the number of leaves is exactly one greater than the number of keys.

B-trees of order 1 or 2 are obviously uninteresting, so we will consider only
the case m ≥ 3. The 2-3 trees deĄned at the close of Section 6.2.3 are equivalent
to B-trees of order 3. (Bayer and McCreight considered only the case that m is
odd; some authors consider a B-tree of order m to be what we are calling a
B-tree of order 2m + 1.)

A node that contains j keys and j + 1 pointers can be represented as

P0,K1, P1,K2, P2, . . . , Pj−1,Kj , Pj

P

(1)

where K1 < K2 < · · · < Kj and Pi points to the subtree for keys between
Ki and Ki+1. Therefore searching in a B-tree is quite straightforward: After
node (1) has been fetched into the internal memory, we search for the given
argument among the keys K1, K2, . . . , Kj . (When j is large, we probably do a
binary search; but when j is smallish, a sequential search is best.) If the search
is successful, we have found the desired key; but if the search is unsuccessful
because the argument lies between Ki and Ki+1, we fetch the node indicated
by Pi and continue the process. The pointer P0 is used if the argument is less
than K1, and Pj is used if the argument is greater than Kj . If Pi = Λ, the search
is unsuccessful.

The nice thing about B-trees is that insertion is also quite simple. Consider
Fig. 30, for example; every leaf corresponds to a place where a new insertion
might happen. If we want to insert the new key 337, we simply change the

484 SEARCHING 6.2.4

011

017

023

041

047

059

067

073

083

103

109

127

149

157

167

179

197

211

227

241

257

269

277

307

313

331

347

367

379

389

419

431

439

461

467

487

509

523

547

563

571

587

607

617

631

643

653

661

691

709

727

739

751

761

797

811

823

853

859

877

907

919

937

947

967

031

097

137

191

283

353

401

499

599

677

773

829

883

233

449

A

Fig. 30. A B-tree of order 7, with all leaves
on level 3. Every node contains 3, 4, 5, or 6
keys. The leaf that precedes key 449 has
been marked A; see (8).

6.2.4 MULTIWAY TREES 485

appropriate node from

3
0
7

3
1
3

3
3
1

3
4
7

to

3
0
7

3
1
3

3
3
1

3
3
7

3
4
7

. (2)

On the other hand, if we want to insert the new key 071, there is no room since
the corresponding node on level 2 is already Şfull.Ť This case can be handled by
splitting the node into two parts, with three keys in each part, and passing the
middle key up to level 1:

. . .

0
3
1

0
9
7

. . .

0
4
1

0
4
7

0
5
9

0
6
7

0
7
1

0
7
3

0
8
3 becomes

. . .

0
3
1

0
6
7

0
9
7

. . .

0
4
1

0
4
7

0
5
9

0
7
1

0
7
3

0
8
3 . (3)

In general, if we want to insert a new item into a B-tree of order m, when
all the leaves are at level l, we insert the new key into the appropriate node on
level l − 1. If that node now contains m keys, so that it has the form (1) with
j = m, we split it into two nodes

P0,K1, P1, . . . ,K⌈m/2⌉−1, P⌈m/2⌉−1

P

P⌈m/2⌉,K⌈m/2⌉+1, P⌈m/2⌉+1, . . . ,Km, Pm

P
′

(4)

and insert the key K⌈m/2⌉ into the parent of the original node. (Thus the pointer
P in the parent node is replaced by the sequence P, K⌈m/2⌉, P′.) This insertion
may cause the parent node to contain m keys, and if so, it should be split in the
same way. (Figure 27 in the previous section illustrates the case m = 3.) If we
need to split the root node, which has no parent, we simply create a new root
node containing the single key K⌈m/2⌉; the tree gets one level taller in this case.

This insertion procedure neatly preserves all of the B-tree properties; in
order to appreciate the full beauty of the idea, the reader should work exercise 1.
The tree essentially grows up from the top, instead of down from the bottom,
since it gains in height only when the root splits.

Deletion from B-trees is only slightly more complicated than insertion (see
exercise 6).

Upper bounds on the running time. Let us now see how many nodes have
to be accessed in the worst case, while searching in a B-tree of order m. Suppose
that there are N keys, and that the N + 1 leaves appear on level l. Then the
number of nodes on levels 1, 2, 3, . . . is at least 2, 2⌈m/2⌉, 2⌈m/2⌉2, . . . ; hence

N + 1 ≥ 2⌈m/2⌉l−1. (5)

In other words,

l ≤ 1 + log⌈m/2⌉

N + 1

2

; (6)

486 SEARCHING 6.2.4

this means, for example, that if N = 1,999,998 and m = 199, then l is at most 3.
Since we need to access at most l nodes during a search, this formula guarantees
that the running time is quite small.

When a new key is being inserted, we may have to split as many as l nodes.
However, the average number of nodes that need to be split is much less, since the
total number of splittings that occur while the entire tree is being constructed
is just the total number of internal nodes in the tree, minus l. If there are p
internal nodes, there are at least 1 +

⌈m/2⌉ − 1

(p− 1) keys; hence

p ≤ 1 +
N − 1
⌈m/2⌉ − 1

. (7)

It follows that (p − l)/N , the average number of times we need to split a node
while building a tree of N keys, is less than 1/

⌈m/2⌉ − 1

split per insertion.

ReĄnements and variations. There are several ways to improve upon the
basic B-tree structure deĄned above, by breaking the rules a little.

In the Ąrst place, we note that all of the pointers in the level l − 1 nodes
are Λ, and none of the pointers in the other levels are Λ. This often represents a
signiĄcant amount of wasted space, so we can save both time and space by elim-
inating all the ΛŠs and using a different value of m for all of the ŞbottomŤ nodes.
This use of two different mŠs does not foul up the insertion algorithm, since both
halves of a node that is being split remain on the same level as the original
node. We could in fact deĄne a generalized B-tree of orders m1, m2, m3, . . . by
requiring all nonroot nodes on level l−k to have between mk/2 and mk children;
such a B-tree has different mŠs on each level, yet the insertion algorithm still
works essentially as before.

To carry the idea in the preceding paragraph even further, we might use
a completely different node format in each level of the tree, and we might also
store information in the leaves. Sometimes the keys form only a small part of
the records in a Ąle, and in such cases it is a mistake to store the entire records
in the branch nodes near the root of the tree; this would make m too small for
efficient multiway branching.

We can therefore reconsider Fig. 30, imagining that all the records of the
Ąle are now stored in the leaves, and that only a few of the keys have been
duplicated in the branch nodes. Under this interpretation, the leftmost leaf
contains all records whose key is ≤ 011; the leaf marked A contains all records
whose key satisĄes

439 < K ≤ 449; (8)

and so on. Under this interpretation the leaf nodes grow and split just as the
branch nodes do, except that a record is never passed up from a leaf to the next
level. Thus the leaves are always at least half Ąlled to capacity. A new key
enters the nonleaf part of the tree whenever a leaf splits. If each leaf is linked
to its successor in symmetric order, we gain the ability to traverse the Ąle both
sequentially and randomly in an efficient and convenient manner. This variant
has become known as a B+-tree.

6.2.4 MULTIWAY TREES 487

Some calculations by S. P. Ghosh and M. E. Senko [JACM 16 (1969),
569Ű579] suggest that it might be a good idea to make the leaves fairly large,
say up to about 10 consecutive pages long. By linear interpolation in the known
range of keys for each leaf, we can guess which of the 10 pages probably contains
a given search argument. If our guess is wrong, we lose time, but experiments
indicate that this loss might be less than the time we save by decreasing the size
of the tree.

T. H. Martin [unpublished] has pointed out that the idea underlying B-trees
can be used also for variable-length keys. We need not put bounds [m/2 . . m] on
the number of children of each node; instead we can say merely that each node
should be at least about half full of data. The insertion and splitting mechanism
still works Ąne, even though the exact number of keys per node depends on
whether the keys are long or short. However, the keys shouldnŠt be allowed to
get extremely long, or they can mess things up. (See exercise 5.)

Another important modiĄcation to the basic B-tree scheme is the idea
of overĆow introduced by Bayer and McCreight. The idea is to improve the
insertion algorithm by resisting its temptation to split nodes so often; a local
rotation is used instead. Suppose we have a node that is over-full because it
contains m keys and m + 1 pointers; instead of splitting it, we can look Ąrst
at its sibling node on the right, which has say j keys and j + 1 pointers. In
the parent node there is a key Kf that separates the keys of the two siblings;
schematically,

· · · Kf · · ·

K
1

· · · Km K
′

1
· · · K

′

j

P P
′

P0 P1 Pm P
′

0
P
′

1
P
′

j

(9)

If j < m − 1, a simple rearrangement makes splitting unnecessary: We leave
(m + j)/2

keys in the left node, we replace Kf by K⌊(m+j)/2⌋+1 in the parent

node, and we put the ⌈(m + j)/2⌉ remaining keys (including Kf) and the
corresponding pointers into the right node. Thus the full node ŞĆows overŤ into
its sibling node. On the other hand, if the sibling node is already full (j = m−1),
we can split both of the nodes, making three nodes each about two-thirds full,
containing, respectively,

(2m− 2)/3

,

(2m− 1)/3

, and ⌊2m/3⌋ keys:

· · · K⌊(2m+1)/3⌋ K
′
⌊(m−1)/3⌋

· · ·

K1 K2 · · · · · ·Km Kf K
′
1 · · · · · · K

′
j

P P
′′

P
′

P0 P1 Pm P
′
0 P

′
1

P
′
j

(10)

If the original node has no right sibling, we can look at its left sibling in essentially
the same way. (If the original node has both a right and a left sibling, we could
even refrain from splitting off a new node unless both left and right siblings are
full.) Finally if the original node to be split has no siblings at all, it must be

488 SEARCHING 6.2.4

the root; we can change the deĄnition of B-tree, allowing the root to contain as
many as 2

(2m− 2)/3

keys, so that when the root splits it produces two nodes

of

(2m− 2)/3

keys each.

The effect of all the technicalities in the preceding paragraph is to produce a
superior breed of tree, say a B∗-tree of order m, which can be deĄned as follows:

i) Every node except the root has at most m children.

ii) Every node, except for the root and the leaves, has at least (2m − 1)/3
children.

iii) The root has at least 2 and at most 2

(2m− 2)/3

+ 1 children.

iv) All leaves appear on the same level.

v) A nonleaf node with k children contains k − 1 keys.

The important change is condition (ii), which asserts that we utilize at least
two-thirds of the available space in every node. This change not only uses space
more efficiently, it also makes the search process faster, since we may replace
⌈m/2⌉ by

(2m − 1)/3

in (6) and (7). However, the insertion process gets

slower, because nodes tend to need more attention as they Ąll up; see B. Zhang
and M. Hsu, Acta Informatica 26 (1989), 421Ű438, for an approximate analysis
of the tradeoffs involved.

At the other extreme, it is sometimes better to let nodes become less than
half full in a tree that changes quite frequently, especially if insertions tend
to outnumber deletions. This situation has been analyzed by T. Johnson and
D. Shasha, J. Comput. Syst. Sci. 47 (1993), 45Ű76.

Perhaps the reader has been skeptical of B-trees because the degree of the
root can be as low as 2. Why should we waste a whole disk access on merely
a 2-way decision?! A simple buffering scheme, called least-recently-used page

replacement, overcomes this objection; we can keep several bufferloads of infor-
mation in the internal memory, so that input commands can be avoided when
the corresponding page is already present. Under this scheme, the algorithms
for searching or insertion issue Şvirtual readŤ commands that are translated
into actual input instructions only when the necessary page is not in memory;
a subsequent ŞreleaseŤ command is issued when the buffer has been read and
possibly modiĄed by the algorithm. When an actual read is required, the buffer
that has least recently been released is chosen; we write out that buffer, if its
contents have changed since they were read in, then we read the desired page
into the chosen buffer.

Since the number of levels in the tree is generally small compared to the
number of buffers, this paging scheme will ensure that the root page is always
present in memory; and if the root has only 2 or 3 children, the Ąrst-level pages
will almost surely stay there too. Any pages that might need to be split during
an insertion are automatically present in memory when they are needed, because
they will be remembered from the immediately preceding search.

Experiments by E. McCreight have shown that this policy is quite successful.
For example, he found that with 10 buffers and m = 121, the process of inserting

6.2.4 MULTIWAY TREES 489

100,000 keys in ascending order required only 22 actual read commands, and only
857 actual write commands; thus most of the activity took place in the internal
memory. Furthermore the tree contained only 835 nodes, just one higher than
the minimum possible value

100000/(m−1)

= 834; thus the storage utilization

was nearly 100 percent. For this experiment he used the overĆow technique, but
with only 2-way node splitting as in (4), not 3-way splitting as in (10). (See
exercise 3.)

In another experiment, again with 10 buffers and m = 121 and the overĆow
technique, he inserted 5000 keys into an initially empty tree, in random order;
this produced a 2-level tree with 48 nodes (87 percent storage utilization), after
making 2762 actual reads and 2739 actual writes. Then 1000 random searches
required 786 actual reads. The same experiment without the overĆow feature
produced a 2-level tree with 62 nodes (67 percent storage utilization), after
making 2743 actual reads and 2800 actual writes; 1000 subsequent random
searches required 836 actual reads. This shows not only that the paging scheme
is effective but also that it is wise to handle overĆows locally before deciding to
split a node.

Andrew Yao has proved that the average number of nodes after random
insertions without the overĆow feature will be

N/(m ln 2) + O(N/m2),

for large N and m, so the storage utilization will be approximately ln 2 = 69.3
percent [Acta Informatica 9 (1978), 159Ű170]. See also the more detailed analyses
by B. Eisenbarth, N. Ziviani, G. H. Gonnet, K. Mehlhorn, and D. Wood, Infor-
mation and Control 55 (1982), 125Ű174; R. A. Baeza-Yates, Acta Informatica
26 (1989), 439Ű471.

B-trees became popular soon after they were invented. See, for example,
the article by Douglas Comer in Computing Surveys 11 (1979), 121Ű137, 412,
which discusses early developments and describes a widely used system called
VSAM (Virtual Storage Access Method) developed by IBM Corporation. One of
the innovations of VSAM was to replicate blocks on a disk track so that latency
time was minimized.

Two of the most interesting developments of the basic B-tree strategy have
unfortunately been given almost identical names: ŞSB-treesŤ and ŞSB-trees.Ť
The SB-tree of P. E. OŠNeil [Acta Inf. 29 (1992), 241Ű265] is designed to min-
imize disk I/O time by allocating nearby records to the same track or cylinder,
maintaining efficiency in applications where many consecutive records need to be
accessed at the same time; in this case ŞSBŤ is in italic type and the S connotes
Şsequential.Ť The SB-tree of P. Ferragina and R. Grossi [STOC 27 (1995), 693Ű
702; SODA 7 (1996), 373Ű382] is an elegant combination of B-tree structure
with the Patricia trees that we will consider in Section 6.3; in this case ŞSBŤ
is in roman type and the S connotes Şstring.Ť SB-trees have many applications
to large-scale text processing, and they provide a basis for efficient sorting of
variable-length strings on disk [see Arge, Ferragina, Grossi, and Vitter, STOC
29 (1997), 540Ű548].

490 SEARCHING 6.2.4

EXERCISES

1. [10] What B-tree of order 7 is obtained after the key 613 is inserted into Fig. 30?
(Do not use the overĆow technique.)

2. [15] Work exercise 1, but use the overĆow technique, with 3-way splitting as
in (10).

x 3. [23] Suppose we insert the keys 1, 2, 3, . . . in ascending order into an initially
empty B-tree of order 101. Which key causes the leaves to be on level 4 for the Ąrst time

a) when we use no overĆow?
b) when we use overĆow and only 2-way splitting as in (4)?
c) when we use a B∗-tree of order 101, with overĆow and 3-way splitting as in (10)?

4. [21] (Bayer and McCreight.) Explain how to handle insertions into a generalized
B-tree so that all nodes except the root and leaves will be guaranteed to have at least
3
4
m− 1

2
children.

x 5. [21] Suppose that a node represents 1000 character positions of external memory.
If each pointer occupies 5 characters, and if the keys are variable in length, between
5 and 50 characters long but always a multiple of 5 characters, what is the minimum
number of character positions occupied in a node after it splits during an insertion?
(Consider only a simple splitting procedure analogous to that described in the text
for Ąxed-length-key B-trees, without overĆowing; move up the key that makes the
remaining two parts most nearly equal in size.)

6. [23] Design a deletion algorithm for B-trees.

7. [28] Design a concatenation algorithm for B-trees (see Section 6.2.3).

x 8. [HM37] Consider the generalization of tree insertion suggested by Muntz and
Uzgalis, where each page can hold M keys. After N random items have been inserted
into such a tree, so that there are N + 1 external nodes, let b(j)

Nk be the probability that
an unsuccessful search requires k page accesses and that it ends at an external node
whose parent node belongs to a page containing j keys. If B(j)

N (z) =

b

(j)
Nkz

k is the
corresponding generating function, prove that we have B(j)

1 (z) = δj1z and

B
(j)
N (z) =

N − j − 1
N + 1

B
(j)
N−1(z) +

j + 1
N + 1

B
(j−1)
N−1 (z), for 1 < j < M ;

B
(1)
N (z) =

N − 2
N + 1

B
(1)
N−1(z) +

2z
N + 1

B
(M)
N−1(z);

B
(M)
N (z) =

N − 1
N + 1

B
(M)
N−1(z) +

M + 1
N + 1

B
(M−1)
N−1 (z).

Find the asymptotic behavior of C′
N =

M
j=1 B

(j)′
N (1), the average number of page

accesses per unsuccessful search. [Hint: Express the recurrence in terms of the matrix

W (z) =

−3 0 . . . 0 2z
3 −4 . . . 0 0
0 4 . . . 0 0
...

...
...

...
0 0 . . . −M−1 0
0 0 . . . M+1 −2

,

and relate C′
N to an Nth degree polynomial in W (1).]

6.2.4 MULTIWAY TREES 491

9. [22] Can the B-tree idea be used to retrieve items of a linear list by position
instead of by key value? (See Algorithm 6.2.3B.)

x 10. [35] Discuss how a large Ąle, organized as a B-tree, can be used for concurrent
accessing and updating by a large number of simultaneous users, in such a way that
users of different pages rarely interfere with each other.

Little is known, even for otherwise equivalent algorithms,

about the optimization of storage allocation,

minimization of the number of required operations,

and so on. This area of investigation

must draw upon the most powerful resources

of both pure and applied mathematics

for further progress.

— ANTHONY G. OETTINGER (1961)

492 SEARCHING 6.3

6.3. DIGITAL SEARCHING

Instead of basing a search method on comparisons between keys, we can
make use of their representation as a sequence of digits or alphabetic characters.
Consider, for example, the thumb index on a large dictionary; from the Ąrst
letter of a given word, we can immediately locate the pages that contain all
words beginning with that letter.

If we pursue the thumb-index idea to one of its logical conclusions, we come
up with a searching scheme based on repeated ŞsubscriptingŤ as illustrated in
Table 1. Suppose that we want to test a given search argument to see whether it is
one of the 31 most common words of English (see Figs. 12 and 13 in Section 6.2.2).
The data is represented in Table 1 as a trie structure; this name was suggested
by E. Fredkin [CACM 3 (1960), 490Ű499] because it is a part of information
retrieval. A trie Ů pronounced ŞtryŤ Ů is essentially an M -ary tree, whose nodes
are M -place vectors with components corresponding to digits or characters. Each
node on level l represents the set of all keys that begin with a certain sequence
of l characters called its preĄx; the node speciĄes an M -way branch, depending
on the (l + 1)st character.

For example, the trie of Table 1 has 12 nodes; node (1) is the root, and we
look up the Ąrst letter here. If the Ąrst letter is, say, N, the table tells us that our
word must be NOT (or else it isnŠt in the table). On the other hand, if the Ąrst
letter is W, node (1) tells us to go on to node (9), looking up the second letter
in the same way; node (9) says that the second letter should be A, H, or I. The
preĄx of node (10) is HA. Blank entries in the table stand for null links.

The node vectors in Table 1 are arranged according to MIX character code.
This means that a trie search will be quite fast, since we are merely fetching
words of an array by using the characters of our keys as subscripts. Techniques
for making quick multiway decisions by subscripting have been called Ştable
look-atŤ as opposed to Ştable look-upŤ [see P. M. Sherman, CACM 4 (1961),
172Ű173, 175].

Algorithm T (Trie search). Given a table of records that form an M -ary trie,
this algorithm searches for a given argument K. The nodes of the trie are vectors
whose subscripts run from 0 to M − 1; each component of these vectors is either
a key or a link (possibly null).

T1. [Initialize.] Set the link variable P so that it points to the root of the trie.

T2. [Branch.] Set k to the next character of the input argument, K, from left to
right. (If the argument has been completely scanned, we set k to a ŞblankŤ
or end-of-word symbol. The character should be represented as a number
in the range 0 ≤ k < M.) Let X be table entry number k in NODE(P). If X
is a link, go to T3; but if X is a key, go to T4.

T3. [Advance.] If X ̸= Λ, set P ← X and return to step T2; otherwise the
algorithm terminates unsuccessfully.

T4. [Compare.] If X = K, the algorithm terminates successfully; otherwise it
terminates unsuccessfully.

6.3 DIGITAL SEARCHING 493

Table 1

A TRIE FOR THE 31 MOST COMMON ENGLISH WORDS

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
␣ A I HE
A (2) (10) WAS THAT
B (3)
C
D HAD
E BE (11) THE
F (4) OF
G
H (5) (12) WHICH
I (6) HIS WITH THIS
´
J
K
L
M
N NOT AND IN ON
O (7) FOR TO
P
Q
R ARE FROM OR HER
˚
˝
S AS IS
T (8) AT IT
U BUT
V HAVE
W (9)
X
Y YOU BY
Z

Notice that if the search is unsuccessful, the longest match has been found.
This property is occasionally useful in applications.

In order to compare the speed of this algorithm to the others in this chapter,
we can write a short MIX program assuming that the characters are bytes and
that the keys are at most Ąve bytes long.

Program T (Trie search). This program assumes that all keys are represented in
one MIX word, with blank spaces at the right whenever the key has less than Ąve
characters. Since we use MIX character code, each byte of the search argument
is assumed to contain a number less than 30. Links are represented as negative
numbers in the 0:2 Ąeld of a node word. rI1 ≡ P, rX ≡ unscanned part of K.

01 START LDX K 1 T1. Initialize.
02 ENT1 ROOT 1 P← pointer to root of trie.
03 2H SLAX 1 C T2. Branch.
04 STA *+1(2:2) C Extract next character, k.
05 ENT2 0,1 C Q← P + k.
06 LD1N 0,2(0:2) C P = LINK(Q).
07 J1P 2B C T3. Advance. To T2 if P is a link ̸= Λ.

494 SEARCHING 6.3

Fig. 31. The trie of Table 1,
converted into a Şforest.Ť

A

 N R S T

B

E U Y

F

O R

A A
N
D

A
R
E

A
S

A
T

B
E

B
U
T

B
Y

F
O
R

F
R
O
M

08 LDA 0,2 1 T4. Compare. rA← KEY(Q).
09 CMPA K 1
10 JE SUCCESS 1 Exit successfully if rA = K.
11 FAILURE EQU * Exit if not in the trie.

The running time of this program is 8C +8 units, where C is the number of char-
acters examined. Since C ≤ 5, the search never needs more than 48 units of time.

If we now compare the efficiency of this program (using the trie of Table 1)
to Program 6.2.2T (using the optimum binary search tree of Fig. 13), we can
make the following observations.

1. The trie takes much more memory space; we are using 360 words just to
represent 31 keys, while the binary search tree uses only 62 words of memory.
(However, exercise 4 shows that, with some Ąddling around, we can actually Ąt
the trie of Table 1 into only 49 words.)

2. A successful search takes about 26 units of time for both programs. But
an unsuccessful search will go faster in the trie, slower in the binary search tree.
For this data the search will be unsuccessful more often than it is successful, so
the trie is preferable from the standpoint of speed.

3. If we consider the KWIC indexing application of Fig. 15 instead of the
31 commonest English words, the trie loses its advantage because of the nature
of the data. For example, a trie requires 12 iterations to distinguish between
COMPUTATION and COMPUTATIONS. In this case it would be better to build the
trie so that words are scanned from right to left instead of from left to right.

The abstract concept of a trie to represent a family of strings was introduced
by Axel Thue, in a paper about strings that do not contain adjacent repeated
substrings [Skrifter udgivne af Videnskabs-Selskabet i Christiania, Mathematisk-
Naturvidenskabelig Klasse (1912), No. 1; reprinted in ThueŠs Selected Mathe-
matical Papers (Oslo: Universitetsforlaget, 1977), 413Ű477].

Trie memory for computer searching was Ąrst recommended by René de la
Briandais [Proc. Western Joint Computer Conf. 15 (1959), 295Ű298]. He pointed
out that we can save memory space at the expense of running time if we use a
linked list for each node vector, since most of the entries in the vectors tend to
be empty. In effect, this idea amounts to replacing the trie of Table 1 by the
forest of trees shown in Fig. 31. Searching in such a forest proceeds by Ąnding
the root that matches the Ąrst character, then Ąnding the child node of that root
that matches the second character, etc.

6.3 DIGITAL SEARCHING 495

H

A E I

D V R

I

 N S T

N O

F N R

T

H O

A E I

W

A H I

Y

H
A
D

H
A
V
E

H
E

H
E
R

H
I
S

I I
N

I
S

I
T

N
O
T

O
F

O
N

O
R

T
H
A
T

T
H
E

T
H
I
S

T
O

W
A
S

W
H
I
C
H

W
I
T
H

Y
O
U

In his article, de la Briandais did not actually stop the tree branching exactly
as shown in Table 1 or Fig. 31; instead, he continued to represent each key,
character by character, until reaching the end-of-word delimiter. Thus he would
actually have used

H

A E I

D V R S

 E

(1)

in place of the ŞHŤ tree in Fig. 31. This representation requires more storage,
but it makes the processing of variable-length data especially easy. If we use two
link Ąelds per character, dynamic insertions and deletions can be handled in a
simple manner.

If we use the normal way of representing trees as binary trees, (1) becomes
the binary tree

H

A E I

D V R S

 E

(2)

(In the representation of the full forest, Fig. 31, we would also have a pointer
leading to the right from H to its neighboring root I.) The search in this binary
tree proceeds by comparing a character of the argument to the character in the
tree, and following RLINKs until Ąnding a match; then the LLINK is taken and
we treat the next character of the argument in the same way.

With such a binary tree, we are more or less doing a search by comparison,
with equal-unequal branching instead of less-greater branching. The elementary
theory of Section 6.2.1 tells that we must make at least lg N comparisons, on

496 SEARCHING 6.3

the average, to distinguish between N keys; the average number of tests made
when searching a tree like that of Fig. 31 must be at least as many as we make
when doing a binary search using the techniques of Section 6.2.

On the other hand, the trie in Table 1 is capable of making an M -way branch
all at once; we shall see that the average search time for large N involves only
about

logM N = lg N/ lg M

iterations, if the input data is random. We shall also see that a ŞpureŤ trie
scheme like that in Algorithm T requires a total of approximately N/ ln M nodes
to distinguish between N random inputs; hence the total amount of space is
proportional to MN/ ln M.

From these considerations it is clear that the trie idea pays off only in
the Ąrst few levels of the tree. We can get better performance by mixing two
strategies, using a trie for the Ąrst few characters and then switching to some
other technique. For example, E. H. Sussenguth, Jr. [CACM 6 (1963), 272Ű
279] suggested using a character-by-character scheme until we reach part of the
tree where only, say, six or fewer keys of the Ąle are possible, and then we can
sequentially run through the short list of remaining keys. We shall see that this
mixed strategy decreases the number of trie nodes by roughly a factor of six,
without substantially changing the running time.

An interesting way to store large, growing tries in external memory was
suggested by S. Y. Berkovich in Doklady Akademii Nauk SSSR 202 (1972),
298Ű299 [English translation in Soviet PhysicsŰDoklady 17 (1972), 20Ű21].

T. N. Turba [CACM 25 (1982), 522Ű526] points out that it is sometimes
most convenient to search for variable-length keys by having one search tree or
trie for each different length.

The binary case. Let us now consider the special case M = 2, in which we
scan the search argument one bit at a time. Two interesting methods have been
developed that are especially appropriate for this case.

The Ąrst method, which we call digital tree search, is due to E. G. Coffman
and J. Eve [CACM 13 (1970), 427Ű432, 436]. The idea is to store full keys
in the nodes just as we did in the tree search algorithm of Section 6.2.2, but
to use bits of the argument (instead of results of the comparisons) to govern
whether to take the left or right branch at each step. Figure 32 shows the binary
tree constructed by this method when we insert the 31 most common English
words in order of decreasing frequency. In order to provide binary data for this
illustration, the words have been expressed in MIX character code, and the codes
have been converted into binary numbers with 5 bits per byte. Thus, the word
WHICH is represented as the bit sequence 11010 01000 01001 00011 01000.

To search for this word WHICH in Fig. 32, we compare it Ąrst with the word
THE at the root of the tree. Since there is no match and since the Ąrst bit of
WHICH is 1, we move to the right and compare with OF. Since there is no match
and since the second bit of WHICH is 1, we move to the right and compare with
WITH; and so on. Alphabetic order of the keys in a digital search tree no longer
corresponds to symmetric order of the nodes.

6.3 DIGITAL SEARCHING 497

OF

FOR

THE

AND

IN

THAT

TOA

BE

HE

IT

ON

THIS

WITH

AS

BY

HAD

HIS

IS NOT

OR

WAS YOU

ARE

AT

BUT

FROM

HAVE

HER

I WHICH

1869

4312

3017

5739

1535

1727

2255

1155

1021

1849

1392

1062

1732

2509 1496

1101

1761 1336

1222

1053

1379

1039

1344

1093

2292 1291

15568

7638 9767

5074

1853

Fig. 32. A digital search tree for the 31 most common English words, inserted in
decreasing order of frequency.

It is interesting to note the contrast between Fig. 32 and Fig. 12 in Section
6.2.2, since the latter tree was formed in the same way but using comparisons
instead of key bits for the branching. If we consider the given frequencies,
the digital search tree of Fig. 32 requires an average of 3.42 comparisons per
successful search; this is somewhat better than the 4.04 comparisons needed by
Fig. 12, although of course the computing time per comparison will probably be
different.

Algorithm D (Digital tree search and insertion). Given a table of records
that form a binary tree as described above, this algorithm searches for a given
argument K. If K is not in the table, a new node containing K is inserted into
the tree in the appropriate place.

This algorithm assumes that the tree is nonempty and that its nodes have
KEY, LLINK, and RLINK Ąelds just as in Algorithm 6.2.2T. In fact, the two
algorithms are almost identical, as the reader may verify.

D1. [Initialize.] Set P← ROOT, and K ′ ← K.

D2. [Compare.] If K = KEY(P), the search terminates successfully. Otherwise
set b to the leading bit of K ′, and shift K ′ left one place (thereby removing
that bit and introducing a 0 at the right). If b = 0, go to D3, otherwise go
to D4.

D3. [Move left.] If LLINK(P) ̸= Λ, set P ← LLINK(P) and go back to D2.
Otherwise go to D5.

D4. [Move right.] If RLINK(P) ̸= Λ, set P← RLINK(P) and go back to D2.

D5. [Insert into tree.] Set Q⇐ AVAIL, KEY(Q)←K, LLINK(Q)← RLINK(Q)← Λ.
If b = 0 set LLINK(P)← Q, otherwise set RLINK(P)← Q.

498 SEARCHING 6.3

Although the tree search of Algorithm 6.2.2T is inherently binary, it is not
difficult to see that the present algorithm could be extended to an M -ary digital
search for any M ≥ 2 (see exercise 13).

Donald R. Morrison [JACM 15 (1968), 514Ű534] has discovered a very pretty
way to form N -node search trees based on the binary representation of keys,
without storing keys in the nodes. His method, called ŞPatriciaŤ (Practical
Algorithm To Retrieve Information Coded In Alphanumeric), is especially suit-
able for dealing with extremely long, variable-length keys such as titles or phrases
stored within a large bulk Ąle. A closely related algorithm was published at
almost exactly the same time in Germany by G. Gwehenberger, Elektronische
Rechenanlagen 10 (1968), 223Ű226.

PatriciaŠs basic idea is to build a binary trie, but to avoid one-way branching
by including in each node the number of bits to skip over before making the next
test. There are several ways to exploit this idea; perhaps the simplest to explain
is illustrated in Fig. 33. We have a TEXT array of bits, which is usually quite
long; it may be stored as an external direct-access Ąle, since each search accesses
TEXT only once. Each key to be stored in our table is speciĄed by a starting
place in the text, and it can be imagined to go from this starting place all the
way to the end of the text. (Patricia does not search for strict equality between
key and argument; instead, it will determine whether or not there exists a key
beginning with the argument.)

T
10111

H
01000

I
01001

S
10110

␣
00000

I
01001

S
10110

␣
00000

T
10111

H
01000

E
00101

␣
00000

H
01000

O
10000

U
11000

S
10110

E
00101

␣
00000

T
10111

H
01000

A
00001

T
10111

␣
00000

J
01011

A
00001

C
00011

K
01100

␣
00000

B
00010

U
11000

I
01001

L
01101

T
10111

?
11111

(THIS)

1

(IS)

1

(BUILT)

11

(THE)

2

(JACK)

1

(THAT)

1

(HOUSE)

Header

α

β γ

δ ǫ

ζ

Fig. 33. An example of PatriciaŠs tree and TEXT.

The situation depicted in Fig. 33 involves seven keys, one starting at each
word, namely ŞTHIS IS THE HOUSE THAT JACK BUILT?Ť and ŞIS THE HOUSE THAT

6.3 DIGITAL SEARCHING 499

JACK BUILT?Ť and . . . and ŞBUILT?Ť. There is one important restriction, namely
that no one key may be a preĄx of another ; this restriction can be met if we end
the text with a unique end-of-text code (in this case Ş?Ť) that appears nowhere
else. The same restriction was implicit in the trie scheme of Algorithm T, where
Ş␣Ť was the termination code.

The tree that Patricia uses for searching should be contained in random-
access memory, or it should be arranged on pages as suggested in Section 6.2.4.
It consists of a header and N − 1 nodes, where the nodes contain several Ąelds:

KEY, a pointer to the text. This Ąeld must be at least lg C bits long, if the
text contains C characters. In Fig. 33 the words shown within each node
would really be represented by pointers to the text; for example, instead
of Ş(JACK)Ť the node would contain the number 24 (which indicates the
starting place of ŞJACK BUILT?Ť in the text string).

LLINK and RLINK, pointers within the tree. These Ąelds must be at least
lg N bits long.

LTAG and RTAG, one-bit Ąelds that tell whether or not LLINK and RLINK,
respectively, are pointers to children or to ancestors of the node. The
dotted lines in Fig. 33 correspond to pointers whose TAG bit is 1.

SKIP, a number that tells how many bits to skip when searching, as explained
below. This Ąeld should be large enough to hold the largest number k
such that all keys with preĄx σ agree in the next k bits following σ, for
some string σ that is a preĄx of at least two different keys; in practice,
we may usually assume that k isnŠt too large, and an error indication
can be given if the size of the SKIP Ąeld is exceeded. The SKIP Ąelds
are shown as numbers within each non-header node of Fig. 33.

The header contains only KEY, LLINK, and LTAG Ąelds.

A search in PatriciaŠs tree is carried out as follows: Suppose we are looking
up the word THE (bit pattern 10111 01000 00101). We start by looking at the
SKIP Ąeld of the root node α, which tells us to examine bit 1 of the argument.
That bit is 1, so we move to the right. The SKIP Ąeld in the next node, γ, tells
us to look at the 1 + 11 = 12th bit of the argument. It is 0, so we move to the
left. The SKIP Ąeld of the next node, ϵ, tells us to look at the (12 + 1)st bit,
which is 1; now we Ąnd RTAG = 1, so we go back to node γ, which refers us to
the TEXT. The search path we have taken would occur for any argument whose
bit pattern is 1xxxx xxxxx x01. . . , and we must check to see if it matches the
unique key beginning with that pattern, namely THE.

Suppose, on the other hand, that we are looking for any or all keys starting
with TH. The search process begins as above, but it eventually tries to look at
the (nonexistent) 12th bit of the 10-bit argument. At this point we compare the
argument to the TEXT at the point speciĄed in the current node (in this case
node γ). If it does not match, the argument is not the beginning of any key;
but if it does match, the argument is the beginning of every key represented by
dotted links in node γ and its descendants (namely THIS, THAT, THE).

500 SEARCHING 6.3

The search process can be spelled out more precisely in the following way.

Algorithm P (Patricia). Given a TEXT array and a tree with KEY, LLINK, RLINK,
LTAG, RTAG, and SKIP Ąelds, as described above, this algorithm determines
whether or not there is a key in the TEXT that begins with a speciĄed argument K.
(If r such keys exist, for r ≥ 1, it is subsequently possible to locate them all in
O(r) steps; see exercise 14.) We assume that at least one key is present.

P1. [Initialize.] Set P← HEAD and j ← 0. (Variable P is a pointer that will move
down the tree, and j is a counter that will designate bit positions of the
argument.) Set n← number of bits in K.

P2. [Move left.] Set Q← P and P← LLINK(Q). If LTAG(Q) = 1, go to P6.

P3. [Skip bits.] (At this point we know that if the Ąrst j bits of K match any key
whatsoever, they match the key that starts at KEY(P).) Set j ← j+SKIP(P).
If j > n, go to P6.

P4. [Test bit.] (At this point we know that if the Ąrst j− 1 bits of K match any
key, they match the key starting at KEY(P).) If the jth bit of K is 0, go to
P2, otherwise go to P5.

P5. [Move right.] Set Q← P and P← RLINK(Q). If RTAG(Q) = 0, go to P3.

P6. [Compare.] (At this point we know that if K matches any key, it matches
the key starting at KEY(P).) Compare K to the key that starts at position
KEY(P) in the TEXT array. If they are equal (up to n bits, the length of K),
the algorithm terminates successfully; if unequal, it terminates unsuccess-
fully.

Exercise 15 shows how PatriciaŠs tree can be built in the Ąrst place. We can
also add to the text and insert new keys, provided that the new text material
always ends with a unique delimiter (for example, an end-of-text symbol followed
by a serial number).

Patricia is a little tricky, and she requires careful scrutiny before all of her
beauties are revealed.

Analyses of the algorithms. We shall conclude this section by making a
mathematical study of tries, digital search trees, and Patricia. A summary of
the main consequences of these analyses appears at the very end.

Let us consider Ąrst the case of binary tries, namely tries with M = 2.
Figure 34 shows the binary trie that is formed when the sixteen keys from the
sorting examples of Chapter 5 are treated as 10-bit binary numbers.

The keys

are shown in octal notation, so that for example 1144 represents the 10-bit
number 612 = (1001100100)2.

As in Algorithm T, we use the trie to store

information about the leading bits of the keys until we get to the Ąrst point
where the key is uniquely identiĄed; then the key is recorded in full.

If Fig. 34 is compared to Table 5.2.2Ű3, an amazing relationship between
trie memory and radix exchange sorting is revealed. (Then again, perhaps this
relationship is obvious.) The 22 nodes of Fig. 34 correspond precisely to the 22

6.3 DIGITAL SEARCHING 501

0423

0075

0127

0652

1000

1144

1375

0232

0252

1215 1245

1277

0767

0775

1601

1614

Fig. 34. Example of a random binary trie.

partitioning stages in Table 5.2.2Ű3, with the pth node in preorder corresponding
to Stage p. The number of bit inspections in a partitioning stage is equal to the
number of keys within the corresponding node and its subtries; consequently we
may state the following result.

Theorem T. If N distinct binary numbers are put into a binary trie as described
above, then (i) the number of nodes of the trie is equal to the number of
partitioning stages required if these numbers are sorted by radix exchange; and
(ii) the average number of bit inspections required to retrieve a key by means of
Algorithm T is 1/N times the number of bit inspections required by the radix
exchange sort.

Because of this theorem, we can make use of all the mathematical machinery
that was developed for radix exchange in Section 5.2.2. For example, if we
assume that our keys are inĄnite-precision random uniformly distributed real
numbers between 0 and 1, the number of bit inspections needed for retrieval will
be lg N + γ/ ln 2 + 1/2 + δ(N) + O(N−1), and the number of trie nodes will be
N/ ln 2 + Nδ̄(N) + O(1). Here δ(N) and δ̄(N) are complicated functions that
may be neglected since their absolute value is always less than 10−6 (see exercises
5.2.2Ű38 and 5.2.2Ű48).

Of course there is still more work to be done, since we need to generalize
from binary tries to M -ary tries. We shall describe only the starting point of
the investigations here, leaving the instructive details as exercises.

Let AN be the average number of internal nodes in a random M -ary search
trie that contains N keys. Then A0 = A1 = 0, and for N ≥ 2 we have

AN = 1 +

k1+···+kM=N

N !

k1! . . . kM !
M−N

(Ak1

+ · · ·+ AkM
), (3)

502 SEARCHING 6.3

since N ! M−N/k1! . . . kM ! is the probability that k1 of the keys are in the Ąrst
subtrie, . . . , kM in the Mth. This equation can be rewritten

AN = 1 + M1−N

k1+···+kM=N

N !

k1! . . . kM !

Ak1

= 1 + M1−N

k

N

k

(M − 1)N−kAk, for N ≥ 2, (4)

by using symmetry and then summing over k2, . . . , kM. Similarly, if CN denotes
the average total number of digit inspections needed to look up all N keys in the
trie, we Ąnd C0 = C1 = 0 and

CN = N + M1−N

k

N

k

(M − 1)N−kCk for N ≥ 2. (5)

Exercise 17 shows how to deal with general recurrences of this type, and exercises
18Ű25 work out the corresponding theory of random tries. [The analysis of AN

was Ąrst approached from another point of view by L. R. Johnson and M. H.
McAndrew, IBM J. Res. and Devel. 8 (1964), 189Ű193, in connection with an
equivalent hardware-oriented sorting algorithm.]

If we now turn to a study of digital search trees, we Ąnd that the formulas
are similar, yet different enough that it is not easy to see how to deduce the
asymptotic behavior. For example, if CN denotes the average total number of
digit inspections made when looking up all N keys in an M -ary digital search
tree, it is not difficult to deduce as above that C0 = C1 = 0, and

CN+1 = N + M1−N

k

N

k

(M − 1)N−k Ck for N ≥ 0. (6)

This is almost identical to Eq. (5); but the appearance of N + 1 instead of N
on the left-hand side of this equation is enough to change the entire character of
the recurrence, so the methods we have used to study (5) are wiped out.

LetŠs consider the binary case Ąrst. Figure 35 shows the digital search tree
corresponding to the sixteen example keys of Fig. 34, when they have been
inserted in the order used in the examples of Chapter 5. If we want to determine
the average number of bit inspections made in a random successful search, this
is just the internal path length of the tree divided by N, since we need l bit
inspections to Ąnd a node on level l. Notice, however, that the average number
of bit inspections made in a random unsuccessful search is not simply related to
the external path length of the tree, since unsuccessful searches are more likely
to occur at external nodes near the root; thus, the probability of reaching the left
sub-branch of node 0075 in Fig. 35 is 1

8 (assuming inĄnitely precise keys), and
the left sub-branch of node 0232 will be encountered with probability only 1

32 .
For this reason, digital search trees tend to stay better balanced than the binary
search trees of Algorithm 6.2.2T, when the keys are uniformly distributed.

6.3 DIGITAL SEARCHING 503

0767

0127

0075

0252

0232

0423

0652

0775

1000

1215

1144 1245

1277 1375

1614

1601

Fig. 35. A random digital search tree constructed by Algorithm D.

We can use a generating function to describe the pertinent characteristics
of a digital search tree. If there are al internal nodes on level l, consider
the generating function a(z) =

l alz

l; for example, the generating function
corresponding to Fig. 35 is a(z) = 1 + 2z + 4z2 + 5z3 + 4z4. If there are bl
external nodes on level l, and if b(z) =

l blz

l, we have

b(z) = 1 + (2z − 1)a(z) (7)

by exercise 6.2.1Ű25. For example, 1 + (2z − 1)(1 + 2z + 4z2 + 5z3 + 4z4) =
3z3 + 6z4 + 8z5. The average number of bit inspections made in a random
successful search is a′(1)/a(1), since a′(1) is the internal path length of the tree
and a(1) is the number of internal nodes. The average number of bit inspections
made in a random unsuccessful search is

l lbl2−l = 1

2 b′(1
2) = a(1

2), since we
end up at a given external node on level l with probability 2−l. The number of
comparisons is the same as the number of bit inspections, plus one in a successful
search. For example, in Fig. 35, a successful search will take 2 9

16 bit inspections
and 3 9

16 comparisons, on the average; an unsuccessful search will take 3 7
8 of each.

Now let gN (z) be the ŞaverageŤ a(z) for trees with N nodes; in other words,
gN (z) is the sum

pT aT (z) over all binary digital search trees T with N internal

nodes, where aT (z) is the generating function for the internal nodes of T and
pT is the probability that T occurs when N random numbers are inserted using
Algorithm D. Then the average number of bit inspections will be g′

N (1)/N in a
successful search, gN (1

2) in an unsuccessful search.
We can compute gN (z) by mimicking the tree construction process, as

follows. If a(z) is the generating function for a tree of N nodes, we can form
N +1 trees from it by making the next insertion into any one of the external node
positions. The insertion goes into a given external node on level l with probability
2−l; hence the sum of the generating functions for the N +1 new trees, multiplied
by the probability of occurrence, is a(z) + b

1
2 z

= a(z) + 1 + (z − 1)a

1
2 z

.

504 SEARCHING 6.3

Averaging over all trees for N nodes, it follows that

gN+1(z) = gN (z) + 1 + (z − 1)gN

1
2 z

; g0(z) = 0. (8)

The corresponding generating function for external nodes,

hN (z) = 1 + (2z − 1)gN (z),

is somewhat easier to work with, because (8) is equivalent to the formula

hN+1(z) = hN (z) + (2z − 1)hN

1
2 z

; h0(z) = 1. (9)

Applying this rule repeatedly, we Ąnd that

hN+1(z) = hN−1(z) + 2(2z − 1)hN−1

1
2 z

+ (2z − 1)(z − 1)hN−1

1
4 z

= hN−2(z) + 3(2z − 1)hN−2

1
2 z

+ 3(2z − 1)(z − 1)hN−2

1
4 z

+ (2z − 1)(z − 1)

1
2 z − 1

hN−2

1
8 z

and so on, so that eventually we have

hN (z) =

k

N

k

 k−1

j=0

(21−jz − 1); (10)

gN (z) =

k≥0

N

k + 1

 k−1

j=0

(2−jz − 1). (11)

For example, g4(z) = 4 + 6(z − 1) + 4(z − 1)

1
2 z − 1

+ (z − 1)

1
2 z − 1

1
4 z − 1

.

These formulas make it possible to express the quantities we are looking for as
sums of products:

CN = g′
N (1) =

k≥0

N

k + 2

 k

j=1

(2−j − 1); (12)

gN (1
2) =

k≥0

N

k + 1

 k

j=1

(2−j − 1) = CN+1 − CN . (13)

It is not at all obvious that this formula for CN satisĄes (6)!
Unfortunately, these expressions are not suitable for calculation or for Ąnding

an asymptotic expansion, since 2−j − 1 is negative; we get large terms and a lot
of cancellation. A more useful formula for CN can be obtained by applying the
partition identities of exercise 5.1.1Ű16. We have

CN =

j≥1

(1− 2−j)

k≥0

N

k + 2

(−1)k

l≥0

(1− 2−l−k−1)−1

=

j≥1

(1− 2−j)

k≥0

N

k + 2

(−1)k

m≥0

(2−k−1)m
m

r=1

(1− 2−r)−1

6.3 DIGITAL SEARCHING 505

=

m≥0

2m

k

N

k

(−2−m)k − 1 + 2−mN

j≥0

(1− 2−j−m−1)

=

m≥0

2m

(1−2−m)N− 1 + 2−mN

n≥0

(−2−m−1)n
2−n(n−1)/2

n
r=1(1− 2−r)

. (14)

This may not seem at Ąrst glance to be an improvement over Eq. (12), but it
has the great advantage that the sum on m converges rapidly for each Ąxed n.
A precisely analogous situation occurred for the trie case in Eqs. 5.2.2Ű(38) and
5.2.2Ű(39); in fact, if we consider only the terms of (14) with n = 0, we have
exactly N − 1 plus the number of bit inspections in a binary trie. We can now
proceed to get the asymptotic value in essentially the same way as before; see
exercise 27. [The derivation above is largely based on an approach suggested by
A. J. Konheim and D. J. Newman, Discrete Mathematics 4 (1973), 57Ű63.]

1

1

1

1 2

1

1

3

1

1

1 1

1

1

5

0
0
7
5

0
1
2
7

0
2
3
2

0
2
5
2

0
4
2
3

0
6
5
2

0
7
6
7

0
7
7
5

1
0
0
0

1
1
4
4

1
2
1
5

1
2
4
5

1
2
7
7

1
3
7
5

1
6
0
1

1
6
1
4

Fig. 36. Patricia constructs this tree instead of Fig. 34.

Finally let us take a mathematical look at Patricia. In her case the binary
tree is like the corresponding binary trie on the same keys, but squashed together
(because the SKIP Ąelds eliminate 1-way branching), so that there are always
exactly N−1 internal nodes and N external nodes. Figure 36 shows the Patrician
tree corresponding to the sixteen keys in the trie of Fig. 34. The number shown
in each branch node is the amount of SKIP; the keys are indicated with the
external nodes, although the external node is not explicitly present (there is
actually a tagged link to an internal node that references the TEXT, in place of
each external node). For the purposes of analysis, we may assume that external
nodes exist as shown.

Since successful searches with Patricia end at external nodes, the average
number of bit inspections made in a random successful search will be the external
path length, divided by N. If we form the generating function b(z) for external

506 SEARCHING 6.3

nodes as above, this will be b′(1)/b(1). An unsuccessful search with Patricia also
ends at an external node, but weighted with probability 2−l for external nodes
on level l, so the average number of bit inspections is 1

2 b′

1
2

. For example, in

Fig. 36 we have b(z) = 3z3+8z4+3z5+2z6; therefore there are 4 1
4 bit inspections

per successful search and 3 25
32 per unsuccessful search, on the average.

Let hn(z) be the ŞaverageŤ b(z) for a Patrician tree constructed with n
external nodes, using uniformly distributed keys. The recurrence relation

hn(z) = 21−n

k

n

k

hk(z)

z + δkn(1− z)

, h0(z) = 0, h1(z) = 1 (15)

appears to have no simple solution. But fortunately, there is a simple recurrence
for the average external path length h′

n(1), since

h′
n(1) = 21−n

k

n

k

h′
k(1) + 21−n

k

n

k

k(1− δkn)

= n− 21−nn + 21−n

k

n

k

h′
k(1). (16)

Since this has the form of (6), we can use the methods already developed to solve
for h′

n(1), which turns out to be exactly n less than the corresponding number
of bit inspections in a random binary trie. Thus, the SKIP Ąelds save us about
one bit inspection per successful search, on random data. (See exercise 31.) The
redundancy of typical real data will lead to greater savings.

When we try to Ąnd the average number of bit inspections for a random
unsuccessful search by Patricia, we obtain the recurrence

an = 1 +
1

2n − 2

k<n

n

k

ak, for n ≥ 2; a0 = a1 = 0. (17)

Here an = 1
2 h′

n

1
2

. This does not have the form of any recurrence we have

studied, nor is it easily transformed into such a recurrence. The theory of Mellin
transforms, introduced in Section 5.2.2 and the references cited there, provides
a high-level way to deal with recurrences that have a digital character. It turns
out that the solution to (17) involves the Bernoulli numbers:

nan−1

2
− n + 2 =

n−1

k=2

n

k

Bk

2k−1 − 1
, for n ≥ 2. (18)

This formula is probably the hardest asymptotic nut we have yet had to crack;
the solution in exercise 34 is an instructive review of many things we have done
before, with some slightly different twists.

Summary of the analyses. As a result of all the complicated mathematics in
this section, the following facts are perhaps the most noteworthy:

a) The number of nodes needed to store N random keys in an M -ary trie,
with the trie branching terminated for subĄles of ≤ s keys, is approximately
N/(s ln M). This approximation is valid for large N, small s, and small M.

6.3 DIGITAL SEARCHING 507

Since a trie node involves M link Ąelds, we will need only about N/ ln M link
Ąelds if we choose s = M.

b) The number of digits or characters examined during a random search is
approximately logM N for all methods considered. When M = 2, the various
analyses give us the following more accurate approximations to the number of
bit inspections:

Successful Unsuccessful
Trie search lg N + 1.33275 lg N − 0.10995
Digital tree search lg N − 1.71665 lg N − 0.27395
Patricia lg N + 0.33275 lg N − 0.31875

(These approximations can all be expressed in terms of fundamental mathemat-
ical constants; for example, 0.31875 stands for (ln π − γ)/ ln 2− 1/2.)

c) ŞRandomŤ data here means that the M -ary digits are uniformly distrib-
uted, as if the keys were real numbers between 0 and 1 expressed in M -ary
notation. Digital search methods are insensitive to the order in which keys are
entered into the Ąle (except for Algorithm D, which is only slightly sensitive to
the order); but they are very sensitive to the distribution of digits. For example,
if 0-bits are much more common than 1-bits, the trees will become much more
skewed than they would be for random data as considered in the analyses cited
above. Exercise 5.2.2Ű53 works out one example of what happens when the data
is biased in this way.

EXERCISES

1. [00] If a tree has leaves, what does a trie have?

2. [20] Design an algorithm for the insertion of a new key into an M -ary trie, using
the conventions of Algorithm T.

3. [21] Design an algorithm for the deletion of a key from an M -ary trie, using the
conventions of Algorithm T.

x 4. [21] Most of the 360 entries in Table 1 are blank (null links). But we can
compress the table into only 49 entries, by overlapping nonblank entries with blank
ones as follows:

Position

Entry

1

(1
0
)

2 3

W
A
S

4

T
H
A
T

5

(1
1
)

6

O
F

7

B
E

8

T
H
E

9

H
I
S

1
0

W
H
I
C
H

1
1

W
I
T
H

1
2

T
H
I
S

1
3

1
4

(1
2
)

1
5

O
N

1
6

I
1
7

H
E

1
8

A
1
9

O
R

2
0

(2
)

2
1

(3
)

2
2

T
O

2
3

H
A
D

2
4

2
5

Position

Entry (4
)

2
6

B
U
T

2
7

(5
)

2
8

(6
)

2
9

F
O
R

3
0

B
Y

3
1

I
N

3
2

F
R
O
M

3
3

A
N
D

3
4

N
O
T

3
5

(7
)

3
6

H
E
R

3
7

A
R
E

3
8

I
S

3
9

I
T

4
0

A
S

4
1

A
T

4
2

(8
)

4
3

4
4

H
A
V
E

4
5

(9
)

4
6

4
7

Y
O
U

4
8

4
9

(Nodes (1), (2), . . . , (12) of Table 1 begin, respectively, at positions 20, 19, 3, 14, 1, 17,
1, 7, 3, 20, 18, 4 within this compressed table.)

Show that if the compressed table is substituted for Table 1, Program T will still
work, but not quite as fast.

508 SEARCHING 6.3

x 5. [M26] (Y. N. Patt.) The trees of Fig. 31 have their letters arranged in alphabetic
order within each family. This order is not necessary, and if we rearrange the order
of nodes within the families before constructing binary tree representations such as
(2) we may get a faster search. What rearrangement of Fig. 31 is optimum from
this standpoint? (Use the frequency assumptions of Fig. 32, and Ąnd the forest that
minimizes the successful search time when it has been represented as a binary tree.)

6. [15] What digital search tree is obtained if the Ąfteen 4-bit binary keys 0001,
0010, 0011, . . . , 1111 are inserted in increasing order by Algorithm D? (Start with
0001 at the root and then do fourteen insertions.)

x 7. [M26] If the Ąfteen keys of exercise 6 are inserted in a different order, we might
get a different tree. Of all the 15! possible permutations of these keys, which is the
worst, in the sense that it produces a tree with the greatest internal path length?

8. [20] Consider the following changes to Algorithm D, which have the effect of
eliminating variable K′: Change ŞK′Ť to ŞKŤ in both places in step D2, and delete
the operation ŞK′ ← KŤ from step D1. Will the resulting algorithm still be valid for
searching and insertion?

9. [21] Write a MIX program for Algorithm D, and compare it to Program 6.2.2T.
You may use binary operations such as SLB (shift left AX binary), JAE (jump if A even),
etc.; and you may also use the idea of exercise 8 if it helps.

10. [23] Given a Ąle in which all the keys are n-bit binary numbers, and given a search
argument K = b1 b2 . . . bn, suppose we want to Ąnd the maximum value of k such that
there is a key in the Ąle beginning with the bit pattern b1 b2 . . . bk. How can we do this
efficiently if the Ąle is represented as

a) a binary search tree (Algorithm 6.2.2T)?
b) a binary trie (Algorithm T)?
c) a binary digital search tree (Algorithm D)?

11. [21] Can Algorithm 6.2.2D be used without change to delete a node from a digital
search tree?

12. [25] After a random element is deleted from a random digital search tree con-
structed by Algorithm D, is the resulting tree still random? (See exercise 11 and
Theorem 6.2.2H.)

13. [20] (M-ary digital searching.) Explain how Algorithms T and D can be combined
into a generalized algorithm that is essentially the same as Algorithm D when M = 2.
What changes would be made to Table 1, if your algorithm is used for M = 30?

x 14. [25] Design an efficient algorithm that can be performed just after Algorithm P
has terminated successfully, to locate all places where K appears in the TEXT.

15. [28] Design an efficient algorithm that can be used to construct the tree used by
Patricia, or to insert new TEXT references into an existing tree. Your insertion algorithm
should refer to the TEXT array at most twice.

16. [22] Why is it desirable for Patricia to make the restriction that no key is a preĄx
of another?

17. [M25] Find a way to express the solution of the recurrence

x0 = x1 = 0, xn = an +m1−n

k

m

k

(m− 1)n−kxk, n ≥ 2,

in terms of binomial transforms, by generalizing the technique of exercise 5.2.2Ű36.

6.3 DIGITAL SEARCHING 509

18. [M21] Use the result of exercise 17 to express the solutions to (4) and (5) in terms
of functions Un and Vn analogous to those deĄned in exercise 5.2.2Ű38.

19. [HM23] Find the asymptotic value of the function

K(n, s,m) =

k≥2

n

k

k

s

 (−1)k

mk−1 − 1

to O(1) as n→∞, for Ąxed s ≥ 0 and m > 1. [The case s = 0 has already been solved
in exercise 5.2.2Ű50, and the case s = 1, m = 2 has been solved in exercise 5.2.2Ű48.]

x 20. [M30] Consider M -ary trie memory in which we use a sequential search whenever
reaching a subĄle of s or fewer keys. (Algorithm T is the special case s = 1.) Apply
the results of the preceding exercises to analyze

a) the average number of trie nodes;
b) the average number of digit or character inspections in a successful search; and
c) the average number of comparisons made in a successful search.

State your answers as asymptotic formulas as N →∞, for Ąxed M and s; the answer
for (a) should be correct to within O(1), and the answers for (b) and (c) should be
correct to within O(N−1). [When M = 2, this analysis applies also to the modiĄed
radix exchange sort, in which subĄles of size ≤ s are sorted by insertion.]

21. [M25] How many of the nodes, in a random M -ary trie containing N keys, have
a null pointer in table entry 0? (For example, 9 of the 12 nodes in Table 1 have a null
pointer in the Ş␣Ť position. ŞRandomŤ in this exercise means as usual that the digits
of the keys are uniformly distributed between 0 and M − 1.)

22. [M25] How many trie nodes are on level l of a random M -ary trie containing
N keys, for l = 0, 1, 2, . . . ?

23. [M26] How many digit inspections are made on the average during an unsuccessful
search in an M -ary trie containing N random keys?

24. [M30] Consider an M -ary trie that has been represented as a forest (see Fig. 31).
Find exact and asymptotic expressions for

a) the average number of nodes in the forest;
b) the average number of times ŞP ← RLINK(P)Ť is performed during a random

successful search.

x 25. [M24] The mathematical derivations of asymptotic values in this section have
been quite difficult, involving complex variable theory, because it is desirable to get
more than just the leading term of the asymptotic behavior (and the second term is
intrinsically complicated). The purpose of this exercise is to show that elementary
methods are good enough to deduce some of the results in weaker form.

a) Prove by induction that the solution to (4) satisĄes AN ≤M(N − 1)/(M − 1).
b) Let DN = CN − NHN−1/ lnM , where CN is deĄned by (5). Prove that DN =

O(N); hence CN = N logM N +O(N). [Hint: Use (a) and Theorem 1.2.7A.]

26. [23] Determine the value of the inĄnite product

(1− 1
2
)(1− 1

4
)(1− 1

8
)(1− 1

16
) . . .

correct to Ąve decimal places, by hand calculation. [Hint: See exercise 5.1.1Ű16.]

27. [HM31] What is the asymptotic value of CN, as given by (14), to within O(1)?

510 SEARCHING 6.3

28. [HM26] Find the asymptotic average number of digit inspections when searching
in a random M -ary digital search tree, for general M ≥ 2. Consider both successful
and unsuccessful search, and give your answer to within O(N−1).

29. [HM40] What is the asymptotic average number of nodes, in an M -ary digital
search tree, for which all M links are null? (We might save memory space by eliminating
such nodes; see exercise 13.)

30. [M24] Show that the Patrician generating function hn(z) deĄned in (15) can be
expressed in the rather horrible form

n

m≥1

zm

a1+···+am=n−1
a1,...,am≥1

n− 1

a1, . . . , am

1

(2a1 − 1)(2a1+a2 − 1) . . . (2a1+···+am − 1)

.

[Thus, if there is a simple formula for hn(z), we will be able to simplify this rather
ungainly expression.]

31. [M21] Solve the recurrence (16).

32. [M21] What is the average value of the sum of all SKIP Ąelds in a random Patrician
tree with N − 1 internal nodes?

33. [M30] Prove that (18) is a solution to the recurrence (17). [Hint: Consider the
generating function A(z) =

n≥0 anz

n/n!.]

34. [HM40] The purpose of this exercise is to Ąnd the asymptotic behavior of (18).
a) Prove that, if n ≥ 2,

1
n

2≤k<n

n

k

Bk

2k−1 − 1
=

j≥1

1n−1 + 2n−1 + · · ·+ (2j − 1)n−1

2j(n−1)
− 2j

n
+

1
2

.

b) Show that the summand in (a) is approximately 1/(ex − 1) − 1/x + 1/2, where
x = n/2j ; the resulting sum equals the original sum plus O(n−1).

c) Show that

1
ex − 1

− 1
x

+
1
2

=
1

2πi

 − 1
2

+i∞

− 1
2
−i∞

ζ(z)Γ (z)x−zdz, for real x > 0.

d) Therefore the sum equals

1
2πi

 − 1
2

+i∞

− 1
2
−i∞

ζ(z)Γ (z)n−z

2−z − 1
dz +O(n−1);

evaluate this integral.

x 35. [M20] What is the probability that PatriciaŠs tree on Ąve keys will be

a

b c

d

with the SKIP Ąelds a, b, c, d as shown? (Assume that the keys have independent
random bits, and give your answer as a function of a, b, c, and d.)

6.3 DIGITAL SEARCHING 511

36. [M25] There are Ąve binary trees with three internal nodes. If we consider how
frequently each particular one of these occurs as the search tree in various algorithms,
for random data, we Ąnd the following different probabilities:

Tree search
(Algorithm 6.2.2T)

1
6

1
6

1
3

1
6

1
6

Digital tree search
(Algorithm D)

1
8

1
8

1
2

1
8

1
8

Patricia
(Algorithm P)

1
7

1
7

3
7

1
7

1
7

(Notice that the digital search tree tends to be balanced more often than the others.)
In exercise 6.2.2Ű5 we found that the probability of a tree in the tree search algorithm
was

(1/s(x)), where the product is over all internal nodes x, and s(x) is the number

of internal nodes in the subtree rooted at x. Find similar formulas for the probability
of a tree in the case of (a) Algorithm D; (b) Algorithm P.

x 37. [M22] Consider a binary tree with bl external nodes on level l. The text observes
that the running time for unsuccessful searching in digital search trees is not directly
related to the external path length

lbl, but instead it is essentially proportional to

the modiĄed external path length

lbl2−l. Prove or disprove: The smallest modiĄed

external path length, over all trees with N external nodes, occurs when all of the
external nodes appear on at most two adjacent levels. (See exercise 5.3.1Ű20.)

38. [M40] Develop an algorithm to Ąnd the n-node tree having the minimum value
of α · (internal path length) +β · (modiĄed external path length), given α and β, in the
sense of exercise 37.

39. [M43] Develop an algorithm to Ąnd optimum digital search trees, analogous to
the optimum binary search trees considered in Section 6.2.2.

x 40. [25] Let a0 a1 a2 . . . be a periodic binary sequence with aN+k = ak for all k ≥ 0.
Show that there is a way to represent any Ąxed sequence of this type in O(N) memory
locations, so that the following operation can be done in only O(N) steps: Given any
binary pattern b0 b1 . . . bn−1, determine how often the pattern occurs in the period
(thus, Ąnd how many values of p exist with 0 ≤ p < N and bk = ap+k for 0 ≤ k < n).
The length n of the pattern is variable as well as the pattern itself. Assume that each
memory location can hold arbitrary integers between 0 and N . [Hint: See exercise 14.]

41. [HM28] This is an application to group theory. Let G be the free group on the
letters {a1, . . . , an}, namely the set of all strings α = b1 . . . br, where each bi is one of the
aj or a−j and no adjacent pair aja

−
j or a−j aj occurs. The inverse of α is b−r . . . b

−
1 , and we

multiply two such strings by concatenating them and canceling adjacent inverse pairs.
Let H be the subgroup of G generated by the strings {β1, . . . , βp}, namely the set of all
elements of G that can be written as products of the βŠs and their inverses. According
to a well-known theorem of Jakob Nielsen (see Marshall Hall, The Theory of Groups
(New York: Macmillan, 1959), Chapter 7), we can always Ąnd generators θ1, . . . , θm

512 SEARCHING 6.3

of H, with m ≤ p, having the property that the middle character of θi (or at least one of
the two central characters of θi if it has even length) is never canceled in the expressions
θiθ

e
j or θe

jθi, e = ±1, unless j = i and e = −1. This property implies that there is
a simple algorithm for testing whether an arbitrary element of G is in H: Record the
2m keys θ1, . . . , θm, θ−1 , . . . , θ

−
m in a character-oriented search tree, using the 2n letters

a1, . . . , an, a−1 , . . . , a
−
n . Let α = b1 . . . br be a given element of G; if r = 0, α is obviously

in H. Otherwise look up α, Ąnding the longest preĄx b1 . . . bk that matches a key. If
there is more than one key beginning with b1 . . . bk, α is not in H; otherwise let the
unique such key be b1 . . . bkc1 . . . cl = θe

i , and replace α by θ−e
i α = c−l . . . c

−
1 bk+1 . . . br.

If this new value of α is longer than the old (that is, if l > k), α is not in H; otherwise
repeat the process on the new value of α. The Nielsen property implies that this
algorithm will always terminate. If α is eventually reduced to the null string, we can
reconstruct the representation of the original α as a product of θŠs.

For example, let {θ1, θ2, θ3} = {bbb, b−a−b−, ba−b} and α = bbabaab. The forest

b

a a− b

b b b

θ
−

2
θ
3

θ
1

b−

a a− b−

b− b− b−

θ
−

3
θ
2

θ
−

1

can be used with the algorithm above to deduce that α = θ1θ
−
3 θ1θ

−
3 θ

−
2 . Implement

this algorithm, given the θŠs as input to your program.

42. [23] (Front and rear compression.) When a set of binary keys is being used as an
index, to partition a larger Ąle, we need not store the full keys. For example, if the
sixteen keys of Fig. 34 are used, they can be truncated at the right, as soon as enough
digits have been given to identify them uniquely: 0000, 0001, 00100, 00101, 010, . . . ,
1110001. These truncated keys can be used to partition a Ąle into seventeen parts,
where for example the Ąfth part consists of all keys beginning with 0011 or 010, and
the last part contains all keys beginning with 111001, 11101, or 1111. The truncated
keys can be represented more compactly if we suppress all leading digits common to
the previous key: 0000, ⋄⋄⋄1, ⋄⋄100, ⋄⋄⋄⋄1, ⋄10, . . . , ⋄⋄⋄⋄⋄⋄1. The bit following a ⋄ is
always 1, so it may be suppressed. A large Ąle will have many ⋄Šs, and we need store
only the number of ⋄Šs and the values of the following bits.

Show that the total number of bits in the compressed Ąle, excluding ⋄Šs and the
following 1-bits, is always equal to the number of nodes in the binary trie for the keys.

(Consequently the average total number of such bits in the entire index is about
N/ ln 2, only 1.44 bits per key. This compression technique was shown to the author by
A. Heller and R. L. Johnsen. Still further compression is possible, since we need only
represent the trie structure; see Theorem 2.3.1A.)

43. [HM42] Analyze the height of a random M -ary trie that has N keys and cutoff
parameter s as in exercise 20. (When s = 1, this is the length of the longest common
preĄx of N long random words in an M -ary alphabet.)

x 44. [30] (J. L. Bentley and R. Sedgewick.) Explore a ternary representation of tries,
in which left and right links correspond to the horizontal branches of (2) while middle
links correspond to the downward branches.

x 45. [M25] If the seven keys of Fig. 33 are inserted in random order by the algorithm
of exercise 15, what is the probability of obtaining the tree shown?

6.4 HASHING 513

6.4. HASHING

So far we have considered search methods based on comparing the given
argument K to the keys in the table, or using its digits to govern a branching
process. A third possibility is to avoid all this rummaging around by doing some
arithmetical calculation on K, computing a function f(K) that is the location
of K and the associated data in the table.

For example, letŠs consider again the set of 31 English words that we have
subjected to various search strategies in Sections 6.2.2 and 6.3. Table 1 shows
a short MIX program that transforms each of the 31 keys into a unique number
f(K) between −10 and 30. If we compare this method to the MIX programs
for the other methods we have considered (for example, binary search, optimal
tree search, trie memory, digital tree search), we Ąnd that it is superior from
the standpoint of both space and speed, except that binary search uses slightly
less space. In fact, the average time for a successful search, using the program
of Table 1 with the frequency data of Fig. 12, is only about 17.8u, and only 41
table locations are needed to store the 31 keys.

Unfortunately, such functions f(K) arenŠt very easy to discover. There are
4131 ≈ 1050 possible functions from a 31-element set into a 41-element set, and
only 41 · 40 · . . . · 11 = 41!/10! ≈ 1043 of them will give distinct values for each
argument; thus only about one of every 10 million functions will be suitable.

Functions that avoid duplicate values are surprisingly rare, even with a fairly
large table. For example, the famous Şbirthday paradoxŤ asserts that if 23 or
more people are present in a room, chances are good that two of them will have
the same month and day of birth! In other words, if we select a random function
that maps 23 keys into a table of size 365, the probability that no two keys map
into the same location is only 0.4927 (less than one-half). Skeptics who doubt
this result should try to Ąnd the birthday mates at the next large parties they
attend. [The birthday paradox was discussed informally by mathematicians in
the 1930s, but its origin is obscure; see I. J. Good, Probability and the Weighing
of Evidence (Griffin, 1950), 38. See also R. von Mises, İstanbul Üniversitesi
Fen Fakültesi Mecmuası 4 (1939), 145Ű163, and W. Feller, An Introduction to
Probability Theory (New York: Wiley, 1950), Section II.3.]

On the other hand, the approach used in Table 1 is fairly Ćexible [see
M. Greniewski and W. Turski, CACM 6 (1963), 322Ű323], and for a medium-
sized table a suitable function can be found after about a dayŠs work. In
fact it is rather amusing to solve a puzzle like this. Suitable techniques have
been discussed by many people, including for example R. Sprugnoli, CACM 20

(1977), 841Ű850, 22 (1979), 104, 553; R. J. Cichelli, CACM 23 (1980), 17Ű19;
T. J. Sager, CACM 28 (1985), 523Ű532, 29 (1986), 557; B. S. Majewski, N. C.
Wormald, G. Havas, and Z. J. Czech, Comp. J. 39 (1996), 547Ű554; Czech,
Havas, and Majewski, Theoretical Comp. Sci. 182 (1997), 1Ű143. See also the
article by J. Körner and K. Marton, Europ. J. Combinatorics 9 (1988), 523Ű530,
for theoretical limitations on perfect hash functions.

Of course this method has a serious Ćaw, since the contents of the table
must be known in advance; adding one more key will probably ruin everything,

514 SEARCHING 6.4
Table 1

TRANSFORMING A SET OF KEYS INTO UNIQUE ADDRESSES

A

A
N
D

A
R
E

A
S

A
T

B
E

B
U
T

B
Y

F
O
R

F
R
O
M

H
A
D

H
A
V
E

H
E

H
E
R

Instruction

LD1N K(1:1) −1 −1 −1 −1 −1 −2 −2 −2 −6 −6 −8 −8 −8 −8
LD2 K(2:2) −1 −1 −1 −1 −1 −2 −2 −2 −6 −6 −8 −8 −8 −8
INC1 -8,2 −9 6 10 13 14 −5 14 18 2 5 −15 −15 −11 −11
J1P *+2 −9 6 10 13 14 −5 14 18 2 5 −15 −15 −11 −11
INC1 16,2 7 16 2 2 10 10
LD2 K(3:3) 7 6 10 13 14 16 14 18 2 5 2 2 10 10
J2Z 9F 7 6 10 13 14 16 14 18 2 5 2 2 10 10
INC1 -28,2 . −18 −13 . . . 9 . −7 −7 −22 −1 . 1
J1P 9F . −18 −13 . . . 9 . −7 −7 −22 −1 . 1
INC1 11,2 . −3 3 23 20 −7 35 . .
LDA K(4:4) . −3 3 23 20 −7 35 . .
JAZ 9F . −3 3 23 20 −7 35 . .
DEC1 -5,2 9 . 15 . .
J1N 9F 9 . 15 . .
INC1 10 19 . 25 . .

9H LDA K 7 −3 3 13 14 16 9 18 23 19 −7 25 10 1
CMPA TABLE,1 7 −3 3 13 14 16 9 18 23 19 −7 25 10 1
JNE FAILURE 7 −3 3 13 14 16 9 18 23 19 −7 25 10 1

making it necessary to start over almost from scratch. We can obtain a much
more versatile method if we give up the idea of uniqueness, permitting different
keys to yield the same value f(K), and using a special method to resolve any
ambiguity after f(K) has been computed.

These considerations lead to a popular class of search methods commonly
known as hashing or scatter storage techniques. The verb Şto hashŤ means
to chop something up or to make a mess out of it; the idea in hashing is to
scramble some aspects of the key and to use this partial information as the basis
for searching. We compute a hash address h(K) and begin searching there.

The birthday paradox tells us that there will probably be distinct keys
Ki ̸= Kj that hash to the same value h(Ki) = h(Kj). Such an occurrence is
called a collision, and several interesting approaches have been devised to handle
the collision problem. In order to use a hash table, programmers must make two
almost independent decisions: They must choose a hash function h(K), and they
must select a method for collision resolution. We shall now consider these two
aspects of the problem in turn.

Hash functions. To make things more explicit, let us assume throughout this
section that our hash function h takes on at most M different values, with

0 ≤ h(K) < M, (1)

for all keys K. The keys in actual Ąles that arise in practice usually have a great
deal of redundancy; we must be careful to Ąnd a hash function that breaks up
clusters of almost identical keys, in order to reduce the number of collisions.

6.4 HASHING 515
H
I
S

I I
N

I
S

I
T

N
O
T

O
F

O
N

O
R

T
H
A
T

T
H
E

T
H
I
S

T
O

W
A
S

W
H
I
C
H

W
I
T
H

Y
O
U

Contents of rI1 after executing the instruction, given a particular key K

−8 −9 −9 −9 −9 −15 −16 −16 −16 −23 −23 −23 −23 −26 −26 −26 −28
−8 −9 −9 −9 −9 −15 −16 −16 −16 −23 −23 −23 −23 −26 −26 −26 −28
−7 −17 −2 5 6 −7 −18 −9 −5 −23 −23 −23 −15 −33 −26 −25 −20
−7 −17 −2 5 6 −7 −18 −9 −5 −23 −23 −23 −15 −33 −26 −25 −20
18 −1 29 . . 25 4 22 30 1 1 1 17 −16 −2 0 12
18 −1 29 5 6 25 4 22 30 1 1 1 17 −16 −2 0 12
18 −1 29 5 6 25 4 22 30 1 1 1 17 −16 −2 0 12
12 20 . . . −26 −22 −18 . −22 −21 −5 8
12 20 . . . −26 −22 −18 . −22 −21 −5 8

. −14 −6 2 . 11 −1 29 .

. −14 −6 2 . 11 −1 29 .

. −14 −6 2 . 11 −1 29 .

. −10 . −2 . . −5 11 .

. −10 . −2 . . −5 11 .

. 21 .
12 −1 29 5 6 20 4 22 30 −10 −6 −2 17 11 −5 21 8
12 −1 29 5 6 20 4 22 30 −10 −6 −2 17 11 −5 21 8
12 −1 29 5 6 20 4 22 30 −10 −6 −2 17 11 −5 21 8

It is theoretically impossible to deĄne a hash function that creates truly
random data from the nonrandom data in actual Ąles. But in practice it is not
difficult to produce a pretty good imitation of random data, by using simple
arithmetic as we have discussed in Chapter 3. And in fact we can often do even
better, by exploiting the nonrandom properties of actual data to construct a hash
function that leads to fewer collisions than truly random keys would produce.

Consider, for example, the case of 10-digit keys on a decimal computer.
One hash function that suggests itself is to let M = 1000, say, and to let h(K)
be three digits chosen from somewhere near the middle of the 20-digit product
K × K. This would seem to yield a fairly good spread of values between 000
and 999, with low probability of collisions. Experiments with actual data show,
in fact, that this Şmiddle squareŤ method isnŠt bad, provided that the keys do
not have a lot of leading or trailing zeros; but it turns out that there are safer
and saner ways to proceed, just as we found in Chapter 3 that the middle square
method is not an especially good random number generator.

Extensive tests on typical Ąles have shown that two major types of hash
functions work quite well. One is based on division, and the other is based on
multiplication.

The division method is particularly easy; we simply use the remainder
modulo M :

h(K) = K mod M. (2)

In this case, some values of M are obviously much better than others. For
example, if M is an even number, h(K) will be even when K is even and odd

516 SEARCHING 6.4

when K is odd, and this will lead to a substantial bias in many Ąles. It would
be even worse to let M be a power of the radix of the computer, since K mod M
would then be simply the least signiĄcant digits of K (independent of the other
digits). Similarly we can argue that M probably shouldnŠt be a multiple of 3;
for if the keys are alphabetic, two keys that differ only by permutation of letters
would then differ in numeric value by a multiple of 3. (This occurs because
22n mod 3 = 1 and 10n mod 3 = 1.) In general, we want to avoid values of M
that divide rk ± a, where k and a are small numbers and r is the radix of the
alphabetic character set (usually r = 64, 256, or 100), since a remainder modulo
such a value of M tends to be largely a simple superposition of the key digits.
Such considerations suggest that we choose M to be a prime number such that
rk ̸≡ ±a (modulo M) for small k and a. This choice has been found to be quite
satisfactory in most cases.

For example, on the MIX computer we could choose M = 1009, computing
h(K) by the sequence

LDX K rX← K.
ENTA 0 rA← 0.
DIV =1009= rX← K mod 1009.

(3)

The multiplicative hashing scheme is equally easy to do, but it is slightly
harder to describe because we must imagine ourselves working with fractions
instead of with integers. Let w be the word size of the computer, so that w is
usually 1010 or 230 for MIX; we can regard an integer A as the fraction A/w if we
imagine the radix point to be at the left of the word. The method is to choose
some integer constant A relatively prime to w, and to let

h(K) =

M

A

w
K

mod 1

. (4)

In this case we usually let M be a power of 2 on a binary computer, so that
h(K) consists of the leading bits of the least signiĄcant half of the product AK.

In MIX code, if we let M = 2m and assume a binary radix, the multiplicative
hash function is

LDA K rA← K.
MUL A rAX← AK.
ENTA 0 rAX← AK mod w.
SLB m Shift rAX m bits to the left.

(5)

Now h(K) appears in register A. Since MIX has rather slow multiplication and
shift instructions, this sequence takes exactly as long to compute as (3); but on
many machines multiplication is signiĄcantly faster than division.

In a sense this method can be regarded as a generalization of (3), since
we could for example take A to be an approximation to w/1009; multiplying
by the reciprocal of a constant is often faster than dividing by that constant.
The technique of (5) is almost a Şmiddle squareŤ method, but there is one
important difference: We shall see that multiplication by a suitable constant has
demonstrably good properties.

6.4 HASHING 517

One of the nice features of the multiplicative scheme is that no information
is lost when we blank out the A register in (5); we could determine K again,
given only the contents of rAX after (5) has Ąnished. The reason is that A is
relatively prime to w, so EuclidŠs algorithm can be used to Ąnd a constant A′

with AA′ mod w = 1; this implies that K =

A′(AK mod w)

mod w. In other

words, if f(K) denotes the contents of register X just before the SLB instruction
in (5), then

K1 ̸= K2 implies f(K1) ̸= f(K2). (6)

Of course f(K) takes on values in the range 0 to w − 1, so it isnŠt any good as
a hash function, but it can be very useful as a scrambling function, namely a
function satisfying (6) that tends to randomize the keys. Such a function can be
very useful in connection with the tree search algorithms of Section 6.2.2, if the
order of keys is unimportant, since it removes the danger of degeneracy when
keys enter the tree in increasing order. (See exercise 6.2.2Ű10.) A scrambling
function is also useful in connection with the digital tree search algorithm of
Section 6.3, if the bits of the actual keys are biased.

Another feature of the multiplicative hash method is that it makes good
use of the nonrandomness found in many Ąles. Actual sets of keys often have
a preponderance of arithmetic progressions, where {K, K+d, K+2d, . . . , K+td}
all appear in the Ąle; for example, consider alphabetic names like {PART1, PART2,
PART3} or {TYPEA, TYPEB, TYPEC}. The multiplicative hash method converts
an arithmetic progression into an approximate arithmetic progression h(K),
h(K+d), h(K+2d), . . . of distinct hash values, reducing the number of collisions
from what we would expect in a random situation. The division method has this
same property.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 n

{nφ−1}

0

1

Fig. 37. Fibonacci hashing.

Figure 37 illustrates this aspect of multiplicative hashing in a particularly
interesting case. Suppose that A/w is approximately the golden ratio ϕ−1 =√

5−1

/2 ≈ 0.6180339887; then the successive values h(K), h(K +1), h(K +2),

. . . have essentially the same behavior as the successive hash values h(0), h(1),
h(2), . . . , so the following experiment suggests itself: Starting with the line

518 SEARCHING 6.4

segment [0 . . 1], we successively mark off the points {ϕ−1}, {2ϕ−1}, {3ϕ−1}, . . . ,
where {x} denotes the fractional part of x (namely x−⌊x⌋, or x mod 1). As shown
in Fig. 37, these points stay very well separated from each other; in fact, each
newly added point falls into one of the largest remaining intervals, and divides
it in the golden ratio! [This phenomenon was observed long ago by botanists
Louis and Auguste Bravais, Annales des Sciences Naturelles 7 (1837), 42Ű110,
who gave an illustration equivalent to Fig. 37 and related it to the Fibonacci
sequence. See also S. Świerczkowski, Fundamenta Math. 46 (1958), 187Ű189.]

The remarkable scattering property of the golden ratio is actually just a
special case of a very general result, originally conjectured by Hugo Steinhaus
and Ąrst proved by Vera Turán Sós [Acta Math. Acad. Sci. Hung. 8 (1957),
461Ű471; Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 1 (1958), 127Ű134]:

Theorem S. Let θ be any irrational number. When the points {θ}, {2θ}, . . . ,
{nθ} are placed in the line segment [0 . . 1], the n + 1 line segments formed have
at most three different lengths. Moreover, the next point {(n+1)θ} will fall in
one of the largest existing segments.
Thus, the points {θ}, {2θ}, . . . , {nθ} are spread out very evenly between 0 and 1.
If θ is rational, the same theorem holds if we give a suitable interpretation to
the segments of length 0 that appear when n is greater than or equal to the
denominator of θ. A proof of Theorem S, together with a detailed analysis of
the underlying structure of the situation, appears in exercise 8; it turns out that
the segments of a given length are created and destroyed in a Ąrst-in-Ąrst-out
manner. Of course, some θŠs are better than others, since for example a value
that is near 0 or 1 will start out with many small segments and one large segment.
Exercise 9 shows that the two numbers ϕ−1 and ϕ−2 = 1−ϕ−1 lead to the Şmost
uniformly distributedŤ sequences, among all numbers θ between 0 and 1.

The theory above suggests Fibonacci hashing, where we choose the constant
A to be the nearest integer to ϕ−1w that is relatively prime to w. For example
if MIX were a decimal computer we would take

A = + 61 80 33 98 87 . (7)

This multiplier will spread out alphabetic keys like LIST1, LIST2, LIST3 very
nicely. But notice what happens when we have an arithmetic series in the
fourth character position, as in the keys SUM1␣, SUM2␣, SUM3␣: The effect is
as if Theorem S were being used with θ = {100A/w} = .80339887 instead of
θ = .6180339887 = A/w. The resulting behavior is still all right, in spite of the
fact that this value of θ is not quite as good as ϕ−1. On the other hand, if the
progression occurs in the second character position, as in A1␣␣␣, A2␣␣␣, A3␣␣␣,
the effective θ is .9887, and this is probably too close to 1.

Therefore we might do better with a multiplier like

A = + 61 61 61 61 61

in place of (7); such a multiplier will separate out consecutive sequences of keys
that differ in any character position. Unfortunately this choice suffers from

6.4 HASHING 519

another problem analogous to the difficulty of dividing by rk ± 1: Keys such
as XY and YX will tend to hash to the same location! One way out of this
difficulty is to look more closely at the structure underlying Theorem S. For
short progressions of keys, only the Ąrst few partial quotients of the continued
fraction representation of θ are relevant, and small partial quotients correspond
to good distribution properties. Therefore we Ąnd that the best values of θ lie
in the ranges

1
4 < θ < 3

10 , 1
3 < θ < 3

7 , 4
7 < θ < 2

3 , 7
10 < θ < 3

4 .

A value of A can be found so that each of its bytes lies in a good range and is
not too close to the values of the other bytes or their complements, for example

A = + 61 25 42 33 71 . (8)

Such a multiplier can be recommended. (These ideas about multiplicative hash-
ing are due largely to R. W. Floyd.)

A good hash function should satisfy two requirements:
a) Its computation should be very fast.
b) It should minimize collisions.

Property (a) is machine-dependent, and property (b) is data-dependent. If the
keys were truly random, we could simply extract a few bits from them and use
those bits for the hash function; but in practice we nearly always need to have a
hash function that depends on all bits of the key in order to satisfy (b).

So far we have considered how to hash one-word keys. Multiword or vari-
able-length keys can be handled by multiple-precision extensions of the methods
above, but it is generally adequate to speed things up by combining the individual
words together into a single word, then doing a single multiplication or division
as above. The combination can be done by addition mod w, or by exclusive-or
on a binary computer; both of these operations have the advantage that they are
invertible, namely that they depend on all bits of both arguments, and exclusive-
or is sometimes preferable because it avoids arithmetic overĆow. However, both
of these operations are commutative, hence (X, Y) and (Y, X) will hash to the
same address; G. D. Knott has suggested avoiding this problem by doing a cyclic
shift just before adding or exclusive-oring.

An even better way to hash l-character or l-word keys K = x1x2 . . . xl is to
compute

h(K) =

h1(x1) + h2(x2) + · · ·+ hl(xl)

mod M, (9)

where each hj is an independent hash function. This idea, introduced by J. L.
Carter and M. N. Wegman in 1977, is especially efficient when each xj is a single
character, because we can then use a precomputed array for each hj . Such arrays
make multiplication unnecessary. If M is a power of 2, we can avoid the division
in (9) by substituting exclusive-or for addition; this gives a different, but equally
good, hash function. Therefore (9) certainly satisĄes property (a). Moreover,
Carter and Wegman proved that if the hj are chosen at random, property (b)
will hold regardless of the input data. (See exercise 72.)

520 SEARCHING 6.4

Many more methods for hashing have been suggested, but none of them
have proved to be superior to the simple methods described above. For a survey
of several approaches together with detailed statistics on their performance with
actual Ąles, see the article by V. Y. Lum, P. S. T. Yuen, and M. Dodd, CACM
14 (1971), 228Ű239.

Of all the other hash methods that have been tried, perhaps the most in-
teresting is a technique based on algebraic coding theory; the idea is analogous
to the division method above, but we divide by a polynomial modulo 2 instead of
dividing by an integer. (As observed in Section 4.6, this operation is analogous
to division, just as addition is analogous to exclusive-or.) For this method,
M should be a power of 2, say M = 2m, and we make use of an mth degree
polynomial P (x) = xm + pm−1xm−1 + · · · + p0. An n-digit binary key K =
(kn−1 . . . k1 k0)2 can be regarded as the polynomial K(x) = kn−1xn−1 + · · · +
k1x + k0, and we compute the remainder

K(x) mod P (x) = hm−1xm−1 + · · ·+ h1x + h0

using polynomial arithmetic modulo 2; then h(K) = (hm−1 . . . h1 h0)2. If P (x) is
chosen properly, this hash function can be guaranteed to avoid collisions between
nearly equal keys. For example if n = 15, m = 10, and

P (x) = x10 + x8 + x5 + x4 + x2 + x + 1, (10)

it can be shown that h(K1) will be unequal to h(K2) whenever K1 and K2

are distinct keys that differ in fewer than seven bit positions. (See exercise 7
for further information about this scheme; it is, of course, more suitable for
hardware or microprogramming implementation than for software.)

It is often convenient to use the constant hash function h(K) = 0 when
debugging a program, since all keys will be stored together; an efficient h(K)
can be substituted later.

Collision resolution by Şchaining.Ť We have observed that some hash
addresses will probably be burdened with more than their share of keys. Perhaps
the most obvious way to solve this problem is to maintain M linked lists, one
for each possible hash code. A LINK Ąeld should be included in each record,
and there will also be M list heads, numbered say from 1 through M. After
hashing the key, we simply do a sequential search in list number h(K) + 1. (See
exercise 6.1Ű2. The situation is very similar to multiple-list-insertion sorting,
Program 5.2.1M.)

Figure 38 illustrates this simple chaining scheme when M = 9, for the
sequence of seven keys

K = EN, TO, TRE, FIRE, FEM, SEKS, SYV (11)

(the numbers 1 through 7 in Norwegian), having the respective hash codes

h(K) + 1 = 3, 1, 4, 1, 5, 9, 2. (12)

The Ąrst list has two elements, and three of the lists are empty.

6.4 HASHING 521

Λ

Λ

Λ

TO

SYV Λ

EN Λ

TRE Λ

FEM Λ

SEKS Λ

FIRE ΛHEAD[1]:

HEAD[2]:

HEAD[3]:

HEAD[4]:

HEAD[5]:

HEAD[6]:

HEAD[7]:

HEAD[8]:

HEAD[9]:

Fig. 38. Separate chaining.

Chaining is quite fast, because the lists are short. If 365 people are gathered
together in one room, there will probably be many pairs having the same birth-
day, but the average number of people with any given birthday will be only 1!
In general, if there are N keys and M lists, the average list size is N/M ; thus
hashing decreases the average amount of work needed for sequential searching
by roughly a factor of M. (A precise formula is worked out in exercise 34.)

This method is a straightforward combination of techniques we have dis-
cussed before, so we do not need to formulate a detailed algorithm for chained
hash tables. It is often a good idea to keep the individual lists in order by key,
so that unsuccessful searches Ů which must precede insertions Ů go faster. Thus
if we choose to make the lists ascending, the TO and FIRE nodes of Fig. 38 would
be interchanged, and all the Λ links would be replaced by pointers to a dummy
record whose key is ∞. (See Algorithm 6.1T.) Alternatively we could make use
of the Şself-organizingŤ concept discussed in Section 6.1; instead of keeping the
lists in order by key, they may be kept in order according to the time of most
recent occurrence.

For the sake of speed we would like to make M rather large. But when M is
large, many of the lists will be empty and much of the space for the M list heads
will be wasted. This suggests another approach, when the records are small: We
can overlap the record storage with the list heads, making room for a total of
M records and M links instead of for N records and M + N links. Sometimes
it is possible to make one pass over all the data to Ąnd out which list heads will
be used, then to make another pass inserting all the ŞoverĆowŤ records into the
empty slots. But this is often impractical or impossible, and weŠd rather have a
technique that processes each record only once when it Ąrst enters the system.
The following algorithm, due to F. A. Williams [CACM 2, 6 (June 1959), 21Ű24],
is a convenient way to solve the problem.

Algorithm C (Chained hash table search and insertion). This algorithm looks
for a given key K in an M -node table. If K is not in the table and the table is
not full, K is inserted.

522 SEARCHING 6.4

C1. Hash

C2. Is there a list?

C3. Compare
C4. Advance

to next

C5. Find
empty node

C6. Insert
new key

Yes

No

K=KEY[i]

SUCCESS

End
of list

R=0

OVERFLOW

Fig. 39. Chained hash table search and insertion.

The nodes of the table are denoted by TABLE[i], for 0 ≤ i ≤ M, and they
are of two distinguishable types, empty and occupied. An occupied node contains
a key Ąeld KEY[i], a link Ąeld LINK[i], and possibly other Ąelds.

The algorithm makes use of a hash function h(K). An auxiliary variable
R is also used, to help Ąnd empty spaces; when the table is empty, we have
R = M + 1, and as insertions are made it will always be true that TABLE[j] is
occupied for all j in the range R ≤ j ≤M. By convention, TABLE[0] will always
be empty.

C1. [Hash.] Set i← h(K) + 1. (Now 1 ≤ i ≤M.)

C2. [Is there a list?] If TABLE[i] is empty, go to C6. (Otherwise TABLE[i] is
occupied; we will look at the list of occupied nodes that starts here.)

C3. [Compare.] If K = KEY[i], the algorithm terminates successfully.

C4. [Advance to next.] If LINK[i] ̸= 0, set i← LINK[i] and go back to step C3.

C5. [Find empty node.] (The search was unsuccessful, and we want to Ąnd an
empty position in the table.) Decrease R one or more times until Ąnding
a value such that TABLE[R] is empty. If R = 0, the algorithm terminates
with overĆow (there are no empty nodes left); otherwise set LINK[i] ← R,
i← R.

C6. [Insert new key.] Mark TABLE[i] as an occupied node, with KEY[i] ← K
and LINK[i]← 0.

This algorithm allows several lists to coalesce, so that records need not be
moved after they have been inserted into the table. For example, see Fig. 40,
where SEKS appears in the list containing TO and FIRE since the latter had already
been inserted into position 9.

In order to see how Algorithm C compares with others in this chapter, we can
write the following MIX program. The analysis worked out below indicates that
the lists of occupied cells tend to be short, and the program has been designed
with this fact in mind.

6.4 HASHING 523

TO

SYV Λ

EN Λ

TRE Λ

FEM Λ

SEKS Λ

FIRE

TABLE[1]:

TABLE[2]:

TABLE[3]:

TABLE[4]:

TABLE[5]:

TABLE[6]:

TABLE[7]:

TABLE[8]:

TABLE[9]:

Fig. 40. Coalesced chaining.

Program C (Chained hash table search and insertion). For convenience, the
keys are assumed to be only three bytes long, and nodes are represented as
follows:

empty node − 1 0 0 0 0 ;

occupied node + LINK KEY .
(13)

The table size M is assumed to be prime; TABLE[i] is stored in location TABLE+i.
rI1 ≡ i, rA ≡ K; rI2 ≡ LINK[i] and/or R.

01 KEY EQU 3:5

02 LINK EQU 0:2

03 START LDX K 1 C1. Hash.
04 ENTA 0 1
05 DIV =M= 1
06 STX *+1(0:2) 1
07 ENT1 * 1 i← h(K)
08 INC1 1 1 + 1.
09 LDA K 1
10 LD2 TABLE,1(LINK) 1 C2. Is there a list?
11 J2N 6F 1 To C6 if TABLE[i] empty.
12 CMPA TABLE,1(KEY) A C3. Compare.
13 JE SUCCESS A Exit if K = KEY[i].
14 J2Z 5F A− S1 To C5 if LINK[i] = 0.
15 4H ENT1 0,2 C − 1 C4. Advance to next.
16 CMPA TABLE,1(KEY) C − 1 C3. Compare.
17 JE SUCCESS C − 1 Exit if K = KEY[i].
18 LD2 TABLE,1(LINK) C − 1− S2
19 J2NZ 4B C − 1− S2 Advance if LINK[i] ̸= 0.
20 5H LD2 R A− S C5. Find empty node.
21 DEC2 1 T R← R− 1.
22 LDX TABLE,2 T
23 JXNN *-2 T Repeat until TABLE[R] empty.
24 J2Z OVERFLOW A− S Exit if no empty nodes left.
25 ST2 TABLE,1(LINK) A− S LINK[i]← R.
26 ENT1 0,2 A− S i← R.

524 SEARCHING 6.4

27 ST2 R A− S Update R in memory.
28 6H STZ TABLE,1(LINK) 1− S C6. Insert new key. LINK[i]← 0.
29 STA TABLE,1(KEY) 1− S KEY[i]← K.

The running time of this program depends on
C = number of table entries probed while searching;
A = [initial probe found an occupied node];
S = [search was successful];
T = number of table entries probed while looking for an empty space.

Here S = S1 + S2, where S1 = 1 if successful on the Ąrst try. The total running
time for the searching phase of Program C is (7C + 4A + 17− 3S + 2S1)u, and
the insertion of a new key when S = 0 takes an additional (8A + 4T + 4)u.

Suppose there are N keys in the table at the start of this program, and let

α = N/M = load factor of the table. (14)

Then the average value of A in an unsuccessful search is obviously α, if the hash
function is random; and exercise 39 proves that the average value of C in an
unsuccessful search is

C ′
N = 1 +

1
4

1 +

2
M

N
− 1− 2N

M

≈ 1 +

e2α − 1− 2α

4
. (15)

Thus when the table is half full, the average number of probes made in an
unsuccessful search is about 1

4 (e + 2) ≈ 1.18; and even when the table gets
completely full, the average number of probes made just before inserting the
Ąnal item will be only about 1

4 (e2 + 1) ≈ 2.10. The standard deviation is also
small, as shown in exercise 40. These statistics prove that the lists stay short
even though the algorithm occasionally allows them to coalesce, when the hash
function is random. Of course C can be as high as N, if the hash function is bad
or if we are extremely unlucky.

In a successful search, we always have A = 1. The average number of probes
during a successful search may be computed by summing the quantity C + A
over the Ąrst N unsuccessful searches and dividing by N, if we assume that each
key is equally likely. Thus we obtain

CN =
1
N

0≤k<N

C ′

k +
k

M

= 1 +

1
8

M

N

1 +

2
M

N
− 1− 2N

M

+

1
4

N − 1
M

≈ 1 +
e2α − 1− 2α

8α
+

α

4
(16)

as the average number of probes in a random successful search. Even a full table
will require only about 1.80 probes, on the average, to Ąnd an item! Similarly
(see exercise 42), the average value of S1 turns out to be

S1N = 1− 1
2

(N − 1)/M

≈ 1− 1

2 α. (17)

At Ąrst glance it may appear that step C5 is inefficient, since it has to search
sequentially for an empty position. But actually the total number of table probes

6.4 HASHING 525

made in step C5 as a table is being built will never exceed the number of items
in the table; so we make an average of at most one of these probes per insertion.
Exercise 41 proves that T is approximately αeα in a random unsuccessful search.

It would be possible to modify Algorithm C so that no two lists coalesce, but
then it would become necessary to move records around. For example, consider
the situation in Fig. 40 just before we wanted to insert SEKS into position 9; in
order to keep the lists separate, it would be necessary to move FIRE, and for
this purpose it would be necessary to discover which node points to FIRE. We
could solve this problem without providing two-way linkage by hashing FIRE

and searching down its list, as suggested by D. E. Ferguson, since the lists are
short. Exercise 34 shows that the average number of probes, when lists arenŠt
coalesced, is reduced to

C ′
N = 1 +

N(N − 1)
2M2

≈ 1 +
α2

2
(unsuccessful search), (18)

CN = 1 +
N − 1
2M

≈ 1 +
α

2
(successful search). (19)

This is not enough of an improvement over (15) and (16) to warrant changing
the algorithm.

On the other hand, Butler Lampson has observed that most of the space that
is occupied by links can actually be saved in the chaining method, if we avoid
coalescing the lists. This leads to an interesting algorithm that is discussed in
exercise 13. LampsonŠs method introduces a tag bit in each entry, and causes the
average number of probes needed in an unsuccessful search to decrease slightly,
from (18) to

1− 1

M

N
+

N

M
≈ e−α + α. (18′)

Separate chaining as in Fig. 38 can be used when N > M, so overĆow is
not a serious problem in that case. When the lists coalesce as in Fig. 40 and
Algorithm C, we can link extra items into an auxiliary storage pool; L. Guibas
has proved that the average number of probes to insert the (M + L + 1)st item
is then

L/2M + 1

4

(1 + 2/M)M − 1

+ 1

2 . However, it is usually preferable to
use an alternative scheme that puts the Ąrst colliding elements into an auxiliary
storage area, allowing lists to coalesce only when this auxiliary area has Ąlled
up; see exercise 43.

Collision resolution by Şopen addressing.Ť Another way to resolve the
problem of collisions is to do away with links entirely, simply looking at various
entries of the table one by one until either Ąnding the key K or Ąnding an empty
position. The idea is to formulate some rule by which every key K determines a
Şprobe sequence,Ť namely a sequence of table positions that are to be inspected
whenever K is inserted or looked up. If we encounter an empty position while
searching for K, using the probe sequence determined by K, we can conclude
that K is not in the table, since the same sequence of probes will be made every

526 SEARCHING 6.4

time K is processed. This general class of methods was named open addressing

by W. W. Peterson [IBM J. Research & Development 1 (1957), 130Ű146].
The simplest open addressing scheme, known as linear probing, uses the

cyclic probe sequence

h(K), h(K)− 1, . . . , 0, M − 1, M − 2, . . . , h(K) + 1 (20)

as in the following algorithm.

Algorithm L (Linear probing and insertion). This algorithm searches an M -
node table, looking for a given key K. If K is not in the table and the table is
not full, K is inserted.

The nodes of the table are denoted by TABLE[i], for 0 ≤ i < M, and they
are of two distinguishable types, empty and occupied. An occupied node contains
a key, called KEY[i], and possibly other Ąelds. An auxiliary variable N is used
to keep track of how many nodes are occupied; this variable is considered to be
part of the table, and it is increased by 1 whenever a new key is inserted.

This algorithm makes use of a hash function h(K), and it uses the linear
probing sequence (20) to address the table. ModiĄcations of that sequence are
discussed below.

L1. [Hash.] Set i← h(K). (Now 0 ≤ i < M.)

L2. [Compare.] If TABLE[i] is empty, go to step L4. Otherwise if KEY[i] = K,
the algorithm terminates successfully.

L3. [Advance to next.] Set i ← i − 1; if now i < 0, set i ← i + M. Go back to
step L2.

L4. [Insert.] (The search was unsuccessful.) If N = M − 1, the algorithm
terminates with overĆow. (This algorithm considers the table to be full
when N = M − 1, not when N = M ; see exercise 15.) Otherwise set
N ← N + 1, mark TABLE[i] occupied, and set KEY[i]← K.

Figure 41 shows what happens when the seven example keys (11) are inserted
by Algorithm L, using the respective hash codes 2, 7, 1, 8, 2, 8, 1: The last three
keys, FEM, SEKS, and SYV, have been displaced from their initial locations h(K).

FEM

TRE

EN

SYV

SEKS

TO

FIRE

0

1

2

3

4

5

6

7

8

Fig. 41. Linear open addressing.

6.4 HASHING 527

Program L (Linear probing and insertion). This program deals with full-word
keys; but a key of 0 is not allowed, since 0 is used to signal an empty position
in the table. (Alternatively, we could require the keys to be nonnegative, letting
empty positions contain −1.) The table size M is assumed to be prime, and
TABLE[i] is stored in location TABLE + i for 0 ≤ i < M. For speed in the inner
loop, location TABLE−1 is assumed to contain 0. Location VACANCIES is assumed
to contain the value M − 1−N ; and rA ≡ K, rI1 ≡ i.

In order to speed up the inner loop of this program, the test Şi < 0Ť has been
removed from the loop so that only the essential parts of steps L2 and L3 remain.
The total running time for the searching phase comes to (7C + 9E + 21− 4S)u,
and the insertion after an unsuccessful search adds an extra 8u.

01 START LDX K 1 L1. Hash.
02 ENTA 0 1
03 DIV =M= 1
04 STX *+1(0:2) 1
05 ENT1 * 1 i← h(K).
06 LDA K 1
07 JMP 2F 1
08 8H INC1 M+1 E L3. Advance to next.
09 3H DEC1 1 C + E − 1 i← i− 1.
10 2H CMPA TABLE,1 C + E L2. Compare.
11 JE SUCCESS C + E Exit if K = KEY[i].
12 LDX TABLE,1 C + E − S
13 JXNZ 3B C + E − S To L3 if TABLE[i] nonempty.
14 J1N 8B E + 1− S To L3 with i←M if i = −1.
15 4H LDX VACANCIES 1− S L4. Insert.
16 JXZ OVERFLOW 1− S Exit with overĆow if N = M − 1.
17 DECX 1 1− S
18 STX VACANCIES 1− S Increase N by 1.
19 STA TABLE,1 1− S TABLE[i]← K.

As in Program C, the variable C denotes the number of probes, and S tells
whether or not the search was successful. We may ignore the variable E, which
is 1 only if a spurious probe of TABLE[−1] has been made, since its average value
is (C − 1)/M.

Experience with linear probing shows that the algorithm works Ąne until
the table begins to get full; but eventually the process slows down, with long
drawn-out searches becoming increasingly frequent. The reason for this behavior
can be understood by considering the following hypothetical hash table in which
M = 19 and N = 9:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

(21)

Shaded squares represent occupied positions. The next key K to be inserted
into the table will go into one of the ten empty spaces, but these are not equally
likely; in fact, K will be inserted into position 11 if 11 ≤ h(K) ≤ 15, while it

528 SEARCHING 6.4

will fall into position 8 only if h(K) = 8. Therefore position 11 is Ąve times as
likely as position 8; long lists tend to grow even longer.

This phenomenon isnŠt enough by itself to account for the relatively poor
behavior of linear probing, since a similar thing occurs in Algorithm C. (A list
of length 4 is four times as likely to grow in Algorithm C as a list of length 1.)
The real problem occurs when a cell like 4 or 16 becomes occupied in (21); then
two separate lists are combined, while the lists in Algorithm C never grow by
more than one step at a time. Consequently the performance of linear probing
degrades rapidly when N approaches M.

We shall prove later in this section that the average number of probes needed
by Algorithm L is approximately

C ′
N ≈

1
2

1 +

 1
1− α

2

(unsuccessful search), (22)

CN ≈
1
2

1 +

1
1− α

(successful search), (23)

where α = N/M is the load factor of the table. Therefore Program L is almost
as fast as Program C, when the table is less than 75 percent full, in spite of the
fact that Program C deals with unrealistically short keys. On the other hand,
when α approaches 1 the best thing we can say about Program L is that it works,
slowly but surely. In fact, when N = M−1, there is only one vacant space in the
table, so the average number of probes in an unsuccessful search is (M + 1)/2;
we shall also prove that the average number of probes in a successful search is
approximately

πM/8 when the table is full.

The pileup phenomenon that makes linear probing costly on a nearly full
table is aggravated by the use of division hashing, if consecutive key values
{K, K+1, K+2, . . .} are likely to occur, since these keys will have consecutive
hash codes. Multiplicative hashing will break up these clusters satisfactorily.

Another way to protect against the consecutive hash code problem is to set
i ← i − c in step L3, instead of i ← i − 1. Any positive value of c will do, so
long as it is relatively prime to M, since the probe sequence will still examine
every position of the table in this case. Such a change would make Program L a
bit slower, because of the test for i < 0. Decreasing by c instead of by 1 wonŠt
alter the pileup phenomenon, since groups of c-apart records will still be formed;
equations (22) and (23) will still apply. But the appearance of consecutive keys
{K, K+1, K+2, . . .} will now actually be a help instead of a hindrance.

Although a Ąxed value of c does not reduce the pileup phenomenon, we
can improve the situation nicely by letting c depend on K. This idea leads to
an important modiĄcation of Algorithm L, Ąrst introduced by Guy de Balbine
[Ph.D. thesis, Calif. Inst. of Technology (1968), 149Ű150]:

Algorithm D (Open addressing with double hashing). This algorithm is almost
identical to Algorithm L, but it probes the table in a slightly different fashion by
making use of two hash functions h1(K) and h2(K). As usual h1(K) produces a
value between 0 and M − 1, inclusive; but h2(K) must produce a value between

6.4 HASHING 529

1 and M − 1 that is relatively prime to M. (For example, if M is prime, h2(K)
can be any value between 1 and M − 1 inclusive; or if M = 2m, h2(K) can be
any odd value between 1 and 2m − 1.)

D1. [First hash.] Set i← h1(K).

D2. [First probe.] If TABLE[i] is empty, go to D6. Otherwise if KEY[i] = K, the
algorithm terminates successfully.

D3. [Second hash.] Set c← h2(K).

D4. [Advance to next.] Set i← i− c; if now i < 0, set i← i + M.

D5. [Compare.] If TABLE[i] is empty, go to D6. Otherwise if KEY[i] = K, the
algorithm terminates successfully. Otherwise go back to D4.

D6. [Insert.] If N = M − 1, the algorithm terminates with overĆow. Otherwise
set N ← N + 1, mark TABLE[i] occupied, and set KEY[i]← K.

Several possibilities have been suggested for computing h2(K). If M is
prime and h1(K) = K mod M, we might let h2(K) = 1 +

K mod (M − 1)

; but

since M − 1 is even, it would be better to let h2(K) = 1 +

K mod (M − 2)

.

This suggests choosing M so that M and M − 2 are Ştwin primesŤ like 1021
and 1019. Alternatively, we could set h2(K) = 1 +

⌊K/M⌋mod (M − 2)

,

since the quotient ⌊K/M⌋ might be available in a register as a by-product of the
computation of h1(K).

If M = 2m and we are using multiplicative hashing, h2(K) can be computed
simply by shifting left m more bits and Şoring inŤ a 1, so that the coding sequence
in (5) would be followed by

ENTA 0 Clear rA.
SLB m Shift rAX m bits left.
OR =1= rA← rA | 1.

(24)

This is faster than the division method.
In each of the techniques suggested above, h1(K) and h2(K) are essentially

independent, in the sense that different keys will yield the same values for both h1

and h2 with probability approximately proportional to 1/M2 instead of to 1/M .
Empirical tests show that the behavior of Algorithm D with independent hash
functions is essentially indistinguishable from the number of probes that would
be required if the keys were inserted at random into the table; there is practically
no Şpiling upŤ or ŞclusteringŤ as in Algorithm L.

It is also possible to let h2(K) depend on h1(K), as suggested by Gary Knott
in 1968; for example, if M is prime we could let

h2(K) =

1, if h1(K) = 0;
M − h1(K), if h1(K) > 0.

(25)

This would be faster than doing another division, but we shall see that it does
cause a certain amount of secondary clustering, requiring slightly more probes
because of the increased chance that two or more keys will follow the same path.
The formulas derived below can be used to determine whether the gain in hashing
time outweighs the loss of probing time.

530 SEARCHING 6.4

Algorithms L and D are very similar, yet there are enough differences that
it is instructive to compare the running time of the corresponding MIX programs.

Program D (Open addressing with double hashing). Since this program is
substantially like Program L, it is presented without comments. rI2 ≡ c− 1.
01 START LDX K 1
02 ENTA 0 1
03 DIV =M= 1
04 STX *+1(0:2) 1
05 ENT1 * 1
06 LDX TABLE,1 1
07 CMPX K 1
08 JE SUCCESS 1
09 JXZ 4F 1− S1
10 SRAX 5 A− S1
11 DIV =M-2= A− S1
12 STX *+1(0:2) A− S1
13 ENT2 * A− S1
14 LDA K A− S1

15 3H DEC1 1,2 C − 1
16 J1NN *+2 C − 1
17 INC1 M B
18 CMPA TABLE,1 C − 1
19 JE SUCCESS C − 1
20 LDX TABLE,1 C − 1− S2
21 JXNZ 3B C − 1− S2
22 4H LDX VACANCIES 1− S
23 JXZ OVERFLOW 1− S
24 DECX 1 1− S
25 STX VACANCIES 1− S
26 LDA K 1− S
27 STA TABLE,1 1− S

The frequency counts A, C, S1, S2 in this program have a similar interpretation
to those in Program C above. The other variable B will be about (C−1)/2 on the
average. (If we restricted the range of h2(K) to, say, 1 ≤ h2(K) ≤M/2, B would
be only about (C − 1)/4; this increase of speed will probably not be offset by a
noticeable increase in the number of probes.) When there are N = αM keys in
the table, the average value of A is, of course, α in an unsuccessful search, and
A = 1 in a successful search. As in Algorithm C, the average value of S1 in a
successful search is 1− 1

2

(N − 1)/M

≈ 1− 1

2 α. The average number of probes
is difficult to determine exactly, but empirical tests show good agreement with
formulas derived below for Şuniform probing,Ť namely

C ′
N =

M +1
M +1−N

≈ (1−α)−1 (unsuccessful search), (26)

CN =
M +1

N
(HM+1−HM+1−N) ≈ −α−1 ln(1−α) (successful search), (27)

when h1(K) and h2(K) are independent. When h2(K) depends on h1(K) as
in (25), the secondary clustering causes (26) and (27) to be increased to

C ′
N =

M +1
M +1−N

− N

M +1
+HM+1−HM+1−N +O(M−1)

≈ (1−α)−1−α−ln(1−α); (28)

CN = 1+HM+1−HM+1−N−
N

2(M +1)
−(HM+1−HM+1−N)/N +O(N−1)

≈ 1−ln(1−α)− 1
2 α. (29)

(See exercise 44.) Note that as the table gets full, these values of CN approach
HM+1 − 1 and HM+1 − 1

2 , respectively, when N = M ; this is much better than
we observed in Algorithm L, but not as good as in the chaining methods.

6.4 HASHING 531

0u

10u

20u

30u

40u

50u

60u

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Program L

Program D

Program D modified as in ()

Load factor, α=N/M

M
I
X
ti
m
e

Fig. 42. The running time for successful searching by three open addressing schemes.

Since each probe takes slightly less time in Algorithm L, double hashing
is advantageous only when the table gets full. Figure 42 compares the average
running time of Program L, Program D, and a modiĄed Program D that involves
secondary clustering, replacing the rather slow calculation of h2(K) in lines 10Ű13
by the following three instructions:

ENN2 1-M,1 c←M − i.
J1NZ *+2

ENT2 0 If i = 0, c← 1.
(30)

Program D takes a total of 8C + 19A + B + 26 − 13S − 17S1 units of time;
modiĄcation (30) saves about 15(A− S1) ≈ 7.5α of these in a successful search.
In this case, secondary clustering is preferable to independent double hashing.

On a binary computer, we could speed up the computation of h2(K) in
another way, if M is prime greater than, say, 512, replacing lines 10Ű13 by

AND =511= rA← rA mod 512.
STA *+1(0:2)

ENT2 * c← rA + 1.
(31)

This idea (suggested by Bell and Kaman, CACM 13 (1970), 675Ű677, who
discovered Algorithm D independently) avoids secondary clustering without the
expense of another division.

Many other probe sequences have been proposed as improvements on Algo-
rithm L, but none seem to be superior to Algorithm D except possibly the method
described in exercise 20.

By using the relative order of keys we can reduce the average running
time for unsuccessful searches by Algorithms L or D to the average running
time for successful search; see exercise 66. This technique can be important in
applications for which unsuccessful searches are common; for example, TEX uses
such an algorithm when looking for exceptions to its hyphenation rules.

532 SEARCHING 6.4

S
T
A
T X Y

S
U
M
X

S
U
M
X
X

S
U
M
Y

S
U
M
Y
Y

S
U
M
X
Y

X
M
A
X

Y
M
A
X

X
M
I
N

Y
M
I
N

R
A
N
G
E
X

R
A
N
G
E
Y

T
O
P

B
O
T
T
O
M R

A
V
E
X

A
V
E
Y

V
A
R
X

V
A
R
Y

S
D
X

S
D
Y N I

0

5

10

15

20

25

Fig. 43. The number of times a compiler typically searches for variable names. The
names are listed from left to right in order of their Ąrst appearance.

BrentŠs Variation. Richard P. Brent has discovered a way to modify Algo-
rithm D so that the average successful search time remains bounded as the table
gets full. His method [CACM 16 (1973), 105Ű109] is based on the fact that
successful searches are much more common than insertions, in many applications;
therefore he proposes doing more work when inserting an item, moving records
in order to reduce the expected retrieval time.

For example, Fig. 43 shows the number of times each identiĄer was actually
found to appear, in a typical PL/I procedure. This data indicates that a PL/I
compiler that uses a hash table to keep track of variable names will be looking up
many of the names Ąve or more times but inserting them only once. Similarly,
Bell and Kaman found that a COBOL compiler used its symbol table algorithm
10988 times while compiling a program, but made only 735 insertions into the
table; this is an average of about 14 successful searches per unsuccessful search.
Sometimes a table is actually created only once (for example, a table of symbolic
opcodes in an assembler), and it is used thereafter purely for retrieval.

BrentŠs idea is to change the insertion process in Algorithm D as follows.
Suppose an unsuccessful search has probed locations p0, p1, . . . , pt−1, pt, where
pj =

h1(K)−jh2(K)

mod M and TABLE[pt] is empty. If t ≤ 1, we insert K in

position pt as usual; but if t ≥ 2, we compute c0 = h2(K0), where K0 = KEY[p0],
and see if TABLE[(p0 − c0) mod M] is empty. If it is, we set it to TABLE[p0] and
then insert K in position p0. This increases the retrieval time for K0 by one step,
but it decreases the retrieval time for K by t ≥ 2 steps, so it results in a net
improvement. Similarly, if TABLE[(p0 − c0) mod M] is occupied and t ≥ 3, we
try TABLE[(p0 − 2c0) mod M]; if that is full too, we compute c1 = h2(KEY[p1])
and try TABLE[(p1 − c1) mod M]; etc. In general, let cj = h2(KEY[pj]) and

6.4 HASHING 533

pj,k = (pj − kcj) mod M ; if we have found TABLE[pj,k] occupied for all indices j
and k such that j+k < r, and if t ≥ r+1, we look at TABLE[p0,r], TABLE[p1,r−1],
. . . , TABLE[pr−1,1]. If the Ąrst empty space occurs at position pj,r−j we set
TABLE[pj,r−j]← TABLE[pj] and insert K in position pj .

BrentŠs analysis indicates that the average number of probes per successful
search is reduced to the levels shown in Fig. 44, on page 545, with a maximum
value of about 2.49.

The number t+1 of probes in an unsuccessful search is not reduced by BrentŠs
variation; it remains at the level indicated by Eq. (26), approaching 1

2 (M + 1)
as the table gets full. The average number of times h2 needs to be computed
per insertion is α2 + α5 + 1

3 α6 + · · · , according to BrentŠs analysis, eventually
approaching Θ(

√
M); and the number of additional table positions probed while

deciding how to make the insertion is about α2 + α4 + 4
3 α5 + α6 + · · · .

E. G. Mallach [Comp. J. 20 (1977), 137Ű140] has experimented with reĄne-
ments of BrentŠs variation, and further results have been obtained by Gaston H.
Gonnet and J. Ian Munro [SICOMP 8 (1979), 463Ű478].

Deletions. Many computer programmers have great faith in algorithms, and
they are surprised to Ąnd that the obvious way to delete records from a hash

table doesnŠt work. For example, if we try to delete the key EN from Fig. 41,
we canŠt simply mark that table position empty, because another key FEM would
suddenly be forgotten! (Recall that EN and FEM both hashed to the same location.
When looking up FEM, we would Ąnd an empty place, indicating an unsuccessful
search.) A similar problem occurs with Algorithm C, due to the coalescing of
lists; imagine the deletion of both TO and FIRE from Fig. 40.

In general, we can handle deletions by putting a special code value in the
corresponding cell, so that there are three kinds of table entries: empty, occupied,
and deleted. When searching for a key, we should skip over deleted cells, as if
they were occupied. If the search is unsuccessful, the key can be inserted in place
of the Ąrst deleted or empty position that was encountered.

But this idea is workable only when deletions are very rare, because the
entries of the table never become empty again once they have been occupied.
After a long sequence of repeated insertions and deletions, all of the empty spaces
will eventually disappear, and every unsuccessful search will take M probes!
Furthermore the time per probe will be increased, since we will have to test
whether i has returned to its starting value in step D4; and the number of
probes in a successful search will drift upward from CN to C ′

N .
When linear probing is being used (Algorithm L), we can make deletions in

a way that avoids such a sorry state of affairs, if we are willing to do some extra
work for the deletion.

Algorithm R (Deletion with linear probing). Assuming that an open hash table
has been constructed by Algorithm L, this algorithm deletes the record from a
given position TABLE[i].

R1. [Empty a cell.] Mark TABLE[i] empty, and set j ← i.

534 SEARCHING 6.4

R2. [Decrease i.] Set i← i− 1, and if this makes i negative set i← i + M .

R3. [Inspect TABLE[i].] If TABLE[i] is empty, the algorithm terminates. Other-
wise set r ← h(KEY[i]), the original hash address of the key now stored at
position i. If i ≤ r < j or if r < j < i or j < i ≤ r (in other words, if r lies
cyclically between i and j), go back to R2.

R4. [Move a record.] Set TABLE[j]← TABLE[i], and return to step R1.

Exercise 22 shows that this algorithm causes no degradation in performance;
in other words, the average number of probes predicted in Eqs. (22) and (23)
will remain the same. (A weaker result for tree insertion was proved in Theorem
6.2.2H.) But the validity of Algorithm R depends heavily on the fact that linear
probing is involved, and no analogous deletion procedure for use with Algorithm
D is possible. The average running time of Algorithm R is analyzed in exercise 64.

Of course when chaining is used with separate lists for each possible hash
value, deletion causes no problems since it is simply a deletion from a linked
linear list. Deletion with Algorithm C is discussed in exercise 23.

Algorithm R may move some of the table entries, and this is undesirable
if they are being pointed to from elsewhere. Another approach to deletions is
possible by adapting some of the ideas used in garbage collection (see Section
2.3.5): We might keep a reference count with each key telling how many other
keys collide with it; then it is possible to convert unoccupied cells to empty status
when their reference drops to zero. Alternatively we might go through the entire
table whenever too many deleted entries have accumulated, changing all the
unoccupied positions to empty and then looking up all remaining keys, in order
to see which unoccupied positions still require ŞdeletedŤ status. These proce-
dures, which avoid relocation and work with any hash technique, were originally
suggested by T. Gunji and E. Goto [J. Information Proc. 3 (1980), 1Ű12].

*Analysis of the algorithms. It is especially important to know the average
behavior of a hashing method, because we are committed to trusting in the
laws of probability whenever we hash. The worst case of these algorithms is
almost unthinkably bad, so we need to be reassured that the average behavior
is very good.

Before we get into the analysis of linear probing, etc., let us consider an
approximate model of the situation, called uniform probing. In this model, which
was suggested by W. W. Peterson [IBM J. Research & Devel. 1 (1957), 135Ű136],
we assume that each key is placed in a completely random location of the table, so
that each of the

M
N

possible conĄgurations of N occupied cells and M−N empty

cells is equally likely. This model ignores any effect of primary or secondary
clustering; the occupancy of each cell in the table is essentially independent of
all the others. Then the probability that any permutation of table positions needs
exactly r probes to insert the (N + 1)st item is the number of conĄgurations in
which r−1 given cells are occupied and another is empty, divided by

M
N

, namely

Pr =

M − r

N − r + 1

M

N

;

6.4 HASHING 535

therefore the average number of probes for uniform probing is

C ′
N =

M

r=1

rPr = M + 1−
M

r=1

(M + 1− r)Pr

= M + 1−
M

r=1

(M + 1− r)

M − r

M −N − 1

M

N

= M + 1−
M

r=1

(M −N)

M + 1− r

M −N

M

N

= M + 1− (M −N)

M + 1
M −N + 1

M

N

= M + 1− (M −N)
M + 1

M−N +1
=

M + 1
M−N +1

, for 1 ≤ N < M. (32)

(We have already solved essentially the same problem in connection with random
sampling, in exercise 3.4.2Ű5.) Setting α = N/M, this exact formula for C ′

N is
approximately equal to

1
1− α

= 1 + α + α2 + α3 + · · · , (33)

a series that has a rough intuitive interpretation: With probability α we need
more than one probe, with probability α2 we need more than two, etc. The
corresponding average number of probes for a successful search is

CN =
1
N

N−1

k=0

C ′
k =

M + 1
N

 1
M + 1

+
1

M
+ · · ·+ 1

M −N + 2

=
M + 1

N

HM+1 −HM−N+1

≈ 1

α
ln

1
1− α

. (34)

As remarked above, extensive tests show that Algorithm D with two independent
hash functions behaves essentially like uniform probing, for all practical purposes.
In fact, double hashing is asymptotically equivalent to uniform probing, in the
limit as M →∞ (see exercise 70).

This completes our analysis of uniform probing. In order to study linear
probing and other types of collision resolution, we need to set up the theory
in a different, more realistic way. The probabilistic model we shall use for this
purpose assumes that each of the MN possible Şhash sequencesŤ

a1 a2 . . . aN , 0 ≤ aj < M, (35)

is equally likely, where aj denotes the initial hash address of the jth key inserted
into the table. The average number of probes in a successful search, given any
particular searching algorithm, will be denoted by CN as above; this is assumed
to be the average number of probes needed to Ąnd the kth key, averaged over
1 ≤ k ≤ N with each key equally likely, and averaged over all hash sequences (35)
with each sequence equally likely. Similarly, the average number of probes needed

536 SEARCHING 6.4

when the Nth key is inserted, considering all sequences (35) to be equally likely,
will be denoted by C ′

N−1; this is the average number of probes in an unsuccessful
search starting with N − 1 elements in the table. When open addressing is used,

CN =
1
N

N−1

k=0

C ′
k, (36)

so that we can deduce one quantity from the other as we have done in (34).
Strictly speaking, there are two defects even in this more accurate model. In

the Ąrst place, the different hash sequences arenŠt all equally probable, because
the keys themselves are distinct. This makes the probability that a1 = a2 slightly
less than 1/M ; but the difference is usually negligible since the set of all possible
keys is typically very large compared to M. (See exercise 24.) Furthermore a
good hash function will exploit the nonrandomness of typical data, making it
even less likely that a1 = a2; as a result, our estimates for the number of probes
will be pessimistic. Another inaccuracy in the model is indicated in Fig. 43:
Keys that occur earlier are (with some exceptions) more likely to be looked up
than keys that occur later. Therefore our estimate of CN tends to be doubly
pessimistic, and the algorithms should perform slightly better in practice than
our analysis predicts.

With these precautions, we are ready to make an ŞexactŤ analysis of linear
probing.* Let f(M, N) be the number of hash sequences (35) such that position 0
of the table will be empty after the keys have been inserted by Algorithm L. The
circular symmetry of linear probing implies that position 0 is empty just as often
as any other position, so it is empty with probability 1−N/M ; in other words

f(M, N) =

1− N

M

MN . (37)

By convention we also set f(0, 0) = 1. Now let g(M, N, k) be the number of
hash sequences (35) such that the algorithm leaves position 0 empty, positions 1
through k occupied, and position k + 1 empty. We have

g(M, N, k) =

N

k

f(k+1, k)f(M−k−1, N−k), (38)

because all such hash sequences are composed of two subsequences, one (con-
taining k elements ai ≤ k) that leaves position 0 empty and positions 1 through
k occupied and one (containing N − k elements aj ≥ k + 1) that leaves po-
sition k + 1 empty; there are f(k+1, k) subsequences of the former type and
f(M−k−1, N−k) of the latter type, and there are

N
k

ways to intersperse two

such subsequences. Finally let Pk be the probability that exactly k + 1 probes
will be needed when the (N + 1)st key is inserted; it follows (see exercise 25)

* The author cannot resist inserting a biographical note at this point: I Ąrst formulated
the following derivation in 1962, shortly after beginning work on The Art of Computer Pro-
gramming. Since this was the Ąrst nontrivial algorithm I had ever analyzed satisfactorily, it
had a strong inĆuence on the structure of these books. Ever since that day, the analysis of
algorithms has in fact been one of the major themes of my life.

6.4 HASHING 537

that
Pk = M−N

g(M, N, k) + g(M, N, k+1) + · · ·+ g(M, N, N)

. (39)

Now C ′
N =

N
k=0 (k + 1)Pk; putting this equation together with (36)Ű(39) and

simplifying yields the following result.

Theorem K. The average number of probes needed by Algorithm L, assuming
that all MN hash sequences (35) are equally likely, is

CN = 1
2

1 + Q0(M, N−1)

(successful search), (40)

C ′
N = 1

2

1 + Q1(M, N)

(unsuccessful search), (41)

where

Qr(M, N) =

r

0

+

r + 1
1

N

M
+

r + 2
2

N(N − 1)

M2
+ · · ·

=

k≥0

r + k

k

N

M

N − 1
M

· · · N − k + 1
M

. (42)

Proof. Details of the calculation are worked out in exercise 27. (For the variance,
see exercises 28, 67, and 68.)

The rather strange-looking function Qr(M, N) that appears in this theorem
is really not hard to deal with. We have

Nk −

k

2

Nk−1 ≤ N(N − 1) . . . (N − k + 1) ≤ Nk;

hence if N/M = α,

k≥0

r + k

k

Nk −

k

2

Nk−1

Mk ≤ Qr(M, N) ≤

k≥0

r + k

k

Nk/Mk,

k≥0

r + k

k

αk − α

M

k≥0

r + k

k

k

2

αk−2 ≤ Qr(M, αM) ≤

k≥0

r + k

k

αk;

that is,

1
(1− α)r+1

− 1
M

r + 2

2

α

(1− α)r+3
≤ Qr(M, αM) ≤ 1

(1− α)r+1
. (43)

This relation gives us a good estimate of Qr(M, N) when M is large and α is
not too close to 1. (The lower bound is a better approximation than the upper
bound.) When α approaches 1, these formulas become useless, but fortunately
Q0(M, M−1) is the function Q(M) whose asymptotic behavior was studied in
great detail in Section 1.2.11.3; and Q1(M, M−1) is simply equal to M (see
exercise 50). In terms of the standard notation for hypergeometric functions,
Eq. 1.2.6Ű(39), we have Qr(M, N) = F (r+1,−N ; ;−1/M) = F

r+1,−N,1

1

− 1
M

.

538 SEARCHING 6.4

Another approach to the analysis of linear probing was taken in the early
days by G. Schay, Jr. and W. G. Spruth [CACM 5 (1962), 459Ű462]. Although
their method yielded only an approximation to the exact formulas in Theorem
K, it sheds further light on the algorithm, so we shall sketch it brieĆy here. First
let us consider a surprising property of linear probing that was Ąrst noticed by
W. W. Peterson in 1957:

Theorem P. The average number of probes in a successful search by Algo-
rithm L is independent of the order in which the keys were inserted; it depends
only on the number of keys that hash to each address.

In other words, any rearrangement of a hash sequence a1 a2 . . . aN yields
a hash sequence with the same average displacement of keys from their hash
addresses. (We are assuming, as stated earlier, that all keys in the table have
equal importance. If some keys are more frequently accessed than others, the
proof can be extended to show that an optimal arrangement occurs if we insert
them in decreasing order of frequency, using the method of Theorem 6.1S.)

Proof. It suffices to show that the total number of probes needed to insert keys
for the hash sequence a1 a2 . . . aN is the same as the total number needed for
a1 . . . ai−1 ai+1 ai ai+2 . . . aN , 1 ≤ i < N. There is clearly no difference unless the
(i + 1)st key in the second sequence falls into the position occupied by the ith
in the Ąrst sequence. But then the ith and (i + 1)st merely exchange places, so
the number of probes for the (i + 1)st is decreased by the same amount that the
number for the ith is increased.

Theorem P tells us that the average search length for a hash sequence
a1 a2 . . . aN can be determined from the numbers b0 b1 . . . bM−1, where bj is the
number of aŠs that equal j. From this sequence we can determine the Şcarry
sequenceŤ c0 c1 . . . cM−1, where cj is the number of keys for which both locations
j and j − 1 are probed as the key is inserted. This sequence is determined by
the rule

cj =
 0, if bj = c(j+1) mod M = 0;

bj + c(j+1) mod M − 1, otherwise.
(44)

For example, let M = 10, N = 8, and b0 . . . b9 = 0 3 2 0 1 0 0 0 0 2; then
c0 . . . c9 = 2 3 1 0 0 0 0 1 2 3, since one key needs to be Şcarried overŤ from
position 2 to position 1, three from position 1 to position 0, two of these from
position 0 to position 9, etc. We have b0 + b1 + · · ·+ bM−1 = N, and the average
number of probes needed for retrieval of the N keys is

1 + (c0 + c1 + · · ·+ cM−1)/N. (45)

Rule (44) seems to be a circular deĄnition of the cŠs in terms of themselves, but
actually there is a unique solution to the stated equations whenever N < M (see
exercise 32).

Schay and Spruth used this idea to determine the probability qk that cj = k,
in terms of the probability pk that bj = k. (These probabilities are independent

6.4 HASHING 539

of j.) Thus
q0 = p0q0 + p1q0 + p0q1,

q1 = p2q0 + p1q1 + p0q2,

q2 = p3q0 + p2q1 + p1q2 + p0q3,

(46)

etc., since, for example, the probability that cj = 2 is the probability that
bj + c(j+1) mod M = 3. Let B(z) =

pkzk and C(z) =

qkzk be the generating

functions for these probability distributions; the equations (46) are equivalent to

B(z)C(z) = p0q0 + (q0 − p0q0)z + q1z2 + · · · = p0q0(1− z) + zC(z).

Since B(1) = 1, we may write B(z) = 1 + (z − 1)D(z), and it follows that

C(z) =
p0q0

1−D(z)
=

1−D(1)
1−D(z)

, (47)

since C(1) = 1. The average number of probes needed for retrieval, according
to (45), will therefore be

1 +
M

N
C ′(1) = 1 +

M

N

D′(1)
1−D(1)

= 1 +
M

2N

B′′(1)
1−B′(1)

. (48)

Since we are assuming that each hash sequence a1 . . . aN is equally likely, we
have

pk = Pr(exactly k of the ai are equal to j, for Ąxed j)

=

N

k

 1
M

k
1− 1

M

N−k

; (49)

hence

B(z) =

1 +
z − 1

M

N
, B′(1) =

N

M
, B′′(1) =

N(N − 1)
M2

, (50)

and the average number of probes according to (48) will be

CN =
1
2

1 +

M − 1
M −N

. (51)

Can the reader spot the incorrect reasoning that has caused this answer to be
different from the correct result in Theorem K? (See exercise 33.)

*Optimality considerations. We have seen several examples of probe sequences
for open addressing, and it is natural to ask for one that can be proved best

possible in some meaningful sense. This problem has been set up in the follow-
ing interesting way by J. D. Ullman [JACM 19 (1972), 569Ű575]: Instead of
computing a hash address h(K), we map each key K into an entire permutation
of {0, 1, . . . , M−1}, which represents the probe sequence to use for K. Each of
the M ! permutations is assigned a probability, and the generalized hash function
is supposed to select each permutation with that probability. The question is,
ŞWhat assignment of probabilities to permutations gives the best performance,

540 SEARCHING 6.4

in the sense that the corresponding average number of probes CN or C ′
N is

minimized?Ť
For example, if we assign the probability 1/M ! to each permutation, it is

easy to see that we have exactly the behavior of uniform probing that we have
analyzed above in (32) and (34). However, Ullman found an example with M = 4
and N = 2 for which C ′

N is smaller than the value 5
3 obtained with uniform

probing. His construction assigns zero probability to all but the following six
permutations:

Permutation Probability Permutation Probability

0 1 2 3 (1 + 2ϵ)/6 1 0 3 2 (1 + 2ϵ)/6
2 0 1 3 (1− ϵ)/6 2 1 0 3 (1− ϵ)/6
3 0 1 2 (1− ϵ)/6 3 1 0 2 (1− ϵ)/6

(52)

Roughly speaking, the Ąrst probe tends to be either 2 or 3, but the second probe
is always 0 or 1. The average number of probes needed to insert the third item,
C ′

2, turns out to be 5
3 − 1

9 ϵ + O(ϵ2), so we can improve on uniform probing by
taking ϵ to be a small positive value.

However, the corresponding value of C ′
1 for these probabilities is 23

18 + O(ϵ),
which is larger than 5

4 (the uniform probing value). Ullman proved that any
assignment of probabilities such that C ′

N < (M + 1)/(M + 1 − N) for some N
always implies that C ′

n > (M + 1)/(M + 1− n) for some n < N ; you canŠt win
all the time over uniform probing.

Actually the number of probes CN for a successful search is a better measure
than C ′

N . The permutations in (52) do not lead to an improved value of CN for
any N, and indeed Ullman conjectured that no assignment of probabilities will
be able to make CN less than the uniform value

(M +1)/N

(HM+1−HM+1−N).

Andrew Yao proved an asymptotic form of this conjecture by showing that the
limiting cost when N = αM and M → ∞ is always ≥ 1

α ln 1
1−α [JACM 32

(1985), 687Ű693].
The strong form of UllmanŠs conjecture appears to be very difficult to prove,

especially because there are many ways to assign probabilities to achieve the
effect of uniform probing; we do not need to assign 1/M ! to each permutation.
For example, the following assignment for M = 4 is equivalent to uniform
probing:

Permutation Probability Permutation Probability

0 1 2 3 1/6 0 2 1 3 1/12
1 2 3 0 1/6 1 3 2 0 1/12
2 3 0 1 1/6 2 0 3 1 1/12
3 0 1 2 1/6 3 1 0 2 1/12

(53)

with zero probability assigned to the other 16 permutations.
The following theorem characterizes all assignments that produce the be-

havior of uniform probing.

Theorem U. An assignment of probabilities to permutations will make each
of the

M
N

conĄgurations of empty and occupied cells equally likely after N

6.4 HASHING 541

insertions, for 0 < N < M , if and only if the sum of probabilities assigned to all
permutations whose Ąrst N elements are the members of a given N -element set
is 1/

M
N

, for all N and for all N -element sets.

For example, the sum of probabilities assigned to each of the 3!(M−3)! per-
mutations beginning with the numbers {0, 1, 2} in some order must be 1/

M
3

=

3!(M−3)!/M !. Observe that the condition of this theorem holds in (53), because
1/6 + 1/12 = 1/4.

Proof. Let A ⊆ {0, 1, . . . , M−1}, and let Π (A) be the set of all permutations
whose Ąrst |A| elements are members of A; also let S(A) be the sum of the
probabilities assigned to those permutations. Let Pk(A) be the probability that
the Ąrst |A| insertions of the open addressing procedure occupy the locations
speciĄed by A, and that the last insertion required exactly k probes. Finally, let
P (A) = P1(A) + P2(A) + · · · . The proof is by induction on N ≥ 1, assuming
that

P (A) = S(A) = 1

M

n

for all sets A with |A| = n < N. Let B be any N -element set. Then

Pk(B) =

A⊆B

|A|=k

π∈Π(A)

Pr(π)P

B \ {πk}

,

where Pr(π) is the probability assigned to permutation π and πk is its kth
element. By induction

Pk(B) =

A⊆B

|A|=k

1
M

N−1

π∈Π(A)

Pr(π),

which equals
N

k

M

N − 1

M

k

, if k < N ;

hence

P (B) =
1
M

N−1

S(B) +
N−1

k=1

N
k

M
k

,

and this can be equal to 1

M
N

if and only if S(B) has the correct value.

External searching. Hashing techniques lend themselves well to external
searching on direct-access storage devices like disks or drums. For such ap-
plications, as in Section 6.2.4, we want to minimize the number of accesses to
the Ąle, and this has two major effects on the choice of algorithms:

1) It is reasonable to spend more time computing the hash function, since the
penalty for bad hashing is much greater than the cost of the extra time
needed to do a careful job.

2) The records are usually grouped into pages or buckets, so that several records
are fetched from the external memory each time.

542 SEARCHING 6.4

The Ąle is divided into M buckets containing b records each. Collisions now
cause no problem unless more than b keys have the same hash address. The
following three approaches to collision resolution seem to be best:

A) Chaining with separate lists. If more than b records fall into the same bucket,
a link to an overĆow record can be inserted at the end of the Ąrst bucket. These
overĆow records are kept in a special overĆow area. There is usually no advantage
in having buckets in the overĆow area, since comparatively few overĆows occur;
thus, the extra records are usually linked together so that the (b + k)th record
of a list requires 1 + k accesses. It is usually a good idea to leave some room for
overĆows on each cylinder of a disk Ąle, so that most accesses are to the same
cylinder.

Although this method of handling overĆows seems inefficient, the number of
overĆows is statistically small enough that the average search time is very good.
See Tables 2 and 3, which show the average number of accesses required as a
function of the load factor

α = N/Mb, (54)

for Ąxed α as M, N → ∞. Curiously when α = 1 the asymptotic number of
accesses for an unsuccessful search increases with increasing b.

Table 2

AVERAGE ACCESSES IN AN UNSUCCESSFUL SEARCH BY SEPARATE CHAINING

Bucket Load factor, α
size, b 10% 20% 30% 40% 50% 60% 70% 80% 90% 95%

1 1.0048 1.0187 1.0408 1.0703 1.1065 1.1488 1.197 1.249 1.307 1.34
2 1.0012 1.0088 1.0269 1.0581 1.1036 1.1638 1.238 1.327 1.428 1.48
3 1.0003 1.0038 1.0162 1.0433 1.0898 1.1588 1.252 1.369 1.509 1.59
4 1.0001 1.0016 1.0095 1.0314 1.0751 1.1476 1.253 1.394 1.571 1.67
5 1.0000 1.0007 1.0056 1.0225 1.0619 1.1346 1.249 1.410 1.620 1.74

10 1.0000 1.0000 1.0004 1.0041 1.0222 1.0773 1.201 1.426 1.773 2.00
20 1.0000 1.0000 1.0000 1.0001 1.0028 1.0234 1.113 1.367 1.898 2.29
50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0007 1.018 1.182 1.920 2.70

Table 3

AVERAGE ACCESSES IN A SUCCESSFUL SEARCH BY SEPARATE CHAINING

Bucket Load factor, α
size, b 10% 20% 30% 40% 50% 60% 70% 80% 90% 95%

1 1.0500 1.1000 1.1500 1.2000 1.2500 1.3000 1.350 1.400 1.450 1.48
2 1.0063 1.0242 1.0520 1.0883 1.1321 1.1823 1.238 1.299 1.364 1.40
3 1.0010 1.0071 1.0215 1.0458 1.0806 1.1259 1.181 1.246 1.319 1.36
4 1.0002 1.0023 1.0097 1.0257 1.0527 1.0922 1.145 1.211 1.290 1.33
5 1.0000 1.0008 1.0046 1.0151 1.0358 1.0699 1.119 1.186 1.268 1.32

10 1.0000 1.0000 1.0002 1.0015 1.0070 1.0226 1.056 1.115 1.206 1.27
20 1.0000 1.0000 1.0000 1.0000 1.0005 1.0038 1.018 1.059 1.150 1.22
50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.001 1.015 1.083 1.16

6.4 HASHING 543

B) Chaining with coalescing lists. Instead of providing a separate overĆow area,
we can adapt Algorithm C to external Ąles. A doubly linked list of available
space can be maintained for each cylinder, linking together each bucket that is
not yet full. Under this scheme, every bucket contains a count of how many
record positions are empty, and the bucket is removed from the doubly linked
list only when its count becomes zero. A Şroving pointerŤ can be used to
distribute overĆows (see exercise 2.5Ű6), so that different chains tend to use
different overĆow buckets. This method has not yet been analyzed, but it might
prove to be quite useful.
C) Open addressing. We can also do without links, using an ŞopenŤ method.
Linear probing is probably better than random probing when we consider exter-
nal searching, because the increment c can often be chosen so that it minimizes
latency delays between consecutive accesses. The approximate theoretical model
of linear probing that was worked out above can be generalized to account for
the inĆuence of buckets, and it shows that linear probing is indeed satisfactory
unless the table has gotten very full. For example, see Table 4; when the load
factor is 90 percent and the bucket size is 50, the average number of accesses in
a successful search is only 1.04. This is actually better than the 1.08 accesses
required by the chaining method (A) with the same bucket size!

Table 4

AVERAGE ACCESSES IN A SUCCESSFUL SEARCH BY LINEAR PROBING

Bucket Load factor, α
size, b 10% 20% 30% 40% 50% 60% 70% 80% 90% 95%

1 1.0556 1.1250 1.2143 1.3333 1.5000 1.7500 2.167 3.000 5.500 10.50
2 1.0062 1.0242 1.0553 1.1033 1.1767 1.2930 1.494 1.903 3.147 5.64
3 1.0009 1.0066 1.0201 1.0450 1.0872 1.1584 1.286 1.554 2.378 4.04
4 1.0001 1.0021 1.0085 1.0227 1.0497 1.0984 1.190 1.386 2.000 3.24
5 1.0000 1.0007 1.0039 1.0124 1.0307 1.0661 1.136 1.289 1.777 2.77

10 1.0000 1.0000 1.0001 1.0011 1.0047 1.0154 1.042 1.110 1.345 1.84
20 1.0000 1.0000 1.0000 1.0000 1.0003 1.0020 1.010 1.036 1.144 1.39
50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.001 1.005 1.040 1.13

The analysis of methods (A) and (C) involves some very interesting mathe-
matics; we shall merely summarize the results here, since the details are worked
out in exercises 49 and 55. The formulas involve two functions strongly related
to the Q-functions of Theorem K, namely

R(α, n) =
n

n + 1
+

n2α

(n + 1)(n + 2)
+

n3α2

(n + 1)(n + 2)(n + 3)
+ · · · , (55)

and

tn(α) = e−nα

(αn)n

(n + 1)!
+ 2

(αn)n+1

(n + 2)!
+ 3

(αn)n+2

(n + 3)!
+ · · ·

=
e−nαnnαn

n!

1− (1− α)R(α, n)

. (56)

544 SEARCHING 6.4

In terms of these functions, the average number of accesses made by the chaining
method (A) in an unsuccessful search is

C ′
N = 1 + αbtb(α) + O

 1
M

(57)

as M, N →∞, and the corresponding number in a successful search is

CN = 1+
e−bαbbαb

2b!

2+(α−1)b+

α2 +(α−1)2(b−1)

R(α, b)

+O

 1
M

. (58)

The limiting values of these formulas are the quantities shown in Tables 2 and 3.
Since chaining method (A) requires a separate overĆow area, we need to

estimate how many overĆows will occur. The average number of overĆows will
be M(C ′

N − 1) = Ntb(α), since C ′
N − 1 is the average number of overĆows in any

given list. Therefore Table 2 can be used to deduce the amount of overĆow space
required. For Ąxed α, the standard deviation of the total number of overĆows
will be roughly proportional to

√
M as M →∞.

Asymptotic values for C ′
N and CN appear in exercise 53, but the approxi-

mations arenŠt very good when b is small or α is large; fortunately the series for
R(α, n) converges rather rapidly even when α is large, so the formulas can be
evaluated to any desired precision without much difficulty. The maximum values
occur for α = 1, when

max C ′
N = 1 +

e−bbb+1

b!
=

b

2π
+ 1 + O(b−1/2), (59)

max CN = 1 +
e−bbb

2b!

R(b) + 1

=

5
4

+

2

9πb
+ O(b−1), (60)

as b → ∞, by StirlingŠs approximation and the analysis of the function R(n) =
R(1, n)− 1 in Section 1.2.11.3.

The average number of accesses in a successful external search with linear

probing has the remarkably simple expression

CN ≈ 1 + tb(α) + t2b(α) + t3b(α) + · · · , (61)

which can be understood as follows: The average total number of accesses to
look up all N keys is NCN, and this is N +T1 +T2 + · · · , where Tk is the average
number of keys that require more than k accesses. Theorem P says that we can
enter the keys in any order without affecting CN, and it follows that Tk is the
average number of overĆow records that would occur in the chaining method if
we had M/k buckets of size kb, namely Ntkb(α) by what we said above. Further
justiĄcation of Eq. (61) appears in exercise 55.

An excellent early discussion of practical considerations involved in the de-
sign of external hash tables was given by Charles A. Olson, Proc. ACM Nat. Conf.
24 (1969), 539Ű549. He included several worked examples and pointed out that
the number of overĆow records will increase substantially if the Ąle is subject to
frequent insertion/deletion activity without relocating records. He also presented
an analysis of this situation that was obtained jointly with J. A. de Peyster.

6.4 HASHING 545

1

2

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Load factor, α=N/M

(a) Unsuccessful search

A
v
er
a
g
e
n
u
m
b
er

o
f
p
ro
b
es
,
C

′ N

L U2 U,B

C

S

SO

1

2

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SO = Separate chaining with ordered lists
S = Separate chaining
C = Coalesced chaining = Algorithm C
B = Brent’s variation of Algorithm D
U = Uniform hashing ≈ Algorithm D

U2 = Random probing with secondary clustering
L = Linear probing = Algorithm L

Load factor, α=N/M

(b) Successful search

A
v
er
a
g
e
n
u
m
b
er

o
f
p
ro
b
es
,
C

N

L U2 U

B

C

S

SO

Fig. 44. Comparison of collision resolution methods: limiting values of the average
number of probes as M →∞.

Comparison of the methods. We have now studied a large number of
techniques for searching; how can we select the right one for a given application?
It is difficult to summarize in a few words all the relevant details of the trade-offs
involved in the choice of a search method, but the following things seem to be
of primary importance with respect to the speed of searching and the requisite
storage space.

Figure 44 summarizes the analyses of this section, showing that the various
methods for collision resolution lead to different numbers of probes. But probe

546 SEARCHING 6.4

counting does not tell the whole story, since the time per probe varies in different
methods, and the latter variation has a noticeable effect on the running time (as
we have seen in Fig. 42). Linear probing accesses the table more frequently
than the other methods shown in Fig. 44, but it has the advantage of simplicity.
Furthermore, even linear probing isnŠt terribly bad: When the table is 90 percent
full, Algorithm L requires fewer than 5.5 probes, on the average, to locate a
random item in the table. (However, a 90-percent-full table does require about
50.5 probes for every new item inserted by Algorithm L.)

Figure 44 shows that the chaining methods are quite economical with re-
spect to the number of probes, but the extra memory space needed for link
Ąelds sometimes makes open addressing more attractive for small records. For
example, if we have to choose between a chained hash table of capacity 500 and
an open hash table of capacity 1000, the latter is clearly preferable, since it allows
efficient searching when 500 records are present and it is capable of absorbing
twice as much data. On the other hand, sometimes the record size and format
will allow space for link Ąelds at virtually no extra cost. (See exercise 65.)

How do hash methods compare with the other search strategies we have
studied in this chapter? From the standpoint of speed we can argue that they
are better, when the number of records is large, because the average search time
for a hash method stays bounded as N →∞ if we stipulate that the table never
gets too full. For example, Program L will take only about 55 units of time for
a successful search when the table is 90 percent full; this beats the fastest MIX

binary search routine we have seen (exercise 6.2.1Ű24) when N is greater than 600
or so, at the cost of only 11 percent in storage space. Moreover the binary search
is suitable only for Ąxed tables, while a hash table allows efficient insertions.

We can also compare Program L to the tree-oriented search methods that
allow dynamic insertions. Program L with a 90-percent-full table is faster than
Program 6.2.2T when N is greater than about 90, and faster than Program 6.3D
(exercise 6.3Ű9) when N is greater than about 75.

Only one search method in this chapter is efficient for successful searching
with virtually no storage overhead, namely BrentŠs variation of Algorithm D.
His method allows us to put N records into a table of size M = N + 1, and
to Ąnd any record in about 2.5 probes on the average. No extra space for link
Ąelds or tag bits is needed; however, an unsuccessful search will be very slow,
requiring about N/2 probes.

Thus hashing has several advantages. On the other hand, there are three
important respects in which hash table searching is inferior to other methods:

a) After an unsuccessful search in a hash table, we know only that the
desired key is not present. Search methods based on comparisons always yield
more information; they allow us to Ąnd the largest key ≤ K and/or the smallest
key ≥ K. This is important in many applications; for example, it allows us to
interpolate function values from a stored table. We can also use comparison-
based algorithms to locate all keys that lie between two given values K and K ′.
Furthermore the tree search algorithms of Section 6.2 make it easy to traverse
the contents of a table in ascending order, without sorting it separately.

6.4 HASHING 547

b) The storage allocation for hash tables is often somewhat difficult; we
have to dedicate a certain area of the memory for use as the hash table, and
it may not be obvious how much space should be allotted. If we provide too
much memory, we may be wasting storage at the expense of other lists or other
computer users; but if we donŠt provide enough room, the table will overĆow.
By contrast, the tree search and insertion algorithms deal with trees that grow
no larger than necessary. In a virtual memory environment we can keep memory
accesses localized if we use tree search or digital tree search, instead of creating a
large hash table that requires the operating system to access a new page nearly
every time we hash a key.

c) Finally, we need a great deal of faith in probability theory when we use
hashing methods, since they are efficient only on the average, while their worst
case is terrible! As in the case of random number generators, we can never be
completely sure that a hash function will perform properly when it is applied
to a new set of data. Therefore hash tables are inappropriate for certain real-
time applications such as air traffic control, where peopleŠs lives are at stake; the
balanced tree algorithms of Sections 6.2.3 and 6.2.4 are much safer, since they
provide guaranteed upper bounds on the search time.

History. The idea of hashing appears to have been originated by H. P. Luhn,
who wrote an internal IBM memorandum in January 1953 that suggested the
use of chaining; in fact, his suggestion was one of the Ąrst applications of linked
linear lists. He pointed out the desirability of using buckets that contain more
than one element, for external searching. Shortly afterwards, A. D. Lin carried
LuhnŠs analysis further, and suggested a technique for handling overĆows that
used Şdegenerative addressesŤ; for example, the overĆows from primary bucket
2748 were put in secondary bucket 274; overĆows from that bucket went to
tertiary bucket 27, and so on, assuming the presence of 10000 primary buckets,
1000 secondary buckets, 100 tertiary buckets, etc. The hash functions originally
suggested by Luhn were digital in nature; for example, he combined adjacent
pairs of key digits by adding them mod 10, so that 31415926 would be compressed
to 4548.

At about the same time the idea of hashing occurred independently to
another group of IBMers: Gene M. Amdahl, Elaine M. Boehm, N. Rochester,
and Arthur L. Samuel, who were building an assembly program for the IBM 701.
In order to handle the collision problem, Amdahl originated the idea of open
addressing with linear probing. [See also Derr and Luke, JACM 3 (1956), 303.]

Hash coding was Ąrst described in the open literature by Arnold I. Dumey,
Computers and Automation 5, 12 (December 1956), 6Ű9. He was the Ąrst to
mention the idea of dividing by a prime number and using the remainder as
the hash address. DumeyŠs interesting article mentions chaining but not open
addressing. A. P. Ershov of Russia independently discovered linear open ad-
dressing in 1957 [Doklady Akad. Nauk SSSR 118 (1958), 427Ű430]; he published
empirical results about the number of probes, conjecturing correctly that the
average number of probes per successful search is < 2 when N/M < 2/3.

548 SEARCHING 6.4

A classic article by W. W. Peterson, IBM J. Research & Development 1

(1957), 130Ű146, was the Ąrst major paper dealing with the problem of search-
ing in large Ąles. Peterson deĄned open addressing in general, analyzed the
performance of uniform probing, and gave numerous empirical statistics about
the behavior of linear open addressing with various bucket sizes, noting the
degradation in performance that occurred when items were deleted. Another
comprehensive survey of the subject was published six years later by Werner
Buchholz [IBM Systems J. 2 (1963), 86Ű111], who gave an especially good
discussion of hash functions. Correct analyses of Algorithm L were Ąrst pub-
lished by A. G. Konheim and B. Weiss, SIAM J. Appl. Math. 14 (1966), 1266Ű
1274; V. Podderjugin, Wissenschaftliche Zeitschrift der Technischen Universität
Dresden 17 (1968), 1087Ű1089.

Up to this time linear probing was the only type of open addressing scheme
that had appeared in the literature, but another scheme based on repeated ran-
dom probing by independent hash functions had independently been developed
by several people (see exercise 48). During the next few years hashing became
very widely used, but hardly anything more was published about it. Then Robert
Morris wrote a very inĆuential survey of the subject [CACM 11 (1968), 38Ű44],
in which he introduced the idea of random probing with secondary clustering.
MorrisŠs paper touched off a Ćurry of activity that culminated in Algorithm D
and its reĄnements.

It is interesting to note that the word ŞhashingŤ apparently never appeared
in print, with its present meaning, until the late 1960s, although it had already
become common jargon in several parts of the world by that time. The Ąrst
published appearance of the word seems to have been in H. HellermanŠs book
Digital Computer System Principles (New York: McGrawŰHill, 1967), 152; the
only previous occurrence among approximately 60 relevant documents studied by
the author as this section was being written was in an unpublished memorandum
written by W. W. Peterson in 1961. Somehow the verb Şto hashŤ magically
became standard terminology for key transformation during the mid-1960s, yet
nobody was rash enough to use such an undigniĄed word in print until 1967!

Later developments. Many advances in the theory and practice of hashing
have been made since the author Ąrst prepared this chapter in 1972, although
the basic ideas discussed above still remain useful for ordinary applications. For
example, the book Design and Analysis of Coalesced Hashing by J. S. Vitter
and W.-C. Chen (New York: Oxford Univ. Press, 1987) discusses and analyzes
several instructive variants of Algorithm C.

From a practical standpoint, the most important hash technique invented in
the late 1970s is probably the method that Witold Litwin called linear hashing

[Proc. 6th International Conf. on Very Large Databases (1980), 212Ű223]. Linear
hashing Ů which incidentally has nothing to do with the classical technique of
linear probing Ů allows the number of hash addresses to grow and/or contract
gracefully as items are inserted and/or deleted. An excellent discussion of linear
hashing, including comparisons with other methods for internal searching, has

6.4 HASHING 549

been given by Per-Åke Larson in CACM 31 (1988), 446Ű457; see also W. G.
Griswold and G. M. Townsend, Software Practice & Exp. 23 (1993), 351Ű367,
for improvements when many large and/or small tables are present simultane-
ously. Linear hashing can also be used for huge databases that are distributed
between many different sites on a network [see Litwin, Neimat, and Schneider,
ACM Trans. Database Syst. 21 (1996), 480Ű525]. An alternative scheme called
extendible hashing, which has the property that at most two references to external
pages are needed to retrieve any record, was proposed at about the same time by
R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong [ACM Trans. Database
Syst. 4 (1979), 315Ű344]; related ideas had been explored by G. D. Knott, Proc.
ACM-SIGFIDET Workshop on Data Description, Access and Control (1971),
187Ű206. Both linear hashing and extendible hashing are preferable to the B-
trees of Section 6.2.4, when the order of keys is unimportant.

In the theoretical realm, more complicated methods have been devised by
which it is possible to guarantee O(1) maximum time per access, with O(1)
average amortized time per insertion and deletion, regardless of the keys being
examined; moreover, the total storage used at any time is bounded by a constant
times the number of items currently present, plus another additive constant.
This result, which builds on ideas of Fredman, Komlós, and Szemerédi [JACM
31 (1984), 538Ű544], is due to Dietzfelbinger, Karlin, Mehlhorn, Meyer auf der
Heide, Rohnert, and Tarjan [SICOMP 23 (1994), 738Ű761].

EXERCISES

1. [20] When the instruction 9H in Table 1 is reached, how small and how large can
the contents of rI1 possibly be, assuming that bytes 1, 2, 3 of K each contain alphabetic
character codes less than 30?

2. [20] Find a reasonably common English word not in Table 1 that could be added
to that table without changing the program.

3. [23] Explain why no program beginning with the Ąve instructions

LD1 K(1:1) or LD1N K(1:1)
LD2 K(2:2) or LD2N K(2:2)
INC1 a,2
LD2 K(3:3)
J2Z 9F

could be used in place of the more complicated program in Table 1, for any constant a,
since unique addresses would not be produced for the given keys.

4. [M30] How many people should be invited to a party in order to make it likely
that there are three with the same birthday?

5. [15] Mr. B. C. Dull was writing a FORTRAN compiler using a decimal MIX com-
puter, and he needed a symbol table to keep track of the names of variables in the
FORTRAN program being compiled. These names were restricted to be at most ten
characters in length. He decided to use a hash table with M = 100, and to use the fast
hash function h(K) = leftmost byte of K. Was this a good idea?

6. [15] Would it be wise to change the Ąrst two instructions of (3) to LDA K; ENTX 0?

550 SEARCHING 6.4

7. [HM30] (Polynomial hashing.) The purpose of this exercise is to consider the
construction of polynomials P (x) such as (10), which convert n-bit keys into m-bit
addresses, in such a way that distinct keys differing in t or fewer bits will hash to
different addresses. Given n and t ≤ n, and given an integer k such that n divides
2k − 1, we shall construct a polynomial whose degree m is a function of n, t, and k.
(Usually n is increased, if necessary, so that k can be chosen to be reasonably small.)

Let S be the smallest set of integers such that {1, 2, . . . , t} ⊆ S and (2j) mod n ∈ S
for all j ∈ S. For example, when n = 15, k = 4, and t = 6, we have S = {1, 2, 3, 4,
5, 6, 8, 10, 12, 9}. We now deĄne the polynomial P (x) =

j∈S(x − αj), where α is an

element of order n in the Ąnite Ąeld GF(2k), and where the coefficients of P (x) are
computed in this Ąeld. The degree m of P (x) is the number of elements of S. Since
α2j is a root of P (x) whenever αj is a root, it follows that the coefficients pi of P (x)
satisfy p2

i = pi , so they are 0 or 1.
Prove that if R(x) = rn−1x

n−1 +· · ·+r1x+r0 is any nonzero polynomial modulo 2,
with at most t nonzero coefficients, then R(x) is not a multiple of P (x) modulo 2.
[It follows that the corresponding hash function behaves as advertised.]

8. [M34] (The three-distance theorem.) Let θ be an irrational number between 0
and 1, whose regular continued fraction representation in the notation of Section 4.5.3
is θ = //a1, a2, a3, . . . //. Let q0 = 0, p0 = 1, q1 = 1, p1 = 0, and qk+1 = akqk + qk−1,
pk+1 = akpk + pk−1 for k ≥ 1. Let {x} denote xmod 1 = x − ⌊x⌋, and let {x}+

denote x− ⌈x⌉+ 1. As the points {θ}, {2θ}, {3θ}, . . . are successively inserted into the
interval [0 . . 1], let the line segments be numbered as they appear in such a way that the
Ąrst segment of a given length is number 0, the next is number 1, etc. Prove that the
following statements are all true: Interval number s of length {tθ}, where t = rqk +qk−1

and 0 ≤ r < ak and k is even and 0 ≤ s < qk, has left endpoint {sθ} and right endpoint
{(s+ t)θ}+. Interval number s of length 1−{tθ}, where t = rqk + qk−1 and 0 ≤ r < ak

and k is odd and 0 ≤ s < qk, has left endpoint {(s + t)θ} and right endpoint {sθ}+.
Every positive integer n can be uniquely represented as n = rqk + qk−1 + s for some
k ≥ 1, 1 ≤ r ≤ ak, and 0 ≤ s < qk. In terms of this representation, just before the
point {nθ} is inserted the n intervals present are

the Ąrst s intervals (numbered 0, . . . , s− 1) of length {(−1)k(rqk + qk−1)θ};
the Ąrst n− qk intervals (numbered 0, . . . , n− qk − 1) of length {(−1)k+1qkθ};
the last qk−s intervals (numbered s, . . . , qk−1) of length {(−1)k((r−1)qk+qk−1)θ}+.

The operation of inserting {nθ} removes interval number s of the third type and
converts it into interval number s of the Ąrst type, number n− qk of the second type.

9. [M30] When we successively insert the points {θ}, {2θ}, . . . into the interval
[0 . . 1], Theorem S asserts that each new point always breaks up one of the largest
remaining intervals. If the interval [a . . c] is thereby broken into two parts [a . . b],
[b . . c], we may call it a bad break if one of these parts is more than twice as long as the
other, namely if b− a > 2(c− b) or c− b > 2(b− a).

Prove that bad breaks will occur for some {nθ} unless θ mod 1 = ϕ−1 or ϕ−2; and
the latter values of θ never produce bad breaks.

10. [M38] (R. L. Graham.) If θ, α1, . . . , αd are real numbers with α1 = 0, and if
n1, . . . , nd are positive integers, and if the points {nθ+αj} are inserted into the interval
[0 . . 1] for 0 ≤ n < nj and 1 ≤ j ≤ d, prove that the resulting n1 + · · · + nd (possibly
empty) intervals have at most 3d different lengths.

11. [16] Successful searches are often more frequent than unsuccessful ones. Would
it therefore be a good idea to interchange lines 12Ű13 of Program C with lines 10Ű11?

6.4 HASHING 551

x 12. [21] Show that Program C can be rewritten so that there is only one conditional
jump instruction in the inner loop. Compare the running time of the modiĄed program
with the original.

x 13. [24] (Abbreviated keys.) Let h(K) be a hash function, and let q(K) be a function
of K such that K can be determined once h(K) and q(K) are given. For example, in
division hashing we may let h(K) = K modM and q(K) = ⌊K/M⌋; in multiplicative
hashing we may let h(K) be the leading bits of (AK/w) mod 1, and q(K) can be the
other bits.

Show that when chaining is used without overlapping lists, we need only store q(K)
instead of K in each record. (This almost saves the space needed for the link Ąelds.)
Modify Algorithm C so that it allows such abbreviated keys by avoiding overlapping
lists, yet uses no auxiliary storage locations for overĆow records.

14. [24] (E. W. Elcock.) Show that it is possible to let a large hash table share

memory with any number of other linked lists. Let every word of the list area have a
2-bit TAG Ąeld and two link Ąelds called LINK and AUX, with the following interpretation:

TAG(P) = 0 indicates a word in the list of available space; LINK(P) points to the
next entry in this list, and AUX(P) is unused.

TAG(P) = 1 indicates a word in use where P is not the hash address of any key in
the hash table; the other Ąelds of the word in location P may have any desired
format.

TAG(P) = 2 indicates that P is the hash address of at least one key; AUX(P) points
to a linked list specifying all such keys, and LINK(P) points to another word
in the list memory. Whenever a word with TAG(P) = 2 is accessed during the
processing of any list, we set P ← LINK(P) repeatedly until reaching a word
with TAG(P) ≤ 1. (For efficiency we might also then change prior links so that
it will not be necessary to skip over the same entries again and again.)

DeĄne suitable algorithms for inserting and retrieving keys in such a hash table.

15. [16] Why is it a good idea for Algorithm L and Algorithm D to signal overĆow
when N = M − 1 instead of when N = M?

16. [10] Program L says that K should not be zero. But doesnŠt it actually work
even when K is zero?

17. [15] Why not simply deĄne h2(K) = h1(K) in (25), when h1(K) ̸= 0?

x 18. [21] Is (31) better or worse than (30), as a substitute for lines 10Ű13 of Program D?
Give your answer on the basis of the average values of A, S1, and C.

19. [40] Empirically test the effect of restricting the range of h2(K) in Algorithm D,
so that (a) 1 ≤ h2(K) ≤ r for r = 1, 2, 3, . . . , 10; (b) 1 ≤ h2(K) ≤ ρM for ρ =
1

10
, 2

10
, . . . , 9

10
.

20. [M25] (R. Krutar.) Change Algorithm D as follows, avoiding the hash function
h2(K): In step D3, set c ← 0; and at the beginning of step D4, set c ← c + 1.
Prove that if M = 2m, the corresponding probe sequence h1(K), (h1(K)− 1) modM ,
. . . ,

h1(K)−

M
2

modM will be a permutation of {0, 1, . . . ,M−1}. When this

Şquadratic probingŤ method is programmed for MIX, how does it compare with the
three programs considered in Fig. 42, assuming that the algorithm behaves like random
probing with secondary clustering?

552 SEARCHING 6.4

x 21. [20] Suppose that we wish to delete a record from a table constructed by Algo-
rithm D, marking it ŞdeletedŤ as suggested in the text. Should we also decrease the
variable N that is used to govern Algorithm D?

22. [27] Prove that Algorithm R leaves the table exactly as it would have been if
KEY[i] had never been inserted in the Ąrst place.

x 23. [33] Design an algorithm analogous to Algorithm R, for deleting entries from a
chained hash table that has been constructed by Algorithm C.

24. [M20] Suppose that the set of all possible keys that can occur has MP elements,
where exactly P keys hash to any given address. (In practical cases, P is very large; for
example, if the keys are arbitrary 10-digit numbers and if M = 103, we have P = 107.)
Assume that M ≥ 7 and N = 7. If seven distinct keys are selected at random from the
set of all possible keys, what is the exact probability that the hash sequence 1 2 6 2 1 6 1
will be obtained (namely that h(K1) = 1, h(K2) = 2, . . . , h(K7) = 1), as a function of
M and P?

25. [M19] Explain why Eq. (39) is true.

26. [M20] How many hash sequences a1 a2 . . . a9 yield the pattern of occupied cells
(21), using linear probing?

27. [M27] Complete the proof of Theorem K. [Hint: Let

s(n, x, y) =

k

n

k

(x+ k)k+1(y − k)n−k−1(y − n);

use AbelŠs binomial theorem, Eq. 1.2.6Ű(16), to prove that s(n, x, y) = x(x + y)n +
ns(n−1, x+1, y−1).]

28. [M30] In the old days when computers were much slower than they are now, it
was possible to watch the lights Ćashing and see how fast Algorithm L was running.
When the table began to Ąll up, some entries would be processed very quickly, while
others took a great deal of time.

This experience suggests that the standard deviation of the number of probes in
an unsuccessful search is rather high, when linear probing is used. Find a formula that
expresses the variance in terms of the Qr functions deĄned in Theorem K, and estimate
the variance when N = αM as M →∞.

29. [M21] (The parking problem.) A certain one-way street has m parking spaces in
a row, numbered 1 through m. A man and his dozing wife drive by, and suddenly she
wakes up and orders him to park immediately. He dutifully parks at the Ąrst available
space; but if there are no places left that he can get to without backing up (that is, if
his wife awoke when the car approached space k, but spaces k, k + 1, . . . , m are all
full), he expresses his regrets and drives on.

Suppose, in fact, that this happens for n different cars, where the jth wife wakes
up just in time to park at space aj . In how many of the sequences a1 . . . an will all of
the cars get safely parked, assuming that the street is initially empty and that nobody
leaves after parking? For example, when m = n = 9 and a1 . . . a9 = 3 1 4 1 5 9 2 6 5,
the cars get parked as follows:

2 4 1 3 5 7 8 9 6

[Hint: Use the analysis of linear probing.]

6.4 HASHING 553

30. [M38] When n = m in the parking problem of exercise 29, show that all cars get
parked if and only if there exists a permutation p1 p2 . . . pn of {1, 2, . . . , n} such that
aj ≤ pj for all j.

31. [M40] When n = m in the parking problem of exercise 29, the number of solutions
turns out to be (n+ 1)n−1; and from exercise 2.3.4.4Ű22 we know that this is the same
as the number of free trees on n + 1 labeled vertices! Find an interesting connection
between parking sequences and trees.

32. [M27] Prove that the system of equations (44) has a unique solution (c0, c1, . . . ,
cM−1), whenever b0, b1, . . . , bM−1 are nonnegative integers whose sum is less than M.
Design an algorithm to Ąnd that solution.

x 33. [M23] Explain why (51) is only an approximation to the true average number of
probes made by Algorithm L. What was there about the derivation of (51) that wasnŠt
rigorously exact?

x 34. [M23] The purpose of this exercise is to investigate the average number of probes
in a chained hash table when the lists are kept separate as in Fig. 38.

a) What is PNk, the probability that a given list has length k, when the MN hash
sequences (35) are equally likely?

b) Find the generating function Pn(z) =

k≥0 PNkz
k.

c) Express the average number of probes for a successful search in terms of this
generating function.

d) Deduce the average number of probes in an unsuccessful search, considering vari-
ants of the data structure in which the following conventions are used: (i) hashing
is always to a list head (see Fig. 38); (ii) hashing is to a table position (see Fig. 40),
but all keys except the Ąrst of a list go into a separate overĆow area; (iii) hashing
is to a table position and all entries appear in the hash table.

35. [M24] Continuing exercise 34, what is the average number of probes in an unsuc-
cessful search when the individual lists are kept in order by their key values? Consider
data structures (i), (ii), and (iii).

36. [M23] Continuing exercise 34(d), Ąnd the variance of the number of probes when
the search is unsuccessful, using data structures (i) and (ii).

x 37. [M29] Equation (19) gives the average number of probes in separate chaining
when the search is successful; what is the variance of that number of probes?

38. [M32] (Tree hashing.) A clever programmer might try to use binary search trees
instead of linear lists in the chaining method, thereby combining Algorithm 6.2.2T
with hashing. Analyze the average number of probes that would be required by
this compound algorithm, for both successful and unsuccessful searches. [Hint: See
Eq. 5.2.1Ű(15).]

39. [M28] Let cN (k) be the total number of lists of length k formed when Algorithm C
is applied to all MN hash sequences (35). Find a recurrence relation on the numbers
cN (k) that makes it possible to determine a simple formula for the sum

SN =

k

k

2

cN (k).

How is SN related to the number of probes in an unsuccessful search by Algorithm C?

40. [M33] Equation (15) gives the average number of probes used by Algorithm C in
an unsuccessful search; what is the variance of that number of probes?

554 SEARCHING 6.4

41. [M40] Analyze TN, the average number of times the index R is decreased by 1
when the (N + 1)st item is being inserted by Algorithm C.

x 42. [M20] Derive (17), the probability that Algorithm C succeeds immediately.

43. [HM44] Analyze a modiĄcation of Algorithm C that uses a table of size M ′ ≥M .
Only the Ąrst M locations are used for hashing, so the Ąrst M ′−M empty nodes found
in step C5 will be in the extra locations of the table. For Ąxed M ′, what choice of M
in the range 1 ≤M ≤M ′ leads to the best performance?

44. [M43] (Random probing with secondary clustering.) The object of this exercise is
to determine the expected number of probes in the open addressing scheme with probe
sequence

h(K), (h(K) + p1) modM, (h(K) + p2) modM, . . . , (h(K) + pM−1) modM,

where p1 p2 . . . pM−1 is a randomly chosen permutation of {1, 2, . . . ,M−1} that depends
on h(K). In other words, all keys with the same value of h(K) follow the same probe
sequence, and the (M − 1)!M possible choices of M probe sequences with this property
are equally likely.

This situation can be modeled accurately by the following experimental procedure
performed on an initially empty linear array of size m. Do the following operation n
times: ŞWith probability p, occupy the leftmost empty position. Otherwise (that is,
with probability q = 1 − p), select any table position except the one at the extreme
left, with each of these m− 1 positions equally likely. If the selected position is empty,
occupy it; otherwise select any empty position (including the leftmost) and occupy it,
considering each of the empty positions equally likely.Ť

For example, when m = 5 and n = 3, the array conĄguration after such an
experiment will be (occupied, occupied, empty, occupied, empty) with probability

7
192

qqq + 1
6
pqq + 1

6
qpq + 11

64
qqp+ 1

3
ppq + 1

4
pqp+ 1

4
qpp.

(This procedure corresponds to random probing with secondary clustering, when p =
1/m, since we can renumber the table entries so that a particular probe sequence is 0,
1, 2, . . . and all the others are random.)

Find a formula for the average number of occupied positions at the left of the
array (namely 2 in the example above). Also Ąnd the asymptotic value of this quantity
when p = 1/m, n = α(m+ 1), and m→∞.

45. [M43] Solve the analog of exercise 44 with tertiary clustering, when the probe
sequence begins h1(K), ((h1(K) + h2(K)) modM, and the succeeding probes are ran-
domly chosen depending only on h1(K) and h2(K). (Thus the (M−2)!M(M−1) possible
choices of M(M − 1) probe sequences with this property are considered to be equally
likely.) Is this procedure asymptotically equivalent to uniform probing?

46. [M42] Determine C′
N and CN for the open addressing method that uses the probe

sequence
h(K), 0, 1, . . . , h(K)− 1, h(K) + 1, . . . , M − 1.

47. [M25] Find the average number of probes needed by open addressing when the
probe sequence is

h(K), h(K)− 1, h(K) + 1, h(K)− 2, h(K) + 2,

This probe sequence was once suggested because all the distances between consecutive
probes are distinct when M is even. [Hint: Find the trick and this problem is easy.]

6.4 HASHING 555

x 48. [M21] Analyze the open addressing method that probes locations h1(K), h2(K),
h3(K), . . . , given an inĄnite sequence of mutually independent random hash functions
⟨hn(K)⟩. In this setup it is possible to probe the same location twice, for example if
h1(K) = h2(K), but such coincidences are rather unlikely until the table gets full.

49. [HM24] Generalizing exercise 34 to the case of b records per bucket, determine the
average number of probes (external memory accesses) CN and C′

N , for chaining with
separate lists, assuming that a list containing k elements requires max(1, k − b + 1)
probes in an unsuccessful search. Instead of using the exact probability PNk as in
exercise 34, use the Poisson approximation

N

k

 1
M

k
1− 1

M

N−k

=
N

M

N − 1
M

· · · N − k + 1
M

1− 1

M

N
1− 1

M

−k 1
k!

=
e−ρρk

k!
(1 +O(k2/M)),

which is valid for N = ρM and k ≤
√
M as M →∞; derive formulas (57) and (58).

50. [M20] Show that Q1(M,N) = M−(M−N−1)Q0(M,N), in the notation of (42).
[Hint: Prove Ąrst that Q1(M,N) = (N + 1)Q0(M,N)−NQ0(M,N−1).]

51. [HM17] Express the function R(α, n) deĄned in (55) in terms of the function Q0

deĄned in (42).

52. [HM20] Prove that Q0(M,N) =
∞

0
e−t(1 + t/M)N dt.

53. [HM20] Prove that the function R(α, n) can be expressed in terms of the incom-
plete gamma function, and use the result of exercise 1.2.11.3Ű9 to Ąnd the asymptotic
value of R(α, n) to O(n−2) as n→∞, for Ąxed α < 1.

54. [HM28] Show that when b = 1, Eq. (61) is equivalent to Eq. (23). Hint: We have

tn(α) =
(−1)n−1

n!α

m>n

(−nα)m

m(m− 1)(m− n− 1)!
.

55. [HM43] Generalize the SchayŰSpruth model, discussed after Theorem P, to the
case of M buckets of size b. Prove that C(z) is equal to Q(z)/(B(z)− zb), where Q(z)
is a polynomial of degree b and Q(1) = 0. Show that the average number of probes is

1 +
M

N
C′(1) = 1 +

1
b

1

1− q1
+ · · ·+ 1

1− qb−1
− 1

2
B′′(1)− b(b− 1)

B′(1)− b

,

where q1, . . . , qb−1 are the roots of Q(z)/(z − 1). Replacing the binomial probability
distribution B(z) by the Poisson approximation P (z) = ebα(z−1), where α = N/Mb,
and using LagrangeŠs inversion formula (see Eq. 2.3.4.4Ű(21) and exercise 4.7Ű8), reduce
your answer to Eq. (61).

56. [HM43] Generalize Theorem K, obtaining an exact analysis of linear probing with
buckets of size b. What is the asymptotic number of probes in a successful search when
the table is full (N = Mb)?

57. [M47] Does the uniform assignment of probabilities to probe sequences give the
minimum value of CN, over all open addressing methods?

58. [M21] (S. C. Johnson.) Find ten permutations on {0, 1, 2, 3, 4} that are equivalent
to uniform probing in the sense of Theorem U.

556 SEARCHING 6.4

59. [M25] Prove that if an assignment of probabilities to permutations is equivalent to
uniform probing, in the sense of Theorem U, the number of permutations with nonzero
probabilities exceeds Ma for any Ąxed exponent a, when M is sufficiently large.

60. [M47] Let us say that an open addressing scheme involves single hashing if it uses
exactly M probe sequences, one beginning with each possible value of h(K), each of
which occurs with probability 1/M.

Are the best single-hashing schemes (in the sense of minimum CN) asymptotically
better than the random ones described by (29)? In particular, is CαM ≥ 1 + 1

2
α +

1
2
α2 +O(α3) as M →∞?

61. [M46] Is the method analyzed in exercise 46 the worst possible single-hashing
scheme, in the sense of exercise 60?

62. [M49] A single hashing scheme is called cyclic if the increments p1 p2 . . . pM−1 in
the notation of exercise 44 are Ąxed for all K. (Examples of such methods are linear
probing and the sequences considered in exercises 20 and 47.) An optimum single
hashing scheme is one for which CM is minimum, over all (M − 1)!M single hashing
schemes for a given M . When M ≤ 5 the best single hashing schemes are cyclic. Is
this true for all M?

63. [M25] If repeated random insertions and deletions are made in a hash table, how
many independent insertions are needed on the average before all M locations have
become occupied at one time or another? (This is the mean time to failure of the
deletion method that simply marks cells Şdeleted.Ť)

64. [M41] Analyze the expected behavior of Algorithm R (deletion with linear prob-
ing). How many times will step R4 be performed, on the average?

x 65. [20] (Variable-length keys.) Many applications of hash tables deal with keys that
can be any number of characters long. In such cases we canŠt simply store the key in
the table as in the programs of this section. What would be a good way to deal with
variable-length keys in a hash table on the MIX computer?

x 66. [25] (Ole Amble, 1973.) Is it possible to insert keys into an open hash table mak-
ing use also of their numerical or alphabetic order, so that a search with Algorithm L
or Algorithm D is known to be unsuccessful whenever a key smaller than the search
argument is encountered?

67. [M41] If Algorithm L inserts N keys with respective hash addresses a1 a2 . . . aN ,
let dj be the displacement of the jth key from its home address aj ; then CN = 1 +
(d1 + d2 + · · ·+ dN)/N . Theorem P tells us that permutation of the aŠs has no effect
on the sum d1 + d2 + · · · + dN . However, such permutation might drastically change
the sum d2

1 + d2
2 + · · · + d2

N . For example, the hash sequence 1 2 . . . N−1 N−1
makes d1 d2 . . . dN−1 dN = 0 0 . . . 0 N−1 and

d2

j = (N − 1)2, while its reĆection
N−1 N−1 . . . 2 1 leads to much more civilized displacements 0 1 . . . 1 1 for which
d2

j = N − 1.
a) Which rearrangement of a1 a2 . . . aN minimizes

d2

j ?
b) Explain how to modify Algorithm L so that it maintains a least-variance set of

displacements after every insertion.
c) Determine the average value of

d2

j with and without this modiĄcation.

68. [M41] What is the variance of the average number of probes in a successful search
by Algorithm L? In particular, what is the average of (d1+d2+· · ·+dN)2 in the notation
of exercise 67?

6.4 HASHING 557

69. [M25] (Andrew Yao.) Prove that all cyclic single hashing schemes in the sense
of exercise 62 satisfy the inequality C′

αM ≥ 1
2
(1 + 1/(1 − α)). [Hint: Show that an

unsuccessful search takes exactly k probes with probability pk ≤ (M −N)/M .]

70. [HM43] Prove that the expected number of probes that are needed to insert the
(αM + 1)st item with double hashing is at most the expected number needed to insert
the (αM +

O(logM)/M)th item with uniform probing.

71. [40] Experiment with the behavior of Algorithm C when it has been adapted to
external searching as described in the text.

x 72. [M28] (Universal hashing.) Imagine a gigantic matrix H that has one column for
every possible key K. The entries of H are numbers between 0 and M−1; the rows of H
represent hash functions. We say that H deĄnes a universal family of hash functions

if any two columns agree in at most R/M rows, where R is the total number of rows.
a) Prove that if H is universal in this sense, and if we select a hash function h by

choosing a row of H at random, then the expected size of the list containing any
given key K in the method of separate chaining (Fig. 38) will be ≤ 1+N/M , after
we have inserted any set of N distinct keys K1, K2, . . . , KN .

b) Suppose each hj in (9) is a randomly chosen mapping from the set of all characters
to the set {0, 1, . . . ,M − 1}. Show that this corresponds to a universal family of
hash functions.

c) Would the result of (b) still be true if hj(0) = 0 for all j, but hj(x) is random for
x ̸= 0?

73. [M26] (Carter and Wegman.) Show that part (b) of the previous exercise holds
even when the hj are not completely random functions, but they have either of the
following special forms: (i) Let xj be the binary number (bj(n−1) . . . bj1bj0)2. Then
hj(xj) = (aj(n−1)bj(n−1) + · · · + aj1bj1 + aj0bj0) modM , where each ajk is chosen
randomly modulo M . (ii) Let M be prime and assume that 0 ≤ xj < M . Then
hj(xj) = (ajxj + bj) modM , where aj and bj are chosen randomly modulo M .

74. [M29] Let H deĄne a universal family of hash functions. Prove or disprove: Given
any N distinct columns, and any row chosen at random, the expected number of zeros in
those columns is O(1) +O(N/M). [Thus, every list in the method of separate chaining
will have this expected size.]

75. [M26] Prove or disprove the following statements about the hash function h of (9),
when the hj are independent random functions:

a) The probability that h(K) = m is 1/M , for all 0 ≤ m < M .
b) If K ̸= K′, the probability that h(K) = m and h(K′) = m′ is 1/M2, for all

0 ≤ m,m′ < M .
c) If K, K′, and K′′ are distinct, the probability that h(K) = m, h(K′) = m′, and

h(K′′) = m′′ is 1/M3, for all 0 ≤ m,m′,m′′ < M .
d) If K, K′, K′′, and K′′′ are distinct, the probability that h(K) = m, h(K′) = m′,

h(K′′) = m′′, and h(K′′′) = m′′′ is 1/M4, for all 0 ≤ m,m′,m′′,m′′′ < M .

x 76. [M21] Suggest a way to modify (9) for keys with variable length, preserving the
properties of universal hashing.

77. [M22] Let H deĄne a universal family of hash functions from 32-bit keys to 16-bit
keys. (Thus H has 232 columns, and M = 216, in the notation of exercise 72.) A 256-bit
key can be regarded as the concatenation of eight 32-bit parts x1x2x3x4x5x6x7x8; we

558 SEARCHING 6.4

can map it into a 16-bit address with the hash function

h4(h3(h2(h1(x1)h1(x2))h2(h1(x3)h1(x4)))h3(h2(h1(x5)h1(x6))h2(h1(x7)h1(x8)))),

where h1, h2, h3, and h4 are randomly and independently chosen rows of H. (Here, for
example, h1(x1)h1(x2) stands for the 32-bit number obtained by concatenating h1(x1)
with h1(x2).) Prove that the probability is less than 2−14 that two distinct keys hash to
the same address. [This scheme requires substantially fewer random choices than (9).]

x 78. [M26] (P. Woelfel.) If 0 ≤ x < 2n, let ha,b(x) = ⌊(ax + b)/2k⌋mod 2n−k. Show
that the set {ha,b | 0 < a < 2n, a odd, and 0 ≤ b < 2k} is a universal family of hash
functions from n-bit keys to (n− k)-bit keys. (These functions are particularly easy to
implement on a binary computer.)

She made a hash of the proper names, to be sure.

— GRANT ALLEN, The Tents of Shem (1889)

HASH, x. There is no deĄnition

for this word Ů

nobody knows what hash is.

— AMBROSE BIERCE, The DevilŠs Dictionary (1906)

6.5 RETRIEVAL ON SECONDARY KEYS 559

6.5. RETRIEVAL ON SECONDARY KEYS

We have now completed our study of searching for primary keys, namely for
keys that uniquely specify a record in a Ąle. But it is sometimes necessary to
conduct a search based on the values of other Ąelds in the records besides the
primary key; these other Ąelds are often called secondary keys or attributes of
the record. For example, in an enrollment Ąle that contains information about
the students at a university, it may be desirable to search for all sophomores
from Ohio who are not majoring in mathematics or statistics; or to search for
all unmarried French-speaking graduate student women; etc.

In general, we assume that each record contains several attributes, and we
want to search for all records that have certain values of certain attributes. The
speciĄcation of the desired records is called a query. Queries are usually restricted
to at most the following three types:

a) A simple query that gives a speciĄc value of a speciĄc attribute; for example,
ŞMAJOR = MATHEMATICSŤ, or ŞRESIDENCE.STATE = OHIOŤ.

b) A range query that gives a speciĄc range of values for a speciĄc attribute;
for example, ŞCOST < $18.00Ť, or Ş21 < AGE ≤ 23Ť.

c) A Boolean query that consists of the previous types combined with the
operations AND, OR, NOT; for example,

Ş(CLASS = SOPHOMORE) AND (RESIDENCE.STATE = OHIO)

AND NOT ((MAJOR = MATHEMATICS) OR (MAJOR = STATISTICS))Ť.

The problem of discovering efficient search techniques for these three types of
queries is already quite difficult, and therefore queries of more complicated types
are usually not considered. For example, a railroad company might have a Ąle
giving the current status of all its freight cars; a query such as ŞĄnd all empty
refrigerator cars within 500 miles of SeattleŤ would not be explicitly allowed,
unless Şdistance from SeattleŤ were an attribute stored within each record instead
of a complicated function to be deduced from other attributes. And the use of
logical quantiĄers, in addition to AND, OR, and NOT, would introduce further
complications, limited only by the imagination of the query-poser; given a Ąle of
baseball statistics, for example, we might ask for the longest consecutive hitting
streak in night games. These examples are complicated, but they can still be
handled by taking one pass through a suitably arranged Ąle. Other queries
are even more difficult Ů for example, to Ąnd all pairs of records that have the
same values on Ąve or more attributes (without specifying which attributes must
match). Such queries may be regarded as general programming tasks that are
beyond the scope of this discussion, although they can often be broken down
into subproblems of the kind considered here.

Before we begin to study the various techniques for secondary key retrieval,
it is important to put the subject in a proper economic context. Although a
vast number of applications Ąt into the general framework of the three types of
queries outlined above, not many of these applications are really suited to the
sophisticated techniques we shall be studying, and some of them are better done

560 SEARCHING 6.5

by hand than by machine! People climb Mt. Everest Şbecause it is thereŤ and
because tools have been developed that make the climb possible; similarly, when
faced with a mountain of data, people are tempted to use a computer to Ąnd the
answer to the most difficult queries they can dream up, in an online real-time
environment, without properly balancing the cost. The desired calculations are
possible, but theyŠre not right for everyoneŠs application.

For example, consider the following simple approach to secondary key re-
trieval: After batching a number of queries, we can do a sequential search through
the entire Ąle, retrieving all the relevant records. (ŞBatchingŤ means that we
accumulate a number of queries before doing anything about them.) This method
is quite satisfactory if the Ąle isnŠt too large and if the queries donŠt have to be
handled immediately. It can be used even with tape Ąles, and it only ties up
the computer at odd intervals, so it will tend to be very economical in terms
of equipment costs. Moreover, it will even handle computational queries of the
Şdistance to SeattleŤ type discussed above.

Another simple way to facilitate secondary key retrieval is to let people

do part of the work, by providing them with suitable printed indexes to the
information. This method is often the most reasonable and economical way to
proceed (provided, of course, that the old paper is recycled whenever a new index
is printed), especially because people tend to notice interesting patterns when
they have convenient access to masses of data.

The applications that are not satisfactorily handled by the simple schemes
given above involve very large Ąles for which quick responses to queries are im-
portant. Such a situation would occur, for example, if the Ąle were continuously
being queried by a number of simultaneous users, or if the queries were being
generated by machine instead of by people. Our goal in this section will be to
see how well we can do secondary key retrieval with conventional computers,
under various assumptions about the Ąle structure. Fortunately, the methods
we will discuss are becoming more and more feasible in practice, as the cost of
computation continues to decrease dramatically.

A lot of good ideas have been developed for dealing with the problem, but (as
the reader will have guessed from all these precautionary remarks) the algorithms
are by no means as good as those available for primary key retrieval. Because of
the wide variety of Ąles and applications, we will not be able to give a complete
discussion of all the possibilities that have been considered, or to analyze the
behavior of each algorithm in typical environments. The remainder of this
section presents the basic approaches that have been proposed, and it is left
to the readerŠs imagination to decide what combination of techniques is most
appropriate in each particular case.

Inverted Ąles. The Ąrst important class of techniques for secondary key re-
trieval is based on the idea of an inverted Ąle. This does not mean that the
Ąle is turned upside down; it means that the roles of records and attributes are
reversed. Instead of listing the attributes of a given record, we list the records
having a given attribute.

6.5 RETRIEVAL ON SECONDARY KEYS 561

We encounter inverted Ąles (under other names) quite often in our daily lives.
For example, the inverted Ąle corresponding to a Russian-English dictionary is
an English-Russian dictionary. The inverted Ąle corresponding to this book is
the index that appears at the close of the book. Accountants traditionally use
Şdouble-entry bookkeeping,Ť where all transactions are entered both in a cash
account and in a customer account, so that the current cash position and the
current customer liability are both readily accessible.

In general, an inverted Ąle usually doesnŠt stand by itself; it is to be used
together with the original uninverted Ąle. It provides duplicate, redundant
information in order to speed up secondary key retrieval. The components of
an inverted Ąle are called inverted lists, namely the lists of all records having a
given value of some attribute.

Like all lists, the inverted lists can be represented in many ways within
a computer, and different modes of representation are appropriate at different
times. Some secondary key Ąelds have only two values (for example, ŞSEXŤ), and
the corresponding inverted lists are quite long; but other Ąelds typically have a
great many values with few duplications (for example, ŞPHONENUMBERŤ).

Imagine that we want to store the information in a telephone directory so
that all entries can be retrieved on the basis of either name, phone number, or
residence address. One solution is simply to make three separate Ąles, oriented
to retrieval on each type of key. Another idea is to combine the Ąles, for example
by making three hash tables that serve as the list heads for the chaining method.
In the latter scheme, each record of the Ąle would be an element of three lists,
and it would therefore contain three link Ąelds; this is the so-called multilist

method illustrated in Fig. 13 of Section 2.2.6 and discussed further below. A
third possibility is to combine the three Ąles into one super Ąle, by analogy with
library card catalogues in which author cards, title cards, and subject cards are
all alphabetized together.

A consideration of the format used in the index to this book leads to
further ideas on inverted list representation. For secondary key Ąelds in which
there are typically Ąve or so entries per attribute value, we can simply make
a short sequential list of the record locations (analogous to page locations in
a book index), following the key value. If related records tend to be clustered
consecutively, a range speciĄcation code (for example, pages 559Ű582) is useful.
If the records in the Ąle tend to be reallocated frequently, it may be better to
use primary keys instead of record locations in the inverted Ąles, so that no
updating needs to be done when the locations change; for example, references
to Bible passages are always given by chapter and verse, and the index to some
books is based on paragraph numbers instead of page numbers.

None of these ideas is especially appropriate for the case of a two-valued
attribute like ŞSEXŤ. In such a case only one inverted list is needed, of course,
since the non-males will be female and conversely. If each value relates to about
half the items of the Ąle, the inverted list will be horribly long, but we can
solve the problem rather nicely on a binary computer by using a bit string
representation, with each bit specifying the value of a particular record. Thus

562 SEARCHING 6.5

the bit string 01001011101 . . . might mean that the Ąrst record in the Ąle refers
to a male, the second female, the next two male, etc.

Such methods suffice to handle simple queries about speciĄc attribute val-
ues. A slight extension makes it possible to treat range queries, except that a
comparison-based search scheme (Section 6.2) must be used instead of hashing.

For Boolean queries like Ş(MAJOR = MATHEMATICS) AND (RESIDENCE.STATE

= OHIO)Ť, we need to intersect two inverted lists. This can be done in several
ways; for example, if both lists are ordered, one pass through each will pick out
all common entries. Alternatively, we could select the shortest list and look up
each of its records, checking the other attributes; but this method works only
for ANDŠs, not for ORŠs, and it is unattractive on external Ąles because it requires
many accesses to records that will not satisfy the query.

The same considerations show that a multilist organization as described
above is inefficient for Boolean queries on an external Ąle, since it implies many
unnecessary accesses. For example, imagine what would happen if the index to
this book were organized in a multilist manner: Each entry of the index would
refer only to the last page on which its particular subject was mentioned; then
on every page there would be a further reference, for each subject on that page,
to the previous occurrence of that subject. In order to Ąnd all pages relevant
to Ş[Analysis of algorithms] and [(External sorting) or (External searching)]Ť,
we would need to turn many pages. On the other hand, the same query can be
resolved by looking at only two pages of the real index as it actually appears,
doing simple operations on the inverted lists in order to Ąnd the small subset of
pages that satisfy the query.

When an inverted list is represented as a bit string, Boolean combina-
tions of simple queries are, of course, easily performed, because computers can
manipulate bit strings at relatively high speed. For mixed queries in which
some attributes are represented as sequential lists of record numbers while other
attributes are represented as bit strings, it is not difficult to convert the sequential
lists into bit strings, then to perform the Boolean operations on these bit strings.

A quantitative example of a hypothetical application may be helpful at this
point. Assume that we have 1,000,000 records of 40 characters each, and that
our Ąle is stored on MIXTEC disks, as described in Section 5.4.9. The Ąle itself
therefore Ąlls two disk units, and the inverted lists will probably Ąll several
more. Each track contains 5000 characters = 30,000 bits, so an inverted list
for a particular attribute will take up at most 34 tracks. (This maximum
number of tracks occurs when the bitstring representation is the shortest possible
one.) Suppose that we have a rather involved query that refers to a Boolean
combination of 10 inverted lists; in the worst case we will have to read 340 tracks
of information from the inverted Ąle, for a total read time of 340×25 ms = 8.5 sec.
The average latency delay will be about one half of the read time, but by careful
programming we may be able to eliminate the latency. By storing the Ąrst track
of each bitstring list in one cylinder, and the second track of each list in the next,
etc., most of the seek time will be eliminated, so we can estimate the maximum
seek time as about 34 × 26 ms ≈ 0.9 sec (or twice this if two independent disk

6.5 RETRIEVAL ON SECONDARY KEYS 563

units are involved). Finally, if q records satisfy the query, we will need about
q ×

60 ms (seek) + 12.5 ms (latency) + 0.2 ms (read)

extra time to fetch each

one for subsequent processing. Thus an optimistic estimate of the total expected
time to process this rather complicated query is roughly (10 + .073q) seconds.
This may be contrasted with about 210 seconds to read through the entire Ąle
at top speed under the same assumptions without using any inverted lists.

This example shows that space optimization is closely related to time opti-
mization in a disk memory; the time to process the inverted lists is roughly the
time needed to seek and to read them.

The discussion above has more or less assumed that the Ąle is not growing
or shrinking as we query it; what should we do if frequent updates are necessary?
In many applications it is sufficient to batch a number of requests for updates,
and to take care of them in dull moments when no queries need to be answered.
Alternatively, if updating the Ąle has high priority, the method of B-trees (Sec-
tion 6.2.4) is attractive. The entire collection of inverted lists could be made
into one huge B-tree, with special conventions for the leaves so that the branch
nodes contain key values while the leaves contain both keys and lists of pointers
of records. File updates can also be handled by other methods that we shall
discuss below.

Geometric data. A great many applications deal with points, lines, and shapes
in spaces of two or more dimensions. One of the Ąrst approaches to distance-
oriented queries was the Şpost-office treeŤ proposed in 1972 by Bruce McNutt.
Suppose, for example, that we wish to handle queries like ŞWhat is the nearest
city to point x?Ť, given the value of x. Each node of McNuttŠs tree corresponds
to a city y and a Ştest radiusŤ r; the left subtree of this node corresponds to
all cities z entered subsequently into this part of the tree such that the distance
from y to z is ≤ r + δ, and the right subtree similarly is for distances ≥ r − δ.
Here δ is a given tolerance; cities between r − δ and r + δ away from y must be
entered in both subtrees. Searching in such a tree makes it possible to locate all
cities within distance δ of a given point. (See Fig. 45.)

Las Vegas NV
1800 mi

Wichita Falls TX
1206 mi

Waterbury CT
1026 mi

Davenport IA
808 mi

Sacramento CA
687 mi

Rochester NY
687 mi

Tampa FL
1026 mi

Lexington KY
541 mi

Boise ID
460 mi

Eugene OR
460 mi

Bellingham WA
687 mi

Worcester MA
460 mi

Jacksonville FL
391 mi

Miami FL
687 mi

Fig. 45. The top levels of an example Şpost-office tree.Ť To search for all cities near
a given point x, start at the root: If x is within 1800 miles of Las Vegas, go left,
otherwise go to the right; then repeat the process until encountering a terminal node.
The method of tree construction ensures that all cities within 20 miles of x will be
encountered during this search.

564 SEARCHING 6.5

Several experiments based on this idea were conducted by McNutt and
Edward Pring, using the 231 most populous cities in the continental United
States in random order as an example database. They let the test radii shrink in
a regular manner, replacing r by 0.67r when going to the left, and by 0.57r when
going to the right, except that r was left unchanged when taking the second of
two consecutive right branches. The result was that 610 nodes were required in
the tree for δ = 20 miles, and 1600 nodes were required for δ = 35 miles. The
top levels of their smaller tree are shown in Fig. 45. (In the remaining levels of
this tree, Orlando FL appeared below both Jacksonville and Miami. Some cities
occurred quite often; for example, 17 of the nodes were for Brockton MA!)

The rapid Ąle growth as δ increases indicates that post-office trees probably
have limited utility. We can do better by working directly with the coordinates

of each point, regarding the coordinates as attributes or secondary keys; then
we can make Boolean queries based on ranges of the keys. For example, suppose
that the records of the Ąle refer to North American cities, and that the query
asks for all cities with

(21.49◦ ≤ LATITUDE ≤ 37.41◦) AND (70.34◦ ≤ LONGITUDE ≤ 75.72◦).

Reference to a map will show that many cities satisfy this LATITUDE range, and
many satisfy the LONGITUDE range, but hardly any cities lie in both ranges. One
approach to such orthogonal range queries is to partition the set of all possible
LATITUDE and LONGITUDE values rather coarsely, with only a few classes per
attribute (for example, by truncating to the next lower multiple of 5◦), then to
have one inverted list for each combined (LATITUDE, LONGITUDE) class. This is
like having maps with one page for each local region. Using 5◦ intervals, the query
above would refer to eight pages, namely (20◦, 70◦), (25◦, 70◦), . . . , (35◦, 75◦).
The range query needs to be processed for each of these pages, either by going to
a Ąner partition within the page or by direct reference to the records themselves,
depending on the number of records corresponding to that page. In a sense this
is a tree structure with two-dimensional branching at each internal node.

A substantial elaboration of this approach, called a grid Ąle, was developed
by J. Nievergelt, H. Hinterberger, and K. C. Sevcik [ACM Trans. Database
Systems 9 (1984), 38Ű71]. If each point x has k coordinates (x1, . . . , xk), they
divide the ith coordinate values into ranges

−∞ = gi0 < gi1 < · · · < giri = +∞ (1)

and locate x by determining indices (j1, . . . , jk) such that

0 ≤ ji < ri, giji ≤ xi < gi(ji+1) for 1 ≤ i ≤ k. (2)

All points that have a given value of (j1, . . . , jk) are called cells. Records for
points in the same cell are stored in the same bucket in an external memory.
Buckets are also allowed to contain points from several adjacent cells, provided
that each bucket corresponds to a k-dimensional rectangular region or Şsuper-
cell.Ť Various strategies for updating the grid boundary values gij and for
splitting or combining buckets are possible; see, for example, K. Hinrichs, BIT 25

6.5 RETRIEVAL ON SECONDARY KEYS 565

(1985), 569Ű592. The characteristics of grid Ąles with random data have been
analyzed by M. Regnier, BIT 25 (1985), 335Ű357; P. Flajolet and C. Puech,
JACM 33 (1986), 371Ű407, §4.2.

A simpler way to deal with orthogonal range queries was introduced by J. L.
Bentley and R. A. Finkel, using structures called quadtrees [Acta Informatica 4

(1974), 1Ű9]. In the two-dimensional case of their construction, every node of
such a tree represents a rectangle and also contains one of the points in that
rectangle; there are four subtrees, corresponding to the four quadrants of the
original rectangle relative to the coordinates of the given point. Similarly, in
three dimensions there is eight-way branching, and the trees are sometimes called
octrees. A k-dimensional quadtree has 2k-way branching.

The mathematical analysis of random quadtrees is quite difficult, but in
1988 the asymptotic form of the expected insertion time for the N -th node in a
random k-dimensional quadtree was determined to be

2
k

ln N + O(1), (3)

by two groups of researchers working independently: See L. Devroye and L. La-
forest, SICOMP 19 (1990), 821Ű832; P. Flajolet, G. Gonnet, C. Puech, and
J. M. Robson, Algorithmica 10 (1993), 473Ű500. Notice that when k = 1, this
result agrees with the well-known formula for insertion into a binary search tree,
Eq. 6.2.2Ű(5). Further work by P. Flajolet, G. Labelle, L. Laforest, and B. Salvy
showed in fact that the average internal path length can be expressed in the
surprisingly elegant form

l≥2

N

l

(−1)l

l

j=3

1− 2k

jk

, (4)

and further analysis of random quadtrees was therefore possible with the help
of hypergeometric functions [see Random Structures & Algorithms 7 (1995),
117Ű144].

Bentley went on to simplify the quadtree representation even further by
introducing Şk-d trees,Ť which have only two-way branching at each node [CACM
18 (1975), 509Ű517; IEEE Transactions SE-5 (1979), 333Ű340]. A 1-d tree is
just an ordinary binary search tree, as in Section 6.2.2; a 2-d tree is similar,
but the nodes on even levels compare x-coordinates and the nodes on odd levels
compare y-coordinates when branching. In general, a k-d tree has nodes with
k coordinates, and the branching on each level is based on only one of the
coordinates; for example, we might branch on coordinate number (l mod k) + 1
on level l. A tie-breaking rule based on a recordŠs serial number or location
in memory can be used to ensure that no two records agree in any coordinate
position. Randomly grown k-d trees turn out to have exactly the same average
path length and shape distribution as ordinary binary search trees, because the
assumptions underlying their growth are the same as in the one-dimensional case
(see exercise 6.2.2Ű6).

566 SEARCHING 6.5

If the Ąle is not changing dynamically, we can balance any N -node k-d tree
so that its height is ≈ lg N , by choosing a median value for branching at each
node. Then we can be sure that several fundamental types of queries will be
handled efficiently. For example, Bentley proved that we can identify all records
that have t speciĄed coordinates in O(N1−t/k) steps. We can also Ąnd all records
that lie in a given rectangular region in at most O(tN1−1/k + q) steps, if t of the
coordinates are restricted to subranges and there are q such records altogether
[D. T. Lee and C. K. Wong, Acta Informatica 23 (1977), 23Ű29]. In fact, if the
given region is nearly cubical and q is small, and if the coordinate chosen for
branching at each node has the greatest spread of attribute values, Friedman,
Bentley, and Finkel [ACM Trans. Math. Software 3 (1977), 209Ű226] showed
that the average time for such a region query will be only O(log N + q). The
same formula applies when searching such k-d trees for the nearest neighbor of
a given point in k-dimensional space.

When k-d trees are random instead of perfectly balanced, the average run-
ning time for partial matches of t speciĄed coordinates increases slightly to
Θ(N1−t/k+f(t/k)); here the function f is deĄned implicitly by the equation

f(x) + 3− x

x

f(x) + 2− x

1−x = 2, (5)

and it is quite small: We have

0 ≤ f(x) < 0.06329 33881 23738 85718 14011 27797 33590 58170−, (6)

and the maximum occurs when x is near 0.585. [See P. Flajolet and C. Puech,
JACM 33 (1986), 371Ű407, §3.]

Because of the aesthetic appeal and great signiĄcance of geometric algo-
rithms, there has been an enormous growth in techniques for solving higher-
dimensional search problems and related questions of many kinds. Indeed, a
new subĄeld of mathematics and computer science called Computational Ge-
ometry has developed rapidly since the 1970s. The Handbook of Discrete and
Computational Geometry, edited by J. E. Goodman and J. OŠRourke (Boca
Raton, Florida: CRC Press, 1997), is an excellent reference to the state of the
art in that Ąeld as of 1997.

A comprehensive survey of data structures and algorithms for the important
special cases of two- and three-dimensional objects has been prepared by Hanan
Samet in a pair of complementary books, The Design and Analysis of Spatial
Data Structures and Applications of Spatial Data Structures (AddisonŰWesley,
1990). Samet points out that the original quadtrees of Bentley and Finkel are
now more properly called Şpoint quadtreesŤ; the name ŞquadtreeŤ itself has
become a generic term for any hierarchical decomposition of geometric data.

Compound attributes. It is possible to combine two or more attributes into
one super-attribute. For example, a (CLASS, MAJOR) attribute could be created
by combining the CLASS and MAJOR Ąelds of a university enrollment Ąle. In this
way queries can often be satisĄed by taking the union of disjoint, short lists
instead of the intersection of longer lists.

6.5 RETRIEVAL ON SECONDARY KEYS 567

The idea of attribute combination was developed further by V. Y. Lum
[CACM 13 (1970), 660Ű665], who suggested ordering the inverted lists of com-
bined attributes lexicographically from left to right, and making multiple copies,
with the individual attributes permuted in a clever way. For example, suppose
that we have three attributes A, B, and C; we can form three compound attributes

(A, B, C), (B, C, A), (C, A, B) (7)

and construct ordered inverted lists for each of these. (Thus in the Ąrst list, the
records occur in order of their A values, with all records of the same A value in
order by B and then by C.) This organization makes it possible to satisfy queries
based on any combination of the three attributes; for example, all records having
speciĄed values for A and C will appear consecutively in the third list.

Similarly, from four attributes A, B, C, D, we can form the six combined
attributes

(A, B, C, D), (B, C, D, A), (B, D, A, C), (C, A, D, B), (C, D, A, B), (D, A, B, C), (8)

which suffice to answer all combinations of simple queries relating to the simul-
taneous values of one, two, three, or four of the attributes. There is a general
procedure for constructing

n
k

combined attributes from n attributes, where

k ≤ 1
2 n, such that all records having speciĄed combinations of at most k or

at least n − k of the attribute values will appear consecutively in one of the
combined attribute lists (see exercise 1). Alternatively, we can get by with
fewer combinations when some attributes have a limited number of values. For
example, if D is simply a two-valued attribute, the three combinations

(D, A, B, C), (D, B, C, A), (D, C, A, B) (9)

obtained by placing D in front of (7) will be almost as good as (8) with only half
the redundancy, since queries that do not depend on D can be treated by looking
in just two places in one of the lists.

Binary attributes. It is instructive to consider the special case in which all
attributes are two-valued. In a sense this is the opposite of combining attributes,
since we can represent any value as a binary number and regard the individual
bits of that number as separate attributes. Table 1 shows a typical Ąle involving
Şyes-noŤ attributes; in this case the records stand for selected cookie recipes,
and the attributes specify which ingredients are used. For example, Almond
Lace Wafers are made from butter, Ćour, milk, nuts, and granulated sugar. If
we think of Table 1 as a matrix of zeros and ones, the transpose of the matrix is
the inverted Ąle, in bitstring form.

The right-hand column of Table 1 is used to indicate special items that occur
only rarely. These can be coded in a more efficient way than to devote an entire
column to each one; and the ŞCornstarchŤ column could be treated similarly.
Dually, we could Ąnd a more efficient way to encode the ŞFlourŤ column, since
Ćour occurs in everything except Meringues. For the present, however, let us
sidestep these considerations and simply ignore the ŞSpecial ingredientsŤ column.

568
S

E
A

R
C

H
IN

G
6.5

Table 1

A FILE WITH BINARY ATTRIBUTES

A
ll

sp
ic

e

A
n

is
e

se
ed

B
a
k

in
g

p
o
w

d
er

B
a
k

in
g

so
d

a

B
u

tt
er

C
a
rd

a
m

o
m

C
h

o
co

la
te

C
in

n
a
m

o
n

C
lo

v
es

C
o

co
n

u
t

C
o
ff

ee

C
o
rn

st
a
rc

h

D
a
te

s

E
g
g

w
h

it
es

E
g
g

y
o
lk

F
lo

u
r

G
in

g
er

L
em

o
n

ju
ic

e

L
em

o
n

p
ee

l

M
il

k

M
o
la

ss
es

N
u

tm
eg

N
u

ts

O
a
tm

ea
l

R
a
is

in
s

S
a
lt

S
u

g
a
r,

b
ro

w
n

S
u

g
a
r,

g
ra

n
u

la
te

d

S
u

g
a
r,

p
o
w

d
er

ed

V
a
n

il
la

ex
tr

a
ct

S
p

ec
ia

l
in

g
re

d
ie

n
ts

Almond Lace Wafers 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 Ů
Applesauce-Spice Squares 0 0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 1 0 0 1 1 1 Applesauce
Banana-Oatmeal Cookies 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 1 0 1 0 1 Bananas
Chocolate Chip Cookies 0 0 0 1 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 Ů
Coconut Macaroons 0 0 1 0 1 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 Ů
Cream-Cheese Cookies 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 Cream cheese
Delicious Prune Bars 0 0 0 0 1 0 0 0 0 1 0 1 0 1 1 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 Oranges, prunes
Double-Chocolate Drops 0 0 0 1 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 Ů
Dream Bars 0 0 1 0 1 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 1 1 0 0 1 Ů
Filled Turnovers 0 0 1 0 1 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 1 0 0 1 0 1 0 1 Ů
Finska Kakor 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 Almond extract
Glazed Gingersnaps 0 0 1 1 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 1 0 Vinegar
Hermits 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 1 0 0 0 0 0 1 0 0 1 1 1 0 0 0 Apricots
Jewel Cookies 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 Currant jelly
Jumbles 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 Salad oil
Kris Kringles 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 Ů
Lebkuchen Rounds 1 0 0 1 0 0 0 1 1 0 0 0 0 1 1 1 0 1 1 1 0 1 1 0 0 1 1 0 1 0 Honey
Meringues 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 Candied cherries
Moravian Spice Cookies 1 0 0 1 1 0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 1 1 0 1 0 Ů
Oatmeal-Date Bars 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 1 1 1 0 0 Ů
Old-Fashioned Sugar Cookies 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 Sour cream
Peanut-Butter Pinwheels 0 0 0 1 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 Peanut butter
Petticoat Tails 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 Ů
Pfeffernuesse 1 1 1 0 0 1 0 1 1 0 1 0 0 1 1 1 0 0 1 0 0 1 1 0 0 1 1 0 1 0 Citron, mace, pepper
Scotch Oatmeal Shortbread 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 Ů
Shortbread Stars 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 Ů
Springerle 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 1 0 1 1 0 Ů
Spritz Cookies 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 Ů
Swedish Kringler 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 Ů
Swiss-Cinnamon Crisps 0 0 0 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 1 1 1 0 0 Ů
Toffee Bars 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 Ů
Vanilla-Nut Icebox Cookies 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 1 0 1 0 1 Ů

Reference: McCallŠs Cook Book (New York: Random House, 1963), Chapter 9.

6.5 RETRIEVAL ON SECONDARY KEYS 569

Let us deĄne a basic query in a binary attribute Ąle as a request for all records
having 0Šs in certain columns, 1Šs in other columns, and arbitrary values in the
remaining columns. Using Ş*Ť to stand for an arbitrary value, we can represent
any basic query as a sequence of 0Šs, 1Šs, and *Šs. For example, consider a man
who is in the mood for some coconut cookies, but he is allergic to chocolate,
hates anise, and has run out of vanilla extract; he can formulate the query

* 0 * * * * 0 * * 1 * * * * * * * * * * * * * * * * * * * 0. (10)

Table 1 now says that Delicious Prune Bars are just the thing.
Before we consider the general problem of organizing a Ąle for basic queries,

it is important to look at the special case where no 0Šs are speciĄed, only 1Šs
and *Šs. This may be called an inclusive query, because it asks for all records
that include a certain set of attributes, if we assume that 1Šs denote attributes
that are present and 0Šs denote attributes that are absent. For example, the
recipes in Table 1 that call for both baking powder and baking soda are Glazed
Gingersnaps and Old-Fashioned Sugar Cookies.

In some applications it is sufficient to provide for the special case of inclusive
queries. This occurs, for example, in the case of many manual card-Ąling systems,
such as Şedge-notched cardsŤ or Şfeature cards.Ť An edge-notched card system
corresponding to Table 1 would have one card for every recipe, with holes cut
out for each ingredient (see Fig. 46). In order to process an inclusive query, the
Ąle of cards is arranged into a neat deck and needles are put in each column
position corresponding to an attribute that is to be included. After raising the
needles, all cards having the appropriate attributes will drop out.

SWISS-CINNAMON CRISPS

A
L
L
S
P
IC

E

A
N
IS

E

B
A
K
IN

G
P
O
W

D
E
R

B
A
K
IN

G
S
O
D
A

B
U
T
T
E
R

C
A
R
D
A
M

O
M

C
H
O
C
O
L
A
T
E

C
IN

N
A
M

O
N

C
L
O
V
E
S

C
O
C
O
N
U
T

C
O
F
F
E
E

C
O
R
N
S
T
A
R
C
H

D
A
T
E
S

E
G
G

W
H
IT

E

E
G
G

Y
O
L
K

F
L
O
U
R

G
IN

G
E
R

L
E
M

O
N

J
U
IC

E

L
E
M

O
N

P
E
E
L

M
IL

K

M
O
L
A
S
S
E
S

N
U
T
M

E
G

N
U
T
S

O
A
T
M

E
A
L

R
A
IS

IN
S

S
A
L
T

B
R
O
W

N
S
U
G
A
R

G
R
A
N
.
S
U
G
A
R

X
X

S
U
G
A
R

V
A
N
IL

L
A

S
P
E
C
IA

L

Fig. 46. An edge-notched card.

A feature-card system works on the inverse Ąle in a similar way. In this
case there is one card for every attribute, and holes are punched in designated
positions on the surface of the card for every record possessing that attribute.
An ordinary 80-column card can therefore be used to tell which of 12×80 = 960

570 SEARCHING 6.5

records have a given attribute. To process an inclusive query, the feature cards
for the speciĄed attributes are selected and put together; then light will shine
through all positions corresponding to the desired records. This operation is
analogous to the treatment of Boolean queries by intersecting inverted bit strings
as explained above.

Table 2

AN EXAMPLE OF SUPERIMPOSED CODING

Codes for individual Ćavorings

Almond extract 0100000001 Dates 1000000100
Allspice 0000100001 Ginger 0000110000
Anise seed 0000011000 Honey 0000000011
Applesauce 0010010000 Lemon juice 1000100000
Apricots 1000010000 Lemon peel 0011000000
Bananas 0000100010 Mace 0000010100
Candied cherries 0000101000 Molasses 1001000000
Cardamom 1000000001 Nutmeg 0000010010
Chocolate 0010001000 Nuts 0000100100
Cinnamon 1000000010 Oranges 0100000100
Citron 0100000010 Peanut butter 0000000101
Cloves 0001100000 Pepper 0010000100
Coconut 0001010000 Prunes 0010000010
Coffee 0001000100 Raisins 0101000000
Currant jelly 0010000001 Vanilla extract 0000001001

Superimposed codes

Almond Lace Wafers 0000100100 Lebkuchen Rounds 1011110111
Applesauce-Spice Squares 1111111111 Meringues 1000101100
Banana-Oatmeal Cookies 1000111111 Moravian Spice Cookies 1001110011
Chocolate Chip Cookies 0010101101 Oatmeal-Date Bars 1000100100
Coconut Macaroons 0001111101 Old-Fashioned Sugar Cookies 0000011011
Cream-Cheese Cookies 0010001001 Peanut-Butter Pinwheels 0010001101
Delicious Prune Bars 0111110110 Petticoat Tails 0000001001
Double-Chocolate Drops 0010101100 Pfeffernuesse 1111111111
Dream Bars 0001111101 Scotch Oatmeal Shortbread 0000001001
Filled Turnovers 1011101101 Shortbread Stars 0000000000
Finska Kakor 0100100101 Springerle 0011011000
Glazed Gingersnaps 1001110010 Spritz Cookies 0000001001
Hermits 1101010110 Swedish Kringler 0000000000
Jewel Cookies 0010101101 Swiss-Cinnamon Crisps 1000000010
Jumbles 1000001011 Toffee Bars 0010101101
Kris Kringles 1011100101 Vanilla-Nut Icebox Cookies 0000101101

Superimposed coding. The reason these manual card systems are of special
interest to us is that ingenious schemes have been devised to save space on
edge-notched cards; the same principles can be applied in the representation of
computer Ąles. Superimposed coding is a technique similar to hashing, and it was

6.5 RETRIEVAL ON SECONDARY KEYS 571

actually invented several years before hashing itself was discovered. The idea is to
map attributes into random k-bit codes in an n-bit Ąeld, and to superimpose the
codes for each attribute that is present in a record. An inclusive query for some
set of attributes can be converted into an inclusive query for the corresponding
superimposed bit codes. A few extra records may satisfy this query, but the
number of such Şfalse dropsŤ can be statistically controlled. [See Calvin N.
Mooers, Amer. Chem. Soc. Meeting 112 (September 1947), 14EŰ15E; American
Documentation 2 (1951), 20Ű32.]

As an example of superimposed coding, letŠs consider Table 1 again, but only
the Ćavorings instead of the basic ingredients like baking powder, shortening,
eggs, and Ćour. Table 2 shows what happens if we assign random 2-bit codes in
a 10-bit Ąeld to each of the Ćavoring attributes and superimpose the coding. For
example, the entry for Chocolate Chip Cookies is obtained by superimposing the
codes for chocolate, nuts, and vanilla:

0010001000 | 0000100100 | 0000001001 = 0010101101.

The superimposition of these codes also yields some spurious attributes, in this
case allspice, candied cherries, currant jelly, peanut butter, and pepper; these
will cause false drops to occur on certain queries (and they also suggest the
creation of a new recipe called False Drop Cookies!).

Superimposed coding actually doesnŠt work very well in Table 2, because
that table is a small example with lots of attributes present. In fact, Applesauce-
Spice Squares will drop out for every query, since it was obtained by superim-
posing seven codes that cover all ten positions; and Pfeffernuesse is even worse,
obtained by superimposing twelve codes. On the other hand Table 2 works
surprisingly well in some respects; for example, if we try the query ŞVanilla
extractŤ, only the record for Pfeffernuesse comes out as a false drop.

A more appropriate example of superimposed coding occurs if we have, say,
a 32-bit Ąeld and a set of

32
3

= 4960 different attributes, where each record is

allowed to possess up to six attributes and each attribute is encoded by specifying
3 of the 32 bits. In this situation, if we assume that each record has six randomly
selected attributes, the probability of a false drop in an inclusive query

on one attribute is .07948358;
on two attributes is .00708659;
on three attributes is .00067094;
on four attributes is .00006786;
on Ąve attributes is .00000728;
on six attributes is .00000082.

(11)

Thus if there are M records that do not actually satisfy a two-attribute query,
about .007M will have a superimposed code that spuriously matches all code bits
of the two speciĄed attributes. (These probabilities are computed in exercise 4.)
The total number of bits needed in the inverted Ąle is only 32 times the number
of records, which is less than half the number of bits needed to specify the
attributes themselves in the original Ąle.

572 SEARCHING 6.5

If carefully selected nonrandom codes are used, it is possible to avoid false
drops entirely in superimposed coding, as shown by W. H. Kautz and R. C.
Singleton, IEEE Trans. IT-10 (1964), 363Ű377; one of their constructions ap-
pears in exercise 16.

Malcolm C. Harrison [CACM 14 (1971), 777Ű779] has observed that super-
imposed coding can be used to speed up text searching. Assume that we want
to locate all occurrences of a particular string of characters in a long body of
text, without building an extensive table as in Algorithm 6.3P; and assume, for
example, that the text is divided into individual lines c1c2 . . . c50 of 50 characters
each. Harrison suggests encoding each of the 49 pairs c1c2, c2c3, . . . , c49c50 by
hashing each of them into a number between 0 and 127, say; then the ŞsignatureŤ
of the line c1c2 . . . c50 is the string of 128 bits b0b1 . . . b127, where bi = 1 if and
only if h(cjcj+1) = i for some j.

If now we want to search for all occurrences of the word NEEDLE in a large
text Ąle called HAYSTACK, we simply look for all lines whose signature contains
1-bits in positions h(NE), h(EE), h(ED), h(DL), and h(LE). Assuming that the
hash function is random, the probability that a random line contains all these
bits in its signature is only 0.00341 (see exercise 4); hence the intersection of
Ąve inverted-list bit strings will rapidly identify all the lines containing NEEDLE,
together with a few false drops.

The assumption of randomness is not really justiĄed in this application,
since typical text has so much redundancy; the distribution of adjacent letter
pairs in English words is highly biased. For example, it will probably be very
helpful to discard all pairs cjcj+1 containing a blank character, since blanks are
usually much more common than any other symbol.

Another interesting application of superimposed coding to search problems
has been suggested by Burton H. Bloom [CACM 13 (1970), 422Ű426]; his method
actually applies to primary key retrieval, although it is most appropriate for us
to discuss it in this section. Imagine a search application with a large database
in which no calculation needs to be done if the search was unsuccessful. For
example, we might want to check somebodyŠs credit rating or passport number,
and if no record for that person appears in the Ąle we donŠt have to investigate
further. Similarly in an application to computerized typesetting, we might have
a simple algorithm that hyphenates most words correctly, but it fails on some
50,000 exceptional words; if we donŠt Ąnd the word in the exception Ąle we are
free to use the simple algorithm.

In such situations it is possible to maintain a bit table in internal memory
so that most keys not in the Ąle can be recognized as absent without making
any references to the external memory. HereŠs how: Let the internal bit table
be b0b1 . . . bM−1, where M is rather large. For each key Kj in the Ąle, compute
k independent hash functions h1(Kj), . . . , hk(Kj), and set the corresponding k
bŠs equal to 1. (These k values need not be distinct.) Thus bi = 1 if and only
if hl(Kj) = i for some j and l. Now to determine if a search argument K is
in the external Ąle, Ąrst test whether or not bhl(K) = 1 for 1 ≤ l ≤ k; if not,
there is no need to access the external memory, but if so, a conventional search

6.5 RETRIEVAL ON SECONDARY KEYS 573

will probably Ąnd K if k and M have been chosen properly. The chance of a
false drop when there are N records in the Ąle is approximately (1− e−kN/M)k.
In a sense, BloomŠs method treats the entire Ąle as one record, with the primary
keys as the attributes that are present, and with superimposed coding in a huge
M -bit Ąeld.

Still another variation of superimposed coding has been developed by Rich-
ard A. Gustafson [Ph.D. thesis (Univ. South Carolina, 1969)]. Suppose that
we have N records and that each record possesses six attributes chosen from
a set of 10,000 possibilities. The records may, for example, stand for technical
articles and the attributes may be keywords describing the article. Let h be a
hash function that maps each attribute into a number between 0 and 15. If a
record has attributes a1, a2, . . . , a6, Gustafson suggests mapping the record into
the 16-bit number b0b1 . . . b15, where bi = 1 if and only if h(aj) = i for some j;
and furthermore if this method results in only k of the bŠs equal to 1, for k < 6,
another 6−k 1s are supplied by some random method (not necessarily depending
on the record itself). There are

16
6

= 8008 sixteen-bit codes in which exactly

six 1-bits are present, and with luck about N/8008 records will be mapped into
each value. We can keep 8008 lists of records, directly calculating the address
corresponding to b0b1 . . . b15 using a suitable formula. In fact, if the 1s occur in
positions 0 ≤ p1 < p2 < · · · < p6, the function

p1

1

+

p2

2

+ · · ·+

p6

6

will convert each string b0b1 . . . b15 into a unique number between 0 and 8007,
as we have seen in exercises 1.2.6Ű56 and 2.2.6Ű7.

Now if we want to Ąnd all records having three particular attributes A1, A2,
A3, we compute h(A1), h(A2), h(A3); assuming that these three values are
distinct, we need only look at the records stored in the

13
3

= 286 lists whose

bit code b0b1 . . . b15 contains 1s in those three positions. In other words, only
286/8008 ≈ 3.5 percent of the records need to be examined in the search.

See the article by C. S. Roberts, Proc. IEEE 67 (1979), 1624Ű1642, for an
excellent exposition of superimposed coding, together with an application to a
large database of telephone-directory listings. An application to spelling-check
software is discussed by J. K. Mullin and D. J. Margoliash, Software Practice &
Exper. 20 (1990), 625Ű630.

Combinatorial hashing. The idea underlying GustafsonŠs method just de-
scribed is to Ąnd some way to map the records into memory locations so that
comparatively few locations are relevant to a particular query. But his method
applies only to inclusive queries when the individual records possess few at-
tributes. Another type of mapping, designed to handle arbitrary basic queries
like (10) consisting of 0Šs, 1Šs, and *Šs, was discovered by Ronald L. Rivest in
1971. [See SICOMP 5 (1976), 19Ű50.]

Suppose Ąrst that we wish to construct a crossword-puzzle dictionary for
all six-letter words of English; a typical query asks for all words of the form
N**D*E, say, and gets the reply {NEEDLE, NIDDLE, NODDLE, NOODLE, NUDDLE}. We

574 SEARCHING 6.5

can solve this problem nicely by keeping 212 lists, putting the word NEEDLE into
list number

h(N) h(E) h(E) h(D) h(L) h(E).

Here h is a hash function taking each letter into a 2-bit value, and we get a 12-bit
list address by putting the six bit-pairs together. Then the query N**D*E can be
answered by looking through just 64 of the 4096 lists.

Similarly letŠs suppose that we have 1,000,000 records each containing 10
secondary keys, where each secondary key has a fairly large number of possible
values. We can map the records whose secondary keys are (K1, K2, . . . , K10)
into the 20-bit number

h(K1) h(K2) . . . h(K10), (12)

where h is a hash function taking each secondary key into a 2-bit value, and
(12) stands for the juxtaposition of these ten pairs of bits. This scheme maps
1,000,000 records into 220 = 1,048,576 possible values, and we can consider the
total mapping as a hash function with M = 220; chaining can be used to resolve
collisions. If we want to retrieve all records having speciĄed values of any Ąve
secondary keys, we need to look at only 210 lists, corresponding to the Ąve
unspeciĄed bit pairs in (12); thus only about 1000 =

√
N records need to be

examined on the average. (A similar approach was suggested by M. Arisawa,
J. Inf. Proc. Soc. Japan 12 (1971), 163Ű167, and by B. Dwyer (unpublished).
Dwyer suggested using a more Ćexible mapping than (12), namely

h1(K1) + h2(K2) + · · ·+ h10(K10)

mod M,

where M is any convenient number, and the hi are arbitrary hash functions
possibly of the form wiKi for ŞrandomŤ wi.)

Rivest has developed this idea further so that in many cases we have the
following situation. Assume that there are N ≈ 2n records, each having m
secondary keys. Each record is mapped into an n-bit hash address, in such a
way that a query that leaves the values of k keys unspeciĄed corresponds to
approximately Nk/m hash addresses. All the other methods we have discussed
in this section (except GustafsonŠs) require order N steps for retrieval, although
the constant of proportionality is small; for large enough N, RivestŠs method
will be faster, and it requires no inverted Ąles.

But we have to deĄne an appropriate mapping before we can apply this
technique. Here is an example with small parameters, when m = 4 and n = 3
and when all secondary keys are binary-valued; we can map 4-bit records into
eight addresses as follows:

∗ 0 0 1 → 0
0 ∗ 0 0 → 1
1 0 ∗ 0 → 2
1 1 0 ∗ → 3

∗ 1 1 0 → 4
1 ∗ 1 1 → 5
0 1 ∗ 1 → 6
0 0 1 ∗ → 7

(13)

An examination of this table reveals that all records corresponding to the query
0 * * * are mapped into locations 0, 1, 4, 6, and 7; and similarly any basic
query with three *Šs corresponds to exactly Ąve locations. The basic queries

6.5 RETRIEVAL ON SECONDARY KEYS 575

with two *Šs correspond to three locations each; and the basic queries with one *

correspond to either one or two locations, (8 × 1 + 24 × 2)/32 = 1.75 on the
average. Thus we have

Number of unspeciĄed Number of locations
bits in the query to search

4 8 = 84/4

3 5 ≈ 83/4

2 3 ≈ 82/4

1 1.75 ≈ 81/4

0 1 = 80/4

(14)

Of course this is such a small example, we could handle it more easily by
brute force. But it leads to nontrivial applications, since we can use it also
when m = 4r and n = 3r, mapping 4r-bit records into 23r ≈ N locations by
dividing the secondary keys into r groups of 4 bits each and applying (13) in each
group. The resulting mapping has the desired property: A query that leaves k
of the m bits unspeciĄed will correspond to approximately Nk/m locations. (See
exercise 6.)

A. E. Brouwer [SICOMP 28 (1999), 1970Ű1971] has found an attractive
way to compress 8 bits to 5, with a mapping analogous to (13). Every 8-bit byte
belongs to exactly one of the following 32 classes:

0∗000∗0∗
1∗000∗0∗
0∗010∗0∗
1∗010∗0∗
0∗10∗1∗0
1∗10∗1∗0
0∗11∗1∗0
1∗11∗1∗0

01∗0∗∗11
11∗0∗∗11
01∗1∗∗11
11∗1∗∗11
0∗1∗000∗
1∗1∗000∗
0∗0∗11∗0
1∗0∗11∗0

00∗11∗∗1
10∗11∗∗1
00∗0∗01∗
10∗0∗01∗
∗01∗01∗1
∗10∗10∗0
∗00∗011∗
∗11∗100∗

∗11∗∗101
∗11∗∗010
∗10∗0∗10
∗10∗1∗01
∗0∗1001∗
∗0∗0100∗
∗0∗011∗1
∗0∗110∗0

(15)

The ∗Šs in this design are arranged in such a way that there are 3 in each row
and 12 in each column. Exercise 18 explains how to obtain similar schemes that
will compress records having, say, m = 4r bits into addresses having n = 3r bits.
In practice, buckets of size b would be used, and we would take N ≈ 2nb; the
case b = 1 has been used in the discussion above for simplicity in exposition.

Rivest has also suggested another simple way to handle basic queries. Sup-
pose we have, say, N ≈ 210 records of 30 bits each, where we wish to answer
arbitrary 30-bit basic queries like (10). Then we can simply divide the 30 bits
into three 10-bit Ąelds, and keep three separate hash tables of size M = 210. Each
record is stored thrice, in lists corresponding to its bit conĄgurations in the three
Ąelds. Under suitable conditions, each list will contain about one element. Given
a basic query with k unspeciĄed bits, at least one of the Ąelds will have ⌊k/3⌋ or
fewer bits unspeciĄed; hence we need to look in at most 2⌊k/3⌋ ≈ Nk/30 of the
lists to Ąnd all answers to the query. Or we could use any other technique for
handling basic queries in the selected Ąeld.

576 SEARCHING 6.5

Generalized tries. Rivest went on to suggest yet another approach, based
on a data structure like the tries in Section 6.3. We can let each internal node
of a generalized binary trie specify which bit of the record it represents. For
example, in the data of Table 1 we could let the root of the trie represent Vanilla
extract; then the left subtrie would correspond to those 16 cookie recipes that
omit Vanilla extract, while the right subtrie would be for the 16 that use it. This
16Ű16 split nicely bisects the Ąle; and we can handle each subĄle in a similar way.
When a subĄle becomes suitably small, we represent it by a terminal node.

To process a basic query, we start at the root of the trie. When searching a
generalized trie whose root speciĄes an attribute where the query has 0 or 1, we
search the left or right subtrie, respectively; and if the query has * in that bit
position, we search both subtries.

Suppose the attributes are not binary, but they are represented in binary
notation. We can build a trie by looking Ąrst at the Ąrst bit of attribute 1, then
the Ąrst bit of attribute 2, . . . , the Ąrst bit of attribute m, then the second bit of
attribute 1, etc. Such a structure is called an Şm-d trie,Ť by analogy with m-d
trees (which branch by comparisons instead of by bit inspections). P. Flajolet
and C. Puech have shown that the average time to answer a partial match query
in a random m-d trie of N nodes is Θ(Nk/m) when k/m of the attributes are
unspeciĄed [JACM 33 (1986), 371Ű407, §4.1]; the variance has been calculated
by W. Schachinger, Random Structures & Algorithms 7 (1995), 81Ű95.

Similar algorithms can be developed for m-dimensional versions of the digital
search trees and Patricia trees of Section 6.3. These structures, which tend to be
slightly better balanced than m-d tries, have been analyzed by P. Kirschenhofer
and H. Prodinger, Random Structures & Algorithms 5 (1994), 123Ű134.

*Balanced Ąling schemes. Another combinatorial approach to information
retrieval, based on balanced incomplete block designs, has been the subject of
considerable investigation. Although the subject is quite interesting from a
mathematical point of view, it has unfortunately not yet proved to be more
useful than the other methods described above. A brief introduction to the
theory will be presented here in order to indicate the Ćavor of the results, in
hopes that readers might think of good ways to put the ideas to practical use.

A Steiner triple system is an arrangement of v objects into unordered triples
in such a way that every pair of objects occurs in exactly one triple. For example,
when v = 7 there is essentially only one Steiner triple system, namely

Triple Pairs included

{1, 2, 4} {1, 2}, {1, 4}, {2, 4}
{2, 3, 5} {2, 3}, {2, 5}, {3, 5}
{3, 4, 6} {3, 4}, {3, 6}, {4, 6}
{4, 5, 0} {0, 4}, {0, 5}, {4, 5}
{5, 6, 1} {1, 5}, {1, 6}, {5, 6}
{6, 0, 2} {0, 2}, {0, 6}, {2, 6}
{0, 1, 3} {0, 1}, {0, 3}, {1, 3}

(16)

6.5 RETRIEVAL ON SECONDARY KEYS 577

Since there are 1
2 v(v − 1) pairs of objects and three pairs per triple, there must

be 1
6 v(v−1) triples in all; and since each object must be paired with v−1 others,

each object must appear in exactly 1
2 (v−1) triples. These conditions imply that

a Steiner triple system canŠt exist unless 1
6 v(v−1) and 1

2 (v−1) are integers, and
this is equivalent to saying that v is odd and not congruent to 2 modulo 3; thus

v mod 6 = 1 or 3. (17)

Conversely, T. P. Kirkman proved in 1847 that Steiner triple systems do exist for
all v ≥ 1 such that (17) holds. His interesting construction is given in exercise 10.

Steiner triple systems can be used to reduce the redundancy of combined
inverted Ąle indexes. For example, consider again the cookie recipe Ąle of Table 1,
and convert the rightmost column into a 31st attribute that is 1 if any special
ingredients are necessary, 0 otherwise. Assume that we want to answer all
inclusive queries on pairs of attributes, such as ŞWhat recipes use both coconut
and raisins?Ť We could make up an inverted list for each of the

31
2

= 465

possible queries. But it would turn out that this takes a lot of space since
Pfeffernuesse (for example) would appear in

17
2

= 136 of the lists, and a record

with all 31 attributes would appear in every list! A Steiner triple system can be
used to make a slight improvement in this situation. There is a Steiner triple
system on 31 objects, with 155 triples and each pair of objects occurring in
exactly one of the triples. We can associate four lists with each triple {a, b, c},
one list for all records having attributes a, b, c̄ (that is, a and b but not c);
another for a, b̄, c; another for ā, b, c; and another for records having all three
attributes a, b, c. This guarantees that no record will be included in more than
155 of the inverted lists, and it saves space whenever a record has three attributes
that correspond to a triple of the system.

Triple systems are special cases of block designs that have blocks of three or
more objects. For example, there is a way to arrange 31 objects into sextuples
so that every pair of objects appears in exactly one sextuple:

{0, 4, 16, 21, 22, 24}, {1, 5, 17, 22, 23, 25}, . . . , {30, 3, 15, 20, 21, 23} (18)

(This design is formed from the Ąrst block by addition mod 31. To verify that
it has the stated property, note that the 30 values (ai − aj) mod 31, for i ̸= j,
are distinct, where (a1, a2, . . . , a6) = (0, 4, 16, 21, 22, 24). To Ąnd the sextuple
containing a pair (x, y), choose i and j such that ai − aj ≡ x − y (modulo 31);
now if k = (x−ai) mod 31, we have (ai+k) mod 31 = x and (aj+k) mod 31 = y.)

We can use the design above to store the inverted lists in such a way that
no record can appear more than 31 times. Each sextuple {a, b, c, d, e, f} is
associated with 57 lists, for the various possibilities of records having two or
more of the attributes a, b, c, d, e, f , namely (a, b, c̄, d̄, ē, f̄), (a, b̄, c, d̄, ē, f̄),
. . . , (a, b, c, d, e, f); and the answer to each inclusive 2-attribute query is the
disjoint union of 16 appropriate lists in the appropriate sextuple. For this design,
Pfeffernuesse would be stored in 29 of the 31 blocks, since that record has two
of the six attributes in all but blocks {19, 23, 4, 9, 10, 12} and {13, 17, 29, 3, 4, 6}
if we number the columns from 0 to 30.

578 SEARCHING 6.5

The theory of block designs and related patterns is developed in detail in
Marshall Hall, Jr.Šs book Combinatorial Theory (Waltham, Mass.: Blaisdell,
1967). Although such combinatorial conĄgurations are very beautiful, their main
application to information retrieval so far has been to decrease the redundancy
incurred when compound inverted lists are being used; and David K. Chow
[Information and Control 15 (1969), 377Ű396] has observed that this type of
decrease can be obtained even without using combinatorial designs.

A short history and bibliography. The Ąrst published article dealing with a
technique for secondary key retrieval was by L. R. Johnson in CACM 4 (1961),
218Ű222. The multilist system was developed independently by Noah S. Prywes,
H. J. Gray, W. I. Landauer, D. Lefkowitz, and S. Litwin at about the same
time; see IEEE Trans. on Communication and Electronics 82 (1963), 488Ű492.
Another rather early publication that inĆuenced later work was by D. R. Davis
and A. D. Lin, CACM 8 (1965), 243Ű246.

Since then a large literature on the subject grew up rapidly, but much of
it dealt with the user interface and with programming language considerations,
which are not within the scope of this book. In addition to the papers already
cited, the following published articles were found to be most helpful to the
author as this section was Ąrst being written in 1972: Jack Minker and Jerome
Sable, Ann. Rev. of Information Science and Technology 2 (1967), 123Ű160;
Robert E. Bleier, Proc. ACM Nat. Conf. 22 (1967), 41Ű49; Jerome A. Feldman
and Paul D. Rovner, CACM 12 (1969), 439Ű449; Burton H. Bloom, Proc. ACM
Nat. Conf. 24 (1969), 83Ű95; H. S. Heaps and L. H. Thiel, Information Storage
and Retrieval 6 (1970), 137Ű153; Vincent Y. Lum and Huei Ling, Proc. ACM
Nat. Conf. 26 (1971), 349Ű356. A good survey of manual card-Ąling systems
appears in Methods of Information Handling by C. P. Bourne (New York: Wiley,
1963), Chapter 5. Balanced Ąling schemes were originally developed by C. T.
Abraham, S. P. Ghosh, and D. K. Ray-Chaudhuri in 1965; see the article by
R. C. Bose and Gary G. Koch, SIAM J. Appl. Math. 17 (1969), 1203Ű1214.

Most of the classical algorithms for multi-attribute data that are known to
be of practical importance have been discussed above; but a few more topics

are planned for the next edition of this book, including the following:
• E. M. McCreight introduced priority search trees [SICOMP 14 (1985), 257Ű

276], which are specially designed to represent intersections of dynamically
changing families of intervals, and to handle range queries of the form ŞFind
all records with x0 ≤ x ≤ x1 and y ≤ y1.Ť (Notice that the lower bound
on y must be −∞, but x can be bounded on both sides.)
• M. L. Fredman has proved several fundamental lower bounds, which show

that a sequence of N intermixed insertions, deletions, and k-dimensional
range queries must take Ω

N(log N)k

operations in the worst case, re-

gardless of the data structure being used. See JACM 28 (1981), 696Ű705;
SICOMP 10 (1981), 1Ű10; J. Algorithms 2 (1981), 77Ű87.

Basic algorithms for pattern matching and approximate pattern matching in text
strings will be discussed in Chapter 9.

6.5 RETRIEVAL ON SECONDARY KEYS 579

It is interesting to note that the human brain is much better at secondary key
retrieval than computers are; in fact, people Ąnd it rather easy to recognize faces
or melodies from only fragmentary information, while computers have barely
been able to do this at all. Therefore it is not unlikely that a completely new
approach to machine design will someday be discovered that solves the problem
of secondary key retrieval once and for all, making this entire section obsolete.

EXERCISES

x 1. [M27] Let 0 ≤ k ≤ n/2. Prove that the following construction produces

n
k

permutations of {1, 2, . . . , n} such that every t-element subset of {1, 2, . . . , n} appears
as the Ąrst t elements of at least one of the permutations, for t ≤ k or t ≥ n − k :
Consider a path in the plane from (0, 0) to (n, r) where r ≥ n − 2k, in which the ith
step is from (i−1, j) to (i, j+1) or to (i, j−1); the latter possibility is allowed only if
j ≥ 1, so that the path never goes below the x axis. There are exactly

n
k

such paths.

For each path of this kind, a permutation is constructed as follows, using three lists
that are initially empty: For i = 1, 2, . . . , n, if the ith step of the path goes up, put
the number i into list B; if the step goes down, put i into list A and move the currently
largest element of list B into list C. The resulting permutation is equal to the Ąnal
contents of list A, then list B, then list C, each list in increasing order.

For example, when n = 4 and k = 2, the six paths and permutations deĄned by
this procedure are

q�
q�
q�
q�
q

q�
q
❅q�

q�
q

q�
q
❅q�

q
❅q q�

q�
q
❅q�

q

q�
q�
q
❅q
❅q q�

q�
q�
q
❅q

|1 2 3 4| 2|3 4|1 2 4∥1 3 3|1 4|2 3 4∥1 2 4|1 2|3
(Vertical lines show the division between lists A, B, and C. These six permutations
correspond to the compound attributes in (8).)

Hint: Represent each t-element subset S by a path that goes from (0, 0) to
(n, n−2t), whose ith step runs from (i−1, j) to (i, j+1) if i /∈ S and to (i, j−1) if
i ∈ S. Convert every such path into an appropriate path having the special form
stated above.

2. [M25] (Sakti P. Ghosh.) Find the minimum possible length l of a list r1r2 . . . rl

of references to records, such that the set of all responses to any of the inclusive queries
1, *1*, 1, *11, 1*1, 11*, 111 on three binary-valued secondary keys will appear in
consecutive locations ri . . . rj .

3. [19] In Table 2, what inclusive queries will cause (a) Old-Fashioned Sugar Cookies,
(b) Oatmeal-Date Bars, to be obtained among the false drops?

4. [M30] Find exact formulas for the probabilities in (11), assuming that each record
has r distinct attributes chosen randomly from among the

n
k

k-bit codes in an n-bit

Ąeld and that the query involves q distinct but otherwise random attributes. (DonŠt
be alarmed if the formulas do not simplify.)

5. [40] Experiment with various ways to avoid the redundancy of text when using
HarrisonŠs technique for substring searching.

x 6. [M20] The total number of m-bit basic queries with t bits speciĄed is s =

m
t

2t.

If a combinatorial hashing function like that in (13) converts these queries into l1, l2,

580 SEARCHING 6.5

. . . , ls locations, respectively, L(t) = (l1 + l2 + · · · + ls)/s is the average number of
locations per query. [For example, in (13) we have L(3) = 1.75.]

Consider now a composite hash function on an (m1 + m2)-bit Ąeld, formed by
mapping the Ąrst m1 bits with one hash function and the remaining m2 with another,
where L1(t) and L2(t) are the corresponding average numbers of locations per query.
Find a formula that expresses L(t), for the composite function, in terms of L1 and L2.

7. [M24] (R. L. Rivest.) Find the functions L(t), as deĄned in the previous exercise,
for the following combinatorial hash functions:

(a) m = 3, n = 2 (b) m = 4, n = 2

0 0 ∗ → 0 0 0 ∗ ∗ → 0
1 ∗ 0 → 1 ∗ 1 ∗ 0 → 1
∗ 1 1 → 2 ∗ 1 1 1 → 2
1 0 1 → 3 1 0 1 ∗ → 2
0 1 0 → 3 ∗ 1 0 1 → 3

1 0 0 ∗ → 3

8. [M32] (R. L. Rivest.) Consider the set Qt,m of all 2t

m
t

basic m-bit queries

like (10) in which there are exactly t speciĄed bits. Given a set S of m-bit records,
let ft(S) denote the number of queries in Qt,m whose answer contains a member of S;
and let ft(s,m) be the minimum ft(S) over all such sets S having s elements, for
0 ≤ s ≤ 2m. By convention, ft(0, 0) = 0 and ft(1, 0) = δt0.

a) Prove that, for all t ≥ 1 and m ≥ 1, and for 0 ≤ s ≤ 2m,

ft(s,m) = ft(⌈s/2⌉,m− 1) + ft−1(⌈s/2⌉,m− 1) + ft−1(⌊s/2⌋,m− 1).

b) Consider any combinatorial hash function h from the 2m possible records to
2n lists, with each list corresponding to 2m−n records. If each of the queries in
Qt,m is equally likely, the average number of lists that need to be examined per
query is 1/2t

m
t

times

Q∈Qt,m

(lists examined for Q) =

lists S

(queries of Qt,m relevant to S) ≥ 2nft(2
m−n,m).

Show that h is optimal, in the sense that this lower bound is achieved, when each
of the lists is a ŞsubcubeŤ; in other words, show that equality holds in the case
when each list corresponds to a set of records that satisĄes some basic query with
exactly n speciĄed bits.

9. [M20] Prove that when v = 3n, the set of all triples of the form

{(a1 . . . ak−1 0 b1 . . . bn−k)3, (a1 . . . ak−1 1 c1 . . . cn−k)3, (a1 . . . ak−1 2 d1 . . . dn−k)3},
1 ≤ k ≤ n, forms a Steiner triple system, where the aŠs, bŠs, cŠs, and dŠs range over all
combinations of 0s, 1s, and 2s such that bj + cj + dj ≡ 0 (modulo 3) for 1 ≤ j ≤ n− k.

10. [M32] (Thomas P. Kirkman, Cambridge and Dublin Math. Journal 2 (1847),
191Ű204.) Let us say that a Kirkman triple system of order v is an arrangement of
v + 1 objects {x0, x1, . . . , xv} into triples such that every pair {xi, xj} for i ̸= j occurs
in exactly one triple, except that the v pairs {xi, x(i+1) mod v} do not ever occur in the
same triple, for 0 ≤ i < v. For example,

{x0, x2, x4}, {x1, x3, x4}
is a Kirkman triple system of order 4.

6.5 RETRIEVAL ON SECONDARY KEYS 581

a) Prove that a Kirkman triple system can exist only when v mod 6 = 0 or 4.

b) Given a Steiner triple system S on v objects {x1, . . . , xv}, prove that the following
construction yields another Steiner system S′ on 2v + 1 objects and a Kirkman
triple system K′ of order 2v − 2: The triples of S′ are those of S plus

i) {xi, yj , yk} where j + k ≡ i (modulo v) and j < k, 1 ≤ i, j, k ≤ v;

ii) {xi, yj , z} where 2j ≡ i (modulo v), 1 ≤ i, j ≤ v.

The triples of K′ are those of S′ minus all those containing y1 and/or yv.

c) Given a Kirkman triple system K on {x0, x1, . . . , xv}, where v = 2u, prove that
the following construction yields a Steiner triple system S′ on 2v + 1 objects and
a Kirkman triple system K′ of order 2v − 2: The triples of S′ are those of K plus

i) {xi, x(i+1) mod v, yi+1}, 0 ≤ i < v;

ii) {xi, yj , yk}, j+ k ≡ 2i+ 1 (modulo v−1), 1≤ j < k− 1≤ v− 2, 1≤ i≤ v− 2;

iii) {xi, yj , yv}, 2j ≡ 2i+ 1 (modulo v−1), 1 ≤ j ≤ v − 1, 1 ≤ i ≤ v − 2;

iv) {x0, y2j , y2j+1}, {xv−1, y2j−1, y2j}, {xv, yj , yv−j}, for 1 ≤ j < u;

v) {xv, yu, yv}.
The triples of K′ are those of S′ minus all those containing y1 and/or yv−1.

d) Use the preceding results to prove that Kirkman triple systems of order v exist for
all v ≥ 0 of the form 6k or 6k+ 4, and Steiner triple systems on v objects exist for
all v ≥ 1 of the form 6k + 1 or 6k + 3.

11. [M25] The text describes the use of Steiner triple systems in connection with
inclusive queries; in order to extend this to all basic queries it is natural to deĄne
the following concept. A complemented triple system of order v is an arrangement of
2v objects {x1, . . . , xv, x̄1, . . . , x̄v} into triples such that every pair of objects occurs
together in exactly one triple, except that complementary pairs {xi, x̄i} never occur
together. For example,

{x1, x2, x3}, {x1, x̄2, x̄3}, {x̄1, x2, x̄3}, {x̄1, x̄2, x3}
is a complemented triple system of order three.

Prove that complemented triple systems of order v exist for all v ≥ 0 not of the
form 3k + 2.

12. [M23] Continuing exercise 11, construct a complemented quadruple system of
order 7.

13. [M25] Construct quadruple systems with v = 4n elements, analogous to the triple
system of exercise 9.

14. [28] Discuss the problem of deleting nodes from quadtrees, k-d trees, and post-
office trees like Fig. 45.

15. [HM30] (P. Elias.) Given a large collection of m-bit records, suppose we want to
Ąnd a record closest to a given search argument, in the sense that it agrees in the most
bits. Devise an algorithm for solving this problem efficiently, assuming that an m-bit
t-error-correcting code of 2n elements is given, and that each record has been hashed
onto one of 2n lists corresponding to the nearest codeword.

x 16. [25] (W. H. Kautz and R. C. Singleton.) Show that a Steiner triple system of
order v can be used to construct v(v − 1)/6 codewords of v bits each such that no
codeword is contained in the superposition of any two others.

582 SEARCHING 6.5

x 17. [M30] Consider the following way to reduce (2n+ 1)-bit keys a−n . . . a0 . . . an to
(n+ 1)-bit bucket addresses b0 . . . bn:

b0 ← a0;
if bk−1 = 0 then bk ← a−k else bk ← ak, for 1 ≤ k ≤ n.

a) Describe the keys that appear in bucket b0 . . . bn.
b) What is the largest number of buckets that need to be examined, in a basic query

that has t bits speciĄed?

x 18. [M35] (Associative block designs.) A set of m-tuples like (13), with exactly m−n
∗Šs in each of 2n rows, is called an ABD(m,n) if every column contains the same
number of ∗Šs and if every pair of rows has a ŞmismatchŤ (0 versus 1) in some column.
Every m-bit binary number will then match exactly one row. For example, (13) is an
ABD(4, 3).

a) Prove that an ABD(m,n) is impossible unless m is a divisor of 2n−1n and n2 ≥
2m(1− 2−n).

b) A row of an ABD is said to have odd parity if it contains an odd number of 1s.
Show that, for every choice of m − n columns in an ABD(m,n), the number of
odd-parity rows with ∗Šs in these columns equals the number of even-parity rows.
In particular, each pattern of asterisks must occur in an even number of rows.

c) Find an ABD(4, 3) that cannot be obtained from (13) by permuting and/or com-
plementing columns.

d) Construct an ABD(16, 9).
e) Construct an ABD(16, 10). Start with the ABD(16, 9) of part (d), instead of the

ABD(8, 5) of (15).

19. [M22] Analyze the ABD(8, 5) of (15), as (13) has been analyzed in (14): How
many of the 32 locations must be searched for an average query with k bits unspeciĄed?
How many must be searched in the worst case?

20. [M47] Find all ABD(m,n) when n = 5 or n = 6.

6.5 RETRIEVAL ON SECONDARY KEYS 583

A new Section 6.6 devoted to Şpersistent data structuresŤ is planned for the next
edition of the present book. Persistent structures are able to represent changing

information in such a way that the past history can be reconstructed efficiently. In other
words, we might do many insertions and deletions, but we can still conduct searches
as if the updates after a given time had not been made. Relevant early references to
this topic include the following papers:

• J. K. Mullin, Comp. J. 24 (1981), 367Ű373;
• M. H. Overmars, Lecture Notes in Comp. Sci. 156 (1983), Chapter 9;
• E. W. Myers, ACM Symp. Principles of Prog. Lang. 11 (1984), 66Ű75;
• B. Chazelle, Information and Control 63 (1985), 77Ű99;
• D. Dobkin and J. I. Munro, J. Algorithms 6 (1985), 455Ű465;
• R. Cole, J. Algorithms 7 (1986), 202Ű220;
• D. Field, Information Processing Letters 24 (1987), 95Ű96;
• C. W. Fraser and E. W. Myers, ACM Trans. Prog. Lang. and Systems 9 (1987),

277Ű295;
• J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan, J. Comp. Syst. Sci. 38

(1989), 86Ű124;
• R. B. Dannenberg, Software Practice & Experience 20 (1990), 109Ű132;
• J. R. Driscoll, D. D. K. Sleator, and R. E. Tarjan, JACM 41 (1994), 943Ű959.

Instruction tables [programs] will have to be made up

by mathematicians with computing experience

and perhaps a certain puzzle solving ability.

There will probably be a great deal of work of this kind to be done,

for every known process has got to be

translated into instruction table form at some stage. . . .

This process of constructing instruction tables should be very fascinating.

There need be no real danger of it ever becoming a drudge,

for any processes that are quite mechanical

may be turned over to the machine itself.

— ALAN M. TURING (1945)

ANSWERS TO EXERCISES

ŞI have answered three questions, and that is enough,Ť

Said his father, ŞdonŠt give yourself airs!

ŞDo you think I can listen all day to such stuff?

Be off, or IŠll kick you down stairs!Ť

— LEWIS CARROLL, AliceŠs Adventures Under Ground (1864)

NOTES ON THE EXERCISES

1. An average problem for a mathematically inclined reader.

3. See W. J. LeVeque, Topics in Number Theory 2 (Reading, Mass.: AddisonŰWesley,
1956), Chapter 3; P. Ribenboim, 13 Lectures on FermatŠs Last Theorem (New York:
Springer-Verlag, 1979); A. Wiles, Annals of Mathematics (2) 141 (1995), 443Ű551.

SECTION 5

1. Let p(1) . . . p(N) and q(1) . . . q(N) be different permutations satisfying the condi-
tions, and let i be minimal with p(i) ̸= q(i). Then p(i) = q(j) for some j > i, and
q(i) = p(k) for some k > i. Since Kp(i) ≤ Kp(k) = Kq(i) ≤ Kq(j) = Kp(i) we have
Kp(i) = Kq(i); hence by stability p(i) < p(k) = q(i) < q(j) = p(i), a contradiction.

2. Yes, if the sorting operations were all stable. (If they were not stable we cannot
say.) Alice and Chris certainly have the same result; and so does Bill, since the
stability shows that equal major keys in his result are accompanied by minor keys
in nondecreasing order.

Formally, assume that Bill obtains Rp(1) . . . Rp(N) = R′
1 . . . R

′
N after sorting the

minor keys, then R′
q(1) . . . R

′
q(N) = Rp(q(1)) . . . Rp(q(N)) after sorting the major keys; we

want to show that

(Kp(q(i)), kp(q(i))) ≤ (Kp(q(i+1)), kp(q(i+1)))

for 1 ≤ i < N. If Kp(q(i)) ̸= Kp(q(i+1)), we have Kp(q(i)) < Kp(q(i+1)); and if Kp(q(i)) =
Kp(q(i+1)), then K′

q(i) = K′
q(i+1), hence q(i) < q(i + 1), hence k′q(i) ≤ k′q(i+1); that is,

kp(q(i)) ≤ kp(q(i+1)).

3. We can always bring all records with equal keys together, preserving their relative
order, treating these groups of records as a unit in further operations; hence we may
assume that all keys are distinct. Let a < b < c < a; then we can arrange things
so that the Ąrst three keys are abc, bca, or cab. Now if N − 1 distinct keys can be
sorted in three ways, so can N ; for if K1 < · · · < KN−1 > KN we always have either
Ki−1 < KN < Ki for some i, or KN < K1.

584

5 ANSWERS TO EXERCISES 585

4. First compare words without case distinction, then use case to break ties. More
precisely, replace each word α by the pair (α′, α) where α′ is obtained from α by
mapping A → a, . . . , Z → z; then sort the pairs lexicographically. This procedure
gives, for example, tex < Tex < TeX < TEX < text.

Dictionaries must also deal with accented letters, preĄxes, suffixes, and abbrevia-
tions; for example,

a < A < Å < a- < a. < -a < A- < A. < aa < a.a.

< āa < āā < AA < A.A. < AAA < · · · < zz < Zz. < ZZ < zzz < ZZZ.

In this more general situation we obtain α′ by mapping ā → a, Å → a, etc., and
dropping the hyphens and periods.

5. Let ρ(0) = 0 and ρ((1α)2) = 1ρ(|α|)α; here (1α)2 is the ordinary binary represen-
tation of a positive integer, and |α| is the length of the string α. We have ρ(1) = 10,
ρ(2) = 1100, ρ(3) = 1101, ρ(4) = 1110000, . . . , ρ(1009) = 111101001111110001, . . . ,
ρ(65536) = 15024, . . . , ρ(265536) = 16065560, etc. The length of ρ(n) is

|ρ(n)| = λ(n) + λ(λ(n)) + λ(λ(λ(n))) + · · ·+ lg∗ n+ 1,

where λ(0) = 0, λ(n) = ⌊lgn⌋ for n ≥ 1, and lg∗ n is the least integer m ≥ 0 such that
λ[m](n) = 0. [This construction is due to V. I. Levenshtein, Problemy Kibernetiki 20

(1968), 173Ű179; see also D. E. Knuth in The Mathematical Gardner, edited by D. A.
Klarner (Belmont, California: Wadsworth International, 1981), 310Ű325.]

6. OverĆow is possible, and it can lead to a false equality indication. He should have
written, ‘LDA A; CMPA BŠ and tested the comparison indicator. (The inability to make
full-word comparisons by subtraction is a problem on essentially all computers; it is
the chief reason for including CMPA, . . . , CMPX in MIXŠs repertoire.)

7. COMPARE STJ 9F
1H LDX A,1

CMPX B,1
JNE 9F

DEC1 1
J1P 1B

9H JMP *

8. Solution 1, based on the identity min(a, b) = 1
2
(a+ b− |a− b|):

SOL1 LDA A
SRAX 5
DIV =2=
STA A1 a = 2a1 + a2

STX A2 |a2| ≤ 1
LDA B
SRAX 5
DIV =2=
STA B1 b = 2b1 + b2

STX B2 |b2| ≤ 1
LDA A1
SUB B1 no overĆow possible
STA AB1 a1 − b1

LDA A2
SUB B2
STA AB2 a2 − b2

SRAX 1
ADD AB1
ENTX 1
SLAX 5
MUL AB2
STX AB3 (a2 − b2) sign(a− b)
LDA A2
ADD B2
SUB AB3
SRAX 5
DIV =2=
ADD A1
ADD B1 no overĆow possible
SUB AB1(1:5)
STA C

586 ANSWERS TO EXERCISES 5

Solution 2, based on the fact that indexing can cause interchanges in a tricky way:

SOL2 LDA A
STA C
STA TA
LDA B
STA TB

Now duplicate the following code k times, where 2k > 1010:

LDA TA
SRAX 5
DIV =2=
STX TEMP
LD1 TEMP
STA TA
LDA TB
SRAX 5
DIV =2=
STX TEMP
LD2 TEMP
STA TB
INC1 0,2
INC1 0,2
INC1 0,2
LD3 TMIN,1
LDA 0,3
STA C

(This scans the binary representations of a and b from right to left, preserving their
signs.) The program concludes with a table:

HLT
CON C -1 -1
CON B 0 -1
CON B +1 -1
CON A -1 0

TMIN CON C 0 0
CON B 1 0
CON A -1 1
CON A 0 1
CON C 1 1

9.

j

r+j−1

j

(−1)j

N

r+j

xr+j, by the method of inclusion and exclusion (exercise

1.3.3Ű26). This can also be written r

N
r

 x

0
tr−1(1− t)N−r dt, a beta distribution.

10. Sort the tape contents, then count. (Some sorting methods make it convenient to
drop records whose keys appear more than once as the sorting progresses.)

11. Assign each person an identiĄcation number, which must appear on all forms
concerning that individual. Sort the information forms and the tax forms separately,
with this identiĄcation number as the key. Denote the sorted tax forms by R1, . . . , RN,
with keys K1 < · · · < KN. (There should be no two tax forms with equal keys.) Add
a new (N + 1)st record whose key is ∞, and set i ← 1. Then, for each record in the

5 ANSWERS TO EXERCISES 587

information Ąle, check if it has been reported, as follows: Let K denote the key on the
information form being processed.

a) If K > Ki, increase i by 1 and repeat this step.
b) If K < Ki, or if K = Ki and the information is not reĆected on tax form Ri,

signal an error.

Try to do all this processing without wasting the taxpayersŠ money.

12. One way is to attach the key (j, i) to the entry ai,j and to sort using lexicographic
order, then omit the keys. (A similar idea can be used to obtain any desired reordering
of information, when a simple formula for the reordering can be given.)

In the special case considered in this problem, the method of Şbalanced two-way
merge sortingŤ treats the keys in such a simple manner that it is unnecessary to write
any keys explicitly on the tapes. Given an n × n matrix, we may proceed as follows:
First put odd-numbered rows on tape 1, even-numbered rows on tape 2, etc., obtaining

Tape 1: a11 a12 . . . a1n a31 a32 . . . a3n a51 a52 . . . a5n . . .
Tape 2: a21 a22 . . . a2n a41 a42 . . . a4n a61 a62 . . . a6n . . .

Then rewind these tapes, and process them synchronously, to obtain

Tape 3: a11 a21 a12 a22 . . . a1n a2n a51 a61 a52 a62 . . . a5n a6n . . .
Tape 4: a31 a41 a32 a42 . . . a3n a4n a71 a81 a72 a82 . . . a7n a8n . . .

Rewind these tapes, and process them synchronously, to obtain

Tape 1: a11 a21 a31 a41 a12 . . . a42 . . . a4n a9,1 . . .
Tape 2: a51 a61 a71 a81 a52 . . . a82 . . . a8n a13,1 . . .

And so on, until the desired transpose is obtained after ⌈lgn⌉+ 1 passes.

13. One way is to attach random distinct key values, sort on those keys, then discard
the keys. (See exercise 12; a similar method for obtaining a random sample was
discussed in Section 3.4.2.) Another technique, involving about the same amount of
work but apparently not straining the accuracy of the random number generator as
much, is to attach a random integer in the range 0 ≤ Ki ≤ N − i to Ri, then rearrange
using the technique of exercise 5.1.1Ű5.

14. With a character-conversion table, you can design a lexicographic comparison rou-
tine that simulates the order used on the other machine. Alternatively, you could create
artiĄcial keys, different from the actual characters but giving the desired ordering. The
latter method has the advantage that it needs to be done only once; but it takes more
space and requires conversion of the entire key. The former method can often determine
the result of a comparison by converting only one or two letters of the keys; during
later stages of sorting, the comparison will be between nearly equal keys, however,
and the former method may Ąnd it advantageous to check for equality of letters before
converting them.

15. For this problem, just run through the Ąle once keeping 50 or so individual counts.
But if ŞcityŤ were substituted for Şstate,Ť and if the total number of cities were quite
large, it would be a good idea to sort on the city name.

16. As in exercise 15, it depends on the size of the problem. If the total number of
cross-reference entries Ąts into high-speed memory, the best approach is probably to
use a symbol table algorithm (Chapter 6) with each identiĄer associated with the head
of a linked list of references. For larger problems, create a Ąle of records, one record
for each cross-reference citation to be put in the index, and sort it.

588 ANSWERS TO EXERCISES 5

17. Carry along with each card a Şshadow keyŤ that, sorted lexicographically in the
usual simple way, will deĄne the desired ordering. This key is to be supplied by library
personnel and attached to the catalog data when it Ąrst enters the system, although
it is not visible to normal users. A possible key uses the following two-letter codes to
separate words from each other:

␣0 end of key;
␣1 end of cross-reference card;
␣2 end of surname;
␣3 hyphen of multiple surname;
␣4 end of author name;
␣5 end of place name;
␣6 end of subject heading;
␣7 end of book title;
␣8 space between words.

The given example would come out as follows (showing only the Ąrst 25 characters):

ACCADEMIA␣8NAZIONALE␣8DEI
ACHTZEHNHUNDERTZWOLF␣8EIN
BIBLIOTHEQUE␣8D␣8HISTOIRE
BIBLIOTHEQUE␣8DES␣8CURIOS
BROWN␣2J␣8CROSBY␣4␣0
BROWN␣2JOHN␣4␣0
BROWN␣2JOHN␣4MATHEMATICIA
BROWN␣2JOHN␣4OF␣8BOSTON␣0
BROWN␣2JOHN␣41715␣0
BROWN␣2JOHN␣41715␣6␣0
BROWN␣2JOHN␣41761␣0
BROWN␣2JOHN␣41810␣0
BROWN␣3WILLIAMS␣2REGINALD
BROWN␣8AMERICA␣7␣0
BROWN␣8AND␣8DALLISONS␣8NE
BROWNJOHN␣2ALAN␣4␣0
DEN␣2VLADIMIR␣8EDUARDOVIC
DEN␣7␣0
DEN␣8LIEBEN␣8LANGEN␣8TAG␣
DIX␣2MORGAN␣41827␣0
DIX␣8HUIT␣8CENT␣8DOUZE␣8O
DIX␣8NEUVIEME␣8SIECLE␣8FR
EIGHTEEN␣8FORTY␣8SEVEN␣8I
EIGHTEEN␣8TWELVE␣8OVERTUR
I␣8AM␣8A␣8MATHEMATICIAN␣7
I␣8B␣8M␣8JOURNAL␣8OF␣8RES

I␣8HA␣8EHAD␣7␣0
IA␣8A␣8LOVE␣8STORY␣7␣0
INTERNATIONAL␣8BUSINESS␣8
KHUWARIZMI␣2MUHAMMAD␣8IBN
LABOR␣7A␣8MAGAZINE␣8FOR␣8
LABOR␣8RESEARCH␣8ASSOCIAT
LABOUR␣1␣0
MACCALLS␣8COOKBOOK␣7␣0
MACCARTHY␣2JOHN␣41927␣0
MACHINE␣8INDEPENDENT␣8COM
MACMAHON␣2PERCY␣8ALEXANDE
MISTRESS␣8DALLOWAY␣7␣0
MISTRESS␣8OF␣8MISTRESSES␣
ROYAL␣8SOCIETY␣8OF␣8LONDO
SAINT␣8PETERSBURGER␣8ZEIT
SAINT␣8SAENS␣2CAMILLE␣418
SAINTE␣8MARIE␣2GASTON␣8P␣
SEMINUMERICAL␣8ALGORITHMS
UNCLE␣8TOMS␣8CABIN␣7␣0
UNITED␣8STATES␣8BUREAU␣8O
VANDERMONDE␣2ALEXANDER␣8T
VANVALKENBURG␣2MAC␣8ELWYN
VONNEUMANN␣2JOHN␣41903␣0
WHOLE␣8ART␣8OF␣8LEGERDEMA
WHOS␣8AFRAID␣8OF␣8VIRGINI
WIJNGAARDEN␣2ADRIAAN␣8VAN

This auxiliary key should be followed by the card data, so that unequal cards having
the same auxiliary key (e.g., Sir John = John) are distinguished properly. Notice that
ŞSaint-SaënsŤ is a hyphenated name but not a compound name. The birth year of
al-Khuwārizmı̄ should be given as, say, ␣40779 with a leading zero. (This scheme will
work until the year 9999, after which the world will face a huge software crisis.)

Careful study of this example reveals how to deal with many other unusual types
of order that are needed in human-computer interaction.

5 ANSWERS TO EXERCISES 589

18. For example, we can make two Ąles containing values of (u6 + v6 + w6) modm
and (z6 − x6 − y6) modm for u ≤ v ≤ w, x ≤ y ≤ z, where m is the word size of our
computer. Sort these and look for duplicates, then subject the duplicates to further
tests. (Some congruences modulo small primes might also be used to place further
restrictions on u, v, w, x, y, z.)

19. In general, to Ąnd all pairs of numbers {xi, xj} with xi + xj = c, where c is given:
Sort the Ąle so that x1 < x2 < · · · < xN. Set i ← 1, j ← N, and then repeat the
following operation until j ≤ i:

If xi + xj = c, output {xi, xj}, set i← i+ 1, j ← j − 1;
If xi + xj < c, set i← i+ 1;
If xi + xj > c, set j ← j − 1.

Finally if j = i and 2xi = c, output {xi, xi}. This process is like the method of
exercise 18: We are essentially making two sorted Ąles, one containing x1, . . . , xN and
the other containing c−xN , . . . , c−x1, and checking for duplicates. But the second Ąle
doesnŠt need to be explicitly formed in this case. Another approach, suggested by Jiang
Ling, is to sort on a key such as (x > c/2⇒ x, x ≤ c/2⇒ c− x).

A similar algorithm can be used to Ąnd max{xi +xj | xi +xj ≤ c}; or to Ąnd, say,
min{xi + yj | xi + yj > t} given t and two sorted Ąles x1 ≤ · · · ≤ xm, y1 ≤ · · · ≤ yn.

20. Some of the alternatives are: (a) For each of the 499,500 pairs i, j, with 1 ≤ i <
j ≤ 1000, set y1 ← xi ⊕ xj , y2 ← y1 & (y1 − 1), y3 ← y2 & (y2 − 1); then print (xi, xj)
if and only if y3 = 0. Here ⊕ denotes Şexclusive orŤ and & denotes Şbitwise andŤ.
(b) Create a Ąle with 31,000 entries, forming 31 entries from each original word xi by
including xi and the 30 words that differ from xi in one position. Sort this Ąle and
look for duplicates. (c) Do a test analogous to (a) on

i) all pairs of words that agree in their Ąrst 10 bits;

ii) all pairs of words that agree in their middle 10 bits, but not the Ąrst 10;

iii) all pairs of words that agree in their last 10 bits, but neither the Ąrst nor middle 10.

This involves three sorts of the data, using a speciĄed 10-bit key each time. The
expected number of pairs in each of the three cases is at most 499500/210, which is less
than 500, if the original words are randomly distributed.

21. First prepare a Ąle containing all Ąve-letter English words. (Be sure to consider
adding suffixes such as -ED, -ER, -ERS, -S to shorter words.) Now take each Ąve-
letter word α and sort its letters into ascending order, obtaining the sorted Ąve-letter
sequence α′. Finally sort all pairs (α′, α) to bring all anagrams together.

Experiments by Kim D. Gibson in 1967 showed that the second longest set of
commonly known Ąve-letter anagrams is LEAST, SLATE, STALE, STEAL, TAELS, TALES,
TEALS. But if he had been able to use larger dictionaries, he would have been able to
catapult this set into Ąrst place, by adding the words ALETS (steel shoulderplates), ASTEL
(a splinter), ATLES (intends), LAETS (people who rank between slaves and freemen),
LASET (an ermine), LATES (a Nile perch), LEATS (watercourses), SALET (a mediæval
helmet), SETAL (pertaining to setae), SLEAT (to incite), STELA (a column), and TESLA
(a unit of magnetic Ćux density). Together with the old spellings SATEL, TASEL, and
TASLE for ŞsettleŤ and Şteasel,Ť we obtain 22 mutually permutable words, none of which
needs to be spelled with an uppercase letter. And with a bit more daring we might
add the Old English tæsl, German altes, and Madame de Staël! The set {LAPSE, LEAPS,
PALES, PEALS, PLEAS, SALEP, SEPAL} can also be extended to at least 14 words when we
turn to unabridged dictionaries. [See H. E. Dudeney, Strand 65 (1923), 208, 312, and

590 ANSWERS TO EXERCISES 5

his 300 Best Word Puzzles, edited by Martin Gardner (1968), Puzzles 190 and 194;
Ross Eckler, Making the Alphabet Dance (St. MartinŠs Griffin, 1997), Fig. 46c.]

The Ąrst and last sets of three or more Ąve-letter English anagrams are {ALBAS,
BALAS, BALSA, BASAL} and {STRUT, STURT, TRUST}, if proper names are not allowed. How-
ever, the proper names Alban, Balan, Laban, and Nabal lead to an earlier set {ALBAN,
BALAN, BANAL, LABAN, NABAL, NABLA} if that restriction is dropped. The most striking
example of longer anagram words in common English is perhaps the amazingly math-
ematical set {ALERTING, ALTERING, INTEGRAL, RELATING, TRIANGLE}.

A faster way to proceed is to compute f(α) = (h(a1)+h(a2)+ · · ·+h(a5)) modm,
where a1, . . . , a5 are numerical codes for the individual letters in α, and (h(1), h(2), . . .)
are 26 randomly selected constants; here m is, say, 2⌊2 lg N⌋ when there are N words.
Sorting the Ąle (f(α), α) with two passes of Algorithm 5.2.5R will bring anagrams
together; afterwards when f(α) = f(β) we must make sure that we have a true anagram
with α′ = β ′. The value f(α) can be calculated more rapidly than α′, and this method
avoids the determination of α′ for most of the words α in the Ąle.

Note: A similar technique can be used when we want to bring together all sets of
records that have equal multiword keys (a1, . . . , an). Suppose that we donŠt care about
the order of the Ąle, except that records with equal keys are to be brought together; it
is sometimes faster to sort on the one-word key (a1x

n−1 + a2x
n−2 + · · ·+ an) modm,

where x is any Ąxed value, instead of sorting on the original multiword key.

22. Find isomorphic invariants of the graphs (functions that take equal values on
isomorphic directed graphs) and sort on these invariants, to separate Şobviously noni-
somorphicŤ graphs from each other. Examples of isomorphic invariants: (a) Represent
vertex vi by (ai, bi), where ai is its in-degree and bi is its out-degree; then sort the
pairs (ai, bi) into lexicographic order. The resulting Ąle is an isomorphic invariant.
(b) Represent an arc from vi to vj by (ai, bi, aj , bj), and sort these quadruples into
lexicographic order. (c) Separate the directed graph into connected components (see
Algorithm 2.3.3E), determine invariants of each component, and sort the components
into order of their invariants in some way. See also the discussion in exercise 21.

After sorting the directed graphs on their invariants, it will still be necessary to
make secondary tests to see whether directed graphs with identical invariants are in fact
isomorphic. The invariants are helpful for these tests too. In the case of free trees it is
possible to Ąnd ŞcharacteristicŤ or ŞcanonicalŤ invariants that completely characterize
the tree, so that secondary testing is unnecessary [see J. Hopcroft and R. E. Tarjan, in
Complexity of Computer Computations (New York: Plenum, 1972), 140Ű142].

23. One way is to form a Ąle containing all three-person cliques, then transform it into
a Ąle containing all four-person cliques, etc.; if there are no large cliques, this method
will be quite satisfactory. (On the other hand, if there is a clique of size n, there are at
least

n
k

cliques of size k; so this method can blow up even when n is only 25 or so.)

Given a Ąle that lists all (k − 1)-person cliques, in the form (a1, . . . , ak−1) where
a1 < · · · < ak−1, we can Ąnd the k-person cliques by (i) creating a new Ąle containing
the entries (b, c, a1, . . . , ak−2) for each pair of (k − 1)-person cliques of the respective
forms (a1, . . . , ak−2, b), (a1, . . . , ak−2, c) with b < c; (ii) sorting this Ąle on its Ąrst
two components; (iii) for each entry (b, c, a1, . . . , ak−2) in this new Ąle that matches
a pair (b, c) of acquaintances in the originally given Ąle, output the k-person clique
(a1, . . . , ak−2, b, c).

24. (Solution by Norman Hardy, c. 1967.) Make another copy of the input Ąle; sort
one copy on the Ąrst components and the other on the second. Passing over these

5.1.1 ANSWERS TO EXERCISES 591

Ąles in sequence now allows us to create a new Ąle containing all pairs (xi, xi+2) for
1 ≤ i ≤ N−2, and to identify (xN−1, xN). The pairs (N−1, xN−1) and (N, xN) should
be written on still another Ąle.

The process continues inductively. Assume that Ąle F contains all pairs (xi, xi+t)
for 1 ≤ i ≤ N − t, in random order, and that Ąle G contains all pairs (i, xi) for
N − t < i ≤ N in order of the second components. Let H be a copy of Ąle F, and
sort H by Ąrst components, F by second. Now go through F, G, and H, creating two
new Ąles F ′ and G′, as follows. If the current records of Ąles F, G, H are, respectively
(x, x′), (y, y′), (z, z′), then:

i) If x′ = z, output (x, z′) to F ′ and advance Ąles F and H.

ii) If x′ = y′, output (y−t, x) to G′ and advance Ąles F and G.

iii) If x′ > y′, advance Ąle G.

iv) If x′ > z, advance Ąle H.

When Ąle F is exhausted, sort G′ by second components and merge G with it; then
replace t by 2t, F by F ′, G by G′.

Thus t takes the values 2, 4, 8, . . . ; and for Ąxed t we do O(logN) passes over the
data to sort it. Hence the total number of passes is O((logN)2). Eventually t ≥ N, so
F is empty; then we simply sort G on its Ąrst components.

25. (An idea due to D. Shanks.) Prepare two Ąles, one containing amn mod p and the
other containing ba−n mod p for 0 ≤ n < m. Sort these Ąles and Ąnd a common entry.

Note: This reduces the worst-case running time from Θ(p) to Θ(
√
p log p). SigniĄ-

cant further improvements are often possible; for example, we can easily determine if n
is even or odd, in log p steps, by testing whether b(p−1)/2 mod p = 1 or (p−1). In general
if f is any divisor of p− 1 and d is any divisor of gcd(f, n), we can similarly determine
(n/d) mod f by looking up the value of b(p−1)/f in a table of length f/d. If p − 1 has
the prime factors q1 ≤ q2 ≤ · · · ≤ qt and if qt is small, we can therefore compute n
rapidly by Ąnding the digits from right to left in its mixed-radix representation, for
radices q1, . . . , qt. (This idea is due to R. L. Silver, 1964; see also S. C. Pohlig and
M. Hellman, IEEE Transactions IT-24 (1978), 106Ű110.)

John M. Pollard discovered an elegant way to compute discrete logs with about
O(
√
p) operations mod p, requiring very little memory, based on the theory of random

mappings. See Math. Comp. 32 (1978), 918Ű924, where he also suggests another
method based on numbers nj = rj mod p that have only small prime factors.

Asymptotically faster methods are discussed in exercise 4.5.4Ű46.

SECTION 5.1.1

1. 2 0 5 2 2 3 0 0 0; 2 7 3 5 4 1 8 6.

2. b1 = (m− 1) mod n; bj+1 = (bj +m− 1) mod (n− j).
3. aj = an+1−j (the ŞreĆectedŤ permutation). This idea was used by O. Terquem

[Journ. de Math. 3 (1838), 559Ű560] to prove that the average number of inversions in
a random permutation is 1

2

n
2

.

4. C1. Set x0 ← 0. (It is possible to let xj share memory with bj in what follows,
for 1 ≤ j ≤ n.)

C2. For k = n, n−1, . . . , 1 (in this order) do the following: Set j ← 0; then set
j ← xj exactly bk times; then set xk ← xj and xj ← k.

C3. Set j ← 0.

592 ANSWERS TO EXERCISES 5.1.1

C4. For k = 1, 2, . . . , n (in this order), do the following: Set ak ← xj ; then set
j ← xj .

To save memory space, see exercise 5.2Ű12.

5. Let α be a string [m1, n1] . . . [mk, nk] of ordered pairs of nonnegative integers; we
write |α| = k, the length of α. Let ϵ denote the empty (length 0) string. Consider the
binary operation ◦ deĄned recursively on pairs of such strings as follows:

ϵ ◦ α = α ◦ ϵ = α;

([m,n]α) ◦ ([m′, n′]β) =

[m,n](α ◦ ([m′−m,n′]β)), if m ≤ m′,

[m′, n′](([m−m′−1, n]α) ◦ β), if m > m′.

It follows that the computation time required to evaluate α ◦ β is proportional to
|α ◦ β| = |α| + |β|. Furthermore, we can prove that ◦ is associative and that [b1, 1] ◦
[b2, 2]◦ · · · ◦ [bn, n] = [0, a1][0, a2] . . . [0, an]. The expression on the left can be evaluated
in ⌈lgn⌉ passes, each pass combining pairs of strings, for a total of O(n logn) steps.

Example: Starting from (2), we want to evaluate [2, 1] ◦ [3, 2] ◦ [6, 3] ◦ [4, 4] ◦ [0, 5] ◦
[2, 6]◦ [2, 7]◦ [1, 8]◦ [0, 9]. The Ąrst pass reduces this to [2, 1][1, 2]◦ [4, 4][1, 3]◦ [0, 5][2, 6]◦
[1, 8][0, 7]◦ [0, 9]. The second pass reduces it to [2, 1][1, 2][1, 4][1, 3]◦ [0, 5][1, 8][0, 6][0, 7]◦
[0, 9]. The third pass yields [0, 5][1, 1][0, 8][0, 2][0, 6][0, 4][0, 7][0, 3] ◦ [0, 9]. The fourth
pass yields (1).

Motivation: A string such as [4, 4][1, 3] stands for Ş␣␣␣␣4␣3␣∞Ť, where Ş␣Ť denotes
a blank; the operation α◦β inserts the blanks and nonblanks of β into the blanks of α.
Note that, together with exercise 2, we obtain an algorithm for the Josephus problem
that is O(n logn) instead of O(mn), partially answering a question raised in exercise
1.3.2Ű22.

Another O(n logn) solution to this problem, using a random-access memory, fol-
lows from the use of balanced trees in a straightforward manner.

6. Start with b1 = b2 = · · · = bn = 0. For k = ⌊lgn⌋, ⌊lgn⌋−1, . . . , 0 do the
following: Set xs ← 0 for 0 ≤ s ≤ n/2k+1; then for j = 1, 2, . . . , n do the following:
Set r ← ⌊aj/2k⌋mod 2, s← ⌊aj/2k+1⌋ (these are essentially bit extractions); if r = 0,
set baj ← baj + xs, and if r = 1 set xs ← xs + 1.

Another solution appears in exercise 5.2.4Ű21.

7. Bj < j and Cj ≤ n− j, since aj has j−1 elements to its left and n− j elements to
its right. To reconstruct a1 a2 . . . an from B1 B2 . . . Bn, start with the element 1; then
for k = 2, . . . , n add one to each element ≥ k − Bk and append k − Bk at the right.
(See Method 2 in Section 1.2.5). A similar procedure works for the CŠs. Alternatively,
we could use the result of the following exercise. [The c inversion table was discussed
by Rodrigues, J. de Math. 4 (1839), 236Ű240. The C inversion table was used by Rothe
in 1800; see also NettoŠs Lehrbuch der Combinatorik (1901), §5.]

8. b′ = C, c′ = B, B′ = c, C′ = b, since each inversion (ai, aj) of a1 . . . an corresponds
to the inversion (j, i) of a′1 . . . a

′
n. Some further relations: (a) cj = j − 1 if and only if

(bi > bj for all i < j); (b) bj = n−j if and only if (ci > cj for all i > j); (c) bj = 0 if and
only if (ci−i < cj−j for all i > j); (d) cj = 0 if and only if (bi +i < bj +j for all i < j);
(e) bi ≤ bi+1 if and only if a′i < a′i+1, if and only if ci ≥ ci+1; (f) aj = j + Cj − Bj ;
a′j = j + bj − cj .

9. b = C = b′ is equivalent to a = a′.

5.1.1 ANSWERS TO EXERCISES 593

10.
√

10. (One way to coordinatize the truncated octahedron lets the respective
vectors (1, 0, 0), (0, 1, 0), 1

2
(1, 1,

√
2), 1

2
(1,−1,

√
2), 1

2
(−1, 1,

√
2), 1

2
(−1,−1,

√
2) stand

for adjacent interchanges of the respective pairs 21, 43, 41, 31, 42, 32. The sum of
these vectors gives (1, 1, 2

√
2) as the difference between vertices 4321 and 1234.)

A more symmetric solution is to represent vertex π in four dimensions by

{eu − ev | (u, v) is an inversion of π},

where e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0), e4 = (0, 0, 0, 1). Thus, 1 2 3 4↔
(0, 0, 0, 0); 1 2 4 3 ↔ (0, 0,−1, 1); . . . ; 4 3 2 1 ↔ (−3,−1, 1, 3). All points lie on the
three-dimensional subspace {(w, x, y, z) | w+x+y+z = 0}; the distance between adja-
cent vertices is

√
2. Equivalently (see answer 8(f)) we may represent π = a1 a2 a3 a4 by

the vector (a′1, a
′
2, a

′
3, a

′
4), where a′1 a

′
2 a

′
3 a

′
4 is the inverse permutation. (This 4-D repre-

sentation of the truncated octahedron with permutations as coordinates was discussed
together with its n-dimensional generalization by C. Howard Hinton in The Fourth
Dimension (London, 1904), Chapter 10. Further properties were found many years later
by Guilbaud and Rosenstiehl, who called Fig. 1 the ŞpermutahedronŤ; see exercise 12.)

Replicas of the truncated octahedron will Ąll three-dimensional space in what has
been called the simplest possible way [see H. Steinhaus, Mathematical Snapshots (Ox-
ford, 1960), 200Ű203; C. S. Smith, ScientiĄc American 190, 1 (January 1954), 58Ű64].
Book V of PappusŠs Collection (c. A.D. 300) mentions the truncated octahedron as
one of 13 special solid Ągures studied by Archimedes. Illustrations of the Archimedean
solids Ů the nonprism polyhedra that have symmetries taking any vertex into any other,
and whose faces are regular polygons but not all identical Ů can be found, for example,
in books by W. W. Rouse Ball, Mathematical Recreations and Essays, revised by
H. S. M. Coxeter (Macmillan, 1939), Chapter 5; H. Martyn Cundy and A. P. Rollett,
Mathematical Models (Oxford, 1952), 94Ű109.

11. (a) Obvious. (b) Construct a directed graph with vertices {1, 2, . . . , n} and arcs
x→ y if either x > y and (x, y) ∈ E or x < y and (y, x) ∈ E. If there are no oriented
cycles, this directed graph can be topologically sorted, and the resulting linear order is
the desired permutation. If there is an oriented cycle, the shortest has length 3, since
there are none of length 1 or 2 and since a longer cycle a1 → a2 → a3 → a4 → · · · → a1

can be shortened (either a1 → a3 or a3 → a1). But an oriented cycle of length 3
contains two arcs of either E or E, and proves that E or E is not transitive after all.

12. [G. T. Guilbaud and P. Rosenstiehl, Math. et Sciences Humaines 4 (1963), 9Ű33.]
Suppose that (a, b) ∈ E, (b, c) ∈ E, (a, c) /∈ E. Then for some k ≥ 1 we have
a = x0 > x1 > · · · > xk = c, where (xi, xi+1) ∈ E(π1) ∪ E(π2) for 0 ≤ i < k.
Consider a counterexample of this type where k is minimal. Since (a, b) /∈ E(π1) and
(b, c) /∈ E(π1), we have (a, c) /∈ E(π1), and similarly (a, c) /∈ E(π2); hence k > 1. But
if x1 > b, then (x1, b) ∈ E contradicts the minimality of k, while (x1, b) ∈ E implies
that (a, b) ∈ E. Similarly, if x1 < b, both (b, x1) ∈ E and (b, x1) ∈ E are impossible.

13. For any Ąxed choice of b1, . . . , bn−m, bn−m+2, . . . , bn in the inversion table, the
total

j bj will assume each possible residue modulo m exactly once as bn−m+1 runs

through its possible values 0, 1, . . . , m− 1.

14. The hinted construction takes pairs of distinct-part partitions into each other,
except in the two cases j = k = pk and j = k = pk − 1. In the exceptional cases, n is
(2j − 1) + · · · + j = (3j2 − j)/2 and (2j) + · · · + (j + 1) = (3j2 + j)/2, respectively,
and there is a unique unpaired partition with j parts. [Comptes Rendus Acad. Sci.
92 (Paris, 1881), 448Ű450. EulerŠs original proof, in Novi Comment. Acad. Sci. Pet. 5

594 ANSWERS TO EXERCISES 5.1.1

(1754), 75Ű83, was also very interesting. He showed by simple manipulations that the
inĄnite product equals s1, if we deĄne sn as the power series 1 − z2n−1 − z3n−1sn+1,
for n ≥ 1. Finite versions of EulerŠs inĄnite sum are discussed by Knuth and Paterson
in Fibonacci Quarterly 16 (1978), 198Ű212.]

15. Transpose the dot diagram, to go from the pŠs to the P Šs. The generating function
for the P Šs is easily obtained, since we Ąrst choose any number of 1s (generating function
1/(1−z)), then independently choose any number of 2s (generating function 1/(1−z2)),
. . . , Ąnally any number of nŠs.

16. The coefficient of znqm in the Ąrst identity is the number of partitions of m into
at most n parts. In the second identity it is the number of partitions of m into n
distinct nonnegative parts, namely sums of the form m = p1 + p2 + · · · + pn, where
p1 > p2 > · · · > pn ≥ 0. This is the same as m −

n
2

= q1 + q2 + · · · + qn, where

q1 ≥ q2 ≥ · · · ≥ qn ≥ 0, under the correspondence qi = pi − n + i. [Commentarii
Academiæ Scientiarum Petropolitanæ 13 (1741), 64Ű93.]

Notes: The second identity is the limit as n→∞ of the q-nomial theorem, exercise
1.2.6Ű58. The Ąrst identity, similarly, is the limit as r → ∞ of the dual form of that
theorem, proved in the answer to that exercise.

Let n!q =
n

k=1(1 + q + · · · + qk−1), and let expq(z) =
∞

n=0 z
n/n!q. The Ąrst

identity tells us that expq(z) is equal to 1/
∞

k=0(1 − qkz(1 − q)) when |q| < 1; the
second tells us that it equals

∞
k=0(1 + q−kz(1 − q−1)) when |q| > 1. The resulting

formal power series identity expq(z) expq−1 (−z) = 1 is equivalent to the formula

n

k=0

(−1)kqk(k−1)/2

(1− q) . . . (1− qk) (1− q) . . . (1− qn−k)
= δn0, integer n ≥ 0,

which is a consequence of the q-nomial theorem with x = −1.

17. 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
1 1 0 1 1 2 0 1 1 0 2 1 1 0 1 2
1 0 1 0 0 1 1 0 0 1 2 0 0 1 0 2
1 0 1 1 0 1 1 1 0 1 2 1 0 1 1 2
1 0 0 1 0 1 0 1 0 0 1 1 0 0 1 2
2 0 1 2 0 2 1 2 0 1 2 2 0 1 2 3

18. Let q = 1 − p. The sum

Pr(α) over all instances α of inversions may be
evaluated by summing on k, where 0 ≤ k < n is the exact number of leftmost
bit positions in which there is equality between i and j as well as between Xi and
Xj , in an inversion Xi ⊕ i > Xj ⊕ j for i < j. In this way we obtain the formula

0≤k<n 2k(p2 + q2)k(p22n−k−12n−k−1 + 2pq2n−k−1(2n−k−1 − 1)); summing and sim-
plifying yields 2n−1(p(2− p)(2n − (p2 + q2)n)/(2− p2 − q2) + (p2 + q2)n − 1).

19. The number of inversions is

0<i<j<n(⌊mj/n⌋ − ⌊mi/n⌋ − ⌊m(j − i)/n⌋) =
0<i<j<n[mj mod n<mimod n] =

0<r<n⌊mr/n⌋(r− (n− r)− (n− r− 1)), which

can be transformed to 1
4
(n− 1)(n− 2)− 1

4
nσ(m,n, 0). [Crelle 198 (1957), 162Ű166.]

20. See J. J. Sylvester, Amer. J. Math. 5 (1882), 251Ű330, 6 (1883), 334Ű336, §57Ű§68;
E. M. Wright, J. London Math. Soc. 40 (1965), 55Ű57; and J. Zolnowsky, Discrete
Math. 9 (1974), 293Ű298.

JacobiŠs identity can be proved rapidly as follows. Since
n

k=1

(1− ukvk−1) = (−1)nu(n+1

2)v(n2)
n

k=1

(1− u−kv1−k) ,

5.1.1 ANSWERS TO EXERCISES 595

the q-nomial theorem of exercise 1.2.6Ű58 with q = uv tells us that
n

k=1

(1− ukvk−1)(1− uk−1vk) = (−1)nu(n+1

2)v(n2)
n

k=−n+1

(1− uk−1vk)

= (−1)nu(n+1

2)v(n2)

j

2n
j

uv
(uv)(

j
2)(−u−nv1−n)j

=

j

 2n
n+ j

uv
(−1)ju(j2)v(j+1

2).

Multiply both sides by
n

k=1(1− ukvk) =
n

k=1(1− qk) and note that, for Ąxed j, we
have

2n

n+j

q

n
k=1(1− qk) = 1 +O(qn+1−|j|). JacobiŠs identity follows as n→∞.

21. Interpret Cj as the number of elements on the stack after the jth output. (See
exercise 2.3.3Ű19 for characterizations of the b and B tables of stack permutations.)

22. (a) Arrange the numbers {1, 2, . . . , n} in a circle as on the face of a clock, and point
at 1. Then for j = n, n − 1, . . . , 1 (in this order), move the pointer counterclockwise
hj + 1 steps, remove the number pointed to from the circle, and call it aj .

(b) Each i is counted as often as the sequence ai ai+1 . . . an wraps around; this
is the number of times that aj > aj+1 for j ≥ i. Therefore each j with aj > aj+1

corresponds to the indices 1, . . . , j being counted once. [Guo-Niu Han, Advances in
Math. 105 (1994), 28Ű29; an equivalent result had been obtained by Rawlings, in the
context of the next exercise.]

23. Suppose, for example, that n = 5 and a1 a2 a3 a4 a5 = 3 1 4 2 5. The number of
missed shots before each death must then be 2 + 5k1, 2 + 4k2, 1 + 3k3, 1 + 2k2, k5,
for some nonnegative integers kj . Note that the dual permutation 1 4 2 5 3 has h-table
0 1 1 2 2 in the notation of the previous exercise. In general, the probability of obtaining
a1 a2 . . . an will be

k1,...,kn≥0

(qhn+nk1

1 p1)(qhn−1+(n−1)k2

2 p2) . . . (qh1+kn
n pn)

=
1− q1

1− qn
1

1− q2

1− qn−1
2

. . .
1− qn

1− q1
n

qhn
1 q

hn−1

2 . . . qh1
n ,

where pj = 1 − qj is the probability of fatality after j − 1 deaths, and h1 h2 . . . hn

corresponds to the dual of a1 a2 . . . an. In particular, when p1 = · · · = pn = p =
1− q, the probability is qh1+···+hn/Gn(q). The least likely order is therefore n . . . 2 1.
[J. Treadway and D. Rawlings, Math. Mag. 67 (1994), 345Ű354; Rawlings generalized
the process to multiset permutations in Int. J. Math. & Math. Sci. 15 (1992), 291Ű312.]

24. Let a0 = 0, and say that a generalized descent occurs at j < n if aj > t(aj+1).
Inserting n between aj−1 and aj causes a new generalized descent if and only if aj−1 ≤
t(aj) < n. Suppose this occurs when j has the values j1 > j2 > · · · > jk > 0; let the
other values of j be jn > jn−1 > · · · > jk+1. Then jn = n, and it can be shown that
the generalized index increases by n−k when n is inserted just before ajk . [The special
case in which t(j) = j + d for some d ≥ 0 is due to D. Rawlings, J. Combinatorial
Theory A31 (1981), 175Ű183; he generalized this special case to multiset permutations
in Linear and Multilinear Algebra 10 (1981), 253Ű260.]

This exercise deĄnes n! different statistics on permutations, each of which has
the generating function Gn(z) that appears in (7) and (8). We can deĄne many
more such statistics by generalizing Russian roulette as follows: After j − 1 deaths,

596 ANSWERS TO EXERCISES 5.1.1

the person who begins the next round of shooting is fj(a1, . . . , aj−1), where fj is an
arbitrary function taking values in {1, . . . , n}\{a1, . . . , aj−1}. [See Guo-Niu Han, Calcul
Denertien (Thesis, Univ. Strasbourg, 1992), Part 1.3, §7.]

25. (a) If a1 < an, h(α) has exactly as many inversions as α, because the elements of
αj now invert xj instead of an. But if a1 > an, h(α) has n−1 fewer inversions, because
xj loses its inversion of an and of each element in αj . Therefore if we set xn = an and
recursively let x1 . . . xn−1 = f(h(α)), the permutation f(α) = x1 . . . xn has the desired
properties. We have f(1 9 8 2 6 3 7 4 5) = 9 1 2 6 3 8 7 4 5, and f [−1](1 9 8 2 6 3 7 4 5) =
1 9 2 6 8 7 3 4 5.

(b) The key point is that inv(α) = inv(α−) and ind(α−) = ind(f(α)−), when α−

is the inverse of α. Therefore if α1 = α−, α2 = f(α1), α3 = α−
2 , α4 = f [−1](α3), and

α5 = α−
4 , we have

inv(α5) = inv(α4) = ind(α3) = ind(α−
2) = ind(α−

1) = ind(α);

ind(α5) = ind(α−
4) = ind(α−

3) = ind(α2) = inv(α1) = inv(α).

[Math. Nachrichten 83 (1978), 143Ű159.]

26. (Solution by Doron Zeilberger.) The average of inv(α) ind(α) is

1
n!

α

1≤j<k≤n

1≤l<n

[aj >ak] l [al >al+1] ,

which is a polynomial in n of degree ≤ 4. Evaluating this sum for 1 ≤ n ≤ 5 gives the
respective values 0, 1

2
, 6

2
, 21

2
, 55

2
; so the polynomial must be 1

8
n(n− 1) + 1

16
n2(n− 1)2.

Subtracting mean(gn)2 and dividing by var(gn) gives the answer 9/(2n+ 5) for n ≥ 2,
by (12) and (13).

27. We have inv(a1 a2 . . . an) = inv(qn . . . q2 q1), when qn . . . q2 q1 is regarded as a
permutation of a multiset (see Section 5.1.2). It follows that

Hn(w, z)
(1− z) . . . (1− zn)

=

a1...an

winv(a1...an) zind(a1...an)

p1≥···≥pn≥0

zp1+···+pn

=

q1,q2,...,qn≥0

winv(qn...q2 q1)zq1+q2+···+qn

=

k0+k1+k2+···=n

n

k0, k1, k2, . . .

w
zk1+2k2+···

= n!w [un]

k0,k1,k2,...

∞

j=0

(zju)kj

kj !w

= n!w [un]
∞

j=0

expw(zju)

= n!w [un]
∞

j=0

∞

k=0

1
1− zjwku(1− w)

,

using the notation of answer 16 and the result of exercise 5.1.2Ű16. Thus we have the
elegant identity

j,k≥0

1
1− wjzku

=

n≥0

Hn(w, z)un

(1− w)(1− w2) . . . (1− wn)(1− z)(1− z2) . . . (1− zn)
,

5.1.2 ANSWERS TO EXERCISES 597

which was established for the generating function Hn(w, z) =

α w
ind(α−)zind(α) by

D. P. Roselle in Proc. Amer. Math. Soc. 45 (1974), 144Ű150. Exercise 25 shows that
the same bivariate generating function counts indexes and inversions. The proof given
here is due to Garsia and Gessel [Advances in Math. 31 (1979), 288Ű305], who went on
to obtain considerably more general results.

Setting m =∞ in exercise 4.7Ű27 leads to the recurrence

Hn(w, z) =
n

k=1

n

k

w
zn−k

k−1

j=1

(1− zn−j)

Hn−k(w, z).

28. Interchanging two adjacent elements changes the total displacement by 0 or ±2;
hence td(a1 a2 . . . an) ≤ 2 inv(a1 a2 . . . an).

We can also prove that td(a1 a2 . . . an) ≥ inv(a1 a2 . . . an). Suppose j is the
smallest element out of place, and let ak = j. Let l be maximum with l < k and
al ≥ k. Interchanging al with ak reduces the inversions by 2(k− l)−1, and reduces the
total displacement by 2(k−l). Therefore if m repetitions of this algorithm are needed to
sort a given permutation a1 a2 . . . an, we have td(a1 a2 . . . an) = inv(a1 a2 . . . an) +m.

The average total displacement of a random permutation is (n2−1)/3; see exercise
5.2.1Ű7. The generating function for total displacement does not appear to have
a simple form. References: C. Spearman, British J. Psychology 2 (1906), 89Ű108;
P. Diaconis and R. L. Graham, J. Royal Stat. Soc. B39 (1977), 262Ű268.

29. We can obtain π as a product of inv(π) transpositions τj , where τj interchanges j
and j + 1. For example, the path 1234 → 1324 → 1342 → 3142 in Fig. 1 corresponds
to τ2, then τ3, then τ1; hence 3 1 4 2 = τ1τ3τ2. Therefore ππ′ is obtainable from π′ by
making inv(π) transpositions, each of which changes the number of inversions by ±1.
It follows that inv(ππ′) ≤ inv(π) + inv(π′). If equality holds, each transposition adds
a new inversion, hence E(ππ′) ⊇ E(π′).

Conversely, if E(ππ′) ⊇ E(π′), we want to show that some sequence of |E(ππ′)| −
|E(π′)| = inv(ππ′)−inv(π′) transpositions will transform π′ to ππ′. Such transpositions
deĄne π, so this will prove that inv(π) ≤ inv(ππ′) − inv(π′); hence equality must
hold. Suppose, for example, that π′ = 3 1 4 5 9 2 6 8 7 and that E(ππ′) ⊇ E(π′). If
E(ππ′) does not contain (4, 1) or (5, 4) or (9, 5) or (6, 2) or (8, 6), then ππ′ must be
equal to π′. Otherwise E(ππ′) contains one of them, say (9, 5); then E(ππ′) contains
E(τ4π

′) = E(3 1 4 9 5 2 6 8 7). In this way we can prove the result by induction on
|E(ππ′)| − |E(π′)|.

SECTION 5.1.2

1. False, because of a reasonably important technicality. If you said Ştrue,Ť you
probably didnŠt know the deĄnition of M1 ∪M2 given in Section 4.6.3, which has the
property that M1 ∪M2 is a set whenever M1 and M2 are sets. Actually, α β is a
permutation of the multiset M1 ⊎M2.

2. b c a d d a d a d b.

3. Certainly not, since we may have α = β. (The unique factorization theorem shows
that there arenŠt too many possibilities, however.)

4. (d) (b c d) (b b c a d) (b a b c d) (d).

5. The number of occurrences of the pair . . . xx . . . is equal to the number of x
x

columns, minus 0 or 1. When x is the smallest element, the numbers of occurrences
are equal if and only if x is not Ąrst in the permutation.

598 ANSWERS TO EXERCISES 5.1.2

6. Counting the associated number of two-line arrays is easy:

m
k

n
k

.

7. Using part (a) of Theorem B, a derivation like that of (20) gives

A− 1
A− k −m− 1

B

m

C

k

B + k

B − l

C − k
l

;

A− 1

A− k −m

B

m

C

k

B + k − 1
B − l − 1

C − k
l

;

A− 1

A− k −m

B

m

C

k

B + k − 1
B − l

C − k
l

.

8. The complete factorization into primes is (d) (b c d) (b) (a d b c) (a b) (b c d) (d),
which is unique since no adjacent pairs commute. So there are eight solutions, with
α = ϵ, (d), (d) (b c d),

10. False, but true in interesting cases. Given any linear ordering of the primes,
there is at least one factorization of the stated form, since whenever the condition is
violated we can make an interchange that reduces the number of ŞinversionsŤ in the
factorization. So the condition fails only because some permutations have more than
one such factorization.

Let ρ ∼ σ mean that ρ commutes with σ. The following condition is necessary
and sufficient for the uniqueness of the factorization as stated:

ρ ∼ σ ∼ τ and ρ ≺ σ ≺ τ implies ρ ∼ τ.
Proof. If ρ ∼ σ ∼ τ and ρ ≺ σ ≺ τ and ρ ̸∼ τ , we would have two factorizations
σ τ ρ = τ ρ σ; hence the condition is necessary. Conversely, to show that it is sufficient
for uniqueness, let ρ1 · · · ρn = σ1 · · · σn be two distinct factorizations satisfying the
condition. We may assume that σ1 ≺ ρ1, and hence σ1 = ρk for some smallest k > 1;
furthermore σ1 ∼ ρj for 1 ≤ j < k. Since ρk−1 ∼ σ1 = ρk, we have ρk−1 ≺ σ1; hence
k > 2. Let j be such that σ1 ≺ ρj and ρi ≺ σ1 for j < i < k. Then ρj+1 ∼ σ1 ∼ ρj

and ρj+1 ≺ σ1 ≺ ρj implies that ρj+1 ∼ ρj ; hence ρj ≺ ρj+1, a contradiction.
Therefore if we are given an ordering relation on a set S of primes, satisfying the

condition above, and if we know that all prime factors of a permutation π belongs to S,
we can conclude that π has a unique factorization of the stated type. Such a condition
holds, for example, when S is the set of cycles in (29).

But the set of all primes cannot be so ordered. For if we have, say, (a b) ≺ (d e),
then we are forced to deĄne

(a b) ≺ (d e) ≻ (b c) ≺ (e a) ≻ (c d) ≺ (a b) ≻ (d e),

a contradiction. (See also the following exercise.)

11. We wish to show that, if p(1) . . . p(t) is a permutation of {1, . . . , t}, the permutation
xp(1) . . . xp(t) is topologically sorted if and only if we have σp(1) · · · σp(t) = σ1 · · · σt and
p(i) < p(j) whenever σp(i) = σp(j) for i < j. We also want to show that, if xp(1) . . . xp(t)

and xq(1) . . . xq(t) are distinct topological sortings, we have σp(j) ̸= σq(j) for some j.
The Ąrst property follows by observing that xp(1) can be Ąrst in a topological sort if and
only if σp(1) commutes with (yet is distinct from) σp(1)−1, . . . , σ1; and this condition
implies that σp(2) · · · σp(t) = σ1 · · · σp(1)−1 σp(1)+1 · · · σt, so induction can be
used. The second property follows because if j is minimal with p(j) ̸= q(j), we have,
say, p(j) < q(j) and xp(j) ̸≺ xq(j) by deĄnition of topological sorting; hence σp(j) has
no letters in common with σq(j).

5.1.2 ANSWERS TO EXERCISES 599

To get an arbitrary partial ordering, let the cycle σk consist of all ordered pairs
(i, j) such that xi ≺ xj and either i = k or j = k; these ordered pairs are to appear
in some arbitrary order as individual elements of the cycle. Thus the cycles for the
partial ordering x1 ≺ x2, x3 ≺ x4, x1 ≺ x4 would be σ1 = ((1, 2)(1, 4)), σ2 = ((1, 2)),
σ3 = ((3, 4)), σ4 = ((1, 4)(3, 4)).

12. No other cycles can be formed, since, for example, the original permutation con-
tains no a

c columns. If (a b c d) occurs s times, then (a b) must occur A − r − s
times, since there are A− r columns a

b , and only two kinds of cycles contribute to such
columns.

13. In the two-line notation, Ąrst place A − t columns of the form d
a , then put the

other t aŠs in the second line, then place the bŠs, and Ąnally the remaining letters.

14. Since the elements below any given letter in the two-line notation for π− are in
nondecreasing order, we do not always have (π−)− = π; but it is true that ((π−)−)− =
π−. In fact, the identity

(α β)− = ((α− β−)−)−

holds for all α and β. (See exercise 5Ű2.)
Given a multiset whose distinct letters are x1 < · · · < xm, we can characterize its

self-inverse permutations by observing that they each have a unique prime factorization
of the form β1 · · · βm, where βj has zero or more prime factors (xj) · · · (xj) (xjxk1

)
· · · (xjxkt), j < k1 ≤ · · · ≤ kt. For example, (a) (a b) (a b) (b c) (c) is a self-inverse
permutation. The number of self-inverse permutations of {m · a, n · b} is therefore
min(m,n) + 1; and the corresponding number for {l · a, m · b, n · c} is the number of
solutions of the inequalities x + y ≤ l, x + z ≤ m, y + z ≤ n in nonnegative integers
x, y, z. The number of self-inverse permutations of a set is considered in Section 5.1.4.

The number of permutations of {n1 · x1, . . . , nm · xm} having nij occurrences of
xi
xj

in their two-line notation is

i ni!/

i,j nij !, the same as the number having nij

occurrences of xj
xi

in the two-line notation. Hence there ought to be a better way to
deĄne the inverse of a multiset permutation. For example, if the prime factorization
of π is σ1 σ2 · · · σt as in Theorem C, we can deĄne π− = σ−

t · · · σ−
2 σ−

1 , where
(x1 . . . xn)− = (xn . . . x1).

Dominique Foata and Guo-Niu Han have observed that it would be even more
desirable to deĄne inverses in such a way that π and π− have the same number of
inversions, because the generating function for inversions given the numbers nij is

i ni!z/

i,j nij !z times a power of z; see exercise 16. However, there does not seem
to be any natural way to deĄne an involution having that property.

15. See Theorem 2.3.4.2D and Lemma 2.3.4.2E. Removing one arc of the directed
graph must leave an oriented tree.

16. If x1 < x2 < · · · , the inversion table entries for the xj Šs must have the form
bj1 ≤ · · · ≤ bjnj where bjnj (the number of inversions of the rightmost xj) is at
most nj+1 + nj+2 + · · · . So the generating function for the jth part of the inversion
table is the generating function for partitions into at most nj parts, no part exceeding
nj+1 +nj+2 + · · · . The generating function for partitions into at most m parts, no part
exceeding n, is the z-nomial coefficient

m+n

m

z; this is readily proved by induction, and

it can also be proved by means of an ingenious construction due to F. Franklin [Amer. J.
Math. 5 (1882), 268Ű269; see also Pólya and Alexanderson, Elemente der Mathematik
26 (1971), 102Ű109]. Multiplying the generating functions for j = 1, 2, . . . gives the

600 ANSWERS TO EXERCISES 5.1.2

desired formula for inversions of multiset permutations, which MacMahon published in
Proc. London Math. Soc. (2) 15 (1916), 314Ű321.

17. Let hn(z) = (n!z)/n!; then the desired probability generating function is

g(z) = hn(z)/hn1
(z)hn2

(z) · · · .

The mean of hn(z) is 1
2

n
2

, by Eq. 5.1.1Ű(12), so the mean of g is

1
2

n

2

−

n1

2

−

n2

2

− · · ·

=

1
4

(n2 − n2
1 − n2

2 − · · ·) =
1
2

i<j

ninj .

The variance is, similarly,

1
72

(n(n− 1)(2n+ 5)− n1(n1 − 1)(2n1 + 5)− · · ·)
= 1

36
(n3 − n3

1 − n3
2 − · · ·) + 1

24
(n2 − n2

1 − n2
2 − · · ·).

18. Yes; the construction of exercise 5.1.1Ű25 can be extended in a straightforward
way. Alternatively we can generalize the proof following 5.1.1Ű(14), by constructing
a one-to-one correspondence between m-tuples (q1, . . . , qm) where qj is a multiset
containing nj nonnegative integers, on the one hand, and ordered pairs of n-tuples
((a1, . . . , an), (p1, . . . , pn)) on the other hand, where a1 . . . an is a permutation of
{n1 · 1, . . . , nm ·m}, and p1 ≥ · · · ≥ pn ≥ 0. This correspondence is deĄned as before,
giving all elements of qj the subscript j; it satisĄes the condition

Σ(q1) + · · ·+Σ(qm) = ind(a1 . . . an) + (p1 + · · ·+ pn)

where Σ(qj) denotes the sum of the elements of qj . [For a further generalization of the
technique used in this proof and in the derivation of Eq. 5.1.3Ű(8), see D. E. Knuth,
Math. Comp. 24 (1970), 955Ű961. See also the comprehensive treatment by Richard P.
Stanley in Memoirs Amer. Math. Soc. 119 (1972).]

19. (a) Let S = {σ | σ is prime, σ is a left factor of π}. If S has k elements, the left
factors λ of π such that µ(λ) ̸= 0 are precisely the 2k intercalations of the subsets of S
(see the proof of Theorem C); hence

µ(λ) =

σ∈S(1 + µ(σ)) = 0, since µ(σ) = −1

and S is nonempty. (b) Clearly ϵ(i1 . . . in) = µ(π) = 0 if ij = ik for some j ̸= k.
Otherwise ϵ(i1 . . . in) = (−1)r where i1 . . . in has r inversions; this is (−1)s, where
i1 . . . in has s even cycles; and this is (−1)n+t where i1 . . . in has t cycles.

20. (a) Obvious, by deĄnition of intercalation. (b) By deĄnition,

det(bij) =

1≤i1,...,im≤m

ϵ(i1 . . . im) b1i1
. . . bmim .

Setting bij = δij − aijxj and applying exercise 19(b), we obtain

n≥0

1≤i1,...,in≤m

xi1
. . . xinµ(xi1

. . . xin)ν(xi1
. . . xin),

since µ(π) is usually zero.
(c) Use exercise 19(a) to show that D G = 1 when we regard the products of xŠs

as permutations of noncommutative variables, using the natural algebraic convention
(α+ β) π = α π + β π.

A succinct rendition of this combinatorial proof and similar proofs of other impor-
tant theorems has been given by D. Zeilberger, Discrete Math. 56 (1985), 61Ű72.

5.1.2 ANSWERS TO EXERCISES 601

21.
m

k=1

nk+···+nk−d

nk

, if we let nk = 0 for k ≤ 0, since there are

nm+···+nm−d

nm

ways

to insert the mŠs into such a permutation of {n1 · 1, . . . , nm−1 · (m− 1)}.
22. (a) The left-right reversal of l(π) is in P0(0p1n1 . . . tnt), for some p; but instead of
reversing l(π), we will give it a two-line form by placing 0 last instead of Ąrst in the top
line. The number p of 0s in l(π) and r(π) is the number of columns j

k in the two-line
form of π for which j ≤ t < k; this is also the number of columns with k ≤ t < j.
We can easily reconstruct π from the two-line forms of l(π) and r(π), because each
column j

k with j, k ≤ t occurs in l(π), each column with t < j, k occurs in r(π), and the
remaining columns are obtained by merging j

0 or 0
k of l(π) with 0

k or j
0 of r(π) from

left to right.
(b) Let π be a permutation of the stated form, and let σ be any permutation of

P0(0n0 1n1 . . .mnm). Construct λ as follows: Delete the Ąrst n0 entries of σ; then replace
the 0s by xŠs, subscripted with the Ąrst n0 entries of π; replace the other elements by yŠs,
subscripted with the remaining nonzero entries of π. Also construct ρ as follows: Delete
the 0s of σ, and replace the nj occurrences of j with xj or yj according as the columns
j
k of π have k = 0 or k ̸= 0, from left to right. For example, if π = (00000011111222233333

23131302310102032010)
and σ = (00000011111222233333

32313201103201300201), we have λ = x2y2y3x3y1y1x1y2y3x3x1y2x3y1 and ρ =
y3y2y3x1x3x2y1y1y3y2y1x3x2x1. Conversely, we can reconstruct π and σ from λ and ρ.

(c) We have w(π) = w(l(π))w(r(π)) in the construction of (a), because column j
k

of π either becomes j
k of weight wj/wk in l(π) or r(π), or it is factored into columns

j
0 and 0

k having weights zj/z0 and z0/zk. If l(π) has pj columns 0
j and qj columns j

0 ,

its weight is
t

j=1(z
qj
j w

nj−qj
j /z

pj

j w
nj−pj

j) =
t

j=1(wj/zj)pj−qj . Now
t

j=1(wj/zj)−qj

is the complex conjugate of
t

j=1(wj/zj)qj ; so the sum of weights over all elements of
P0(0p1n1 . . . tnt) simpliĄes to

p! (n1 + · · ·+ nt − p)!
n1! . . . nt!

p1+···+pt=p

n1

p1

. . .

nt

pt

w1

z1

p1

. . .

wt

zt

pt

2

.

Similar remarks apply to r(π). The stated sum is positive because the term for p = 0
is nonzero.

23. We can assume that the original strand was sorted. Let t = 2, m = 4, w1 =
w3 = z1 = z2 = +1, w2 = w4 = z3 = z4 = −1 in part (c) of the previous exercise.
Then w(π) = (−1)d, where d is the number of columns j

k with j ̸= k. [See Gillis
and Zeilberger, European J. Comb. 4 (1983), 221Ű223. This result was Ąrst proved
in a completely different way by Askey, Ismail, and Koornwinder, J. Comb. Theory
A25 (1978), 277Ű287, who found intriguing connections between multiset permutations
and integrals of products of the Laguerre polynomials Lα

n(x) =
n

k=0

n+α
n−k

(−x)k/k!.]

The analogous result for a Ąve-letter alphabet is false, because the 5! permutations of
{1, 2, 3, 4, 5} include 1 + 10 + 45 with an even number of differences, 0 + 20 + 44 with
an odd number.

24. (a) Transposing w
y

x
z twice restores w

y
x
z . Given sort(x1

y1

...

...
xn
yn

) = (x′′

1

y′′

1

...

...
x′′

n
y′′
n

), unsort
it by Ąnding the leftmost x in the top row and transposing it to the left. This brings
out the proper y. (The value of sort(x′

2

y′

2

...

...
x′

n
y′
n

) is also uniquely determined.)

(b) We are essentially expressing the two-line notation of π in the form

π = sort

y1

x11

. . .

. . .

x1n1

y1

y2

x21

. . .

. . .

x2n2

y2

. . .

. . .

yt

xt1

. . .

. . .

xtnt

yt

,

602 ANSWERS TO EXERCISES 5.1.2

and part (a) provides us with precisely the tools we need. [When R preserves certain
statistics of the two-line notation, this construction provides combinatorial proofs of
interesting theorems. See Guo-Niu Han, Advances in Math. 105 (1994), 26Ű41.]

SECTION 5.1.3

1. We must only show that this value makes (11) valid for x = k, when k ≥ 1.
Using (7), the formula becomes

kn =
k

r=0

n

r − 1

k + n− r

n

=

0≤j≤r≤k

(−1)j(r − j)n

n+ 1
j

n+ k − r

n

=
k

s=0

sn
k−s

j=0

(−1)j

n+ 1
j

n+ k − s− j

n

.

For s < k, the sum on j can be extended to the range 0 ≤ j ≤ n+ 1, and it is zero (the
(n+ 1)st difference of an nth-degree polynomial in j).

2. (a) The number of sequences a1a2 . . . an containing each of the elements (1,2, . . . , q)
at least once is

n
q

q!, by exercise 1.2.6Ű64; the number of such sequences satisfying

the analog of (10), for m = q, is

n−k
n−q

, since we must choose n − q of the possible =

signs. (b) Add the results of (a) for q = n−m and q = n−m+ 1.

3.

n

xn

n!

k

n

k

(−1)k =

2
e−2x + 1

=
1
x

(−4x)
e−4x − 1

− (−2x)
e−2x − 1

by (20), hence the

result is (−1)n+1Bn+12n+1(2n+1−1)/(n+1). Alternatively, the identity 2/(e−2x +1) =
1+tanh x lets us express the answer as (−1)(n−1)/2Tn when n is odd, where Tn denotes
the tangent number deĄned by the formula

tan z = T1z + T3z
3/3! + T5z

5/5! + · · · .
When n > 0 is even, the sum obviously vanishes, by (7). Incidentally, (18) now yields
the curious Stirling number identity

k

n
k

k!/(−2)k = 2Bn+1(1− 2n+1)/(n+ 1).

4. (−1)n+m

n
m

. (Consider the coefficient of zm+1 in (18).)

5.

p
k

≡ (k + 1)p − kp ≡ (k + 1)− k ≡ 1 (modulo p) for 0 ≤ k < p, by formula (13),

exercise 1.2.6Ű10, and Theorem 1.2.4F.

6. Summing Ąrst on k is not allowed, because the terms are nonzero for arbitrarily
large j and k, and the sum of the absolute values is inĄnite.

For a simpler example of the fallacy, let ajk = (k − j) [|j − k| = 1]. Then

j≥0

k≥0

ajk

=

j≥0

(δj0) = +1, while

k≥0

j≥0

ajk

=

k≥0

(−δk0) = −1.

7. Yes. [F. N. David and D. E. Barton, Combinatorial Chance (1962), 150Ű154; see
also the answer to exercise 25.]

8. [Combinatory Analysis 1 (1915), 190.] By inclusion and exclusion. For example,
1/(l1 + l2)! l3! (l4 + l5 + l6)! is the probability that x1 < · · · < xl1+l2

, xl1+l2+1 < · · · <
xl1+l2+l3

, and xl1+l2+l3+1 < · · · < xl1+l2+l3+l4+l5+l6
.

A simple O(n2) algorithm to count the number of permutations of {1, . . . , n}
having respective run lengths (l1, . . . , lk) has been given by N. G. de Bruijn, Nieuw
Archief voor Wiskunde (3) 18 (1970), 61Ű65.

5.1.3 ANSWERS TO EXERCISES 603

9. pkm = qkm − qk(m+1) in (23). Since

k,m qkmz
mxk = x

1−x
g(x, z) and g(x, 0) = 1,

we have

h(z, x) =

hk(z)xk =
x

1− xg(x, z)(1− z−1) +
x

1− xz
−1 =

(1− z−1)x
e(x−1)z − x +

z−1x

1− x .

Thus h1(z) = ez − (ez − 1)/z; h2(z) = (e2z − zez) + ez − (e2z − 1)/z.

10. Let Mn = L1+· · ·+Ln be the mean; then

Mnx

n = h′(1, x), where the derivative
is taken with respect to z, and this is x/(ex−1 − x) − x/(1 − x) = M(x), say. By the
residue theorem

1
2πi

M(z)z−n−1 dz = Mn − 2(n+ 1

3
) + 1 +

z−n
1

z1 − 1
+

z−n
1

z1 − 1
,

if we integrate around a circle of radius r where |z1| < r < |z2|. (Note the double pole at
z = 1.) Furthermore, the absolute value of this integral is less than

 |M(z)| r−n−1 dz =
O(r−n). Integrating over larger and larger circles gives the convergent series Mn =
2n− 1

3
+

k≥1 2ℜ(1/zn
k (1− zk)).

To Ąnd the variance, we have h′′(1, x) = −2h′(1, x)− 2x(x− 1)ex−1/(ex−1 − x)2.
An argument similar to that used for the mean, this time with a triple pole, shows
that the coefficients of h′′(1, x) are asymptotically 4n2 + 4

3
n− 2Mn plus smaller terms;

this leads to the asymptotic formula 2
3
n+ 2

9
(plus exponentially smaller terms) for the

variance.

11. Pkn =

t1≥1,...,tk−1≥1D(t1, . . . , tk−1, n, 1), where D(l1, l2, . . . , lk) is MacMahonŠs
determinant of exercise 8. Evaluating this determinant by its Ąrst row, we Ąnd Pkn =
c0P(k−1)n + c1P(k−2)n + · · ·+ ck−2P1n−Ek(n), where cj and Ek are deĄned as follows:

cj = (−1)j

t1,...,tj+1≥1

1
(t1 + · · ·+ tj+1)!

= (−1)j

m≥0

m

j

 1
(m+ 1)!

= (−1)j

r,m≥0

 −1
j − r

m+ 1
r

 1
(m+ 1)!

= −1 + e
 1

0!
− 1

1!
+ · · ·+ (−1)j 1

j!

;

E1(n) = 1/(n+ 1)!− 1/n! ; E2(n) = [n> 0]/(n+ 1)! ;

Ek(n) = (−1)k

m≥0

m

k − 3

 [n> 0]
(n+ 2 +m)!

, k ≥ 3.

Let P0n = 0, C(z) =

cjz

j = (e1−z − 1)/(1− z), and let

E(z, x) =

n,k

Ek+1(n)znxk =
ez2x2 − ex(1−x+zx)(z+x−1)− ez+x(1−z)2(1−x)2

exz(z+x−1)(1−x)2
.

The recurrence relation we have derived is equivalent to the formula C(x)H(z, x) =
H(z, x)/x + E(z, x); hence H(z, x) = E(z, x)x(1 − x)/(xe1−x − 1). Expanding this
power series gives H1(z) = h1(z) (see exercise 9); H2(z) = eh1(z) + 1− ez.

[Note: The generating functions for the Ąrst three runs were derived by Knuth,
CACM 6 (1963), 685Ű688. Barton and Mallows, Ann. Math. Statistics 36 (1965), 249,
stated the formula 1 −Hn+1(z) = (1 −Hn(z))/(1 − z) − Lnh1(z) for n ≥ 1, together
with (25). Another way to attack this problem is illustrated in exercise 23. Because
adjacent runs are not independent, there is no simple relation between the problem
solved here and the simpler (probably more useful) result of exercise 9.]

604 ANSWERS TO EXERCISES 5.1.3

12. [Combinatory Analysis 1 (1915), 209Ű211.] The number of ways to put the multiset
into t distinguishable boxes is

Nt =

t+ n1 − 1

n1

t+ n2 − 1

n2

· · ·

t+ nm − 1

nm

,

since there are

t+n1−1
n1

ways to place the 1s, etc. If we require that no box be empty,

the method of inclusion and exclusion tells us that the number of ways is

Mt = Nt −

t

1

Nt−1 +

t

2

Nt−2 − · · · .

Let Pk be the number of permutations having k runs; if we put k − 1 vertical lines
between the runs, and t−k additional vertical lines in any of the n−k remaining places,
we get one of the Mt ways to divide the multiset into t nonempty distinguishable parts.
Hence

Mt = Pt +

n− t+ 1

1

Pt−1 +

n− t+ 2

2

Pt−2 + · · · .

Equating the two values of Mt allows us to determine P1, P2, . . . successively in terms
of N1, N2, (A more direct proof would be desirable.)

13. 1 + 1
2
13× 3 = 20.5.

14. By FoataŠs correspondence the given permutation corresponds to

(3 1) (1) · · · (4) =

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
3 1 1 2 3 4 3 2 1 1 3 4 2 2 4 4

;

by (33) this corresponds to

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4
2 4 4 3 3 3 1 1 4 4 2 1 2 1 2 3

,

which corresponds to 2 3 4 2 3 4 1 4 2 1 4 3 2 1 3 1 with 9 runs.

15. The number of alternating runs is 1 plus the number of j such that 1 < j < n and
we have either aj−1 < aj > aj+1 (a ŞpeakŤ) or aj−1 > aj < aj+1 (a ŞvalleyŤ). For
Ąxed j, the probability is 2

3
; hence the average, for n ≥ 2, is simply 1 + 2

3
(n− 2).

16. Each permutation of {1, 2, . . . , n−1}, having k alternating runs, yields k permu-
tations with k such runs, 2 with k+ 1, and n− k− 2 with k+ 2, when the new element
n is inserted in all possible places. Hence

n

k

= k

n− 1
k

+ 2

n− 1
k − 1

+ (n− k)

n− 1
k − 2

.

It is convenient to let ⟩1
k

⟨ = δk0, G1(z) = 1. Then

Gn(z) =
z

n
((1− z2)G′

n−1(z) + (2 + (n− 2)z)Gn−1(z)).

Differentiation leads to the recurrence

xn =
1
n

((n− 2)xn−1 + 2n− 2)

for xn = G′
n(1), and this has the solution xn = 2

3
n− 1

3
for n ≥ 2. Another differentiation

leads to the recurrence

yn =
1
n

((n− 4)yn−1 + 8
3
n2 − 26

3
n+ 6)

for yn = G′′
n(1). Set yn = αn2 +βn+γ and solve for α, β, γ to get yn = 4

9
n2 − 14

15
n+ 11

90

for n ≥ 4. Hence var(gn) = 1
90

(16n− 29), n ≥ 4.

5.1.3 ANSWERS TO EXERCISES 605

These formulas for the mean and variance are due to J. Bienaymé, who stated
them without proof [Bull. Soc. Math. de France 2 (1874), 153Ű154; Comptes Rendus
Acad. Sci. 81 (Paris, 1875), 417Ű423, see also BertrandŠs remarks on p. 458]. The
recurrence relation for ⟩⟨n

k
⟩⟨ is due to D. André [Comptes Rendus Acad. Sci. 97 (Paris,

1883), 1356Ű1358; Annales ScientiĄques de lŠÉcole Normale Supérieure (3) 1 (1884),
121Ű134]. André noted that Gn(−1) = 0 for n ≥ 4; thus, the number of permutations
with an even number of alternating runs is n!/2. He also proved the formula for the
mean, and determined the number of permutations that have the maximum number of
alternating runs (see exercise 5.1.4Ű23). It can be shown that

Gn(z) =
 1 + z

2

n−1

(1 + w)n+1gn

 1− w
1 + w

, w =

1− z
1 + z

, n ≥ 2,

where gn(z) is the generating function (18) for ascending runs. [See David and Barton,
Combinatorial Chance (London: Griffin, 1962), 157Ű162.]

17.

n+1
2k−1

;

n
2k−2

end with 0,

n

2k−1

end with 1.

18. (a) Let the given sequence be an inversion table as in Section 5.1.1. If it has
k descents, the inverse of the corresponding permutation has k descents (see answer
5.1.1Ű8(e)); hence the answer is

n
k

. (b) This quantity satisĄes f(n, k) = kf(n−1, k) +

(n−k+1)f(n−1, k−1), so it must be

n
k−1

. [See D. Dumont, Duke Math. J. 41 (1974),

313Ű315.]

19. (a)

n
k

, by the correspondence of Theorem 5.1.2B. (b) There are (n− k)! ways to

put n−k further nonattacking rooks on the entire board; hence the answer is 1/(n−k)!
times

j≥0 anj

j
k

, where anj =

n
j

by part (a). This comes to { n

n−k
}, by exercise 2.

A direct proof of this result, due to E. A. Bender, associates each partition of
{1, 2, . . . , n} into k nonempty disjoint subsets with an arrangement of n − k rooks:
Let the partition be {1, 2, . . . , n} = {a11, a12, . . . , a1n1

} ∪ · · · ∪ {ak1, . . . , aknk}, where
aij < ai(j+1) for 1 ≤ j < ni, 1 ≤ i ≤ k. The corresponding arrangement puts rooks in
column aij of row ai(j+1), for 1 ≤ j ≤ ni, 1 ≤ i ≤ k. For example, the conĄguration
illustrated in Fig. 4 corresponds to the partition {1, 3, 8} ∪ {2} ∪ {4, 6} ∪ {5} ∪ {7}.

[Duke Math. J. 13 (1946), 259Ű268. Sections 2.3 and 2.4 of Richard StanleyŠs
Enumerative Combinatorics 1 (1986) discuss rook placement in general.]

20. The number of readings is the number of runs in the inverse permutation. The
Ąrst run corresponds to the Ąrst reading, etc.

21. It has n+ 1− k runs and requires n+ 1− j readings.

22. [J. Combinatorial Theory 1 (1966), 350Ű374.] If rs < n, some reading will pick
up t > r elements, ai1

= j + 1, . . . , ait = j + t, where i1 < · · · < it. We cannot have
am > am+1 for all m in the range ik ≤ m < ik+1, so the permutation contains at least
t− 1 places with am < am+1; it therefore has at most n− t+ 1 runs.

On the other hand, consider the permutation αr . . . α2 α1, where block αj contains
the numbers ≡ j (modulo r), in decreasing order; for example, when n = 9 and r = 4,
this permutation is 8 4 7 3 6 2 9 5 1. If n ≥ 2r− 1, this permutation has r− 1 ascents, so
it has n + 1 − r runs. Moreover, it requires exactly n + 1 − ⌈n/r⌉ readings, if r > 1.
We can rearrange the elements of {kr+ 1, . . . , kr+ r} arbitrarily without changing the
number of runs, thereby reducing the number of readings to any desired value ≥ ⌈n/r⌉.

Now suppose rs ≥ n and r+s ≤ n+ 1 and r, s ≥ 1. By exercises 20 and 21 we can
assume that r ≤ s, since the reĆection of the inverse of a permutation with n + 1 − r
runs and s readings has n + 1 − s runs and r readings. Then the construction in the

606 ANSWERS TO EXERCISES 5.1.3

preceding paragraph handles all cases except those where s > n+ 1−⌈n/r⌉ and r ≥ 2.
To complete the proof we may use a permutation of the form

2k+1 2k−1 . . . 1 n+2−r n+1−r . . . 2k+2 2k . . . 2 n+3−r . . . n−1 n,

which has n+ 1− r runs and n+ 1− r − k readings, for 0 ≤ k ≤ 1
2
(n− r).

23. [SIAM Review 3 (1967), 121Ű122.] Assume that the inĄnite permutation consists
of independent samples from the uniform distribution. Let fk(x) dx be the probability
that the kth long run begins with x; and let g(u, x) dx be the probability that a long
run begins with x, when the preceding long run begins with u. Then f1(x) = 1,
fk+1(x) =

 1

0
fk(u)g(u, x) du. We have g(u, x) =

m≥1 gm(u, x), where

gm(u, x) = Pr(u < X1 < · · · < Xm > x or u > X1 > · · · > Xm < x)

= Pr(u < X1 < · · · < Xm) + Pr(u > X1 > · · · > Xm)

− Pr(u < X1 < · · · < Xm < x)− Pr(u > X1 > · · · > Xm > x)

= (um + (1− u)m − |u− x|m)/m! ;

hence g(u, x) = eu+e1−u−1−e|u−x|, and we Ąnd f2(x) = 2e−1−ex−e1−x. One can show
that fk(x) approaches the limiting value (2 cos(x− 1

2
)−sin 1

2
−cos 1

2
)/(3 sin 1

2
−cos 1

2
). The

average length of a run starting with x is ex + e1−x− 1; hence the length Lk of the kth
long run is

 1

0
fk(x)(ex+e1−x−1) dx; L1 = 2e−3 ≈ 2.43656; L2 = 3e2−8e+2 ≈ 2.42091.

See Section 5.4.1 for similar results.

24. Arguing as before, the result is

1 +

0≤k<n

2k(p2 + q2)k(p2 + 2pq(2n−k−1 − 1 + q2((2pq)n−k−1 − 1)/(2pq − 1)));

carrying out the sum and simplifying yields

2n(p2 + q2)n(p(p− q)/(p2 + q2− pq)− 1
2
) + (2pq)npq3/(p2 + q2)(p2 + q2− pq)

+ q2/(p2 + q2) + 2n−1.

25. Let Vj = (U1 + · · · + Uj) mod 1; then V1, . . . , Vn are independent uniform ran-
dom numbers in [0 . . 1), forming a permutation that has k descents if and only if
⌊U1 + · · ·+ Un⌋ = k. Hence the answer is

n
k

/n!, a property Ąrst noticed by S. Tanny

[Duke Math. J. 40 (1973), 717Ű722]; see also W. Meyer and R. von Randow, Math.
Annalen 193 (1971), 315Ű321.

26. For example, ϑ5(1− z)−1 = (z + 26z2 + 66z3 + 26z4 + z5)/(1− z)6.

27. The following rule deĄnes a one-to-one correspondence that takes a permutation
a1 a2 . . . an with k descents into an n-node increasing forest with k + 1 leaves: The
Ąrst root is a1, and its descendants are the forest corresponding to a2 . . . ak, where k is
minimal such that ak+1 < a1 or k = n. [R. P. Stanley, Enumerative Combinatorics 1

(Wadsworth, 1986), Proposition 1.3.16.]

28. The poles of L(z) are the values of T (1/e), where T (z) is the (multivalued) tree
function deĄned by T (z) = zeT (z). Thus for m > 0 we have the convergent series

zm = −σm +

n≥0

1
σn

m

k

(−1)k

n

k

 (lnσm)n+1−k

(n+ 1− k)!
, σm = −1− (2m+ 1)πi

[Corless, Gonnet, Hare, Jeffrey, and Knuth, Advances in Computational Mathematics 5

(1996), 329Ű359, formula (4.18)]; in particular, we have zm = (2m+ 1
2
)πi+ ln(2πem) +

(1
4
− i

2π
ln(2πem))/m+O((logm)2/m2).

5.1.4 ANSWERS TO EXERCISES 607

Let P (z) =
∞

m=0(z/(z − zm) + z/(z − z̄m)). It follows that P (x) − P (−x) =∞
m=0 4ℜ(xzm/(x2−z2

m)) =
∞

m=1 O((x logm)/(x2 +m2)) =
x

m=1 O((x log x)/x2)+∞
m=x+1 O((x logm)/m2) = O(log x) for x > 1. But we know that L(x) + P (x) = cx

for some c; hence 2cx = L(x)−L(−x)+O(log x), and by letting x→∞ in (25) we Ąnd
c = −1/2. Hence L1 =

∞
m=0 2r−1

m cos θm− 1/2. (This result is due to Svante Janson.)

29. (a) If a1 . . . an has 2k alternating runs and k peaks, (n+1−a1) . . . (n+ 1− an) has
k − 1 peaks. (b, c) See L. W. Shapiro, W.-J. Woan, and S. Getu, SIAM J. Algebraic
and Discrete Methods 4 (1983), 459Ű466.

SECTION 5.1.4

1. 1 2 3 8

4 5 7

6 9

1 3 5 8

2 4 9

6 7

;

1 3 4 5 7 8 9
5 9 2 4 8 1 7

.

2. When pi is inserted into column t, let the element in column t − 1 be pj . Then
(qj , pj) is in class t−1, qj < qi, and pj < pi; so, by induction, indices i1, . . . , it exist
with the property. Conversely, if qj < qi and pj < pi and if (qj , pj) is in class t−1, then
column t− 1 contains an element < pi when pi is inserted, so (qi, pi) is in class ≥ t.

3. The columns are the bumping sequences (9) when pi is inserted. Lines 1 and 2
reĆect the operations on row 1, see (14). If we remove columns in which line 2 has ∞
entries, lines 0 and 2 constitute the bumped array, as in (15). The stated method for
going from line k to line k + 1 is just the class-determination algorithm of the text.

4. (a) Use a case analysis, by induction on the size of the tableau, considering Ąrst
the effect on row 1 and then the effect on the sequence of elements bumped from
row 1. (b) Admissible interchanges can simulate the operations of Algorithm I, with
the tableau represented as a canonical permutation before and after the algorithm. For
example, we can transform

17 11 4 13 14 2 6 10 15 1 3 5 9 12 16 8 into 17 11 13 4 10 14 2 6 9 15 1 3 5 8 12 16

by a sequence of admissible interchanges (see (4) and (5)).

5. Admissible interchanges are symmetrical between left and right, and the canonical
permutation for P obviously goes into PT when the insertion order is reversed.

6. Let there be t classes in all; exactly k of them have an odd number of elements,
since the elements of a class have the form

(pik , pi1
), (pik−1

, pi2
), . . . , (pi1

, pik).

(See (18) and (22).) The bumped two-line array has exactly t− k Ąxed points, because
of the way it is constructed; hence by induction the tableau minus its Ąrst row has t−k
columns of odd length. So the t elements in the Ąrst row lead to k odd-length columns
in the whole tableau.

7. The number of columns, namely the length of row 1, is the number of classes
(exercise 2). The number of rows is the number of columns of PT, so exercise 5 (or
Theorem D) completes the proof.

8. With more than n2 elements, the corresponding P tableau must either have more
than n rows or more than n columns. But there are n × n tableaux. [This result was
originally proved in Compositio Math. 2 (1935), 463Ű470.]

608 ANSWERS TO EXERCISES 5.1.4

9. Such permutations are in 1Ű1 correspondence with pairs of tableaux of shape
(n, n, . . . , n); so by (34) the answer is

n2!∆(2n−1, 2n−2, . . . , n)
(2n− 1)! (2n− 2)! . . . n!

2

=

n2!
(2n− 1)(2n− 2)2 . . . nn(n− 1)n−1 . . . 11

2

.

The existence of such a simple formula for this problem is truly amazing. We can also
count the number of permutations of {1, 2, . . . ,mn} with no increasing subsequences
longer than m, no decreasing subsequences longer than n.

10. We prove inductively that, at step S3, P(r−1)s and Pr(s−1) are both less than
P(r+1)s and Pr(s+1).

11. We also need to know, of course, the element that was originally P11. Then it is
possible to restore things using an algorithm remarkably similar to Algorithm S.

12.

n1+1

2

+

n2+2

2

+ · · ·+

nm+m

2

−

m+1

3

, the total distance traveled.

The minimum is the sum of the Ąrst n terms of the sequence 1, 2, 2, 3, 3, 3, 4, 4, 4, 4,
5, 5, 5, 5, 5, . . . of exercise 1.2.4Ű41; this sum is approximately

8/9n3/2. (Nearly

all tableaux on n elements come reasonably close to this lower bound, according to
exercise 29, so the average number of times is Θ(n3/2).)

13. Assume that the elements permuted are {1, 2, . . . , n}, so that ai = 1; and assume
that aj = 2. Case 1: j < i. Then 1 bumps 2, so row 1 of the tableau corresponding to
a1 . . . ai−1 ai+1 . . . an is row 1 of PS ; and the bumped permutation is the former bumped
permutation except for its smallest element, 2, so we may use induction on n. Case 2:

j > i. Apply Case 1 to PT, in view of exercise 5 and the fact that (PT)S = (PS)T .

15. As in (37), the example permutation corresponds to the tableau

1 2 5 9 11

3 6 7 ;

4 8 10

hence the number is f(l,m, n) = (l + m + n)! (l − m + 1)(l − n + 2)(m − n + 1)/
(l + 2)! (m+ 1)! (n)!, provided, of course, that l ≥ m ≥ n.

16. By Theorem H, 80080.

17. Since g is antisymmetric in the xŠs, it is zero when xi = xj , so it is divisible by
xi − xj for all i < j. Hence g(x1, . . . , xn; y) = h(x1, . . . , xn; y)∆(x1, . . . , xn). Here h
must be homogeneous in x1, . . . , xn, y, of total degree 1, and symmetric in x1, . . . , xn;
so h(x1, . . . , xn; y) = a(x1 + · · ·+ xn) + by for some a, b depending only on n. We can
evaluate a by setting y = 0; we can evaluate b by taking the partial derivative with
respect to y and then setting y = 0. We have

∂

∂y
∆(x1, . . . , xi+y, . . . , xn)|y=0 =

∂

∂xi
∆(x1, . . . , xn) = ∆(x1, . . . , xn)

j ̸=i

1
xi − xj

.

Finally,

i

j ̸=i

(xi/(xi − xj)) =

i

j<i

(xi/(xi − xj) + xj/(xj − xi)) =

n

2

.

18. It must be ∆(x1, . . . , xn) · (b0 + b1y+ · · ·+ bmy
m), where each bk is a homogeneous

symmetric polynomial of degree m− k in the xŠs. We have

∂k

k! ∂yk
∆(x1, . . . , xi+y, . . . , xn)|y=0 = ∆(x1, . . . , xn)

1
k

l=1(xi − xjl)

5.1.4 ANSWERS TO EXERCISES 609

summed over all

n−1
k

choices of distinct indices j1, . . . , jk ̸= i. Now, in the expression

bk =

xm

i /
k

l=1(xi−xjl), we may combine those groups of k+1 terms having a given
set of indices {i, j1, . . . , jk}; for example, when k = 2, we group sets of three terms of
the form am/(a − b)(a − c) + bm/(b − a)(b − c) + cm/(c − a)(c − b). The sum of every
such group is [zm−k] 1/(1− xiz)(1− xj1

z) . . . (1− xjkz), by exercise 1.2.3Ű33. We Ąnd
therefore that

bk =

j

n− j

k + 1− j

s(p1, . . . , pj),

where s(p1, . . . , pj) is the monomial symmetric function consisting of all distinct terms
having the form xp1

i1
. . . x

pj

ij
, for distinct indices i1, . . . , ij ∈ {1, . . . , n}; and the inner

sum is over all partitions of m − k into exactly j parts, namely p1 ≥ · · · ≥ pj ≥ 1,
p1 + · · ·+ pj = m− k. (This result was obtained jointly with E. A. Bender in 1969.)

When m = 2 the answer is

s(2) + (n− 1)s(1)y +

n
3

y2

∆(x1, . . . , xn); for m = 3

we get

s(3) + ((n− 1)s(2) + s(1, 1))y +

n−1

2

s(1)y2 +

n
4

y3

∆(x1, . . . , xn); etc.

Another expression gives bk as the coefficient of zm in

n

k + 1

zk −

n− 1
k + 1

e1z

k+1 +

n− 2
k + 1

e2z

k+2 − · · ·

(1− e1z + e2z
2 − · · ·),

where el =

1≤i1<···<il≤n xi1
. . . xil is an elementary symmetric function. Multiplying

by yk and summing on k gives the answer as the coefficient of zm in

1
yz

(1 + z(y − x1)) . . . (1 + z(y − xn))

(1− zx1) . . . (1− zxn)
− 1

∆(x1, . . . , xn).

19. Let the shape of the transposed tableau be (n′
1, n

′
2, . . . , n

′
r); the answer is

1
2
f(n1, n2, . . . , nm)

(

n2

i −

n′2

j)
n(n− 1)

+ 1

,

where n =

ni =

n′

j . (This formula can be expressed in a less symmetrical form
using the relation

ini = 1

2
(n+

n′2

j).)
Note: W. Feit [Proc. Amer. Math. Soc. 4 (1953), 740Ű744] showed that the number

of ways to place the integers {1, 2, . . . , n} into an array that is the ŞdifferenceŤ of two
tableau shapes (n1, . . . , nm) \ (l1, . . . , lm), where 0 ≤ lj ≤ nj and n =

(nj − lj), is

n! det(1/((nj − j)− (li − i))!).

20. The fallacious argument in the discussion following Theorem H is actually valid
for this case (the corresponding probabilities are independent).

Note: If we consider all n! ways to label the nodes, the labelings considered here
are those having no Şinversions.Ť Inversions in permutations are the same as inversions
in tree labelings, in the special case when the tree is simply a path. See A. Björner and
M. L. Wachs, J. Combinatorial Theory A52 (1989), 165Ű187.

21. [Michigan Math. J. 1 (1952), 81Ű88.] Let g(n1, . . . , nm) = (n1 + · · · + nm)!
∆(n1, . . . , nm)/n1! . . . nm!σ(n1, . . . , nm), where σ(x1, . . . , xm) =

1≤i<j≤m(xi + xj).

To prove that g(n1, . . . , nm) is the number of ways to Ąll the shifted tableau, we
must prove that g(n1, . . . , nm) = g(n1−1, . . . , nm) + · · ·+ g(n1, . . . , nm−1). The iden-
tity corresponding to exercise 17 is x1∆(x1 + y, . . . , xn)/σ(x1 + y, . . . , xn) + · · · +
xn∆(x1, . . . , xn + y)/σ(x1, . . . , xn + y) = (x1 + · · · + xn)∆(x1, . . . , xn)/σ(x1, . . . , xn),
independent of y; for if we calculate the derivative as in exercise 17, we Ąnd that
2xixj/(x2

j − x2
i) + 2xjxi/(x2

i − x2
j) = 0.

610 ANSWERS TO EXERCISES 5.1.4

22. Assume that m = N, by adding 0s to the shape if necessary; if m > N and nm > 0,
the number of ways is clearly zero. When m = N the answer is

det

n1 +m− 1
m− 1

n2 +m− 2
m− 1

· · ·

nm

m− 1

...
...

...
n1 +m− 1

0

n2 +m− 2

0

· · ·

nm

0

 .

Proof. We may assume that nm = 0, for if nm > 0, the Ąrst nm columns of the array
must be Ąlled with i in row i, and we may consider the remaining shape (n1−nm, . . . ,
nm−nm). By induction on m, the number of ways is

n2≤k1≤n1···
nm≤km−1≤nm−1

det

k1 +m− 2
m− 2

k2 +m− 3
m− 2

· · ·

km−1

m− 2

...
...

...
k1 +m− 2

0

k2 +m− 3

0

· · ·

km−1

0

 ,

where nj − kj represents the number of mŠs in row j. The sum on each kj may be
carried out independently, giving

det

n1+m−1

m−1

−

n2+m−2

m−1

n2+m−2

m−1

−

n3+m−3

m−1

···

nm−1+1

m−1

−

nm

m−1

...
...

...
n1+m−1

1

−

n2+m−2

1

n2+m−2

1

−

n3+m−3

1

···

nm−1+1

1

−

nm

1

,

which is the desired answer since nm = 0. The answer can be converted into a
Vandermonde determinant by row operations, giving ∆(n1+m−1, n2+m−2, . . . , nm)/
(m−1)! (m−2)! . . . 0!. [The answer to this exercise, in connection with an equivalent
problem in group theory, appears in D. E. LittlewoodŠs Theory of Group Characters
(Oxford, 1940), 189.]

23. [Comptes Rendus Acad. Sci. 88 (Paris, 1879), 965Ű967; Journal de Math. (3) 7

(1881), 167Ű184.] (This is a special case of exercise 5.1.3Ű8, with all runs of length 2
except that the Ąnal run might have length 1.) When n ≥ 2, element n must appear in
one of the rightmost positions of a row; once it has been placed in the rightmost box
on row k from the bottom, we have

n−1
2k−1

E2k−1En−2k ways to complete the job. Let

h(z) =

n≥1

E2n−1z
2n−1/(2n− 1)! = 1

2
(g(z)− g(−z));

then

h(z)g(z) =

k,n≥1

n

2k − 1

E2k−1En−2k+1z

n/n! =

n≥0

En+1z
n/n!

− 1 = g′(z)− 1.

Replace z by −z and add, obtaining h(z)2 = h′(z) − 1; hence h(z) = tan z. Setting
k(z) = g(z) − h(z), we have h(z)k(z) = k′(z); hence k(z) = sec z and g(z) =
sec z + tan z = tan(1

2
z + 1

4
π). The coefficients En are called Euler numbers; with

odd index, E2n−1 is the tangent number T2n−1 = (−1)n−14n(4n − 1)B2n/(2n). Tables
of these numbers appear in Math. Comp. 21 (1967), 663Ű688; the sequence begins
(E0, E1, E2, . . .) = (1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, . . .). The easiest way to compute

5.1.4 ANSWERS TO EXERCISES 611

Euler numbers is probably to form the triangular array

1
0 1

1 1 0
0 1 2 2

5 5 4 2 0
0 5 10 14 16 16

61 61 56 46 32 16 0

in which partial sums are alternately formed from left to right and right to left [L. Seidel,
Sitzungsberichte math.-phys. Classe Akademie Wissen. München 7 (1877), 157Ű187].

25. In general, if unk is the number of permutations on {1, 2, . . . , n} having no cycles
of length > k,

unkz

n/n! = exp(z + z2/2 + · · ·+ zk/k); this is proved by multiplying
exp(z)× · · · × exp(zk/k), obtaining

n

zn

j1+2j2+···+kjk=n

1
1j1j1! 2j2j2! . . .

;

see also exercise 1.3.3Ű21. Similarly, exp(

s∈S z
s/s) is the corresponding generating

function for permutations whose cycle lengths are all members of a given set S.

26. The integral from 0 to ∞ is n(t+1)/4Γ ((t+ 1)/2)/2(t+3)/2, by the gamma function
integral (exercise 1.2.5Ű20, t = 2x2/

√
n). So, from −∞ to ∞, we get 0 when t is odd,

otherwise n(t+1)/4√π t!/2(3t+1)/2(t/2)!.

27. (a) If ri < ri+1 and ci < ci+1, the condition i < Qrici+1
< i + 1 is impossible.

If ri ≥ ri+1 and ci ≥ ci+1, we certainly cannot have i + 1 ≤ Qrici+1
≤ i. (b) Prove,

by induction on the number of rows in the tableau for a1 . . . ai, that ai < ai+1 implies
ci < ci+1, and ai > ai+1 implies ci ≥ ci+1. (Consider row 1 and the ŞbumpedŤ
sequences.) (c) This follows from Theorem D(c).

28. This result is due to A. M. Vershik and S. V. Kerov, Dokl. Akad. Nauk SSSR
233 (1977), 1024Ű1028; see also B. F. Logan and L. A. Shepp, Advances in Math. 26

(1977), 206Ű222. [J. Baik, P. Deift, and K. Johansson, J. Amer. Math. Soc. 12 (1999),
1119Ű1178, showed that the standard deviation is Θ(n1/6); moreover, the probability
that the length is less than 2

√
n+ tn1/6 approaches exp(−

∞
t

(x− t)u2(x) dx), where
u′′(x) = 2u3(x) + xu(x) and u(x) is asymptotic to the Airy function Ai(x) as x→∞.]

29.

n
l

/l! is the average number of increasing subsequences of length l. (By exercises

8 and 29, the probability is O(1/
√
n) that the largest increasing sequence has length

≥ e√n or ≤ √n/e.) [J. D. Dixon, Discrete Math. 12 (1975), 139Ű142.]

30. [Discrete Math. 2 (1972), 73Ű94; a simpliĄed proof has been given by Marc van
Leeuwen, Electronic J. Combinatorics 3, 2 (1996), paper #R15.]

31. xn = a⌊n/2⌋ where a0 = 1, a1 = 2, an = 2an−1 + (2n − 2)an−2;

anz

n/n! =
exp(2z+z2) = (

tnz

n/n!)2; xn ≈ exp(1
4
n lnn− 1

4
n+
√
n− 1

2
− 1

2
ln 2) for n even. [See

E. Lucas, Théorie des Nombres (1891), 217Ű223.]

32. Let mn =
∞
−∞ tne−(t−1)2/2dt/

√
2π. Then m0 = m1 = 1, and mn+1−mn = nmn−1

if we integrate by parts. So mn = tn by (40).

33. True; it is det m
i,j=1

ai

j−1

. [Mitchell, in Amer. J. Math. 4 (1881), 341Ű344, showed

that it is the number of terms in the expansion of a certain symmetric function, now
called a Schur function. Indeed, if 0 < a1 < · · · < am, it is the number of terms in
Sn1n2...nm(x1, x2, . . . , xm) where n1 = am−m, n2 = am−1− (m−1), . . . , nm = a1−1.

612 ANSWERS TO EXERCISES 5.1.4

This Schur function is the sum over all generalized tableaux of shape (n1, . . . , nm)
with elements in {1, . . . ,m} of the products of xj for all j in the tableau, where a
generalized tableau is like an ordinary tableau except that equal elements are allowed
in the rows. In this deĄnition we allow the parameters nk to be zero. For example,
S210(x1, x2, x3) = x2

1x2 +x2
1x3 +x1x

2
2 +x1x2x3 +x1x2x3 +x1x

2
3 +x2

2x3 +x2x
2
3, because

of the generalized tableaux 11
2 , 11

3 , 12
2 , 12

3 , 13
2 , 13

3 , 22
3 , 23

3 . The number of such tableaux is
∆(1, 3, 5)/∆(1, 2, 3) = 8. By extending Algorithms I and D to generalized tableaux
[PaciĄc J. Math. 34 (1970), 709Ű727], we can obtain combinatorial proofs of the
remarkable identities

λ

Sλ(x1, . . . , xm)Sλ(y1, . . . , yn) =
m

i=1

n

j=1

1
1− xiyj

,

λ

Sλ(x1, . . . , xm)SλT (y1, . . . , yn) =
m

i=1

n

j=1

(1 + xiyj);

here the sum is over all possible shapes λ, and λT denotes the transposed shape. These
identities were Ąrst discovered by D. E. Littlewood, Proc. London Math. Soc. (2) 40

(1936), 40Ű70, Theorem V.]
Notes: It follows, for example, that any product of consecutive binomial coef-

Ącients

a
k

a+1

k

. . .

a+l
k

is divisible by

k
k

k+1

k

. . .

k+l
k

, since the ratio is ∆(a + l,

. . . , a + 1, a, k − 1, . . . , 1, 0)/∆(k + l, . . . , 1, 0). The value of ∆(k, . . . , 1, 0) = k! . . . 2! 1!
is sometimes called a Şsuperfactorial.Ť
34. The length of a hook is also the length of any zigzag path from the hookŠs bottom
left cell (i, j) to its top right cell (i′, j′). We prove a stronger result: If there is a hook
of length a+ b, then there is either a hook of length a or a hook of length b. Consider
the cells (i, j) = (i1, j1), (i2, j2), . . . , (ia+b, ja+b) = (i′, j′) that hug the bottom of the
shape. If ja+1 = ja, the cell (ia, j1) has a hook of length a; otherwise (ia+b, ja+1)
has a hook of length b. [Reference: Japanese J. Math. 17 (1940), 165Ű184, 411Ű423.
Nakayama was the Ąrst to consider hooks in the study of permutation groups, and he
came close to discovering Theorem H.]
35. The execution of steps G3ŰG5 decreases exactly hij elements of the p array by 1
when qij is increased, because the algorithm follows a zigzag path from pn′

j
j to pini .

The next execution of those steps either starts with a larger value of j or stays above
or equal to the preceding zigzag. Therefore the q array is Ąlled from left to right and
bottom to top; to reverse the process we proceed from right to left and top to bottom:

H1. [Initialize.] Set pij ← 0 for 1 ≤ j ≤ ni and 1 ≤ i ≤ n′
1. Then set i ← 1 and

j ← n1.
H2. [Find nonzero cell.] If qij > 0, go on to step H3. Otherwise if i < n′

j , increase
i by 1 and repeat this step. Otherwise if j > 1, decrease j by 1, set i ← 1,
and repeat this step. Otherwise stop (the q array is now zero).

H3. [Decrease q, prepare for zigzag.] Decrease qij by 1 and set l← i, k ← ni.
H4. [Increase p.] Increase plk by 1.
H5. [Move down or left.] If l < n′

k and plk > p(l+1)k, increase l by 1 and return
to H4. Otherwise if k > j, decrease k by 1 and return to H4. Otherwise
return to H2.

The Ąrst zigzag path for a given column j ends by incrementing pn′

j
j , because p1j ≤

· · · ≤ pn′

j
j implies that pn′

j
j > 0. Each subsequent path for column j stays below or

5.1.4 ANSWERS TO EXERCISES 613

equal to the previous one, so it also ends at pn′

j
j . The inequalities encountered on the

way show that this algorithm inverts the other. [J. Combinatorial Theory A21 (1976),
216Ű221.]

36. (a) The stated coefficient of zm is the number of solutions to m =

hijqij , so we

can apply the result of the previous exercise. (b) If a1, . . . , ak are any positive integers,
we can prove by induction on k that

[zm] 1/(1− z)(1− za1) . . . (1− zak) =

m

k

/a1 . . . ak +O(mk−1) .

The number of partitions of m with at most n parts is therefore

m
n−1

/n! + O(mn−2)

for Ąxed n, by exercise 5.1.1Ű15. This is also the asymptotic number of partitions
m = p1 + · · ·+ pn with distinct parts p1 > · · · > pn > 0 (see exercise 5.1.1Ű16). So the
number of reverse plane partitions is asymptotically N

m

n−1

/n!+O(mn−2) when there

are N tableaux of a given n-cell shape. By part (a) this is also

m
n−1

/

hij +O(mn−2).

[Studies in Applied Math. 50 (1971), 167Ű188, 259Ű279.]

37. Plane partitions in a rectangle are equivalent to reverse plane partitions, so the
hook lengths tell us the generating function 1/

r
i=1

c
j=1(1 − zi+j−1) in an r × c

rectangle. Letting r, c → ∞ yields the elegant answer 1/(1 − z)(1 − z2)2(1 − z3)3
[MacMahonŠs original derivation in Philosophical Transactions A211 (1912), 75Ű110,
345Ű373, was extremely complicated. The Ąrst reasonably simple proof was found by
Leonard Carlitz, Acta Arithmetica 13 (1967), 29Ű47.]

38. (a) The probability is 1/n when k = l = 1; otherwise it is

nP (I \ {i0}, J) + nP (I, J \ {j0})
ndi0j0

=
(di0b + daj0

)/(ndi0b . . . dik−1b daj0
. . . dajl−1

)
di0b + daj0

,

by induction on k + l.
(b) Summing over all I and J gives

n−1(1 + d−1
1b) . . . (1 + d−1

(a−1)b) (1 + d−1
a1) . . . (1 + d−1

a(b−1)) ,

which is easily seen to equal f(T \ {(a, b)})/f(T).
(c) The sum over all corners yields 1, because every path ends at a corner.

Therefore

f(T \ {(a, b)}) = f(T), and this proves Theorem H by induction on n.

Furthermore, if we put n into the corner cell at the end of the random path and repeat
the process on the remaining n− 1 cells, we get each tableau with probability 1/f(T).
[Advances in Math. 31 (1979), 104Ű109.]

39. (a) Q11 . . . Q1n will be b1 . . . bn, the inversion table of the original permutation
P11 . . . P1n. (See Section 5.1.1.)

(b) Q11 . . . Qn1 is the negated inversion table (−C1) . . . (−Cn) of exercise 5.1.1Ű7.
(c) This condition is clearly preserved by step P3.

(d) (1 4
2 3

)→ ((1 3
2 4

), (0
0

−1
0

)); (4 3
1 2

)→ ((1 2
3 4

), (0
0

−1
0

)). This example shows that we
cannot run step P3 backwards without looking at the array P .

(e)

12 10 8 14 15 11

9 13 7 1

6 4 5

16 3

2

.

614 ANSWERS TO EXERCISES 5.1.4

(f) The following algorithm is correct, but not obviously so.
Q1. [Loop on (i, j).] Perform steps Q2 and Q3 for all cells (i, j) of the array in

lexicographic order (that is, from top to bottom, and from left to right in
each row); then stop.

Q2. [Adjust Q.] Find the ŞĄrst candidateŤ (r, s) by the rule below. Then set
Qi(k+1) ← Qik − 1 for j ≤ k < s.

Q3. [UnĄx P at (i, j).] Set K ← Prs. Then do the following operations until
(r, s) = (i, j): If P(r−1)s > Pr(s−1), set Prs ← P(r−1)s and r ← r−1; otherwise
set Prs ← Pr(s−1) and s← s− 1. Finally set Pij ← K.

In step Q2, cell (r, s) is a candidate when s ≥ j and Qis ≤ 0 and r = i−Qis. Let T
be the oriented tree of the hint. One of the basic invariants of Algorithm Q is that there
will be a path from (r, s) to (i, j) in T whenever (r, s) is a candidate in step Q2. The
reverse of that path can be encoded by a sequence of letters D, Q, and R, meaning that
we start at (i, j), then go down (D) or to the right (R) or quit (Q). The Ąrst candidate

is the one whose code is lexicographically Ąrst in alphabetic order; intuitively, it is the
candidate with the Şleftmost and bottommostŤ path.

For example, the candidates when (i, j) = (1, 1) in the example of part (e) are
(3, 1), (4, 2), (2, 3), (2, 4), and (1, 6). Their respective codes are DDQ, DDDRQ, RDRQ,
RDRRQ, and RRRRRQ; so the Ąrst is (4, 2).

Algorithm P is a slightly simpliĄed version of a construction stated without proof in
Funkts. Analiz i Ego Priloz. 26, 3 (1992), 80Ű82. The proof of correctness is nontrivial;
a proof was given by J.-C. Novelli, I. Pak, and A. V. Stoyanovskii in Disc. Math. and
Theoretical Comp. Sci. 1 (1997), 53Ű67.
40. An equivalent process was analyzed by H. Rost, Zeitschrift für Wahrscheinlichkeits-
theorie und verwandte Gebiete 58 (1981), 41Ű53. See also Dan Romik, The Surprising
Mathematics of Longest Increasing Subsequences (2014), Chapter 4.
41. (Solution by R. W. Floyd.) A deletion-insertion operation essentially moves only ai.
In a sequence of such operations, unmoved elements retain their relative order. There-
fore if π can be sorted with k deletion-insertions, it has an increasing subsequence
of length n − k; and conversely. Hence dis(π) = n − (length of longest increasing
subsequence of π) = n− (length of row 1 in Theorem A).

M. L. Fredman has proved that the minimum number of comparisons needed to
compute this length is n lgn− n lg lgn+O(n) [Discrete Math. 11 (1975), 29Ű35].
42. Construct a multigraph that has vertices {0R, 1L, 1R, . . . , nL, nR, (n + 1)L} and
edges kR −−− (k + 1)L for 0 ≤ k ≤ n; also include the edges 0R −−− 7R, 7L −−− 1L,
1R −−− 2L, 2R −−− 4L, 4R −−− 5L, 5R −−− 3L, 3R −−− 6R, 6L −−− 8L, which deĄne the
ŞbondsŤ of Lobelia fervens. Exactly two edges touch each vertex, so the connected
components are cycles: (0R 1L 7L 6R 3R 4L 2R 3L 5R 6L 8L 7R)(1R 2L)(4R 5L). Any Ćip
operation changes the number of cycles by −1, 0, or +1. Therefore we need at least Ąve
Ćips to reach the eight cycles (0R 1L)(1R 2L) . . . (7R 8L). [J. Kececioglu and D. Sankoff,
Algorithmica 13 (1995), 180Ű210.]

The Ąrst Ćip must break the bond 6L−−−8L, because we get no new cycle when we
break two bonds that have the same left-to-right orientation in the linear arrangement.
This leaves Ąve possibilities after one Ćip, namely gR

7 g6g
R
3 g

R
5 g

R
4 g

R
2 g

R
1 , gR

7 g1g2g4g5g3g6,
gR

7 g1g2g6g
R
3 g

R
5 g

R
4 , gR

7 g1g2g4g5g6g
R
3 , and g6g

R
3 g

R
5 g

R
4 g

R
2 g

R
1 g7; four more Ćips suffice to sort

all but the second of these.
Incidentally, there are 27 · 7! = 645120 different possible arrangements of g1 . . . g7,

and 179904 of them are at distance ≤ 5 from tobacco order.

5.2 ANSWERS TO EXERCISES 615

[An efficient algorithm to Ąnd the best way to sort any signed permutation by
reversals was Ąrst developed by S. Hannenhalli and P. Pevzner, JACM 46 (1999),
1Ű27. Improvements that solve the problem in O(n1.5√logn) time were subsequently
found by H. Kaplan and E. Verbin, J. Comp. Syst. Sci. 70 (2005), 321Ű341; E. Tannier,
A. Bergeron, and M.-F. Sagot, Discrete Applied Math. 155 (2007), 881Ű888.]

43. Denote an arrangement like gR
7 g1g2g4g5g3g

R
6 by the signed permutation 7124536. If

there is a negated element, say k is present but not k − 1, one Ćip will create the 2-cycle
((k−1)R kL). Similarly, if k is present but not k + 1, a single Ćip creates (kR (k+1)L).
And if all Ćips of that special kind remove all negated elements, a single Ćip creates two
2-cycles. If no negated elements are present and the permutation isnŠt sorted, some
Ćip will preserve the number of cycles. Hence we can sort in ≤ n Ćips if the given
permutation has a negated element, ≤ n+ 1 otherwise.

When n is even, the permutation n (n−1) . . . 1 requires n+ 1 Ćips, because it has
one cycle after the Ąrst Ćip. When n > 3 is odd, the permutation 2 1 3n (n−1) . . . 4
requires n+ 1 by a similar argument.

44. Let ck be the number of cycles of length 2k in the multigraph of the previous
answers. An upper bound on the average value of ck can be found as follows: The total
number of potential 2k-cycles is 2k(n+1)k/(2k), because we can choose a sequence of k
distinct edges from {0R−−−1L, . . . , nR−−−(n+1)L} in (n+1)k ways and orient them in
2k ways; this counts each cycle 2k times, including impossible cases like (1R 2L 2R 3L)
or (1R 2L 3L 2R 3R 4L) or (1R 2L 6R 7L 4L 3R 2R 3L 6L 5R). When k ≤ n, every possible
2k-cycle occurs in exactly 2n−k(n − k)! signed permutations. For example, consider
the case k = 5, n = 9, and the cycle (0R 1L 9L 8R 7R 8L 1R 2L 5L 4R). This cycle
occurs in the multigraph if and only if the signed permutation begins with 4 and
contains the substrings 9187 and 25 or their reverses; we obtain all solutions by Ąnding
all signed permutations of {1, 2, 3, 6} and replacing 1 by 9187, 2 by 25. Therefore
E ck ≤ 1/(2k) 2k(n + 1)k2n−k(n − k)!/2nn! = 1

2
(1/k + 1/(n + 1 − k)). It follows that

E c =
n

k=1 E ck + E cn+1 < Hn + 1. Since n + 1 − c is a lower bound on the number
of Ćips, we need ≥ n+ 1− E c > n−Hn of them.

[This proof uses ideas of V. Bafna and P. Pevzner, SICOMP 25 (1996), 272Ű289,
who studied the more difficult problem of sorting unsigned permutations by reversals.
In that problem, an interesting permutation that can be written as the product of
non-disjoint cycles (1 2 3)(3 4 5)(5 6 7) . . . , ending with either (n−1 n) or (n−2 n−1 n)
depending on whether n is even or odd, turns out to be the hardest to sort.]

SECTION 5.2

1. Yes; i and j may run through the set of values 1 ≤ j < i ≤ N in any order,
possibly in parallel and/or as records are being read in.

2. The sorting is stable in the sense deĄned at the beginning of this chapter, because
the algorithm is essentially sorting by lexicographic order on the distinct key-pairs
(K1, 1), (K2, 2), . . . , (KN , N). (If we think of each key as extended on the right by its
location in the Ąle, no equal keys are present, and the sorting is stable.)

3. It would sort, but not in a stable manner; if Kj = Ki and j < i, Rj will come after

Ri in the Ąnal ordering. This change would also make Program C run more slowly.

4. ENT1 N 1
LD2 COUNT,1 N
LDA INPUT,1 N

STA OUTPUT+1,2 N
DEC1 1 N
J1P *-4 N

616 ANSWERS TO EXERCISES 5.2

5. The running time is decreased by A+ 1−N −B units, and this is almost always
an improvement.

6. u = 0, v = 9.
After D1, COUNT = 0 0 0 0 0 0 0 0 0 0
After D2, COUNT = 2 2 1 0 1 3 3 2 1 1
After D4, COUNT = 2 4 5 5 6 9 12 14 15 16

During D5, COUNT = 2 3 5 5 5 8 9 12 15 16 j = 8
OUTPUT = -- -- -- 1G -- 4A -- -- 5L 6A 6T 6I 7O 7N -- --

After D5, OUTPUT = 0C 0O 1N 1G 2R 4A 5T 5U 5L 6A 6T 6I 7O 7N 8S 9.

7. Yes; note that COUNT[Kj] is decreased in step D6, and j decreases.

8. It would sort, but not in a stable manner (see exercise 7).

9. Let M = v − u; assume that |u| and |v| Ąt in two bytes. LOC(Rj) ≡ INPUT + j;
LOC(COUNT[j]) ≡ COUNT + j; LOC(Sj) ≡ OUTPUT + j; rI1 ≡ i; rI2 ≡ j; rI3 ≡ i − v or
rI3 ≡ Kj .

M EQU V-U
KEY EQU 0:2 (Satellite information is in bytes 3:5)
1H ENN3 M 1 D1. Clear COUNTs.

STZ COUNT+V,3 M + 1 COUNT[v − k]← 0.
INC3 1 M + 1
J3NP *-2 M + 1 u ≤ i ≤ v.

2H ENT2 N 1 D2. Loop on j.
3H LD3 INPUT,2(KEY) N D3. Increase COUNT[Kj].

LDA COUNT,3 N
INCA 1 N
STA COUNT,3 N
DEC2 1 N
J2P 3B N N ≥ j > 0.
ENN3 M-1 1 D4. Accumulate.
LDA COUNT+U 1 rA← COUNT[i− 1].

4H ADD COUNT+V,3 M COUNT[i− 1] + COUNT[i]
STA COUNT+V,3 M → COUNT[i].
INC3 1 M
J3NP 4B M u ≤ i ≤ v.

5H ENT2 N 1 D5. Loop on j.
6H LD3 INPUT,2(KEY) N D6. Output Rj .

LD1 COUNT,3 N i← COUNT[Kj].
LDA INPUT,2 N rA← Rj .
STA OUTPUT,1 N Si ← rA.
DEC1 1 N
ST1 COUNT,3 N COUNT[Kj]← i− 1.
DEC2 1 N
J2P 6B N N ≥ j > 0.

The running time is (10M + 22N + 10)u.

10. In order to avoid using N extra ŞtagŤ bits [see Section 1.3.3 and Cybernetics 1

(1965), 95], yet keep the running time essentially proportional to N, we may use the
following algorithm based on the cycle structure of the permutation:

P1. [Loop on i.] Do step P2 for 1 ≤ i ≤ N ; then terminate the algorithm.

5.2 ANSWERS TO EXERCISES 617

P2. [Is p(i) = i?] Do steps P3 through P5, if p(i) ̸= i.

P3. [Begin cycle.] Set t← Ri, j ← i.

P4. [Fix Rj .] Set k ← p(j), Rj ← Rk, p(j) ← j, j ← k. If p(j) ̸= i, repeat this
step.

P5. [End cycle.] Set Rj ← t, p(j)← j.

This algorithm changes p(i), since the sorting application lets us assume that p(i) is
stored in memory. On the other hand, there are applications such as matrix transpo-
sition where p(i) is a function of i that is to be computed (not tabulated) in order to
save memory space. In such a case we can use the following method, performing steps
B1 through B3 for 1 ≤ i ≤ N.

B1. Set k ← p(i).

B2. If k > i, set k ← p(k) and repeat this step.

B3. If k < i, do nothing; but if k = i (this means that i is smallest in its cycle),
we permute the cycle containing i as follows: Set t← Ri; then while p(k) ̸= i
repeatedly set Rk ← Rp(k) and k ← p(k); Ąnally set Rk ← t.

This algorithm is similar to the procedure of J. Boothroyd [Comp. J. 10 (1967),
310], but it requires less data movement; some reĄnements have been suggested by
I. D. G. MacLeod [Australian Comp. J. 2 (1970), 16Ű19]. For random permutations
the analysis in exercise 1.3.3Ű14 shows that step B2 is performed (N + 1)HN −N steps
on the average. See also the references in the answer to exercise 1.3.3Ű12. Similar
algorithms can be designed to replace (Rp(1), . . . , Rp(N)) by (R1, . . . , RN), for example
if the rearrangement in exercise 4 were to be done with OUTPUT = INPUT.

11. Let rI1 ≡ i; rI2 ≡ j; rI3 ≡ k; rX ≡ t.
1H ENT1 N 1 P1. Loop on i.
2H CMP1 P,1 N P2. Is p(i) = i?

JE 8F N Jump if p(i) = i.
3H LDX INPUT,1 A−B P3. Begin cycle. t← Ri.

ENT2 0,1 A−B j ← i.
4H LD3 P,2 N −A P4. Fix Rj . k ← p(j).

LDA INPUT,3 N −A
STA INPUT,2 N −A Rj ← Rk.
ST2 P,2 N −A p(j)← j.
ENT2 0,3 N −A j ← k.
CMP1 P,2 N −A
JNE 4B N −A Repeat if p(j) ̸= i.

5H STX INPUT,2 A−B P5. End cycle. Rj ← t.
ST2 P,2 A−B p(j)← j.

8H DEC1 1 N
J1P 2B N N ≥ i ≥ 1.

The running time is (17N − 5A − 7B + 1)u, where A is the number of cycles in
the permutation p(1) . . . p(N) and B is the number of Ąxed points (1-cycles). We have

A = (min 1, aveHN , maxN, dev

HN−H(2)

N) and B = (min 0, ave 1, maxN, dev 1),

for N ≥ 2, by Eqs. 1.3.3Ű(21) and 1.3.3Ű(28).

618 ANSWERS TO EXERCISES 5.2

12. The obvious way is to run through the list, replacing the link of the kth element
by the number k, and then to rearrange the elements in a second pass. The following
more direct method, due to M. D. MacLaren, is shorter and faster if the records are
not too long. (Assume for convenience that 0 ≤ LINK(P) ≤ N, for 1 ≤ P ≤ N, where
Λ ≡ 0.)

M1. [Initialize.] Set P← HEAD, k ← 1.

M2. [Done?] If P = Λ (or equivalently if k = N + 1), the algorithm terminates.

M3. [Ensure P ≥ k.] If P < k, set P← LINK(P) and repeat this step.

M4. [Exchange.] Interchange Rk and R[P]. (Assume that LINK(k) and LINK(P)
are also interchanged in this process.) Then set Q← LINK(k), LINK(k)← P,
P← Q, k ← k + 1, and return to step M2.

A proof that MacLarenŠs method is valid can be based on an inductive veriĄcation of
the following property that holds at the beginning of step M2: The entries that are
≥ k in the sequence P, LINK(P), LINK(LINK(P)), . . . , Λ are a1, a2, . . . , aN+1−k, where
R1 ≤ · · · ≤ Rk−1 ≤ Ra1

≤ · · · ≤ RaN+1−k is the desired Ąnal order of the records.
Furthermore LINK(j) ≥ j for 1 ≤ j < k, so that LINK(j) = Λ implies j ≥ k.

It is quite interesting to analyze MacLarenŠs algorithm; one of its remarkable prop-
erties is that it can be run backwards, reconstructing the original set of links from the
Ąnal values of LINK(1) . . . LINK(N). Each of the N ! possible output conĄgurations with
j ≤ LINK(j) ≤ N corresponds to exactly one of the N ! possible input conĄgurations.
If A is the number of times P ← LINK(P) in step M3, then N − A is the number of j
such that LINK(j) = j at the conclusion of the algorithm; this occurs if and only if j
was largest in its cycle; hence N − A is the number of cycles in the permutation, and
A = (min 0, ave N −HN , max N−1).

References: M. D. MacLaren, JACM 13 (1966), 404Ű411; D. Gries and J. F. Prins,
Science of Computer Programming 8 (1987), 139Ű145.

13. D5′. Set r ← N.

D6′. If r = 0, stop. Otherwise, if COUNT[Kr] < r set r ← r − 1 and repeat this
step; if COUNT[Kr] = r, decrease both COUNT[Kr] and r by 1 and repeat this
step. Otherwise set R← Rr, j ← COUNT[Kr], COUNT[Kr]← j − 1.

D7′. Set S ← Rj , k ← COUNT[Kj], COUNT[Kj]← k − 1, Rj ← R, R← S, j ← k.
Then if j ̸= r repeat this step; if j = r set Rj ← R, r ← r − 1, and go back
to D6′.

To prove that this procedure is valid, observe that at the beginning of step D6′ all
records Rj such that j > r that are not in their Ąnal resting place must move to the
left; when r = 0 there canŠt be any such records since somebody must move right. The
algorithm is elegant but not stable for equal keys. It is intimately related to FoataŠs
construction in Theorem 5.1.2B.

SECTION 5.2.1

1. Yes; equal elements are never moved across each other.

2. Yes. But the running time would be slower when equal elements are present, and
the sorting would be just the opposite of stable.

3. The following eight-liner is conjectured to be the shortest MIX sorting routine,
although it is not recommended for speed. We assume that the numbers appear in
locations 1, . . . , N (that is, INPUT EQU 0); otherwise another line of code is necessary.

5.2.1 ANSWERS TO EXERCISES 619

2H LDA 0,1 B
CMPA 1,1 B
JLE 1F B
MOVE 1,1 A
STA 0,1 A

START ENT1 N A+ 1
1H DEC1 1 B + 1

J1P 2B B + 1

Note: To estimate the running time of this program, note that A is the number of
inversions. The quantity B is a reasonably simple function of the inversion table, and
(assuming distinct inputs in random order) it has the generating function

zN−1(1 + z)(1 + z2 + z2+1)

× (1 + z3 + z3+2 + z3+2+1) . . . (1 + zN−1 + z2N−3 + · · ·+ zN(N−1)/2)/N ! .

The mean value of B is N − 1 +
N

k=1(k− 1)(2k− 1)/6 = (N − 1)(4N2 +N + 36)/36;
hence the average running time of this program is roughly 7

9
N3u.

4. Consider the inversion table B1 . . . BN of the given input permutation, in the sense
of exercise 5.1.1Ű7. Then A is one less than the number of Bj Šs that are equal to j− 1,
and B is the sum of the Bj Šs. Hence both B−A and B are maximized when the input
permutation is N. . . 2 1; they both are minimized when the input is 1 2 . . . N . The
minimum achievable time therefore occurs for A = 0 and B = 0, namely (10N − 9)u;
the maximum occurs for A = N − 1 and B =

N
2

, namely (4.5N2 + 2.5N − 6)u.

5. The generating function is z10N−9 times the generating function for 9B − 3A. By
considering the inversion table as in the previous exercise, remembering that individual
entries of the inversion table are independent of each other, the desired generating
function is z10N−9

1<j≤N ((1 + z9 + · · ·+ z9j−18 + z9j−12)/j). The variance comes to
2.25N3 + 3.375N2 − 32.625N + 36HN − 9H(2)

N .

6. Treat the input area as a circular list, with position N adjacent to position 1. Take
new elements to be inserted from either the left or the right of the current segment
of unsorted elements, according as the previously inserted element fell to the right or
left of the center of the sorted elements, respectively. Afterwards it will usually be
necessary to ŞrotateŤ the area, moving each record k places around the circle for some
Ąxed k; this can be done efficiently as in exercise 1.3.3Ű34.

7. The average value of |aj − j| is
1
n

(|1− j|+ |2− j|+ · · ·+ |n− j|) =
1
n

j

2

+

n− j + 1

2

;

summing on j gives 1
n

(

n+1
3

+

n+1
3

) = 1

3
(n2 − 1). Incidentally, the variance of the

stated sum can be shown to equal [n> 1](2n2 + 7)(n+ 1)/45.

8. No; for example, consider the keys 2 1 1 1 1 1 1 1 1 1 1.

9. For Table 3, A = 3 + 0 + 2 + 1 = 6, B = 3 + 1 + 4 + 21 = 29; in Table 4,
A = 4 + 2 + 2 + 0 = 8, B = 4 + 3 + 8 + 10 = 25; hence the running time of Program D
comes to 786u and 734u, respectively. Although the number of moves has been cut from
41 to 25, the running time is not competitive with Program S since the bookkeeping
time for four passes is wasted when N = 16. When sorting 16 items we will be better
off using only two passes; a two-pass Program D begins to beat Program S at about
N = 13, although they are fairly equal for awhile (and for such small N the length of
the program is perhaps signiĄcant).

620 ANSWERS TO EXERCISES 5.2.1

10. Insert ‘INC1 INPUT; ST1 0F(0:2)Š between lines 07 and 08, and change lines 10Ű17
to:

0H CMPA INPUT+N-H,1 NT − S
JGE 7F NT − S

3H ENT2 N-H,1 NT − S − C
4H LDX INPUT,2 B
5H STX INPUT+H,2 B

DEC2 0,4 B
J2NP 6F B
CMPA INPUT,2 B −A
JL 4B B −A

6H STA INPUT+H,2 NT − S − C
For a net increase of four instructions, this saves 3(C − T) units of time, where C is
the number of times Kj ≥ Kj−h. In Tables 3 and 4 the time saved is approximately 87
and 88, respectively; empirically the value of C/(NT − S) seems to be about 0.4 when
hs+1/hs ≈ 2 and about 0.3 when hs+1/hs ≈ 3, so the improvement is worth while. (On
the other hand, the analogous change to Program S is usually insigniĄcant, since only
O(logN) time is saved in that case unless the input is known to be pretty well ordered.)

11.

12. Changing ❄✲ to
✲
❄always changes the number of inversions by ±1, depending on

whether the change is above or below the diagonal.

13. Put the weight |i− j| on the segment from (i, j−1) to (i, j).

14. (a) Interchange i and j in the sum for A2n and add the two sums. (b) Taking half
of this result, we see that

A2n =

0≤i≤j

(j − i)

i+ j

i

2n− i− j
n− j

=

i,k≥0

k
2i+ k

i

2n− 2i− k
n− i− k

;

hence

A2nz

n =

k≥0 kz
kα2k/(1− 4z) = z/(1− 4z)2, where α = (1−

√
1− 4z)/2z.

The proof above was suggested to the author by Leonard Carlitz. Another proof
can be based on interplay between horizontal and vertical weights (see exercise 13),
and still another by the identity in the answer to exercise 5.2.2Ű16 with f(k) = k; but
no simple combinatorial derivation of the formula An = ⌊n/2⌋2n−2 is apparent.

15. For n > 0,

ĝn(z) = zngn−1(z);

gn(z) =
n

k=1

ĝk(z)gn−k(z);

ĥn(z) = ĝn(z) + z−n ĝn(z);

hn(z) =
n

k=1

ĥk(z)hn−k(z).

Letting G(w, z) =

n gn(z)wn, we Ąnd that wzG(w, z)G(wz, z) = G(w, z)− 1. From
this representation we can deduce that, if t =

√
1− 4w = 1 − 2w − 2w2 − 4w3 − · · · ,

we have G(w, 1) = (1 − t)/(2w); G′(w, 1) = 1/(wt) − (1 − t)/(2w2); G′(w, 1) =
1/(2t2)−1/(2t); G′′(w, 1) = 2/(wt3)−2/(w2t)+(1−t)/w3; G′

′(w, 1) = 2/t4−1/t3; and

5.2.1 ANSWERS TO EXERCISES 621

G′′(w, 1) = 1/t3− (1−2w)/t4 + 10w2/t5. Here lower primes denote differentiation with
respect to the Ąrst parameter, and upper primes denote differentiation with respect to
the second parameter. Similarly, from the formula

w(zG(wz, z) +G(w, z))H(w, z) = H(w, z)− 1

we deduce that

H ′(w, 1) = w/t4, H ′′(w, 1) = −w/t3 − w/t4 + 2w/t5 + (2w2 + 20w3)/t7.

The formula manipulation summarized here was originally done by hand, but
today it can readily be done by computer. In principle all moments of the distribution
are obtainable in this way.

The generating function gn(z) also represents

zinternal path length over all trees

with n+ 1 nodes; see exercise 2.3.4.5Ű5. It is interesting to note that G(w, z) is equal
to F (−wz, z)/F (−w, z), where F (z, q) =

n≥0 z

nqn2

/
n

k=1(1− qk); the coefficient of
qmzn in F (z, q) is the number of partitions m = p1 + · · ·+ pn such that pj ≥ pj+1 + 2
for 1 ≤ j < n and pn > 0 (see exercise 5.1.1Ű16).

16. For h = 2 the maximum clearly occurs for the path that goes through the upper
right corner of the lattice diagram, namely

⌊n/2⌋+ 1
2

.

For general h the corresponding number is

f̂(n, h) =

h

2

q + 1

2

+

r

2

(q + 1),

where q and r are deĄned in Theorem H; the permutation with

ai+jh = 1 + q(h− i) + (r − i)[i≤ r] for 1 ≤ i ≤ h and j ≥ 0

maximizes the number of inversions between each of the

h
2

pairs of sorted sub-

sequences. The maximum number of moves is obtained if we replace f by f̂ in (6).

17. The only two-ordered permutation of {1, 2, . . . , 2n} that has as many as

n+1
2

inversions is n+1 1 n+2 2 . . . 2n n. Using this idea recursively, we obtain the
permutation deĄned by adding unity to each element of the sequence (2t − 1)R . . . 1R0R,
where R denotes the operation of writing an integer as a t-bit binary number and
reversing the left-to-right order of the bits(!).

18. Take out a common factor and let ht = 4N/π; we want to minimize the sumt
s=1 h

1/2
s /hs−1, when h0 = 1. Differentiation yields h3

s = 4h2
s−1hs+1, and we Ąnd

(2t−1) lg h1 = 2t+1−2(t+1)+lg ht. The minimum value of the stated estimate comes
to (1 − 2−t)π(2t−1−1)/(2t−1)N1+2t−1/(2t−1)/21+(t−1)/(2t−1), which rapidly approaches
the limiting value N

√
πN/2 as t→∞.

Typical examples of ŞoptimumŤ hŠs when N = 1000 (see also Table 6) are:

h2 ≈ 57.64, h1 ≈ 6.13, h0 = 1;

h3 ≈ 135.30, h2 ≈ 22.05, h1 ≈ 4.45, h0 = 1;

h4 ≈ 284.46, h3 ≈ 67.23, h2 ≈ 16.34, h1 ≈ 4.03, h0 = 1;

h9 ≈ 9164.74, h8 ≈ 12294.05, h7 ≈ 7119.55, h6 ≈ 2708.95, h5 ≈ 835.50,
h4 ≈ 232.00, h3 ≈ 61.13, h2 ≈ 15.69, h1 ≈ 3.97, h0 = 1.

622 ANSWERS TO EXERCISES 5.2.1

19. Let g(n, h) = Hr−1+

r<j≤h q/(qj+r), where q and r are deĄned in Theorem H;
then replace f by g in (6).

20. (This is much harder to write down than to understand.) Assume that a k-
ordered Ąle R1, . . . , RN has been h-sorted, and let 1 ≤ i ≤ N−k; we want to show that
Ki ≤ Ki+k. Find u, v such that i ≡ u and i+k ≡ v (modulo h), 1 ≤ u, v ≤ h; and apply
Lemma L with xj = Kv+(j−1)h, yj = Ku+(j−1)h. Then the Ąrst r elements Ku, Ku+h,
. . . , Ku+(r−1)h of the yŠs are respectively ≤ the last r elements Ku+k, Ku+k+h, . . . ,
Ku+k+(r−1)h of the xŠs, where r is the greatest integer such that u+ k+ (r− 1)h ≤ N .

21. If xh + yk = x′h + y′k, we have (x − x′)h = (y′ − y)k, so x′ = x + tk and
y′ = y − th for some integer t. Let h′h + k′k = 1; then n = (nh′)h + (nk′)k, so every
integer n has a unique representation of the form n = xh + yk where 0 ≤ x < k, and
n is generable if and only if y ≥ 0. Let, similarly, hk − h − k − n = x′h + y′k; then
(x+x′)h+ (y+ y′)k = hk−h− k. Hence x+x′ ≡ k− 1 (modulo k) and we must have
x+ x′ = k − 1. Hence y + y′ = −1, and y ≥ 0 if and only if y′ < 0.

The symmetry of this result shows that exactly 1
2
(h−1)(k−1) positive integers are

unrepresentable in the stated form, a result originally due to Sylvester [Mathematical
Questions, with their Solutions, from the ‘Educational TimesŠ 41 (1884), 21].

22. To avoid cumbersome notation, consider s = 4, which is representative of the
general case. Let nk be the smallest number that is congruent to k (modulo 15) and
representable in the form 15a0 + 31a1 + · · · ; then we Ąnd easily that

k = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
nk = 0 31 62 63 94 125 126 127 158 189 190 221 252 253 254.

Hence 239 = 24(24−1)−1 is the largest unrepresentable number, and the total number
of unrepresentables is

x4 = (n1 − 1 + n2 − 2 + · · ·+ n14 − 14)/15

= (2 + 4 + 4 + 6 + 8 + 8) + 8 + (10 + 12 + 12 + 14 + 16 + 16) + 16

= 2x3 + 8 · 9;

in general, xs = 2xs−1 + 2s−1(2s−1 + 1).

For the other problem the answers are 22s + 2s + 2 and 2s−1(2s + s− 1) + 2,
respectively.

23. Each of the N numbers has at most ⌈(hs+2 − 1)(hs+1 − 1)/hs⌉ inversions in its
subĄle.

24. (Solution obtained jointly with V. Pratt.) Construct the Şh-recidivous permuta-
tionŤ of {1, 2, . . . , N} as follows. Start with a1 . . . aN blank; then for j = 2, 3, 4, . . .
do Step j: Fill in all blank positions ai from left to right, using the smallest number
that has not yet appeared in the permutation, whenever (2h − 1)j − i is a positive
integer representable as in exercise 22. Continue until all positions are Ąlled. Thus the
2-recidivous permutation for N = 20 is

6 2 1 9 4 3 12 7 5 15 10 8 17 13 11 19 16 14 20 18.

The h-recidivous permutation is (2k − 1)-ordered for all k ≥ h. When 2h < j ≤
N/(2h−1), exactly 2h − 1 positions are Ąlled during step j; the (k + 1)st of them adds
at least 2h−1− 2k to the number of moves required to (2h−1− 1)-sort the permutation.
Hence the number of moves to sort the h-recidivous permutation with increments
hs = 2s − 1 when N = 2h+1(2h − 1) is > 23h−4 > 1

64
N3/2. Pratt generalized this

5.2.1 ANSWERS TO EXERCISES 623

construction to a large family of similar sequences, including (12), in his Ph.D. thesis
(Stanford University, 1972). Heuristics that Ąnd permutations needing even more moves
are discussed by H. Erkiö, BIT 20 (1980), 130Ű136. See also Weiss and Sedgewick,
J. Algorithms 11 (1990), 242Ű251, for improvements on PrattŠs construction.

25. FN+1 [this result is due to H. B. Mann, Econometrica 13 (1945), 256]; for the
permutation must begin with either 1 or 2 1. There are at most ⌊N/2⌋ inversions; and
the total number of inversions is

N − 1
5

FN +
2N
5
FN−1.

(See exercise 1.2.8Ű12.) Note that the FN+1 permutations can conveniently be repre-
sented by ŞMorse codeŤ sequences of dots and dashes, where a dash corresponds to
an inversion; see exercise 4.5.3Ű32. Hence we have found the total number of dashes
among all Morse code sequences of length N .

Our derivation shows that a random 3- and 2-ordered permutation has roughly
1
5
(ϕ−1 + 2ϕ−2)N = ϕ−1N/

√
5 ≈ .276N inversions. But if a random permutation is

3-sorted, then 2-sorted, exercise 42 shows that it has ≈ N/4 inversions; if it is 2-sorted,
then 3-sorted, it has ≈ N/3.

26. Yes; a shortest example is 4 1 3 7 2 6 8 5, which has nine inversions. In general, the
construction a3k+s = 3k + 4s for −1 ≤ s ≤ 1 yields Ąles that are 3-, 5-, and 7-ordered,
having approximately 4

3
N inversions. When N mod 3 = 2 this construction is best

possible.

27. (a) See J. Algorithms 15 (1993), 101Ű124. A simpler proof, which shows that c
can be any constant < 1

2
, was found independently by C. G. Plaxton and T. Suel,

J. Algorithms 23 (1997), 221Ű240. (b) This is obvious if m > 1
4
c2(lnN/ ln lnN)2.

Otherwise N1+c/
√

m ≥ N(lnN)2. R. E. Cypher [SICOMP 22 (1993), 62Ű71] has
proved the slightly stronger bound Ω(N(logN)2/ log logN) when the increments satisfy
hs+1 > hs for all s and when a sorting network is constructed as in exercise 5.3.4Ű2.
No nontrivial lower bounds are yet known for the asymptotic average running time.

28. 209 109 41 19 5 1, from (11). But better sequences are possible; see exercise 29.

29. Experiments by C. Tribolet in 1971 resulted in the choices 373 137 53 19 7 3 1
(Bave ≈ 7210) and 317 101 31 11 3 1 (Bave ≈ 8170). [The Ąrst of these yields a sorting
time of ≈ 127720u, compared to ≈ 128593u when the same data are sorted using
increments (11).] In general Tribolet suggests letting hs be the nearest prime number to
Ns/t. Experiments by Shelby Siegel in 1972 indicate that the best number of increments
in such a method, for N ≤ 10000, is t ≈ 4

3
ln(N/5.75). On the other hand, Marcin

CiuraŠs experiments [Lect. Notes Comp. Sci. 2138 (2001), 106Ű117] indicate that the
minimum 7-pass Bave (≈ 6879) is obtained with increments 229 96 41 19 10 4 1, while
the sequence 737 176 69 27 10 4 1 yields the smallest total sorting time (≈ 125077u).

The best three-increment sequence, according to extensive tests by Carole M.
McNamee, appears to be 45 7 1 (Bave ≈ 18240). For four increments, 91 23 7 1 was
the winner in her tests (Bave ≈ 11865), but a rather broad range of increments gave
roughly the same performance.

30. The number of integer points in the triangular region

{x ln 2 + y ln 3 < lnN, x ≥ 0, y ≥ 0} is 1
2
(log2N)(log3N) +O(logN).

While we are h-sorting, the Ąle is already 2h-ordered and 3h-ordered, by Theorem K;
hence exercise 25 applies.

624 ANSWERS TO EXERCISES 5.2.1

31. 01 START ENT3 T 1
02 1H LD4 H,3 T
03 ENN2 -INPUT-N,4 T
04 ST2 6F(0:2) T
05 ST2 7F(0:2) T
06 ST2 4F(0:2) T
07 ENT2 0,4 T
08 JMP 9F T
09 2H LDA INPUT+N,1 NT − S −B +A
10 4H CMPA INPUT+N-H,1 NT − S −B +A
11 JGE 8F NT − S −B +A
12 6H LDX INPUT+N-H,1 B
13 STX INPUT+N,1 B
14 7H STA INPUT+N-H,1 B
15 INC1 0,4 B
16 8H INC1 0,4 NT −B +A
17 J1NP 2B NT −B +A
18 DEC2 1 S
19 9H ENT1 -N,2 T + S
20 J2P 8B T + S
21 DEC3 1 T
22 J3P 1B T

Here A is related to right-to-left maxima in the same way that A in Program D is
related to left-to-right minima; both quantities have the same statistical behavior. The
simpliĄcations in the inner loop have cut the running time to 7NT +7A−2S+1+15T
units, curiously independent of B !

When N = 8 the increments are 6, 4, 3, 2, 1, and we have Aave = 3.892, Bave =
6.762; the average total running time is 276.24u. (Compare with Table 5.) Both A
and B are maximized in the permutation 7 3 8 4 5 1 6 2. When N = 1000 there are
40 increments, 972, 864, 768, 729, . . . , 8, 6, 4, 3, 2, 1; empirical tests like those in Table 6
give A ≈ 875, B ≈ 4250, and a total time of about 268000u (more than twice as long
as Program D with the increments of exercise 28).

Instead of storing the increments in an auxiliary table, it is convenient to generate
them as follows on a binary machine:

P1. Set m← 2⌈lg N⌉−1, the largest power of 2 less than N.

P2. Set h← m.

P3. Use h as the increment for one sorting pass.

P4. If h is even, set h← h+ h/2; then if h < N, return to P3.

P5. Set m← ⌊m/2⌋ and if m ≥ 1 return to P2.

Although the increments are not being generated in descending order, the order speci-
Ąed here is sufficient to make the sorting algorithm valid.

32. 4 12 11 13 2 0 8 5 10 14 1 6 3 9 16 7 15.

33. Two types of improvements can be made. First, by assuming that the artiĄcial
key K0 is ∞, we can omit testing whether or not p > 0. (This idea has been used, for
example, in Algorithm 2.2.4A.) Secondly, a standard optimization technique: We can
make two copies of the inner loop with the register assignments for p and q interchanged;
this avoids the assignment q ← p. (This idea has been used in exercise 1.1Ű3.)

5.2.1 ANSWERS TO EXERCISES 625

Thus we assume that location INPUT contains the largest possible value in its (0 :3)
Ąeld, and we replace lines 07 and following of Program L by:

07 8H LD3 INPUT,2(LINK) B′ p← Lq. (Here p ≡ rI3, q ≡ rI2.)
08 CMPA INPUT,3(KEY) B′

09 JG 4F B′ To L4 with q ↔ p if K > Kp.
10 7H ST1 INPUT,2(LINK) N ′ Lq ← j.
11 ST3 INPUT,1(LINK) N ′ Lj ← p.
12 JMP 6F N ′ Go to decrease j.
13 4H LD2 INPUT,3(LINK) B′′ p← Lq. (Here p ≡ rI2, q ≡ rI3.)
14 CMPA INPUT,2(KEY) B′′

15 JG 8B B′′ To L4 with q ↔ p if K > Kp.
16 5H ST1 INPUT,3(LINK) N ′′ Lq ← j.
17 ST2 INPUT,1(LINK) N ′′ Lj ← p.
18 6H DEC1 1 N j ← j − 1.
19 ENT3 0 N q ← 0.
20 LDA INPUT,1 N K ← Kj .
21 J1P 4B N N > j ≥ 1.

Here B′ + B′′ = B + N − 1, N ′ + N ′′ = N − 1, so the total running time is
5B + 14N +N ′ − 3 units. Since N ′ is the number of elements with an odd number of
lesser elements to their right, it has the statistics

(min 0, ave
1
2
N +

1
4
H⌊N/2⌋ −

1
2
HN, max N − 1).

The ∞ trick also speeds up Program S; the following code suggested by J. H.
Halperin uses this idea and the MOVE instruction to reduce the running time to (6B +
11N − 10)u, assuming that location INPUT+N+1 already contains the largest possible
one-word value:

01 START ENT2 N-1 1
02 2H LDA INPUT,2 N − 1
03 ENT1 INPUT,2 N − 1
04 JMP 3F N − 1
05 4H MOVE 1,1(1) B
06 3H CMPA 1,1 B +N − 1
07 JG 4B B +N − 1
08 5H STA 0,1 N − 1
09 DEC2 1 N − 1
10 J2P 2B N − 1

Doubling up the inner loop would save an additional B/2 or so units of time.

34. There are

N
n

sequences of N choices in which the given list is chosen n times;

every such sequence has probability (1/M)n(1−1/M)N−n of occurring, since the given
list is chosen with probability 1/M.

35. 24 ENT1 0 1
25 ENT2 1-M 1
26 7H LD3 HEAD+M,2 M
27 J3Z 8F M
28 ST3 INPUT,1(LINK) M − E

29 ENT1 0,3 N
30 LD3 INPUT,1(LINK) N
31 J3P *-2 N
32 8H INC2 1 M
33 J2NP 7B M

626 ANSWERS TO EXERCISES 5.2.1

Note: If Program M were modiĄed to keep track of the current end of each list,
by inserting ‘ST1 END,4Š between lines 19 and 20, we could save time by hooking the
lists together as in Algorithm 5.2.5H.

36. Program L: A = 3, B = 41, N = 16, time = 496u. Program M: A = 2 + 1 + 1 +
3 = 7, B = 2+0+3+3 = 8, N = 16, time = 549u. (We should also add the time needed
by exercise 35, 94u, in order to make a strictly fair comparison. The multiplications
are slow! Notice also that the improved Program L in exercise 33 takes only 358u.)

37. The stated identity is equivalent to

gNM (z) = M−N

n1+···+nM =N

N !

n1! . . . nM !

gn1

(z) . . . gnM (z),

which is proved as in exercise 34. It may be of interest to tabulate some of these
generating functions, to indicate the trend for increasing M :

g41(z) = (216 + 648z+ 1080z2 + 1296z3 + 1080z4 + 648z5 + 216z6)/5184,

g42(z) = (945 + 1917z+ 1485z2 + 594z3 + 135z4 + 81z5 + 27z6)/5184,

g43(z) = (1704 + 2264z+ 840z2 + 304z3 + 40z4 + 24z5 + 8z6)/5184.

If GM (w, z) is the stated double generating function, differentiation by z gives

G′
M (w, z) = M

n≥0

gn(z)
wn

n!

M−1

n≥0

g′n(z)
wn

n!
,

hence

N≥0

g′NM (1)
MNwN

N !
= Me(M−1)w

w2

4
ew

=
M

4
w2eMw;

similarly, the formula g′′n(1) = 3
2

n
4

+ 5

3

n
3

yields

N≥0

g′′NM (1)
MNwN

N !
= M(M − 1)e(M−2)w

w2

4
ew

2

+Me(M−1)w

w4

16
+

5w3

18

ew.

Equating coefficients of wN gives g′NM (1) = 1
2

N
2

M−1, g′′NM (1) =

3
2

N
4

+ 5

3

N
3

M−2,

and the variance is

1
6

N
3

+ 2M−1

4

N
2

M−2.

38.

j,n

N
n

pn

j (1 − pj)N−n

n
2

=

N
2

j p

2
j ; setting pj = F (j/M)− F ((j − 1)/M),

and F ′(x) = f(x), this is asymptotic to

N
2

/M times

 1

0
f(x)2 dx when F is reasonably

well behaved. [However,
 1

0
f(x)2 dx might be quite large. See Theorem 5.2.5T for a

reĄnement that applies to all bounded integrable densities.]

39. To minimize AC/M + BM we need M =

AC/B, so M is one of the integers

just above or below this quantity. (In the case of Program M we would choose M
proportional to N.)

40. The asymptotic series for

n>N

n−1(1− α/N)n−N = −N−1 +

k≥0

(N + k)−1(1− α/N)k

can be obtained by restricting k to O(N1+ϵ), expanding (1 − α/N)k as e−αk/N times
(1 − kα2/2N2 + · · ·), and using EulerŠs summation formula; it begins with the terms
eαE1(α)(1 + α2/2N) − (1 + α)/2N + O(N−2). Hence the asymptotic value of (15) is

5.2.1 ANSWERS TO EXERCISES 627

N(lnα+γ+E1(α))/α+(1−e−α(1+α))/2α+O(N−1). [The coefficient of N is ≈ 0.7966,
0.6596, 0.2880, respectively, for α = 1, 2, 10.] Note that we have lnα + γ + E1(α) = α

0
(1− e−t) t−1 dt, by exercise 5.2.2Ű43.

41. (a) We have ak = O(ρk), because the prime number theorem implies that the
number of primes between ρk and ρk+1 is (ρk+1/(k+ 1)− ρk/k)/ln ρ+O(ρk/k2); this is
positive for all sufficiently large k. Therefore the sum of the Ąrst

k
2

elements of (10)

is

1≤i<j≤k b(ai, aj) =

1≤i<j≤k O(ρi+j); and we have

1≤i<j≤k

ρi+j =
ρ3(ρk − 1)(ρk−1 − 1)

(ρ2 − 1)(ρ− 1)
.

(b) If

k−1
2

< logρ N ≤

k
2

we have (k − 2)2 < 2 logρ N , hence ρ2k = O(exp c

√
lnN).

Notice that as ρ→ 1, the base sequence a1, a2, . . . becomes equal to the sequence
of prime numbers, and the bound in Theorem I reduces to O(N(logN)4(log logN)−2).

42. (a) [A. C. Yao, J. Algorithms 1 (1980), 14Ű50.] We can show that each of the
h
2

pairs of lists contributes

√
π

4
g−2h−3/2N3/2 + O(N/gh) inversions to each subĄle

(Ka,Ka+g,Ka+2g, . . .), 1 ≤ a ≤ g. For example, suppose h = 12, g = 5, a = 1, and con-
sider inversions where the lists K3 < K15 < K27 < · · · and K7 < K19 < K31 < · · · inter-
sect the subĄle (K1,K6,K11, . . .). After the Ąrst pass, (K3,K7,K15,K19,K27,K31, . . .)
is a random 2-ordered permutation. The elements Kj of concern to us have j ≡ 1
(modulo 5) and j ≡ 3 or 7 (modulo 12); hence j ≡ 51 or 31 (modulo 60), and we want
to compute the average value of g(51, 31) where

g(x, y) =

j<k

([Kx+ghj >Ky+ghk] + [Ky+ghj >Kx+ghk]) + r(x, y) ,

r(x, y) =

j

[Kmin(x,y)+ghj >Kmax(x,y)+ghj] < N/gh+ 1 .

If |p| ≤ g and |q| ≤ g we have

[Kj+ph−gh >Kk+qh+gh] ≤ [Kj >Kk] ≤ [Kj+ph+gh >Kk+qh−gh] ;

hence

[Kx+ghj >Ky+ghk] + [Ky+ghj >Kx+ghk]

≤ [Kx+ph+gh(j+1) >Ky+qh+gh(k−1)] + [Ky+qh+gh(j+1) >Kx+ph+gh(k−1)]

and it follows that g(x, y) ≤ g(x + ph, y + qh) + 8N/gh. Similarly we Ąnd g(x, y) ≥
g(x+ ph, y + qh) − 8N/gh. But the sum of g(x, y) over all g2 pairs (x, y) such that
xmod h = b and y mod h = c, for any given b ̸= c, is the total number of inversions
in a random 2-ordered permutation of 2N/h elements. Therefore by exercise 14, the
average value of g(x, y) is g−2

π/128 (2N/h)3/2 +O(N/gh).

(b) See S. Janson and D. E. Knuth, Random Structures & Algorithms 10 (1997),
125Ű142. For large g and h we have ψ(h, g) =

πh/128 g+O(g−1/2h1/2) +O(gh−1/2).

43. If K < Kl after step D3, set (Kl, . . . ,Kj−h,Kj) ← (K,Kl, . . . ,Kj−h); otherwise
do steps D4 and D5 until K ≥ Ki. Here l = 1 when j = h + 1, and l ← l + 1 −
h [l=h] when j increases by 1. [See H. W. Thimbleby, Software Practice & Exper. 19

(1989), 303Ű307.] However, with a decent sequence of increments the inner loop is not
performed often enough to make this change desirable.

628 ANSWERS TO EXERCISES 5.2.1

Another idea for speeding up the program [see W. Dobosiewicz, Inf. Proc. Letters
11 (1980), 5Ű6] is to sort only partially when h > 1, not attempting to propagate Kj

further left than position j − h; but that approach seems to require more increments.

44. (a) Yes. This is clear whenever π′ is one step above π, and exercise 5.1.1Ű29 shows
that there is a path of adjacent transpositions from π to any permutation above it.

(b) Yes. Similarly, if π is above π′, πR is below π′R.
(c) No; 2 1 3 is neither above nor below 3 1 2, but 2 1 3 ≤ 3 1 2.
[The partial ordering π ≤ π′ was Ąrst discussed by C. Ehresmann, Annals of Math.

(2) 35 (1934), 396Ű443, §20, in the context of algebraic topology. Many mathematicians
now call it the ŞBruhat orderŤ of permutations, while aboveness is called the Şweak
Bruhat orderŤ Ů although aboveness is actually a stronger condition, because it holds
less often. Only the weak order deĄnes a lattice.]

SECTION 5.2.2

1. No; it has 2m+1 fewer inversions, where m ≥ 0 is the number of elements ak such
that i < k < j and ai > ak > aj . (Hence all exchange-sorting methods will eventually
converge to a sorted permutation.)

2. (a) 6. (b) [A. Cayley, Philosophical Mag. (3) 34 (1849), 527Ű529.] Consider
the cycle representation of π. Any exchange of elements in the same cycle increases
the number of cycles by 1; any exchange of elements in different cycles decreases the
number by 1. (This is essentially the content of exercise 2.2.4Ű3.) A completely sorted
permutation is characterized by having n cycles. Hence xch(π) is n minus the number
of cycles in π. (Algorithm 5.2.3S does exactly xch(π) exchanges; see exercise 5.2.3Ű4.)

3. Yes; equal elements are never moved across each other.

4. It is the probability that b1 > max(b2, . . . , bn) in the inversion table, namely

1≤k<n

k! kn−k−1

n! =

π/2n+O(n−1) = negligible.

5. We may assume that r > 0. Let b′i = (bi−r+1)[bi≥ r] be the inversion table after
r− 1 passes. If b′i > 0, element i is preceded by b′i larger elements, the largest of which
will bubble up at least to position b′i + i, because there are i elements ≤ i. Furthermore
if element j is the rightmost to be exchanged, we have b′j > 0 and BOUND = b′j + j − 1
after the rth pass.

6. Solution 1: An element displaced farthest to the right of its Ąnal position moves
one step left on each pass except the last. Solution 2 (higher level): By exercise 5.1.1Ű8,
answer (f), a′i − i = bi − ci, for 1 ≤ i ≤ n, where c1 c2 . . . cn is the dual inversion table.
If bj = max(b1, . . . , bn) then cj = 0.

7. (2(n+ 1)(1 + P (n)− P (n+ 1))− P (n)− P (n)2)1/2 =

(2− π/2)n+O(1).

8. For i < k + 2 there are j + k − i+ 1 choices for bi; for k + 2 ≤ i < n− j + 2 there
are j − 1 choices; and for i ≥ n− j + 2 there are n− i+ 1.

10. (a) If i = 2k− 1, from (k− 1, ai − k) to (k, ai − k). If i = 2k, from (ai − k, k− 1)
to (ai−k, k). (b) Step a2k−1 is above the diagonal⇐⇒ k ≤ a2k−1−k ⇐⇒ a2k−1 ≥ 2k
⇐⇒ a2k−1 > a2k ⇐⇒ a2k ≤ 2k − 1 ⇐⇒ a2k − k ≤ k − 1 ⇐⇒ step a2k is above
the diagonal. Exchanging them interchanges horizontal and vertical steps. (c) Step
a2k+d is at least m below the diagonal ⇐⇒ k + m − 1 ≥ a2k+d − (k + m) + m ⇐⇒
a2k+d < 2k + m ⇐⇒ a2k ≥ 2k + m ⇐⇒ a2k − k ≥ k + m ⇐⇒ step a2k is at least m

5.2.2 ANSWERS TO EXERCISES 629

below the diagonal. (If a2k+d < 2k+m and a2k < 2k+m, there are at least (k+m)+k
elements less than 2k + m; thatŠs impossible. If a2k+d ≥ 2k + m and a2k ≥ 2k + m,
one of the ≥ must be > ; but we canŠt Ąt all of the elements ≤ 2k +m into fewer than
(k +m) + k positions. Hence a2k+2m−1 < a2k if and only if a2k+2m−1 < 2k +m if and
only if 2k +m ≤ a2k. A rather unexpected result!)

11. 16 10 13 5 14 6 9 2 15 8 11 3 12 4 7 1 (61 exchanges), by considering the lattice
diagram. The situation becomes more complicated when N is larger; in general, the set
{K2,K4, . . . } should be {1, 2, . . . , M−1, M, M+2, M+4, . . . , 2⌊N/2⌋−M}, permuted
so as to maximize the exchanges for ⌊N/2⌋ elements. Here M = ⌈2k/3⌉, where k
maximizes k⌊N/2⌋− 1

9
((3k−2)2k−1+(−1)k). The maximum total number of exchanges

is 1 − 2 lg lgN/ lgN + O(1/ logN) times the number of comparisons [R. Sedgewick,
SICOMP 7 (1978), 239Ű272].

12. The following program by W. Panny avoids the AND instruction by noting that
step M4 is performed for i = r + 2kp + s, k ≥ 0, and 0 ≤ s < p. Here TT ≡ 2t−1,
p ≡ rI1, r ≡ rI2, i ≡ rI3, i+ d−N ≡ rI4, and p− 1− s ≡ rI5; we assume that N ≥ 2.

01 START ENT1 TT 1 M1. Initialize p. p← 2t−1.
02 2H ENT2 TT T M2. Initialize q, r, d.
03 ST2 Q(1:2) T q ← 2t−1.
04 ENT2 0 T r ← 0.
05 ENT4 0,1 T rI4← d.
06 3H ENT3 0,2 A M3. Loop on i. i← r.
07 INC4 -N,3 A rI4← i+ d−N .
08 8H ENT5 -1,1 D + E s← 0.
09 4H LDA INPUT+1,3 C M4. Compare/exchange Ri+1 :Ri+d+1.
10 CMPA INPUT+N+1,4 C
11 JLE *+4 C Jump if Ki+1 ≤ Ki+d+1.
12 LDX INPUT+N+1,4 B
13 STX INPUT+1,3 B Ri+1 ↔ Ri+d+1.
14 STA INPUT+N+1,4 B
15 J5Z 7F C Jump if s = p− 1.
16 DEC5 1 C −D s← s+ 1.
17 INC3 1 C −D i← i+ 1.
18 INC4 1 C −D
19 J4N 4B C −D Repeat loop if i+ d < N .
20 JMP 5F E Otherwise go to M5.
21 7H INC3 1,1 D i← i+ p+ 1.
22 INC4 1,1 D
23 J4N 8B D Repeat loop if i+ d < N .
24 5H ENT2 0,1 A M5. Loop on q. r ← p.
25 Q ENT4 * A rI4← q.
26 ENTA 0,4 A
27 SRB 1 A
28 STA Q(1:2) A q ← q/2.
29 DEC4 0,1 A rI4← d.
30 J4P 3B A To M3 if d ̸= 0.
31 6H ENTA 0,1 T M6. Loop on p.
32 SRB 1 T
33 STA *+1(1:2) T

630 ANSWERS TO EXERCISES 5.2.2

34 ENT1 * T p← ⌊p/2⌋.
35 J1NZ 2B T To M2 if p ̸= 0.

The running time depends on six quantities, only one of which depends on the input
data (the remaining Ąve are functions of N alone): T = t, the number of Şmajor
cyclesŤ; A = t(t + 1)/2, the number of passes or Şminor cyclesŤ; B = the (variable)
number of exchanges; C = the number of comparisons; D = the number of blocks of
consecutive comparisons; and E = the number of incomplete blocks. When N = 2t, it
is not difficult to prove that D = (t − 2)N + t + 2 and E = 0. For Table 1, we have
T = 4, A = 10, B = 3 + 0 + 1 + 4 + 0 + 0 + 8 + 0 + 4 + 5 = 25, C = 63, D = 38, E = 0,
so the total running time is 11A+ 6B + 10C + 2E + 12T + 1 = 939u.

In general when N = 2e1 + · · · + 2er , Panny has shown that D = e1(N + 1) −
2(2e1 − 1), E =

e1−er

2

+ (e1 + e2 + · · ·+ er−1)− (e1 − 1)(r − 1).

13. No, nor are Algorithms Q or R.

14. (a) When p = 1 we do (2t−1 − 0) + (2t−1 − 1) + (2t−1 − 2) + (2t−1 − 4) + · · · +
(2t−1−2t−2) = (t−1)2t−1+1 comparisons for the Ąnal merge. (b) xt = xt−1+ 1

2
(t−1)+

2−t = · · · = x0+

0≤k<t(
1
2
k+2−k−1) = 1

2

t
2

+1−2−t. Hence c(2t) = 2t−2(t2−t+4)−1.

15. (a) Consider the number of comparisons such that i+ d = N ; then use induction
on r. (b) If b(n) = c(n+ 1), we have b(2n) = a(1) + · · ·+ a(2n) = a(0) + a(1) + a(1) +
· · · + a(n − 1) + a(n) + x(1) + x(2) + · · · + x(2n) = 2b(n) + y(2n) − a(n); similarly
b(2n + 1) = 2b(n) + y(2n + 1). (c) See exercise 1.2.4Ű42. (d) A rather laborious
calculation of (z(N) + 2z(⌊N/2⌋) + · · ·)− a(N), using formulas such as

n

k=0

2k(n− k) = 2n+1 − n− 2,
n

k=0

2k

n− k

2

= 2n+1 −

n+ 2

2

− 1,

leads to the result

c(N) = N
1

2

e1

2

+ 2e1 − 1

− 2e1 (e1 − 1)− 1

+
r

j=1

2ej

e1 + · · ·+ ej−1 − j(e1 − 1) +

1
2

e1 − ej

2

.

16. Consider the

2n
n

lattice paths from (0, 0) to (n, n) as in Figs. 11 and 18, and

attach weight f(i − j) if i ≥ j, f(j − i − 1) + 1 if i < j, to the line from (i, j) to
(i + 1, j); here f(k) is the number of bit variations br ̸= br+1 in the binary expansion
k = (. . . b2b1b0)2. The total number of exchanges on the Ąnal merge when N = 2n
is then

0≤j≤i<n(2f(j) + 1)

2i−j
i−j

2n−2i+j−1

n−i−1

. R. Sedgewick showed that this sum

simpliĄes, for general f, to n
2

2n
n

+2

k≥1

2n

n−k

0≤j<k f(j); then he used the gamma

function method to obtain the asymptotic formula
2n
n

1
4
n lgn+

lg
Γ (1/4)2

2π
+

1
4

+
γ + 2
4 ln 2

+ δ(n)

n+O(

√
n logn)

,

where δ(n) is a periodic function of lgn with magnitude bounded by .0005. Hence
about 1/4 of the comparisons lead to exchanges, on the average, as n→∞. [SICOMP
7 (1978), 239Ű272; see also Flajolet and Odlyzko, SIAM J. Discrete Math. 3 (1990),
238Ű239.]

17. KN+1 is inspected when we are sorting a subĄle with r = N and Kl the largest
key. K0 is inspected during step Q9 if left-to-right minima sink to position R1.

5.2.2 ANSWERS TO EXERCISES 631

18. Steps Q3 and Q4 make only a single change to i and j before exiting to Q5; the
partitioning process for Rl . . . Rr ends with j = ⌈(l + r)/2⌉ in step Q7, bisecting the
subĄle as perfectly as possible. Quantitatively speaking, we replace (17) by A = 1,
B = ⌊(N − 1)/2⌋, C = N + (N mod 2); this puts us essentially in the best case of the
algorithm (see exercise 27), except that B ≈ 1

2
C. If the Ş<Ť signs in steps Q3 and Q4

are changed to Ş≤ ,Ť the algorithm wonŠt sort any more; even if we assume Ş<Ť signs
in (13), it will interchange R0 with R1, then the third partitioning phase will move the
original R0 to position R2, etc. Ů a real catastrophe.

19. Yes, the other subĄles may be processed in any order. But the queue will contain
Ω(N/

√
logN) items when each partitioning step divides the Ąle equally, while a stack

is guaranteed to stay much smaller than this (see the next exercise).

20. max(0, ⌊lg(N+2)/(M+2)⌋). (The worst case occurs when N = 2k(M + 2)−1 and
all subĄles are perfectly bisected when they are partitioned.)

21. Exactly t records move to the area Rs+1 . . . RN in step Q6, hence B = t. The
partitioning phase ends with j = s, hence C − C′ = N + 1− s is the number of times
j decreases. We must also have i = s+ 1 in step Q7 when the keys are distinct, since
i = j implies Kj = K; thus C′ = s.

22. The stated relations for AN (z) follow because As−1(z)AN−s(z) is the generating
function for the value of A after independently sorting randomly and independently
ordered Ąles of sizes s− 1 and N − s. Similarly, we obtain the relations

BN (z) =
N

s=1

s

t=0

bstN z
tBs−1(z)BN−s(z),

CN (z) =
1
N

N

s=1

zN+1Cs−1(z)CN−s(z),

DN (z) =
1
N

N

s=1

Ds−1(z)DN−s(z),

EN (z) =
1
N

N

s=1

Es−1(z)EN−s(z),

SN (z) =
1
N

N

s=1

z[M+1<s<N−M]Ss−1(z)SN−s(z),

for N > M. Here bstN is the probability that s and t have given values in a Ąle of
length N, namely

s− 1
t

N − s
t

N

N − 1
s− 1

,

which is (1/N !) times the (s−1)! ways to permute {1, . . . , s−1} times the (N−s)! ways
to permute {s+ 1, . . . , N} times the

s−1

t

N−s

t

patterns with t displaced elements on

each side. For 0 ≤ N ≤ M , we have BN (z) = CN (z) = SN (z) = 1; DN (z) =N
k=1((1 + (k − 1)z)/k); and EN (z) =

N
k=1((1 + z + · · ·+ zk−1)/k).

[It is interesting to consider the behavior of these generating functions when N is
large; a sequence analogous to CN (z), but with zN+1 replaced by zN−1, is known to
converge to a non-normal probability distribution that has not yet been fully analyzed.

632 ANSWERS TO EXERCISES 5.2.2

See the articles by P. Hennequin, M. Regnier, and U. Rösler in RAIRO Theoretical
Informatics and Applications 23 (1989), 317Ű333; 23 (1989), 335Ű343; 25 (1991), 85Ű
100.]

23. When N > M, AN = 1 + (2/N)

0≤k<N Ak; BN =

0≤t<s≤N bstN (t + Bs−1 +

BN−s) = (1/N)
N

s=1((s − 1)(N − s)/(N − 1) + Bs−1 + BN−s) = (N − 2)/6 +
(2/N)

0≤k<NBk [see exercise 22]; DN = (2/N)

0≤k<NDk; EN is similar. When

N > 2M + 1, SN = (2/N)

0≤k<N Sk + (N − 2M − 2)/N. Each of these recurrences
has the form (19) for some function fn.

24. The recurrence CN = N − 1 + (2/N)

0≤k<N Ck, for N > M, has the solution
(N + 1)(2HN+1− 2HM+2 + 1− 4/(M + 2) + 2/(N + 1)), for N > M. (So we could save
about 4N/M comparisons. But each comparison takes longer if it must be followed by
a test of i versus j, so we lose, unless the cost of a key comparison exceeds 1

2
M lnN

times the cost of a register comparison. Many texts on sorting fail to realize that such
an ŞimprovementŤ makes quicksort signiĄcantly less quick!)

25. (Use (17) repeatedly with s = 1.) A = N −M, B = 0, C =

N+2
2

−

M+2
2

,

D = E = S = 0.

26. Actually you canŠt do worse than to sort

1 2 3 . . . N−M N N−1 . . . N−M+1;

the subtler answer N M−1 M−2 . . . 1 M M+1 . . . N−1 is an equally bad case.
This is only a little worse than exercise 25, because it makes D = M − 1, E =

M
2

.

27. 12 2 3 1 8 6 7 5 9 10 11 4 16 14 15 13 20 18 19 17 21 22 23, which requires 546u. It
can be shown that the best case for N = 3(M + 1)2k − 1 occurs when the subĄles are
bisected by each partitioning until reaching size 3M + 2; then a trisection is performed
to avoid stack-pushing overhead. We have A = 3 · 2k − 1, C = (k + 5

3
)(N + 1),

S = 2k − 1, B = D = E = 0. (The behavior of the best case for general M and N
makes an interesting but complex pattern.)

28. The recurrence

Cn = n+ 1 +
2
n

3

n

k=1

(k − 1)(n− k)Ck−1

can be transformed into

n

3

Cn − 2

n− 1

3

Cn−1 +

n− 2

3

Cn−2 = 2(n− 1)(n− 2) + 2(n− 2)Cn−2.

29. In general, consider the recurrence

Cn = n+ 1 +
2
n

2t+ 1

n

k=1

k − 1
t

n− k
t

Ck−1,

which arises when the median of 2t + 1 elements governs the partitioning. Letting
C(z) =

n Cnz

n, the recurrence can be transformed to (1−z)t+1C(2t+1)(z)/(2t+2)! =
1/(1−z)t+2 +C(t)(z)/(t+1)! . Let f(x) = C(t)(1−x); then pt(ϑ)f(x) = (2t+2)!/xt+2,
where ϑ denotes the operator x(d/dx), and pt(x) = (t−x)t+1 − (2t+2)t+1. The general

5.2.2 ANSWERS TO EXERCISES 633

solution to (ϑ−α)g(x) = xβ is g(x) = xβ/(β−α)+Cxα, for α ̸= β; g(x) = xβ(lnx+C)
for α = β. We have pt(−t−2) = 0; so the general solution to our differential equation is

C(t)(z) = (2t+ 2)! ln(1− z)/p′t(−t− 2)(1− z)t+2 +
t

j=0

cj(1− z)αj

where α0, . . . , αt are the roots of pt(x) = 0, and the constants ci depend on the initial
values Ct, . . . , C2t. The handy identity

1
(1− z)m+1

ln
 1

1− z

=

n≥0

(Hn+m −Hm)

n+m

m

zn, m ≥ 0,

now leads to the surprisingly simple closed form solution

Cn =
Hn+1 −Ht+1

H2t+2 −Ht+1
(n+ 1) +

1
n!

t

j=0

cj(−αj)n−t,

from which the asymptotic formula is easily deduced. (The leading term n lnn/
(H2t+2 − Ht+1) was discovered by M. H. van Emden [CACM 13 (1970), 563Ű567]
using an information-theoretic approach. In fact, suppose we wish to analyze any
partitioning process such that the left subĄle contains at most xN elements with
asymptotic probability

 x

0
f(x) dx, as N →∞, for 0 ≤ x ≤ 1; van Emden proved that

the average number of comparisons required to sort the Ąle completely is asymptotic
to α−1n lnn, where α = −1/

 1

0
(f(x) + f(1 − x))x lnx dx. This formula applies to

radix exchange as well as to quicksort and various other methods. See also H. Hurwitz,
CACM 14 (1971), 99Ű102.)

30. Solution 1 (of historic interest): Each subĄle may be identiĄed by four quantities
(l, r, k,X), where l and r are the boundaries (as presently), k indicates the number
of words of the keys that are known to be equal throughout the subĄle, and X is a
lower bound for the (k + 1)st words of the key. Assuming nonnegative keys, we have
(l, r, k,X) = (1, N, 0, 0) initially. When partitioning a Ąle, we let K be the (k + 1)st
word of the test key Kq. If K > X, partitioning takes place with all keys ≥ K at
the right and all keys < K at the left (looking only at the (k + 1)st word of the key
each time); the partitioned subĄles get the respective identiĄcations (l, j−1, k,X) and
(j, r, k,K). But if K = X, partitioning takes place with all keys > K at the right
and all keys ≤ K [actually = K] at the left; the partitioned subĄles get the respective
identiĄcations (l, j, k + 1, 0) and (j + 1, r, k,K). In both cases we are unsure that Rj

is in its Ąnal position since we havenŠt looked at the (k+ 2)nd words. Obvious further
changes are made to handle boundary conditions properly. By adding a Ąfth Şupper
boundŤ component, the method could be made symmetrical between left and right.

Solution 2, by Bentley and Sedgewick [SODA 8 (1997), 360Ű369]: In a subĄle
identiĄed by (l, r, k), let K be word k+ 1 of Kq as in solution 1, but use the algorithm
of exercise 41 to tripartition the subĄle into (l, i − 1, k), (i, j, k + 1), (j + 1, r, k) for
the cases <K, =K, >K. This approach, which the authors call multikey quicksort,
is signiĄcantly better than solution 1, and it is competitive with the fastest known
methods for sorting strings of characters.

31. Go through a normal partitioning process, with R1 Ąnally falling into position Rs.
If s = m, stop; if s < m, use the same technique to Ąnd the (m− s)th smallest element
of the right-hand subĄle; and if s > m, Ąnd the mth smallest element of the left-hand
subĄle. [CACM 4 (1961), 321Ű322; 14 (1971), 39Ű45.]

634 ANSWERS TO EXERCISES 5.2.2

R. G. Dromey [Software Practice & Experience 16 (1986), 981Ű986] has observed
that fewer comparisons and exchanges are needed if we stop each partitioning stage as
soon as i or j has reached position m.

32. The recurrence is C11 = 0 and Cnm = n+ 1 + (Anm +Bnm)/n for n > 1, where

Anm =

1≤s<m

C(n−s)(m−s) and Bnm =

m<s≤n

C(s−1)m,

for 1 ≤ m ≤ n. Since A(n+1)(m+1) = Anm + Cnm and B(n+1)m = Bnm + Cnm, we can
Ąrst Ąnd a formula for the quantity Dn = (n+1)C(n+1)(m+1)−nCnm, then sum this to
obtain the answer 2((n+1)Hn−(n+2−m)Hn+1−m−(m+1)Hm+n+ 5

3
)− 1

3
δmn− 1

3
δm1−

2
3
δmnδm1. When n = 2m−1, it becomes 4m(H2m−1−Hm)+4m−4Hm + 4

3
(1−δm1) =

(4 + 4 ln 2)m − 4 lnm − 4γ − 5
3

+ O(m−1) ≈ 3.39n. [See D. E. Knuth, Proc. IFIP
Congress (1971), 19Ű27.]

Another solution follows from the theory of Section 6.2.2: Suppose the keys are
{1, 2, . . . , n}, and let Xjk be the number of common ancestors of nodes j and k in the
binary search tree corresponding to quicksort. Then the number of comparisons made
by the algorithm of exercise 31 can be shown to be

n
j=1Xjm + Xmm − 2[node m

is a leaf]. The probability that node i is a common ancestor of nodes j and k in a
random binary search tree is 1/(max(i, j, k)−min(i, j, k) + 1). We obtain the average
number of comparisons from the facts that EXjk = Hk + Hn+1−j + 1 − 2Hk−j+1 for
1 ≤ j ≤ k, and Pr(node m is a leaf) = Pr(m isnŠt followed by m ± 1 in a random
permutation) = 1

3
+ 1

6
δm1 + 1

6
δmn + 1

3
δm1δmn. [See R. Raman, SIGACT News 25, 2

(June 1994), 86Ű89.]
For an analysis of a similar selection algorithm that uses median-of-three parti-

tioning, see Kirschenhofer, Prodinger, and Martínez, Random Structures & Algorithms
10 (1997), 143Ű156. Asymptotically faster methods are discussed in exercise 5.3.3Ű24.

33. Proceed as in the Ąrst stage of radix exchange, using the sign instead of bit 1.

34. We can avoid testing whether or not i ≤ j, as soon as we have found at least one
0 bit and at least one 1 bit in each stage Ů that is, after making the Ąrst exchange in
each stage. This saves approximately 2C units of time in Program R.

35. A = N − 1, B = (min 0, ave 1
4
N lgN, max 1

2
N lgN), C = N lgN, G = 1

2
N ,

K = L = R = 0, S = 1
2
N − 1, X = (min 0, ave 1

2
(N − 1), max N − 1). In general, the

quantities A, C, G, K, L, R, and S depend only on the set of keys in the Ąle, not on
their initial order; only B and X are inĆuenced by the initial order of the keys.

36. (a)

n
k

k
j

(−1)k+jaj =

n
j

n−j
k−j

(−1)k−jaj =

n
j

δnjaj = an. (b) ⟨δn0⟩;

⟨−δn1⟩; ⟨(−1)mδnm⟩; ⟨(1−a)n⟩; ⟨n
m

(−a)m(1−a)n−m⟩. (c) Writing the relations to be

proved as xn = yn = an +zn, we have yn = an +zn by part (a); also 21−n
k≥2

n
k

yk =

zn, so yn satisĄes the same recurrence as xn. [See exercises 53 and 6.3Ű17 for some
generalizations of this result. It does not appear to be easy to prove directly that
x̂n = ân2n−1/(2n−1 − 1).]

37. ⟨m cm

n

2m

2−n⟩ for an arbitrary sequence of constants c0, c1, c2, [This

answer, although correct, does not reveal immediately that ⟨1/(n + 1)⟩ and ⟨n − δn1⟩
are such sequences! Sequences having the form ⟨an + ân⟩ are always self-dual. Notice
that, in terms of the generating function A(z) =

anz

n/n!, we have Â(z) = ezA(−z);
hence A = Â is equivalent to saying that A(z)e−z/2 is an even function.]

5.2.2 ANSWERS TO EXERCISES 635

38. A partitioning stage that yields a left subĄle of size s and a right subĄle of size
N − s makes the following contributions to the total running time:

A = 1, B = t, C = N, K = δs1, L = δs0, R = δsN , X = h,

where t is the number of keys K1, . . . ,Ks with bit b equal to 1, and h is bit b of Ks+1;
if s = N, then h = 0. (See (17).) This leads to recurrence equations such as

BN = 2−N

0≤t≤s≤N

s

t

N − s
t

(t+Bs +BN−s)

=
1
4

(N − 1) + 21−N

s≥2

N

s

Bs, for N ≥ 2; B0 = B1 = 0.

(See exercise 23.) Solving these recurrences by the method of exercise 36 yields the
formulas AN = VN − UN + 1, BN = 1

4
(UN + N − 1), CN = VN + N, KN = N/2,

LN = RN = 1
2
(VN − UN −N) + 1, XN = 1

2
AN . Clearly GN = 0.

39. Each stage of quicksort puts at least one element into its Ąnal position, but this
need not happen during radix exchange (see Table 3).

40. If we switch to straight insertion whenever r − l < M in step R2, the problem
doesnŠt arise unless more than M equal elements occur. If the latter is a likely prospect,
we can test whether or not Kl = · · · = Kr whenever j < l or j = r in step R8.

41. Lutz M. Wegner [IEEE Trans. C-34 (1985), 362Ű367] has discussed several ap-
proaches, of which the following (as simpliĄed by Bentley and McIlroy in Software
Practice & Exp. 23 (1993), 1256Ű1258) appears to be best in practice. The basic idea
is to work with the Ąve-part array

= K < K ? > K = K

l a b c d r

until the middle part is empty, then swap the two ends into the middle.

D1. [Initialize.] Set a← b← l, c← d← r.

D2. [Increase b until Kb > K.] If b ≤ c and Kb < K, increase b by 1 and repeat
this step. If b ≤ c and Kb = K, exchange Ra ↔ Rb, increase a and b by 1,
and repeat this step.

D3. [Decrease c until Kc < K.] If b ≤ c and Kc > K, decrease c by 1 and repeat
this step. If b ≤ c and Kc = K, exchange Rc ↔ Rd, decrease c and d by 1,
and repeat this step.

D4. [Exchange.] If b < c, exchange Rb ↔ Rc, increase b by 1, decrease c by 1, and
return to D2.

D5. [Cleanup.] Exchange Rl+k ↔ Rc−k for 0 ≤ k < min(a−l, b−a); also exchange
Rb+k ↔ Rr−k for 0 ≤ k < min(d − c, r − d). Finally set i ← l + b − a,
j ← r − d+ c.

Straightforward modiĄcations to step D1 will handle degenerate cases efficiently
and ensure that a < b and c < d before we get to D2. Then the tests Şb ≤ cŤ in D2
and D3 will be unnecessary; see exercise 24. Furthermore, this change will keep those
steps from needlessly exchanging records with themselves.

One of the main applications of sorting is to bring records with equal keys to-
gether. Therefore this tripartitioning scheme is often preferable to the bipartitioning

636 ANSWERS TO EXERCISES 5.2.2

of Algorithm Q. The exchanges in step D5 are efficient because all records with keys
equal to K are now in their Ąnal resting place.

This exercise is due to W. H. J. Feijen, who called it the ŞDutch national Ćag
problemŤ: Given a set of red, white, and blue tokens arranged randomly in a column,
decide how to swap pairs of tokens so that the red ones will all be at the top and the
blue ones all at the bottom, while looking at each token only once and using only a
few auxiliary variables to control the process. [See E. W. Dijkstra, A Discipline of
Programming (PrenticeŰHall, 1976), Chapter 14.]

42. This is a special case of a general theorem due to R. M. Karp; see JACM 41 (1994),
1136Ű1150, §2.8. SigniĄcantly sharper asymptotic bounds for tails of the quicksort
distribution have been obtained by McDiarmid and Hayward, J. Algorithms 21 (1996),
476Ű507.

43. As a → 0+, we have
 1

0
ya−1(e−y − 1) dy +

∞
1
ya−1e−y dy = Γ (a) − 1/a =

(Γ (a+ 1)− Γ (1))/a→ Γ ′(1) = −γ, by exercise 1.2.7Ű24.

44. For k ≥ 0, we have rk(m) ∼ 1
2
(2m)(k+1)/2Γ ((k+1)/2)−δk0−

j≥0(−1)jBk+2j+1/

((k + 2j + 1)j! (2m)j). When k = −1, the contributions from f
(j−1)
k (m) in (36)

cancel with similar terms in the expansion of Hm−1, and we have r−1(m) = Hm−1 +
(1/
√

2m)

t≥0 f−1(t) ∼ 1
2
(ln(2m) + γ) −

j≥1(−1)jB2j/(2j)j! (2m)j . Therefore
the contribution to Wm−1 from the term N t/t of (33) is obtained from the sum
m

t≥1 t
−1 exp(−t2/2m)(1 − t3/3m2 + t6/18m4)(1 − t4/4m3)(1 − t/2m − t2/8m2) +

O(m−1/2) = 1
2
m lnm + 1

2
(ln 2 + γ)m− 5

12

√
2πm + 4

9
+ O(m−1/2). The term − 1

2
N t−1

contributes − 1
2

t≥1 exp(−t2/2m)(1 − t3/3m2)(1 − t/2m)(1 + t/m) + O(m−1/2) =

− 1
4

√
2πm+ 1

3
. The term 1

2
δt1 yields 1

2
. And Ąnally the term 1

2
(t−1)B2N

t−2 contributes
1

12
m−1

t≥1 t exp(−t2/2m) +O(m−1/2) = 1
12

+O(m−1/2).

45. The argument used to derive (42) is also valid for (43), except that we leave out
the residues at z = −1 and z = 0.

46. Proceeding as we did with (45), we obtain (s− 1)!/ ln 2 + δs(n), where

δs(n) =
2

ln 2

k≥1

ℜ(Γ (s− 2πik/ ln 2) exp (2πik lgn)).

[Note that |Γ (s + it)|2 = (

0≤k<s(k2 + t2))π/(t sinhπt), for integer s ≥ 0, so we can
bound δs(n).]

47. In fact,

j≥1 e
−n/2j

(n/2j)s equals the integral in exercise 46, for all s > 0.

48. Making use of the intermediate identity

1− e−x =
−1
2πi

 −1/2+i∞

−1/2−i∞
Γ (z)x−z dz,

we proceed as in the text, with 1− e−x playing the role of e−x− 1 +x; Vn+1/(n+ 1) =
(−1/2πi)

 −1/2+i∞
−1/2−i∞ Γ (z)n−z dz/(2−z − 1) + O(n−1), and the integral equals lgn +

γ/ ln 2 − 1
2
− δ0(n) + O(n−100) in the notation of exercise 46. [Thus the quantity

AN in exercise 38 is N(1/ ln 2− δ0(N − 1)− δ−1(N)) +O(1).]

49. The right-hand side of Eq. (40) can be improved to the estimate e−x(1− 1
2
x2/n+

O((x3+x4)n−2)). The effect is to subtract half the sum in exercise 47, replacing O(1)
in (50) by 2− 1

2
(1/ ln 2 + δ1(n)) +O(n−1). (The Ş2Ť comes from the Ş2/nŤ in (46).)

5.2.2 ANSWERS TO EXERCISES 637

50. Umn = n logm n+n((γ−1)/ lnm− 1
2

+δ−1(n))+m/(m−1)−1/(2 lnm)− 1
2
δ1(n)+

O(n−1), with δs(n) as in exercise 46 but replacing ln 2 and lg by lnm and logm. [Note:

For m = 2, 3, 4, 5, 10, 100, 1000, and 106 we have δ−1(n) < .000000172501, .000041227,
.0002963, .0008501433, .0062704, .06797, .1525, and .348, respectively.]

51. Let N = 2m. We may extend the sum (35) over all t ≥ 1, when it equals

t≥1

1
2πi

 a+i∞

a−i∞
Γ (z)(t2/N)−ztk dz =

1
2πi

 a+i∞

a−i∞
Γ (z)Nzζ(2z − k) dz,

provided that a > (k + 1)/2. So we need to know properties of the zeta function.
When ℜ(w) ≥ −q, we have ζ(w) = O(|w|q+1) as |w| → ∞; hence we can shift the line
of integration to the left as far as we please if we only take the residues into account. The
factor Γ (z) has poles at 0, −1, −2, . . . , and ζ(2z− k) has a pole only at z = (k+ 1)/2.
The residue at z = −j is N−j(−1)jζ(−2j − k)/j!, and ζ(−n) = (−1)nBn+1/(n + 1).
The residue at z = (k + 1)/2 is 1

2
Γ ((k + 1)/2)N (k+1)/2. But when k = −1 there is a

double pole at z = 0; and ζ(z) = 1/(z − 1) + γ +O(|z − 1|), so the residue at 0 in this
case is γ + 1

2
lnN − 1

2
γ. We therefore obtain the asymptotic series mentioned in the

answer to exercise 44.

52. Set x = t/n; then
 2n
n+ t

2n
n

= exp(−2n(x2/1 · 2 + x4/3 · 4 + · · ·) + (x2/2 + x4/4 + · · ·)

− (1/6n)(x2 − x4 + · · ·) + · · ·);

the desired sum can now be expressed in terms of

t≥1 t
kd(t)e−t2/n, for various k.

Proceeding as in exercise 51, since ζ(z)2 =

t≥1 d(t)t−z, we wish to evaluate the
residues of Γ (z)nzζ(2z − k)2 when k ≥ 0. At z = −j the residue is

n−j(−1)j(B2j+k+1/(2j + k + 1))2
/j! ,

and at z = (k + 1)/2 it is n(k+1)/2Γ ((k + 1)/2)(γ + 1
4

lnn + 1
4
ψ((k + 1)/2)), where

ψ(z) = Γ ′(z)/Γ (z) = Hz−1 − γ ; thus, for example, when k = 0,

t≥1 e
−t2/nd(t) =

1
4

√
πn lnn+(3

4
γ− 1

2
ln 2)
√
πn+ 1

4
+O(n−M) for all M. For Sn/

2n
n

, add (1

32
lnn+ 3

32
γ+

1
24
− 1

16
ln 2)
√
π/n+O(n−1) to this quantity. (See exercises 1.2.7Ű23 and 1.2.9Ű19.)

53. Let q = 1− p. Generalizing exercise 36(c), if

xn = an +

k≥2

n

k

(pkqn−k + qkpn−k)xk,

then
xn = an +

k≥2

n

k

(−1)k âk(pk + qk)/(1− pk − qk).

We can therefore Ąnd BN and CN as before; the factor 1
4

in BN should be replaced
by pq. The asymptotic examination of UN proceeds essentially as in the text, with

Tn =

r≥1, s≥0

r

s

(e−npsqr−s − 1 + npsqr−s)

=
1

2πi

 −3/2+i∞

−3/2−i∞
Γ (z)n−z(p−z + q−z) dz/(1− p−z − q−z)

= (n/hp)(lnn+ γ − 1 + h(2)
p /2hp − hp + δ(n)) +O(1),

638 ANSWERS TO EXERCISES 5.2.2

where hp = −(p ln p + q ln q), h(2)
p = p(ln p)2 + q(ln q)2, and δ(n) =

Γ (z)n−1−z/hp

summed over all complex z ̸= 1 such that p−z + q−z = 1. The latter set of points
seems to be difficult to analyze in general; but when p = ϕ−1, q = ϕ−2, the solutions
are z = (−1)k+1 + kπi/ lnϕ. The dominant term, (n lnn)/hp, could also have been
obtained from van EmdenŠs general formula quoted in the answer to exercise 29. For
p = ϕ−1 we have 1/hp ≈ 1.503718, compared to 1/h1/2 ≈ 1.442695.

54. Let C be a circle of radius (M+ 1
2
)b, so that the integral vanishes on C as M →∞.

(The asymptotic form of Un can now be derived in a new way, expanding Γ (n + 1)/
Γ (n+ ibm). The method of this exercise applies to all sums of the form

k

n

k

(−1)n−kf(k) =

−1
2πi

B(n+ 1,−z)f(z) dz,

when f is reasonably well behaved. The latter formula can be found in N. E. NörlundŠs
Vorlesungen über Differenzenrechnung (Berlin: Springer, 1924), §103.)

55. Replace lines 04Ű06 of Program Q by

2H ENTA 0,2
INCA 0,3
SRB 1
STA *+1(0:2)
ENT4 *
LDA INPUT,2 rA←a

LDX INPUT,3 rX←c

CMPA INPUT,3
JL 1F
CMPA INPUT,4 rA:b

JLE 3F
CMPX INPUT,4 rX:b

JG 4F

STA INPUT,3 c≤b<a

STX INPUT,2
5H LDA INPUT,4 rA←b

JMP 6F
4H LDA INPUT,3 b<c≤a

LDX INPUT,2
STX INPUT,3
JMP 5F

3H STX INPUT,2 c≤a≤b

LDX INPUT,4
STX INPUT,3
JMP 6F

1H CMPA INPUT,4

JGE 5F
CMPX INPUT,4 a<b, c

JGE 5B
LDA INPUT,3 a<c<b

LDX INPUT,4
STX INPUT,3
JMP 6F

5H LDX INPUT,4 b≤a<c

STX INPUT,2
6H LDX INPUT+1,2

STX INPUT,4
ENT4 2,2
ENT5 0,3

followed by ‘STA INPUT+1,2Š (see the remark after (27)); and change the instruction in
line 22 to ‘STX INPUT+1,2Š. The Ąrst three of these instructions should be replaced by
‘ENTX 0,2; INCX 0,3; ENTA 0; DIV =2=Š if binary shifting is not available.

This program essentially exchangesRl+1 withR⌊(l+r)/2⌋ and sorts the three records
Rl, Rl+1, Rr, then applies normal partitioning to Rl+1 . . . Rr−1. It is tempting to save
a few lines of code by simply putting the median element in rA, moving Rl to the
medianŠs former place, and using Program Q as it stands. But such an approach has
bad consequences, since it requires order N2 steps to sort the Ąle N N−1 . . . 1. (This
amazing result, Ąrst noticed by D. B. Coldrick, has to be seen to be believed Ů try it!)
The technique recommended above, due to R. Sedgewick, appears to be free of such
simple worst-case anomalies, and runs faster too.

With this median-of-three partitioning scheme, the algorithm does not look at
KN+1, but it still might examine K0 in step Q9.

56. We can solve the recurrence

n
3

xn = bn + 2

n
k=1(k − 1)(n− k)xk−1, for n > m,

by letting yn = nxn, un = nyn+1 − (n+ 2)yn, vn = nun+1 − (n− 5)un; it follows that
vn = 6(bn+2 − 2bn+1 + bn), for n > m. Example: Let xn = δn1 for n ≤ m, and let
bn ≡ 0. Then vn = 0 for all n > m, hence n5 un+1 = m5 um+1. Since ym+1 = 12/m and
ym+2 = 12/(m+1), we ultimately Ąnd xn = 48

7
(n+1)/m(m+1)(m+2)+ 36

7
(m−1)4/n6,

for n > m. In general, let fn = (12/(n−1)(n−2))
n

k=1(k−1)(n−k)xk−1; the solution

5.2.3 ANSWERS TO EXERCISES 639

for n > m when bn is identically zero is

xn = (n+ 1)
(m+ 1)fm+2 − (m− 4)fm+1

7(m+ 1)(m+ 2)
− ((m+ 1)fm+2 − (m+ 3)fm+1)m5

7n6
.

When bn =

n
3

/np and xn = 0 for n ≤ m, the solution is

xn

n+ 1
=

(p− 3)(p− 2)
(p− 6)(p+ 1)(n+ 1)p+1 +

12
7

1
(p+ 1)(m+ 2)p+1 −

12
7

(m+ 1− p)6−p

(p− 6)(n+ 1)7
,

for n > m; except that when p = −1 we have xn/(n+ 1) = 12
7

(Hn+1 −Hm+2) + 37
49

+
12
49

(m + 2)7/(n + 1)7, and when p = 6, xn/(n + 1) = − 12
7

(Hn−6 −Hm−5)/(n + 1)7 +
12
49
/(m+ 2)7 + 37

49
/(n+ 1)7.

Arguing as in exercises 21Ű23, we Ąnd that the Ąrst partitioning phase now con-
tributes 1 to A, t to B, and N − 1 to C, where t is deĄned as before but after

the rearrangement made in exercise 55. Under the new assumptions we Ąnd bstN =
6

s−2
t

N−s−1

t

/N

N−1
s−1

; hence the recurrence stated above arises in the following ways:

Value bN /
N

3

for N ≤M for N > M Solution for N > M

AN 0 1 (N +1)(12
7

/(M +2))−1+O(N−6)

BN 0 (N−4)/5 (CN−3AN)/5

CN 0 N−1 (N +1)(12
7

(HN+1−HM+2)+ 37
49
− 24

7
/(M +2))+2+O(N−6)

DN N−HN 0 (N +1)(1− 12
7

HM+1/(M +2)− 4
7

/(M +2))+O(N−6)

EN N(N−1)/4 0 (N +1)(6
35

M− 17
35

+ 6
7

/(M +2))+O(N−6)

Similarly SN = 3
7
(N + 1)(5M + 3)/(2M + 3)(2M + 1)−1 +O(N−6). The total average

running time of the program in exercise 55 is 53 1
2
AN + 11BN + 4CN + 3DN + 8EN +

9SN +7N ; the choice M = 9 is very slightly better than M = 10, producing an average
time of approximately 10 22

35
N lnN + 2.116N [Acta Inf. 7 (1977), 336Ű341]. With DIV

instead of SRB, add 11AN to the average running time and take M = 10.

SECTION 5.2.3

1. No; consider the case K1 > K2 = · · · = KN . But the method using ∞ (described
just before Algorithm S) is stable.

2. Traversing a linear list stored sequentially in memory is often slightly faster if we
scan the list from higher indices to lower, since it is usually easier for a computer to
test if an index is zero than to test if it exceeds N. (For the same reason, the search in
step S2 runs from j down to 1; but see exercise 8!)

3. (a) The permutation a1 . . . aN−1N occurs for inputs

N a2 . . . aN−1 a1, a1N a3 . . . aN−1 a2, . . . , a1 a2 . . . aN−2NaN−1, a1 . . . aN−1N.

(b) The average number of times the maximum is changed during the Ąrst iteration
of step S2 is HN − 1, as shown in Section 1.2.10. [Hence BN can be found from
Eq. 1.2.7Ű(8).]

4. If the input is a permutation of {1, 2, . . . , N}, the number of times i = j in step S3
is exactly one less than the number of cycles in the permutation. (Indeed, it is not
hard to show that steps S2 and S3 simply remove element j from its cycle; hence S3 is

640 ANSWERS TO EXERCISES 5.2.3

inactive only when j was the smallest element in its cycle.) By Eq. 1.3.3Ű(21) we could
save HN − 1 of the N − 1 executions of step S3, on the average.

Thus it is inefficient to insert an extra test Şi = j?Ť before step S3. Instead of
testing i versus j, however, we could lengthen the program for S2 slightly, duplicating
part of the code, so that S3 never is encountered if the initial guess Kj is not changed
during the search for the maximum; this would make Program S a wee bit faster.

5. (N − 1) + (N − 3) + · · · = ⌊N2/4⌋.
6. (a) If i ̸= j in step S3, that step decreases the number of inversions by 2m − 1,

where m is one more than the number of keys in Ki+1 . . .Kj−1 that lie between Ki

and Kj ; clearly m is not less than the contribution to B on the previous step S2.
Now apply the observation of exercise 4, connecting cycles to the condition i = j.
(b) Every permutation can be obtained from N. . . 2 1 by successive interchanges of
adjacent elements that are out of order. (Apply, in reverse sequence, the interchanges
that sort the permutation into decreasing order.) Every such operation decreases I by
one and changes C by ±1. Hence no permutation has a value of I − C exceeding the
corresponding value for N. . . 2 1. [By exercise 5 the inequality B ≤ ⌊N2/4⌋ is best
possible.]

7. A. C. Yao, ŞOn straight selection sort,Ť Computer Science Technical Report 185
(Princeton University, 1988), showed that the variance is αN1.5 + O(N1.495 logN),
where α = 4

3

√
π ln 4

e
≈ 0.9129; he also conjectured that the actual error term is

signiĄcantly smaller.

8. We can start the next iteration of step S2 at position Ki, provided that we have
remembered max (K1, . . . ,Ki−1). One way to keep all of this auxiliary information is
to use a link table L1 . . . LN such that KLk is the previous boldface element whenever
Kk is boldface; L1 = 0. [We could also get by with less auxiliary storage, at the expense
of some redundant comparisons.]

The following MIX program uses address modiĄcation so that the inner loop is fast.
rI1 ≡ j, rI2 ≡ k − j, rI3 ≡ i, rA ≡ Ki.

01 START ENT1 N 1 j ← N.
02 STZ LINK+1 1
03 JMP 9F 1
04 1H ST1 6F(0:2) N −D Modify addresses in loop.
05 ENT4 INPUT,1 N −D
06 ST4 7F(0:2) N −D
07 ENT4 LINK,1 N −D
08 ST4 8F(0:2) N −D
09 7H CMPA INPUT+J,2 A [Address modiĄed]
10 JGE *+4 A Jump if Ki ≥ Kk.
11 8H ST3 LINK+J,2 N + 1− C Otherwise Lk ← i, [Address modiĄed]
12 6H ENT3 J,2 N + 1− C i← k. [Address modiĄed]
13 LDA INPUT,3 N + 1− C
14 INC2 1 A k ← k + 1.
15 J2NP 7B A Jump if k ≤ j.
16 4H LDX INPUT,1 N
17 STX INPUT,3 N Ri ← Rj .
18 STA INPUT,1 N Rj ← former Ri.
19 DEC1 1 N j ← j − 1.
20 ENT2 0,3 N rI2← i.

5.2.3 ANSWERS TO EXERCISES 641

21 LD3 LINK,3 N i← Li.
22 J3NZ 5F N If i > 0, k will start at i.
23 9H ENT3 1 C Otherwise i← 1.
24 ENT2 2 C k will start at 2.
25 5H DEC2 0,1 N + 1
26 LDA INPUT,3 N + 1 rA← Ki.
27 J2NP 1B N + 1 Jump if k ≤ j.
28 J1P 4B D + 1 Jump if j > 0.

9. N − 1 +

N≥k≥2((k − 1)/2− 1/k) = 1
2

N
2

+N −HN. [The average values of C

and D are, respectively, HN + 1 and HN − 1
2
; hence the average running time of the

program is (1.25N2 + 31.75N − 15HN + 14.5)u.] Program H is much better.

10.

−∞ −∞

−∞

−∞

−∞ −∞

−∞

−∞ −∞

−∞

−∞

−∞

−∞ −∞

−∞

−∞ −∞

−∞

−∞

−∞ −∞

−∞

−∞ −∞

087

087

087

087

087

061

061

11. 897

512 765

503 275 653 703

170 426 509 677

154 612

−∞ −∞

−∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞

087 061

12. 2n − 1, once for each −∞ in a branch node.

13. If K ≥ Kr+1, then step H4 may go to step H5 if j = r. (Step H5 is inactive
unless Kr < Kr+1, when step H6 will go to H8 anyway.) To ensure that K ≥ Kr+1

throughout the algorithm, we may start with KN+1 ≤ min(K1, . . . ,KN); instead of
setting Rr ← R1 in step H2, set Rr+1 ← RN+1 and RN+1 ← R1; also set R2 ← RN+1

after r = 1. (This trick does not speed up the algorithm nor does it make Program H
any shorter.)

14. When inserting an element, give it a key that is less (or greater) than all previously
assigned keys, to get the effect of a simple queue (or stack, respectively).

15. For efficiency, the following solution is a little bit tricky, avoiding all multiples of 3
[CACM 10 (1967), 570].

P1. [Initialize.] Set p[1]← 2, p[2]← 3, k ← 2, n← 5, d← 2, r ← 1, t← 25, and
place (25, 10, 30) in the priority queue. (In this algorithm, p[i] = ith prime;
k = number of primes found so far; n = prime candidate; d = distance to
next candidate; r = number of elements in the queue; t = p[r + 2]2, the next
n for which we should increase r. The queue entries have the form (u, v, 6p),
where p is a prime divisor of u, v = 2p or 4p, and u+v is not a multiple of 3.)

642 ANSWERS TO EXERCISES 5.2.3

P2. [Advance q.] Let (q, q′, q′′) be a queue element with the smallest Ąrst compo-
nent. Replace it in the queue by (q + q′, q′′ − q′, q′′). (This denotes the next
multiple of q′′/6 that must be excluded.) If n > q, repeat this step until n ≤ q.

P3. [Check for prime n.] If n > N, terminate the algorithm. Otherwise, if n < q,
set k ← k + 1, p[k]← n, n← n+ d, d← 6− d, and repeat this step.

P4. [Check for prime
√
n.] (Now n = q is not prime.) If n = t, set r ← r + 1,

u ← p[r + 2], t ← u2, and insert (t, 2u, 6u) or (t, 4u, 6u) into the queue
according as umod 3 = 2 or umod 3 = 1.

P5. [Advance n.] Set n← n+ d, d← 6− d, and return to P2.

Thus the computation begins as follows:

Queue contents Primes found

(25, 10, 30) 5, 7, 11, 13, 17, 19, 23
(35, 20, 30)(49, 28, 42) 29, 31
(49, 28, 42)(55, 10, 30) 37, 41, 43, 47
(55, 10, 30)(77, 14, 42)(121, 22, 66) 53

If the queue is maintained as a heap, we can Ąnd all primes ≤ N in O(N logN log logN)
steps; the length of the heap is at most the number of primes ≤

√
N , and the entry

for p is updated O(N/p) times. The sieve of Eratosthenes, as implemented in exercise
4.5.4Ű8, is a O(N log logN) method requiring considerably more random access storage.
More efficient implementations are discussed in Section 7.1.3.

16. I1. [Make a new leaf j.] Set K ← key to be inserted; j ← n+ 1.

I2. [Find parent of j.] Set i← ⌊j/2⌋.
I3. [Done?] If i = 0 or Ki ≥ K, set Kj ← K and terminate the algorithm.

I4. [Sift and move j up.] Set Kj ← Ki, j ← i, and return to I2.

[T. Porter and I. Simon showed in IEEE Trans. SE-1 (1975), 292Ű298, that if An+1

denotes the average number of times step 4 is executed, given a random heap of
uniformly random numbers, we have An = ⌊lgn⌋ + (1 − n−1)An′ for n > 1, where
n = (1bl−1bl−2 . . . b0)2 implies n′ = (1bl−2 . . . b0)2. If l = ⌊lgn⌋, this value is always
≥ A2l+1−1 = (2l+1 − 2)/(2l+1 − 1), and always ≤ A2l < α, where α is the constant
in (19).]

17. The Ąle 1 2 3 goes into the heap 3 2 1 with Algorithm H, but into 3 1 2 with
exercise 16. [Note: The latter method of heap creation has a worst case of order
N logN ; but empirical tests have shown that the average number of iterations of step 2
during the creation of a heap is less than about 2.28N , for random input. R. Hayward
and C. McDiarmid [J. Algorithms 12 (1991), 126Ű153] have proved rigorously that the
constant of proportionality lies between 2.2778 and 2.2994.]

18. Delete step H6, and replace H8 by:

H8′. [Move back up.] Set j ← i, i← ⌊j/2⌋.
H9′. [Does K Ąt?] If K ≤ Ki or j = l, set Rj ← R and return to H2. Otherwise

set Rj ← Ri and return to H8′.

The method is essentially the same as in exercise 16, but with a different starting place
in the heap. The net change to the Ąle is the same as in Algorithm H. Empirical tests
on this method show that the number of times Rj ← Ri occurs per siftup during the
selection phase is (0, 1, 2) with respective probabilities (.837, .135, .016). This method

5.2.3 ANSWERS TO EXERCISES 643

makes Program H somewhat longer but improves its asymptotic speed to (13N lgN +
O(N))u. A MIX instruction to halve the value of an index register would be desirable.

C. J. H. McDiarmid and B. A. Reed [J. Algorithms 10 (1989), 352Ű365] have
proved that this modiĄcation also saves an average of (3β−8)N ≈ 0.232N comparisons
during the heap-creation phase, where β is deĄned in the answer to exercise 27. For
further analysis of FloydŠs improvement, see I. Wegener, Theoretical Comp. Sci. 118

(1993), 81Ű98.
J. Wu and H. Zhu [J. Comp. Sci. and Tech. 9 (1994), 261Ű266] have observed that

binary search can also be used, so that each siftup of the selection phase involves at
most lgN + lg lgN comparisons and lgN moves.

19. Proceed as in the revised siftup algorithm of exercise 18, with K = KN, l = 1, and
r = N − 1, starting with a given value of j in step H3.

20. For 0 ≤ k ≤ n, the number of positive integers ≤ N whose binary representation
has the form (bn . . . bka1 . . . aq)2 for some q ≥ 0 is clearly (bk−1 . . . b0)2+1+

0≤q<k 2q =

(1bk−1 . . . b0)2.

21. Let j = (cr . . . c0)2 be in the range ⌊N/2k+1⌋ = (bn . . . bk+1)2 < j < (bn . . . bk)2 =
⌊N/2k⌋. Then sj is the number of positive integers ≤ N whose binary representation
has the form (cr . . . c0a1 . . . aq)2 for some q ≥ 0, namely

0≤q≤k 2q = 2k+1 − 1. Hence

the number of nonspecial subtrees of size 2k+1− 1 is

⌊N/2k⌋ − ⌊N/2k+1⌋ − 1 = ⌊(N − 2k)/2k+1⌋.

[To prove the latter identity, use the replicative law in exercise 1.2.4Ű38 with n = 2 and
x = N/2k+1.]

22. The Ąve possibilities before l = 1 are 5 3 4 1 2, 3 5 4 1 2, 4 3 5 1 2, 1 5 4 3 2, and
2 5 4 1 3. Each of these possibilities a1a2a3a4a5 leads to three possible permutations
a1a2a3a4a5, a1a4a3a2a5, a1a5a3a4a2 before l = 2.

23. (a) After B iterations, j ≥ 2Bl; hence 2Bl ≤ r. (b) We have
n

l=1⌊log2 (N/l)⌋ =
(⌊N/2⌋ − ⌊N/4⌋) + 2(⌊N/4⌋ − ⌊N/8⌋) + 3(⌊N/8⌋ − ⌊N/16⌋) + · · · = ⌊N/2⌋+ ⌊N/4⌋+
⌊N/8⌋+ · · · = N−ν(N), where ν(N) is the number of ones in the binary representation
of N. Also by exercise 1.2.4Ű42 we have

N−1
r=1 ⌊lg r⌋ = N⌊lgN⌋−2⌊lg N⌋+1+2. We know

by Theorem H that this upper bound on B is best possible during the heap-creation
phase. Furthermore it is interesting to note that there is a unique heap containing the
keys {1, 2, . . . , N} such that K is identically equal to 1 throughout the selection phase
of Algorithm H. (For example, when N = 7 that heap is 7 5 6 2 4 3 1; it is not difficult
to pass from N to N + 1.) This heap gives the maximum value of B (as well as the
maximum value ⌈N/2⌉−1 of D) for the selection phase of heapsort, so the best possible
upper bound on B for the entire sort is N − ν(N) +N⌊lgN⌋ − 2⌊lg N⌋+1 + 2.

24.
N

k=1⌊lg k⌋2 = (N + 1 − 2n)n2 +

0≤k<nk
22k = (N + 1)n2 − (2n − 3)2n+1 − 6,

where n = ⌊lgN⌋ (see exercise 4.5.2Ű22); hence the variance of the last siftup is βN =
((N + 1)n2− (2n− 3)2n+1− 6)/N − ((N + 1)n+ 2− 2n+1)2

/N2 = O(1). The standard
deviation of B′

N is (
{βs | s ∈MN})1/2 = O(

√
N).

25. The siftup is Şuniform,Ť and each comparison Kj :Kj+1 has probability 1
2

of
coming out < . The average contribution to C in this case is just one-half the sum
of the average contributions to A and B, namely ((2n− 1)2n−1 + 1

2
)/(2n+1 − 1).

26. (a) (10
25

+ 1
2

+ 1 3
9

+ 1
2

+ 1 1
2

+ 1 2
5

+ 2 1
2

+ 1
2

+ 1 1
2

+ 1 1
2

+ 2 1
2

+ 1 1
2

+ 2 + 2 + 3 + 0 +
1 + 1 + 2 + 1 + 2 + 2 + 3 + 1 + 2 + 2)/26 = 1189/780 ≈ 1.524.

644 ANSWERS TO EXERCISES 5.2.3

(b) (
N

k=1 ν(k)−N+ 1
2
⌊N/2⌋− 1

2
n+
n−1

k=1 min(αk−1, αk−αk−1−1)/(αk−1))/N,
where ν(k) is the number of one bits in the binary representation of k, and αk =
(1bk . . . b0)2. If N = 2e1 + 2e2 + · · · + 2et, with e1 > e2 > · · · > et ≥ 0, it can be
shown that

N
k=0 ν(k) = 1

2
((e1 + 2)2e1 + (e2 + 4)2e2 + · · · + (et + 2t)2et) + t − N.

[The asymptotic properties of such sums can be analyzed perspicuously with the
help of Mellin transforms; see Flajolet, Grabner, Kirschenhofer, Prodinger, and Tichy,
Theoretical Comp. Sci. 123 (1994), 291Ű314.]

27. J. W. Wrench, Jr. has observed that the general Lambert series

n≥1 anx
n/(1−xn)

can be expanded as

N≥1(

d\N ad)xN =

m≥1(am +

k≥1(am + am+k)xkm)xm2.

[The cases an = 1 and an = n were introduced by J. H. Lambert in his Anlage
zur Architectonic 2 (Riga: 1771), §875; Clausen stated his formula for the case an = 1
in Crelle 3 (1828), 95, and H. F. Scherk presented a proof in Crelle 9 (1832), 162Ű163.
When an = n and x = 1

2
we obtain the relation

β =

n≥1

n

2n − 1
=

m≥1

m

2m + 1
2m − 1

+

2m

(2m − 1)2

2−m2

= 2.74403 38887 59488 36048 02148 91492 27216 43114+;

this constant arises in (20), where we have B′
N ∼ (β−2)N and C′

N ∼ (1
2
β− 1

4
α− 1

2
)N.]

Incidentally, if we set q = x and z = xy in the Ąrst identity of exercise 5.1.1Ű16,
then evaluate ∂

∂y
at y = 1, we get the interesting identity

n≥1

xn

1− xn
=

k≥1

kxk(1− xk+1)(1− xk+2)

28. The children of node k are nodes 3k−1, 3k, and 3k+1; the parent is ⌊(k+1)/3⌋. A
MIX program analogous to Program H takes asymptotically 21 2

3
N logN ≈ 13.7N lgN

units of time. Using the idea of exercise 18 lowers this to 18 2
3
N log3 N ≈ 11.8N lgN,

although the division by 3 will add a large Θ(N) term.
For further information about t-ary heaps, see S. Okoma, Lecture Notes in Comp.

Sci. 88 (1980), 439Ű451.

30. Suppose n = 2t− 1 + r, where t = ⌊lgn⌋ and 1 ≤ r ≤ 2t. Then h2m = [m= 0] and

h(n+1)m ≤
t−2

j=0

(2j − 1)hn(m−j) + 2t−1hn(m−t+1) + rhn(m−t) for n ≥ 2,

by considering the number of elements on level j that could be the Ąnal resting place
of Kn+1 after it has been sifted up in place of K1. Therefore, if gnm = hnm/2m, we
have

g(n+1)m ≤
t−2

j=0

2j − 1
2j

gn(m−j) + gn(m−t+1) +
r

2t
gn(m−t) ≤ (lg(n+ 1)) max

m≥0
gnm,

and it follows by induction that gnm ≤ Ln =
n

k=2 lg k.
The average total number of promotions during the selection phase is B′′

N =
h−1

N

m≥0 mhNm, where hN =

m≥0 hNm is the total number of possible heaps

(Theorem H). We know that B′′
N ≤ N⌈lgN⌉. On the other hand, we have B′′

N ≥
m−h−1

N

m
k=1(m−k)hNk ≥ m−h−1

N LN

m
k=1(m−k)2k > m−2m+1h−1

N LN , for all m.
Choosing m = lg(hN/LN) +O(1) now gives B′′

N ≥ lg(hN/LN) +O(1).

5.2.3 ANSWERS TO EXERCISES 645

The number of comparisons needed to create a heap is at most 2N , by exercise
23(b); hence hN ≥ N !/22N. Clearly LN ≤ (lgN)N , so we have lg(hN/LN) ≥ N lgN −
N lg lgN +O(N). [J. Algorithms 15 (1993), 76Ű100.]

31. (Solution by J. Edighoffer, 1981.) Let A be an array of 2n elements such that
A[2⌊i/2⌋] ≤ A[2i] and A[2⌊i/2⌋ − 1] ≥ A[2i− 1] for 1 < i ≤ n; furthermore we require
that A[2i − 1] ≥ A[2i] for 1 ≤ i ≤ n. (The latter condition holds for all i if and only
if it holds for n/2 < i ≤ n, because of the heap structure.) This Ştwin heapŤ contains
2n elements; to handle an odd number of elements, we simply keep one element off
to the side. Appropriate modiĄcations of the other algorithms in this section can be
used to maintain twin heaps, and it is interesting to work out the details. This idea
was independently discovered and developed further by J. van Leeuwen and D. Wood
[Comp. J. 36 (1993), 209Ű216], who called the structure an Şinterval heap.Ť

32. In any heap of N distinct elements, the largest m = ⌈N/2⌉ elements form a subtree.
At least ⌊m/2⌋ of them must be nonleaves of that subtree, since a binary tree with k
leaves has at least k− 1 nonleaves. Therefore at least ⌊m/2⌋ of the largest m elements
appear in the Ąrst ⌊N/2⌋ positions of the heap. Those elements must be promoted to
the root position before reaching their Ąnal destinations; so their movement contributes
at least

⌊m/2⌋
k=1 ⌊lg k⌋ = 1

2
m lgm+O(m) to B, by exercise 1.2.4Ű42. Thus Bmin(N) ≥

1
4
N lgN+O(N)+Bmin(⌊N/2⌋), and the result follows by induction on N. [I. Wegener,

Theoretical Comp. Sci. 118 (1993), 81Ű98, Theorem 5.1. Schaffer and Sedgewick, and
independently Bollobás, Fenner, and Frieze, have constructed permutations that require
no more than 1

2
N lgN +O(N log logN) promotions; see J. Algorithms 15 (1993), 76Ű

100; 20 (1996), 205Ű217. Such permutations are quite rare, by the result of exercise 30.]

33. Let P and Q point to the given priority queues. The following algorithm uses the
convention DIST(Λ) = 0, as in the text, although Λ isnŠt really a node.

M1. [Initialize.] Set R← Λ.

M2. [List merge.] If Q = Λ, set D ← DIST(P) and go to M3. If P = Λ, set
P ← Q, D ← DIST(P), and go to M3. Otherwise if KEY(P) ≥ KEY(Q), set
T ← RIGHT(P), RIGHT(P) ← R, R ← P, P ← T and repeat step M2. If
KEY(P) < KEY(Q), set T ← RIGHT(Q), RIGHT(Q) ← R, R ← Q, Q ← T and
repeat step M2. (This step essentially merges the two Şright listsŤ of the
given trees, temporarily inserting upward pointers into the RIGHT Ąelds.)

M3. [Done?] If R = Λ, terminate the algorithm; P points to the answer.

M4. [Fix DISTs.] Set Q ← RIGHT(R). If DIST(LEFT(R)) < D, then set D ←
DIST(LEFT(R)) + 1, RIGHT(R) ← LEFT(R), LEFT(R) ← P; otherwise set
D ← D + 1, RIGHT(R) ← P. Finally set DIST(R) ← D, P ← R, R ← Q,
and return to M3.

34. Starting with the recurrence

L1(z) = z, Lm+1(z) = Lm(z)

L(z)−

m−1

k=1

Lk(z)

,

for parts of the overall generating function L(z) =

n≥0 lnz
n =

m≥1 Lm(z), where

Lm(z) = z2m−1 + · · · generates leftist trees with shortest path length m from root
to Λ, Rainer Kemp has proved that L(z) = z + 1

2
L(z)2 + 1

2

m≥1 Lm(z)2, and that

a ≈ 0.25036 and b ≈ 2.7494879 [Inf. Proc. Letters 25 (1987), 227Ű232; Random
Graphs Š87 (1990), 103Ű130]. Luis Trabb Pardo noticed in 1978 that the generating
function G(z) = zL(z) satisĄes the elegant relation G(z) = z +G(zG(z)).

646 ANSWERS TO EXERCISES 5.2.3

35. Let the DIST Ąeld of the deleted node be d0, and let the DIST Ąeld of the merged
subtrees be d1. If d0 = d1, we need not go up at all. If d0 > d1, then d1 = d0 − 1; and
if we go up n levels, the new DIST Ąelds of the ancestors of P must be, respectively,
d1 + 1, d1 + 2, . . . , d1 + n. If d0 < d1, the upward path must go only leftwards.

36. Instead of a general priority queue, it is simplest to use a doubly linked list; move
nodes to one end of the list whenever they are used, and delete nodes from the other
end. [See the discussion of self-organizing Ąles in Section 6.1.]

37. In an inĄnite heap, the kth-largest element is equally likely to appear in the left or
the right subheap of its larger ancestors. Thus we can use the theory of digital search
trees, obtaining e(k) = Ck − Ck−1 in the notation of Eq. 6.3Ű(13). By exercise 6.3Ű28
we have e(k) = lg k+γ/(ln 2)+ 1

2
−α+δ0(k)+O(k−1) ≈ lg k− .274, where α is deĄned

in (19) and δ0(k) is a periodic function of lg k. [P. V. Poblete, BIT 33 (1993), 411Ű412.]

38. M0 = ∅; M1 = {1}; MN = {N} ⊎ M2k−1 ⊎ MN−2k for N > 1, where k =
⌊lg(2N/3)⌋.

SECTION 5.2.4

1. Start with i1 = · · · = ik = 1, j = 1. Repeatedly Ąnd min(x1i1
, . . . , xkik) = xrir ,

and set zj = xrir , j ← j + 1, ir ← ir + 1. (In this case the use of xi(mi+1) = ∞ is a
decided convenience.)

When k is moderately large, it is desirable to keep the keys x1i1
, . . . , xkik in a tree

structure suited to repeated selection, as discussed in Section 5.2.3, so that only ⌊lg k⌋
comparisons are needed to Ąnd the new minimum each time after the Ąrst. Indeed, this
is a typical application of the principle of Şsmallest in, Ąrst outŤ in a priority queue.
The keys can be maintained as a heap, and ∞ can be avoided entirely. See the further
discussion in Section 5.4.1.

2. Let C be the number of comparisons; we have C = m + n − S, where S is the
number of elements transmitted in step M4 or M6. The probability that S ≥ s is easily
seen to be

qs =

m+ n− s
m

+

m+ n− s

n

m+ n

m

for 1 ≤ s ≤ m+n; qs = 0 for s > m+n. Hence the mean of S is µmn = q1 + q2 + · · · =
m/(n+ 1) +n/(m+ 1) [see exercises 3.4.2Ű5, 6], and the variance is σ2

mn = (q1 + 3q2 +
5q3 + · · ·)−µ2

mn = m(2m+n)/(n+1)(n+2)+(m+2n)n/(m+1)(m+2)−µ2
mn. Thus

C = (min min(m,n), ave m+ n− µmn, max m+ n− 1, dev σmn).

When m = n the average was Ąrst computed by H. Nagler, CACM 3 (1960), 618Ű620;
it is asymptotically 2n− 2 +O(n−1), with a standard deviation of

√
2 +O(n−1). Thus

C hovers close to its maximum value.

3. M2′. If Ki < K′
j , go to M3′; if Ki = K′

j , go to M7′; if Ki > K′
j , go to M5′.

M7′. Set K′′
k ← K′

j , k ← k+1, i← i+1, j ← j+1. If i > M, go to M4′; otherwise
if j > N, go to M6′; otherwise return to M2′.

(Appropriate modiĄcations are made to other steps of Algorithm M. Again many
special cases disappear if we insert artiĄcial keys KM+1 = K′

N+1 = ∞ at the end of
the Ąles.)

4. The sequence of elements that appears at a Ąxed internal node of the selection
tree, as time passes, is obtained by merging the sequences of elements that appear at

5.2.4 ANSWERS TO EXERCISES 647

the children of that node. (The discussion in Section 5.2.3 is based on selecting the
largest element, but it could equally well have reversed the order.) So the operations
involved in tree selection are essentially the same as those involved in merging, but
they are performed in a different sequence and using different data structures.

Another relation between merging and tree selection is indicated in exercise 1.
Note that an N -way merge of one-element Ąles is a selection sort; compare also four-
way merging of (A,B,C,D) to two-way merging of (A,B), (C,D), then (AB,CD).

5. In step N6 we always have Ki < Ki−1 ≤ Kj ; in N10, Kj < Kj+1 < Ki.

6. For example, 2 6 4 10 8 14 12 16 15 11 13 7 9 3 5 1; after one pass, two of the
expected stepdowns disappear: 1 2 5 6 7 8 13 14 16 15 12 11 10 9 4 3. This possibility
was Ąrst noted by D. A. Bell, Comp. J. 1 (1958), 74. Quirks like this make it almost
hopeless to carry out a precise analysis of Algorithm N.

7. ⌈lgN ⌉, if N > 1. (Consider how many times p must be doubled until it is ≥ N.)

8. If N is not a multiple of 2p, there is one short run on the pass, and it is always
near the middle; letting its length be t, we have 0 ≤ t < p. Step S12 handles the cases
where the short run is to be ŞmergedŤ with an empty run, or where t = 0; otherwise
we have essentially x1 ≤ x2 ≤ · · · ≤ xp | yt ≥ · · · ≥ y1. If xp ≤ yt, the left-hand run is
exhausted Ąrst, and step S6 will take us to S13 after xp has been transmitted. On the
other hand, if xp > yt, the right-hand side will be artiĄcially exhausted, but Kj = xp

will never be < Ki in step S3! Thus S6 will eventually take us to S13 in all cases.

10. For example, Algorithm M can merge elements xj+1 . . . xj+m with xj+m+1 . . .
xj+m+n into positions x1 . . . xm+n of an array without conĆict, if j ≥ n. With care we
can exploit this idea so that N + 2⌊lg N⌋−1 locations are required for an entire sort. But
the program seems to be rather complicated compared to Algorithm S. [Comp. J. 1

(1958), 75; see also L. S. Lozinskii, Kibernetika 1, 3 (1965), 58Ű62.]

11. Yes. This can be seen, for example, by considering the relation to tree selection
mentioned in exercise 4. But Algorithms N and S are obviously not stable.

12. Set L0 ← 1, t← N + 1; then for p = 1, 2, . . . , N − 1, do the following:

If Kp ≤ Kp+1 set Lp ← p+ 1; otherwise set Lt ← −(p+ 1), t← p.

Finally, set Lt ← 0, LN ← 0, LN+1 ← |LN+1|.
(Stability is preserved. The number of passes is ⌈lg r⌉, where r is the number of

ascending runs in the input; the exact distribution of r is analyzed in Section 5.1.3.
We may conclude that natural merging is preferable to straight merging when linked
allocation is being used, although it was inferior for sequential allocation.)

13. The running time for N ≥ 3 is (11A + 6B + 3B′ + 9C + 2C′′ + 4D + 5N + 9)u,
where A is the number of passes; B = B′+B′′ is the number of subĄle-merge operations
performed, where B′ is the number of such merges in which the p subĄle was exhausted
Ąrst; C = C′ +C′′ is the number of comparisons performed, where C′ is the number of
such comparisons with Kp ≤ Kq; D = D′ + D′′ is the number of elements remaining
in subĄles when the other subĄle has been exhausted, where D′ is the number of such
elements belonging to the q subĄle. In Table 3 we have A = 4, B′ = 6, B′′ = 9, C′ = 22,
C′′ = 22, D′ = 10, D′′ = 10, total time = 761u. (The comparable Program 5.2.1L
takes only 433u, when improved as in exercise 5.2.1Ű33, so we can see that merging
isnŠt especially efficient when N is small.)

Algorithm L does a sequence of merges on subĄles whose sizes (m,n) can be
determined as follows: Let N − 1 = (bk . . . b1b0)2 in binary notation. There are

648 ANSWERS TO EXERCISES 5.2.4

(bk . . . bj+1)2 ŞordinaryŤ merges with (m,n) = (2j , 2j), for 0 ≤ j < k; and there are
ŞspecialŤ merges with (m,n) = (2j , 1 + (bj−1 . . . b0)2) whenever bj = 1, for 0 ≤ j ≤ k.
For example, when N = 14 there are six ordinary (1, 1) merges, three ordinary (2, 2)
merges, one ordinary (4, 4) merge, and the special merges deal with subĄles of sizes
(1, 1), (4, 2), (8, 6). The multiset MN of merge sizes (m,n) can also be described by
the recurrence relations

M1 = ∅; M2k+r = {(2k, r)} ⊎M2k ⊎Mr for 0 < r ≤ 2k.

It follows that, regardless of the input distribution, we have A = ⌈lgN ⌉, B = N−1,
C′ +D′′ =

k
j=0 bj2j(1 + 1

2
j), C′′ +D′ =

k
j=0 bj(1 + 2j(1

2
j + bj+1 + · · ·+ bk)); hence

only B′, C′, D′ need to be analyzed further.
If the input to Algorithm L is random, each of the merging operations satisĄes

the conditions of exercise 2, and is independent of the behavior of the other merges;
so the distribution of B′, C′, D′ is the convolution of their individual distributions
for each subĄle merge. The average values for such a merge are B′ = n/(m + n),
C′ = mn/(n+ 1), D′ = n/(m+ 1). Sum these over all relevant (m,n) to get the exact
average values.

When N = 2k we have, of course, the simplest situation; B′
ave = 1

2
B, C′

ave = 1
2
Cave,

C +D = kN , and Dave =
k

j=1(2k−j2j/(2j−1 + 1)) = α′N +O(1), where

α′ =

n≥0

1
2n + 1

= α+
1
2
− 2

n≥1

1
4n − 1

= 1.26449 97803 48444 20919 13197 47255 49848 25577−
can be evaluated to high precision as in exercise 5.2.3Ű27. This special case was Ąrst
analyzed by A. Gleason [unpublished, 1956] and H. Nagler [CACM 3 (1960), 618Ű620].

14. Set D = B in exercise 13 to maximize C. [A detailed analysis of Algorithm L has
been carried out by W. Panny and H. Prodinger, Algorithmica 14 (1995), 340Ű354.]

15. Make extra copies of steps L3, L4, L6 for the cases that Ls is known to equal p or q.
[A further improvement can also be made, removing the assignment s← p (or s← q)
from the inner loop, by simply renaming the registers! For example, change lines 20
and 21 to ‘LD3 INPUT,1(L)Š and continue with p in rI3, s in rI1 and Ls known to equal p.
With eighteen copies of the inner loop, corresponding to the different permutations of
(p, q, s) with respect to (rI1, rI2, rI3), and to different knowledge about Ls, we can cut
the average running time to (8N lgN +O(N))u.]

16. (The result will be slightly faster than Algorithm L; see exercise 5.2.3Ű28.)

17. Consider the new record as a subĄle of length 1. Repeatedly merge the smallest
two subĄles if they have the same length. (The resulting sorting algorithm is essentially
the same as Algorithm L, but the subĄles are merged at different relative times.)

18. Yes, but it seems to be a complicated job. The Ąrst solution to be found used
the following ingenious construction [Doklady Akad. Nauk SSSR 186 (1969), 1256Ű
1258]: Let n be ≈

√
N . Divide the Ąle into m+ 2 ŞzonesŤ Z1 . . . Zm Zm+1 Zm+2, where

Zm+2 contains N mod n records while each other zone contains exactly n records.
Interchange the records of Zm+1 with the zone containing RM ; the Ąle now takes the
form Z1 . . . Zm A, where each of the Z1 . . . Zm contains exactly n records in order and
where A is an auxiliary area containing s records, for some s in the range n ≤ s < 2n.

Find the zone with smallest leading element, and exchange that entire zone with Z1;
if more than one zone has the smallest leading element, choose one that has the smallest

5.2.4 ANSWERS TO EXERCISES 649

trailing element. (This takes O(m + n) operations.) Then Ąnd the zone with the
next smallest leading and trailing elements, and exchange it with Z2, etc. Finally in
O(m(m + n)) = O(N) operations we will have rearranged the m zones so that their
leading elements are in order. Furthermore, because of our original assumptions about
the Ąle, each of the keys in Z1 . . . Zm will now have fewer than n inversions.

We can merge Z1 with Z2, using the following trick: Interchange Z1 with the
Ąrst n elements A′ of A; then merge Z2 with A′ in the usual way but exchanging
elements with the elements of Z1Z2 as they are output. For example, if n = 3 and
x1 < y1 < x2 < y2 < x3 < y3, we have

Zone 1 Zone 2 Auxiliary
Initial contents: x1 x2 x3 y1 y2 y3 a1 a2 a3

Exchange Z1: a1 a2 a3 y1 y2 y3 x1 x2 x3

Exchange x1: x1 a2 a3 y1 y2 y3 a1 x2 x3

Exchange y1: x1 y1 a3 a2 y2 y3 a1 x2 x3

Exchange x2: x1 y1 x2 a2 y2 y3 a1 a3 x3

Exchange y2: x1 y1 x2 y2 a2 y3 a1 a3 x3

Exchange x3: x1 y1 x2 y2 x3 y3 a1 a3 a2

(The merge is always complete when the nth element of the auxiliary area has been
exchanged; this method generally permutes the auxiliary records.)

The trick above is used to merge Z1 with Z2, then Z2 with Z3, . . . , Zm−1 with Zm,
requiring a total of O(mn) = O(N) operations. Since no element has more than
n inversions, the Z1 . . . Zm portion of the Ąle has been completely sorted.

For the Ąnal Şcleanup,Ť we sort RN+1−2s . . . RN by insertion, in O(s2) = O(N)
steps; this brings the s largest elements into area A. Then we merge R1 . . . RN−2s

with RN+1−2s . . . RN−s, using the trick above with auxiliary storage area A (but
interchanging the roles of right and left, less and greater, throughout). Finally, we
sort RN+1−s . . . RN by insertion.

Subsequent reĄnements are discussed by J. Katajainen, T. Pasanen, and J. Teuhola
in Nordic J. Computing 3 (1996), 27Ű40. See answer 5.5Ű3 for the problem of stable

merging in place.

19. We may number the input cars so that the Ąnal permutation has them in order,
1 2 . . . 2n; so this is essentially a sorting problem. First move the Ąrst 2n−1 cars
through n− 1 stacks, putting them in decreasing order, and transfer them to the nth
stack so that the smallest is on top. Then move the other 2n−1 cars through n − 1
stacks, putting them into increasing order and leaving them positioned just before the
nth stack. Finally, merge the two sequences together in the obvious way.

20. For further information, see R. E. Tarjan, JACM 19 (1972), 341Ű346.

22. See Information Processing Letters 2 (1973), 127Ű128.

23. The merges can be represented by a binary tree that has all external nodes on levels
⌊lgN⌋ and ⌈lgN ⌉. Therefore the maximum number of comparisons is the minimum
external path length of a binary tree with N external nodes, Eq. 5.3.1Ű(34), minus
N −1, since f(m,n) = m+n−1 gives the maximum and there are N −1 merges. (See
also Eq. 5.4.9Ű(1).)

General techniques for studying the asymptotic properties of such recurrences with
the help of Mellin transforms have been presented by P. Flajolet and M. Golin in Acta
Informatica 31 (1994), 673Ű696; in particular, they show that the average number of

650 ANSWERS TO EXERCISES 5.2.4

comparisons is N lgN − θN + δ(lgN)N +O(1) and the variance is ≈ .345N , where δ is
a continuous function of period 1 and average value 0, and

θ =
1

ln 2
− 1

2
+

1
ln 2

∞

m=1

2
(m+ 1)(m+ 2)

ln
2m+ 1

2m

= 1.24815 20420 99653 84890 29565 64329 53240 16127+.

The total number of comparisons is well approximated by a normal distribution as
N →∞; see the complementary analyses by H.-K. Hwang and M. Cramer in Random
Structures & Algorithms 8 (1996), 319Ű336; 11 (1997), 81Ű96.

SECTION 5.2.5

1. No, because radix sorting doesnŠt work at all unless the distribution sorting is
stable, after the Ąrst pass. (But the suggested distribution sort could be used in a most-
signiĄcant-digit-Ąrst radix sorting method, generalizing radix exchange, as suggested
in the last paragraph of the text.)

2. It is Şanti-stable,Ť just the opposite; elements with equal keys appear in reverse
order, since the Ąrst pass goes through the records from RN to R1. (This proves to be
convenient because of lines 28 and 20 of Program R, equating Λ with 0; but of course
it is not necessary to make the Ąrst pass go backwards.)

3. If pile 0 is not empty, BOTM[0] already points to the Ąrst element; if it is empty,
we set P ← LOC(BOTM[0]) and later make LINK(P) point to the bottom of the Ąrst
nonempty pile.

4. When there are an even number of passes remaining, take pile 0 Ąrst (top to
bottom), followed by pile 1, . . . , pile (M − 1); the result will be in order with respect
to the digits examined so far. When there are an odd number of passes remaining,
take pile (M − 1) Ąrst, then pile (M − 2), . . . , pile 0; the result will be in reverse order
with respect to the digits examined so far. (This rule was apparently Ąrst published
by E. H. Friend [JACM 3 (1956), 156, 165Ű166].)

5. Change line 04 to ‘ENT3 7Š, and change the R3SW and R5SW tables to:

R3SW LD2 KEY,1(1:1)
LD2 KEY,1(2:2)
LD2 KEY,1(3:3)
LD2 KEY,1(4:4)
LD2 KEY,1(5:5)
LD2 INPUT,1(1:1)
LD2 INPUT,1(2:2)
LD2 INPUT,1(3:3)

R5SW LD1 INPUT,1(LINK)
... (repeat the previous line six more times)
DEC1 1

The new running time is found by changing Ş3Ť to Ş8Ť everywhere; it amounts to
(11p− 1)N + 16pM + 12p− 4E + 2, for p = 8.

6. (a) Consider placing an (N + 1)st element. The recurrence

pM(N+1)k =
k + 1
M

pMN(k+1) +
M − k
M

pMNk

5.2.5 ANSWERS TO EXERCISES 651

is equivalent to the stated formula. (b) The nth derivative satisĄes g(n)

M(N+1)(z) =

(1 − n/M)g(n)
MN (z) + ((1 − z)/M)g(n+1)

MN (z), by induction on n. Setting z = 1, we Ąnd
g

(n)
MN (1) = (1 − n/M)NMn, since gM0(z) = zM. Hence mean(gMN) = (1 − 1/M)NM,

var(gMN) = (1− 2/M)NM(M − 1) + (1− 1/M)NM − (1− 1/M)2NM2. (Notice that
the generating function for E in Program R is gMN (z)p.)

7. Let R = radix sort, RX = radix exchange. Some of the important similarities and
differences: RX goes from most signiĄcant digit to least signiĄcant, while R goes the
other way. Both methods sort by digit inspections, without making comparisons of keys.
RX always has M = 2 (but see exercise 1). The running time for R is almost unvarying,
while RX is sensitive to the distribution of the digits. In both cases the running time
is O(N logK), where K is the range of keys, but the constant of proportionality is
higher for RX; on the other hand, when the keys are uniformly distributed in their
leading digits, RX has an average running time of O(N logN) regardless of the size
of K. R requires link Ąelds while RX runs in minimal space. The inner loop of R is
more suited to pipeline computers.

8. On the Ąnal pass, the piles should be hooked together in another order; for
example, if M = 256, pile (10000000)2 comes Ąrst, then pile (10000001)2, . . . , pile
(11111111)2, pile (00000000)2, pile (00000001)2, . . . , pile (01111111)2. This change
in hooking order can be done easily by modifying Algorithm H, or (in Table 1) by
changing the storage allocation strategy, on the last pass.

9. We could Ąrst separate the negative keys from the positive keys, as in exercise
5.2.2Ű33; or we could change the keys to complement notation on the Ąrst pass.
Alternatively, after the last pass we could separate the positive keys from the negative
ones, reversing the order of the latter, although the method of exercise 5.2.2Ű33 no
longer applies.

11. Without the Ąrst pass the method would still sort perfectly, because (by coinci-
dence) 503 already precedes 509. Without the Ąrst two passes, the number of inversions
would be 1 + 1 + 0 + 0 + 0 + 1 + 1 + 1 + 0 + 0 = 5.

12. After exchanging Rk with R[P] in step M4 (exercise 5.2Ű12), we can compare Kk

to Kk−1. If Kk is less, we compare it to Kk−2, Kk−3, . . . , until Ąnding Kk ≥ Kj . Then
set (Rj+1, . . . , Rk−1, Rk)← (Rk, Rj+1, . . . , Rk−1), without changing the LINK Ąelds. It
is convenient to place an artiĄcial key K0, which is ≤ all other keys, at the left of
the Ąle.

14. If the original permutation of the cards requires k readings, in the sense of exercise
5.1.3Ű20, and if we use m piles per pass, we must make at least ⌈logm k⌉ passes.
(Consider going back from a sorted deck to the original one; the number of readings
increases by at most a factor of m on each pass.) The given permutation requires 4
increasing readings, 10 decreasing readings; hence decreasing order requires 4 passes
with two piles or 3 passes with three piles.

Conversely, this optimum number of passes can be achieved: Number the cards
from 0 to k − 1 according to which reading it belongs to, and use a radix sort (least
signiĄcant digit Ąrst in radix m). [See Martin GardnerŠs Sixth Book of Mathematical
Games (San Francisco: W. H. Freeman, 1971), 111Ű112.]

15. Let there be k readings and m piles. The order is reversed on each pass; if there are
k readings in one order, the number of readings in the opposite order is n+ 1− k. The
minimum number of passes is either the smallest even number greater than or equal to
logm k or the smallest odd number greater than or equal to logm(n + 1 − k). (Going

652 ANSWERS TO EXERCISES 5.2.5

backwards, there are at most m decreasing readings after one pass, m2 increasing
readings after two passes, etc.) The example can be sorted into increasing order in
min(2, 5) = 2 passes, into decreasing order in min(3, 4) = 3 passes, using only two piles.

16. Assume that each string is followed by a special null character that is less than
any letter of the alphabet. Perform a left-to-right radix sort by starting with all strings
linked together in a single block of data. Then for k = 1, 2, . . . , reĄne every block that
contains more than one distinct string by splitting it into subblocks based on the kth
letter of each string, meanwhile keeping the blocks sorted by their already-examined
preĄxes. When a block has only one item, or when its kth characters are all null (so
that its keys are identical), we can arrange to avoid examining it again. [R. Paige
and R. E. Tarjan, SICOMP 16 (1987), 973Ű989, §2.] This process is essentially that
of constructing a trie as in Section 6.3. A simpler but slightly less efficient algorithm
based on right-to-left radix sort was given for this problem by Aho, Hopcroft, and
Ullman, The Design and Analysis of Computer Algorithms (AddisonŰWesley, 1974),
79Ű84. The methods of McIlroy, Bostic, and McIlroy, cited in the text, are faster yet
in practice.

17. MacLarenŠs method speeds up the second level, but it cannot be used at the top
level because it does not compute the numbers Nk.

18. First we prove the hint: Let pk =
 (k+1)/CN

k/CN
f(x) dx be the probability that a

key falls into bin k when there are CN bins. The time needed to distribute the rec-
ords is O(N), and the average number of inversions remaining after distribution is
1
2

CN−1
k=0

j

N
j

pj

k(1 − pk)N−j

j
2

= 1

2

CN−1
k=0

N
2

p2

k ≤ N−1
4

CN−1
k=0 pkB/C, because

pk ≤ B/CN.
Now consider two levels of distribution, with cN top-level bins, and let bk =

sup{f(x) | k/cN ≤ x < (k + 1)/cN}. Then the average total running time is O(N)
plus

cN−1
k=0 Tk, where Tk is the average time needed by MacLarenŠs method to sort

Nk keys having the density function fk(x) = f((k + x)/cN)/cNpk. By the hint, we
have Tk = EO(bkNk/cNpk), because fk(x) is bounded by bk/cNpk. But ENk = Npk,
so Tk = O(bk/c). And as N → ∞ we have

cN−1
k=0 bk → N

 1

0
f(x) dx = N , by the

deĄnition of Riemann integrability.

SECTION 5.3.1

1. (a)
1:2

A12 A21

where Aij is either
i :3

j :3 B3ij

Bij3 Bi3j

or
j :3

i :3Bij3

Bi3j B3ij

and Bijk is

j :4

k :4 i :4

ijk4 ij4k i4jk 4ijk

. The external path length is 112 (optimum).

(b) Here Aij =
3:4

Cij34 Cij43

where Cijkl =

i :k

j :k i : l

ijkl j : l j : l klij

ikjl iklj kijl kilj

.

Again the external path length is 112 (optimum).

5.3.1 ANSWERS TO EXERCISES 653

2. In the notation of exercise 5.2.4Ű14,

L(n)−B(n) =
t

k=1

((ek + k − 1)2ek − (e1 + 1)2ek) + 2e1+1 − 2et

= 2e1 − 2et −
t

k=2

(e1 − ek + 2− k)2ek

≥ 2e1 − (2e1−1 + · · ·+ 2e1−t+1 + 2et) ≥ 0,

with equality if and only if n = 2k − 2j for some k > j ≥ 0. [When merging is done
Ştop-downŤ as in exercise 5.2.4Ű23, the maximum number of comparisons is B(n).]

3. When n > 0, the number of outcomes such that the smallest key appears exactly k
times is

n
k

Pn−k. Thus 2Pn =

k

n
k

Pn−k, for n > 0, and we have 2P (z) = ezP (z) + 1

by Eq. 1.2.9Ű(10).
Another proof comes from the fact that Pn =

k≥0

n
k

k!, since

n
k

is the number

of ways to partition n elements into k nonempty parts and these parts can be permuted
in k! ways. Thus

n≥0 Pnz

n/n! =

k≥0(ez − 1)k = 1/(2− ez) by Eq. 1.2.9Ű(23).
Still another proof, perhaps the most interesting, arises if we arrange the elements

in sequence in a stable manner, so that Ki precedes Kj if and only if Ki < Kj or
(Ki = Kj and i < j). Among all Pn outcomes, a given arrangement Ka1

. . .Kan now
occurs exactly 2k times if the permutation a1 . . . an contains k ascents; hence Pn can
be expressed in terms of the Eulerian numbers, Pn =

k

n
k

2k. Eq. 5.1.3Ű(20) with

z = 2 now establishes the desired result.
This generating function was obtained by A. Cayley [Phil. Mag. (4) 18 (1859),

374Ű378] in connection with the enumeration of an imprecisely deĄned class of trees.
See also P. A. MacMahon, Proc. London Math. Soc. 22 (1891), 341Ű344; J. Touchard,
Ann. Soc. Sci. Bruxelles 53 (1933), 21Ű31; and O. A. Gross, AMM 69 (1962), 4Ű8,
who gave the interesting formula Pn =

k≥1 k

n/21+k, n ≥ 1.

4. The representation

2P (z) =
1
2

1− i cot

i(z− ln 2)
2

=

1
2
− 1
z− ln 2

−

k≥1

 1
z− ln 2−2πik

+
1

z− ln 2+2πik

yields the convergent series Pn/n! = 1
2
(ln 2)−n−1 +

k≥1 ℜ((ln 2 + 2πik)−n−1).

5.
1:2

2:3 2:3 2:3

1<2<3 1<2=3 1:3 1=2<3 1=2=3 3<1=2 1:3 2=3<1 3<2<1

1<3<2 1=3<2 3<1<2 2<1<3 2<1=3 2<3<1

6. S′(n) ≥ S(n), since the keys might all be distinct; thus we must show that S′(n) ≤
S(n). Given a sorting algorithm that takes S(n) steps on distinct keys, we can construct
a sorting algorithm for the general case by deĄning the = branch to be identical to the

654
5.3.1

1:2

3:4 3:4 3:4

1=3<2=4 1:3 1=4<2=3 1:3 1:3 1:3 2=3<1=4 1:3 2=4<1=3

1<2=3=4 1=3=4<2 ∗ ∗ 1=2=3<4 3<1=2=4 1=2<3=4 1=2=3=4 3=4<1=2 1=2=4<3 4<1=2=3 ∗ ∗ 2<1=3=4 2=3=4<1

Fig. A–1. Solution to exercise 7. (Ş∗Ť denotes an impossible case.)

1:2

3:4 3:4 3:4

1:3 1:4 1:3 2:3 2:4

1=2<3=4 1=2=3=4 3=4<1=2

C1234 C3412 C4312 C2134

A1234 B1324 A3412 A1243 B1423 A4312 A2134 B2314 A3421 A2143 B2413 A4321

where
j : l

i<j=k<l i<k<j= l ∗

Aijkl = k : l

i=j<k<l i=j<k= l i=j<l<k

Bijkl= i :k

j :k i=k= l<j k= l<i<j

i<j<k= l i<j=k= l i<k= l<j

Cijkl=

Fig. A–2. Solution to exercise 8.

5.3.1 ANSWERS TO EXERCISES 655

< branch, removing redundancies. When an external node appears, we know all of the
equality relations, since we have Ka1

≤ Ka2
≤ · · · ≤ Kan and an explicit comparison

Kai :Kai+1
has been made for 1 ≤ i < n.

M. Paterson observes that if the multiplicities of keys are (n1, . . . , nm), the number
of comparisons can be reduced to n lgn−nj lgnj +O(n); see SICOMP 5 (1976), 2.
This lower bound can almost be reached without substantial auxiliary memory by
adapting heapsort to equal keys as suggested by Munro and Raman in Lecture Notes
in Comp. Sci. 519 (1991), 473Ű480.

7. See Fig. AŰ1. The average number of comparisons is (2 + 3 + 3 + 2 + 3 + 3 + 3 +
2 · 3 + 3 + 3 + 3 + 2 + 3 + 3 + 2)/16 = 2 3

4
.

8. See Fig. AŰ2. The average number of comparisons is 3 56
81

.

9. We need at least n − 1 comparisons to discover that all keys are equal, if they
are. Conversely, n− 1 comparisons always suffice, since we can always deduce the Ąnal
ordering after comparing K1 with all of the other keys.

10. Let f(n) be the desired function, and let g(n) be the minimum average number of
comparisons needed to sort n+k elements when k > 0 and exactly k of the elements have
known values (0 or 1). Then f(0) = f(1) = g(0) = 0, g(1) = 1; f(n) = 1 + 1

2
f(n− 1) +

1
2
g(n−2), g(n) = 1 + min(g(n−1), 1

2
g(n−1) + 1

2
g(n−2)) = 1 + 1

2
g(n−1) + 1

2
g(n−2),

for n ≥ 2. (Thus the best strategy is to compare two unknown elements whenever
possible.) It follows that f(n)− g(n) = 1

2
(f(n− 1)− g(n− 1)) for n ≥ 2, and g(n) =

2
3
(n+ 1

3
(1− (− 1

2
)n)) for n ≥ 0. Hence the answer is

2
3
n+ 2

9
− 2

9
(− 1

2
)n − (1

2
)n−1

, for n ≥ 1.

(This exact formula may be compared with the information-theoretic lower bound,
log3(2n − 1) ≈ 0.6309n.)

11. Binary insertion proves that Sm(n) ≤ B(m) + (n − m)⌈lg(m + 1)⌉, for n ≥ m.
On the other hand Sm(n) ≥ ⌈lgm

k=1

n
k

k!⌉, and this is asymptotically n lgm +

O(((m− 1)/m)n); see Eq. 1.2.6Ű(53).

12. (a) If there are no redundant comparisons, we can arbitrarily assign an order to
keys that are actually equal, when they are Ąrst compared, since no order can be
deduced from previously made comparisons. (b) Assume that the tree strongly sorts
every sequence of zeros and ones; we shall prove that it strongly sorts every permutation
of {1, 2, . . . , n}. Suppose it doesnŠt; then there is a permutation for which it claims
that Ka1

≤ Ka2
≤ · · · ≤ Kan , whereas in fact Kai > Kai+1

for some i. Replace all
elements < Kai by 0 and all elements ≥ Kai by 1; by assumption the method will now
sort when we take the path that leads to Ka1

≤ Ka2
≤ · · · ≤ Kan , a contradiction.

13. If n is even, F (n)−F (n−1) = 1+F (⌊n/2⌋)−F (⌊n/2⌋−1) so we must prove that
wk−1 < ⌊n/2⌋ ≤ wk; this is obvious since wk−1 = ⌊wk/2⌋. If n is odd, F (n)−F (n−1) =
G(⌈n/2⌉) −G(⌊n/2⌋), so we must prove that tk−1 < ⌈n/2⌉ ≤ tk; this is obvious since
tk−1 = ⌈wk/2⌉.
14. By exercise 1.2.4Ű42, the sum is n⌈lg 3

4
n⌉ − (w1 + · · · + wj) where wj < n ≤

wj+1. The latter sum is wj+1 − ⌊j/2⌋ − 1. We can therefore express F (n) in the form
n⌈lg 3

4
n⌉ − ⌊2⌊lg(6n)⌋/3⌋+ ⌊ 1

2
lg(6n)⌋ (and in many other ways).

15. If ⌈lg 3
4
n⌉ = lg(3

4
n) + θ, F (n) = n lgn − (3 − lg 3)n + n(θ + 1 − 2θ) + O(logn).

If ⌈lgn⌉ = lgn + θ, B(n) = n lgn − n + n(θ + 1 − 2θ) + O(logn). [Note that lgn! =
n lgn− n/(ln 2) +O(logn); 1/(ln 2) ≈ 1.443; 3− lg 3 ≈ 1.415.]

656 ANSWERS TO EXERCISES 5.3.1

17. The number of cases with bk < ap < bk+1 is

m− p+ n− k

m− p

p− 1 + k

p− 1

,

and the number of cases with aj < bq < aj+1 is

n− q +m− j

n− q

q − 1 + j

q − 1

.

18. No, since we are considering only the less efficient branch of the tree below each
comparison. One of the more efficient branches might turn out to be harder to handle.

20. Let L be the maximum level on which an external node appears, and let l be
the minimum such level. If L ≥ l + 2, we can remove two nodes from level L and
place them below a node at level l; this decreases the external path length by l+ 2L−
(L − 1 + 2(l + 1)) = L − l − 1 ≥ 1. Conversely, if L ≤ l + 1, let there be k external
nodes on level l and N − k on level l + 1, where 0 < k ≤ N. By exercise 2.3.4.5Ű3,
k2−l + (N − k)2−l−1 = 1; hence N + k = 2l+1. The inequalities 2l ≤ N < 2l+1 now
show that l = ⌊lgN⌋; this deĄnes k and yields the external path length (34).

21. Let r(x) be the root of xŠs right subtree. All subtrees have minimum height if and
only if ⌈lg t(l(x))⌉ ≤ ⌈lg t(x)⌉ − 1 and ⌈lg t(r(x))⌉ ≤ ⌈lg t(x)⌉ − 1 for all x. The Ąrst
condition is equivalent to 2t(l(x))− t(x) ≤ 2⌈lg t(x)⌉− t(x), and the second condition is
equivalent to t(x)− 2t(l(x)) ≤ 2⌈lg t(x)⌉− t(x).

22. By exercise 20, the four conditions ⌊lg t(l(x))⌋, ⌊lg t(r(x))⌋ ≥ ⌊lg t(x)⌋ − 1 and
⌈lg t(l(x))⌉, ⌈lg t(r(x))⌉ ≤ ⌈lg t(x)⌉ − 1 are necessary and sufficient. Arguing as in
exercise 21, we can prove them equivalent to the stated conditions. [Martin Sandelius,
AMM 68 (1961), 133Ű134.] See exercise 33 for a generalization.

23. Multiple list insertion assumes that the keys are uniformly distributed in a known
range, so it isnŠt a Şpure comparisonŤ method satisfying the restrictions considered in
this section.

24. First proceed as if sorting Ąve elements, until after Ąve comparisons we reach one of
the conĄgurations in (6). In the Ąrst three cases, complete sorting the Ąve elements in
two more comparisons, then insert the sixth element f . In the other case, Ąrst compare
f :b, insert f into the main chain, then insert c. [Picard, Théorie des Questionnaires,
page 116.]

25. Since N = 7! = 5040 and q = 13, there would be 8192 − 5040 = 3152 external
nodes on level 12 and 5040− 3152 = 1888 on level 13.

26. Ľ. Kollár [Lecture Notes in Comp. Sci. 233 (1986), 449Ű457] has presented an
excellent way to verify that the optimum method has an external path length of 62416.

27.
1:3

2:3 1:2

1:2 132 312 2:3

123 213 231 321

5.3.1 ANSWERS TO EXERCISES 657

is the only way to recognize the two most frequent permutations with two comparisons,
even though the Ąrst comparison produces a .27/.73 split!

28. Lun Kwan has constructed an 873-line program whose average running time is
38.925u. Its maximum running time is 43u; the latter appears to be optimal since it is
the time for 7 compares, 7 tests, 6 loads, 5 stores.

29. We must make at least S(n) comparisons, because it is impossible to know whether
a permutation is even or odd unless we have made enough comparisons to determine
it uniquely. For we can assume that enough comparisons have been made to narrow
things down to two possibilities that depend on whether or not ai is less than aj , for
some i and j; one of the two possibilities is even, the other is odd. [On the other hand
there is an O(n) algorithm for this problem, which simply counts the number of cycles
and uses no comparisons at all; see exercise 5.2.2Ű2.]

30. Start with an optimal comparison tree of height S(n); repeatedly interchange i↔ j
in the right subtree of a node labeled i :j, from top to bottom. Interpreting the result
as a comparison-exchange tree, every terminal node deĄnes a unique permutation that
can be sorted by at most n− 1 more comparison-exchanges (by exercise 5.2.2Ű2).

[The idea of a comparison-exchange tree is due to T. N. Hibbard.]

31. At least 8 are required, since every tree of height 7 will produce the conĄguration

a
b

c

d

e

(or its dual) in some branch after 4 steps, with a ̸= 1. This conĄguration cannot be
sorted in 3 more comparison/exchange operations. On the other hand the following
tree achieves the desired bound (and perhaps also the minimum average number of
comparison/exchanges):

1:4

2:5

4:5

3:4

1:3 4:5

2:3

1:2

3:4

2:3 4:5

1:2

2:3

α α α β β β

Symmetrical

Symmetrical

2:3

1:2 3:4

α= 1:3

1:2 3:4

1:2 1:2

β=

33. Simple operations applied to any tree of order x and resolution 1 can be applied to
yield another whose weighted path length is no greater, where all external nodes lie on
levels k and k−1 for some k, and at most one external node is noninteger. Furthermore,
the noninteger external node lies on level k, if such a node is present. The weighted
path length of any such tree has the stated value, so this must be minimal. Conversely,
if (iv) and (v) hold in any real-valued search tree it is possible to show by induction
that the weighted path length has the stated value, since there is a simple formula for

658 ANSWERS TO EXERCISES 5.3.1

the weighted path length of a tree in terms of the weighted path lengths of the two
subtrees of the root.

36. [Mat. Zametki 4 (1968), 511Ű518.] See S. Felsner and W. T. Trotter, Combina-
torics, Paul Erdős is Eighty 1 (1993), 145Ű157, for a summary of progress on this
problem, and for a proof that we can always achieve

1 ≤ T (G1)/T (G2) ≤ ρ,

where the constant ρ is slightly less than 8/3.

SECTION 5.3.2

1. S(m+ n) ≤ S(m) + S(n) +M(m,n).

2. The internal node that is kth in symmetric order corresponds to the comparison
A1 :Bk.

3. Strategy B(1, l) is no better than strategy A(1, l+1), and strategy B′(1, l) no better
than A′(1, l−1); hence we must solve the recurrence

.M.(1, n) = min
1≤j≤n

max(max
1≤l≤j

(1+.M.(1, l−1)), max
j≤l≤n

(1+.M.(1, n−l))), n ≥ 1;

.M.(1, 0) = 0.

It is not difficult to verify that ⌈lg(n+ 1)⌉ satisĄes this recurrence.

4. No. [C. Christen, FOCS 19 (1978), 259Ű266.]

6. Strategy A′(i, i+1) can be used when j = i + 1, except when i ≤ 2. And we can
use strategy A(i, i+2) when j ≥ i+ 2.

7. To insert k + m elements among n others, independently insert k elements and
m elements. (When k and m are large, an improved procedure is possible; see exer-
cise 19.)

8, 9. In the following diagrams, i :j denotes the comparison Ai :Bj , Mij denotes
merging i elements with j in M(i, j) steps, and A denotes sorting the pattern
or in three steps.

2:6

2:4 2:8

2:5 1:4M23 M18

M14 M15 M13+1 A

1:2

3:5

2:2 2:3

2:1

M34

1+M22 M22+1 1+A

M14 M13+1

5.3.2 ANSWERS TO EXERCISES 659

10.
1:2

5:8

2:2

5:6

3:2

4:2

3:1

3:3

4:4

2:1

4:6

3:5

3:5

4:6

3:3

4:4

3:2

4:2

2:2

3:4

2:2

3:3

M25 M14+2

M23+2

M33+2

M23+1 M22+2

2A M22+3

2M12+1 2+A

1+M45

M14+1 M13+2

M22+2

M32+2 M22+3

M12+3 M12+3

2A A+3

M22+1+A

Symmetrical

M57

11. Let n = gt as in the hint. We may assume that t ≥ 6. Without loss of generality
let A2 :Bj be the Ąrst comparison. If j > gt−1, the outcome A2 < Bj will require ≥ t
more steps. If j ≤ gt−1, the outcome A2 < Bj would be no problem, so only the case
A2 > Bj needs study, and we get the most information when j = gt−1. If t = 2k + 1,
we might have to merge A2 with the gt−gt−1 = 2k−1 elements > Bgt−1

, and merge A1

with the gt−1 others, but this requires k+ (k+ 1) = t further steps. On the other hand
if n = gt − 1, we could merge A2 with 2k−1 − 1 elements, then A1 with n elements, in
(k − 1) + (k + 1) further steps, hence M(2, gt−1) ≤ t.

The case t = 2k is considerably more difficult; note that gt − gt−1 ≥ 2k−2. After
A2 > Bgt−1

, suppose we compare A1 :Bj . If j > 2k−1 the outcome A1 < Bj requires
k + (k − 1) further comparisons (too many). If j ≤ 2k−1, we can argue as before that
j = 2k−1 gives most information. After A1 > B2k−1 , the next comparisons with A1

might as well be with B2k−1+2k−2 , then B2k−1+2k−2+2k−3 ; since 2k−1 + 2k−2 + 2k−3 >
gt−1, the remaining problem is to merge {A1, A2} with n − (2k−1 + 2k−2 + 2k−3)
elements. Of course we neednŠt make any comparisons with A1 right away; we could
instead compare A2 :Bn+1−j . If j ≤ 2k−3, we consider the case A2 < Bn+1−j , while if
j > 2k−3 we consider A2 > Bn+1−j . The latter case requires at least (k − 2) + (k + 1)
more steps. Continuing, we Ąnd that the only potentially fruitful line is A2 > Bgt−1

,
A2 < Bn+1−2k−3 , A1 > B2k−1 , A1 > B2k−1+2k−2 , A1 > B2k−1+2k−2+2k−3 , but then
we have exactly gt−5 elements left! Conversely, if n = gt − 1, this line works. [Acta
Informatica 1 (1971), 145Ű158.]

12. The Ąrst comparison must be either α :Xk for 1 ≤ k ≤ i, or (symmetrically)
β :Xn−k for 1 ≤ k ≤ j. In the former case the response α < Xk leaves us with
Rn(k−1, j) more comparisons to make; the response α > Xk leaves us with the problem
of sorting α < β, Y1 < · · · < Yn−k, α < Yi−k+1, β > Yn−k−j , where Yr = Xr−k.

13. [Computers in Number Theory (New York: Academic Press, 1971), 263Ű269.]

14. [SICOMP 9 (1980), 298Ű320. The complete solution for M(4, n) was obtained
shortly afterwards by J. Schulte Mönting, who also gave a conjectured solution for
M(5, n), in Theor. Comp. Sci. 14 (1981), 19Ű37.]

660 ANSWERS TO EXERCISES 5.3.2

15. Double m until it exceeds n. This involves ⌊lg(n/m)⌋+ 1 doublings.

16. All except (m,n) = (2, 8), (3, 6), (3, 8), (3, 10), (4, 8), (4, 10), (5, 9), (5, 10), when
itŠs one over.

17. Assume that m ≤ n and let t = lg(n/m) − θ. Then lg

m+n
m

> lgnm − lgm! ≥

m lgn− (m lgm−m+ 1) = m(t+ θ) +m− 1 = H(m,n) + θm− ⌊2θm⌋ ≥ H(m,n) +
θm− 2θm ≥ H(m,n)−m. (The inequality m! ≤ mm21−m is a consequence of the fact
that k(m− k) ≤ (m/2)2 for 1 ≤ k < m.)

19. First merge {A1, . . . , Am} with {B2, B4, . . . , B2⌊n/2⌋}. Then we must insert the
odd elements B2i−1 among ai of the AŠs for 1 ≤ i ≤ ⌈n/2⌉, where a1+a2+· · ·+a⌈n/2⌉ ≤
m. The latter operation requires at most ai operations for each i, so at most m more
comparisons will Ąnish the job.

20. Apply (12).

22. R. Michael Tanner [SICOMP 7 (1978), 18Ű38] has shown that a Şfractile insertionŤ
algorithm makes at most 1.06 lg

m+n

m

comparisons on the average. Ľ. Kollár [Com-

puters and ArtiĄcial Intelligence 5 (1986), 335Ű344] has studied the average behavior
of Algorithm H.

23. The adversary keeps an n×n matrix X whose entries xij are initially all 1. When
the algorithm asks if Ai = Bj , the adversary sets xij to 0. The answer is ŞNo,Ť unless
the permanent of X has just become zero. In the latter case, the adversary answers
ŞYesŤ (as it must, lest the algorithm terminate immediately!), and deletes row i and
column j from X; the resulting (n−1)× (n−1) matrix will have a nonzero permanent.
The adversary continues in this way until only a 0× 0 matrix is left.

If the permanent is about to become zero, we can rearrange rows and columns so
that i = j = 1 and the matrix has all 1s on the diagonal, yet its permanent vanishes
when x11 ← 0; then we must have x1kxk1 = 0 for all k > 1. It follows that at least
n zeros are deleted when the adversary Ąrst answers ŞYes,Ť and n− 1 the second time,
etc. The algorithm will terminate only after receiving n ŞYesŤ answers to nonredundant
questions, and after asking at least n+ (n− 1) + · · ·+ 1 questions [JACM 19 (1972),
649Ű659]. A similar argument shows that n+ (n− 1) + · · ·+ (n−m+ 1) questions are
needed to determine that A ⊆ B when |A| = m ≤ n = |B|.
24. The coarse preliminary merge needs at most m + q − 1 comparisons, and the
subsequent insertions need at most t each. These upper bounds cannot be decreased.
So the maximum is the same as for Algorithm H (see (19)).

25. The general problem is as hard as the special case where each xij is 0 or 1 and
x = 1

2
. Then each comparison is equivalent to looking at the bit xij , and we want to

determine the entire matrix by inspecting the fewest bits. Any merging problem (1)
corresponds to such a 0Ű1 matrix if we set xij = [Ai >Bn+1−j]. (N. Linial and M. Saks,
in J. Algorithms 6 (1985), 86Ű103, attribute this observation to J. Shearer. A similar
result connects searching and sorting with respect to any partial order.)

SECTION 5.3.3

1. Player 11 lost to 05 ; so 13 was known to be worse than 05, 11, and 12.

2. Let x be the tth largest, and let S be the set of all elements y such that the
comparisons made are insufficient to prove either that x < y or y < x. There are
permutations, consistent with all the comparisons made, in which all elements of
S are less than x; for we can stipulate that all elements of S are less than x and

5.3.3 ANSWERS TO EXERCISES 661

embed the resulting partial ordering in a linear ordering. Similarly there are consistent
permutations in which all elements of S are greater than x. Hence we donŠt know the
rank of x unless S is empty.

3. An adversary may regard the loser of the Ąrst comparison as the worst player
of all.

4. Suppose the largest t−1 elements are {a1, . . . , at−1}. Any path in the comparison
tree to determine the largest t elements, consistent with this assumption, must include
at least n− t comparisons to determine the largest of the remaining n− t+ 1 elements.
Such paths have at least n− t binary choice points, so there are at least 2n−t of them.
Thus, each of the nt−1 choices for the largest t − 1 elements must appear in at least
2n−t leaves of the tree.

5. In fact, Wt(n) ≤ Vt(n) + S(t− 1), by exercise 2.

6. Let g(l1, l2, . . . , lm) = m− 2 + ⌈lg(2l1 + 2l2 + · · ·+ 2lm)⌉, and assume that f = g
whenever l1 + l2 + · · ·+ lm + 2m < N. We shall prove that f = g when l1 + l2 + · · ·+
lm + 2m = N. We may assume that l1 ≥ l2 ≥ · · · ≥ lm. There are only a few possible
ways to make the Ąrst comparison:

Strategy A(j, k), for j < k. Compare the largest element of group j with the largest of
group k. This gives the relation

f(l1, . . . , lm) ≤ 1 + g(l1, . . . , lj−1, lj+1, lj+1, . . . , lk−1, lk+1, . . . , lm)

= g(l1, . . . , lj−1, lj , lj+1, . . . , lk−1, lj , lk+1, . . . , lm) ≥ g(l1, . . . , lm).

Strategy B(j, k), for lk > 0. Compare the largest element of group j with one of the
small elements of group k. This gives the relation

f(l1, . . . , lm) ≤ 1 + max(α, β) = 1 + β,

where
α = g(l1, . . . , lj−1, lj+1, . . . , lm) ≤ g(l1, . . . , lm)− 1,

β = g(l1, . . . , lk−1, lk−1, lk+1, . . . , lm) ≥ g(l1, . . . , lm)− 1.

Strategy C(j, k), for j ≤ k, lj > 0, lk > 0. Compare a small element from group j with
a small element from group k. The corresponding relation is

f(l1, . . . , lm) ≤ 1 + g(l1, . . . , lk−1, lk − 1, lk+1, . . . , lm) ≥ g(l1, . . . , lm).

The value of f(l1, . . . , lm) is found by taking the minimum right-hand side over all
these strategies; hence f(l1, . . . , lm) ≥ g(l1, . . . , lm). When m > 1, Strategy A(m−1,m)
shows that f(l1, . . . , lm) ≤ g(l1, . . . , lm), since g(l1, . . . , lm−1, lm) = g(l1, . . . , lm−1, lm−1)
when l1 ≥ · · · ≥ lm. (Proof: ⌈lg(M + 2a)⌉ = ⌈lg(M + 2b)⌉ for 0 ≤ a ≤ b, when M is a
positive multiple of 2b.) When m = 1, use Strategy C(1, 1).

[S. S. KislitsynŠs paper determined the optimum strategy A(m−1,m) and eval-
uated f(l, l, . . . , l) in closed form; the general formula for f and this simpliĄed proof
were discovered by Floyd in 1970.]

7. For j > 1, if j + 1 is in α′, cj is 1 plus the number of comparisons needed to select
the next largest element of α′. Similar reasoning applies if j + 1 is in α′′; and c1 is
always 0, since the tree always looks the same at the end.

8. In other words, is there an extended binary tree with n external nodes such that
the sum of the distances to the t− 1 farthest internal nodes from the root is less than
the corresponding sum for the complete binary tree? The answer is no, since it is not
hard to show that the kth largest element of µ(α) is at least ⌊lg(n− k)⌋ for all α.

662 ANSWERS TO EXERCISES 5.3.3

9. (All paths use six comparisons, yet the procedure is not optimum for V 3(5).)

1:2

3:4

2:4

3:5

2:5

2:3

3 2

1:5

5 1

2:3

2:5

5 2

1:3

3 1

Symmetrical

Symmetrical

Symmetrical

10. (Found manually by trial and error, using exercise 6 to help Ąnd fruitful lines.)

1:2

3:4

2:4

5:6

2:6

3:5

2:7

5:7

4:5

4 2:5

5 2

4:7

4 3:7

7 3

2:5

2:3

3 2

1:5

5:7

7 5

1:7

7 1

3:7

6:7

1:3

2:3

2 3:6

6 3

1:7

1:6

6 1

7

1:6

1:5

5:7

7 5

1:7

7 1

6

3:6

1:6

1:5

3:5

5 3

1:3

3 1

1:7

2:7

2 6:7

7 6

1:3

1:6

6 1

3

6

Symmetrical

Symmetrical

Symmetrical

Symmetrical

Symmetrical

11. See Information Processing Letters 3 (1974), 8Ű12.

12. After discarding the smallest of {X1, X2, X3, X4}, we have the conĄguration q q
plus n − 3 isolated elements; the third largest of them can be found in V3(n − 1) − 1
further steps.

5.3.3 ANSWERS TO EXERCISES 663

13. After Ąnding the median of the Ąrst f(n) elements, say Xj , compare it to each of
the others; this splits the elements into approximately n/2−k less than Xj and n/2+k
greater than Xj , for some k. It remains to Ąnd the |k|th largest or smallest element of
the bigger set, which requires n/2+O(|k| logn) further comparisons. The average value
of |k| (consider points uniformly distributed in [0 . . 1]) is O(1/

√
n) + O(n/

f(n)).

Let T (n) be the average number of comparisons when f(n) = n2/3; then T (n) − n =
T (n2/3)− n2/3 + n/2 +O(n2/3), and the result follows.

It is interesting to note that when n = 5, this method requires only 5 13
15

compar-
isons on the average, slightly better than the tree of exercise 9.

14. In general, the t largest can be found in Ut(n) ≤ Vt(n − 1) + 1 comparisons,
by Ąnding the tth largest of {X1, . . . , Xn−1} and comparing it with Xn, because of
exercise 2. (Kirkpatrick actually proved that (12) is a lower bound for Ut(n + 1) − 1.
For larger t, an improved bound for Ut(n) was found by J. W. John, SICOMP 17

(1988), 640Ű647.)

15. min(t, n+1−t). Assuming that t ≤ n + 1 − t, if we donŠt save each of the Ąrst
t words when they are Ąrst read in, we may have forgotten the tth largest, depending
on the subsequent values still unknown to us. Conversely, t locations are sufficient,
since we can compare a newly input item with the previous tth largest, storing the
register if and only if it is greater.

16. The algorithm starts with (a, b, c, d) = (n, 0, 0, 0) and ends with (0, 1, 1, n−2). If
the adversary avoids ŞsurprisingŤ outcomes, the only transitions possible after each
comparison are from (a, b, c, d) to itself or to

(a−2, b+1, c+1, d), if a ≥ 2;

(a−1, b, c+1, d) or (a−1, b+1, c, d), if a ≥ 1;

(a, b−1, c, d+1), if b ≥ 2;

(a, b, c−1, d+1), if c ≥ 2.

It follows that ⌈ 3
2
a⌉ + b + c − 2 comparisons are needed to get from (a, b, c, d) to

(0, 1, 1, a+b+c+d−2). [Reference: CACM 15 (1972), 462Ű464. In FOCS 16 (1975), 71Ű
74, Pohl proved that the algorithm also minimizes the average number of comparisons.]

17. Use (6) Ąrst for the largest, then for the smallest, noting that ⌊n/2⌋ of the
comparisons are common to both.

18. Vt(n) ≤ 18n− 151, for all sufficiently large n.

21. Step 0. Build two knockout trees of sizes 2k and 2k−t+1.
Step j, for 1 ≤ j ≤ t. (At this point we have output the largest j−1 elements. The

remaining elements, together with a set of dummy placeholders that each equal −∞,
now appear in two knockout trees A and B, where A has 2k leaves and B has 2k−t+j .)
Let a be the champion of A, and assume that a has beaten a0, a1, . . . , ak−1, where
al is a champion of 2l elements. Similarly, let b and b0, b1, . . . , bk−t+j−1 be the
champion and subchampions of B. If j = t, output max(a, b) and stop. Otherwise,
ŞgrowŤ another level at the bottom of B by introducing 2k−t+j dummies who each
have lost their Ąrst game to the players of B. (Our strategy will be to merge B
into A, if possible, by exchanging it with the subtree A′ of A that contains a0, a1,
. . . , ak−t+j ; notice that A′, like the newly enlarged B, is a knockout tree with 2k−t+j+1

leaves.) Compare b to ak−t+j+1, then compare the winner to ak−t+j+2, etc., until c =
max(b, ak−t+j−1, . . . , ak−1) has been found. Case 1, b < c: Output a and interchange

664 ANSWERS TO EXERCISES 5.3.3

B with A′. Case 2, b = c and b < a: Output a and interchange B with A′. Case 3, b = c
and b > a: Output b. After handling these three cases we are left with (possibly new)
knockout trees A and B in which the champion of B has just been output. Remove that
element from B and replace it by −∞, making any necessary comparisons to restore
the knockout tournament structure (as in tree selection). This completes Step j.

Step 0 makes 2k − 1 + 2k+1−t − 1 comparisons, and Step t makes 1. Steps 1, 2,
. . . , t − 1 each make at most k − 1 comparisons, except in Case 2 when there might
be k. But whenever Case 2 occurs, weŠll save one comparison the next time weŠre in
Case 1 or Case 2, because a0 will then be −∞. Thus the Ąrst t− 1 steps make at most
(t− 1)(k − 1) + 1 comparisons altogether.

By exercise 3 we have Wt(n) ≤ n + (t − 1)(k − 1) for all n ≤ 2k + 2k+1−t, when
k ≥ t ≥ 2. If n ≥ 2k +t−2, exercise 4 says that Wt(n) ≥ n−t+⌈lg(2k +t−2)t−1⌉, which
is n−t+(t−1)k+1 if t ≥ 3. Thus the method is optimum for 2k+t−2 ≤ n ≤ 2k+2k+1−t

when k ≥ t ≥ 3. (Also for several smaller values of n, if t is large.)
A similar method, which uses a reserved element instead of −∞ when rebuilding B

at the end of steps 1, . . . , t−2 (see the proof of (11)), proves that Vt(n) ≤ n+(t−1)(k−1)
when n ≤ 2k + 2k+1−t + t− 2 and k ≥ t ≥ 3. [See J. Algorithms 5 (1984), 557Ű578.]

22. In general when 2r · 2k < n+ 2− t ≤ (2r + 1) · 2k and t < 2r ≤ 2t, this procedure
starting with t + 1 knockout trees of size 2k will yield ⌊(t − 1)/2⌋ fewer comparisons
than (11), since at least this many of the comparisons that were used to Ąnd the
minimum in (ii) can be ŞreusedŤ in (iii).

23. According to (15), the quantity V⌈n/2⌉(n)/n is bounded below by 2 as n → ∞.
But D. Dor and U. Zwick have shown that the actual lower limit is strictly greater
than 2, while the upper limit is less than 2.942 [SICOMP 28 (1999), 1722Ű1758; 14

(2001), 312Ű325]. They also have proved an asymptotic upper bound

Vαn(n) ≤

1 + α lg
1
α

+O

α log log

1
α

n,

which is not extremely far from (15) when α is small [Combinatorica 16 (1996), 41Ű58].

24. Since Wt(n) = n + O(t logn) by Eq. (6), the statement in the hint is surely true
when t ≤

√
n/ lnn. Suppose that statement holds for n, and let u and v have ranks

t− = ⌊t−√t lnn⌋ and t+ = ⌈t+√t lnn ⌉ in the Ąrst n of 2n randomly ordered elements.
(The smallest element has rank 1.) Compare the other n elements to v, and compare
those less than v also to u. The probability ps that an element x of rank t in the
Ąrst n has rank s overall is

s−1
t−1

2n−s
n−t

/

2n
n

. The average value of s is

sps = 2n+1

n+1
t;

this is the average number of elements < x, hence the average number of comparisons
to u is

n

n+1

t+ = t + O(n logn)1/2. Let u and v have ranks s− and s+ among all

2n elements, and let T− = ⌊2t−√2t ln 2n⌋, T+ = ⌈2t+
√

2t ln 2n ⌉. If s− ≤ T− and
s+ ≥ T+, we can Ąnd the elements of ranks T− and T+ by selecting from the s+−s−+1
elements between u and v. We will prove that itŠs very unlikely to have s− > T− or
s− < T−− 2

√
n lnn or s+ < T+ or s+ > T+ + 2

√
n lnn; therefore O(n logn)1/2 further

comparisons will almost always suffice. The hint will follow by induction on n if we
can show that Şvery unlikelyŤ means Şwith probability O(n−1−ϵ) for all sufficiently
large n.Ť

Notice that ps+1/ps = s(n − s + t)/(s + 1 − t)(2n − s) decreases as s increases
from t to n + t, and it is ≤ 1 if and only if s ≥ 2n(t − 1)/(n − 1); it is ≤ 1 −
1
2
cn−1/2 +O(n−1) when s = s(c) = 2t+ ct(n− t)/n3/2. Therefore the probability that

s ≥ s(c) is ≤ 2c−1n1/2ps(c)(1 +O(n−1/2)). Similarly, ps−1/ps < 1− 1
2
cn−1/2 −O(n−1)

5.3.3 ANSWERS TO EXERCISES 665

when s = s(c) = 2t − 1 − c(t − 1)(n + 1 − t)/n3/2, so s ≤ s(c) with probability
≤ 2c−1n1/2ps(c)(1 + O(n−1/2)). In the cases we need, the relevant values of c are
≥ .55n3/2(lnn)1/2t−1/2(n − t)−1 for all large n, and StirlingŠs approximation implies
that ps(c) and ps(c) are both

O(n1/2s−1/2(2n− s)−1/2) exp(−2sc2(n− t)2/n3 − 2(2n− s)c2t2/n3)

≤ O(t−1/2 exp(−4t(n− t)c2/n2)) ≤ O(t−1/2n−1.2).

Thus the probability O(n−1.2(logn)1/2) is indeed very unlikely. [A similar construction
appeared in CACM 18 (1975), 165Ű172, but the analysis was incorrect.]

25. Given a selection algorithm and a permutation π of {1, . . . , n}, letŠs charge each
comparison πi :πj to πi if |πi − t| > |πj − t|; if |πi − t| = |πj − t|, we charge 1

2
to each.

A charge to πi is called useful if πi < πj ≤ t or πi > πj ≥ t; otherwise itŠs useless. Let
xk be the total charge to k. Then the total number of comparisons is x1 + · · · + xn.
Clearly xt = 0; but xk ≥ 1 for all k ̸= t, because every element other than t has a
useful charge. We will prove that Ext+k + Ext−k ≥ 3 for 0 < k < t.

Let Ak(π) = [the Ąrst charge to t+ k was useless]. Then Ak(π) = 1 − A−k(π′),
where π′ is like π but with the elements (t−k, . . . , t+k−1, t+k) replaced respectively
by (t−k+1, . . . , t+k, t−k). Therefore EAk + EA−k = 1.

Let Bk(π) = [the Ąrst charge to both t + k and t − k was 1
2
, and t + k received

its second charge before t − k did]. Also let Ck(π) = [xt+k ≥ 2 +Ak]. Then Bk(π) ≤
Ck(π′), where π′ is like π but with the elements (t− k, t− k+ 1, . . . , t+ k− 1) replaced
by (t+ k− 1, t− k, . . . , t+ k− 2). Similarly, B−k(π) ≤ C−k(π′′), where π′′ is obtained
from π by changing (t−k+1, . . . , t+k−1, t+k) to (t−k+2, . . . , t+k, t−k+1). It follows
that EBk ≤ ECk and EB−k ≤ EC−k.

The proof is completed by observing that xt−k +xt+k ≥ 2+Ak +A−k−Bk−B−k +
Ck + C−k. [See JACM 36 (1989), 270Ű279, for further results.]

The upper bound in (17) also has a matching lower bound: Andrew and Frances
Yao proved that V t(n) ≥ n+ 1

2
t (ln lnn− ln t−9) for t > 1 and n ≥ (8t)18t, in SICOMP

11 (1982), 428Ű447.

26. (a) Let the vertices of the two types of components be designated a; b < c. The
adversary acts as follows on nonredundant comparisons: Case 1, a :a′, make an arbitrary
decision. Case 2, x :b, say that x > b; all future comparisons y :b with this particular b
will result in y > b, otherwise the comparisons are decided by an adversary for Ut(n−1),
yielding ≥ 2 + Ut(n − 1) comparisons in all. This reduction will be abbreviated Şlet
b = min; 2 + Ut(n− 1).Ť Case 3, x :c, let c = max; 2 + Ut−1(n− 1).

(b) Let the new types of vertices be designated d1, d2 < e; f < g < h > i. Case 1,
a :a′ or c :c′, arbitrary decision. Case 2, a :c, say that a < c. Case 3, x :b, let b = min;
2 + Ut(n − 1). Case 4, x :d, let d = min; 2 + Ut(n − 1). Case 5, x :e, let e = max;
3+Ut−1(n−1). Case 6, x :f , let f = min; 2+Ut(n−1). Case 7, x :g, let f and g = min;
3 + Ut(n − 2). Case 8, x :h, let h = max; 3 + Ut−1(n − 1). Case 9, x : i, let i = min;
2 + Ut(n− 1).

(c) For t = 1 we have Ut(n) = n− 1, so the inequality holds. For 1 < t ≤ n/2− 1,
use induction and (b). For t = (n − 1)/2, use induction and (a). For t = n/2,
Ut(n− 1) = Ut−1(n− 1); use induction and (a).

27. (a) The height h satisĄes 2h ≥l 1 ≥l Pr(l)/p = 1/p.
(b) If r ≤ t, we reach A3 after at least n− |S0| − |T0| = n− |S0| − r Ćips. The tth

largest element will be either the smallest or largest element of Q, and the elements of

666 ANSWERS TO EXERCISES 5.3.3

Q have not yet been compared to each other, so we will need at least |Q|−1 more Ćips.
If |S0| < q we have |Q| = r, and if not we have |Q| ≥ |S0|−|C(y0)|+1 ≥ |S0|−(q−r)+1;
so in both cases at least n−q Ćips will be made. There are n+1−t sets T containing the
t− 1 largest elements determined by a given leaf, and for every such T the probability
of reaching that leaf is either zero or 2−f/

n
t

, where f ≥ n − q is the number of Ćips

corresponding to T . [This adversary is implicit in the paper of Bent and John, STOC
17 (1985), 213Ű216.]

(c) If t < r, change t to n + 1 − t; this will make t ≥ r when r maximizes the
right-hand side, since r will be O(

√
n). If it is possible to reach A3 with |C(y)| > q− r

for all y ∈ T0, the algorithm will make n − 1 comparisons to relate the tth largest
element to all the others, in addition to at least (r − 1)(q − r + 1) comparisons that it
made between S and T \ {y0}.

(d) Choose r = ⌈√m ⌉ and q = 2r − 2. (It is slightly better to let q = r +
⌊√m+ 1

2
⌋− 2; this choice maximizes the lower bound derived in (c).)

SECTION 5.3.4

1. (When m = 2k − 1 is odd it is best to have vk followed by vk+1, wk+1, vk+2, . . .
instead of by wk+1, vk+1, wk+2, . . . in the diagram. This change is valid because the
swapped lines are being compared to each other.)

(3,5) odd-even merge

x1

x2

x3

y1

y2

y3

y4

y5

z1

z2

z3

z4

z5

z6

z7

z8

v1

w1

v2

v3

w2

v4

w3

v5

Pratt eight-sort

2. The increment h needs 2− [2h≥n] levels; see the diagram above for n = 8.

3. C(m,m−1) = C(m,m)− 1, for m ≥ 1.

4. If T̂ (6) = 4, there would be three comparators acting at each time, since Ŝ(6) = 12.
But then removing the bottom line and its four comparators would give Ŝ(5) ≤ 8,
a contradiction. [The same argument yields T̂ (7) = T̂ (8) = 6. Further values have
been obtained by D. Bundala and J. Závodný via satisĄability encoding (see Section
7.2.2.2). The value of T̂ (17) remains unknown.]

5. Let f(n) = f(⌈n/2⌉) + 1 + ⌈lg⌈n/2⌉⌉, if n ≥ 2. Then f(n) = (1 + ⌈lgn⌉)⌈lgn⌉/2
by induction on n.

6. We may assume that each stage makes ⌊n/2⌋ comparisons (extra comparisons
canŠt hurt). Since T̂ (6) = 5, it suffices to show that T (5) = 5. After two stages when
n = 5, we cannot avoid the partial orderings q qqq q❍❍ or qq

q
qqP✏

P✏ , which cannot be sorted in
two more stages.

7. Assume that the input keys are {1, 2, . . . , 10}. The key fact is that after the Ąrst 16
comparators, lines 2, 3, 4, and 6 cannot contain 8 or 9, nor can they contain both 6
and 7. (Notice that the modiĄed network has delay 8.)

8. Straightforward generalization of Theorem F.

5.3.4 ANSWERS TO EXERCISES 667

9. M̂(3, 3) ≥ Ŝ(6) − 2Ŝ(3); M̂(4, 4) ≥ Ŝ(8) − 2Ŝ(4); M̂(5, 5) ≥ 2M̂(2, 3) + 3 by
exercise 8; and M̂(2, 3) ≥ Ŝ(5) − Ŝ(2) − Ŝ(3). Similarly M̂(3, 4) = 8. But what are
M̂(3, 5) and M̂(4, 5)?

10. The hint follows by the method of proof in Theorem Z. Hence the number of 0s
in the even subsequence minus the number of 0s in the odd subsequence is ±1 or 0.

11. (Solution by M. W. Green.) The network is symmetric in the sense that, whenever
zi is compared to zj , there is a corresponding comparison of z2t−1−j :z2t−1−i. Any
symmetric network capable of sorting a sequence ⟨z0, . . . , z2t−1⟩ will also sort the
sequence ⟨−z2t−1, . . . ,−z0⟩.

Batcher has observed that the network will actually sort any cyclic shift ⟨zj , zj+1,
. . . , z2t−1, z0, . . . , zj−1⟩ of a bitonic sequence. This is a consequence of the 0Ű1 principle.

[These results do not hold for bitonic sorters when the order is not a power of 2. For
example, Fig. 52 does not sort ⟨0, 0, 0, 0, 0, 1, 0⟩. BatcherŠs original deĄnition of bitonic
sequences was more complicated and less useful than the deĄnition adopted here.]

12. x ∨ y is (consider 0Ű1 sequences), but not x ∧ y (consider ⟨3, 1, 4, 5⟩ ∧ ⟨6, 7, 8, 2⟩).
13. A perfect shuffle has the effect of replacing zi by zj , where the binary representation
of j is that of i rotated cyclically to the right one place (see exercise 3.4.2Ű13). Consider
shuffling the comparators instead of the lines; then the Ąrst column of comparators acts
on the pairs z[i] and z[i ⊕ 2r−1], the next column on z[i] and z[i ⊕ 2r−2], . . . , the tth
column on z[i] and z[i ⊕ 1], the (t + 1)st column on z[i] and z[i ⊕ 2r−1] again, etc.
Here ⊕ denotes exclusive-or on the binary representation. This shows that Fig. 57 is
equivalent to Fig. 56; after s stages we have groups of 2s elements that are alternatively
sorted and reverse-sorted.

C. G. Plaxton and T. Suel [Math. Systems Theory 27 (1994), 491Ű508] have shown
that any such network requires at least Ω((logn)2/ log logn) levels of delay.

14. (a) Let yis = xjs , yjs = xis , yk = xk for is ̸= k ̸= js; then yαs = xα. (b) This
is obvious unless the set {is, js, it, jt} has only three distinct elements; suppose that
is = it. Then if s < t the Ąrst s− 1 comparators have (is, js, jt) replaced, respectively,
by (js, jt, is) in both (αs)t and (αt)s. (c) (αs)s = α, and α1 = α, so we can assume
that s1 > s2 > · · · > sk > 1. (d) Let β = α[i :j]; then gβ(x1, . . . , xn) = (x̄i ∨ xj) ∧
(gα(x1, . . . , xi, . . . , xj , . . . , xn) ∨ gα(x1, . . . , xj , . . . , xi, . . . , xn)). Iterating this identity
yields the result. (e) fα(x) = 1 if and only if no path in Gα goes from i to j where
xi > xj . If α is a sorting network, the conjugates of α are also; and fα(x) = 0 for all
x with xi > xi+1. Take x = e(i); this shows that G has an arc from i to k1 for some
k1 ̸= i. If k1 ̸= i+1, x = e(i)∨e(k1) shows that G has an arc from i or k1 to k2 for some
k2 /∈ {i, k1}. If k2 ̸= i + 1, continue in the same way until Ąnding a path in G from i
to i+ 1. Conversely if α is not a sorting network, let x be a vector with xi > xi+1 and
gα(x) = 1. Some conjugate α′ has fα′(x) = 1, so Gα′ can have no path from i to i+ 1.
[In general, (xα)i ≤ (xα)j for all x if and only if Gα′ has an oriented path from i to j
for all α′ conjugate to α.]

15. [1 :4][3 :2][1 :3][2 :4][2 :3].

16. The process clearly terminates. Each execution of step T2 has the effect of
interchanging the iqth and jqth outputs, so the result of the algorithm is to permute the
output lines in some way. Since the resulting (standard) network makes no change to the
input ⟨1, 2, . . . , n⟩, the output lines must have been returned to their original position.

17. Make the network standard by the algorithm of exercise 16; then by considering
the input sequence ⟨1, 2, . . . , n⟩, we see that standard selection networks must take the

668 ANSWERS TO EXERCISES 5.3.4

t largest elements into the t highest-numbered lines; and a V̂t(n) network must take
the tth largest into line n+ 1− t. Apply the zero-one principle.

18. The proof in Theorem A shows that V̂t(n) ≥ (n− t)⌈lg(t+ 1)⌉+ ⌈lg t⌉.
19. The network [1:n][2 :n] . . . [1 :3][2 :3] selects the smallest two elements with 2n− 4
comparators; add [1:2] for V̂2(n). The lower bounds come from the proof of Theorem A
(see the previous answer).

20. (a) First note that V̂3(n) ≥ V̂3(n − 1) + 2 when
n ≥ 4: By symmetry the Ąrst comparator may be
assumed to be [1 :n]; after this must come a network
to select the third largest of ⟨x2, x3, . . . , xn⟩, and an-
other comparator touching line 1. On the other hand,
V̂3(5) ≤ 7, since four comparators Ąnd the min and
max of {x1, x2, x3, x4}, then we sort the other three.

(b) A subtle construction by M. W. Green, shown
for n = 11, does the job. (Equality probably holds.)

21. False; consider, for example, the two networks [1 :2][3 :4][2 :3][1 :4][1 :2][3 :4] and
[1:2][3 :4][2 :3][3 :4][1:4][1 :2][3 :4]. (However, N. G. de Bruijn proved in Discrete Math.
9 (1974), 337, that new comparators do not mess up sorting networks that are primitive

in the sense of exercise 36.)

22. (a) By induction on the length of α, since xi ≤ yi and xj ≤ yj implies that
xi ∧ xj ≤ yi ∧ yj and xi ∨ xj ≤ yi ∨ yj . (b) By induction on the length of α, since
(xi∧xj)(yi∧yj)+(xi∨xj)(yi ∨ yj) ≥ xiyi + xjyj . [Consequently ν(x∧y) ≤ ν(xα∧yα),
an observation due to W. Shockley.]

23. Let xk = 1 if and only if pk ≥ j, yk = 1 if and only if pk > j; then (xα)k = 1 if
and only if (pα)k ≥ j, etc.

24. The formula for l′i is obvious and for l′j take z = x ∧ y as in the hint and observe
that (zα)i = (zα)j = 0 by exercise 21. Adding additional 1s to z shows the existence of
a permutation p with (pα′)j ≤ ζ(z), by exercise 23. The relations for u′

i and u′
j follow

by reversing the order.

25. (Solution by H. Shapiro.) Let p and q be permutations with (pα)k = lk and
(qα)k = uk. We can transform p into q by repeatedly interchanging pairs (i, i + 1) of
adjacent integers; such an interchange in the input affects the kth output by at most ±1.

26. There is a one-to-one correspondence that takes the element ⟨p1, . . . , pn⟩ of Pnα
into the Şcovering sequenceŤ x(0) covers x(1) covers . . . covers x(n), where the x(i) are
in Dnα; in this correspondence, x(i−1) = x(i) ∨ e(j) if and only if pj = i. For example,
⟨3, 1, 4, 2⟩ corresponds to the sequence ⟨1, 1, 1, 1⟩ covers ⟨1, 0, 1, 1⟩ covers ⟨1, 0, 1, 0⟩
covers ⟨0, 0, 1, 0⟩ covers ⟨0, 0, 0, 0⟩. [Andrew Yao observes that consequently it suffices
to test a sorting network on

n

⌊n/2⌋

− 1 suitably chosen permutations. For example,

any 4-network that sorts ⟨4, 1, 2, 3⟩, ⟨3, 1, 4, 2⟩, ⟨3, 4, 1, 2⟩, ⟨2, 4, 1, 3⟩, and ⟨2, 3, 4, 1⟩ sorts
everything. See exercise 6.5Ű1; see also exercise 56.]

27. The principle holds because (xα)i is the ith smallest element of x. If x and y
denote different columns of a matrix whose rows are sorted, so that xi ≤ yi for all i,
and if xα and yα denote the result of sorting the columns, the stated principle shows
that (xα)i ≤ (yα)i for all i, since we can choose i elements of x in the same rows as any
i given elements of y. [We have used this principle to prove the invariance property of
shellsort, Theorem 5.2.1K. Further exploitation of the idea appears in an interesting
paper by David Gale and R. M. Karp, J. Computer and System Sciences 6 (1972),

5.3.4 ANSWERS TO EXERCISES 669

103Ű115; see also B. E. Tenner, Annals of Combinatorics 11 (2007), 101Ű114. The
fact that column sorting does not mess up sorted rows was apparently Ąrst observed in
connection with the manipulation of tableaux; see Hermann Boerner, Darstellung von
Gruppen (Springer, 1955), Chapter V, §5.]

28. If {xi1
, . . . , xit} are the t largest elements, then xi1

∧ . . .∧xit is the tth largest. If
{xi1

, . . . , xit} are not the t largest, then xi1
∧ . . . ∧ xit is less than the tth largest.

29. ⟨x1 ∧ y1, (x2 ∧ y1) ∨ (x1 ∧ y2), (x3 ∧ y1) ∨ (x2 ∧ y2) ∨ (x1 ∧ y3), y1 ∨ (x3 ∧ y2) ∨
(x2 ∧ y3)∨ (x1 ∧ y4), y2 ∨ (x3 ∧ y3)∨ (x2 ∧ y4)∨ (x1 ∧ y5), y3 ∨ (x3 ∧ y4)∨ (x2 ∧ y5)∨x1,
y4 ∨ (x3 ∧ y5) ∨ x2, y5 ∨ x3⟩.
30. Applying the distributive and associative laws reduces any formula to ∨Šs of ∧Šs;
then the commutative, idempotent, and absorption laws lead to canonical form. The
Si are precisely those sets S such that the formula is 1 when xj = [j ∈S] while the
formula is 0 when xj = [j ∈S′] for any proper subset S′ of S.

31. δ4 = 166. R. Church [Duke Math. J. 6 (1940), 732Ű734] found δ5 = 7579, M. Ward
[Bull. Amer. Math. Soc. 52 (1946), 423] found δ6 = 7828352, and the next values
are δ7 = 2414682040996, δ8 = 56130437228687557907786 [R. Church, Notices Amer.
Math. Soc. 12 (1965), 724; J. Berman and P. Köhler, Mitteilungen Math. Seminar
Gießen 121 (1976), 103Ű124; D. Wiedemann, Order 8 (1991), 5Ű6]. The asymptotic
formula δ2m = exp(

2m−1

m

ln 2 +

2m

m+1

/2m+1 + 1

16
(m − 1)

m/π + O(m−1/2)) has

been established by A. D. Korshunov and A. A. Sapozhenko, with a similar formula for
δ2m+1; see Russian Math. Surveys 58 (2003), 929Ű1001, Theorem 1.8.

32. Gt+1 is also the set of all strings θψ where θ and ψ are in Gt and θ ⊆ ψ as vectors
of 0s and 1s. It follows that Gt is the set of all strings z0 . . . z2t−1 of 0s and 1s having
the property that zi ≤ zj whenever the binary representation of i is Ş⊆Ť the binary
representation of j in the 0Ű1 vector sense. Each element z0 . . . z2t−1 of Gt, except
00 . . . 0 and 11 . . . 1, represents a ∧Ű∨ function f(x1, . . . , xt) from D2t into {0, 1}, under
the correspondence f(x1, . . . , xt) = z(x1...xt)2

.

33. If such a network existed we would have (x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (x3 ∧ x4) =
f(x1∧x2, x1∨x2, x3, x4) or f(x1∧x3, x2, x1∨x3, x4) or . . . or f(x1, x2, x3∧x4, x3∨x4)
for some function f . The choices ⟨x1, x2, x3, x4⟩ = ⟨x, x̄, 1, 0⟩, ⟨x, 0, x̄, 1⟩, ⟨x, 1, 0, x̄⟩,
⟨1, x, x̄, 0⟩, ⟨1, x, 0, x̄⟩, ⟨0, 1, x, x̄⟩ show that no such f exists.

34. Yes; after proving this, you are ready to tackle the network for n = 16 in Fig. 49
(unless you simply checked all 2n bit vectors by brute force using Theorem Z).

35. Otherwise the permutation in which only i and i+1 are misplaced would never be
sorted. Let Dk be the number of comparators [i : i+k] in a standard sorting network.
Then D1 + 2D2 +D3 ≥ 2(n− 2) since there must be two comparators from {i, i+1} to
{i+2, i+3}, for 1 ≤ i ≤ n− 3, as well as [1:2] and [n−1:n]. Similarly D1 + 2D2 + · · ·+
kDk +(k−1)Dk+1 + · · ·+D2k−1 ≥ k(n−k), a formula suggested by J. M. Pollard. We
can also prove that 2D1 +D2 ≥ 3n−4: If we strike out the Ąrst comparators of the form
[j :j+1] for all j there must be at least one more comparator lying within {i, i+1, i+2},
for 1 ≤ i ≤ n− 2. Similarly kD1 + (k− 1)D2 + · · ·+Dk ≥ S(k + 1)(n− k) + k(k− 1).

36. (a) Each adjacent comparator reduces the number of inversions by 0 or 1, and
⟨n, n−1, . . . , 1⟩ has

n
2

inversions. (b) Let α = β [p :p+1], and argue by induction on

the length of α. If p = i, then j > p + 1, and (xβ)p > (xβ)j , (xβ)p+1 > (xβ)j ; hence
(yβ)p > (yβ)j and (yβ)p+1 > (yβ)j . If p = i − 1, then either (xβ)p or (xβ)p+1 is
> (xβ)j ; hence either (yβ)p or (yβ)p+1 is > (yβ)j . If p = j− 1 or j, the arguments are
similar. For other p the argument is trivial.

670 ANSWERS TO EXERCISES 5.3.4

Notes: If α is a primitive sorting network, so is αR (the comparators in reverse
order). For generalizations and another proof of (c), see N. G. de Bruijn, Discrete
Mathematics 9 (1974), 333Ű339; Indagationes Math. 45 (1983), 125Ű132. In the latter
paper, de Bruijn proved that a primitive network sorts all permutations of the multiset
{n1 · 1, . . . , nm · m} if and only if it sorts the single permutation mcm . . . 1c1 . The
relation x ⪯ y, deĄned for permutations x and y to mean that there exists a standard
network α such that x = yα, is called Bruhat order ; the analogous relation restricted
to primitive α is weak Bruhat order (see the answer to exercise 5.2.1Ű44).

37. It suffices to show that if each comparator is replaced by an interchange operation
we obtain a ŞreĆection networkŤ that transforms ⟨x1, . . . , xn⟩ into ⟨xn, . . . , x1⟩. But
in this interpretation it is not difficult to trace the route of xk. Note that the per-
mutation π = (1 2)(3 4) . . . (2n−1 2n)(2 3)(4 5) . . . (2n−2 2n−1) = (1 3 5 . . . 2n−1
2n 2n−2 . . . 2) satisĄes πn = (1 2n)(2 2n−1) . . . (n−1 n). The odd-even transposition
sort was mentioned brieĆy by H. Seward in 1954; it has been discussed by A. Grasselli
[IRE Trans. EC-11 (1962), 483] and by Kautz, Levitt, and Waksman [IEEE Trans.
C-17 (1968), 443Ű451]. The reĆective property of this network was introduced much
earlier by H. E. Dudeney in one of his Şfrog puzzlesŤ [Strand 46 (1913), 352, 472;
Amusements in Mathematics (1917), 193].

38. Insert the elements i1, . . . , iN into an initially empty tableau using Algorithm
5.1.4I but with one crucial change: Set Pij ← xi in step I3 only if xi ̸= Pi(j−1). It
can be proved that xi will equal Pi(j−1) in that step only if xi + 1 = Pij , when the
inputs i1 . . . iN deĄne a primitive sorting network. (The parenthesized assertions of the
algorithm need to be modiĄed.) After ij has been inserted into P , set Qst ← j as in
Theorem 5.1.4A. After N steps, the tableau P will always contain (r, r+1, . . . , n−1) in
row r, while Q will be a tableau from which the sequence i1 . . . iN can be reconstructed
by working backwards.

For example, when n = 6 the sequence i1 . . . iN = 4 1 3 2 4 3 5 4 3 1 2 3 5 1 4 corre-
sponds to

P =

1 2 3 4 5
2 3 4 5
3 4 5
4 5
5

, Q =

1 4 5 8 13
2 6 7 15
3 9 12
10 11
14

.

The transpose of Q corresponds to the complementary network [n−i1 :n−i1+1] . . .
[n−iN :n−iN +1].

References: A. Lascoux and M. P. Schützenberger, Comptes Rendus Acad. Sci. (I)
295 (Paris, 1982), 629Ű633; R. P. Stanley, Eur. J. Combinatorics 5 (1984), 359Ű372;
P. H. Edelman and C. Greene, Advances in Math. 63 (1987), 42Ű99. The diagrams of
primitive sorting networks also correspond to arrangements of pseudolines and to other
abstractions of two-dimensional convexity; see D. E. Knuth, Lecture Notes in Comp.
Sci. 606 (1992), for further information.

39. When n = 8, for example, such a network must include the comparators
shown here; all other comparators are ineffective on 10101010. Then lines
⌈n/3⌉ . . ⌈2n/3⌉ = 3 . . 6 sort 4 elements, as in exercise 37. (This exercise is
based on an idea of David B. Wilson.)

Notes: There is a one-to-one correspondence between minimal-length
primitive networks that sort a given bit string and Young tableaux whose

5.3.4 ANSWERS TO EXERCISES 671

shape is bounded by the zigzag path deĄned by that bit string. Thus, exercise 38
yields a one-to-one correspondence between primitive networks of

n/2+1

2

comparators

that sort (10)n/2 and primitive networks of

n/2+1
2

comparators that sort n/2 + 1

arbitrary numbers. If a primitive network sorts the bit string 1n/20n/2, we can make a
stronger statement: All of its Şhalves,Ť consisting of the subnetworks on lines k through
k+n/2 inclusive, are sorting networks, for 1 ≤ k ≤ n/2. (See also de BruijnŠs theorem,
cited in the answer to exercise 36.)

40. This follows by applying the tail inequalities to the interesting construction in
Proposition 7 of a paper by H. Rost, Zeitschrift für Wahrscheinlichkeitstheorie und
verwandte Gebiete 58 (1981), 41Ű53, setting b = 1

2
, a = 1

4
, and t = 4n+

√
n lnn.

Experiments show that the expected time to reach any primitive sorting network Ů
not necessarily the bubble sort Ů is very nearly 2n2. Curiously, R. P. Stanley and S. V.
Fomin have proved that if the comparators [ik :ik+1] are chosen nonuniformly in such a
way that ik = j occurs with probability j/

n
2

, the corresponding expected time comes

to exactly

n
2

H(n2).

42. There must exist a path of length ⌈lgn⌉ or more, from some input to the largest
output (consider mn in Theorem A). When that input is set to ∞, the comparators
on this path have a predetermined behavior, and the remaining network must be an
(n− 1)-sorter. [IEEE Trans. C-21 (1972), 612Ű613.]

45. After l levels the input x1 can be in at most 2l different places. After merging is
complete, x1 can be in n+ 1 different places.

46. [J. Algorithms 3 (1982), 79Ű88; the following alternative proof is due to V. S.
Grinberg.] We may assume that 1 ≤ m ≤ n and that every stage makes m comparisons.
Let l = ⌈(n−m)/2⌉ and suppose we are merging x1 ≤ · · · ≤ xm with y1 ≤ · · · ≤ yn. An
adversary can force ⌈lg(m+n)⌉ stages as follows: In the Ąrst stage some xj is compared
to an element yk where we have either k ≤ l or k ≥ l+m. The adversary decides that
xj−1 < y1 and xj+1 > yn; also that xj > yk if k ≤ l, xj < yk if k ≥ l+m. The remaining
task is essentially to merge xj with either yk+1 ≤ · · · ≤ yn and k ≤ l or y1 ≤ · · · ≤ yk−1

and k ≥ l+m; so at least min(n−l+1, l+m) = ⌈(m+n)/2⌉ outcomes remain. At least
⌈lg⌈(m+ n)/2⌉⌉ = ⌈lg(m+ n)⌉− 1 subsequent stages are therefore necessary.

48. Let u be the smallest element of (xα)j , and let y(0) be any vector in Dn such that
(y(0))k = 0 implies (xα)k contains an element ≤ u, (y(0))k = 1 implies (xα)k contains
an element > u. If α = β [p :q], it is possible to Ąnd a vector y(1) satisfying the same
conditions but with α replaced by β, and such that y(1)[p :q] = y(0). Starting with
(y(0))i = 1, (y(0))j = 0, we eventually reach y = y(r) satisfying the desired condition.

G. Baudet and D. Stevenson have observed that exercises 37 and 48 combine to
yield a simple sorting method with (n lnn)/k+O(n) comparison cycles on k processors:
First sort k subĄles of size ≤ ⌈n/k⌉, then merge them in k passes using the Şodd-even
transposition mergeŤ of order k. [IEEE Trans. C-27 (1978), 84Ű87.]

49. Both (x ∨∨ y) ∨∨ z and x ∨∨ (y ∨∨ z) represent the largest m elements of the multiset
x ⊎ y ⊎ z; (x ∧∧ y) ∧∧ z and x ∧∧ (y ∧∧ z) represent the smallest m. If x = y = z = {0, 1},
(x ∧∧ z) ∨∨ (y ∧∧ z) = (x ∧∧ y) ∨∨ (x ∧∧ z) ∨∨ (y ∧∧ z) = {0, 0}, but the middle elements
of {0, 0, 0, 1, 1, 1} are {0, 1}. Sorting networks for three elements and the result of
exercise 48 imply that the middle elements of x ⊎ y ⊎ z may be expressed either as
((x ∨∨ y) ∧∧ z) ∨∨ (x ∧∧ y) or ((x ∧∧ y) ∨∨ z) ∧∧ (x ∨∨ y) or any other formula obtained by
permuting x, y, z in these expressions. (There seems to be no symmetrical formula for
the middle elements.)

672 ANSWERS TO EXERCISES 5.3.4

50. Equivalently by Theorem Z, we must Ąnd all identities satisĄed by the operations

x ∨∨ y = min(x+y, 1), x ∧∧ y = max(0, x+y−1)

on rational values x, y in [0 . . 1]. [This is the operation of pouring as much liquid as
possible from a glass that is x full into another that is y full, as observed by J. M.
Pollard.] All such identities can be obtained from a system of four axioms and a rule of
inference for multivalued logic due to čukasiewicz; see Rose and Rosser, Trans. Amer.
Math. Soc. 87 (1958), 1Ű53.

51. Let α′ = α[i :j], and let k be an index ̸= i, j. If (xα)i ≤ (xα)k for all x, then
(xα′)i ≤ (xα′)k; if (xα)k ≤ (xα)i and (xα)k ≤ (xα)j for all x, the same holds when α is
replaced by α′; if (xα)k ≤ (xα)i for all x, then (xα′)k ≤ (xα′)j . In this way we see that
α′ has at least as many known relations as α, plus one more if [i :j] isnŠt redundant.
[Bell System Tech. J. 49 (1970), 1627Ű1644.]

52. (a) Consider sorting 0s and 1s; let w = x0 +x1 + · · ·+xN . The network fails if and
only if w ≤ t and x0 = 1 before the complete N -sort. If x0 = 1 at this point, it must
have been 1 initially, and for 1 ≤ j ≤ n we must have initially had either x2j−1+2nk = 1
for 0 ≤ k ≤ m or x2j+2nk = 1 for 0 ≤ k ≤ m; therefore w ≥ 1+(m+1)n = t. So failure
implies that w = t and xj = xj+2nk for 1 ≤ k ≤ m and x2j = x̄2j−1 for 1 ≤ j ≤ n.
Furthermore the special subnetwork must transform such inputs so that x2m+2n+j = 1
for 1 ≤ j ≤ m.

(b) For example, the special subnetwork for (y1 ∨ y2 ∨ ȳ3) ∧ (ȳ2 ∨ y3 ∨ ȳ4) ∧ . . .
could be

[1 + 2n :2mn+ 2n+ 1][3 + 2n :2mn+ 2n+ 1][6 + 2n :2mn+ 2n+ 1]
[4 + 4n :2mn+ 2n+ 2][5 + 4n :2mn+ 2n+ 2][8 + 4n :2mn+ 2n+ 2] ... ,

using x2j−1+2kn and x2j+2kn to represent yj and ȳj in the kth clause, and x2m+2n+k

to represent that clause itself.

53. Paint the lines red or blue according to the following rule:

if imod 4 is then line i in case (a) is and in case (b) it is
0 red red;
1 blue red;
2 blue blue;
3 red blue.

Now observe that the Ąrst t− 1 levels of the network consist of two separate networks,
one for the 2t−1 red lines and another for the 2t−1 blue lines. The comparators on
the tth level complete a merging network, as in the bitonic or odd-even merge. This
establishes the desired result for k = 1.

The red-blue decomposition also establishes the case k = 2. For if the input is
4-ordered, the red lines contain 2t−1 numbers that are 2-ordered, and so do the blue
lines, so we are left with

x0y0y1x1x2y2y3x3 . . . (case (a)) or x0x1y0y1x2x3y2y3 . . . (case (b))

after t− 1 levels; the Ąnal result

(x0∧y0)(x0∨y0)(y1∧x1)(y1∨x1) . . . or x0(x1∧y0)(x1∨y0)(y1∧x2)(y1∨x2) . . .

is clearly 2-ordered.

5.3.4 ANSWERS TO EXERCISES 673

Now for k ≥ 2, we can assume that k ≤ t. The Ąrst t − k + 2 levels decompose
into 2k−2 separate networks of size 2t−k+2, which each are 2-ordered by the case k = 2;
hence the lines are 2k−1-ordered after t − k + 2 levels. The subsequent levels clearly
preserve 2k−1-ordering, because they have a ŞverticalŤ periodicity of order 2k−2. (We
can imagine −∞ on lines −1, −2, . . . and +∞ on lines 2t, 2t + 1,)

References: Network (a) was introduced by M. Dowd, Y. Perl, L. Rudolph,
and M. Saks, JACM 36 (1989), 738Ű757; network (b) by E. R. CanĄeld and S. G.
Williamson, Linear and Multilinear Algebra 29 (1991), 43Ű51. It is interesting to note
that in case (a) we have Dnα = Gt, where Gt is deĄned in exercise 32 [Dowd et al.,
Theorem 17]; thus the image of Dn is not enough by itself to characterize the behavior
of a periodic network.

54. The following construction by Ajtai, Komlós, and Szemerédi [FOCS 33 (1992),
686Ű692] shows how to sort m3 elements with four levels of m2-sorters: We may suppose
that the elements being sorted are 0s and 1s; let the lines be numbered (a, b, c) =
am2 + bm+ c for 0 ≤ a, b, c < m. The Ąrst level sorts the lines {(a, b, (b+ k) modm) |
0 ≤ a, b < m} for 0 ≤ k < m; let ak be the number of 1s in the kth group of m2 lines.
The second level sorts {(a, b, k) | 0 ≤ a, b < m} for 0 ≤ k < m; the number of 1s in the
kth group is then

bk =
m2−1

j=0

a(k−j) mod m + j

m2

,

and it follows that b0 ≤ b1 + 1, b1 ≤ b2 + 1, . . . , bm−1 ≤ b0 + 1. In the third level we
sort {(k, a, b) | 0 ≤ a, b < m} for 0 ≤ k < m; the number of 1s in the kth group is

ck =
m−1

i=0

m−1

j=0

bi + km+ j

m2

.

If 0 < ck+1 < m2 we have ck ≤

m−1
2

and cj = 0 for j < k. Similarly, if 0 < ck < m2

we have ck+1 ≥ m2−

m−1
2

and cj = 0 for j > k+ 1. Consequently a fourth level that

sorts lines m2k −

m−1
2

. .m2k +

m−1

2

− 1 for 0 < k < m will complete the sorting.

It follows that four levels of m-sorters will sort f(m) = ⌊√m ⌋3 elements, and 16
levels will sort f(f(m)) elements. This proves the stated result, since f(f(m)) > m2

when m > 24. (The construction is not Ştight,Ť so we can probably do the job with
substantially fewer than 16 levels.)

55. [If P (n) denotes the minimum number of switches needed in
a permutation network, it is clear that P (n) ≥ ⌈lgn!⌉. By
slightly extending a construction due to L. J. Goldstein and
S. W. Leibholz, IEEE Trans. EC-16 (1967), 637Ű641, one
can show that P (n) ≤ P (⌊n/2⌋) + P (⌈n/2⌉) + n − 1, hence

P (n) ≤ B(n) for all n, where B(n) is the binary insertion function of Eq. 5.3.1Ű(3).
M. W. Green has proved (unpublished) that P (5) = 8.]

56. In fact we can construct αx inductively so that xαx = 0k−1101n−k−1, when x has
k zeros. The base case, α10, is empty. Otherwise at least one of the following four
cases applies, where y is not sorted: (1) x = y0, αx = αy[n−1:n][n−2:n−1] . . . [1 :2].
(2) x = y1, αx = αy[1 :n][2 :n] . . . [n−1:n]. (3) x = 0y, αx = α+

y [1 :n][1 :n−1] . . . [1 :2].
(4) x = 1y, αx = α+

y [1 :2][2 :3] . . . [n−1:n]. The network α+ is obtained from α by
changing each comparator [i :j] to [i+1:j+1]. [See M. J. Chung and B. Ravikumar,

674 ANSWERS TO EXERCISES 5.3.4

Discrete Math. 81 (1990), 1Ű9.] This construction uses

n
2

− 1 comparators; can it be

done with substantially fewer?

57. [See H. Zhu and R. Sedgewick, STOC 14 (1982), 296Ű302.] The stated delay time
is easily veriĄed by induction. But the problem of analyzing the recurrence

A(m,n) = A(⌊m/2⌋, ⌈n/2⌉) +A(⌈m/2⌉, ⌊n/2⌋) + ⌈m/2⌉+ ⌈n/2⌉ − 1,

when A(0, n) = A(m, 0) = 0, is more difficult.
A bitonic merge makes B(m,n) = C ′(m+n) comparisons; see (15). Therefore we

can use the fact that {⌊m/2⌋+ ⌈n/2⌉, ⌈m/2⌉+ ⌊n/2⌋} = {⌊(m+ n)/2⌋, ⌈(m+ n)/2⌉}
to show that B(m,n) = B(⌊m/2⌋, ⌈n/2⌉) + B(⌈m/2⌉, ⌊n/2⌋) + ⌊(m + n)/2⌋. Then
A(m,n) ≤ B(m,n) by induction.

Let D(m,n) = C(m+ 1, n+ 1) + C(m,n)− C(m+ 1, n)− C(m,n+ 1). We have
D(0, n) = D(m, 0) = 1, and D(m,n) = 1 when m+ n is odd. Otherwise m+ n is even
and mn ≥ 1, and we have D(m,n) = D(⌊m/2⌋, ⌊n/2⌋)− 1. Consequently D(m,n) ≤ 1
for all m,n ≥ 0.

The recurrence for A is equivalent to the recurrence for C except when m and n are
both odd. And in that case we have A(m,n) ≥ C(⌊m/2⌋, ⌈n/2⌉) +C(⌈m/2⌉, ⌊n/2⌋) +
⌈m/2⌉+ ⌈n/2⌉ − 1 = C(m,n) + 1−D(⌊m/2⌋, ⌊n/2⌋) ≥ C(m,n) by induction.

Let l = ⌈lg min(m,n)⌉. On level k of the even-odd recursion, for 0 ≤ k < l, we per-
form 2k merges of the respective sizes (mjk, njk) = (⌊(m+j)/2k⌋, ⌊(n+2k − 1−j)/2k⌋)
for 0 ≤ j < 2k. The cost of recursion,

j(⌈mjk/2⌉+⌈njk/2⌉−1), is fk(m)+fk(n)−2k;

we can write fk(n) = max(n′
k, n − n′

k), where n′
k = 2k⌊n/2k+1 + 1/2⌋ is the multiple

of 2k that is nearest to n/2. Since 0 ≤ fk(n)− n/2 ≤ 2k−1, the total cost of recursion
for levels 0 to l − 1 lies between 1

2
(m+ n)l − 2l and 1

2
(m+ n)l.

Finally, ifm ≤ n, the 2l merges (mjl, njl) on level l havemjl = 0 for 0 ≤ j < 2l−m,
and mjl = 1 for the other m values of j. Since A(1, n) = n, the total cost of level l ism+n−1

k=n ⌊k/2l⌋ ≤m+n−1
k=n k/m = m−1

2
+ n.

Thus even-odd merging, unlike bitonic merging, is within O(m + n) of the opti-
mum number of comparisons M̂(m,n). Our derivation shows in fact that A(m,n) =l−1

k=0(fk(m) + fk(n)− 2k) + gl(m+ n)− gl(max(m,n)), where gl(n) can be expressed
in the form

n−1
k=0⌊k/2l⌋ = ⌊n/2l⌋(n− 2l−1(⌊n/2l⌋+ 1)).

58. If h[k + 1] = h[k] + 1 and the Ąle is not in order, something must happen to it
on the next pass; this decreases the number of inversions, by exercise 5.2.2Ű1, hence
the Ąle will eventually become sorted. But if h[k + 1] ≥ h[k] + 2 for 1 ≤ k < m, the
smallest key will never move into its proper place if it is initially in R2.

59. We use the hint, and also regard KN+1 = KN+2 = · · · = 1. If Kh[1]+j = · · · =
Kh[m]+j = 1 at step j, and if Ki = 0 for some i > h[1] + j, we must have i < h[m] + j
since there are fewer than n 1s. Suppose k and i are minimal such that h[k] + j < i <
h[k + 1] + j and Ki = 0. Let s = h[k + 1] + j − i; we have s < h[k + 1]− h[k] ≤ k. At
step j − s, at least k+ 1 0s must have been under the heads, since Ki = Kh[k+1]+j−s

was set to zero at that step; s steps later, there are at least k+ 1− s ≥ 2 0s remaining
between Kh[1]+j and Ki, inclusive, contradicting the minimality of i.

The second pass gets the next n− 1 elements into place, etc. If we start with the
permutation N N−1 . . . 2 1, the Ąrst pass changes it to

N+1−n N−n . . . 1 N+2−n . . . N−1 N,

since Kh[1]+j > Kh[m]+j whenever 1 ≤ h[1] + j and h[m] + j ≤ N ; therefore the bound
is best possible.

5.3.4 ANSWERS TO EXERCISES 675

60. Suppose that h[k + 1] − s > h[k] and h[k] ≤ s; the smallest key ends in position
Ri for i > 1 if it starts in Rn−s. Therefore h[k + 1] ≤ 2h[k] is necessary; it is also
sufficient, by the special case t = 0 of the following result:

Theorem. If n = N and if K1 . . .KN is a permutation of {1, 2, . . . , n}, a single
sorting pass will set Ki = i for 1 ≤ i ≤ t + 1, if h[k + 1] ≤ h[k] + h[k − i] + i for
1 ≤ k < m and 0 ≤ i ≤ t. (By convention, let h[k] = k when k ≤ 0.)

Proof. By induction on t; if step t does not Ąnd the key t+ 1 under the heads, we may
assume that it appears in position Rh[k+1]+t−s for some s > 0, where h[k+1]−s < h[k];
hence h[k − t] + t − s > 0. But this is impossible if we consider step t − s, which
presumably placed the element t+ 1 into position Rh[k+1]+t−s although there were at
least t+ 1 lower heads active.

(The condition is necessary for t = 0 and t = 1, but not for t = 2.)

61. If the numbers {1, . . . , 23} are being sorted, the theorem in the previous exercise
shows that {1, 2, 3, 4} Ąnd their true destination. When 0s and 1s are being sorted one
can verify that it is impossible to have all heads reading 0 while all positions not under
the heads contain 1s, at steps −2, −1, and 0; hence the proof in the previous exercise
can be extended to show that {5, 6, 7} Ąnd their true destination. Finally {8, . . . , 23}
must be sorted, by the argument in exercise 59.

63. When r ≤ m−2, the heads take the string 0p110130170 . . . 012r−101q into the string
0p+1110130170 . . . 012r−1−1012r−1+q; hence m−2 passes are necessary. [When the heads
are at positions 1, 2, 3, 5, . . . , 1+2m−2, Pratt has discovered a similar result: The string
0p1a012b−1012b+1−10 . . . 012r−101q, 1 ≤ a ≤ 2b−1, goes into 0p+11a−1012b−1012b+1−10
. . . 012r−1−1012r+q, hence at least m−⌈log2 m⌉−1 passes are necessary in the worst case
for this sequence of heads. The latter head sequence is of special interest since it has
been used as the basis of a very ingenious sorting device invented by P. N. Armstrong
[see U.S. Patent 3399383 (1965)]. Pratt conjectures that these input sequences provide
the true worst case, over all inputs.]

64. During quicksort, each key K2, . . . ,KN is compared with K1; let A= {i |Ki <K1},
B = {j | Kj > K1}. Subsequent operations quicksort A and B independently; all
comparisons Ki :Kj for i in A and j in B are suppressed, by both quicksort and
the restricted uniform algorithm, and no other comparisons are suppressed by the
unrestricted uniform algorithm.

In this case we could restrict the algorithm even further, omitting cases 1 and 2 so
that arcs are added to G only when comparisons are explicitly made, yet considering
only paths of length 2 when testing for redundancy. Another way to solve this problem
is to consider the equivalent tree insertion sorting algorithm of Section 6.2.2, which
makes precisely the same comparisons as the uniform algorithm in the same order.

65. (a) The probability that Kai is compared with Kbi is the probability that ci other
speciĄed keys do not lie between Kai and Kbi ; this is the probability that two numbers
chosen at random from {1, 2, . . . , ci+2} are consecutive, namely 2/(ci + 2).

(b) The Ąrst n − 1 values of ci are zero, then come (n − 2) 1s, (n − 3) 2s,
etc.; hence the average is 2

n
k=1(n − k)/(k + 1) = 2

n
k=1((n + 1)/(k + 1) − 1) =

2(n+ 1)(Hn+1 − 1)− 2n.
(c) The ŞbipartiteŤ nature of merging shows that the restricted uniform algorithm

is the same as the uniform algorithm for this sequence. The pairs involving vertex N

676 ANSWERS TO EXERCISES 5.3.4

have cŠs equal to 0, 1, . . . , N−2, respectively; so the average number of comparisons is
exactly the same as quicksort.

66. No; when N = 5 every pair sequence beginning with (1, 2)(2, 3)(3, 4)(4, 5)(1, 5) will
avoid at least one subsequent comparison. [An interesting research problem: For all N,
Ąnd a (restricted) uniform sorting method whose worst case is as good as possible.]

67. Suppose ci = j for exactly tj values of i. For the restricted case we need to prove
that

j tj/(2 + j) is minimized when (t0, t1, . . . , tN−2) = (N−1, . . . , 2, 1). Gil Kalai

has shown that the achievable vectors (t0, t1, . . . , tN−2) are always lexicographically
≥ (N−1, . . . , 2, 1); see Graphs and Combinatorics 1 (1985), 65Ű79.

68. An item can lose at most one inversion per pass, so the minimum number of passes
is at least the maximum number of inversions of any item in the input permutation.
The bubble sort strategy achieves this bound, since each pass decreases the inversion
count of every inverted item by one (see exercise 5.2.2Ű1). An additional pass may
be needed to determine whether or not sorting is complete, but the wording of this
exercise allows us to overlook such considerations.

It is perhaps unfortunate that the Ąrst theorem in the study of computational
complexity via automata established the ŞoptimalityŤ of a sorting method that is so
poor from a programming standpoint! The situation is analogous to the history of
random number generation, which took several backward steps when generators that
are ŞoptimumŤ from one particular point of view were recommended for general use.
(See the comments following Eq. 3.3.3Ű(39).) The moral is that optimality results are
often heavily dependent on the abstract model; the results are quite interesting, but
they must be applied wisely in practice.

[Demuth went on to consider a generalization to an r-register machine (saving a
factor of r), and to a Turing-like machine in which the direction of scan could oscillate
between left-right and right-left at will. He observed that the latter type of machine can
do the straight insertion and the cocktail-shaker sorts; but any such 1-register machine
must go through at least 1

4
(N2 −N) steps on the average, since each step reduces the

total number of inversions by at most one. Finally he considered r-register random-
access machines and the question of minimum-comparison sorting. These portions of
his thesis have been reprinted in IEEE Transactions C-34 (1985), 296Ű310.]

SECTION 5.4

1. We could omit the internal sorting phase, but that would generally be much slower
since it would increase the number of times each piece of data is read and written on
the external memory.

2. The runs are distributed as in (1), then Tape 3 is set to R1 . . . R2000000; R2000001 . . .
R4000000; R4000001 . . . R5000000. After all tapes are rewound, a Şone-way mergeŤ sets T1

and T2 to the respective contents of T3 and T4 in (2). Then T1 and T2 are merged
to T3, and the information is copied back and merged once again, for a total of Ąve
passes. In general, the procedure is like the four-tape balanced merge, but with copy
passes between each of the merge passes, so one less than twice as many passes are
performed.

3. (a) ⌈logP S⌉. (b) logB S, where B =

P (T − P) is called the Şeffective power of

the merge.Ť When T = 2P the effective power is P ; when T = 2P − 1 the effective
power is

P (P − 1) = P − 1

2
− 1

8
P−1 +O(P−2), slightly less than 1

2
T.

5.4.1 ANSWERS TO EXERCISES 677

4. 1
2
T. If T is odd and P must be an integer, both ⌈T/2⌉ and ⌊T/2⌋ give the same

maximum value. It is best to have P ≥ T − P , according to exercise 3, so we should
choose P = ⌈T/2⌉ for balanced merging.

SECTION 5.4.1

1. 087 154 170 426

 503
 503 ∞

908 ∞

426
 426 653 ∞

612 ∞
2. The path 061 Ů

✞ ☎
512✝ ✆Ů

✞ ☎
087✝ ✆Ů

✞ ☎
154✝ ✆Ů

✞ ☎
061✝ ✆would be changed to 612 Ů

✞ ☎
612✝ ✆Ů

✞ ☎
512✝ ✆Ů✞ ☎

154✝ ✆Ů
✞ ☎
087✝ ✆. (We are essentially doing a Şbubble sortŤ along the path!)

3. and fourscore our seven years/ ago brought fathers forth on this/

a conceived continent in liberty nation new the to/ and dedicated men

proposition that/ all are created equal.

4. (The problem is slightly ambiguous; in this interpretation we do not clear the
internal memory until the reservoir is about to overĆow.)

and fourscore on our seven this years/ ago brought continent fathers

forth in liberty nation new to/ a and conceived dedicated men

proposition that the/ all are created equal.

5. False; the complete binary tree with P external nodes is deĄned for all P ≥ 1.

6. Insert ŞIf T = LOC(X[0]) then go to R2, otherwiseŤ at the beginning of step R6,
and delete the similar clause from step R7.

7. There is no output, and RMAX stays equal to 0.

8. If any of the Ąrst P actual keys were ∞, their records would be lost. To avoid ∞,
we can make two almost-identical copies of the program; the Ąrst copy omits the test
involving LASTKEY in step R4, and it jumps to the second copy when RC ̸= 0 in step R3
for the Ąrst time. The second copy needs no step R1, and it never needs to test RC in
step R3. (Further optimization is possible because of answer 10.)

9. Assume, for example, that the current run is ascending, while the next should be
descending. Then the steps of Algorithm R will work properly except for one change:
In step R6, if RN(L) = RN(Q) > RC, reverse the test on KEY(L) versus KEY(Q).

When RC changes, the key tests of steps R4 and R6 should change appropriately.

10. Let ·j ≡ LOC(X[j]), and suppose we add the unnecessary assignment ‘LOSER(·0)←
QŠ at the beginning of step R3. The mechanism of Algorithm R ensures that the follow-
ing conditions are true just after weŠve done that assignment: The values of LOSER(·0),
. . . , LOSER(·(P − 1)) are a permutation of {·0, ·1, . . . , ·(P − 1)}; and there exists a
permutation of the pointers {LOSER(·j) | RN(LOSER(·j)) = 0} that corresponds to an
actual tournament. In other words, when RN(·j) is zero, the value of KEY(·j) is irrele-
vant; we may permute such ŞwinnersŤ among themselves. After P iterations all RN(·j)
will be nonzero, so the entire tree will be consistent. (The answer to the hint is Şyes.Ť)

David P. Kanter observes that we can go directly from R6 to R4 as soon as RN(Q) =
0, thereby avoiding all comparisons that involve uninitialized keys when N ≥ P .

11. True. (The proof of Theorem K notes that both keys belong to the same sub-
sequence; hence the probability is 1/2, given that LASTKEY ̸=∞.)

678 ANSWERS TO EXERCISES 5.4.1

13. The keys left in memory when the Ąrst run has ended tend to be smaller than
average, since they didnŠt make it into the Ąrst run. Thus the second run can output
more of the smaller keys.

14. Assume that the snow suddenly stops when the snowplow is at a random point x,
0 ≤ x < 1, after it has reached its steady state. Then the next-to-last run contains
(2− (1−x)2)P records, and the last run contains x2P . Integrating this times dx yields
an average of (2− 1

3
)P records in the penultimate run, 1

3
P in the last.

15. False; the last run can be arbitrarily long, whenever all records in memory belong
to the same run at the moment the input is exhausted (for example, in a one-pass sort).

16. If and only if each element has fewer than P inversions. (See Sections 5.1.1, 5.4.8.)
The probability is 1 when N ≤ P , PN−PP !/N ! when N ≥ P , by considering inversion
tables. (In actual practice, however, a one-pass sort is not too uncommon, since people
tend to sort a Ąle even when they suspect that it might be in order, as a precautionary
measure.)

17. Exactly ⌈N/P ⌉ runs, all but the last having length P . (The Şworst case.Ť)

18. Nothing changes on the second pass, since it is possible to show that the kth
record of a run is less than at least P + 1 − k records of the preceding run, for 1 ≤
k ≤ P . (However, there seems to be no simple way to characterize the result of P -way
replacement selection followed by P ′-way replacement selection when P ′ > P .)

19. Argue as in the derivation of (2) that h(x, t) dx = KLdt, where this time h(x, t) =
I +Kt for all x, and P = LI. This implies x(t) = L ln((I + Kt)/I), so that when
x(T) = L we have KT = (e − 1)I. The amount of snowfall since t = 0 is therefore
(e− 1)LI = (e− 1)P .

20. As in exercise 19, we have (I+Kt) dx = K(L−x) dt; hence x(t) = LKt/(I+Kt).
The snow in the reservoir is LI = P = P ′ =

 T

0
x(t)K dt = L(KT − I ln((I +KT)/I));

hence KT = αI, where α ≈ 2.14619 is the root of 1 + α = eα−1. The run length is the
total amount of snowfall during 0 ≤ t ≤ T, namely LKT = αP .

21. Proceed as in the text, but after each run wait for P −P ′ snowĆakes to fall before
the plow starts out again. This means that h(x(t), t) is now KT1, instead of KT, where
T1 − T is the amount of time taken by the extra snowfall. The run length is LKT1,
x(t) = L(1− e−t/T1), P = LKT1e

−T/T1, and P ′ =
 T

0
x(t)K dt = P + LK(T − T1). In

other words, a run length of eθP is obtained when P ′ = (1− (1−θ)eθ)P , for 0 ≤ θ ≤ 1.

22. For 0 ≤ t ≤ (κ − 1)T, dx · h = K dt (x(t + T) − x(t)), and for (κ − 1)T ≤ t ≤ T,
dx · h = K dt (L− x(t)), where h is seen to be constantly equal to KT at the position
of the plows. It follows that for 0 ≤ j ≤ k, 0 ≤ u ≤ 1, and t = (κ − j − u)T ,
we have x(t) = L(1 − eu−θFj(u)/F (κ)). The run length is LKT , the amount of
snowfall between the times that consecutive snowplows leave point 0 in the steady
state; P is the amount cleared during each snowplowŠs last burst of speed, namely
KT (L − x(κT)) = LKTe−θ/F (κ); and P ′ =

 κT

0
x(t)K dt can be shown to have the

stated form.
Notes: It turns out that the stated formulas are valid also for k = 0. When

k ≥ 1 the number of elements per run that go into the reservoir twice is P ′′ = (κ−1)T

0
x(t)K dt, and it is easy to show that (run length) − P ′ + P ′′ = (e − 1)P ,

a phenomenon noticed by Frazer and Wong. Is it a coincidence that the generating
function for Fk(θ) is so similar to the generating function in exercise 5.1.3Ű11?

5.4.1 ANSWERS TO EXERCISES 679

23. Let P = pP ′ and q = 1 − p. For the Ąrst T1 units of time the snowfall comes
from the qP ′ elements remaining in the reservoir after the Ąrst pP ′ have been initially
removed in random order; and when the old reservoir is empty, uniform snow begins to
fall again. We choose T1 so that LKT1 = qP ′. For 0 ≤ t ≤ T1, h(x, t) = (p+qt/T1)g(x),
where g(x) is the height of snow put into the reservoir from position x; for T1 ≤ t ≤ T,
h(x, t) = g(x)+(t−T1)K. For 0 ≤ t ≤ T1, g(x(t)) is (q(T1−t)/T1)g(x(t))+(T −T1)K;
and for T1 ≤ t ≤ T, g(x(t)) = (T − t)K. Hence h(x(t), t) = (T − T1)K for 0 ≤ t ≤ T,
and x(t) = L(1 − exp(−t/(T − T1))). The total run length is LK(T − T1); the total
amount ŞrecycledŤ from the reservoir back again (see exercise 22) is LKT1; and the
total amount cleared after time T is P = KT (L− x(T)).

So the assumptions of this exercise give runs of length (es/s)P when the reservoir
size is (1 + (s − 1)es/s)P . This is considerably worse than the results of exercise 22,
since the reservoir contents are being used in a more advantageous order in that case.

(The fact that h(x(t), t) is constant in so many of these problems is not surprising,
since it is equivalent to saying that the elements of each run obtained during a steady
state of the system are uniformly distributed.)

24. (a) Essentially the same proof works; each of the subsequences has runs in the
same direction as the output runs. (b) The stated probability is the probability that
the run has length n + 1 and is followed by y; it equals (1 − x)n/n! when x > y, and
it is (1 − x)n/n! − (y − x)n/n! when x ≤ y. (c) Induction. For example, if the nth
run is ascending, the (n− 1)st was descending with probability p, so the Ąrst integral
applies. (d) We Ąnd that f ′(x) = f(x) − c − pf(1 − x) − qf(x), then f ′′(x) = −2pc,
which ultimately leads to f(x) = c(1 − qx − px2), c = 6/(3 + p). (e) If p > eq then
pex + qe1−x is monotone increasing for 0 ≤ x ≤ 1, and

 1

0
|pex + qe1−x − e1/2| dx =

(p− q)(e1/2 − 1)2 < 0.43. If q ≤ p < eq then pex + qe1−x lies between 2
√
pqe and

p + qe, so
 1

0
|pex + qe1−x − 1

2
(p + qe + 2

√
pqe)| dx ≤ 1

2
(
√
p − √qe)2 < 0.4; and if

p < q we may use a symmetrical argument. Thus for all p and q there is a constant
C such that

 1

0
|pex + qe1−x−C| dx < 0.43. Let δn(x) = fn(x)−f(x). Then δn+1(y) =

(1 − ey−1)
 1

0
(pex + qe1−x − C)δn(x) dx + p

 1−y

0
ey−1+xδn(x) dx + q

 1

y
ey−xδn(x) dx;

hence if δn(y) ≤ αn, |δn+1(y)| ≤ (1 − ey−1) · 1.43αn < 0.91αn. (f) For all n ≥ 0,
(1−x)n/n! is the probability that the run length exceeds n. (g)

 1

0
(pex+qe1−x)f(x) dx =

6/(3 + p).

26. (a) Consider the number of permutations with n+r+1 elements and n left-to-right
minima, where the rightmost element is not the smallest. (b) Use the fact that

1≤k<n

k

k − r

k =

n

n− r − 1

,

by the deĄnition of Stirling numbers in Appendix B. (c) Add r + 1 to the mean, using
the fact that

n≥0[n+r

n
](n+ r)/(n+ r + 1)! = 1, to get

n≥0[n+r

n
]/(n+ r − 1)!.

The formula in (b) is due to P. Appell, Archiv der Math. und Physik 65 (1880),
171Ű175. We have, incidentally, [[r

k
]] = (r + k)! [xkzr] exf(z), where f(z) = z/2 +

z2/3 + · · · = −z−1 ln(1 − z) − 1; hence cr = [zr] (r + 1 + f(z))ef(z). The number of
derangements of n objects having k cycles, sometimes denoted by

n
k

≥2

, is [[n−k
k

]]; see
J. Riordan, An Introduction to Combinatorial Analysis (Wiley, 1958), §4.4.

27. When P ′/P = 2(e−θ−1+θ)/(1−2θ+θ2 +2θe−θ), for 0 ≤ θ ≤ 1, the steady-state
average run length will be 2P/(1−2θ+θ2 +2θe−θ). [See Information Processing Letters
21 (1985), 239Ű243.]

680 ANSWERS TO EXERCISES 5.4.1

Dobosiewicz has also observed that we can continue the replacement selection
mechanism even longer, because we can be inputting from the front of the reservoir
queue while outputting to its rear. For example, if P ′ = .5P and we continue replace-
ment selection until the current run contains .209P records, the average run length
increases from about 2.55P to about 2.61P with this modiĄcation. If P ′ = P and we
continue replacement selection until only .314P records remain in the current run, the
average run length increases from eP to about 3.034P . [See Comp. J. 27 (1984), 334Ű
339, where an even more efficient method called Şmerge replacementŤ is also presented.]

28. For multiway merging there is comparatively little problem, since P stays constant
and records are processed sequentially on each Ąle; but when forming initial runs, we
would like to vary the number of records in memory depending on their lengths. We
could keep a heap of as many records as will Ąt in memory, using dynamic storage
allocation as described in Section 2.5. M. A. Goetz [Proc. AFIPS Joint Computer
Conf. 25 (1964), 602Ű604] has suggested another approach, breaking each record into
Ąxed-size parts that are linked together; they occupy space at the leaves of the tree,
but only the leading part participates in the tournament.

29. The top 2k loser nodes go into the corresponding host positions. The remaining
loser nodes consist of 2k subtrees of 2n− 1 nodes each; they are assigned to host nodes
in symmetric order Ů the leftmost subtree into the leftmost host node, etc. [See K. Efe
and N. Eleser, Acta Informatica 34 (1997), 429Ű447.]

30. Suppose t of the host nodes hold a connected 2n-node subgraph of the complete
2n+k-node loser tree. That tree has one node at level 0 and 2l−1 nodes at level l for
1 ≤ l ≤ n + k. A subtree rooted at level l ≥ 1 has 2n+k+1−l − 1 nodes; therefore
the roots of t disjoint 2n-node subtrees must all be on levels ≤ k. And each of these
subtrees must contain at least one node on level k, because there are only 2k−1 < 2n

nodes on levels < k. It follows that t ≤ 2k−1. But the number of edges in the host
graph is at least t + 2(2k − t) − 1, by (ii) and (iii), since there are at least this many
loser nodes whose parent has a different image in the host.

[The hypothesis n ≥ k is necessary: When n = k−1 there is a suitable host graph
with 2k + 2k−1 − 2 edges.]

SECTION 5.4.2

1. 1
6 2

10 7 3
13 11 8
18 14 12 4
20 19 15 9
24 21 22 16
29 25 26 23

30 31 27 5
32 17

28
33

5.4.2 ANSWERS TO EXERCISES 681

2. After the Ąrst merge phase, all remaining dummies are on tape T, and there are
at most an − an−1 ≤ an−1 of them. Therefore they all disappear during the second
merge phase.

3. We have (D[1], D[2], . . . , D[T]) = (an−an−P , an−an−P +1, . . . , an−an), so the
condition follows from the fact that the aŠs are nondecreasing. The condition is
important to the validity of the algorithm, since steps D2 and D3 never decrease
D[j + 1] more often than D[j].

4. (1−z−· · ·−z5)a(z) = 1 because of (3). And t(z) =

n≥1(an+bn+cn+dn+en)zn =
(z + · · ·+ z5)a(z) + (z + · · ·+ z4)a(z) + · · ·+ za(z) = (5z + 4z2 + 3z3 + 2z4 + z5)a(z).

5. Let gp(z) = (z−1)fp(z) = zp+1−2zp+1, and let hp(z) = zp+1−2zp. RouchéŠs the-
orem [J. École Polytechnique 21, 37 (1858), 1Ű34] tells us that hp(z) and gp(z) have the
same number of roots inside the circle |z| = 1+ϵ, provided |hp(z)| > |hp(z)−gp(z)| = 1
on the circle. If ϕ−1 > ϵ > 0 we have |hp(z)| ≥ (1+ϵ)p(1−ϵ) > (1+ϕ−1)2(1−ϕ−1) = 1.
Hence gp has p roots of magnitude ≤ 1. They are distinct, since gcd(gp(z), g′p(z)) =
gcd(gp(z), (p+ 1)z − 2p) = 1. [AMM 67 (1960), 745Ű752.]

6. Let c0 = −αp(α−1)/q′(α−1). Then p(z)/q(z)−c0/(1−αz) is analytic in |z| ≤ R for
some R > |α|−1; hence [zn] p(z)/q(z) = c0α

n + O(R−n). Thus, lnS = n lnα + ln c0 +
O((αR)−n); and n = (lnS/ lnα) +O(1) implies that O((αR)−n) = O(S−ϵ). Similarly,
let c1 = α2p(α−1)/q′(α−1)2 and c2 = −αp′(α−1)/q′(α−1)2 + αp(α−1)q′′(α−1)/q′(α−1)3,
and consider p(z)/q(z)2 − c1/(1− αz)2 − c2/(1− αz).

7. Let αp = 2x and z = −1/2p+1. Then xp+1 = xp + z, so we have the convergent
series αp = 2

k≥0

1−kp

k

zk/(1−kp) = 2−2−p−p2−2p−1+O(p22−3p) by Eq. 1.2.6Ű(25).

Note: It follows that the quantity ρ in exercise 6 becomes approximately log4 S
as p increases. Similarly, for both Table 5 and Table 6, the coefficient c approaches
1/((ϕ+ 2) lnϕ) on a large number of tapes.

8. Evidently N
(p)
0 = 1, N (p)

m = 0 for m < 0, and by considering the different possi-
bilities for the Ąrst summand we have N (p)

m = N
(p)
m−1 + · · ·+N

(p)
m−p when m > 0. Hence

N
(p)
m = F

(p)
m+p−1. [Lehrbuch der Combinatorik (Leipzig: Teubner, 1901), 136Ű137.]

9. Consider the position of the leftmost 0, if there is one; we Ąnd K(p)
m = F

(p)
m+p. Note:

There is a simple one-to-one correspondence between such sequences of 0s and 1s and
the representations of m+ 1 considered in exercise 8: Place a 0 at the right end of the
sequence, and look at the positions of all the 0s.

10. Lemma: If n = F
(p)

j1
+ · · ·+F

(p)
jm

is such a representation, with j1 > · · · > jm ≥ p,
we have n < F

(p)
j1+1. Proof: The result is obvious if m < p; otherwise let k be minimal

with jk > jk+1 + 1; we have k < p, and by induction F (p)
jk+1

+ · · ·+F
(p)

jm
< F

(p)
jk−1, hence

n < F
(p)

j1
+ · · ·+ F

(p)
j1−k−1 ≤ F

(p)
j1+1.

The stated result can now be proved, by induction on n. If n > 0 let j be
maximal such that F (p)

j ≤ n. The lemma shows that each representation of n must
consist of F (p)

j plus a representation of n− F (p)
j . By induction, n− F (p)

j has a unique
representation of the desired form, and this representation does not include all of the
numbers F (p)

j−1, . . . , F
(p)

j−p+1 because j is maximal.

Notes: This number system was implicitly known in 14th-century India (see
Section 7.2.1.7). We have considered the case p = 2 in exercise 1.2.8Ű34. There is
a simple algorithm to go from the representation of n to that of n+ 1, working on the
sequence cj . . . c1c0 of 0s and 1s such that n =

cjF

(p)
j+p: For example, if p = 3, we

682 ANSWERS TO EXERCISES 5.4.2

look at the rightmost digits, changing . . . 0 to . . . 1, . . . 01 to . . . 10, . . . 011 to . . . 100;
then we ŞcarryŤ to the left if necessary, replacing . . . 0111 . . . by . . . 1000 (See the
sequences of 0s and 1s in exercise 9, in the order listed.) A similar number system
has been studied by W. C. Lynch [Fibonacci Quarterly 8 (1970), 6Ű22], who found a
very interesting way to make it govern both the distribution and merge phases of a
polyphase sort.

12. The kth power contains the perfect distributions for levels k − 4 through k, on
successive rows, with the largest elements to the right.

13. By induction on the level.

14. (a) n(1) = 1, so assume that k > 1. The law Tnk = T(n−1)(k−1) + · · ·+T(n−P)(k−1)

shows that Tnk ≤ T(n+1)k if and only if T(n−P)(k−1) ≤ Tn(k−1). Let r be any positive
integer, and let n′ be minimal such that T(n′−r)(k−1) > Tn′(k−1); then T(n−r)(k−1) ≥
Tn(k−1) for all n ≥ n′, since this relation is trivial for n ≥ n(k − 1) + r and otherwise
T(n−r)(k−1) ≥ T(n′−r)(k−1) ≥ Tn′(k−1) ≥ Tn(k−1). (b) The same argument with r =
n − n′ shows that Tn′k′ < Tnk′ implies T(n′−j)k′ ≤ T(n−j)k′ for all j ≥ 0; hence the
recurrence implies that T(n′−j)k ≤ T(n−j)k for all j ≥ 0 and k ≥ k′. (c) Let ℓ(S) be
the least n such that Σn(S) assumes its minimum value. The sequence Mn exists as
desired if and only if ℓ(S) ≤ ℓ(S + 1) for all S. Suppose n = ℓ(S) > ℓ(S + 1) = n′, so
that Σn(S) < Σn′(S) and Σn(S+1) ≥ Σn′(S+1). There is some smallest S′ such that
Σn(S′) < Σn′(S′), and we have m = Σn(S′)−Σn(S′−1) < Σn′(S′)−Σn′(S′−1) = m′.
Then

m
k=1 Tn′k < S′ ≤m

k=1 Tnk; hence there is some k′ ≤ m such that Tn′k′ < Tnk′ .

Similarly we have l = Σn(S+1)−Σn(S) > Σn′(S+1)−Σn′(S) = l′; hence
l′

k=1 Tn′k ≥
S + 1 >

l′

k=1 Tnk. Since l′ ≥ m′ > m, there is some k > m such that Tn′k > Tnk.
But this contradicts part (b).

15. This theorem has been proved by D. A. Zave, whose article was cited in the text.

16. D. A. Zave has shown that the number of records input (and output) is S logT−1 S+
1
2
S logT−1 logT−1 S +O(S).

17. Let T = 3; A11(x) = 6x6 + 35x7 + 56x8 + · · · , B11(x) = x6 + 15x7 + 35x8 + · · · ,
T11(x) = 7x6 + 50x7 + 91x8 + 64x9 + 19x10 + 2x11. The optimum distribution for
S = 144 requires 55 runs on T2, and this forces a nonoptimum distribution for S = 145.
D. A. Zave has studied near-optimum procedures of this kind.

18. Let S = 9, T = 3, and consider the following two patterns.

Optimum Polyphase: Alternative:

T1 T2 T3 Cost T1 T2 T3 Cost

0216 0213 Ů 0116 0113 Ů
13 Ů 0223 6 13 Ů 0123 6
Ů 1231 22 5 Ů 1132 21 7
32 31 Ů 6 31 32 Ů 3
31 Ů 61 6 Ů 31 61 6
Ů 91 Ů 9 91 Ů Ů 9

32 31

(Still another way to improve on ŞoptimumŤ polyphase is to reconsider where dummy
runs appear on the output tape of every merge phase. For example, the result of
merging 0213 with 0213 might be regarded as 2101210121 instead of 0223. Thus, many
unresolved questions of optimality remain.)

5.4.2 ANSWERS TO EXERCISES 683

19. Level T1 T2 T3 T4 Total Final output on

0 1 0 0 0 1 T1
1 0 1 1 1 3 T6
2 1 1 1 0 3 T5
3 1 2 1 1 5 T4
4 2 2 2 1 7 T3
5 2 4 3 2 11 T2
6 4 5 4 2 15 T1
7 5 8 6 4 23 T6

. .
n an bn cn dn tn T(k)

n+ 1 bn cn + an dn + an an tn+2an T(k − 1)

20. a(z) = 1/(1 − z2 − z3 − z4), t(z) = (3z + 3z2 + 2z3 + z4)/(1 − z2 − z3 − z4),
n≥1 Tn(x)zn = x(3z + 3z2 + 2z3 + z4)/(1 − x(z2 + z3 + z4)). Dn = An−1 + 1,

Cn = An−1An−2 + 1, Bn = An−1An−2An−3 + 1, An = An−2An−3An−4 + 1.

21. 333343333332322 3333433333323 33334333333 3333433 333323 T5

22. tn− tn−1− tn−2 = −1 + 3[nmod 3 = 1]. (This Fibonacci-like relation follows from
the fact that 1− z2 − 2z3 − z4 = (1− ϕz)(1− ϕz)(1− ωz)(1− ωz), where ω3 = 1.)

23. In place of (25), the run lengths during the Ąrst half of the nth merge phase are sn,
and on the second half they are tn, where

sn = tn−2 + tn−3 + sn−3 + sn−4, tn = tn−2 + sn−2 + sn−3 + sn−4.

Here we regard sn = tn = 1 for n ≤ 0. [In general, if vn+1 is the sum of the Ąrst 2r terms
of un−1+· · ·+vn−P , we have sn = tn = tn−2+· · ·+tn−r+2tn−r−1+tn−r−2+· · ·+tn−P ; if
vn+1 is the sum of the Ąrst 2r−1, we have sn = tn−2+· · ·+tn−r−1+sn−r−1+· · ·+sn−P ,
tn = tn−2 + · · ·+ tn−r + sn−r + · · ·+ sn−P .]

In place of (27) and (28), An = (Un−1Vn−1Un−2Vn−2Un−3Vn−3Un−4Vn−4) + 1,
. . . , Dn = (Un−1Vn−1) + 1, En = (Un−2Vn−2Un−3) + 1; Vn+1 = (Un−1Vn−1Un−2) + 1,
Un = (Vn−2Un−3Vn−3Un−4Vn−4) + 1.

25. 116 18 Ů 18

112 14 R 1824

18 Ů 24 R
.
R 81161 81 80

160 R 81 Ů
161 161 80 R
R 161 Ů 240

161 161 R 240320

160 160 321 (R)

26. When 2n are sorted, n ·2n initial runs are processed while merging; each half phase
(with a few exceptions) merges 2n−2 and rewinds 2n−1. When 2n + 2n−1 are sorted,
n · 2n + (n− 1) · 2n−1 initial runs are processed while merging; each half phase (with a
few exceptions) merges 2n−2 or 2n−1 and rewinds 2n−1 + 2n−2.

27. It works if and only if the gcd of the distribution numbers is 1. For example,
let there be six tapes; if we distribute (a, b, c, d, e) to T1 through T5, where a ≥
b ≥ c ≥ d ≥ e > 0, the Ąrst phase leaves a distribution (a−e, b−e, c−e, d−e, e), and

684 ANSWERS TO EXERCISES 5.4.2

gcd(a−e, b−e, c−e, d−e, e) = gcd(a, b, c, d, e), since any common divisor of one set of
numbers divides the others too. The process decreases the number of runs at each
phase until gcd(a, b, c, d, e) runs are left on a single tape.

[Nonpolyphase distributions sometimes turn out to be superior to polyphase under
certain conĄgurations of dummy runs, as shown in exercise 18. This phenomenon was
Ąrst observed by B. Sackman about 1963.]

28. We get any such (a, b, c, d, e) by starting with (1, 0, 0, 0, 0) and doing the following
operation exactly n times: Choose x in {a, b, c, d, e}, and add x to each of the other
four elements of (a, b, c, d, e).

To show that a+b+c+d+e ≤ tn, we shall prove that if a ≥ b ≥ c ≥ d ≥ e on level n,
we always have a ≤ an, b ≤ bn, c ≤ cn, d ≤ dn, e ≤ en. The proof follows by induction,
since the level n + 1 distributions are (b+a, c+a, d+a, e+a, a), (a+b, c+b, d+b, e+b, b),
(a+c, b+c, d+c, e+c, c), (a+d, b+d, c+d, e+d, d), (a+e, b+e, c+e, d+e, e).

30. The following table has been computed by J. A. Mortenson.

Level T = 5 T = 6 T = 7 T = 8 T = 9 T = 10

1 2 2 2 2 2 2 M1

2 4 5 6 7 8 9 M2

3 4 5 6 7 8 9 M3

4 8 8 10 12 14 16 M4

5 10 14 18 17 20 23 M5

6 18 20 26 27 32 31 M6

7 26 32 46 47 56 42 M7

8 44 53 74 82 92 92 M8

9 68 83 122 111 138 139 M9

10 112 134 206 140 177 196 M10

11 178 197 317 324 208 241 M11

12 290 350 401 488 595 288 M12

13 466 566 933 640 838 860 M13

14 756 917 1371 769 1064 1177 M14

15 1220 1481 1762 2078 1258 1520 M15

16 1976 2313 4060 2907 3839 1821 M16

31. [Random Structures & Algorithms 5 (1994), 102Ű104.] Kd(n) = F
(d)

n−2 = N
(d)
n−d−1.

We have n− d− 1 = a1 + · · ·+ ar if the tree has r+ 1 leaves and the (k+ 1)st leaf has
ak − 1 ancestors distinct from the ancestors of the Ąrst k leaves. (The seven example
trees correspond respectively to 1 + 1 + 1 + 1, 1 + 1 + 2, 1 + 2 + 1, 1 + 3, 2 + 1 + 1,
2 + 2, and 3 + 1.)

SECTION 5.4.3

1. The tape-splitting polyphase is superior with respect to the average number of
times each record is processed (Table 5.4.2Ű6), when there are 6, 7, or 8 tapes.

2. The methods are essentially identical when the number of initial runs is a Fibonacci
number; but the manner of distributing dummy runs in other cases is better with
polyphase. The cascade algorithm puts 1 on T1, then 1 on T2, 1 on T1, 2 on T2,
3 on T1, 5 on T2, etc., and step C8 never Ąnds D[p − 1] = M [p − 1] when p = 2.
In effect, all dummies are on one tape, and this is less efficient than the method of
Algorithm 5.4.2D.

5.4.4 ANSWERS TO EXERCISES 685

3. (Distribution stops after putting 12 runs on T3 during Step (3, 3).)

T1 T2 T3 T4 T5 T6

126 121 124 114 115 Ů
15 Ů 112 1227 115 22412

84 6293 52 63 11 Ů
Ů 91 231 171 251 261

1001 Ů Ů Ů Ů Ů

4. Induction. (See exercise 5.4.2Ű28.)

5. When there are an initial runs, the kth pass outputs an−k runs of length ak, then
bn−k of length bk, etc.

6.

1 1 1 1 1
1 1 1 1 0
1 1 1 0 0
1 1 0 0 0
1 0 0 0 0

 .

7. We save e2en−2 + e3en−3 + · · · + ene0 initial run lengths (see exercise 5), which
may also be written a1an−3 + a2an−4 + · · ·+ an−2a0; it is [zn−2] (A(z)2 −A(z)).

8. The denominator of A(z) has distinct roots and greater degree than the numerator,
hence A(z) =

q3(ρ)/(1− ρz)ρ(1− q′4(ρ)) summed over all roots ρ of q4(ρ) = ρ. The

special form of ρ is helpful in evaluating q3(ρ) and q′4(ρ).

9. The formulas hold for all large n, by (8) and (12), in view of the value of qm(2 sin θk).
To show that they hold for all n we need to know that qm−1(z) is the quotient when
qr−1(z)qm(z) is divided by qr(z) − z, for 0 ≤ m < r. This can be proved either
by using (10) and noting that cancellations bring down the degree of the polynomial
qr−1(z)qm(z) − qr(z)qm−1(z), or by noting that A(z)2 + B(z)2 + · · · + E(z)2 → 0 as
z → ∞ (see exercise 5), or by Ąnding explicit formulas for the numerators of B(z),
C(z), etc.

10. E(z) = r1(z)A(z); D(z) = r2(z)A(z) − r1(z); C(z) = r3(z)A(z) − r2(z); B(z) =
r4(z)A(z)− r3(z); A(z) = r5(z)A(z) + 1− r4(z). Thus A(z) = (1− r4(z))/(1− r5(z)).
[Notice that rm(2 sin θ) = sin(2mθ)/cos θ; hence rm(z) is the Chebyshev polynomial
(−1)m+1U2m−1(z/2).]

11. Prove that fm(z) = q⌊m/2⌋(z) − r⌈m/2⌉(z) and that fm(z)fm−1(z) = 1 − rm(z).
Then use the result of exercise 10. (This explicit form for the denominator was Ąrst
discovered by David E. Ferguson.)

13. See exercise 5.4.6Ű6.

SECTION 5.4.4

1. When writing an ascending run, Ąrst write a sentinel record containing −∞ before
outputting the run. (And a +∞ sentinel should be written at the end of the run as
well, if the output is ever going to be read forward, as on the Ąnal pass.) For descending
runs, interchange the roles of −∞ and +∞.

2. The smallest number on level n + 1 is equal to the largest on level n; hence the
columns are nondecreasing, regardless of the way we permute the numbers in any
particular row.

686 ANSWERS TO EXERCISES 5.4.4

3. In fact, during the merge process the Ąrst run on T2ŰT6 will always be descending,
and the Ąrst on T1 will always be ascending. (By induction.)

4. It requires several ŞcopyŤ operations on the second and third phases; the approxi-
mate extra cost is (log 2)/(log ρ) passes, where ρ is the Şgrowth ratioŤ in Table 5.4.2Ű1.

5. If α is a string, let αR denote its left-right reversal.

Level T1 T2 T3 T4 T5 2

3 2

0 0 Ů Ů Ů Ů 4 3 2

3 4 3

1 1 1 1 1 1 4 3 4 2

5 4 3 3

2 12 12 12 12 2 4 5 4 4

3 4 5 3

3 1232 1232 1232 232 32 2 3 4 4 2

3 2 3 5 3

4 12323432 12323432 2323432 323432 3432 4 3 2 4 4

3 4 3 3 3. .
2 3 4 2 4

n An Bn Cn Dn En 3 2 3 3 5

2 3 2 4 4

n + 1 Bn(AR
n + 1) Cn(AR

n + 1) Dn(AR
n + 1) En(AR

n + 1) AR
n + 1 1 2 3 3 3

We have
En = AR

n−1 + 1,

Dn = AR
n−2A

R
n−1 + 1,

Cn = AR
n−3A

R
n−2A

R
n−1 + 1,

Bn = AR
n−4A

R
n−3A

R
n−2A

R
n−1 + 1, and

An = AR
n−5A

R
n−4A

R
n−3A

R
n−2A

R
n−1 + 1

= n−Qn,

where

QR
n = Qn−1(Qn−2 + 1)(Qn−3 + 2)(Qn−4 + 3)(Qn−5 + 4), n ≥ 1,

Q0 = 0, and Qn = ϵ for n < 0.

These strings An, Bn, . . . contain the same entries as the corresponding strings in
Section 5.4.2, but in another order. Note that adjacent merge numbers always differ
by 1. An initial run must be A if and only if its merge number is even, D if and
only if odd. Simple distribution schemes such as Algorithm 5.4.2D are not quite as
effective at placing dummies into high-merge-number positions; therefore it is probably
advantageous to compute Qn between phases 1 and 2, in order to help control dummy
run placement.

6. y(4) = (+1,+1,−1,+1)
y(3) = (+1, 0,−1, 0)
y(2) = (+1,−1,+1,+1)
y(1) = (−1,+1,+1,+1)
y(0) = (1, 0, 0, 0)

5.4.4 ANSWERS TO EXERCISES 687

7. (See exercise 15.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

A A

A

A

A

A

B

B

B

B

B

B

B

B

BB

B B

C

C

C

C

C C

C

C

C

C

C

C

C

C

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

AB

B

B

B

B

B

B

B

BC

C

C

C

C

A

Incidentally, 34 is apparently the smallest Fibonacci number Fn for which polyphase
doesnŠt produce the optimum read-backward merge for Fn initial runs on three tapes.
This tree has external path length 178, which beats polyphaseŠs 180.

8. For T = 4, the tree with external path length 13 is not T -lifo, and every tree with
external path length 14 includes a one-way merge.

9. We may consider a complete (T−1)-ary tree, by the result of exercise 2.3.4.5Ű6; the
degree of the ŞlastŤ internal node is between 2 and T −1. When there are (T −1)q−m
external nodes, ⌊m/(T − 2)⌋ of them are on level q − 1, and the rest are on level q.

11. True by induction on the number of initial runs. If there is a valid distribution
with S runs and two adjacent runs in the same direction, then there is one with fewer
than S runs; but there is none when S = 1.

12. Conditions (a) and (b) are obvious. If either conĄguration in (4) is present, for
some tape name A and some i < j < k, node j must be in a subtree below node i
and to the left of node k, by the deĄnition of preorder. Hence the case Şj−−− lŤ canŠt
be present, and A must be the ŞspecialŤ name since it appears on an external branch.
But this contradicts the fact that the special name is supposed to be on the leftmost
branch below node i.

13. Nodes now numbered 4, 7, 11, 13 could be external instead of one-way merges.
(This gives an external path length one higher than the polyphase tree.)

15. Let the tape names be A, B, and C. We shall construct several species of trees,
botanically identiĄed by their root and leaf (external node) structure:

Type r(A) Root A
Type s(A,C) Root A, no C leaves
Type t(A) Root A, no A leaves
Type u(A,C) Root A, no C leaves, no compound B leaves
Type v(A,C) Root A, no C leaves, no compound A leaves
Type w(A,C) Root A, no A leaves, no compound C leaves

688 ANSWERS TO EXERCISES 5.4.4

A Şcompound leaf Ť is a leaf whose sibling is not a leaf. We can grow a 3-lifo type r(A)
tree by Ąrst growing its left subtree as a type s(B,C), then growing the right subtree as
type r(C). Similarly, type s(A,C) comes from a type s(B,C) then t(C); type u(A,C)
from v(B,C) and w(C,B); type v(A,C) from u(B,C) and w(C,A). We can grow a
3-lifo type t(A) tree whose left subtree is type u(B,A) and whose right subtree is type
s(C,A), by Ąrst letting the left subtree grow except for its (non-compound) C leaves
and its right subtree; at this point the left subtree has only A and B leaves, so we
can grow the right subtree of the whole tree, then grow off the A leaves of the left
left subtree, and Ąnally grow the left right subtree. Similarly, a type w(A,C) tree can
be fabricated from a u(B,A) and a v(C,A). [The tree of exercise 7 is an r(A) tree
constructed in this manner.]

Let r(n), . . . , w(n) denote the minimum external path length over all n-leaf trees
of the relevant type, when they are constructed by such a procedure. We have r(1) =
s(1) = u(1) = 0, r(2) = t(2) = w(2) = 2, t(1) = v(1) = w(1) = s(2) = u(2) = v(2) =
∞; and for n ≥ 3,

r(n) = n+ mink(s(k) + r(n− k)), u(n) = n+ mink(v(k) + w(n− k)),
s(n) = n+ mink(s(k) + t(n− k)), v(n) = n+ mink(u(k) + w(n− k)),
t(n) = n+ mink(u(k) + s(n− k)), w(n) = n+ mink(u(k) + v(n− k)).

It follows that r(n) ≤ s(n) ≤ u(n), s(n) ≤ v(n), and r(n) ≤ t(n) ≤ w(n) for all n;
furthermore s(2n) = t(2n+ 1) =∞. (The latter is evident a priori.)

Let A(n) be the function deĄned by the laws A(1) = 0, A(2n) = 2n + 2A(n),
A(2n+1) = 2n+1+A(n)+A(n+1); then A(2n) = 2n+A(n−1)+A(n+1)− (0 or 1)
for all n ≥ 2. Let C be a constant such that, for 4 ≤ n ≤ 8,

i) n even implies that w(n) ≤ A(n) + Cn− 1.
ii) n odd implies that u(n) and v(n) are ≤ A(n) + Cn− 1.

(This actually works for all C ≥ 5
6
.) Then an inductive argument, choosing k to be

⌊n/2⌋ ± 1 as appropriate, shows that the relations are valid for all n ≥ 4. But A(n) is
the lower bound in (9) when T = 3, and r(n) ≤ min(u(n), v(n), w(n)), hence we have
proved that A(n) ≤ K̂3(n) ≤ r(n) ≤ A(n)+ 5

6
n−1. [The constant 5

6
can be improved.]

17. [The following method was used in the UNIVAC III sort program, and presented
at the 1962 ACM Sort Symposium.]

Level T1 T2 T3 T4 T5
0 1 0 0 0 0
1 5 4 3 2 1
2 55 50 41 29 15

. .
n an bn cn dn en

n+1 5an +4bn+ 4an +4bn+ 3an +3bn+ 2an +2bn+ an +bn+
3cn +2dn +en 3cn +2dn +en 3cn +2dn +en 2cn +2dn +en cn +dn +en

To get from level n to level n + 1 during the initial distribution, insert k1 ŞsublevelsŤ
with (4, 4, 3, 2, 1) runs added respectively to tapes (T1,T2, . . . ,T5), k2 ŞsublevelsŤ with
(4, 3, 3, 2, 1) runs added, k3 with (3, 3, 2, 2, 1), k4 with (2, 2, 2, 1, 1), k5 with (1, 1, 1, 1, 0),
where k1 ≤ an, k2 ≤ bn, k3 ≤ cn, k4 ≤ dn, k5 ≤ en. [If (k1, . . . , k5) = (an, . . . , en) we
have reached level n + 1.] Add dummy runs if necessary to Ąll out a sublevel. Then
merge k1 + k2 + k3 + k4 + k5 runs from (T1, . . . ,T5) to T6, merge k1 + · · · + k4 from
(T1, . . . ,T4) to T5, . . . , merge k1 from T1 to T2; and merge k1 from (T2, . . . ,T6)
to T1, k2 from (T3, . . . ,T6) to T2, . . . , k5 from T6 to T5.

5.4.4 ANSWERS TO EXERCISES 689

18. (Solution by M. S. Paterson.) Suppose record j is written on the sequence of tape
numbers τj . At most C|τ | records can have a given sequence τ , where C depends on
the internal memory size (see Section 5.4.8). Hence |τ1|+ · · ·+ |τN | = Ω(N logT N).

19.

20. A strongly T -Ąfo tree has a T -Ąfo labeling in which there are no three branches
having the respective forms

i

k

A ,

j

s

A or

j

A ,

l

t

A or

l

A ,

for some tape name A and some i < j < k < l < s. Informally, when we grow on an A,
we must grow on all other AŠs before creating any new AŠs.

21. It is very weakly Ąfo:

1

2

3

4

5

6

7

8

9

10

11

12 13

14

15

16 17

18

19

2021 22

23

24

25

26

27

28

29

30

31

32

33

A A

A

A

A

A

B

B

B

B

B

B

B

B

B

B

B B

C

C

C

C

C

C

C C

CC

C C

C

C

A

A

A

A

A

A A

AAA

A

A

A

A

A

A

A

A

A

AB

B

BB

B

B

B

B

B

C

C

C

C C

A

22. This occurs for any tree representations formed by successively replacing all oc-
currences of, for example,

A by
B C D

A

690 ANSWERS TO EXERCISES 5.4.4

for some Ąxed tape names A, B, C, D. Since all occurrences are replaced by the same
pattern, the lifo or Ąfo order makes no difference in the structure of the tree.

Stating the condition in terms of the vector model: Whenever (y(k+1) ̸= y(k) or
k = m) and y

(k)
j = −1, we have y(k)

j + · · ·+ y
(1)
j + y

(0)
j = 0.

23. (a) Assume that v1 ≤ v2 ≤ · · · ≤ vT ; the ŞcascadeŤ stage

(1, . . . , 1,−1)vT (1, . . . , 1,−1, 0)vT−1 . . . (1,−1, 0, . . . , 0)v2

takes C(v) into v. (b) Immediate, since C(v)k ≤ C(w)k for all k. (c) If v is obtained
in q stages, we have u → u(1) → · · · → u(q) = v for some unit vector u, and some
other vectors u(1), . . . , u(q−1). Hence u(1) ⪯ C(u), u(2) ⪯ C(C(u)), . . . , v ⪯ C [q](u).
Hence v1 + · · · + vT is less than or equal to the sum of the elements of C [q](u); and
the latter is obtained in cascade merge. [This theorem generalizes the result of exercise
5.4.3Ű4. Unfortunately the concept of ŞstageŤ as deĄned here doesnŠt seem to have any
practical signiĄcance.]

24. Let y(m) . . . y(l+1) be a stage that reduces w to v. If we have y(i)
j = −1, y(i−1)

j = 0,

. . . , y(k+1)
j = 0, and y

(k)
j = −1, for some k < i − 1, we can insert y(k) between y(i)

and y(i−1). Repeat this operation until all (−1)Šs in each column are adjacent. Then
if y(i)

j = 0 and y
(i−1)
j ̸= 0 it is possible to set y(i)

j ← 1; ultimately each column
consists of +1Šs followed by −1Šs followed by 0s, and we have constructed a stage that
reduces w′ to v for some w′ ⪰ w. Permuting the columns, this stage takes the form
(1, . . . , 1,−1)aT . . . (1,−1, 0, . . . , 0)a2 (−1, 0, . . . , 0)a1. The sequence of T − 1 relations

(x1, . . . , xT) ⪯ (x1+xT , . . . , xT−1+xT , 0)

⪯ (x1+xT−1+xT , . . . , xT−2+xT−1+xT , xT , 0)

⪯ (x1+xT−2+xT−1+xT , . . . , xT−3+xT−2+xT−1+xT , xT−1+xT , xT , 0)

⪯ · · ·
⪯ (x1+x2+x3+· · ·+xT , x3+· · ·+xT , . . . , xT−1+xT , xT , 0)

now shows that the best choice of the aŠs is aT = vT, aT−1 = vT−1, . . . , a2 = v2,
a1 = 0. And the result is best if we permute columns so that v1 ≤ · · · ≤ vT.
25. (a) Assume that vT−k+1 ≥ · · · ≥ vT ≥ v1 ≥ · · · ≥ vT−k and use

(1, . . . , 1,−1, 0, . . . , 0)vT−k+1 . . . (1, . . . , 1, 0, . . . , 0,−1)vT .

(b) The sum of the l largest elements of Dk(v) is (l − 1)sk + sk+l for 1 ≤ l ≤ T − k.
(c) If v ⇒ w in a phase that uses k output tapes, we may obviously assume that
the phase has the form (1, . . . , 1,−1, 0, . . . , 0)a1 . . . (1, . . . , 1, 0, . . . , 0,−1)ak, with each
of the other T − k tapes used as input in each operation. Choosing a1 = vT−k+1, . . . ,
ak = vT is best. (d) See exercise 22(c). We always have k1 = 1; and k = T − 2 always
beats k = T − 1 since we assume that at least one component of v is zero. Hence for
T = 3 we have k1 . . . kq = 1q and the initial distribution (Fq+1, Fq, 0). For T = 4 the
undominated strategies and their corresponding distributions are found to be

q = 2 12 (3, 2, 0, 0)
q = 3 121 (5, 3, 3, 0); 122 (5, 5, 0, 0)
q = 4 1211 (8, 8, 5, 0); 1222 (10, 10, 0, 0); 1212 (11, 8, 0, 0)
q = 5 12121 (19, 11, 11, 0); 12222 (20, 20, 0, 0); 12112 (21, 16, 0, 0)
q = 6 122222 (40, 40, 0, 0); 121212 (41, 30, 0, 0)

q ≥ 7 12q−1 (5 · 2q−3, 5 · 2q−3, 0, 0)

5.4.5 ANSWERS TO EXERCISES 691

So for T = 4 and q ≥ 6, the minimum-phase merge is like balanced merge, with a slight
twist at the very end (going from (3, 2, 0, 0) to (1, 0, 1, 1) instead of to (0, 0, 2, 1)).

When T = 5 the undominated strategies are 1(32)n−12, 1(32)n−13 for q = 2n ≥ 2;
1(32)n−132, 1(32)n−122, 1(32)n−123 for q = 2n + 1 ≥ 3. (The Ąrst strategy listed
has most runs in its distribution.) On six tapes they are 13 or 14, 142 or 132 or 133,
1333 or 1423, then 13q−1 for q ≥ 5.

SECTION 5.4.5

1. The following algorithm is controlled by a table A[L− 1] . . . A[1]A[0] that essen-
tially represents a number in radix P notation. As we repeatedly add unity to this
number, the carries tell us when to merge. Tapes are numbered from 0 to P .

O1. [Initialize.] Set (A[L−1], . . . , A[0]) ← (0, . . . , 0) and q ← 0. (During this
algorithm, q will equal (A[L−1] + · · ·+ A[0]) mod T.)

O2. [Distribute.] Write an initial run on tape q, in ascending order. Set l← 0.

O3. [Add one.] If l = L, stop; the output is on tape (−L) mod T, in ascending
order if and only if L is even. Otherwise set A[l]← A[l]+1, q ← (q+1) mod T.

O4. [Carry?] If A[l] < P , return to O2. Otherwise merge to tape (q − l) mod T ,
set A[l]← 0 and q ← (q + 1) mod T, increase l by 1, and return to O3.

2. Keep track of how many runs are on each tape. When the input is exhausted, add
dummy runs if necessary and continue merging until reaching a situation with at most
one run on each tape and at least one tape empty. Then Ąnish the sort in one more
merge, rewinding some tapes Ąrst if necessary. (It is possible to deduce the orientation
of the runs from the A table.)

3. Op T0 T1 T2 Op T0 T1 T2
Dist Ů A1 A1A1 Dist D2A1 A1 A4

Merge D2 Ů A1 Merge D2 Ů A4D2

Dist D2A1 Ů A1 Merge Ů A4 A4

Merge D2 D2 Ů Dist Ů A4 A4A1

Dist D2 D2A1 A1 Copy Ů A4D1 A4

Merge D2D2 D2 Ů Copy Ů A4 A4A1

Merge D2 Ů A4 Merge D5 Ů A4

At this point T2 would be rewound and a Ąnal merge would complete the sort.
To avoid useless copying in which runs are simply shifted back and forth, we can

say ŞIf the input is exhausted, go to B7Ť at the end of B3, and add the following new
step:

B7. [Do the endgame.] Set s ← −1, and go to B2 after repeating the following
operations until l = 0: Set s′ ← A[l − 1, q], and set q′ and r′ to the indices
such that A[l − 1, q′] = −1 and A[l − 1, r′] = −2. (We will have q′ = r, and
s′ ≤ A[l − 1, j] ≤ s′ + 1 for j ̸= q′, j ̸= r′.) If s′ − s is odd, promote level l,
otherwise demote it (see below). Then merge to tape r, reading backwards;
set l← l − 1, A[l, q]← −1, A[l, r]← s′ + 1, r ← r′, and repeat.

Here ŞpromotionŤ means to repeat the following operation until (q+(−1)s) mod T = r:
Set p← (q+ (−1)s) mod T and copy one run from tape p to tape q, then set A[l, q]←
s + 1, A[l, p] ← −1, q ← p. And ŞdemotionŤ means to repeat the following until
(q − (−1)s) mod T = r: Set p ← (q − (−1)s) mod T and copy one run from tape p to
tape q, then set A[l, q]← s, A[l, p]← −1, q ← p. The copy operation reads backwards

692 ANSWERS TO EXERCISES 5.4.5

on tape p, hence it reverses the direction of the run being copied. If D[p] > 0 when
copying from p to q, we simply decrease D[p] and increase D[q] instead of copying.

[The basic idea is that, once the input is exhausted, we want to reduce to at most
one run on each tape. The parity of each nonnegative entry A[l, j] tells us whether
a run is ascending or descending. The smallest S for which this change makes any
difference is P 3 + 1. When P is large, the change hardly ever makes much difference,
but it does keep the computer from looking too foolish in some circumstances. The
algorithm should also be changed to handle the case S = 1 more efficiently.]

4. We can, in fact, omit setting A[0, 0] in step B1, A[l, q] in steps B3 and B5. [But
A[l, r] must be set in step B3.] The new step B7 in the previous answer does need the
value of A[l, q] (unless it explicitly uses the fact that q′ = r, as noted there).

5. P 2k − (P − 1)P 2k−2 < S ≤ P 2k for some k > 0.

SECTION 5.4.6

1. ⌊23000480/(n+ 480)⌋n.

2. At the instant shown, all the records in that buffer have been moved to the output.
Step F2 insists that the test ŞIs output buffer full?Ť precede the test ŞIs input buffer
empty?Ť while merging, otherwise we would have trouble (unless the changes of exer-
cise 4 were made).

3. No; for example, we might reach a state with P buffers 1/P full and P − 1 buffers
full, if Ąle i contains the keys i, i+ P , i+ 2P , . . . , for 1 ≤ i ≤ P . This example shows
that 2P input buffers would be necessary for continuous output even if we allowed
simultaneous reading, unless we reallocated memory for partial buffers. [Well, we
donŠt really need 2P buffers if the blocks contain fewer than P − 1 records; but that is
unlikely.]

4. Set up S sooner (in steps F1 and F4 instead of F3).

5. If, for example, all keys of all Ąles were equal, we couldnŠt simply make arbitrary
decisions while forecasting; the forecast must be compatible with decisions made by the
merging process. One safe way is to Ąnd the smallest possible m in steps F1 and F4,
namely to consider a record from Ąle C[i] to be less than all records having the same
key on Ąle C[j] whenever i < j. (In essence, the Ąle number is appended to the key.)

6. In step C1 also set TAPE[T + 1] ← T + 1. In step C8 the merge should be to
TAPE[p+ 2] instead of TAPE[p+ 1]. In step C9, set (TAPE[1], . . . , TAPE[T+1]) ←
(TAPE[T+1], . . . , TAPE[1]).

7. The method used in Chart A is (A1D1)4A0D0A1D1(A0D0(A1D1)3)2A0, D1(A1D1)2

A0D0(A1D1)3A0D0αA0D0A0, D1A0D0(A1D1)3A0D0αA1D1A0, D1A1D1αA1D1A0,
where α = (A0D0)2A1D1A0D0(A1D1)2(A0D0)7A1D1(A0D0)3A1D1A0D0. The Ąrst
merge phase writes D0A3D3A1D1A4D4A0D0A1D1A1D1A4D4A0D0A1D1A0D0(A1D1)4

on tape 5; the next writes A4D4A4D4A1D1A4D4A0D0A1D1A1D1A7 on tape 1; the
next, D13A4D4A4D4A0D0A10 on tape 4. The Ąnal phases are

A4D4A4 Ů D19A3D3A12 D13A4D4A4 D0A3

A4 D23A11 D19A3 D13A4 Ů
Ů D23 D19 D13 D22

A77 Ů Ů Ů Ů

8. No, since at most S stop/starts are saved, and since the speed of the input tape (not
the output tapes) tends to govern the initial distribution time anyway. The other advan-
tages of the distribution schemes used in Chart A outweigh this minuscule disadvantage.

5.4.6 ANSWERS TO EXERCISES 693

9. P = 5, B = 8300, B′ = 734, S = ⌈(3 + 1/P)N/(6P ′)⌉ + 1 = 74, ω ≈ 1.094,
α ≈ 0.795, β ≈ −1.136, α′ = β ′ = 0; Eq. (9) ≈ 855 seconds, to which we add the time
for initial rewind, for a total of 958 seconds. The savings of about one minute in the
merging time does not compensate for the loss of time due to the initial rewinding and
tape changing (unless perhaps we are in a multiprogramming environment).

10. The rewinds during standard polyphase merge involve about 54 percent of the Ąle
(the Şpass/phaseŤ column in Table 5.4.2Ű1), and the longest rewinds during standard
cascade merge involve approximately akan−k/an ≈ (4/(2T −1)) cos2(π/(4T −2)) < 4

11

of the Ąle, by exercise 5.4.3Ű5 and Eq. 5.4.3Ű(13).

11. Only initial and Ąnal rewinds get to make use of the high-speed feature, since the
reel is only a little more than 10/23 full when it contains the whole example Ąle. Using
π = ⌈.946 lnS − 1.204⌉, π′ = 1/8 in example 8, we get the following estimated totals
for examples 1Ű9, respectively:

1115, 1296, 1241, 1008, 1014, 967, 891, 969, 856.

12. (a) An obvious solution with 4P+4 buffers simply reads and writes simultaneously
from paired tapes. But note that three output buffers are sufficient: At a given
moment we can be performing the second half of a write from one, the Ąrst half
of a write from another, and outputting into a third. This approach suggests a
corresponding improvement in the input buffer situation. It turns out that 3P input
buffers and 3 output buffers are necessary and sufficient, using a slightly weakened
forecasting technique. A simpler and superior approach, suggested by J. Sue, adds a
Şlookahead keyŤ to each block, specifying the Ąnal key of the subsequent block. SueŠs
method requires 2P + 1 input buffers and 4 output buffers, and it is a straightforward
modiĄcation of Algorithm F. (See also Section 5.4.9.)

(b) In this case the high value of α means that we must do between Ąve and six
passes over the data, which wipes out the advantage of double-quick merging. The idea
works out much better on eight or nine tapes.

13. No; consider, for example, the situation just before A16A16A16A16. But two
reelfuls can be handled.

14. det

0 −p0z 0 z − 1
0 1− p1z −p0z z − 1
1 0 0 0
0 0 0 1

det

1− p≥1z −p0z 0 z − 1
−p≥2z 1− p1z −p0z z − 1

0 −1 1 0
0 0 0 1

 .

15. The A matrix has the form

A =

B10z B11z . . . B1nz 1− z
...

...
Bn0z Bn1z . . . Bnnz 1− z

0 . . . 0 1 0 0
0 . . . 0 0 0 0

,

B10 +B11 + · · ·+B1n = 1,
...

Bn0 +Bn1 + · · ·+Bnn = 1.

(11)

Therefore

det(I −A) = det

1−B10z −B11z . . . −B1(n−1)z −B1nz
...

...
−Bn0z −Bn1z . . . 1−Bn(n−1)z −Bnnz

0 0 −1 1

694 ANSWERS TO EXERCISES 5.4.6

and we can add all columns to the Ąrst column, then factor out (1− z). Consequently
gQ(z) has the form hQ(z)/(1 − z), and α(Q) = hQ(1) because we have hQ(1) ̸= 0 and
det(I −A) ̸= 0 for |z| < 1.

SECTION 5.4.7

1. Sort from least signiĄcant digit to most signiĄcant digit in the number system
whose radices are alternately P and T − P . (If pairs of digits are grouped, we have
essentially the pure radix P · (T − P). Thus, if P = 2 and T = 7, the number system
is Şbiquinary,Ť related to decimal notation in a simple way.)

2. If K is a key between 0 and Fn−1, let the Fibonacci representation of Fn−1−K
be an−2Fn−1 + · · ·+ a1F2, where the aj are 0 or 1, and no two consecutive 1s appear.
After phase j, tape (j+ 1) mod 3 contains the keys with aj = 0, and tape (j−1) mod 3
contains those with aj = 1, in decreasing order of aj−1 . . . a1.

[Imagine a card sorter with two pockets, Ş0Ť and Ş1Ť, and consider the procedure
of sorting Fn cards that have been punched with the keys an−2 . . . a1 in n− 2 columns.
The conventional procedure for sorting these into decreasing order, starting at the least
signiĄcant digit, can be simpliĄed since we know that everything in the Ş1Ť pocket at
the end of one pass will go into the Ş0Ť pocket on the following pass.]

4. If there were an external node on level 2 we could not construct such a good tree.
Otherwise there are at most three external nodes on level 3, and six on level 4, since
each external node is supposed to appear on the same tape.

5.

1

2 3

4 56 7

8

9

1011 1213

A

A AB B

C

C CC C

C

D

D

0

D

1

D

2

D

3

D

4
D

5
D

6

D

7

D

8

D

9

B

6. 09, 08, . . . , 00, 19, . . . , 10, 29, . . . , 20, 39, . . . , 30, 40, 41, . . . , 49, 59, . . . , 50, 60,
61, . . . , 99.

7. Yes; Ąrst distribute the records into smaller and smaller subĄles until obtaining
one-reel Ąles that can be sorted individually. This is dual to the process of sorting
one-reel Ąles and then merging them into larger and larger multireel Ąles.

SECTION 5.4.8

1. Yes. If we alternately use ascending and descending order in the selection tree, we
have in effect an order-P cocktail-shaker sort. (See exercise 9.)

2. Let ZN = YN −XN, and solve the recurrence for ZN by noting that

(N + 1)NZN+1 = N(N − 1)ZN +N2 +N ;

5.4.8 ANSWERS TO EXERCISES 695

hence

ZN = 1
3
(N + 1) +

M + 2

3

N (N − 1), for N > M.

Now eliminate YN and obtain

XN

N+1
=

20
3

(HN+1−HM+2)+2
 1
N+1

− 1
M+2

− 2
3

M+2

3

 1
(N+1)N(N−1)

− 1
(M+2)(M+1)M

+

3M+4
M+2

, N > M.

3. Yes; Ąnd a median element in O(N) steps, using a construction like that of
Theorem 5.3.3L, and use it to partition the Ąle. Another interesting approach, due
to R. W. Floyd and A. J. Smith, is to merge two runs of N items in O(N) units of
time as follows: Spread the items out on the tapes, with spaces between them, then
successively Ąll each space with a number specifying the Ąnal position of the item just
preceding that space.

4. It is possible to piece together a schedule for Ćoors {1, . . . , p+ 1} with a schedule
for Ćoors {q, . . . , n}: When the former schedule Ąrst reaches Ćoor p+ 1, go up to Ćoor
q and carry out the latter schedule (using the current elevator contents as if they were
the ŞextrasŤ in the algorithm of Theorem K). After Ąnishing that schedule, go back to
Ćoor p+ 1 and resume the previous schedule.

5. Consider b = 2, m = 4 and the following behavior of the algorithm:

Floor 7: 47

Floor 6: 23

Floor 5: 14

Floor 4: 71

Floor 3: 63

Floor 2: 62

Floor 1: 55

✄
✄.0000
r .00✄
✄.0055
r .00✄
✄.2556
r .23✄
✄.5566
r .15✄
✄.5667
r .14✁
✁.5667
r .23�
�.5667
r .77
❅
❅
.4566r .66
❆
❆
.2345r .45
❅
❅
.1234 r .11�

�.2345
r

Now 2 (in the elevator) is less than 3 (on Ćoor 3).
[After constructing an example such as this, the reader should be able to see how

to demonstrate the weaker property required in the proof of Theorem K.]

6. Let i and j be minimal with bi < b′i and bj > b′j . Introduce a new person who
wants to go from i to j. This doesnŠt increase max(uk, dk+1, 1) or max(bk, b

′
k) for any k.

Continue this until bj = b′j for all j. Now observe that the algorithm in the text works
also with b replaced by bk in steps K1 and K3.

8. Let the number be Pn, and let Qn be the number of permutations such that uk = 1
for 1 ≤ k < n. Then Pn = Q1Pn−1 + Q2Pn−2 + · · · + QnP0, P0 = 1. It can be shown
that Qn = 3n−2 for n ≥ 2 (see below), hence a generating function argument yields

Pnz

n = (1− 3z)/(1− 4z + 2z2) = 1 + z + 2z2 + 6z3 + 20z4 + 68z5 + · · · ;

2Pn = (2 +
√

2)n−1 + (2−
√

2)n−1
.

696 ANSWERS TO EXERCISES 5.4.8

To prove that Qn = 3n−2, consider a ternary sequence x1x2 . . . xn such that x1 = 2,
xn = 0, and 0 ≤ xk ≤ 2 for 1 < k < n. The following rule deĄnes a one-to-one
correspondence between such sequences and the desired permutations a1a2 . . . an:

ak =

max{j | (j < k and xj = 0) or j = 1 }, if xk = 0;
k, if xk = 1;
min{j | (j > k and xj = 2) or j = n }, if xk = 2.

(This correspondence was obtained by the author jointly with E. A. Bender.)

9. The number of passes of the cocktail-shaker sort is 2 max(u1, . . . , un) − (0 or 1),
since each pair of passes (left-right-left) reduces each of the nonzero uŠs by 1.

10. Begin with a distribution method (quicksort or radix exchange) until one-reel Ąles
are obtained. And be patient.

SECTION 5.4.9

1. 1
4
− (xmod 1

2
)2 revolutions.

2. The probability that k = aiq and k + 1 = ai′r for Ąxed k, q, r, and i ̸= i′ is
f(q, r, k)L!L!(PL− 2L)!/(PL)!, where

f(q, r, k) =

k − 1
q − 1

k − q
r − 1

PL− k − 1
L− q

PL− k − 1− L+ q

L− r

=

k − 1
q + r − 2

q + r − 2
q − 1

PL− k − 1
2L− q − r

2L− q − r
L− q

;

and

1≤k<PL
1≤q,r≤L

|q−r|f(q, r, k) =

1≤q,r≤L

|q−r|

PL−1
2L−1

q+r−2
q−1

2L−q−r
L−q

=

PL−1
2L−1

A2L−1.

The probability that k = aiq and k + 1 = ai(q+1) for Ąxed k, q, and i is

g(k, q)

PL

L

, where g(k, q) =

k − 1
q − 1

PL− k − 1
L− q − 1

;

and

1≤k<PL
1≤q<L

g(k, q) =

1≤q<L

PL− 1
L− 1

= (L− 1)

PL− 1
L− 1

.

[SICOMP 1 (1972), 161Ű166.]

3. Take the minimum in (5) over the range 2 ≤ m ≤ min(9, n).

4. (a) (0.000725(
√
P + 1)2 + 0.014)L. (b) Change Şαmn + βnŤ in formula (5) to

Ş(0.000725(
√
m+ 1)2 + 0.014)n.Ť [Computer experiments show that the optimal trees

deĄned by this new recurrence are very similar to those deĄned by Theorem K with
α = 0.00145, β = 0.01545; in fact, trees exist that are optimal for both recurrences,
when 30 ≤ n ≤ 100. The change suggested in this exercise saves about 10 percent of
the merging time, when n = 64 or 100 as in the textŠs example. This style of buffer
allocation was considered already in 1954 by H. Seward, who found that four-way
merging minimizes the seek time.]

5.4.9 ANSWERS TO EXERCISES 697

5. Let Am(n) and Bm(n) be the cost of optimum sets of m trees whose n leaves are
all at (even, odd) levels, respectively. Then A1(1) = 0, B1(1) = α + β ; Am(n) and
Bm(n) are deĄned as in (4) when m ≥ 2; A1(n) = min1≤m≤n(αmn + βn + Bm(n)),
B1(n) = min1≤m≤n(αmn+βn+Am(n)). The latter equations are well-deĄned in spite
of the fact that A1(n) and B1(n) are deĄned in terms of each other!

6.

or ;

A1(23) = B1(23) = 268. [Curiously, n = 23 is the only value ≤ 50 for which no equal-
parity tree with n leaves is optimal in the unrestricted-parity case. Perhaps it is the
only such value, when α = β.]

7. Consider the quantities αd1 + βe1, . . . , αdn + βen in any tree, where dj is the
degree sum and ej is the path length for the jth leaf. An optimum tree for weights
w1 ≤ · · · ≤ wn will have αd1 + βe1 ≥ · · · ≥ αdn + βen. It is always possible to reorder
the indices so that αd1 + βe1 = · · · = αdk + βek where the Ąrst k leaves are merged
together.

9. Let d minimize (αm + β)/ lnm. A simple induction using convexity shows that
A1(n) ≥ (αd + β)n logd n, with equality when n = dt. A suitable upper bound comes
from complete d-ary trees, since these have D(T) = dE(T), E(T) = tn + dr for
n = dt + (d− 1)r, 0 ≤ r ≤ dt.

10. See STOC 6 (1974), 216Ű229.

11. Using exercise 1.2.4Ű38, fm(n) = 3qn + 2(n − 3qm), when 2 · 3q−1 ≤ n/m ≤ 3q;
fm(n) = 3qn + 4(n − 3qm), when 3q ≤ n/m ≤ 2 · 3q. Thus f2(n) + 2n ≥ f(n), with
equality if and only if 4 · 3q−1 ≤ n ≤ 2 · 3q; f3(n) + 3n = f(n); f4(n) + 4n ≥ f(n), with
equality if and only if n = 4 · 3q; and fm(n) +mn > f(n) for all m ≥ 5.

12. Use the speciĄcations −, 1:1, 1:1:1, 1:1:1:1 or 2:2, 2:3, 2:2:2, . . . , ⌊n/3⌋:⌊(n+1)/3⌋:
⌊(n+ 2)/3⌋, . . . ; this gives trees with all leaves at level q + 2, for 4 · 3q ≤ n ≤ 4 · 3q+1.
(When n = 4 · 3q, two such trees are formed.)

14. The following tree speciĄcations were found for n = 1, 2, 3, . . . by exhaustively
examining all partitions of n: −, 1:1, 1:1:1, 1:1:1:1, 1:1:1:1:1, 1:1:1:1:1:1, 1:1:1:1:3,
1:1:3:3, 3:3:3, 1:3:3:3, 3:4:4, 3:3:3:3, 3:3:3:4, 3:3:4:4, 3:4:4:4, 4:4:4:4, . . . , 5:6:6:6:12,
6:6:6:6:12, 6:6:6:6:13, (The degrees seem to be always ≤ 6, but such a result
appears to be quite difficult to prove.)

15. If a people initially got on the elevator, the togetherness rating increases by at
most a+ b at the Ąrst stop. When it next stops at the initial Ćoor, the rating increases
by at most b+m− a. Hence the rating increases at most kb+ (k − 1)m after k stops.

16. Eleven stops: 123456 to Ćoor 2, 334466 to 3, 444666 to 4, 256666 to 5, 466666
to 6, 123445 to 4, 112335 to 5, 222333 to 3, 122225 to 2, 111555 to 5, 111111 to 1.
[This is minimal, for a 10-stop solution with any elevator capacity can, by symmetry,
be arranged to stop on Ćoors 2, 3, 4, 5, 6, p2, p3, p4, p5, 1 in that order, where p2p3p4p5

is a permutation of {2, 3, 4, 5}; such schedules are possible only when b ≥ 8. See Martin
Gardner, Knotted Doughnuts (New York: Freeman, 1986), Chapter 10.]

698 ANSWERS TO EXERCISES 5.4.9

17. There are at least (bn)!/b!n conĄgurations; and the number that can be ob-
tained from a given one after s stops is at most

(n− 1)

b+m

b

s−1, which is less

than (n((b+m)e/b)b)s by exercise 1.2.6Ű67. Hence some conĄguration requires

s(lnn+ b(1 + ln(1 +m/b))) > ln(bn)!− n ln b! > bn ln bn− bn− n((b+ 1) ln b− b+ 1)

by exercise 1.2.5Ű24.
Notes: Using the fact that 1/(x+ y) ≥ 1

2
min(1/x, 1/y) when x and y are positive,

we can express this lower bound in the convenient form

Ω

min

nb,

n log(1 + n)
log(1 +m/b)

.

Related results have been obtained by A. Aggarwal and J. S. Vitter, CACM 31 (1988),
1116Ű1127, who also established the matching upper bound

O

min

nb,

n log(1 + n)
log(1 +m/b)

.

See also M. H. Nodine and J. S. Vitter, ACM Symposium on Parallel Algorithms and
Architectures 5 (1993), 120Ű129, for extensions to several disks.

18. The expected number of stops is

s≥1 ps, where ps is the probability that at least
s stops are needed. Let qs = 1 − ps+1 be the probability that at most s stops are
needed. Then exercise 17 shows that qs ≤ f(s− 1 + [s= 0]), where f(s) = b!nαs/(bn)!
and α = n((b+m)e/b)b. If f(t−1) < 1 ≤ f(t) then

s≥1 ps ≥ p1 + · · ·+pt = t− (q0 +

· · ·+qt−1) ≥ t−(f(0)+f(0)+· · ·+f(t−2)) ≥ t−(α1−t+α1−t+· · ·+α−1) ≥ t−1 ≥ L−1.

19. Consider doing step (vii) backwards, distributing the records into bin 1, then bin 2.
This operation is precisely what step (iv) is simulating on the key Ąle. [Princeton
Conference on Information Sciences and Systems 6 (1972), 140Ű144.]

20. The internal sort must be carefully chosen, with paging in mind; methods such
as shellsort, address calculation, heapsort, and list sorting can be disastrous if the
actual internal memory is small, since they require a large Şworking setŤ of pages.
Quicksort, radix exchange, and sequentially allocated merge or radix sorting are much
better suited to a paging environment.

Some things the designer of an external sort can do that are virtually impossible
to include in an automatically paged method are: (i) Forecasting the input Ąle that
should be read next, so that the data is available when it is required; (ii) choosing the
buffer sizes and the order of merge according to hardware and data characteristics.

On the other hand a virtual machine is considerably easier to program, and it can
give results that arenŠt bad, if the programmer is careful and knows the properties of
the underlying actual machine. The Ąrst substantial study of this question was made
by Brawn, Gustavson, and Mankin [CACM 13 (1970), 483Ű494.]

21. ⌈(L− j)/D⌉; see CMath, Eq. (3.24).

22. After reading a group of D blocks that contains aj , we might need to know αj+D−1

before reading the next group of D blocks. And if we store αj+D−1 with aj , we also
need the values α0, . . . , αD−2 in some sort of Ąle header to get the process started.

But with this scheme we cannot write blocks a0 . . . aD−1 until we have computed
aD . . . a2D−2, so we will need 3D − 1 output buffers instead of 2D to keep writing
continuously. It is therefore better to put the αŠs in a separate (short) Ąle. [The same
analysis applies to randomized striping.]

5.4.9 ANSWERS TO EXERCISES 699

23. (a) Algorithm 5.4.6F needs 4 input buffers, each of superblock size DB. (If we
count output buffers as well, we have a total of 6DB buffer records in memory with
Algorithm 5.4.6F and 5DB with SyncSort.)

(b) While we are reading a group of D blocks we need buffer space for the previous
D blocks and one unĄnished block, for a total of (2D+ 1)B records. (Output requires
another 2DB. But many data processing operations that do 2-way merging on input
actually produce comparatively little output.)

24. Let the lth block in chronological order be block jl of run kl; in particular, jl = 0
and kl = l for 1 ≤ l ≤ P . We will read that block at time tl =

P
k=1 tlkd, where

tlkd = |{r | 1 ≤ r ≤ l and kr = k and (xk + jr) modD = d}|
is the number of blocks of run k on disk d that are chronologically ≤ l, and d =
(xkl + jl) modD. Let ulk = |{r | 1 ≤ r ≤ l and kr = k}|; then

tlkd =

ulk − (d− xk) modD

D

,

because jr runs through the values 0, 1, . . . , ulk − 1 when 1 ≤ r ≤ l and kr = k. The
sequence tl for the example of (19), (20), and (21) is

11111 22223 43456 34567 82345 67893

If l > P , the number of buffer blocks we need as we begin to merge from the lth
block in chronological order is Il +D+ P , where Il is the number of Şinversions-with-
equalityŤ of tl, namely |{r | r > l and tr ≤ tl}|, the number of bufferfuls that weŠve
read but arenŠt ready to use; D represents the buffers into which the next input is
going, and P represents the partially full buffers from which we are currently merging.
(With special care, using links as in SyncSort, we could reduce the latter requirement
from P to P − 1, but the extra complication is probably not worthwhile.)

So the problem boils down to getting an upper bound on Il. We may assume that
the input runs are inĄnitely long. Suppose s of the elements {t1, . . . , tl} are greater
than tl; then tl has tlD − l + s inversions-with-equality, because exactly tlD elements
are ≤ tl. It follows that the maximum Il occurs when s = 0 and tl is a left-to-right
maximum. We have

P
k=1 ulk = l; hence by the formulas for tl above,

Il ≤ max
l>P

(tlD − l) ≤
P

k=1

(ulk − (d− xk) modD +D − 1− ulk)

= P (D − 1)−
P

k=1

(d− xk) modD

≤ P (D − 1)− min
0≤d<D

P

k=1

(d− xk) modD,

and there exist chronological orders for which this upper bound is attained.
Suppose rt of the xk are equal to t. We want to choose the xk so that min0≤d<D sd

is maximized, where sd =
P

k=1(d − xk) modD =
D−1

t=0 ((d − t) modD)rt. We can
assume that the minimum occurs at d = 0. Then s1 = s0 +P −r1D, s2 = s1 +P −r2D,
. . . , hence we have r1 ≤ ⌊P/D⌋, r1 + r2 ≤ ⌊2P/D⌋, . . . ; it follows that the minimum is

s0 = (D−1)r1+(D−2)r2+· · ·+rD−1 ≤
D−1

k=1

⌊kP/D⌋ =
1
2

((P−1)(D−1)+gcd(P,D)−1),

700 ANSWERS TO EXERCISES 5.4.9

by exercise 1.2.4Ű37. This bound is achieved when xj = ⌈jD/P ⌉ − 1 for 1 ≤ j ≤ P .
With such xj we can handle every chronological sequence at full speed if we have

Imax +D+P = 1
2
PD+ 3

2
D+ 1

2
P + 1

2
gcd(P,D)− 1 input buffers containing B records

each. (This is pretty good when D = 2 or 3.)

25. Notice that at Time 4, we go back to reading f1 on disk 0:

Active reading Active merging Scratch Waiting for
Time 1 e0 b0g0a0c0 −−−−−−−− (−−−−−−−) a0

Time 2 f1d0d1d2f0 a0−−−−−−− b0 c0(e0g0−−−) d0

Time 3 a2h0e2g1d3 a0b0 c0d0−−−− e0f0g0(d1d2f1−) h0

Time 4 f1e1 b1g1a1 a0b0 c0d0e0f0g0h0 d1(d2e2d3f1g1a2) e1

Time 5 a2f2h1e3g2 a0b0 c0d1e1f0g0h0 d2e2d3a1f1b1g1() a2

Time 6 d4a3f3b2e4 a2b1 c0d3e2f1g1h0 f2e3(h1g2−−−) d4

Time 7 c1a3f3 ? e4 a2b1 c0d4e3f2g1h0 (h1b2g2a3f3e4−) c1

Time 8 ? d5d6 ? ? a2b1 c1d4e3f2g1h0 h1b2g2a3f3e4(?) d5

26. While D blocks are being read and D are being written, the merging procedure
might generate up to P +Q− 1 blocks of output, under the assumptions of (24). (Not
P + Q, since only one merge buffer becomes totally empty.) Reading is as fast as
writing, so D+P +Q− 1 output buffers are necessary and sufficient to prevent output
hangup.

However, at most D blocks are output for every D blocks of input, on the average,
so about 3D output buffers should be adequate in practice.

27. (a) En(m1, . . . ,mp) =
m

t=1 qt, where qt is the probability that some urn contains
at least t balls. Clearly qt ≤ 1 and

qt ≤
n−1

k=0

Pr(urn k contains at least t balls) = nPr(Sn(m1, . . . ,mp) ≥ t).

(b) The probability generating function of Sn(m1, . . . ,mp) is

p(z) =
p

k=1

zqk(1 + (z − 1)rk/n),

where qk = ⌊mk/n⌋ and rk = mk mod n. Now 1 + α ≤ (1 + α/n)n and 1 + αr/n ≤
(1 +α/n)r when α ≥ 0; hence we have Pr(Sn(m1, . . . ,mp) ≥ t) ≤ (1 +α)−tp(1 +α) ≤
(1 + α)−tp

k=1(1 + α/n)mk = (1 + α)−t(1 + α/n)m.
If t ≤ m/n, we use the Ş1Ť term in the stated minimum. If t > m/n, the quantity

(1 + α)−t(1 + α/n)m takes its minimum value (n− 1)m−tmm/(nmtt(m− t)m−t) when
α = (nt−m)/(m− t).
28. Numerical evidence seems to support this natural conjecture. For example, we
have

E10(1, 1, 1, 1, 1, 1, 1, 1) = 2.3993180,
E10(2, 1, 1, 1, 1, 1, 1) = 2.364540,
E10(2, 2, 1, 1, 1, 1) = 2.32076,
E10(3, 1, 1, 1, 1, 1) = 2.29958,
E10(2, 2, 2, 1, 1) = 2.2628,
E10(3, 2, 1, 1, 1) = 2.2460,
E10(4, 1, 1, 1, 1) = 2.2076,

E10(2, 2, 2, 2) = 2.178,
E10(3, 2, 2, 1) = 2.166,
E10(3, 3, 1, 1) = 2.152,
E10(4, 2, 1, 1) = 2.138,
E10(5, 1, 1, 1) = 2.090,
E10(3, 3, 2) = 2.02,
E10(4, 2, 2) = 2.01,

E10(4, 3, 1) = 2.00,
E10(5, 2, 1) = 1.98,
E10(6, 1, 1) = 1.94,
E10(4, 4) = 1.7,
E10(5, 3) = 1.7,
E10(6, 2) = 1.7,
E10(7, 1) = 1.7.

5.5 ANSWERS TO EXERCISES 701

29. (a) At time t, all disks are reading blocks that occur no earlier than the block
marked at time t. The next Q blocks are never removed from the scratch buffers once
they have been read. Thus the relevant blocks on disk j all are read by time ≤ t+Nj ;
they must all participate in the merge by time t+ max(N0, . . . , ND−1).

(b) If the (Q+ 1)st block after a marked block is not removed, the same argument
applies. Otherwise the previous Q are not marked, and the Q+ 2 blocks cannot all be
on different disks.

(c) Divide the chronological order of blocks into groups of size Q+ 2, and consider
any particular group. If there are Mk blocks from run k, then the numbers Nj are
equivalent to the number of balls in the jth urn, in a cyclic occupancy problem with
n = D and m = Q + 2. Thus the expected number of marked cells in any group is
at most the upper bound in exercise 27(b). Calling that upper bound en(m), we may
take r(d,m) = (d/m)ed(m).

[Actually this function r(2,m) is not monotonic in m when m is small. Therefore
the entries listed for r(2, 4) and r(2, 12) in Table 2 are actually the values of r(2, 3) and
r(2, 11); additional buffers cannot increase the number of marked blocks.]

30. Let l = ⌈(s+
√

2s) ln d⌉, α =

2/s. Then

ed(sd ln d) < l +

t>l

d(1 + α/d)sd ln d/(1 + α)t

= l + d(1 + α/d)sd ln d/α(1 + α)l

≤ l + α−1 exp((ln d)(1 + sα− (s+
√

2s) ln(1 + α))),

and (s+
√

2s) ln(1 + α) > sα+ 1− α/3. Therefore

1 ≤ r(d, sd ln d) =
ed(sd ln d)
s ln d

< 1 +

2
s

+
1√

2s ln d

1 +

2
9s

ln d+O(s−1(log d)2)

,

if s/(log d)2 →∞. Convergence to this asymptotic behavior is rather slow (see Table 2).

31. (When Q = 0, we mark the Ąrst block and then repeatedly mark the next
block that shares a disk with one of the blocks in the group starting with the pre-
viously marked block. For example, if the chronological order of disk accesses is
112020121210122, the marking would be 1̄1̄202̄012̄12̄101̄22̄. Therefore as P → ∞,
we read an average of Q(D)n blocks during n units of time, where Q is RamanujanŠs
function, deĄned in Eq. 1.2.11.3Ű(2). By contrast, r(d, 2) = (d + 1)/2 gives a much
more pessimistic estimate.)

SECTION 5.5

1. It is difficult to decide which sorting algorithm is best in a given situation.

2. For small N, list insertion; for medium N, say N = 64, list merge; for large N,
radix list sort.

3. (Solution by V. Pratt.) Given two nondecreasing runs α and β to be merged,
determine in a straightforward way the subruns α1α2α3β1β2β3 such that α2 and β2

contain precisely the keys of α and β having the median value of the entire Ąle.
By successive Şreversals,Ť Ąrst forming α1α2β

R
1 α

R
3 β2β3, then α1β1α

R
2 β

R
2 α3β3, then

α1β1α2β2α3β3, we can reduce the problem to the merging of subĄles α1β1 and α3β3

that are of length ≤ N/2.

702 ANSWERS TO EXERCISES 5.5

A considerably more complicated algorithm due to L. Trabb Pardo provides the
best possible asymptotic answer to this problem: We can do stable merging in O(N)
time and stable sorting in O(N logN) time, using only O(logN) bits of auxiliary
memory for a Ąxed number of index variables, without transforming the records being
sorted in any way [SICOMP 6 (1977), 351Ű372]. The same time and space bounds have
been achieved with much smaller constant factors by B.-C. Huang and M. A. Langston,
Comp. J. 35 (1992), 643Ű650. See also A. Symvonis, Comp. J. 38 (1995), 681Ű690, for
stable merging of M items with N when M is much smaller than N .

4. Only straight insertion, list insertion, and list merge. The variants of quicksort
could be made parsimonious, but only at the expense of extra work in the inner loops
(see exercise 5.2.2Ű24).

Parsimonious methods are especially useful when the result of a comparison is not
100% reliable; see D. E. Knuth, Lecture Notes in Comp. Sci. 606 (1992), 61Ű67.

SECTION 6.1

1.

(N2 − 1)/12; see Eq. 1.2.10Ű(22).

2. S1′. [Initialize.] Set P← FIRST.

S2′. [Compare.] If K = KEY(P), the algorithm terminates successfully.

S3′. [Advance.] Set P← LINK(P).

S4′. [End of Ąle?] If P ̸= Λ, go back to S2′. Otherwise the algorithm terminates
unsuccessfully.

3. KEY EQU 3:5
LINK EQU 1:2
START LDA K 1

LD1 FIRST 1
2H CMPA 0,1(KEY) C

JE SUCCESS C
LD1 0,1(LINK) C − S
J1NZ 2B C − S

FAILURE EQU * 1− S

The running time is (6C − 3S + 4)u.

4. Yes, if we have a way to set ŞKEY(Λ)Ť equal to K. [But the technique of loop
duplication used in Program Q′ has no effect in this case.]

5. No; Program Q always does at least as many operations as Program Q′.

6. Replace line 08 by JE *+4; CMPA KEY+N+2,1; JNE 3B; INC1 1; and change lines
03Ű04 to ENT1 -2-N; 3H INC1 3.

7. Note that CN = 1
2
CN−1 + 1.

8. EulerŠs summation formula gives

H(x)
n = ζ(x) +

n1−x

(1− x)
+

1
2
n−x − B2x

2!
n−1−x +

B3x(x+ 1)
3!

n−2−x −O(n−3−x).

[Complex variable theory tells us that

ζ(x) = 2xπx−1 sin(1
2
πx)Γ (1− x)ζ(1− x),

a formula that is particularly useful when x < 0.]

9. (a) Yes: CN = N −N−θH
(−θ)
N−1 = N + 1−N−θH

(−θ)
N = θ

1+θ
N + 1

2
+O(N−θ).

(b) CN = θ
1+θ

1 +N/

1−

N−θ

N

= θ

1+θ
(N +N1−θ/Γ (1− θ) + 1) +O(N1−2θ).

(c) When θ < 0, (11) is not a probability distribution; (16) gives the estimate
CN = − θ

1+θ
Γ (1− θ)N1+θ +O(N1+2θ) +O(1) instead of (15).

6.1 ANSWERS TO EXERCISES 703

10. p1 ≤ · · · ≤ pN ; (maximum CN) = (N + 1) − (minimum CN). [Similarly in the
unequal-length case, the maximum average search time is L1(1+p1)+ · · ·+LN (1+pN)
minus the minimum average search time.]

11. (a) The terms of fm−1(xi1
, . . . , xim−1

)pi are just the probabilities of the possible
sequences of requests that could have preceded, leaving Ri in position m. (b) The
second identity comes from summing

n
m

cases of the Ąrst, on the different m-subsets

of X, noting the number of times each Pnk occurs. The third identity is a consequence
of the second, by inversion. [Alternatively, the principle of inclusion and exclusion
could be used.] (c)

m≥0 mPnm = nQnn −Qn(n−1); hence

di = 1 + (N − 1)− pi

j ̸=i

1
pi + pj

;

i

pidi = N −

i<j

p2
i + p2

j

pi + pj
= N −

i<j

pi + pj − 2pipj

pi + pj

= Eq. (17).

Notes: W. J. Hendricks [J. Applied Probability 9 (1972), 231Ű233] found a simple
formula for the steady-state probability of each permutation of the records. For
example, when N = 4 the sequence will be R3 R1 R4 R2 with limiting probability

p3

p3 + p1 + p4 + p2

p1

p1 + p4 + p2

p4

p4 + p2

p2

p2
.

In fact, this distribution had already been obtained by M. L. Tsetlin in his Ph.D. thesis
at Moscow University in 1964, and published in Chapter 1 of his Russian book Studies
in Automata Theory and Simulation of Biological Systems (1969).

James Bitner [SICOMP 8 (1979), 82Ű85] proved that, if the list is originally in
random order, the expected search time after t random requests exceeds CN by the
quantity 1

4

i,j(pi − pj)2(1 − pi − pj)t/(pi + pj). Thus, t searches require fewer than

t CN + 1
4

i,j(pi−pj)2/(pi +pj)2 < t CN + 1

2

N
2

comparisons altogether, on the average.

See P. Flajolet, D. Gardy, and L. Thimonier, Discrete Applied Math. 39 (1992), 207Ű
229, §6, for instructive proofs via generating functions.

12. CN = 21−N + 2
N−2

n=0 1/(2n + 1), which converges rapidly to 2α′ ≈ 2.5290;
exercise 5.2.4Ű13 gives the value of α′ to 40 decimal places.

13. After evaluating the rather tedious sum

n

k=1

k2Hn+k =
n(n+ 1)(2n+ 1)

6
(2H2n −Hn)− n(n+ 1)(10n− 1)

36
,

we obtain the answer

CN = 4
3
N − 2

3
(2N + 1)(H2n −Hn) + 5

6
− 1

3
(N + 1)−1 ≈ .409N.

14. We may assume that x1 ≤ x2 ≤ · · · ≤ xn; then the maximum value occurs when
ya1
≤ ya2

≤ · · · ≤ yan , and the minimum when ya1
≥ · · · ≥ yan , by an argument like

that of Theorem S.

15. Arguing as in Theorem S, the arrangement R1R2 . . . RN is optimum if and only if

P1/L1(1− P1) ≥ · · · ≥ PN/LN (1− PN).

704 ANSWERS TO EXERCISES 6.1

16. The expected time T1 + p1T2 + p1p2T3 + · · ·+ p1p2 · · · pN−1TN is minimized if and
only if T1/(1 − p1) ≤ · · · ≤ TN/(1 − pN). [BIT 3 (1963), 255Ű256; some interesting
extensions have been obtained by James R. Slagle, JACM 11 (1964), 253Ű264.]

17. Do the jobs in order of increasing deadlines, regardless of the respective times Tj !
[Management Science Research Report 43, UCLA (1955). Of course in practice some
jobs are more important than others, and we may want to minimize the maximum
weighted tardiness. Or we may wish to minimize the sum

n
i=1 max(Ta1

+ · · ·+Tai −
Dai , 0). Neither of these problems appears to have a simple solution.]

18. Let h = [s is present]. Let A = {j | qj < rj}, B = {j | qj = rj}, C = {j | qj > rj},
D = {j | tj > 0}; then the sum

i,j pipjd|i−j| for the (q, r) arrangement minus the

corresponding sum for the (q′, r′) arrangement is equal to

2

i∈A, j∈C

(qi−ri)(qj−rj)(d|i−j|−dh+1+2k−i−j) + 2

i∈C, j∈D

(qi−ri)tj(dh+2k−i+j−di−1+j).

This is positive unless C = ∅ or A ∪ D = ∅. The desired result now follows because
the organ-pipe arrangements are the only permutations that are not improved by this
construction and its left-right dual when m = 0, 1.

[This result is essentially due to G. H. Hardy, J. E. Littlewood, and G. Pólya, Proc.
London Math. Soc. (2), 25 (1926), 265Ű282, who showed, in fact, that the minimum
of

i,j piqjd|i−j| is achieved, under all independent arrangements of the pŠs and qŠs,
when both pŠs and qŠs are in a consistent organ-pipe order. For further commentary
and generalizations, see their book Inequalities (Cambridge University Press, 1934),
Chapter 10.]

19. All arrangements are equally good. Assuming that d(j, j) = 0, we have

i,j

pipj d(i, j) = 1
2

i,j

pipj(d(i, j) + d(j, i))[i ̸= j] = 1
2
(1− p2

1 − · · · − p2
N)c.

[The special case d(i, j) = 1 + (j − i) modN for i ̸= j is due to K. E. Iverson,
A Programming Language (New York: Wiley, 1962), 138. R. L. Baber, JACM 10

(1963), 478Ű486, has studied some other problems associated with tape searching when
a tape can read forward, rewind, or backspace k blocks without reading. W. D. Frazer
observes that it is possible to make signiĄcant reductions in the search time if we are
allowed to replicate some of the information in the Ąle; see E. B. Eichelberger, W. C.
Rodgers, and E. W. Stacy, IBM J. Research & Development 12 (1968), 130Ű139, for
an empirical solution to a similar problem.]

20. Going from (q, r) to (q′, r′) as in exercise 18, with m = 0 or m = h = 1, gives a
net change of

i∈A, j∈C

(qi − ri)(qj − rj)(d|i−j| −min(dh+1+2k−i−j , di+j−1)),

which is positive unless A or C is ∅. By circular symmetry it follows that the only
optimal arrangements are cyclic shifts of the organ-pipe conĄgurations. [For a different
class of problems with the same answer, see T. S. Motzkin and E. G. Straus, Proc.
Amer. Math. Soc. 7 (1956), 1014Ű1021.]

21. This problem was essentially Ąrst solved by L. H. Harper, SIAM J. Appl. Math.
12 (1964), 131Ű135. For generalizations and references to other work, see J. Applied
Probability 4 (1967), 397Ű401.

6.2.1 ANSWERS TO EXERCISES 705

22. A priority queue of size 1000 (represented as, say, a heap, see Section 5.2.3).
Insert the Ąrst 1000 records into this queue, with the element of greatest d(Kj ,K) at
the front. For each subsequent Kj with d(Kj ,K) < d(front of queue,K), replace the
front element by Rj and readjust the queue.

SECTION 6.2.1

1. Prove inductively that Kl−1 < K < Ku+1 whenever we reach step B2; and that
l ≤ i ≤ u whenever we reach B3.

2. (a, c) No; it loops if l = u− 1 and K > Ku. (b) Yes, it does work. But when K is
absent, there will often be a loop with l = u and K < Ku.

3. This is Algorithm 6.1T with N = 3. In a successful search, that algorithm makes
(N + 1)/2 comparisons, on the average; in an unsuccessful search it makes N/2 + 1−
1/(N + 1).

4. It must be an unsuccessful search with N = 127; hence by Theorem B the answer
is 138u.

5. Program 6.1Q′ has an average running time of 1.75N + 8.5− (N mod 2)/4N ; this
beats Program B if and only if N ≤ 44. [It beats Program C only for N ≤ 11.]

7. (a) Certainly not. (b) The parenthesized remarks in Algorithm U will hold true,
so it will work, but only if K0 = −∞ and KN+1 = +∞ are both present when N is
odd.

8. (a) N. It is interesting to prove this by induction, observing that exactly one of the
δŠs increases if we replace N by N + 1. [See AMM 77 (1970), 884 for a generalization.]
(b) Maximum =

j δj = N ; minimum = 2δ1 −

j δj = N mod 2.

9. If and only if N = 2k − 1.

10. Use a Şmacro-expandedŤ program with the DELTAŠs included; thus, for N = 10:

START ENT1 5
LDA K
CMPA KEY,1
JL C3A

C4A JE SUCCESS C3A EQU *
INC1 3 DEC1 3
CMPA KEY,1 CMPA KEY,1
JL C3B JGE C4B

C4B JE SUCCESS C3B EQU *
INC1 1 DEC1 1
CMPA KEY,1 CMPA KEY,1
JL C3C JGE C4C

C4C JE SUCCESS C3C EQU *
INC1 1 DEC1 1
CMPA KEY,1 CMPA KEY,1
JE SUCCESS JE SUCCESS
JMP FAILURE JMP FAILURE

[Exercise 23 shows that most of the ‘JEŠ instructions may be eliminated, yielding a
program about 6 lgN lines long that takes only about 4 lgN units of time; but that
program will be faster only for N ≥ 1000 (approximately).]

706 ANSWERS TO EXERCISES 6.2.1

11. Consider the corresponding tree, such as Fig. 6: When N is odd, the left subtree
of the root is a mirror image of the right subtree, so K < Ki occurs just as often as
K > Ki; on the average C1 = 1

2
(C + S) and C2 = 1

2
(C − S), A = 1

2
(1− S). When N

is even, the tree is the same as the tree for N + 1 with all labels decreased by 1, except
that ❦0 becomes redundant; on the average, letting k = ⌊lgN⌋, we have

C1 =
C + 1

2
− k

2N
, C2 =

C − 1
2

+
k

2N
, A = 0, if S = 1;

C1 =
(k + 1)N
2(N + 1)

, C2 =
(k + 1)(N + 2)

2(N + 1)
, A =

N

2(N + 1)
, if S = 0.

(The average value of C is stated in the text.)

12. 8

4 9

2 6 7 11

1 3 5 7 8 10 12

0 1 2 3 4 5 6 7 8 9 10 11 12

13. N = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CN = 1 1 1
2

1 2
3

2 1
4

2 1
5

2 2
6

2 3
7

3 1
8

3 3 3 3 2
12

3 3
13

3 3
14

3 4
15

4 1
16

C′
N = 1 1 2

3
2 2 3

5
2 4

6
3 3 3 6

9
3 6

10
3 8

11
3 8

12
4 4 4 4 4 13

17

14. One idea is to Ąnd the least M ≥ 0 such that N +M has the form Fk+1 − 1, then
to start with i← Fk−M in step F1, and to insert ŞIf i ≤ 0, go to F4Ť at the beginning
of F2. A better solution would be to adapt SharŠs idea to the Fibonaccian case: If the
result of the very Ąrst comparison is K > KFk , set i← i−M and go to F4 (proceeding
normally from then on). This avoids extra time in the inner loop.

15. The external nodes appear on levels ⌊k/2⌋ through k − 1; the difference between
these levels is greater than unity except when k = 0, 1, 2, 3, 4.

16. The Fibonacci tree of order k, with left and right reversed, is the binary tree corre-
sponding to the lineal chart up to the kth month, under the Şnatural correspondenceŤ
of Section 2.3.2, if we remove the topmost node of the lineal chart.

17. Let the path length be k−A(n); then A(Fj) = j and A(Fj +m) = 1 +A(m) when
0 < m < Fj−1.

18. Successful search: Ak = 0, Ck = (3kFk+1 + (k − 4)Fk)/5(Fk+1 − 1) − 1, C1k =
Ck−1(Fk − 1)/(Fk+1 − 1). Unsuccessful search: A′

k = Fk/Fk+1, C′
k = (3kFk+1 +

(k − 4)Fk)/5Fk+1, C1′
k = C′

k−1Fk/Fk+1 + Fk−1/Fk+1. C2 = C − C1. (See exercise
1.2.8Ű12 for the solution to related recurrences.)

20. (a) b = p−pq−q. (b) There are at least two errors. The Ąrst blunder is that
division is not a linear function, so it canŠt be simply Şaveraged over.Ť Actually with
probability p we get pN elements remaining, and with probability q we get qN, so we
can expect to get (p2 + q2)N ; thus the average reduction factor is really 1/(p2 + q2).
Now the reduction factor after k iterations is 1/(p2 + q2)k, but we cannot conclude
that b = 1/(p2 + q2) since the number of iterations needed to locate some of the items
is much more than to locate others. This is a second fallacy. [It is very easy to make

6.2.1 ANSWERS TO EXERCISES 707

plausible but fallacious probability arguments, and we must always be on our guard
against such pitfalls!]

21. ItŠs impossible, since the method depends on the key values.

22. FOCS 17 (1976), 173Ű177. See also Y. Perl, A. Itai, and H. Avni, CACM 21

(1978), 550Ű554; G. H. Gonnet, L. D. Rogers, and J. A. George, Acta Informatica
13 (1980), 39Ű52; G. Louchard, RAIRO Inform. Théor. 17 (1983), 365Ű385; Comput-
ing 46 (1991), 193Ű222. The variance is O(log logN). Extensive empirical tests by
G. Marsaglia and B. Narasimhan, Computers and Math. 26, 8 (1993), 31Ű42, show
that the average number of table accesses is very close to lg lgN , plus about 0.7 if the
search is unsuccessful. When N = 220, for example, a random successful search in
a random table takes about 4.29 accesses, while a random unsuccessful search takes
about 5.05.

23. Go to the right on ≥ , to the left on < ; when reaching node i it follows from (1)
that Ki ≤ K < Ki+1, so a Ąnal test for equality will distinguish between success or
failure. (The key K0 = −∞ should always be present.)

Algorithm C would be changed to go to C4 if K = Ki in step C2. In C3 if
DELTA[j] = 0, set i ← i − 1 and go to C5. In C4 if DELTA[j] = 0, go directly to C5.
Add a new step C5: ŞIf K = Ki, the algorithm terminates successfully, otherwise it
terminates unsuccessfully.Ť [This would not speed up Program C unless N > 226; the
average successful search time changes from (8.5 lgN − 6)u to (8 lgN + 7)u.]

24. The keys can be arranged so that we Ąrst set i ← 1, then i ← 2i or 2i + 1
according as K < Ki or K > Ki; the search is unsuccessful when i > N. For example
when N = 12 the necessary key arrangement is

K8 < K4 < K9 < K2 < K10 < K5 < K11 < K1 < K12 < K6 < K3 < K7.

When programmed for MIX this method will take only about 6 lgN units of time, so it
is faster than Program C. The only disadvantage is that it is a little tricky to set up
the table in the Ąrst place.

25. (a) Since a0 = 1 − b0, a1 = 2a0 − b1, a2 = 2a1 − b2, etc., we have A(z) + B(z) =
1 + 2zA(z). Several of the formulas derived in Section 2.3.4.5 follow immediately
from this relation by considering A(1), B(1), B(1

2
), A′(1), and B′(1). If we use two

variables to distinguish left and right steps of a path we obtain the more general result
A(x, y) + B(x, y) = 1 + (x + y)A(x, y), a special case of a formula that holds in t-ary
trees [see R. M. Karp, IRE Transactions IT-7 (1961), 27Ű38].

(b) var (g) = ((N + 1)/N) var (h)− ((N + 1)/N2) mean(h)2 + 2.

26. The merge tree for the three-tape polyphase merge with a perfect level k distri-
bution is the Fibonacci tree of order k + 1 if we permute left and right appropriately.
(Redraw the polyphase tree of Fig. 76 in Section 5.4.4, with the left and right subtrees
of A and C reversed, obtaining Fig. 8.)

27. At most k + 1 of the 2k outcomes will ever occur, since we may order the indices
in such a way that Ki1

< Ki2
< · · · < Kik . Thus the search can be described by

a tree with at most (k + 1)-way branching at each node. The number of items that
can be found on the mth step is at most k(k + 1)m−1; hence the average number of
comparisons is at least N−1 times the sum of the smallest N elements of the multiset
{k·1, k(k + 1)·2, k(k + 1)2·3, . . .}. When N ≥ (k + 1)n − 1, the average number of
comparisons is ≥ ((k + 1)n − 1)−1n

m=1 k(k + 1)m−1m > n− 1/k.

708 ANSWERS TO EXERCISES 6.2.1

28. [Skrifter udgivne af Videnskabs-Selskabet i Christiania, Mathematisk-Naturviden-
skabelig Klasse (1910), No. 8; reprinted in ThueŠs Selected Mathematical Papers (Oslo:
Universitetsforlaget, 1977), 273Ű310.] (a) Tn has Fn+1+Fn−1 = F2n/Fn leaves. (This is
the so-called Lucas number Ln = ϕn+ ϕ n.) (b) The axiom says that T0(T2(x)) = T1(x),
and we obviously have Tm(Tn(x)) = Tm+n−1(x) when m = 1 or n = 1. By induction
on n, the result holds when m = 0; for example, T0(T3(x)) = T0(T2(x) ∗ T1(x)) =
T0(T1(T2(x))∗T0(T2(x))) = T0(T2(T2(x))) = T2(x). Finally we can use induction on m.

29. Assume that K0 = −∞ and KN+1 = KN+2 = ∞. First do a binary search on
K2 < K4 < · · · ; this takes at most ⌊lgN⌋ comparisons. If unsuccessful, it determines
an interval with K2j−2 < K < K2j ; and K is not present if 2j = N + 2. Otherwise, a
binary search for K2j−1 will determine i such that K2i−2 < K2j−1 < K2i. Then either
K = K2i−1 or K is not present. [See Theor. Comp. Sci. 58 (1988), 67.]

30. Let n = ⌊N/4⌋. Starting with K1 < K2 < · · · < KN , we can put K1, K3,
. . . , K2n−1 into any desired order by swapping them with a permutation of K2n+1,
K2n+3, . . . , K4n−1; this arrangement satisĄes the conditions of the previous exercise.
Now we let K1 < K3 < · · · < K2t+1−3 represent the boundaries between all possible
t-bit numbers, and we insert K2t+1−1, K2t+1+1, . . . , K2t+1+2m−3 between these Şfence-
postsŤ according to the values of x1, x2, . . . , xm. For example, if m = 4, t = 3,
x1 = (001)2, x2 = (111)2, and x3 = x4 = (100)2, the desired order is

K1 < K15 < K3 < K5 < K7 < K19 < K21 < K9 < K11 < K13 < K17.

(We could also let K21 precede K19.) A binary search for K2t+1+2j−3 in the subarray
K1 < K3 < · · · < K2t+1−3 will now Ąnd the bits of xj from left to right. [See Fiat,
Munro, Naor, Schäffer, Schmidt, and Siegel, J. Comp. Syst. Sci. 43 (1991), 406Ű424.]

SECTION 6.2.2

1. Use a header node, with say ROOT ≡ RLINK(HEAD); start the algorithm at step T4
with P← HEAD. Step T5 should act as if K > KEY(HEAD). [Thus, change lines 04 and 05
of Program T to ‘ENT1 ROOT; CMPA KŠ.]

2. In step T5, set RTAG(Q)← 1. Also, when inserting to the left, set RLINK(Q)← P;
when inserting to the right, set RLINK(Q) ← RLINK(P) and RTAG(P) ← 0. In step
T4, change the test ŞRLINK(P) ̸= ΛŤ to ŞRTAG(P) = 0Ť. [If nodes are inserted into
successively increasing locations Q, and if all deletions are last-in-Ąrst-out, the RTAG
Ąelds can be eliminated since RTAG(P) will be 1 if and only if RLINK(P) < P. Similar
remarks apply with simultaneous left and right threading.]

3. We could replace Λ by a valid address, and set KEY(Λ) ← K at the beginning of
the algorithm; then the tests for LLINK or RLINK = Λ could be removed from the inner
loop. However, in order to do a proper insertion we need to introduce another pointer
variable that follows P; this can be done without losing the stated speed advantage, by
duplicating the code as in Program 6.2.1F. Thus the MIX time would be reduced to
about 5.5C units.

4. CN = 1+(0·1+1·2+· · ·+(n−1)2n−1+C′
2n−1+· · ·+C′

N−1)/N = (1+1/N)C′
N−1, for

N ≥ 2n−1. The solution to these equations is C′
N = 2(HN+1−H2n)+n for N ≥ 2n−1,

a savings of 2H2n − n − 2 ≈ n(ln 4 − 1) comparisons. The actual improvement for
n = 1, 2, 3, 4 is, respectively 0, 1

6
, 61

140
, 274399

360360
; thus comparatively little is gained

for small Ąxed n. [See Frazer and McKellar, JACM 17 (1970), 502, for a more detailed
derivation related to an equivalent sorting problem.]

6.2.2 ANSWERS TO EXERCISES 709

5. (a) The Ąrst element must be CAPRICORN; then we multiply the number of ways
to produce the left subtree by the number of ways to produce the right subtree, times

10
3

, the number of ways to shuffle those two sequences together. Thus the answer

comes to 10
3

2
0

1
0

0
0

6
3

2
0

1
0

0
0

2
1

0
0

0
0

= 4800.

[In general, the answer is the product, over all nodes, of

l+r
r

, where l and r stand

for the sizes of the left and right subtrees of the node. This is equal to N ! divided by
the product of the subtree sizes. It is the same formula as in exercise 5.1.4Ű20; indeed,
there is an obvious one-to-one correspondence between the permutations that yield a
particular search tree and the ŞtopologicalŤ permutations counted in that exercise, if we
replace ak in the search tree by k (using the notation of exercise 6).] (b) 2N−1 = 1024;
at each step but the last, insert either the smallest or largest remaining key.

6. (a) For each of the Pnk permutations a1 . . . an−1an whose cost is k, construct n+1
permutations a′1 . . . a

′
n−1ma′n, where a′j = aj or aj +1, according as aj < m or aj ≥ m.

[See Section 1.2.5, Method 2.] If m = an or an +1, this permutation has a cost of k+1,
otherwise it has a cost of k. (b) Gn(z) = (2z + n− 2) (2z + n− 3) . . . (2z). Hence

Pnk =

n− 1
k

2k.

This generating function was, in essence, obtained by W. C. Lynch, Comp. J. 7 (1965),
299Ű302. (c) The generating function for probabilities is gn(z) = Gn(z)/n!. This is a
product of simple probability generating functions, so the variance of C′

n−1 is

var(gn) =
n−2

k=0

var

2z + k

2 + k

=

n−2

k=0

2

k + 2
− 4

(k + 2)2

= 2Hn − 4H(2)

n + 2.

[By exercise 6.2.1Ű25(b) we can use the mean and variance of C′
n to compute the

variance of Cn, which is (2 + 10/n)Hn − 4(1 + 1/n)(H(2)
n +H2

n/n) + 4; this formula is
due to G. D. Knott.]

7. A comparison with the kth largest element will be made if and only if that element
occurs before the mth and before all those between the kth and mth; this happens with
probability 1/(|m−k|+1). Summing over k gives the answer Hm+Hn+1−m−1. [CACM
12 (1969), 77Ű80; see also L. Guibas, Acta Informatica 4 (1975), 293Ű298.]

8. (a) gn(z) = zn−1n
k=1 gk−1(z)gn−k(z)/n, g0(z) = 1.

(b) 7n2 − 4(n+ 1)2H
(2)
n − 2(n+ 1)Hn + 13n. [P. F. Windley, Comp. J. 3 (1960),

86, gave recurrence relations from which this variance could be computed numerically,
but he did not obtain the solution. Notice that this result is not simply related to the
variance of Cn stated in the answer to exercise 6.]

10. For example, each word x of the key could be replaced by axmodm, where m is
the computer word size and a is a random multiplier relatively prime to m. A value
near to (ϕ−1)m can be recommended (see Section 6.4). The Ćexible storage allocation
of a tree method may make it more attractive than a hash coding scheme.

11. N − 2; but this occurs with probability 1/(N N !), only in the deletion

❦1 N N−1 . . . 2.

12. 1
2
(n + 1)(n + 2) of the deletions in the proof of Theorem H belong to Case 1, so

the answer is (N + 1)/2N.

710 ANSWERS TO EXERCISES 6.2.2

13. Yes. In fact, the proof of Theorem H shows that if we delete the kth element
inserted, for any Ąxed k, the result is random. (G. D. Knott [Ph.D. thesis, Stanford,
1975] showed that the result is random after an arbitrary sequence of random insertions
followed by successive deletion of the (k1, . . . , kd)th elements inserted, for any Ąxed
sequence k1, . . . , kd.)

14. Let NODE(T) be on level k, and let LLINK(T) = Λ, RLINK(T) = R1, LLINK(R1) = R2,
. . . , LLINK(Rd) = Λ, where Rd ̸= Λ and d ≥ 1. Let NODE(Ri) have ni internal nodes in
its right subtree, for 1 ≤ i ≤ d. With step D1.5 the internal path length decreases by
k + d+ n1 + · · ·+ nd; without that step it decreases by k + d+ nd.

15. 11, 13, 25, 11, 12. [If aj is the (smallest, middle, largest) of {a1, a2, a3}, the treeq
q❅ is obtained (4, 2, 3)× 4 times after the deletion.]

16. Yes; even the deletion operation on permutations, as deĄned in the proof of
Theorem H, is commutative (if we omit the renumbering aspect). If there is an element
between X and Y , deletion is obviously commutative since the operation is affected only
by the relative positions ofX, Y , and their successors and there is no interaction between
the deletion of X and the deletion of Y . On the other hand, if Y is the successor of X,
and Y is the largest element, both orders of deletion have the effect of simply removing
X and Y . If Y is the successor of X and Z the successor of Y , both orders of deletion
have the effect of replacing the Ąrst occurrence of X, Y , or Z by Z and deleting the
second and third occurrences of these elements within the permutation.

18. Use exercise 1.2.7Ű14.

19. 2HN−1−2
N

k=1(k−1)θ/kNθ = 2HN−1−2/θ+O(N−θ). [The Pareto distribution
6.1Ű(13) also gives the same asymptotic result, to within O(n−θ logn).]

20. Yes indeed. Assume that K1 < · · · < KN, so that the tree built by Algorithm T is
degenerate; if, say, pk = (1 + ((N + 1)/2− k)ϵ)/N, the average number of comparisons
is (N + 1)/2 − (N2 − 1)ϵ/12, while the optimum tree requires fewer than ⌈lgN⌉
comparisons.

21. 1
8
, 3

20
, 9

20
, 3

20
, 1

8
. (Most of the angles are 30◦, 60◦, or 90◦.)

22. This is obvious when d = 2, and for d > 2 we had r[i, j−1] ≤ r[i+1, j−1] ≤
r[i+1, j].

23.

9

[Increasing the weight of the Ąrst node will eventually make it move to the root position;
this suggests that dynamically maintaining a perfectly optimum tree is hard.]

24. Let c be the cost of a tree obtained by deleting the nth node of an optimum tree.
Then c(0, n−1) ≤ c ≤ c(0, n)− qn−1, since the deletion operation always moves n−1
up one level. Also c(0, n) ≤ c(0, n−1) + qn−1, since the stated replacement yields a
tree of the latter cost. It follows that c(0, n−1) = c = c(0, n)− qn−1.

6.2.2 ANSWERS TO EXERCISES 711

25. (a) Assume that A ≤ B and B ≤ C, and let a ∈ A, b ∈ B, c ∈ C, c < a. If c ≤ b
then c ∈ B; hence c ∈ A and a ∈ B; hence a ∈ C. If c > b, then a ∈ B; hence a ∈ C
and c ∈ B; hence c ∈ A. (b) Not hard to prove.

26. The cost of every tree has the form y + lx for some real y ≥ 0 and integer l > 0.
The minimum of a Ąnite number of such functions (taken over all trees) always has the
form described.

27. (a) The answer to exercise 24 (especially the fact that c = c(0, n−1)) implies that
R(0, n−1) = R(0, n) \ {n}.

(b) If l = l′, the result in the hint is trivial. Otherwise let the paths to n be

♠r0 , ♠r1 , . . . , rl and ♠s0 , ♠s1 , . . . , sl′ .

Since r = r0 > s0 = s and rl′ < sl′ = n, we can Ąnd a level k ≥ 0 such that rk > sk

and rk+1 ≤ sk+1. We have rk+1 ∈ R(rk, n), sk+1 ∈ R(sk, n), and R(sk, n) ≤ R(rk, n)
by induction, hence rk+1 ∈ R(sk, n) and sk+1 ∈ R(rk, n); the result in the hint follows.

Now to prove that R′
h ≤ Rh, let r ∈ R′

h, s ∈ Rh, s < r, and consider the optimum
trees shown when x = xh; we must have l ≥ lh and we may assume that l′ = lh. To
prove that Rh ≤ R′

h+1, let r ∈ Rh, s ∈ R′
h+1, s < r, and consider the optimum trees

shown when x = xh+1; we must have l′ ≤ lh and we may assume that l = lh.

29. It is a degenerate tree (see exercise 5) with YOU at the top, THE at the bottom,
needing 19.158 comparisons on the average.

Douglas A. Hamilton has proved that some degenerate tree is always worst. There-
fore an O(n2) algorithm exists to Ąnd pessimal binary search trees.

30. See R. L. Wessner, Information Processing Letters 4 (1976), 90Ű94; F. F. Yao,
SIAM J. Algebraic and Discrete Methods 3 (1982), 532Ű540.

31. See Acta Informatica 1 (1972), 307Ű310.

32. When M is large enough, the optimum tree must have the stated form and the
minimum cost must be M times the minimum external path length plus the solution
to the stated problem.

[Notes: The paper by Wessner cited in answer 30 explains how to Ąnd optimum
binary search trees of height ≤ L. In the special case p1 = · · · = pn = 0, the stated
result is due to T. C. Hu and K. C. Tan, MRC Report 1111 (Univ. of Wisconsin, 1970).
A. M. Garsia and M. L. Wachs proved that in this case all external nodes will appear on
at most two levels if minn

k=1(qk−1 + qk) ≥ maxn
k=0 qk, and they presented an algorithm

that needs only O(n) steps to Ąnd an optimum two-level tree.]

33. For the stated problem, see A. Itai, SICOMP 5 (1976), 9Ű18. For the alternatives,
see D. Spuler, Acta Informatica 31 (1994), 729Ű740.

34. It equals 2H(p1,...,pn)N (2πN)(1−n)/2(p1 . . . pn)−1/2(1 + O(1/N)), if p1 . . . pn ̸= 0,
by StirlingŠs approximation.

35. The minimum value of the right-hand side occurs when 2x = (1 − p)/p, and it
equals 1− p+H(p, 1− p). But H(p, q, r) ≤ 1− p+H(p, 1− p), by (20) with k = 2.

36. First we prove the hint, which is due to Jensen [Acta Math. 30 (1906), 175Ű193].
If f is concave, the function g(p) = f(px+ (1− p)y)− pf(x)− (1− p)f(y) is concave
and satisĄes g(0) = g(1) = 0. If g(p) < 0 and 0 < p < 1 there must be a value p0 < p
with g′(p0) < 0 and a value p1 > p with g′(p1) > 0, by the mean value theorem;
but this contradicts concavity. Therefore f(px + (1 − p)y) ≥ pf(x) + (1 − p)f(y) for
0 ≤ p ≤ 1, a fact that is also geometrically obvious. Now we can prove by induction

712 ANSWERS TO EXERCISES 6.2.2

that f(p1x1 + · · · + pnxn) ≥ p1f(x1) + · · · + pnf(xn), since f(p1x1 + · · · + pnxn) ≥
p1f(x1) + · · ·+ pn−2f(xn−2) + (pn−1 + pn)f((pn−1xn−1 + pnxn)/(pn−1 + pn)) if n > 2.

By Lemma E we have

H(XY) = H(X) +
m

i=1

piH(ri1/pi, . . . , rin/pi);

and the latter sum is
n

j=1

m
i=1 pif(rij/pi) ≤

n
j=1 f(

m
i=1 rij) = H(Y), where

f(x) = x lg(1/x) is concave.

37. By part (a) of exercise 3.3.2Ű26, we have Pr(P1 ≥ s) = (1 − s)n−1. Therefore
EH(P1, . . . , Pn) = nEP1 lg(1/P1) = n

 1

0
(1 − s)n−1 d(s lg(1/s)) = −(A + B)/ ln 2,

where A = n
 1

0
(1− s)n−1ds = 1 and

B = n

 1

0

(1− s)n−1 ln s ds =
n

k=1

n

k

(−1)ksk

 1
k
− ln s

1

0

= −Hn

by exercise 1.2.7Ű13. Thus the answer is (Hn − 1)/ ln 2. (This is lgn+ (γ − 1)/ ln 2 +
O(n−1), very near the maximum entropy H(1

n
, . . . , 1

n
) = lgn. Therefore H(p1, . . . , pn)

is Ω(logn) with high probability.)

38. If sk−1 = sk we have qk−1 = pk = qk = 0; see (26). Construct a tree for the
n − 1 probabilities (p1, . . . , pk−1, pk+1, . . . , pn; q0, . . . , qk−1, qk+1, . . . , qn), and replace
leaf k−1 by a 2-leaf subtree.

39. We can argue as in Theorem M, if 0 < w1 ≤ w2 ≤ · · · ≤ wn and sk = w1 + · · ·+wk,
because wk ≥ 2−t implies that sk−1 + 2−t ≤ sk ≤ sk+1 − 2−t when the weights are
ordered; hence we have |σk| < 1 + lg(1/wk). [This result, together with the matching
lower bound H(w1, . . . , wn), was Theorem 9 in ShannonŠs original paper of 1948.]

40. If k = s+3, the stated rearrangement changes the cost from qk−1l+qkl+qk−2lk−2

to qk−2l + qk−1l + qklk−2, so the net change is (qk−2 − qk)(l− lk−2); this is negative if
l < lk−2, because qk−2 > qk.

Similarly, if k ≥ s+ 4 the rearrangement changes the cost by

δ = qs+1(l − ls+1) + qs+2(l − ls+2) + qs+3(ls+1 − ls+3) + · · ·+ qk−2(lk−4 − lk−2)

+ qk−1(lk−3 − l) + qk(lk−2 − l).

We have qs+1 > qs+3, qs+2 > qs+4, . . . , qk−2 > qk. Therefore we Ąnd

δ ≤ (qk−2 − qk)(l − lk−2) + (qk−3 − qk−1)(l − lk−3) ≤ 0;

for example, when k − s is even we have

δ ≤ qk−3(l − ls+1) + qk−2(l − ls+2) + qk−3(ls+1 − ls+3) + · · ·+ qk−2(lk−4 − lk−2)

+ qk−1(lk−3 − l) + qk(lk−2 − l)

and a similar derivation works when k − s is odd. It follows that δ is negative unless
lk−2 = l.

41. E F G H T U X Y Z V W B C D A P Q R J K L M I N O S ␣.

42. Let qj = WT(Pj). Steps C1ŰC4, which move qk−1 + qk into position between qj−1

and qj , can spoil (31) only at the point i = j − 1.

6.2.3 ANSWERS TO EXERCISES 713

43. Invoke the recursive procedure mark (P1, 0), where mark (P, l) means the following:

LEVEL(P)← l;
if LLINK(P) ̸= Λ then mark (LLINK(P), l + 1);
if RLINK(P) ̸= Λ then mark (RLINK(P), l + 1).

44. Set the global variables t ← 0, m ← 2n, and invoke the recursive subroutine
build (1), where build (l) means the following:

Set j ← m;
if LEVEL(Xt) = l then set LLINK(Xj)← Xt and t← t+ 1,

otherwise set m← m− 1, LLINK(Xj)← Xm, and build (l + 1);
if LEVEL(Xt) = l then set RLINK(Xj)← Xt and t← t+ 1,

otherwise set m← m− 1, RLINK(Xj)← Xm, and build (l + 1).

The variable j is local to the build routine. [This elegant solution is due to R. E. Tarjan,
SICOMP 6 (1977), 639.] Caution: If the numbers l0, . . . , ln do not correspond to any
binary tree, the algorithm will loop forever.

45. Maintain the working array P0, . . . , Pt as a doubly linked list that also has the
links of a balanced tree (see Section 6.2.3). If the 2-descending weights are q0, . . . , qt,
with qh at the root of the tree, we can decide whether to proceed left or right in the
tree based on the values of qh and qh+1; the double linking provides instant access to
qh+1. (No RANK Ąelds are needed; rotation preserves symmetric order, so it does not
require any changes to the double links.)

Several families of weights for which the problem can be solved in O(n) time have
been presented by Hu and Morgenthaler, Lecture Notes in Comp. Sci. 1120 (1996),
234Ű243; it is unknown whether O(n) steps are sufficient in general.

46. See IEEE Trans. C-23 (1974), 268Ű271; see also exercise 6.2.3Ű21.

47. See Altenkamp and Mehlhorn, JACM 27 (1980), 412Ű427.

48. DonŠt let the complicated analyses of the cases N = 3 [Jonassen and Knuth,
J. Comp. Syst. Sci. 16 (1978), 301Ű322] or N = 4 [Baeza-Yates, BIT 29 (1989), 378Ű
394] scare you; think big! Some progress has been reported by Louchard, Randrianari-
manana, and Schott, Theor. Comp. Sci. 93 (1992), 201Ű225.

49. This question was Ąrst investigated by J. M. Robson [Australian Comp. J. 11

(1979), 151Ű153], B. Pittel [J. Math. Anal. Applic. 103 (1984), 461Ű480], and Luc
Devroye [JACM 33 (1986), 489Ű498; Acta Inf. 24 (1987), 277Ű298], who obtained limit
formulas that hold with probability → 1 as n → ∞; see the exposition by H. M.
Mahmoud, Evolution of Random Search Trees (Wiley, 1992), Chapter 2. Sharper
results were subsequently found by Bruce Reed [JACM 50 (2003), 306Ű332] and Michael
Drmota [JACM 50 (2003), 333Ű374], who proved that the average height is α lnn −
(3α ln lnn)/(2α− 2) +O(1) and the variance is O(1), where

α = 1/T (
1
2e

) ≈ 4.31107 04070 01005 03504 70760 96446 89027 83916−

and T (z) =
∞

n=1 n
n−1zn/n! is the tree function.

SECTION 6.2.3

1. The symmetric order of nodes must be preserved by the transformation, otherwise
we wouldnŠt have a binary search tree.

714 ANSWERS TO EXERCISES 6.2.3

2. B(S) = 0 can happen only when S points to the root of the tree (it has never
been changed in steps A3 or A4), and all nodes from S to the point of insertion were
balanced.

3. Let ρh be the largest possible ratio of unbalanced nodes in balanced trees of
height h. Thus ρ1 = 0, ρ2 = 1

2
, ρ3 = 1

2
. We will prove that ρh = (Fh+1−1)/(Fh+2−1).

Let Th be a tree that maximizes ρh; then we may assume that its left subtree has height
h− 1 and its right subtree has height h− 2, for if both subtrees had height h− 1 the
ratio would be less than ρh−1. Thus the ratio for Th is at most (ρh−1Nl +ρh−2Nr + 1)/
(Nl +Nr + 1), where there are (Nl, Nr) nodes in the (left, right) subtree. This formula
takes its maximum value when (Nl, Nr) take their minimum values; hence we may
assume that Th is a Fibonacci tree. And ρh < ϕ− 1 by exercise 1.2.8Ű28.

4. When h = 7,

has greater path length. [Note: C. C. Foster, Proc. ACM Nat. Conf. 20 (1965), 197Ű
198, gave an incorrect procedure for constructing N -node balanced trees of maximum
path length; Edward Logg has observed that FosterŠs Fig. 3 gives a nonoptimal result
after 24 steps (node number 22 can be removed in favor of number 25).]

The Fibonacci tree of order h does, however, minimize the value of (h + a)N −
(external path length(T)) over all balanced trees T of height h − 1, when a is any
nonnegative constant; this is readily proved by induction on h. Its external path length
is 3

5
hFh−1 + 4

5
(h−1)Fh = (ϕ/

√
5)hFh+1 +O(Fh+1) = Θ(hϕh). Consequently the path

length of any N -node balanced tree is at most

min
h

(hN −Θ(hϕh) +O(N)) ≤ N logϕ N −N logϕ logϕ N +O(N).

Moreover, if N is large and k = ⌈lgN⌉, h = ⌊k/ lgϕ− logϕ k⌋ = logϕ N − logϕ logϕ N +
O(1), we can construct a balanced tree of path length hN + O(N) as follows: Write
N + 1 = Fh + Fh−1 + · · ·+ Fk+1 +N ′ = Fh+2 − Fk+2 +N ′, and construct a complete
binary tree on N ′ nodes; then successively join it with Fibonacci trees of orders k, k+1,
. . . , h− 1. [See R. Klein and D. Wood, Theoretical Comp. Sci. 72 (1990), 251Ű264.]

5. This can be proved by induction; if TN denotes the tree constructed, we have

TN =

T
2n−1

−1
T
N−2n−1

, if 2n ≤ N < 2n + 2n−1;

T2n−1 TN−2n

, if 2n + 2n−1 ≤ N < 2n+1.

6. The coefficient of zn in zBj(z)Bk(z) is the number of n-node binary trees whose
left subtree is a balanced binary tree of height j and whose right subtree is a balanced
binary tree of height k.

6.2.3 ANSWERS TO EXERCISES 715

7. Cn+1 = C2
n + 2Bn−1Bn−2; hence if we let α0 = ln 2, α1 = 0, and αn+2 =

ln(1 + 2Bn+1Bn/C
2
n+2) = O(1/BnCn+2), and θ = exp(α0/2 + α1/4 + α2/8 + · · ·),

we Ąnd that 0 ≤ θ2n−Cn = Cn(exp(αn/2 + αn+1/4 + · · ·)− 1) < 1; thus Cn = ⌊θ2n⌋.
For general results on doubly exponential sequences, see Fibonacci Quarterly 11 (1973),
429Ű437. The expression for θ converges rapidly to the value

θ = 1.43687 28483 94461 87580 04279 84335 54862 92481+.

8. Let bh = B′
h(1)/Bh(1) + 1, and let ϵh = 2BhBh−1(bh − bh−1)/Bh+1. Then b1 = 2,

bh+1 = 2bh − ϵh, and ϵh = O(bh/Bh−1); hence bh = 2hβ + rh, where

β = 1− 1
4
ϵ1 − 1

8
ϵ2 − · · · = 0.70117 98151 02026 33972 44868 92779 46053 74616+

and rh = ϵh/2 + ϵh+1/4 + · · · is extremely small for large h. [Zhurnal Vychisl. Matem.
i Matem. Fiziki 6, 2 (1966), 389Ű394. Analogous results for 2-3 trees were obtained by
E. M. Reingold, Fib. Quart. 17 (1979), 151Ű157.]

9. Andrew Odlyzko has shown that the number of balanced trees is asymptotically

cnf(log(
√

10+2)/3 n)/n,

where c ≈ 1.916067 and f(x) = f(x + 1). His techniques will also yield the average
height. [See Congressus Numerantium 42 (1984), 27Ű52, a paper in which he also
discusses the enumeration of 2-3 trees.]

10. [Inf. Proc. Letters 17 (1983), 17Ű20.] Let X1, . . . , XN be nodes whose balance
factors B(Xk) are given. To construct the tree, set k ← 0 and compute TREE(∞), where
TREE(hmax) is the following recursive procedure with local variables h, h′, and Q: Set
h ← 0, Q ← Λ; then while h < hmax and k < N set k ← k + 1, h′ ← h + B(Xk),
LEFT(Xk)← Q, RIGHT(Xk)← TREE(h′), h← max(h, h′) + 1, Q← Xk; return Q. (Tree Q
has height h and corresponds to the balance factors that have been read since entry to
the procedure.) The algorithm works even if |B(Xk)| > 1.

11. Clearly there are as many +AŠs as --BŠs and +-BŠs, when n ≥ 2, and there is
symmetry between + and -. If there are M nodes of types +A or -A, consideration of
all possible cases when n ≥ 1 shows that the next random insertion results in M − 1
such nodes with probability 3M/(n+ 1), otherwise it results in M + 1 such nodes. The
result follows. [SICOMP 8 (1979), 33Ű41; Kurt Mehlhorn extended the analysis to
deletions in SICOMP 11 (1982), 748Ű780. See R. A. Baeza-Yates, Computing Surveys
27 (1995), 109Ű119, for a summary of later developments in such Şfringe analyses,Ť
which typically use the methods illustrated in exercise 6.2.4Ű8.]

12. The maximum occurs when inserting into the second external node of (12); C = 4,
C1 = 3, D = 3, A = C2 = F = G1 = H1 = U1 = 1, for a total time of 132u.
The minimum occurs when inserting into the third-last external node of (13); C = 2,
C1 = C2 = 1, D = 2, for a total time of 61u. [The corresponding Ągures for Program
6.2.2T are 74u and 26u.]

13. When the tree changes, only O(logN) RANK values need to be updated; the
ŞsimpleŤ system might require very extensive changes.

14. Yes. (But typical operations on lists are sufficiently nonrandom that degenerate
trees would probably occur.)

15. Use Algorithm 6.2.2T with m set to zero in step T1, and m ← m + RANK(P)
whenever K ≥ KEY(P) in step T2.

716 ANSWERS TO EXERCISES 6.2.3

16. Delete E; do Case 3 rebalancing at D. Delete G; replace F by G; do Case 2 rebalancing
at H; adjust balance factor at K.

+

−

+

+

−

A

B

C

D

G

H

I

J

K

L

M

N

O

P

Q

17. (a)

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

(b)

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

18.

A

B

C

D

E

F

G

H

I J

K

L

M

N

O

P

Q

19. (Solution by Clark Crane.) There is one case that canŠt be handled by a single or
double rotation at the root, namely

−

+

−

A

B

C

. Change it to

+

++A C

B

and then resolve the imbalance by applying a single or double rotation at C.

6.2.3 ANSWERS TO EXERCISES 717

20. It is difficult to insert a new node at the extreme left of the tree

,

but K.-J. Räihä and S. H. Zweben have devised a general insertion algorithm that takes
O(logN) steps. [CACM 22 (1979), 508Ű512.]

21. Algorithm A does the job in order N logN steps (see exercise 5); the following
algorithm creates the same trees in O(N) steps, using an interesting iterative rendition
of a recursive method. We use three auxiliary lists:

D1, . . . , Dl (a binary counter that essentially controls the recursion);

J1, . . . , Jl (a list of pointers to juncture nodes);

T1, . . . , Tl (a list of pointers to trees).

Here l = ⌈lg(N+1)⌉. For convenience the algorithm also sets D0 ← 1, J0 ← Jl+1 ← Λ.

G1. [Initialize.] Set l← 0, J0 ← J1 ← Λ, D0 ← 1.

G2. [Get next item.] Let P point to the next input node. (We may invoke another
coroutine in order to obtain P.) If there is no more input, go to G5. Otherwise,
set k ← 1, Q← Λ, and interchange P↔ J1.

G3. [Carry.] If k > l (or, equivalently, if P = Λ), set l ← l + 1, Dk ← 1, Tk ← Q,
Jk+1 ← Λ, and return to G2. Otherwise set Dk ← 1−Dk, interchange Q↔ Tk,
P↔ Jk+1, and increase k by 1. If now Dk−1 = 0, repeat this step.

G4. [Concatenate.] Set LLINK(P) ← Tk, RLINK(P) ← Q, B(P) ← 0, Tk ← P, and
return to G2.

G5. [Finish up.] Set LLINK(Jk)← Tk, RLINK(Jk)← Jk−1, B(Jk)← 1− Dk−1, for
1 ≤ k ≤ l. Then terminate the algorithm; Jl points to the root of the desired
tree.

Step G3 is executed 2N − ν(N) times, where ν(N) is the number of 1s in the binary
representation of N.

22. The height of a weight-balanced tree with N internal nodes always lies between
lg(N + 1) and 2 lg(N + 1). To get this upper bound, note that the heavier subtree of
the root has at most (N + 1)/

√
2 external nodes.

23. (a) Form a tree whose right subtree is a complete binary tree with 2n − 1 nodes,
and whose left subtree is a Fibonacci tree with Fn+1 − 1 nodes. (b) Form a weight-
balanced tree whose right subtree is about 2 lgN levels high and whose left subtree is
about lgN levels high (see exercise 22).

24. Consider a smallest tree that satisĄes the condition but is not perfectly balanced.
Then its left and right subtrees are perfectly balanced, so they have 2l and 2r external
nodes, respectively, where l ̸= r. But this contradicts the stated condition.

25. After inserting a node at the bottom of the tree, we work up from the bottom to
check the weight balance at each node on the search path. Suppose imbalance occurs
at node A in (1), after we have inserted a new node in the right subtree, where B and

718 ANSWERS TO EXERCISES 6.2.3

its subtrees are weight-balanced. Then a single rotation will restore the balance unless
(|α| + |β|)/|γ| >

√
2 + 1, where |x| denotes the number of external nodes in a tree x.

But in this case it can be shown that a double rotation will suffice. [See SICOMP 2

(1973), 33Ű43; N. Blum and K. Mehlhorn, Theoretical Comp. Sci. 11 (1980), 303Ű320.]

27. It is sometimes necessary to make two comparisons in nodes that contain two keys.
The worst case occurs in a tree like the following, which sometimes needs 2 lg(N+2)−2
comparisons:

29. Partial solution by A. Yao: With N ≥ 6 keys the lowest level will contain an
average of 2

7
(N + 1) one-key nodes and 1

7
(N + 1) two-key nodes. The average total

number of nodes lies between 0.70N and 0.79N , for large N . [Acta Informatica 9

(1978), 159Ű170.]

30. For best-Ąt, arrange the records in order of size, with an arbitrary rule to break
ties in case of equality. (See exercise 2.5Ű9.) For Ąrst Ąt, arrange the records in order
of location, with an extra Ąeld in each node telling the size of the largest area in
the subtree rooted at that node. This extra Ąeld can be maintained under insertions
and deletions. (Although the running time is O(logn), it probably still doesnŠt beat
the ŞROVERŤ method of exercise 2.5Ű6 in practice; but the memory distribution may
be better without ROVER, since there will usually be a nice large empty region for
emergencies.)

An improved method has been developed by R. P. Brent, ACM Trans. Prog.
Languages and Systems 11 (1989), 388Ű403.

31. Use a nearly balanced tree, with additional upward links for the leftmost part,
plus a stack of postponed balance factor adjustments along this path. (Each insertion
does a bounded number of these adjustments.)

This problem can be generalized to require O(logm) steps to Ąnd, insert, and/or
delete items that are m steps away from any given ŞĄnger,Ť where any key once located
can serve as a Ąnger in later operations. [See S. Huddleston and K. Mehlhorn, Acta
Inf. 17 (1982), 157Ű184.]

32. Each right rotation increases one of the rŠs and leaves the others unchanged; hence
rk ≤ r′k is necessary. To show that it is sufficient, suppose rj = r′j for 1 ≤ j < k but
rk < r′k. Then there is a right rotation that increases rk to a value ≤ r′k, because the
numbers r1r2 . . . rn satisfy the condition of exercise 2.3.3Ű19(a).

Notes: This partial ordering, Ąrst introduced by D. Tamari in 1951, has many
interesting properties. Any two trees have a greatest lower bound T ∧ T ′, determined
by the right-subtree sizes min(r1, r

′
1) min(r2, r

′
2) . . .min(rn, r

′
n), as well as a least upper

bound T ∨ T ′ determined by the left-subtree sizes min(l1, l
′
1) min(l2, l

′
2) . . .min(ln, l

′
n).

The left-subtree sizes are, of course, one less than the RANK Ąelds of Algorithms B and C.
For further information, see H. Friedman and D. Tamari, J. Combinatorial Theory 2

(1967), 215Ű242, 4 (1968), 201; C. Greene, Europ. J. Combinatorics 9 (1988), 225Ű
240; D. D. Sleator, R. E. Tarjan, and W. P. Thurston, J. Amer. Math. Soc. 1 (1988),
647Ű681; J. M. Pallo, Theoretical Informatics and Applic. 27 (1993), 341Ű348; M. K.

6.2.4 ANSWERS TO EXERCISES 719

Bennett and G. Birkhoff, Algebra Universalis 32 (1994), 115Ű144; P. H. Edelman and
V. Reiner, Mathematika 43 (1996), 127Ű154.

33. First, we can reduce the storage to one bit A(P) in each node P, so that B(P) =
A(RLINK(P))− A(LLINK(P)) whenever LLINK(P) and RLINK(P) are both nonnull; oth-
erwise B(P) is known already. Moreover, we can assume that A(P) = 0 whenever
LLINK(P) and RLINK(P) are both null. Then A(P) can be eliminated in all other nodes
by swapping LLINK(P) with RLINK(P) whenever A(P) = 1; a comparison of KEY(P) with
KEY(LLINK(P)) or KEY(RLINK(P)) will determine A(P).

Of course, on machines for which pointers are always even, two unused bits are
present already in every node. Further economies are possible as in exercise 2.3.1Ű37.

SECTION 6.2.4

1. Two nodes split:

2
2
3

4
4
9

6
7
7

4
9
9

5
9
9

6
3
1

7
7
3

8
2
9

8
8
3

6
0
7

6
1
3

6
1
7

6
4
3

6
5
3

6
6
1

2. Altered nodes:

2
2
3

5
9
9

2
8
3

3
5
3

4
0
1

4
4
9

4
9
9

6
4
3

7
0
9

7
7
3

8
2
9

8
8
3

6
0
7

6
1
3

6
1
7

6
3
1

6
5
3

6
6
1

6
7
7

6
9
1

7
2
7

7
3
9

7
5
1

7
6
1

(Of course a B∗-tree would have no nonroot 3-key nodes, although Fig. 30 does.)

3. (a) 1 + 2 · 50 + 2 · 51 · 50 + 2 · 51 · 51 · 50 = 2 · 513 − 1 = 265301.
(b) 1+2 ·50+(2 ·51 ·100−100)+((2 ·51 ·101−100) ·100−100) = 1013 = 1030301.
(c) 1 + 2 · 66 + (2 · 67 · 66 + 2) + (2 · 67 · 67 · 66 + 2 · 67) = 601661. (Less than (b)!)

4. Before splitting a nonroot node, make sure that it has two full siblings, then
split these three nodes into four. The root should split only when it has more than
3⌊(3m− 3)/4⌋ keys.

5. Interpretation 1, trying to maximize the stated minimum: 450. (The worst case
occurs if we have 1005 characters and the key to be passed to the parent must be 50
characters long: 445 chars + ptr + 50-char key + ptr + 50-char key + ptr + 445 chars.)

Interpretation 2, trying to equalize the number of keys after splitting, in order to
keep branching factors high: 155 (15 short keys followed by 16 long ones).

See E. M. McCreight, CACM 20 (1977), 670Ű674, for further comments.

6. If the key to be deleted is not on level l− 1, replace it by its successor and delete
the successor. To delete a key on level l− 1, we simply erase it; if this makes the node

720 ANSWERS TO EXERCISES 6.2.4

too empty, we look at its right (or left) sibling, and ŞunderĆow,Ť that is, move keys in
from the sibling so that both nodes have approximately the same amount of data. This
underĆow operation will fail only if the sibling was minimally full, but in that case the
two nodes can be collapsed into one (together with one key from their parent); such
collapsing may cause the parent in turn to underĆow, etc. With variable-length keys
as in exercise 5, a parent node may need to split when one of its keys becomes longer.

8. Given a tree T with N internal nodes, let there be a(j)
k external nodes that require

k accesses and whose parent node belongs to a page containing j keys; and let A(j)(z) be
the corresponding generating function. Thus A(1)(1) + · · ·+A(M)(1) = N + 1. (Note
that a(j)

k is a multiple of j + 1, for 1 ≤ j < M.) The next random insertion leads to
N + 1 equally probable trees, whose generating functions are obtained by decreasing
some coefficient a(j)

k by j + 1 and adding j + 2 to a(j+1)
k ; or (if j = M) by decreasing

some a(M)
k by 1 and adding 2 to a(1)

k+1. Now B
(j)
N (z) is (N+1)−1 times the sum, over all

trees T , of the generating function A(j)(z) for T times the probability that T occurs;
the stated recurrence relations follow.

The recurrence has the form

(B(1)
N (z), . . . , B(M)

N (z))T = (I + (N + 1)−1W (z))(B(1)
N−1(z), . . . , B(M)

N−1(z))T

= · · · = gN (W (z))(0, . . . , 0, 1)T ,

where

gn(x) =

1 +
x

n+ 1

. . .

1 +

x

2

=

1
x+ 1

x+ n+ 1
n+ 1

.

It follows that C′
N = (1, . . . , 1)(B(1)′

N (1), . . . , B(M)′
N (1))T = 2B(M)

N−1(1)/(N+1)+C′
N−1 =

2fN (W)MM , where fn(x) = gn−1(x)/(n + 1) + · · · + g0(x)/2 = (gn(x) − 1)/x, and
W = W (1). (The subscript MM denotes the lower right corner element of the matrix.)
Now W = S−1 diag (λ1, . . . , λM)S, for some matrix S, where diag (λ1, . . . , λM) denotes
the diagonal matrix whose entries are the roots of χ(λ) = (λ+2) . . . (λ+M+1)−(M+1)!.
(The roots are distinct, since χ(λ) = χ′(λ) = 0 implies 1/(λ+2)+ · · ·+1/(λ+M+1) =
0; the latter can hold only when λ is real, and −M − 1 < λ < −2, which implies
that |λ + 2| . . . |λ + M + 1| < (M + 1)!, a contradiction.) If p(x) is any polynomial,
p(W) = p(S−1 diag (λ1, . . . , λM)S) = S−1 diag (p(λ1), . . . , p(λM))S; hence the lower
right corner element of p(W) has the form c1p(λ1) + · · ·+ cMp(λM) for some constants
c1, . . . , cM independent of p. These constants may be evaluated by setting p(λ) =
χ(λ)/(λ−λj); since (W k)MM = (−2)k for 0 ≤ k ≤M−1, we have p(W)MM = p(−2) =
(M+1)!/(λj +2) = cjp(λj) = cjχ

′(λj) = cj(M+1)! (1/(λj +2)+ · · ·+1/(λj +M+1));
hence cj = (λj + 2)−1(1/(λj + 2) + · · ·+ 1/(λj +M + 1))−1. This yields an ŞexplicitŤ
formula C′

N =
M

j=1 2cjfN (λj); and it remains to study the roots λj . Note that
|λj +M+1| ≤M+1 for all j, otherwise we would have |λj +2| . . . |λj +M+1| > (M+1)!.
Taking λ1 = 0, this implies that ℜ(λj) < 0 for 2 ≤ j ≤ M. By Eq. 1.2.5Ű(15),
gn(x) ∼ (n+ 1)x/Γ (x+ 2) as n→∞; hence gn(λj)→ 0 for 2 ≤ j ≤M . Consequently
C′

N = 2c1fN (0) +O(1) = HN/(HM+1 − 1) +O(1).
Notes: The analysis above is relevant also to the ŞsamplesortŤ algorithm dis-

cussed brieĆy in Section 5.2.2. The calculations may readily be extended to show that
B

(j)
N (1) ∼ (HM+1− 1)−1/(j+ 2) for 1 ≤ j < M, B(M)

N (1) ∼ (HM+1− 1)−1/2. Hence the
total number of interior nodes on unĄlled pages is approximately
 1

3× 2
+

2
4× 3

+ · · ·+ M − 1
(M + 1)×M

N

HM+1 − 1
=

1− M

(M + 1)(HM+1 − 1)

N ;

6.3 ANSWERS TO EXERCISES 721

and the total number of pages used is approximately
 1

3× 2
+

1
4× 3

+ · · ·+ 1
(M + 1)×M +

1
M + 1

N

HM+1 − 1
=

N

2(HM+1 − 1)
,

yielding an asymptotic storage utilization of 2(HM+1 − 1)/M.
This analysis has been extended by Mahmoud and Pittel [J. Algorithms 10 (1989),

52Ű75], who discovered that the variance of the storage utilization undergoes a sur-
prising phase transition: When M ≤ 25, the variance is Θ(N); but when M ≥ 26 it is
asymptotically f(N)N1+2α where f(eπ/βN) = f(N), if − 1

2
+ α+ βi and − 1

2
+ α− βi

are the nonzero roots λj with largest real part.
The height of such trees has been analyzed by L. Devroye [Random Structures &

Algorithms 1 (1990), 191Ű203]; see also B. Pittel, Random Structures & Algorithms 5

(1994), 337Ű347.

9. Yes; for example we could replace each Ki in (1) by i plus the number of keys in
subtrees P0, . . . , Pi−1. The search, insertion, and deletion algorithms can be modiĄed
appropriately.

10. Brief sketch: Extend the paging scheme so that exclusive access to buffers is given
to one user at a time; the search, insertion, and deletion algorithms must be carefully
modiĄed so that such exclusive access is granted only for a limited time when absolutely
necessary, and in such a way that no deadlocks can occur. For details, see B. Samadi,
Inf. Proc. Letters 5 (1976), 107Ű112; R. Bayer and M. Schkolnick, Acta Inf. 9 (1977),
1Ű21; Y. Sagiv, J. Comp. Syst. Sci. 33 (1986), 275Ű296.

SECTION 6.3

1. Lieves (the plural of ŞliefŤ).

2. Perform Algorithm T using the new key as argument; it will terminate unsuccess-
fully in either step T3 or T4. If in T3, simply set table entry k of NODE(P) to K and
terminate the insertion algorithm. Otherwise set this table entry to the address of a
new node Q ⇐ AVAIL, containing only null links, then set P ← Q. Now set k and k′ to
the respective next characters of K and X; if k ̸= k′, store K in position k of NODE(P)
and store X in position k′, but if k = k′ again make the k position point to a new
node Q⇐ AVAIL, set P← Q, and repeat the process until eventually k ̸= k′. (We must
assume that no key is a preĄx of another.)

3. Replace the key by a null link, in the node where it appears. If this node is now
useless because all its entries are null except one that is a key X, delete the node and
replace the corresponding pointer in its parent by X. If the parent node is now useless,
delete it in the same way.

4. Successful searches take place exactly as with the full table, but unsuccessful
searches in the compressed table may go through several additional iterations. For
example, an input argument such as TRASH will make Program T take six iterations
(more than Ąve!); this is the worst case. It is necessary to verify that no inĄnite looping
on blank sequences is possible. (This remarkable 49-place packing is due to J. Scot
Fishburn, who also showed that 48 places do not suffice.)

A slower but more versatile way to economize on trie storage has been proposed
by Kurt Maly, CACM 19 (1976), 409Ű415.

In general, if we want to compress n sparse tables containing respectively x1,
. . . , xn nonzero entries, a Ąrst-Ąt method that offsets the jth table by the minimum

722 ANSWERS TO EXERCISES 6.3

amount rj that will not conĆict with the previously placed tables will have rj ≤
(x1 + · · · + xj−1)xj , since each previous nonzero entry can block at most xj offsets.
This worst-case estimate gives rj ≤ 93 for the data in Table 1, guaranteeing that any
twelve tables of length 30 containing respectively 10, 5, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2 nonzero
entries can be packed into 93 + 30 consecutive locations regardless of the pattern of
the nonzeros. Further reĄnements of this method have been developed by R. E. Tarjan
and A. C. Yao, CACM 22 (1979), 606Ű611. A dynamic implementation of compressed
tries, due to F. M. Liang, is used for hyphenation tables in the TEX typesetting system.
[See D. E. Knuth, CACM 29 (1986), 471Ű478; Literate Programming (1992), 206Ű233.]

5. In each family, test for the most probable outcome Ąrst, by arranging the letters
from left to right in decreasing order of probability. The optimality of this arrangement
can be proved as in Theorem 6.1S. [See CACM 12 (1969), 72Ű76.]

A

 N RS T

B

E UY

F

O R

H

AE I

DV R

I

 N S T

NO

F N R

T

H O

AE I

W

A HI

Y

AA
N
D

A
R
E

A
S

A
T

B
E

B
U
T

B
Y

F
O
R

F
R
O
M

H
A
D

H
A
V
E

H
E

H
E
R

H
I
S

II
N

I
S

I
T

N
O
T

O
F

O
N

O
R

T
H
A
T

T
H
E

T
H
I
S

T
O

W
A
S

W
H
I
C
H

W
I
T
H

Y
O
U

6. 1

2

3 4

5 6

7

8

9

10

11

12

13 14

15

7. For example, 8, 4, 1, 2, 3, 5, 6, 7, 12, 9, 10, 11, 13, 14, 15. (No matter what
sequence is used, the left subtree cannot contain more than two nodes on level 4, nor
can the right subtree.) Even this ŞworstŤ tree is within 4 of the best possible tree, so
we see that digital search trees arenŠt very sensitive to the order of insertion.

8. Yes. The KEY Ąelds now contain only a truncated key; leading bits implied by the
node position are chopped off. (A similar modiĄcation of Algorithm T is possible.)

9. START LDX K 1 D1. Initialize. (rX ≡ K)
LD1 ROOT 1 P← ROOT. (rI1 ≡ P)
JMP 2F 1

4H LD2 0,1(RLINK) C2 D4. Move right. Q← RLINK(P).
J2Z 5F C2 To D5 if Q = Λ.

1H ENT1 0,2 C − 1 P← Q.
2H CMPX 1,1 C D2. Compare.

JE SUCCESS C Exit if K = KEY(P).
SLB 1 C − S Shift K left one bit.
JAO 4B C − S To D4 if the detached bit was 1.
LD2 0,1(LLINK) C1 D3. Move left. Q← LLINK(P).
J2NZ 1B C1 To D2 with P← Q if Q ̸= Λ.

5H Continue as in Program 6.2.2T, interchanging the roles of rA and rX.

6.3 ANSWERS TO EXERCISES 723

The running time for the searching phase of this program is (10C−3S+4)u, where
C − S is the number of bit inspections. For random data, the approximate average
running times are therefore:

Successful Unsuccessful
Program 6.2.2T 15 lnN − 12.34 15 lnN − 2.34
This program 14.4 lnN − 6.17 14.4 lnN + 1.26

(Consequently Program 6.2.2T is a shade faster unless N is very large.)

10. Let ⊕ denote the exclusive or operation on n-bit numbers, and let f(x) = n −
⌈lg(x + 1)⌉ be the number of leading zero bits of x. One solution: (b) If a search
via Algorithm T ends unsuccessfully in step T3, K is one less than the number of
bit inspections made so far; otherwise if the search ends in step T4, k = f(K ⊕ X).
(a, c) Do a regular search, but also keep track of the minimum value, x, of K ⊕ KEY(P)
over all KEY(P) compared with K during the search. Then k = f(x). (Prove that no
other key can have more bits in common with K than those compared to K. In case (a),
the maximum k occurs for either the largest key ≤ K or the smallest key > K.)

11. No; eliminating a node with only one empty subtree will ŞforgetŤ one bit in the
keys of the nonempty subtree. To delete a node, we should replace it by one of its
terminal descendants, for example by searching to the right whenever possible.

12. Insert three random numbers α, β, γ between 0 and 1 into an initially empty tree;
then delete α with probability p, β with probability q, γ with probability r, using the
algorithm suggested in the previous exercise. The tree

is obtained with probability 1
4
p+ 1

2
q + 1

2
r, and this is 1

2
only if p = 0.

13. Add a KEY Ąeld to each node, and compare K with this key before looking at
the vector element in step T2. Table 1 would change as follows: Nodes (1), . . . , (12)
would contain the respective keys THE, AND, BE, FOR, HIS, IN, OF, TO, WITH, HAVE, HE,
THAT (if we inserted them in order of decreasing frequency), and these keys would be
deleted from their previous positions. [The corresponding program would be slower and
more complicated than Program T, in this case. A more direct M -ary generalization of
Algorithm D would create a tree with N nodes, having one key and M links per node.]

14. If j ≤ n, there is only one place, namely KEY(P). But if j > n, the set of all
occurrences is found by traversing the subtree of node P: If there are r occurrences, this
subtree contains r−1 nodes (including node P), and so it has r link Ąelds with TAG = 1;
these link Ąelds point to all the nodes that reference TEXT positions matching K. (It isnŠt
necessary to check the TEXT again at all.)

15. To begin forming the tree, set KEY(HEAD) to the Ąrst TEXT reference, and set
LLINK(HEAD) ← HEAD, LTAG(HEAD) ← 1. Further TEXT references can be entered into
the tree using the following insertion algorithm:

Set K to the new key that we wish to enter. (This is the Ąrst reference the
insertion algorithm makes to the TEXT array.) Perform Algorithm P; it must terminate
unsuccessfully, since no key is allowed to be a preĄx of another. (Step P6 makes the
second reference to the TEXT; no more references will be needed!) Now suppose that
the key located in step P6 agrees with the argument K in the Ąrst l bits, but differs

724 ANSWERS TO EXERCISES 6.3

from it in position l+ 1, where K has the digit b and the key has 1− b. (Even though
the search in Algorithm P might have let j get much greater than l, it is possible to
prove that the procedure speciĄed here will Ąnd the longest match between K and any

existing key. Thus, all keys of the text that start with the Ąrst l bits of K have 1− b
as their (l+ 1)st bit.) Now repeat Algorithm P with K replaced by these leading l bits
(thus, n← l). This time the search will be successful, so we neednŠt perform step P6.
Now set R ⇐ AVAIL, KEY(R) ← position of the new key in TEXT. If LLINK(Q) = P, set
LLINK(Q)← R, t← LTAG(Q), LTAG(Q)← 0; otherwise set RLINK(Q)← R, t← RTAG(Q),
RTAG(Q)← 0. If b = 0, set LTAG(R)← 1, LLINK(R)← R, RTAG(R)← t, RLINK(R)← P;
otherwise set RTAG(R) ← 1, RLINK(R) ← R, LTAG(R) ← t, LLINK(R) ← P. If t = 1, set
SKIP(R)← 1+ l−j; otherwise set SKIP(R)← 1+ l−j+SKIP(P) and SKIP(P)← j−l−1.

16. The tree setup requires precisely one dotted link coming from below a node to that
node; it comes from that part of the tree where this key Ąrst differs from all others. If
there is no such part of the tree, the algorithms break down. We could simply drop
keys that are preĄxes of others, but then the algorithm of exercise 14 wouldnŠt have
enough data to Ąnd all occurrences of the argument.

17. If we deĄne a0 = a1 = 0, then

xn = an +

k≥2

n

k

(−1)kâk/(m

k−1 − 1) =

k≥2

n

k

(−1)kâkm

k−1/(mk−1 − 1).

18. To solve (4) we need the transform of an = [n> 1], namely ân = [n= 0]− 1 + n;
hence for N ≥ 2 we obtain AN = 1 − UN + VN, where UN = K(N, 0,M) and VN =
K(N, 1,M) in the notation of exercise 19. Similarly, to solve (5), take an = n−[n= 1] =
ân and obtain CN = N + VN for N ≥ 2.

19. For s = 1, we have Vn = K(n, 1,m) = n((lnn+ γ)/ lnm− 1
2
− δ0(n− 1)) +O(1),

and for s ≥ 2 we have K(n, s,m) = (−1)sn(1/ lnm + δs−1(n − s))/s(s − 1) + O(1),
where

δs(n) =
2

lnm

k≥1

ℜ(Γ (s− 2πik/ lnm) exp(2πik logm n))

is a periodic function of logn. [In this derivation we have

K(n+s, s,m)/(−1)s

n+ s

s

=
n−s+1

2πi

 1/2+i∞

1/2−i∞

Γ (z)ns−1−z dz

ms−1−z − 1
+O(n−s).

For small m and s, the δŠs will be negligibly small; see exercise 5.2.2Ű46. Note that
δs(n− a) = δs(n) +O(n−1) for Ąxed a.]

20. For (a), let an = [n>s] = 1−s
k=0[n= k]; for (b), let an = n−s

k=0 k [n= k];
and for (c), we want to solve the recurrence

yn =

m1−n

k

n
k

(m− 1)n−kyk for n > s,

n+1
2

for n ≤ s.

Setting xn = yn − n yields a recurrence of the form of exercise 17, with

an = (1−M−1)
s

k=0

k

2

[n= k].

Therefore, in the notation of previous exercises, the answers are (a) 1−K(N, 0,M) +
K(N, 1,M) − · · · + (−1)s−1K(N, s,M) = N/(s lnM) − N(δ−1(N) + δ0(N − 1) +

6.3 ANSWERS TO EXERCISES 725

δ1(N − 2)/2·1 + · · · + δs−1(N − s)/s(s − 1)) + O(1); (b) N−1(N + K(N, 1,M) −
2K(N, 2,M) + · · · + (−1)s−1sK(N, s,M)) = (lnN + γ − Hs−1)/ lnM + 1/2 −
(δ0(N−1)+δ1(N−2)/1+· · ·+δs−1(N−s)/(s−1))+O(N−1); (c) N−1(N+(1−M−1)×s

k=2(−1)k

k
2

K(N, k,M)) = 1 + 1

2
(1 − M−1)((s − 1)/ lnM + δ1(N − 2) + · · · +

δs−1(N − s)) +O(N−1).

21. Let there be AN nodes in all. The number of nonnull pointers is AN − 1, and the
number of nonpointers is N, so the total number of null pointers is MAN −AN +1−N.
To get the average number of null pointers in any Ąxed position, divide by M. [The
average value of AN appears in exercise 20(a).]

22. There is a node for each of the M l sequences of leading bits such that at least two
keys have this bit pattern. The probability that exactly k keys have a particular bit
pattern is

N

k

M−lk(1−M−l)N−k,

so the average number of trie nodes on level l is M l(1−(1−M−l)N)−N(1−M−l)N−1.

23. More generally, consider the case of arbitrary s as in exercise 20. If there are al

nodes on level l, they contain al+1 links and Mal − al+1 places where the search
might be unsuccessful. The average number of digit inspections will therefore be

l≥0(l+ 1)M−l−1(Mal − al+1) =

l≥0 M
−lal. Using the formula for al in a random

trie, this equals

1 +
K(N+1, 1,M)− 2K(N+1, 2,M) + · · ·+ (−1)s(s+1)K(N+1, s+1,M)

N + 1

=
lnN + γ −Hs

lnM
+

1
2
− δ0(N)− δ1(N−1)

1
− · · · − δs(N−s)

s
+O(N−1).

24. We must solve the recurrences x0 = x1 = y0 = y1 = 0,

xn = m−n

n1+···+nm=n

n

n1, . . . , nm

xn1

+ · · ·+ xnm +

1≤j≤m

[nj ̸= 0]

= an +m1−n

k

n

k

xk,

yn = m−n

n1+···+nm=n

n

n1, . . . , nm

yn1

+ · · ·+ ynm +

1≤i<j≤m

[ni ̸= 0]nj

= bn +m1−n

k

n

k

yk,

for n ≥ 2, where an = m(1− (1− 1/m)n) and bn = 1
2
(m− 1)n(1− (1− 1/m)n−1). By

exercises 17 and 18 the answers are (a) xN = N + VN − UN − [N = 1] = AN + N − 1
(a result that could have been obtained directly, since the number of nodes in the forest
is always N − 1 more than the number in the corresponding trie!); and (b) yN/N =
1
2
(M − 1)VN/N = 1

2
(M − 1)((lnN + γ)/ lnM − 1

2
− δ0(N − 1)) +O(N−1).

25. (a) Let AN = M(N−1)/(M−1)−EN ; then for N ≥ 2, we have (1−M1−N)EN =
M − 1 − M(1 − 1/M)N−1 + M1−N

0<k<N

N
k

(M − 1)N−kEk. Since M − 1 ≥

M(1 − 1/M)N−1, we have EN ≥ 0 by induction. (b) By Theorem 1.2.7A with
x = 1/(M − 1) and n = N − 1, we Ąnd DN = aN + M1−N

k

N
k

(M − 1)N−kDk,

726 ANSWERS TO EXERCISES 6.3

where a1 = 0 and 0 < aN < M(1−1/M)N/ lnM ≤ (M −1)2/M lnM for N ≥ 2. Hence
0 ≤ DN ≤ (M − 1)2AN/M lnM ≤ (M − 1)(N − 1)/ lnM.

26. Taking q = 1
2
, z = − 1

2
in the second identity of exercise 5.1.1Ű16, we get 1/3 −

1/(3 ·7)+1/(3 ·7 ·15)−· · · = 0.28879; itŠs slightly faster to use z = − 1
4

and take half of
the result. Alternatively, EulerŠs formula from exercise 5.1.1Ű14 can be used, involving
only negative powers of 2. (John Wrench has computed the value to 40 decimal digits,
namely 0.28878 80950 86602 42127 88997 21929 23078 00889+.)

27. (For fun, the following derivation goes to O(N−1).) In the notation of exercises
5.2.2Ű38 and 5.2.2Ű48, we have

CN = UN +N−1+
VN+1

N + 1
−αN−β+

n≥2

(−1)n2−n(n+1)/2

m≥0(21−n)m(1− 2−m)N

n
r=1(1− 2−r)

,

where

α = 2/(1 · 1)− 4/(3 · 3 · 1) + 8/(7 · 7 · 3 · 1)− 16/(15 · 15 · 7 · 3 · 1) + · · · ≈ 1.60670;

β = 2/(1 · 3 · 1)− 4/(3 · 7 · 3 · 1) + 8/(7 · 15 · 7 · 3 · 1)− · · · ≈ 0.60670.

This numerical evaluation suggests that α = β + 1, a fact that is not hard to prove.
Moreover, α turns out to be identical to the constant deĄned quite differently in 5.2.3Ű
(19); see Karl Dilcher, Discrete Math. 145 (1995), 83Ű93. We have VN+1/(N + 1) =
UN+1−UN, and the value of

m≥0(21−n)m(1− 2−m)N is O(N1−n), by exercise 5.2.2Ű

46. Hence CN = UN+1−(α−1)N−α+O(N−1) = (N+1) lg(N+1)+N((γ−1)/ ln 2+
1
2
− α+ δ−1(N)) + 1

2
− 1/ ln 4− α− 1

2
δ1(N) +O(N−1), by exercise 5.2.2Ű50.

The variance of the internal path length of a digital search tree has been computed
by Kirschenhofer, Prodinger, and Szpankowski, SICOMP 23 (1994), 598Ű616.

28. The derivations in the text and exercise 27 apply to general M ≥ 2, if we sub-
stitute M for 2 in the obvious places. Hence the average number of digit inspections
in a random successful search is CN/N = UN+1 − αM + 1 + O(N−1) = logM N +
(γ − 1)/ lnM + 1

2
− αM + δ−1(N) + (logM N)/N + O(N−1); and for the unsuccessful

case it is CN+1 −CN = VN+2/(N + 2)− αM + 1 +O(N−1) = logM N + γ/ lnM + 1
2
−

αM − δ0(N + 1) +O(N−1). Here δs(n) is deĄned in exercise 19, and

αM =

j≥0

(−1)jM j+1/(M j+1 − 1)2(M j − 1) . . . (M − 1).

29. Flajolet and Sedgewick [SICOMP 15 (1986), 748Ű767] have shown that the approx-
imate average number of such nodes is .372N when M = 2 and .689N when M = 16.
See also the generalization by Flajolet and Richmond, Random Structures & Algorithms
3 (1992), 305Ű320.

30. By iterating the recurrence, hn(z) is the sum of all possible terms of the form

n

p1

z

2p1 − 1

p1

p2

z

2p2 − 1
. . .

z

2pm − 1

pm

1

, for n > p1 > · · · > pm > 1.

31. h′
n(1) = Vn; see exercise 5.2.2Ű36(b). [For the variance and limiting distributions

of M -ary generalizations of Patrician trees, see P. Kirschenhofer and H. Prodinger,
Lecture Notes in Comp. Sci. 226 (1986), 177Ű185; W. Szpankowski, JACM 37 (1990),
691Ű711; B. Rais, P. Jacquet, and W. Szpankowski, SIAM J. Discrete Math. 6 (1993),
197Ű213.]

6.3 ANSWERS TO EXERCISES 727

32. The sum of the SKIP Ąelds is the number of nodes in the corresponding binary
trie, so the answer is AN (see exercise 20).

33. HereŠs how (18) was discovered: A(2z) − 2A(z) = e2z − 2ez + 1 + A(z)(ez − 1)
can be transformed into A(2z)/(e2z − 1) = (ez − 1)/(ez + 1) + A(z)/(ez − 1). Hence
A(z) = (ez − 1)

j≥1(ez/2j − 1)/(ez/2j

+ 1). Now if f(z) =

cnz

n,

j≥1 f(z/2j) =
cnz

n/(2n − 1). In this case f(z) = (ez − 1)/(ez + 1) = tanh (z/2), which equals
1 − 2z−1(z/(ez − 1) − 2z/(e2z − 1)) =

n≥1 Bn+1z

n(2n+1 − 1)/(n + 1)!. From this
formula the route is apparent.

34. (a) Consider

j≥1

n−1
k=2

n
k

Bk/2j(k−1); 1n−1+· · ·+(m−1)n−1 = (Bn(m)−Bn)/n

by exercise 1.2.11.2Ű4. (b) Let Sn(m) =
m−1

k=1 (1− k/m)n and Tn(m) = 1/(en/m − 1).
If k ≤ m/2 we have e−kn/m > exp(n ln(1 − k/m)) > exp(−kn/m − k2n/m2) >
e−kn/m(1− k2/m2), hence (1− k/m)n = e−kn/m +O(e−kn/mk2n/m2). Since Sn(m) =m/2

k=1 (1− k/m)n +O(2−n) and Tn(m) =
m/2

k=1 e
−kn/m +O(e−n/2), we have Sn(m) =

Tn(m)+O(e−n/mn/m2). The sum of O(exp(−n/2j)n/22j) is O(n−1), because the sum
for j ≤ lgn is of order n−1(1 + 2/e+ (2/e)2 + · · ·) and the sum for j ≥ lgn is of order
n−1(1 + 1/4 + (1/4)2 + · · ·). (c) Argue as in Section 5.2.2 when |x| < 2π, then use
analytic continuation. (d) 1

2
lg(n/π) + γ/(2 ln 2)− 3

4
+ δ(n) + 2/n, where

δ(n) = (2/ ln 2)

k≥1ℜ(ζ(−2πik/ ln 2)Γ (−2πik/ ln 2) exp(2πik lgn))

= (1/ ln 2)

k≥1 ℜ(ζ(1 + 2πik/ ln 2) exp(2πik lg(n/π)))/ cosh(π2k/ ln 2).

The variance and higher moments have been calculated by W. Szpankowski, JACM 37

(1990), 691Ű711.

35. The keys must be {α0β0ω1, α0β1ω2, α1γ0ω3, α1γ1δ0ω4, α1γ1δ1ω5}, where α, β, . . .
are strings of 0s and 1s with |α| = a − 1, |β| = b − 1, etc. The probability that
Ąve random keys have this form is 5! 2a−1+b−1+c−1+d−1/2a+b+a+b+a+c+a+c+d+a+c+d =
5!/24a+b+2c+d+4.

36. Let there be n internal nodes. (a) (n!/2I)

(1/s(x)) = n!

(1/2s(x)−1s(x)), where
I is the internal path length of the tree. (b) ((n+ 1)!/2n)

(1/(2s(x) − 1)). (Consider

summing the answer of exercise 35 over all a, b, c, d ≥ 1.)

37. The smallest modiĄed external path length is actually 2 − 1/2N−2, and it occurs
only in a degenerate tree (whose external path length is maximal). [One can prove that
the largest modiĄed external path length occurs if and only if the external nodes appear
on at most two adjacent levels! But it is not always true that a tree whose external
path length is smaller than another has a larger modiĄed external path length.]

38. Consider as subproblems the Ąnding of k-node trees with parameters (α,β), (α, 1
2
β),

. . . , (α, 2k−nβ).

39. See Miyakawa, Yuba, Sugito, and Hoshi, SICOMP 6 (1977), 201Ű234.

40. Let N/r be the true period length of the sequence. Form a Patricia-like tree, with
a0a1 . . . as the TEXT and with N/r keys starting at positions 0, 1, . . . , N/r− 1. (No key
is a preĄx of another, because of our choice of r.) Also include in each node a SIZE
Ąeld, containing the number of tagged link Ąelds in the subtree below that node. To do
the speciĄed operation, use Algorithm P; if the search is unsuccessful, the answer is 0,
but if it is successful and j ≤ n the answer is r. Finally if it is successful and j > n,
the answer is r · SIZE(P).

728 ANSWERS TO EXERCISES 6.3

43. The expected height is asymptotic to (1 + 1/s) logM N , and the variance is O(1).
See H. Mendelson, IEEE Transactions SE-8 (1982), 611Ű619; P. Flajolet, Acta Infor-
matica 20 (1983), 345Ű369; L. Devroye, Acta Informatica 21 (1984), 229Ű237; B. Pittel,
Advances in Applied Probability 18 (1986), 139Ű155; W. Szpankowski, Algorithmica
6 (1991), 256Ű277.

The average height of a random digital search tree with M = 2 is asymptotically
lgn +

√
2 lgn [Aldous and Shields, Probability Theory and Related Fields 79 (1988),

509Ű542], and the same is true for a random Patricia tree [Pittel and Rubin, Journal
of Combinatorial Theory A55 (1990), 292Ű312].

44. See SODA 8 (1997), 360Ű369; this search structure is closely related to the multikey
quicksort algorithm discussed in the answer to exercise 5.2.2Ű30. J. Clément, P. Flajolet,
and B. Vallée have shown that the ternary representation makes trie searching about
three times faster than the binary representation of (2), with respect to nodes accessed
[see SODA 9 (1998), 531Ű539].

45. The probability of {THAT, THE, THIS} before {BUILT, HOUSE, IS, JACK}, {HOUSE, IS,
JACK} before {BUILT}, {HOUSE, IS} before {JACK}, {IS} before {HOUSE}, {THIS} before
{THAT, THE}, and {THE} before {THAT} is 3

7
· 3

4
· 2

3
· 1

2
· 1

3
· 1

2
= 1

56
.

SECTION 6.4

1. −37 ≤ rI1 ≤ 46. Therefore the locations preceding and following TABLE must be
guaranteed to contain no data that matches any given argument; for example, their
Ąrst byte could be zero. It would certainly be bad to store K in this range! [Thus we
might say that the method in exercise 6.3Ű4 uses less space, since the boundaries of
that table are never exceeded.]

2. TOW. [Can the reader Ąnd ten common words of at most 5 letters that Ąll all the
remaining gaps between −10 and 30?]

3. The alphabetic codes satisfy A + T = I + N and B − E = O − R, so we would have
either f(AT) = f(IN) or f(BE) = f(OR). Notice that instructions 4 and 5 of Table 1
resolve this dilemma rather well, while keeping rI1 from having too wide a range.

4. Consider cases with k pairs. The smallest n such that

m−nn!

k

m

n− k

n− k
k

2−k <

1
2
, for m = 365,

is 88. If you invite 88 people (including yourself), the chance of a birthday trio is
.511065, but if only 87 people come it is lowered to .499455. See C. F. Pinzka, AMM
67 (1960), 830.

5. The hash function is bad since it assumes at most 26 different values, and some
of them occur much more often than the others. Even with double hashing (letting
h2(K) = 1 plus the second byte of K, say, and M = 101) the search will be slowed
down more than the time saved by faster hashing. Also M = 100 is too small, since
FORTRAN programs often have more than 100 distinct variables.

6. Not on MIX, since arithmetic overĆow will almost always occur (dividend too large).
[It would be nice to be able to compute (wK) modM, especially if linear probing
were being used with c = 1, but unfortunately most computers disallow this since the
quotient overĆows.]

6.4 ANSWERS TO EXERCISES 729

7. If R(x) is a multiple of P (x), then R(αj) = 0 in GF(2k) for all j ∈ S. Let
R(x) = xa1 + · · · + xas, where a1 > · · · > as ≥ 0 and s ≤ t, and select t − s further
values as+1, . . . , at such that a1, . . . , at are distinct nonnegative integers less than n.
The Vandermonde matrix

αa1 . . . αat

α2a1 . . . α2at

...
...

αta1 . . . αtat

is singular, since the sum of its Ąrst s columns is zero. But this contradicts the fact
that αa1 , . . . , αat are distinct elements of GF(2k). (See exercise 1.2.3Ű37.)

[The idea of polynomial hashing originated with M. Hanan, S. Muroga, F. P.
Palermo, N. Raver, and G. Schay; see IBM J. Research & Development 7 (1963),
121Ű129; U.S. Patent 3311888 (1967).]

8. By induction. The strong induction hypotheses can be supplemented by the fact
that {(−1)k(rqk + qk−1)θ} = (−1)k(r(qkθ− pk) + (qk−1θ− pk−1)) for 0 ≤ r ≤ ak. The
Şrecord lowŤ values of {nθ} occur for n = q1, q2 +q1, 2q2 +q1, . . . , a2q2 +q1 = 0q4 +q3,
q4 + q3, . . . , a4q4 + q3 = 0q6 + q5, . . . ; the Şrecord highŤ values occur for n = q0,
q1 + q0, . . . , a1q1 + q0 = 0q3 + q2, These are the steps when interval number 0 of a
new length is formed. [Further structure can be deduced by generalizing the Fibonacci
number system of exercise 1.2.8Ű34; see L. H. Ramshaw, J. Number Theory 13 (1981),
138Ű175.]

9. We have ϕ−1 = //1, 1, 1, . . . // and ϕ−2 = //2, 1, 1, . . . //. Let θ = //a1, a2, . . . //
and θk = //ak+1, ak+2, . . . //, and let Qk = qk + qk−1θk−2 in the notation of exercise 8.
If a1 > 2, the very Ąrst break is bad. The three sizes of intervals in exercise 8 are,
respectively, (1 − rθk−1)/Qk, θk−1/Qk, and (1 − (r − 1)θk−1)/Qk, so the ratio of the
Ąrst length to the second is (ak − r) + θk. This will be less than 1

2
when r = ak and

ak+1 ≥ 2; hence {a2, a3, . . .} must all equal 1 if there are to be no bad breaks. [For
related theorems, see R. L. Graham and J. H. van Lint, Canadian J. Math. 20 (1968),
1020Ű1024, and the references cited there.]

10. See F. M. LiangŠs elegant proof in Discrete Math. 28 (1979), 325Ű326.

11. There would be a problem if K = 0. If keys were required to be nonzero as
in Program L, this change would be worthwhile, and we could also represent empty
positions by 0.

12. We can store K in KEY[0], replacing lines 14Ű19 by

STA TABLE(KEY) A− S1
CMPA TABLE,2(KEY) A− S1
JE 3F A− S1

2H ENT1 0,2 C − 1− S2
LD2 TABLE,1(LINK) C − 1− S2

CMPA TABLE,2(KEY) C − 1− S2
JNE 2B C − 1− S2

3H J2Z 5F A− S1
ENT1 0,2 S2
JMP SUCCESS S2

The time ŞsavedŤ is C−1−5A+S+4S1 units, which is actually a net loss because
C is rarely more than 5. (An inner loop shouldnŠt always be optimized!)

13. Let the table entries be of two distinguishable types, as in Algorithm C, with an
additional one-bit TAG[i] Ąeld in each entry. This solution uses circular lists, following
a suggestion of Allen Newell, with TAG[i] = 1 in the Ąrst word of each list.

730 ANSWERS TO EXERCISES 6.4

A1. [Initialize.] Set i← j ← h(K) + 1, Q← q(K).

A2. [Is there a list?] If TABLE[i] is empty, set TAG[i]← 1 and go to A8. Otherwise
if TAG[i] = 0, go to A7.

A3. [Compare.] If Q = KEY[i], the algorithm terminates successfully.

A4. [Advance to next.] If LINK[i] ̸= j, set i← LINK[i] and go back to A3.

A5. [Find empty node.] Decrease R one or more times until Ąnding a value such
that TABLE[R] is empty. If R = 0, the algorithm terminates with overĆow;
otherwise set LINK[i]← R.

A6. [Prepare to insert.] Set i← R, TAG[R]← 0, and go to A8.

A7. [Displace a record.] Repeatedly set i ← LINK[i] one or more times until
LINK[i] = j. Then do step A5. Then set TABLE[R] ← TABLE[j], i ← j,
TAG[j]← 1.

A8. [Insert new key.] Mark TABLE[i] as an occupied node, with KEY[i] ← Q,
LINK[i]← j.

(Note that if TABLE[i] is occupied it is possible to determine the corresponding full
key K, given only the value of i. We have q(K) = KEY[i], and then if we set i← LINK[i]
zero or more times until TAG[i] = 1 we will have h(K) = i− 1.)

14. According to the stated conventions, the notation ŞX ⇐ AVAILŤ of 2.2.3Ű(6) now
stands for the following operations: ŞSet X ← AVAIL; then set X ← LINK(X) zero
or more times until either X = Λ (an OVERFLOW error) or TAG(X) = 0; Ąnally set
AVAIL← LINK(X).Ť

To insert a new key K: Set Q ⇐ AVAIL, TAG(Q) ← 1, and store K in this word.
[Alternatively, if all keys are short, omit this and substitute K for Q in what follows.]
Then set R⇐ AVAIL, TAG(R)← 1, AUX(R)← Q, LINK(R)← Λ. Set P← h(K), and

if TAG(P) = 0, set TAG(P)← 2, AUX(P)← R;

if TAG(P) = 1, set S ⇐ AVAIL, CONTENTS(S) ← CONTENTS(P), TAG(P) ← 2,
AUX(P)← R, LINK(P)← S;

if TAG(P) = 2, set LINK(R)← AUX(P), AUX(P)← R.

To retrieve a key K: Set P← h(K), and

if TAG(P) ̸= 2, K is not present;

if TAG(P) = 2, set P ← AUX(P); then set P ← LINK(P) zero or more times until
either P = Λ, or TAG(P) = 1 and either AUX(P) = K (if all keys are short)
or AUX(P) points to a word containing K (perhaps indirectly through words
with TAG = 2).

ElcockŠs original scheme [Comp. J. 8 (1965), 242Ű243] actually used TAG = 2 and
TAG = 3 to distinguish between lists of length one (when we can save one word of
space) and longer lists. This is a worthwhile improvement, since we presumably have
such a large hash table that almost all lists have length one.

Another way to place a hash table Şon top ofŤ a large linked memory, using
coalescing lists instead of separate chaining, has been suggested by J. S. Vitter [Inf.
Proc. Letters 13 (1981), 77Ű79].

15. Knowing that there is always an empty node makes the inner search loop faster,
since we need not maintain a counter to determine how many times step L2 is per-
formed. The shorter program amply compensates for this one wasted cell. [On the

6.4 ANSWERS TO EXERCISES 731

other hand, there is a neat way to avoid the variable N and to allow the table to
become completely full, in Algorithm L, without slowing down the method appreciably
except when the table actually does overĆow: Simply check whether i < 0 happens
twice! This trick does not apply to Algorithm D.]

16. No: 0 always leads to SUCCESS, whether it has been inserted or not, and SUCCESS
occurs with different values of i at different times.

17. The second probe would then always be to position 0.

18. The code in (31) costs about 3(A − S1) units more than (30), and it saves 4u
times the difference between (26), (27), and (28), (29). For a successful search, (31)
is advantageous only when the table is more than about 94 percent full, and it never
saves more than about 1

2
u of time. For an unsuccessful search, (31) is advantageous

when the table is more than about 71 percent full.

20. We want to show that

j

2

≡

k

2

(modulo 2m) and 1 ≤ j ≤ k ≤ 2m

implies j = k. Observe that the congruence j(j−1) ≡ k(k−1) (modulo 2m+1) implies
(k− j)(k+ j − 1) ≡ 0. If k− j is odd, k+ j − 1 must be a multiple of 2m+1, but thatŠs
impossible since 2 ≤ k + j − 1 ≤ 2m+1 − 2. Hence k− j is even, so k + j − 1 is odd, so
k − j is a multiple of 2m+1, so k = j. [Conversely, if M is not a power of 2, this probe
sequence does not work.]

The probe sequence has secondary clustering, and it increases the running time of
Program D (as modiĄed in (30)) by about 1

2
(C−1)−(A−S1) units since B ≈

C+1

3

/M

will now be negligible. This is a small improvement, until the table gets about 60
percent full.

21. If N is decreased, Algorithm D can fail since it might reach a state with no empty
spaces and loop indeĄnitely. On the other hand, if N isnŠt decreased, Algorithm D
might signal overĆow when there still is room. The latter alternative is the lesser of the
two evils, because rehashing can be used to get rid of deleted cells. (In the latter case
Algorithm D should increase N and test for overĆow only when inserting an item into
a previously empty position, since N represents the number of nonempty positions.)
We could also maintain two counters.

22. Suppose that positions j − 1, j − 2, . . . , j − k are occupied and j − k− 1 is empty
(modulo M). The keys that probe position j and Ąnd it occupied before being inserted
are precisely those keys in positions j − 1 through j − k whose hash address does not
lie between j − 1 and j − k; such problematical keys appear in the order of insertion.
Algorithm R moves the Ąrst such key into position j, and repeats the process on a
smaller range of problematical positions until no problematical keys remain.

23. A deletion scheme for coalesced chaining devised by J. S. Vitter [J. Algorithms 3

(1982), 261Ű275] preserves the distribution of search times.

24. We have P (P − 1)(P − 2)P (P − 1)P (P − 1)/(MP (MP − 1) . . . (MP − 6)) =
M−7(1 − (5 − 21/M)P−1 + O(P−2)). In general, the probability of a hash sequence
a1 . . . aN is (

M−1
j=0 P bj)/(MP)N = M−N +O(P−1), where bj is the number of ai that

equal j.

25. Let the (N + 1)st key hash to location a; Pk is M−N times the number of hash
sequences that leave the k locations a, a− 1, . . . , a− k + 1 (modulo M) occupied and

732 ANSWERS TO EXERCISES 6.4

a−k empty. The number of such sequences with a+1, . . . , a+ t occupied and a+ t+1
empty is g(M,N, t+k), by circular symmetry of the algorithm.

26.
9!

2! 2! 4! 1!
f(3, 2)f(3, 2)f(5, 4)f(2, 1) = 2235547 = 4252500.

27. Following the hint,

s(n, x, y) =

k

n

k

x(x+k)k(y−k)n−k−1(y−n)+n

k

n−1
k−1

(x+k)k(y−k)n−k−1(y−n).

In the Ąrst sum, replace k by n− k and apply AbelŠs formula; in the second, replace k
by k + 1. Now

g(M,N, k) =

N

k

(k + 1)k−1(M − k − 1)N−k−1(M −N − 1),

with 0/0 = 1 when k = N = M − 1, and

MN

(k + 1)Pk =

k≥0

k + 2

2

g(M,N, k)

=
1
2

k≥0

(k + 1)g(M,N, k) +

k≥0

(k + 1)2g(M,N, k)

.

The Ąrst sum is MN Pk = MN, and the second is s(N, 1,M−1) = MN +2NMN−1 +
3N(N − 1)MN−2 + · · · = MNQ1(M,N). [See J. Riordan, Combinatorial Identities
(New York: Wiley, 1968), 18Ű23, for further study of sums like s(n, x, y).]

28. Let t(n, x, y) =

k≥0

n
k

(x+ k)k+2(y− k)n−k−1(y− n); then as in exercise 27 we

Ąnd t(n, x, y) = xs(n, x, y) + nt(n−1, x+1, y−1), t(N, 1,M−1) = MN (3Q3(M,N) −
2Q2(M,N)). Thus

(k+1)2Pk = M−N (1

3
(k+1)3+ 1

2
(k+1)2+ 1

6
(k+1))g(M,N, k) =

Q3(M,N)− 2
3
Q2(M,N)+ 1

2
Q1(M,N)+ 1

6
. Subtracting (C′

N)2 gives the variance, which
is approximately 3

4
(1−α)−4− 2

3
(1−α)−3− 1

12
. The standard deviation is often larger

than the mean; for example, when α = .9 the mean is 50.5 and the standard deviation
is 1

2

√
27333 ≈ 82.7.

29. LetM = m+1, N = n; the safe parking sequences are precisely those in which loca-
tion 0 is empty when Algorithm L is applied to the hash sequence (M−a1) . . . (M−an).
Hence the answer is f(m+1, n) = (m + 1)n − n(m + 1)n−1. [This problem originated
with A. G. Konheim and B. Weiss, SIAM J. Applied Math. 14 (1966), 1266Ű1274; see
also R. Pyke, Annals of Math. Stat. 30 (1959), 568Ű576, Lemma 1.]

30. Obviously if the cars get parked they deĄne such a permutation. Conversely, if
p1p2 . . . pn exists, let q1q2 . . . qn be the inverse permutation (qi = j if and only if pj = i),
and let bi be the number of aj that equal i. Every car will be parked if we can prove
that bn ≤ 1, bn−1 +bn ≤ 2, etc.; equivalently b1 ≥ 1, b1 +b2 ≥ 2, etc. But this is clearly
true, since the k elements aq1

, . . . , aqk are all ≤ k.
[Let rj be the Şleft inĆuenceŤ of qj , namely rj = k if and only if qj−1 < qj , . . . ,

qj−k−1 < qj and either j = k or qj−k > qj . Of all permutations p1 . . . pn that dominate
a given wakeup sequence a1 . . . an, the Şpark immediatelyŤ algorithm Ąnds the smallest
one (in lexicographic order). Konheim and Weiss observed that the number of wakeup
sequences leading to a given permutation p1 . . . pn is

n
j=1 rj ; it is remarkable that the

sum of these products, taken over all permutations q1 . . . qn, is (n+ 1)n−1.]

31. Many interesting connections are possible, and the following three are the authorŠs
favorites [see also Foata and Riordan, Æquat. Math. 10 (1974), 10Ű22]:

6.4 ANSWERS TO EXERCISES 733

a) In the notation of the previous answer, the counts b1, b2, . . . , bn correspond to a
full parking sequence if and only if (b1, b2, . . . , bn, 0) is a valid sequence of degrees of tree
nodes in preorder. (Compare with 2.3.3Ű(9), which illustrates postorder.) Every such
tree corresponds to n!/b1! . . . bn! distinct labeled free trees on {0, . . . , n}, since we can let
0 be the label of the root, and for k = 1, 2, . . . , n we can successively choose the labels
of the children of the kth node in preorder in (bk + · · ·+ bn)!/bk! (bk+1 + · · ·+ bn)! ways
from the remaining unused labels, attaching labels from left to right in increasing order.
And every such sequence of counts corresponds to n!/b1! . . . bn! wakeup sequences.

b) Dominique Foata has given the following pretty one-to-one correspondence: Let
a1 . . . an be a safe parking sequence, which leaves car qj parked in space j. A labeled
free tree on {0, 1, . . . , n} is constructed by drawing a line from j to 0 when aj = 1, and
from j to qaj−1 otherwise, for 1 ≤ j ≤ n. (Think of the tree nodes as cars; car j is
connected to the car that eventually winds up parked just before where wife j woke
up.) For example, the wakeup times 3 1 4 1 5 9 2 6 5 lead to the free tree

r0 ��
❅❅

r2

r
4

r

1
r

7

r
3
��
❅❅

r9 r6

r
5

r
8

by FoataŠs rule. Conversely, the sequence of parked cars may be obtained from the tree
by topological sorting, assuming that arrows emanate from the root 0 and choosing the
smallest ŞsourceŤ at each step. From this sequence, a1 . . . an can be reconstructed.

c) First construct an auxiliary tree by letting the parent of node k be the Ąrst
element > k that follows k in the permutation q1 . . . qn; if thereŠs no such element,
let the parent be 0. Then make a copy of the auxiliary tree and relabel the nonzero
nodes of the new tree by proceeding as follows, in preorder: If the label of the current
node was k in the auxiliary tree, swap its current label with the label that is currently
(1 + pk − ak)th smallest in its subtree. For example,

auxiliary tree Ąnal tree

r0 ��
❅❅

r6

r
9

r
8

r
7

r
5
��
❅❅

r3 r1

r
4

r
2

r0 ��
❅❅

r6

r
4

r
2

r
8

r
1
��
❅❅

r3 r5

r
9

r
7

To reverse the procedure, we can reconstruct the auxiliary tree by proceeding in
preorder to swap the label of each node with the largest label currently in its subtree.

Constructions (a) and (b) are strongly related, but construction (c) is quite dif-
ferent. It has the interesting property that the sum of displacements of cars from their
preferred locations is equal to the number of inversions in the tree Ů the number of pairs
of labels a > b where a is an ancestor of b. This relation between parking sequences
and tree inversions was Ąrst discovered by G. Kreweras [Periodica Math. Hung. 11

(1980), 309Ű320]. The fact that tree inversions are intimately related to connected
graphs [Mallows and Riordan, Bull. Amer. Math. Soc. 74 (1968), 92Ű94] now makes
it possible to deduce that the sum of

D(p)

k

taken over all parking sequences, where

D(p) = (p1 − a1) + · · · + (pn − an), is equal to the total number of connected graphs
with n+ k edges on the labeled vertices {0, 1, . . . , n}. [See equations (2.11), (3.5), and

734 ANSWERS TO EXERCISES 6.4

(8.13) in the paper by Janson, čuczak, Knuth, and Pittel, Random Struct. & Alg. 4

(1993), 233Ű358.]

32. Let

sj =
j

k=0

(bk mod M − 1).

Then, as observed by Svante Janson, we have cj = maxk≥j(sk − sj), a quantity that is
well deĄned because limk→∞ sk = −∞.

The solution can be found by deĄning cM−1, cM−2, . . . on the assumption that
c0 = 0; then if c0 turns out to be greater than 0, it suffices to redeĄne cM−1, cM−2,
. . . until no more changes are made.

33. The individual probabilities are not independent, since the condition b0 +b1 + · · ·+
bM−1 = N was not taken into account; the derivation allows a nonzero probability that
bj has any given nonnegative value. Equations (46) are not strictly correct; they

imply, for example, that qk is positive for all k, contradicting the fact that cj can never
exceed N − 1.

Gaston Gonnet and Ian Munro [J. Algorithms 5 (1984), 451Ű470] have found an
interesting way to derive the exact result from the argument leading up to (51) by
introducing a useful operation called the Poisson transform of a sequence ⟨Amn⟩: We
have e−mz

n Amn(mz)n/n! =

k akz
k if and only if Amn =

k akn

k/mk.

34. (a) There are

N
k

ways to choose the set of j such that aj has a particular value,

and (M − 1)N−k ways to assign values to the other aŠs. Therefore

PNk =

N

k

(M − 1)N−k/MN .

(b) PN (z) = B(z) in (50). (c) Consider the total number of probes to Ąnd all keys, not
counting the fetching of the pointer in the list head table of Fig. 38 if such a table is
used. A list of length k contributes

k+1

2

to the total; hence

CN = M

k + 1
2

PNk/N = (M/N)(1

2
P ′′

N (1) + P ′
N (1)).

(d) In case (i) a list of length k requires k probes (not counting the list-head fetch), while
in case (ii) it requires k+δk0. Thus in case (ii) we get C′

N =

(k+δk0)PNk = P ′
N (1)+

PN (0) = N/M + (1 − 1/M)N ≈ α + e−α, while case (i) has simply C′
N = N/M = α.

The formula MC′
N = M −N +NCN applies in case (iii), since M −N hash addresses

will discover an empty table position while N will cause searching to the end of some
list from a point within it; this yields (18).

35. (i)

(1 + 1
2
k− (k+ 1)−1)PNk = 1 +N/(2M)−M(1− (1− 1/M)N+1)/(N + 1) ≈

1 + 1
2
α − (1 − e−α)/α. (ii) Add

δk0PNk = (1 − 1/M)N ≈ e−α to the result of (i).

(iii) Assume that when an unsuccessful search begins at the jth element of a list of
length k, the given key has random order with respect to the other k elements, so
the expected length of search is (j · 1 + 2 + · · · + (k + 1 − j) + (k + 1 − j))/(k + 1).
Summing on j now gives MC′

N = M − N + M

(k3 + 9k2 + 2k)PNk/(6k + 6) =
M −N +M(1

6
N(N − 1)/M2 + 3

2
N/M − 1 + (M/(N + 1))(1− (1− 1/M)N+1)); hence

C′
N ≈ 1

2
α+ 1

6
α2 + (1− e−α)/α.

36. (i) N/M − N/M2. (ii)

(δk0 + k)2PNk =

(δk0 + k2)PNk = PN (0) + P ′′
N (1) +

P ′
N (1). Subtracting (C′

N)2 gives the answer, (M − 1)N/M2 + (1− 1/M)N (1− 2N/M −
(1− 1/M)N) ≈ α+ e−α(1− 2α− e−α) ≤ 1− e−1 − e−2 = 0.4968. [For data structure
(iii), a more complicated analysis like that in exercise 37 would be necessary.]

6.4 ANSWERS TO EXERCISES 735

37. Let SN be the average value of (C − 1)2, considering all MNN choices of hash
sequences and keys to be equally likely. Then

MNNSN =
1
3

N

k1, . . . , kM

(k1(k1 − 1

2
)(k1 − 1) + · · ·+ kM (kM − 1

2
)(kM − 1))

=
1
3
M

k

N

k

(M − 1)N−kk(k − 1

2
)(k − 1)

=
1
3
MN(N − 1)(N − 2)

k

N − 3
k − 3

(M − 1)N−k

+
1
2
MN(N − 1)

k

N − 2
k − 2

(M − 1)N−k

=
1
3
MN(N − 1)(N − 2)MN−3 +

1
2
MN(N − 1)MN−2.

The variance is SN − ((N − 1)/2M)2 = (N − 1)(N + 6M − 5)/12M2 ≈ 1
2
α+ 1

12
α2.

See CMath §8.5 for interesting connections between the total variance calculated
here and two other notions of variance: the variance (over random hash tables) of the
average number of probes (over all items present), and the average (over random hash
tables) of the variance of the number of probes (over all items present). The total
variance is always the sum of the other two; and in this case the variance of the average
number of probes is (M − 1)(N − 1)/(2M2N).

38. The average number of probes is

PNk(2Hk+1 − 2 + δk0) in the unsuccessful

case, (M/N)

PNkk(2(1 + 1/k)Hk − 3) in the successful case, by Eqs. 6.2.2Ű(5) and

6.2.2Ű(6). These sums are 2f(N) + 2M(1− (1− 1/M)N+1)/(N + 1) + (1− 1/M)N − 2
and 2(M/N)f(N) + 2f(N − 1) + 2M(1 − (1 − 1/M)N)/N − 3, respectively, where
f(N) =

PNkHk. Exercise 5.2.1Ű40 tells us that f(N) = lnα+ γ +E1(α) +O(M−1)

when N = αM, M →∞.
[Tree hashing was Ąrst proposed by P. F. Windley, Comp. J. 3 (1960), 84Ű88. The

analysis in the previous paragraph shows that tree hashing is not enough better than
simple chaining to justify the extra link Ąelds; the lists are short anyway. Moreover,
when M is small, tree hashing is not enough better than pure tree search to justify the
hashing time.]

39. (This approach to the analysis of Algorithm C was suggested by J. S. Vitter.)
We have cN+1(k) = (M − k)cN (k) + (k − 1)cN (k − 1) for k ≥ 2, and furthermore
kcN (k) = NMN . Hence

SN+1 =

k≥2

k

2

cN+1(k) =

k≥2

k

2

((M − k)cN (k) + (k − 1)cN (k − 1))

=

k≥1

(M + 2)

k

2

+ k

cN (k) = (M + 2)SN +NMN .

Consequently SN = (N − 1)MN−1 + (N − 2)MN−2(M + 2) + · · · + M(M + 2)N−2 =
1
4
(M(M + 2)N −MN+1 − 2NMN).

Consider the total number of probes in unsuccessful searches, summed over all
M values of h(K); each list of length k contributes k + δk0 +

k
2

to the total, hence

MN+1C′
N = MN+1 + SN.

736 ANSWERS TO EXERCISES 6.4

40. DeĄne UN to be like SN in exercise 39, but with

k
2

replaced by

k+1

3

. We Ąnd

UN+1 = (M + 3)UN + SN +NMN, hence

UN = 1
36

(MN (M − 6N)− 9M(M + 2)N + 8M(M + 3)N).

The variance is 2UN/M
N+1 + C′

N − (C′
N)2, which approaches

35
144
− 1

12
α− 1

4
α2 + (1

4
α− 5

8
)e2α + 4

9
e3α − 1

16
e4α

for N = αM, M → ∞. When α = 1 this is about 2.65, so the standard deviation is
bounded by 1.63. [Svante Janson, in Combinatorics, Prob. and Comp. 17 (2008), 799Ű
814, has found the asymptotic moments of all orders, also when the search is successful.]

41. Let VN be the average length of the block of occupied cells at the ŞhighŤ end of
the table. The probability that this block has length k is ANk(M − 1 − k)N−k/MN,
where ANk is the number of hash sequences (35) such that Algorithm C leaves the Ąrst
N−k and the last k cells occupied and such that the subsequence 1 2 . . . N−k appears
in increasing order. Therefore

MNVN =

k kANk(M − 1− k)N−k = MN+1 −k(M − k)ANk(M − 1− k)N−k

= MN+1 − (M −N)

k ANk(M − k)N−k = MN+1 − (M −N)(M + 1)N .

Now TN = (N/M)(1+VN−T0−· · ·−TN−1), since T0+· · ·+TN−1 is the average number
of times R has previously decreased and N/M is the probability that it decreases on
the current step. The solution to this recurrence is TN = (N/M)(1 + 1/M)N. (Such a
simple formula deserves a simpler proof!)

42. S1N is the number of items that were inserted with A = 0, divided by N.

43. Let N = αM ′ and M = βM ′, and let e−λ +λ = 1/β, ρ = α/β. Then CN ≈ 1+ 1
2
ρ

and C′
N ≈ ρ+e−ρ, if ρ ≤ λ; CN ≈ 1

8ρ
(e2ρ−2λ−1−2ρ+2λ)(3−2/β+2λ)+ 1

4
(ρ+2λ−λ2/ρ)

and C′
N ≈ 1/β+ 1

4
(e2ρ−2λ− 1)(3− 2/β+ 2λ)− 1

2
(ρ−λ), if ρ ≥ λ. For α = 1 we get the

smallest CN ≈ 1.69 when β ≈ .853; the smallest C′
N ≈ 1.79 occurs when β ≈ .782. The

setting β = .86 gives near-optimal search performance for a wide range of α. So it pays
to put the Ąrst collisions into an area that doesnŠt conĆict with hash addresses, even
though a smaller range of hash addresses will cause more collisions to occur. These
results are due to Jeffrey S. Vitter, JACM 30 (1983), 231Ű258.

44. (The following brute-force approach was the solution found by the author in 1972;
a much more elegant solution by M. S. Paterson is explained in Mathematics for the
Analysis of Algorithms by Greene and Knuth (Birkhäuser Boston, 1980), §3.4. Paterson
also found signiĄcant ways to simplify several other analyses in this section.)

Number the positions of the array from 1 to m, left to right. Considering the set of
all

n
k

sequences of operations with k Şp stepsŤ and n−k Şq stepsŤ to be equally likely,

let g(m,n+1, k, r) be

n
k

times the probability that the Ąrst r − 1 positions become

occupied and the rth remains empty. Thus g(m, l, k, r) is (m − 1)−(l−1−k) times the
sum, over all conĄgurations

1 ≤ a1 < · · · < ak < l, (c1, . . . , cl−1−k), 2 ≤ ci ≤ m,

of the probability that the Ąrst empty location is r, when the ajth operation is a p step
and the remaining l − 1 − k operations are q steps that begin by selecting positions
c1, . . . , cl−1−k, respectively. By summing over all conĄgurations subject to the further
condition that the ajth operation occupies position bj , given 1 ≤ b1 < · · · < bk < r, we

6.4 ANSWERS TO EXERCISES 737

obtain the recurrence

g(m, l, k+1, r) =

a<l
b<r

1≤b≤a

(l − b− 1)!
(l − r)!

(m− r)!
(m− b)! (m− l + 1)g(m, a, k, b);

g(m, l, 0, r) =
(l − 1)!
(l − r)!

(m− r)!
m!

(m− l + 1)

Pl + [r ̸= 1]

m

l − 1
(1− Pl)

,

where Pl = (m/(m−1))l−1. Letting G(m, l, k) =
l

r=1(m+1−r)g(m, l, k, r), it follows
that

G(m, l, k+1) =
m− l + 1
m− l + 2

l−1

a=1

G(m, a, k); G(m, l, 0) =
m− l + 1
m− l + 2

(m+ Pl).

The answer to the stated problem is m−n
k=0 p

kqn−kG(m, n+1, k), which (after some
maneuvering) equals m− ((m− n)/(m− n+ 1))(Qn +mR+ pSR), where

Qj = Pj+1q
j ,

R =

1− p

m+ 1

1− p

m

. . .

1− p

m− n+ 2

=

n−1

j=0

1− p

m+ 1− j

,

S =

1− 1

m+ 1

Q0

1− p

m+ 1

 +

1− 1

m

Q1

1− p

m+ 1

1− p

m

 + · · ·+
1−

 1
m− n+ 2

Qn−1

R

=
n−1

k=0

(1− 1/(m+ 1− k))Qkk
j=0(1− p/(m+ 1− j))

.

When p = 1/m, Qj = 1 for all j. Letting w = m + 1, n = αw, w → ∞, we Ąnd
lnR = −(Hw − Hw(1−α))p + O(p2); hence R = 1 + w−1 ln(1 − α) + O(w−2); and
similarly S = αw +O(1). Thus the answer is (1− α)−1 − 1− α− ln(1− α) +O(w−1).

Notes: The simpler problem Şwith probability p occupy the leftmost, otherwise
occupy any randomly chosen empty positionŤ is solved by taking Pj = 1 in the formulas
above, and the answer is m − (m + 1)(m − n)R/(m − n + 1). To get C′

N for random
probing with secondary clustering, set n = N, m = M and add 1 to the answer above.

45. Yes. See L. Guibas, JACM 25 (1978), 544Ű555.

46. DeĄne the numbers [[n
k
]] for k ≥ 0 by the rule

k

x+ k

k

n

k

= (x+ n+ 1)n

for all x and all nonnegative integers n. Setting x = −1,−2, . . . ,−n− 1 implies that

n

k

=

j

k

j

(−1)j(n− j)n for 0 ≤ k ≤ n;

then setting x = 0 implies that we may take [[n
k
]] = 0 for all k > n, so the two sides of

the deĄning equation are polynomials in x of degree n that agree on n + 1 points. It
follows that the numbers [[n

k
]] have the stated property.

738 ANSWERS TO EXERCISES 6.4

Let f(N, r) be the number of hash sequences a1 . . . aN that leave the Ąrst r
locations occupied and the next one empty. There are

M−r−1

N−r

possible patterns of

occupied cells, and each pattern occurs as many times as there are sequences a′1 . . . a
′
N ,

1 ≤ a′i ≤ N , that contain each of the numbers r + 1, r + 2, . . . , N at least once. By
inclusion-exclusion, there are [[N

N−r
]] such sequences; hence

f(N, r) =

M − r − 1
N − r

N

N − r

.

Now

C′
N = 1 +M−N−1

N

r=0

f(N, r)

 r−1

a=0

r +
M−1

a=r+1

N − r
M − r − 1

(r + 1)

= 1 +M−N−1
N

r=0

f(N, r)(N + (N − 1)r).

Let Sn(x) =

k k

x+k
k

[[n

k
]]; we have

(x+ 1)−1Sn(x) +

k

x+ k

k

n

k

=

k

x+ 1 + k

k

n

k

;

hence Sn(x) = (x+ 1)((x+n+ 2)n− (x+n+ 1)n). It follows that C′
N = N(1 + 1/M)−

(N − 1)(1−N/M)(1 + 1/M)N ≈ N(1− (1−α)eα); and CN = (N − 1)((1 + 1/M)/2 +
(1 + 1/M)N) + (3M2 + 6M + 2)((1 + 1/M)N − 1)/N − (3M + 2)(1 + 1/M)N, which is
(e− 2.5)M +O(1) when N = M − 1.

For further properties of the numbers [[n
k
]], see John Riordan, Combinatorial

Identities (New York: Wiley, 1968), 228Ű229.

47. The analysis of Algorithm L applies, almost word for word! Any probe sequence
with cyclic symmetry, and which explores only positions adjacent to those previously
examined, will have the same behavior.

48. C′
N = 1 + p+ p2 + · · · , where p = N/M is the probability that a random location

is Ąlled; hence C′
N = M/(M −N), and CN = N−1N−1

k=0 C′
k = N−1M(HM −HM−N).

These values are approximately equal to those for uniform probing, but slightly higher
because of the chance of repeated probes in the same place. Indeed, for 4 = N < M ≤
16, linear probing is better!

In practice we wouldnŠt use inĄnitely many hash functions; some other scheme
like linear probing would ultimately be used as a last resort. This method is inferior
to those described in the text, but it is of historical importance because it suggested
MorrisŠs method, which led to Algorithm D. See CACM 6 (1963), 101, where M. D.
McIlroy credits the idea to V. A. Vyssotsky; the same technique had been discovered
as early as 1956 by A. W. Holt, who used it successfully in the GPX system for the
UNIVAC.

49. C′
N − 1 =

k>b(k − b)PNk ≈

k>b(k − b)e−αb(αb)k/k! = αbtb(α). [Note: We

have

b≥0

k>b

(k − b)Pk

zb =

P ′(1)
1− z +

z(P (z)− 1)
(1− z)2

6.4 ANSWERS TO EXERCISES 739

in general, if P (z) = P0 + P1z + · · · is any probability generating function.] And

CN − 1 =
M

N

k>b

k − b+ 1

2

PNk

=
M

2N

k>b

(k(k − 1)− 2k(b− 1) + b(b− 1))PNk

= 1
2
e−bα(bα)bb!−1(b+ bα− 2b+ 2 + (bα2 − 2α(b− 1) + b− 1)R(α, b)).

[The analysis of successful search with chaining was Ąrst carried out by W. P. Heis-
ing in 1957. The simple expressions in (57) and (58) were found by J. A. van der Pool in
1971; he also considered how to minimize a function that represents the combined cost of
storage space and number of accesses. We can determine the variance of C′

N and of the
number of overĆows per bucket, since

k>b(k−b)2PNk = (2N/M)(CN−1)−(C′

N−1).
The variance of the total number of overĆows may be approximated by M times the
variance in a single bucket, but this is actually too high because the total number of
records is constrained to be N. The true variance can be found as in exercise 37. See
also the derivation of the chi-square test in Section 3.3.1C.]

50. And next that Q0(M,N − 1) = (M/N)(Q0(M,N)− 1). In general, rQr(M,N) =
MQr−2(M,N) − (M − N − r)Qr−1(M,N) = M(Qr−1(M,N + 1) − Qr−1(M,N));
Qr(M,N − 1) = (M/N)(Qr(M,N)−Qr−1(M,N)).

51. R(α, n) = α−1(n! eαn(αn)−n −Q0(αn, n)).

52. See Eq. 1.2.11.3Ű(9) and exercise 3.1Ű14.

53. By Eq. 1.2.11.3Ű(8), α(αn)nR(α, n) = eαnγ(n+1, αn); hence by the suggested
exercise R(α, n) = (1− α)−1 − (1− α)−3n−1 +O(n−2). [This asymptotic formula can
be obtained more directly by the method of (43), if we note that the coefficient of αk

in R(α, n) is

1−

k + 2

2

n−1 +O(k4n−2).

In fact, the coefficient of αk is

r≥0

(−1)rn−r

r + k + 1
k + 1

by Eq. 1.2.9Ű(28).]

54. Using the hint together with Eqs. 1.2.6Ű(53) and 1.2.6Ű(49), we have

b≥1

tb(α) =

m≥1

αm

(m+ 1)(m)m!

k

m

k

(−1)m−kkm+1 =

m≥1

αm/2.

The hint follows from KummerŠs well-known hypergeometric identity e−zF (a; b; z) =
F (b− a; b;−z), since (n+ 1)! tn(α) = e−nα(αn)nF (2;n+ 2;αn); see Crelle 15 (1836),
39Ű83, 127Ű172, Eq. 26.4.

55. If B(z)C(z) =

siz

i, we have c0 = s0 + · · ·+ sb, c1 = sb+1, c2 = sb+2, . . . ; hence
B(z)C(z) = zbC(z)+Q(z). Now P (z) = zb has b−1 roots qj with |qj | < 1, determined
as the solutions to eα(qj−1) = ω−jqj , ω = e2πi/b. To solve eα(q−1) = ω−1q, let t = αq

740 ANSWERS TO EXERCISES 6.4

and z = αωe−α so that t = zet. By LagrangeŠs formula we get

1
1− q = 1 +

r≥0

r

n≥r

nn−r−1ωnαn−re−nα

(n− r)!

= 1 +

r≥1

r

m≥0

αm

m!
(−1)m

n≥r

m

n− r

(−1)n−rωnnm−1.

By AbelŠs limit theorem, letting |ω| → 1 from inside the unit circle, this can be
rearranged to equal

1− αω
1− ω +

m≥2

αm

m!
(−1)m

n≥0

m− 2
n

(−1)nωn+1(n+ 1)m−1.

Now replacing ω by ωj and summing for 1 ≤ j < b yields

b− 1
2

+ α
b− 1

2
+

m≥2

αm

− 1

2
+

(−1)m

m!
b

n≥1

m− 2
nb− 1

(−1)nb−1(nb)m−1

and the desired result follows after some more juggling using the hint of exercise 54.
This analysis, applied to a variety of problems, was begun by N. T. J. Bailey,

J. Roy. Stat. Soc. B16 (1954), 80Ű87; M. Tainiter, JACM 10 (1963), 307Ű315; A. G.
Konheim and B. Meister, JACM 19 (1972), 92Ű108.

56. See Blake and Konheim, JACM 24 (1977), 591Ű606. Alfredo Viola and Patricio
Poblete [Algorithmica 21 (1998), 37Ű71] have shown that

CMb = 1 +
M − 1
2Mb

+
1
b

j≥2

bm− 1
j

m−j

k≥1

j − 2
bk − 1

(−1)j+bk−1kj−1

=

πM

8b
+

1
3b

+
1
b

b−1

j=1

1
(1− T (e2πij/b−1))

+
1
24

π

2b3M
+O(b−2M−1),

where T is the tree function of Eq. 2.3.4.4Ű(30).

58. 0 1 2 3 4 and 0 2 4 1 3, plus additive shifts of 1 1 1 1 1 mod 5, each with
probability 1

10
. Similarly, for M = 6 we need 30 permutations, and a solution exists

starting with

1
20
× 0 1 2 3 4 5, 1

60
× 0 1 3 2 5 4, 1

60
× 0 2 4 3 1 5, 1

20
× 0 2 3 4 5 1, 1

30
× 0 3 4 1 2 5.

For M = 7 we need 49, and a solution is generated by

1
35
× 0 1 2 3 4 5 6, 2

105
× 0 1 5 3 2 4 6, 1

35
× 0 2 4 3 5 1 6, 2

105
× 0 2 6 3 1 4 5,

1
35
× 0 3 6 1 4 2 5, 1

105
× 0 3 2 6 4 1 5, 1

105
× 0 3 1 5 4 2 6.

59. No permutation can have a probability larger than 1/

M
⌊M/2⌋

, so there must be at

least

M
⌊M/2⌋

= exp(M ln 2 +O(logM)) permutations with nonzero probability.

60. Preliminary results have been obtained by Ajtai, Komlós, and Szemerédi, Infor-
mation Processing Letters 7 (1978), 270Ű273.

62. See the discussion in AMM 81 (1974), 323Ű343, where the best cyclic hashing
sequences are exhibited for M ≤ 9.

63. MHM, by exercise 3.3.2Ű8; the standard deviation is ≈ πM/
√

6.

6.4 ANSWERS TO EXERCISES 741

64. The average number of moves is equal to 1
2
(N − 1)/M + 2

3
(N − 1)(N − 2)/M2 +

3
4
(N − 1)(N − 2)(N − 3)/M3 + · · · ≈ 1

1−α
− 1

α
ln 1

1−α
. [An equivalent problem is solved

in Comp. J. 17 (1974), 139Ű140.]

65. The keys can be stored in a separate table, allocated sequentially (assuming that
deletions, if any, are LIFO). The hash table entries point to this Şnames tableŤ; for
example, TABLE[i] might have the form

Li KEY[i] ,

where Li is the number of words in the key stored at locations KEY[i], KEY[i] + 1,
The rest of the hash table entry might be used in any of several ways: (i) as a

link for Algorithm C; (ii) as part of the information associated with the key; or (iii) as
a Şsecondary hash code.Ť The latter idea, suggested by Robert Morris, sometimes
speeds up a search [we take a careful look at the key in KEY[i] only if h2(K) matches
its secondary hash code, for some function h2(K)].

66. Yes; and the arrangement of the records is unique. The average number of probes
per unsuccessful search is reduced to CN−1, although it remains C′

N when the Nth
term is inserted. This important technique is called ordered hashing. See Comp. J. 17

(1974), 135Ű142; D. E. Knuth, Literate Programming (1992), 144Ű149, 216Ű217.

67. (a) If cj = 0 in (44), an optimum arrangement is obtained by sorting the aŠs into
nonincreasing Şcyclic order,Ť assuming that j − 1 > · · · > 0 > M − 1 > · · · > j.
(b) Between steps L2 and L3, exchange the record-in-hand with TABLE[i] if the latter is
closer to home than the former. [This algorithm, called ŞRobin Hood hashingŤ by Celis,
Larson, and Munro in FOCS 26 (1985), 281Ű288, is equivalent to a variant of ordered
hashing.] (c) Let h(m,n, d) be the number of hash sequences that make c0 ≤ d. It can
be shown [Comp. J. 17 (1974), 141] that (h(m,n, d) − h(m,n, d − 1))M is the total
number of occurrences of displacement d > 0 among all MN hash sequences, and that
we can write h(M,N, d) = a(M,N, d+ 1) − Na(M,N − 1, d+ 1) where a(m,n, d) =d

k=0

n
k

(m+d−k)n−k(k−d)k. An elaborate calculation using the methods of exercises

28 and 50 now shows that the average value of

d2

j is

M1−N
N

d=1

d2(h(M,N, d)− h(M,N, d− 1))

=
M2

2
+

2M
3

+
N

6
+
N2

6M
− N

6M
−M

M

2
− N

2
+

2
3

Q0(M,N)

= M

1

2(1− α)2
− 7

6(1− α)
+

2
3

+
α

6
+
α2

6

+O(1)

when N = αM . Without the modiĄcation (see exercise 28), E

d2

j comes to

M

3
(Q2(M,N)−Q1(M,N))− M

2
(Q0(M,N)− 1) +

N

6

= M

1

3(1− α)3
− 1

3(1− α)2
− 1

2(1− α)
+

1
2

+
α

6

+O(1).

If the records all have approximately the same displacement d, and if successful
searches are signiĄcantly more common than unsuccessful ones, it is advantageous to
start at position h′ = h(K)+d and then to probe h′−1, h′+1, h′−2, etc. P. V. Poblete,
A. Viola, and J. I. Munro have shown [Random Structures & Algorithms 10 (1997),

742 ANSWERS TO EXERCISES 6.4

221Ű255] that

d2

j can be made almost as small as in the Robin Hood method by using
a much simpler approach called Şlast-come-Ąrst-servedŤ hashing, in which every newly
inserted key is placed in its home position; all other keys move one step away until
an empty slot is found. The Robin Hood and last-come-Ąrst-served techniques apply
to double hashing as well as to linear probing, but the reduction in probes does not
compensate for the increased time per probe with respect to double hashing unless the
table is extremely full. (See Poblete and Munro, J. Algorithms 10 (1989), 228Ű248.)

68. The average value of (d1 + · · ·+ dN)2 can be shown to equal
N

12
((M −N)3 + (N + 3)(M −N)2 + (8N + 1)(M −N) + 5N2 + 4N − 1

− ((M −N)3 + 4(M −N)2 + (6N + 3)(M −N) + 8N)Q0(M,N − 1))
using the connection between the parking problem and connected graphs mentioned in
the answer to exercise 31. To get the variance of the average number of probes in a
successful search, divide byN2 and subtract 1

4
(Q0(M,N−1)−1)2; this is asymptotically

1
12

((1 + 2α)/(1− α)4 − 1)/N +O(N−2). (See P. Flajolet, P. V. Poblete, and A. Viola,
Algorithmica 22 (1998), 490Ű515; D. E. Knuth, Algorithmica 22 (1998), 561Ű568.
The variance calculated here should be distinguished from the total variance, which is
E

d2

j/N − 1
4
(Q0(M,N − 1)− 1)2; see the answers to exercises 37 and 67.)

69. Let qk = pk + pk+1 + · · · ; then the inequality qk ≥ max(0, 1− (k− 1)(M − n)/M)
gives a lower bound on C′

N =

k≥1 qk.

70. A remarkably simple proof by Lueker and Molodowitch [Combinatorica 13 (1993),
83Ű96] establishes a similar result but with an extra factor (logM)2 in the O-bound; the
stated result follows in the same way by using sharper probability estimates. A. Siegel
and J. P. Schmidt have shown, in fact, that the expected number of probes in double
hashing is 1/(1 − α) + O(1/M) for Ąxed α = N/M . [Computer Science Tech. Report
687 (New York: Courant Institute, 1995).]

72. [J. Comp. Syst. Sci. 18 (1979), 143Ű154.] (a) Given keys K1, . . . , KN and K, the
probability that Kj is in the same list as K is ≤ 1/M if K ̸= Kj . Hence the expected
list size is ≤ 1 + (N − 1)/M .

(b) Suppose there are Q possible characters; then there are MQ possible choices
for each hj . Choosing each hj at random is equivalent to choosing a random row from
a matrix H of MQl rows and Ql columns, with the entry h(x1 . . . xl) = (h1(x1) + · · ·+
hl(xl)) modM in column x1 . . . xl. In columns K = x1 . . . xl and K′ = x′1 . . . x

′
l with

xj ̸= x′j for some j, we have h(K) = (s + hj(xj)) modM and h(K′) = (s′ + hj(x′j))
modM , where s =

i̸=j hi(xi) and s′ =

i̸=j hi(x

′
i) are independent of hj . The value

of hj(xj) − hj(x′j) is uniformly distributed modulo M ; hence we have h(K) = h(K′)
with probability 1/M , regardless of the values of s and s′.

(c) Yes; adding any constant to hj(xj) changes h(x) by a constant, modulo M .

73. (i) This is the special case of exercise 72(c) when each key is regarded as a sequence
of bits, not characters. [It was invented as early as 1970 by Alfred L. Zobrist, whose
original technical report has been reprinted in ICCA Journal 13 (1990), 69Ű73.] (ii) The
proof of (b) shows that it suffices to show that hj(xj) − hj(x′j) is uniform modulo M
when xj ̸= x′j . And in fact, the probability that hj(xj) = y and hj(x′j) = y′ is 1/M2,
for any given y and y′, because the congruences ajxj + bj ≡ y and ajx

′
j + bj ≡ y′ have

a unique solution (aj , bj) for any given (y, y′), modulo the prime M .
When M is not prime and p is a prime > M , a similar result holds if we let

hj(xj) = ((ajxj + bj) mod p) modM , where aj and bj are chosen randomly mod p.
In this case the family is not quite universal, but it comes close enough for practical

6.4 ANSWERS TO EXERCISES 743

purposes: The probability that different keys collide is at most 1/M+r(M−r)/Mp2 ≤
1/M +M/4p2, where r = pmodM .
74. The statement is false in general. For example, suppose M = N = n2, and consider
the matrix H with

N
n

rows, one for every way to put n zeros in different columns;

the nonzero entries are 1, 2, . . . , N − n from left to right in each row. This matrix is
universal because there are

N−2
n−2

=

N
n

n
N

n−1
N−1

<

N
n

n
N

2 = R/M matches in every

pair of columns. But the number of zeros in every row is
√
N ̸= O(1) +O(N/M).

Notes: This exercise points out that expected list size is quite different from the
expected number of collisions when a new key is inserted. Consider letting h(x1 . . . xl) =
h1(x1), where h1 is chosen at random. This family of hash functions makes the expected
size of every list N/M ; yet it is certainly not universal, because a set of N keys that
have the same Ąrst character x1 will lead to one list of size N and all other lists empty.
The expected number of collisions will be N(N−1)/2, but with a universal hash family
this number is at most N(N − 1)/2M , regardless of the set of keys.

On the other hand we can show that the expected size of every list is O(1) +
O(N/

√
M) in a universal family. Suppose there are zh zeros in row h. Then that row

contains at least

zh
2

pairs of equal elements. The maximum of

R
h=1 xh subject toR

h=1

zh
2

≤

N
2

R/M occurs when each zh is equal to z where

z
2

=

N
2

/M , namely

z =
1
2

+

1
4

+
N(N − 1)

M
< 1 +

N(N − 1)

M
.

75. (a) Obviously true, even if h2, . . . , hl are identically zero. (b) True, by the
answer to 72(b). (c) True. The result is clear if K, K′, and K′′ all differ in some
character position. Otherwise, say xj = x′j ̸= x′′j and xk ̸= x′k = x′′k . Then the
quantities hj(xj) + hk(xk), hj(xj) + hk(x′k), and hj(x′′j) + hk(x′k) are independent of
each other, uniformly distributed, and independent of the other l− 2 characters of the
keys. (d) False. Consider, for example, the case M = l = 2 with 1-bit characters. Then
all four keys hash to the same location with probability 1/4.
76. Use h(K) = (h0(l)+h1(x1)+ · · ·+hl(xl)) modM, where each hj is chosen as in ex-
ercise 73. Generate the random coefficients for hj (and, if desired, precompute its array
of values) when a key of length ≥ j occurs for the Ąrst time. Since l is unbounded, the
matrix H is inĄnite; but only a Ąnite portion is relevant in any particular program run.
77. Let p ≤ 2−16 be the probability that two 32-bit keys have the same image under H.
The worst case occurs when two given keys agree in seven of their eight 32-bit subkeys;
then the probability of collision is 1−(1−p)4 < 4p. [See Wegman and Carter, J. Comp.
Syst. Sci. 22 (1981), 265Ű279.]

78. Let g(x) = ⌊x/2k⌋mod 2n−k and δ(x, x′) =
2k−1

b=0 [g(x+ b) = g(x′ + b)]. Then
δ(x + 1, x′ + 1) = δ(x, x′) + [g(x+ 2k) = g(x′ + 2k)] − [g(x) = g(x′)] = δ(x, x′). Also
δ(x, 0) = (2k .− (xmod 2n)) + (2k .− ((−x) mod 2n)) when 0 < x < 2n, where a .− b =
max(a− b, 0). These formulas characterize δ(x, x′) when x ̸≡ x′ (modulo 2n).

Now let A = {a | 0 < a < 2n, a odd} and B = {b | 0 ≤ b < 2k}. We want to
show that

a∈A

b∈B [g(ax+ b) = g(ax′ + b)] ≤ R/M = 2n−1+k/2n−k = 22k−1 when

0 ≤ x < x′ < 2n. And indeed, if x′ − x = 2pq with q odd, then we have

a∈A

b∈B

[g(ax+ b) = g(ax′ + b)] =

a∈A

δ(ax, ax′) = 2

a∈A

(2k .− ((2paq) mod 2n))

= 2p+1
2n−p−1−1

j=0

(2k .−2p(2j+1)) = 2p+1
2k−p−1−1

j=0

(2k−2p(2j+1))[p<k] = 22k−1[p<k].

744 ANSWERS TO EXERCISES 6.4

[See Lecture Notes in Computer Science 1672 (1999), 262Ű272.]

SECTION 6.5

1. The path described in the hint can be converted by changing each downward step
that runs from (i− 1, j) to a Şnew record lowŤ value (i, j− 1) into an upward step. If c
such changes are made, the path ends at (m,n− 2t+ 2c), where c ≥ 0 and c ≥ 2t− n;
hence n − 2t + 2c ≥ n − 2k. In the permutation corresponding to the changed path,
the smallest c elements of list B correspond to the downward steps that changed, and
list A contains the t− c elements corresponding to downward steps that didnŠt change.

When t = k it is not difficult to see that the construction is reversible; hence
exactly

n
k

permutations are constructed. Incidentally, according to this proof, the

contents of lists A and C may appear in arbitrary order.
Notes: We have counted these paths in another way in exercise 2.2.1Ű4. When

k = ⌊n/2⌋ this construction proves SpernerŠs Theorem, which states that it is impossible
to have more than

n

⌊n/2⌋

subsets of {1, 2, . . . , n} with no subset contained in another.
[Emanuel Sperner, Math. Zeitschrift 27 (1928), 544Ű548.] For if we have such a
collection of subsets, each of the

n
k

permutations can have at most one of the subsets

appearing in the initial positions, yet each subset appears in some permutation. The
construction used here is a disguised form of a more general construction by which
N. G. de Bruijn, C. van Ebbenhorst Tengbergen, and D. Kruyswijk [Nieuw Archief
voor Wiskunde (2) 23 (1951), 191Ű193] proved the multiset generalization of SpernerŠs
Theorem: ŞLet M be a multiset containing n elements (counting multiplicities). The
collection of all ⌊n/2⌋-element submultisets of M is the largest possible collection such
that no submultiset is contained in another.Ť For example, the largest such collection
when M = {a, a, b, b, c, c} consists of the seven submultisets {a, a, b}, {a, a, c}, {a, b, b},
{a, b, c}, {a, c, c}, {b, b, c}, {b, c, c}. This would correspond to seven permutations of
six attributes A1, B1, A2, B2, A3, B3 in which all queries involving Ai also involve Bi.
Further comments appear in a paper by C. Greene and D. J. Kleitman, J. Combinatorial
Theory A20 (1976), 80Ű88.

2. Let aijk be a list of all references to records having (i, j, k) as the respective values
of the three attributes, and assume that a011 is the shortest of the three lists a011, a101,
a110. Then a minimum-length list is a001a011a111a101a100a110a111a011a010. However, if
a011 is empty and so is either of a001, a010, or a100, the length can be shortened by
deleting one of the two occurrences of a111 [CACM 15 (1972), 802Ű808].

3. (a) Anise seed and/or honey, possibly in combination with nutmeg and/or vanilla
extract. (b) None.

4. Let pt be the probability that the query involves exactly t bit positions, and let Pt

be the probability that t given positions are all 1 in a random record. Then the answer
is

t ptPt, minus the probability that a particular record is a Ştrue dropŤ; the latter
probability is

N−q
r−q

/

N
r

, where N =

n
k

. By the principle of inclusion and exclusion,

Pt =

j≥0

(−1)j

t

j

f(n−j, k, r)/f(n, k, r),

where f(n, k, r) is the number of possible choices of r distinct k-bit attribute codes in
an n-bit Ąeld, namely

N
r

where N =

n
k

. And if q = r we have, by exercise 1.3.3Ű26,

pt =

l≥0

(−1)l

t+ l

t

n

t+ l

Pt+l =

n

t

j≥0

(−1)j

t

j

f(t−j, k, q)/f(n, k, q).

6.5 ANSWERS TO EXERCISES 745

Notes: The calculations above were Ąrst carried out, in more general form, by
G. Orosz and L. Takács, J. of Documentation 12 (1956), 231Ű234. The mean

tpt is

easily shown to be n(1−f(n−1, k, q)/f(n, k, q)). Another assumption, that the random
attribute codes in records and queries are not necessarily distinct, as in the techniques
of Harrison and Bloom, can be analyzed by the same method, setting f(n, k, r) =

n
k

r.
When the parameters are in appropriate ranges, we have Pt ≈ (1 − e−kr/n)t and
ptPt ≈ Pn(1−exp(−kq/n)).

6. L(t) =

j

m1

j

m2

t−j

L1(j)L2(t − j)/

m1+m2

t

. [Hence if L1(t) ≈ N1α

−t and
L2(t) ≈ N2α

−t, then L(t) ≈ N1N2α
−t.]

7. (a) L(1) = 3, L(2) = 1 3
4
. (b) L(1) = 3 3

4
, L(2) = 2 1

3
, L(3) = 1 9

16
. [Note: A trivial

projection mapping such as 0 0 ∗ ∗ → 0, 0 1 ∗ ∗ → 1, 1 0 ∗ ∗ → 2, 1 1 ∗ ∗ → 3, has a
worse worst-case behavior; but it has a better average case, because of the exercise that
follows: L(1) = 3, L(2) = 2 1

6
, L(3) = 1 1

2
.]

8. (a) When S = S00 ∪ S11, we have ft(S) = ft(S0 ∪ S1) + ft−1(S0) + ft−1(S1).
Therefore ft(s,m) is the minimum of ft(s0,m−1)+ft−1(s0,m−1)+ft−1(s1,m−1) over
all s0 and s1 such that 2m−1 ≥ s0 ≥ s1 ≥ 0 and s0 +s1 = s. To prove that the minimum
occurs for s0 = ⌈s/2⌉ and s1 = ⌊s/2⌋, we can use induction on m, the result being clear
for m = 1: Given m ≥ 2, let gt(s) = ft(s,m − 1) and ht(s) = ft(s,m − 2). Then, by
induction, gt(s0) + gt−1(s0) + gt−1(s1) = ht(⌈s0/2⌉) + ht−1(⌈s0/2⌉) + ht−1(⌊s0/2⌋) +
ht−1(⌈s0/2⌉)+ht−2(⌈s0/2⌉)+ht−2(⌊s0/2⌋)+ht−1(⌈s1/2⌉)+ht−2(⌈s1/2⌉)+ht−2(⌊s1/2⌋),
which is ≥ gt(⌈s0/2⌉+ ⌈s1/2⌉) + gt−1(⌈s0/2⌉+ ⌈s1/2⌉) + gt−1(⌊s0/2⌋+ ⌊s1/2⌋). And if
s0 > s1+1, we have ⌈s0/2⌉+⌈s1/2⌉ < s0, except in the case s0 = 2k+1 and s1 = 2k−1.
In the latter case, however, gt(s0) + gt−1(s0) + gt−1(s1) ≥ ht(2k + 1) + 2ht−1(2k) ≥
ht(2k) + 2ht−1(2k).

(b) Observe that the set S containing the numbers 0, 1, . . . , s − 1 in binary
notation has the property that S0 ∪ S1 = S0, and S0 contains ⌈s0/2⌉ elements. It
follows, incidentally, that ft(2m−n,m) = [zt] (1 + z)n(1 + 2z)m−n.

10. (a) There must be 1
6
v(v−1) triples, and xv must occur in 1

2
v of them. (b) Since v

is odd, there is a unique triple {xi, yj , z} for each i, and so S′ is readily shown to be a
Steiner triple system. The pairs missing in K′ are {z, x2}, {x2, y2}, {y2, x3}, {x3, y3},
. . . , {xv−1, yv−1}, {yv−1, xv}, {xv, z}. (d) Starting with the case v = 1 and applying
the operations v → 2v − 2, v → 2v + 1 yields all nonnegative numbers not of the
form 3k+ 2, because the cases 6k+ (0, 1, 3, 4) come respectively from the smaller cases
3k + (1, 0, 1, 3).

Incidentally, ŞSteiner triple systemsŤ should not have been named after Steiner,
although that name has become deeply entrenched in the literature. SteinerŠs publica-
tion [Crelle 45 (1853), 181Ű182] came several years after KirkmanŠs, and Felix Klein has
noted [Vorlesungen über die Entwicklung der Math. im 19. Jahrhundert 1 (Springer,
1926), 128] that Steiner quoted English authors without giving them credit, during the
later years of his life. Moreover, the concept had appeared already in two well-known
books of J. Plücker [System der analytischen Geometrie (1835), 283Ű284; Theorie der
algebraischen Curven (1839), 245Ű247]. Kirkman wrote his paper in response to a
substantially more general problem posed by W. S. B. Woolhouse, namely to Ąnd
the maximum number of t-element subsets of {1, . . . , n} in which no q-element subset
appears more than once; that problem remains unsolved. [See LadyŠs and GentlemanŠs
Diary (1844), 84; (1845), 63Ű64; (1846), 76, 78; (1847), 62Ű67.]

11. Take a Steiner triple system on 2v+ 1 objects. Call one of the objects z and name
the others in such a way that the triples containing z are {z, xi, x̄i}; delete those triples.

746 ANSWERS TO EXERCISES 6.5

12. {k, (k+1) mod 14, (k+4) mod 14, (k+6) mod 14}, for 0 ≤ k < 14, where (k + 7)
mod 14 is the complement of k. [Complemented systems are a special case of group

divisible block designs; see Bose, Shrikhande, and Bhattacharya, Ann. Math. Statistics
24 (1953), 167Ű195.]

14. Deletion is easiest in k-d trees (a replacement for the root can be found in about
O(N1−1/k) steps). In quadtrees, deletion seems to require rebuilding the entire subtree
rooted at the node being removed (but this subtree contains only about logN nodes
on the average). In post-office trees, deletion is almost hopeless.

16. Let each triple correspond to a codeword, where each codeword has exactly three
1-bits, identifying the elements of the corresponding triple. If u, v, w are distinct
codewords, u has at most two 1 bits in common with the superposition of v and w,
since it had at most one in common with v or w alone. [Similarly, from quadruple
systems of order v we can construct v(v− 1)/12 codewords, none of which is contained
in the superposition of any three others, etc.]

17. (a) Let c0 = b0 and, for 1 ≤ k ≤ n, let ck = (if bk−1 = 0 then ∗ else bk), c−k = (if
bk−1 = 1 then ∗ else bk). Then the basic query c−n . . . c0 . . . cn describes the contents of
bucket b0 . . . bn. [Consequently this scheme is a special case of combinatorial hashing,
and its average query time matches the lower bound in exercise 8(b).]

(b) Let dk = [bit k is speciĄed], for −n ≤ k ≤ n. We can assume that d−k ≤ dk

for 1 ≤ k ≤ n. Then the maximum number of buckets examined occurs when the
speciĄed bits are all 0, and it may be computed as follows: Set x ← y ← 1. Then for
k = n, n− 1, . . . , 0, set (x, y)← (x, y)Md−k+dk , where

M0 =

1 1
1 1

, M1 =

1 1
1 0

, M2 =

1 1
0 0

.

Finally, output x (which also happens to equal y, after k = 0).
Say that (x, y) ⪰ (x′, y′) if x ≥ x′ and x+ y ≥ x′ + y′. Then if (x, y) ⪰ (x′, y′) we

have (x, y)Md ⪰ (x′, y′)Md for d = 0, 1, 2. Now

(x, y)M2M
j
1M0 = (Fj+3x, Fj+3x),

(x, y)M1M
j
1M1 = (Fj+3x+ Fj+2y, Fj+2x+ Fj+1y),

(x, y)M0M
j
1M2 = (Fj+2x+ Fj+2y, Fj+2x+ Fj+2y);

therefore we have (x, y)M1M
j
1M1 ⪰ (x, y)M2M

j
1M0, because 2y ≥ x; and similarly

(x, y)M1M
j
1M1 ⪰ (x, y)M0M

j
1M2, because x ≥ y. It follows that the worst case occurs

when either d−k + dk ≤ 1 for 1 ≤ k ≤ n or d−k + dk ≥ 1 for 1 ≤ k ≤ n. We also have

(x, y)M0M
j
1 = (Fj+2x+ Fj+2y, Fj+1x+ Fj+1y),

(x, y)M j
1M0 = (Fj+2x+ Fj+1y, Fj+2x+ Fj+1y);

(x, y)M2M
j
1 = (Fj+2x, Fj+1x),

(x, y)M j
1M2 = (Fj+1x+ Fjy, Fj+1x+ Fjy).

Consequently the worst case requires the following number of buckets:

2n−tFt+3, if 0 ≤ t ≤ n [from M t
1M

n+1−t
0];

2t−nF3n−2t+3, if n ≤ t ≤ ⌈3n/2⌉ [from M3n−2t
1 (M1M2)t−nM0];

22n+1−t, if ⌈3n/2⌉ ≤ t ≤ 2n [from M2t−3n
2 (M1M2)2n−tM0].

6.5 ANSWERS TO EXERCISES 747

[These results are essentially due to W. A. Burkhard, BIT 16 (1976), 13Ű31, generalized
in J. Comp. Syst. Sci. 15 (1977), 280Ű299; but BurkhardŠs more complicated mapping
from a0 . . . a2n to b0 . . . bn has been simpliĄed here as suggested by P. Dubost and
J.-M. Trousse, Report STAN-CS-75-511 (Stanford Univ., 1975).]

18. (a) There are 2n(m−n) ∗Šs altogether, hence 2nn digits, with 2nn/m digits in each
column. Half of the digits in each column must be 0. Hence 2n−1n/m is an integer,
and each column contains (2n−1n/m)2 mismatches. Since each pair of rows has at least
one mismatch, we must have 2n(2n − 1)/2 ≤ (2n−1n/m)2m.

(b) Consider the 2n m-bit numbers that are 0 in m− n speciĄed columns. Half of
these have odd parity. A row with ∗ in any of the unspeciĄed columns covers as many
evens as odds.

(c) ∗ 0 0 0, ∗ 1 1 1, 0 ∗ 1 0, 1 ∗ 1 0, 0 0 ∗ 1, 1 0 ∗ 1, 0 1 0 ∗, 1 1 0 ∗. This one isnŠt as
uniform as (13), because a query like *01* hits four rows while *10* hits only two.
Notice that (13) has cyclic symmetry.

(d) Generate 43 rows from each row of (13) by replacing each ∗ by ∗ ∗ ∗ ∗, each 0
by any one of the Ąrst four rows, and each 1 by any one of the last four rows. (A similar
construction makes an ABD(mm′, nn′) from any ABD(m,n) and ABD(m′, n′).)

(e) Given an ABD(16, 9), we can encircle one ∗ in each row in such a way that
there are equally many circles in each column. Then we can split each row into two
rows, with the circled element replaced by 0 and 1. To show that such encirclement
is possible, note that the asterisks of each column can be arbitrarily divided into 32
groups of 7 each; then the 512 rows each contain asterisks of 7 different groups, and the
32× 16 = 512 groups each appear in 7 different rows. Theorem 7.5.1E (the Şmarriage
theoremŤ) now guarantees the existence of a perfect matching with exactly one circled
element in each row and each group.

References: R. L. Rivest, SICOMP 5 (1976), 19Ű50; A. E. Brouwer, Combinatorics,
edited by Hajnal and Sós, Colloq. Math. Soc. János Bolyai 18 (1978), 173Ű184. Brouwer
went on to prove that an ABD(2n, n) exists for all n ≥ 32. The method of part (d)
also yields an ABD(32, 15) when (13) is combined with (15).

19. By exercise 8, the average number with 8− k speciĄed bits is 2k−3f8−k(8, 8)/

8
k

,

which has the respective values (32, 22, 104
7
, 69

7
, 45

7
, 33

8
, 73

28
, 13

8
, 1) ≈ (32, 22, 14.9, 9.9, 6.4,

4.1, 2.6, 1.6, 1) for 8 ≥ k ≥ 0. These are only slightly higher than the values of 32k/8 ≈
(32, 20.7, 13.5, 8.7, 5.7, 3.7, 2.4, 1.5, 1). The worst-case numbers are (32, 22, 18, 15, 11,
8, 4, 2, 1).

20. J. A. La Poutré [Disc. Math. 58 (1986), 205Ű208] showed that an ABD(m,n)
cannot exist when m >

n
2

and n > 3; therefore no ABD(16, 6) exists. La Poutré

and van Lint [Util. Math. 31 (1987), 219Ű225] proved that there is no ABD(10, 5). We
get an ABD(8, 6) from an ABD(8, 5) or ABD(4, 3) using the methods of exercise 18;
this produces several nonisomorphic solutions, and additional examples of ABD(8, 6)
might also exist. The only remaining possibilities (besides the trivial ABD(5, 5) and
ABD(6, 6)) are ABD(8, 5) distinct from (15), and perhaps one or more ABD(12, 6).

All right Ů IŠm glad we found it out detective fashion;

I wouldnŠt give shucks for any other way.

— TOM SAWYER (1884)

APPENDIX A

TABLES OF NUMERICAL QUANTITIES

Table 1

QUANTITIES THAT ARE FREQUENTLY USED IN STANDARD SUBROUTINES
AND IN ANALYSIS OF COMPUTER PROGRAMS (40 DECIMAL PLACES)

√
2 = 1.41421 35623 73095 04880 16887 24209 69807 85697−√
3 = 1.73205 08075 68877 29352 74463 41505 87236 69428+√
5 = 2.23606 79774 99789 69640 91736 68731 27623 54406+√

10 = 3.16227 76601 68379 33199 88935 44432 71853 37196−
3
√

2 = 1.25992 10498 94873 16476 72106 07278 22835 05703−
3
√

3 = 1.44224 95703 07408 38232 16383 10780 10958 83919−
4
√

2 = 1.18920 71150 02721 06671 74999 70560 47591 52930−
ln 2 = 0.69314 71805 59945 30941 72321 21458 17656 80755+
ln 3 = 1.09861 22886 68109 69139 52452 36922 52570 46475−

ln 10 = 2.30258 50929 94045 68401 79914 54684 36420 76011+
1/ln 2 = 1.44269 50408 88963 40735 99246 81001 89213 74266+

1/ln 10 = 0.43429 44819 03251 82765 11289 18916 60508 22944−
π = 3.14159 26535 89793 23846 26433 83279 50288 41972−

1◦ = π/180 = 0.01745 32925 19943 29576 92369 07684 88612 71344+
1/π = 0.31830 98861 83790 67153 77675 26745 02872 40689+
π2 = 9.86960 44010 89358 61883 44909 99876 15113 53137−√

π = Γ (1/2) = 1.77245 38509 05516 02729 81674 83341 14518 27975+
Γ (1/3) = 2.67893 85347 07747 63365 56929 40974 67764 41287−
Γ (2/3) = 1.35411 79394 26400 41694 52880 28154 51378 55193+

e = 2.71828 18284 59045 23536 02874 71352 66249 77572+
1/e = 0.36787 94411 71442 32159 55237 70161 46086 74458+
e2 = 7.38905 60989 30650 22723 04274 60575 00781 31803+
γ = 0.57721 56649 01532 86060 65120 90082 40243 10422−

lnπ = 1.14472 98858 49400 17414 34273 51353 05871 16473−
ϕ = 1.61803 39887 49894 84820 45868 34365 63811 77203+
eγ = 1.78107 24179 90197 98523 65041 03107 17954 91696+

eπ/4 = 2.19328 00507 38015 45655 97696 59278 73822 34616+
sin 1 = 0.84147 09848 07896 50665 25023 21630 29899 96226−
cos 1 = 0.54030 23058 68139 71740 09366 07442 97660 37323+
−ζ′(2) = 0.93754 82543 15843 75370 25740 94567 86497 78979−
ζ(3) = 1.20205 69031 59594 28539 97381 61511 44999 07650−
lnϕ = 0.48121 18250 59603 44749 77589 13424 36842 31352−

1/lnϕ = 2.07808 69212 35027 53760 13226 06117 79576 77422−
−ln ln 2 = 0.36651 29205 81664 32701 24391 58232 66946 94543−

748

TABLES OF NUMERICAL QUANTITIES 749

Table 2

QUANTITIES THAT ARE FREQUENTLY USED IN STANDARD SUBROUTINES
AND IN ANALYSIS OF COMPUTER PROGRAMS (45 OCTAL PLACES)

The names at the left of the Ş=Ť signs are given in decimal notation.

0.1 = 0.06314 63146 31463 14631 46314 63146 31463 14631 46315−
0.01 = 0.00507 53412 17270 24365 60507 53412 17270 24365 60510−

0.001 = 0.00040 61115 64570 65176 76355 44264 16254 02030 44672+
0.0001 = 0.00003 21556 13530 70414 54512 75170 33021 15002 35223−

0.00001 = 0.00000 24761 32610 70664 36041 06077 17401 56063 34417−
0.000001 = 0.00000 02061 57364 05536 66151 55323 07746 44470 26033+

0.0000001 = 0.00000 00153 27745 15274 53644 12741 72312 20354 02151+
0.00000001 = 0.00000 00012 57143 56106 04303 47374 77341 01512 63327+

0.000000001 = 0.00000 00001 04560 27640 46655 12262 71426 40124 21742+
0.0000000001 = 0.00000 00000 06676 33766 35367 55653 37265 34642 01627−√

2 = 1.32404 74631 77167 46220 42627 66115 46725 12575 17435+√
3 = 1.56663 65641 30231 25163 54453 50265 60361 34073 42223−√
5 = 2.17067 36334 57722 47602 57471 63003 00563 55620 32021−√

10 = 3.12305 40726 64555 22444 02242 57101 41466 33775 22532+
3
√

2 = 1.20505 05746 15345 05342 10756 65334 25574 22415 03024+
3
√

3 = 1.34233 50444 22175 73134 67363 76133 05334 31147 60121−
4
√

2 = 1.14067 74050 61556 12455 72152 64430 60271 02755 73136+
ln 2 = 0.54271 02775 75071 73632 57117 07316 30007 71366 53640+
ln 3 = 1.06237 24752 55006 05227 32440 63065 25012 35574 55337+

ln 10 = 2.23273 06735 52524 25405 56512 66542 56026 46050 50705+
1/ln 2 = 1.34252 16624 53405 77027 35750 37766 40644 35175 04353+

1/ln 10 = 0.33626 75425 11562 41614 52325 33525 27655 14756 06220−
π = 3.11037 55242 10264 30215 14230 63050 56006 70163 21122+

1◦ = π/180 = 0.01073 72152 11224 72344 25603 54276 63351 22056 11544+
1/π = 0.24276 30155 62344 20251 23760 47257 50765 15156 70067−
π2 = 11.67517 14467 62135 71322 25561 15466 30021 40654 34103−√

π = Γ (1/2) = 1.61337 61106 64736 65247 47035 40510 15273 34470 17762−
Γ (1/3) = 2.53347 35234 51013 61316 73106 47644 54653 00106 66046−
Γ (2/3) = 1.26523 57112 14154 74312 54572 37655 60126 23231 02452+

e = 2.55760 52130 50535 51246 52773 42542 00471 72363 61661+
1/e = 0.27426 53066 13167 46761 52726 75436 02440 52371 03355+
e2 = 7.30714 45615 23355 33460 63507 35040 32664 25356 50217+
γ = 0.44742 14770 67666 06172 23215 74376 01002 51313 25521−

lnπ = 1.11206 40443 47503 36413 65374 52661 52410 37511 46057+
ϕ = 1.47433 57156 27751 23701 27634 71401 40271 66710 15010+
eγ = 1.61772 13452 61152 65761 22477 36553 53327 17554 21260+

eπ/4 = 2.14275 31512 16162 52370 35530 11342 53525 44307 02171−
sin 1 = 0.65665 24436 04414 73402 03067 23644 11612 07474 14505−
cos 1 = 0.42450 50037 32406 42711 07022 14666 27320 70675 12321+
−ζ′(2) = 0.74001 45144 53253 42362 42107 23350 50074 46100 27706+
ζ(3) = 1.14735 00023 60014 20470 15613 42561 31715 10177 06614+
lnϕ = 0.36630 26256 61213 01145 13700 41004 52264 30700 40646+

1/lnϕ = 2.04776 60111 17144 41512 11436 16575 00355 43630 40651+
−ln ln 2 = 0.27351 71233 67265 63650 17401 56637 26334 31455 57005−

750 APPENDIX A

Several interesting constants without common names have arisen in con-
nection with the analyses of sorting and searching algorithms. These constants
have been evaluated to 40 decimal places in Eqs. 5.2.3Ű(19) and 6.5Ű(6), and in
the answers to exercises 5.2.3Ű27, 5.2.4Ű13, 5.2.4Ű23, 6.2.2Ű49, 6.2.3Ű7, 6.2.3Ű8,
and 6.3Ű26.

Table 3

VALUES OF HARMONIC NUMBERS, BERNOULLI NUMBERS,
AND FIBONACCI NUMBERS, FOR SMALL VALUES OF n

n Hn Bn Fn n

0 0 1 0 0
1 1 −1/2 1 1
2 3/2 1/6 1 2
3 11/6 0 2 3
4 25/12 −1/30 3 4
5 137/60 0 5 5
6 49/20 1/42 8 6
7 363/140 0 13 7
8 761/280 −1/30 21 8
9 7129/2520 0 34 9

10 7381/2520 5/66 55 10
11 83711/27720 0 89 11
12 86021/27720 −691/2730 144 12
13 1145993/360360 0 233 13
14 1171733/360360 7/6 377 14
15 1195757/360360 0 610 15
16 2436559/720720 −3617/510 987 16
17 42142223/12252240 0 1597 17
18 14274301/4084080 43867/798 2584 18
19 275295799/77597520 0 4181 19
20 55835135/15519504 −174611/330 6765 20
21 18858053/5173168 0 10946 21
22 19093197/5173168 854513/138 17711 22
23 444316699/118982864 0 28657 23
24 1347822955/356948592 −236364091/2730 46368 24
25 34052522467/8923714800 0 75025 25
26 34395742267/8923714800 8553103/6 121393 26
27 312536252003/80313433200 0 196418 27
28 315404588903/80313433200 −23749461029/870 317811 28
29 9227046511387/2329089562800 0 514229 29
30 9304682830147/2329089562800 8615841276005/14322 832040 30

TABLES OF NUMERICAL QUANTITIES 751

For any x, let Hx =

n≥1

 1
n
− 1

n + x

. Then

H1/2 = 2− 2 ln 2,

H1/3 = 3− 1
2 π/
√

3− 3
2 ln 3,

H2/3 = 3
2 + 1

2 π/
√

3− 3
2 ln 3,

H1/4 = 4− 1
2 π − 3 ln 2,

H3/4 = 4
3 + 1

2 π − 3 ln 2,

H1/5 = 5− 1
2 πϕ3/25−1/4 − 5

4 ln 5− 1
2

√
5 ln ϕ,

H2/5 = 5
2 − 1

2 πϕ−3/25−1/4 − 5
4 ln 5 + 1

2

√
5 ln ϕ,

H3/5 = 5
3 + 1

2 πϕ−3/25−1/4 − 5
4 ln 5 + 1

2

√
5 ln ϕ,

H4/5 = 5
4 + 1

2 πϕ3/25−1/4 − 5
4 ln 5− 1

2

√
5 ln ϕ,

H1/6 = 6− 1
2 π
√

3− 2 ln 2− 3
2 ln 3,

H5/6 = 6
5 + 1

2 π
√

3− 2 ln 2− 3
2 ln 3,

and, in general, when 0 < p < q (see exercise 1.2.9Ű19),

Hp/q =
q

p
− π

2
cot

p

q
π − ln 2q + 2

1≤n<q/2

cos
2pn

q
π · ln sin

n

q
π.

APPENDIX B

INDEX TO NOTATIONS

In the following formulas, letters that are not further qualiĄed have the following
signiĄcance:

j, k integer-valued arithmetic expression
m, n nonnegative integer-valued arithmetic expression
x, y real-valued arithmetic expression

z complex-valued arithmetic expression
f real-valued or complex-valued function
P pointer-valued expression (either Λ or a computer address)

S, T set or multiset
α, β strings of symbols

Where

Formal symbolism Meaning deĄned

V ← E give variable V the value of expression E 1.1
U ↔ V interchange the values of variables U and V 1.1

An or A[n] the nth element of linear array A 1.1
Amn or A[m, n] the element in row m and column n of rect-

angular array A 1.1
NODE(P) the node (group of variables that are indi-

vidually distinguished by their Ąeld names)
whose address is P, assuming that P ̸= Λ 2.1

F(P) the variable in NODE(P) whose Ąeld name is F 2.1
CONTENTS(P) contents of computer word whose address is P 2.1

LOC(V) address of variable V within a computer 2.1
P⇐ AVAIL set the value of pointer variable P to the

address of a new node 2.2.3
AVAIL⇐ P return NODE(P) to free storage; all its Ąelds

lose their identity 2.2.3
top(S) node at the top of a nonempty stack S 2.2.1
X ⇐ S pop up S to X: set X ← top(S); then delete

top(S) from nonempty stack S 2.2.1
S⇐ X push down X onto S: insert the value X as

a new entry on top of stack S 2.2.1

752

INDEX TO NOTATIONS 753

Where

Formal symbolism Meaning deĄned

(R? a: b) conditional expression: denotes
a if relation R is true, b if R is false

[R] characteristic function of relation R:
(R? 1: 0) 1.2.3

δkj Kronecker delta: [j = k] 1.2.3

[zn] g(z) coefficient of zn in power series g(z) 1.2.9

R(k)

f(k) sum of all f(k) such that the variable k is an
integer and relation R(k) is true 1.2.3

R(k)

f(k) product of all f(k) such that the variable k
is an integer and relation R(k) is true 1.2.3

min
R(k)

f(k) minimum value of all f(k) such that the var-
iable k is an integer and relation R(k) is true 1.2.3

max
R(k)

f(k) maximum value of all f(k) such that the var-
iable k is an integer and relation R(k) is true 1.2.3

j\k j divides k: k mod j = 0 and j > 0 1.2.4

S \ T set difference: {a | a in S and a not in T}
gcd(j, k) greatest common divisor of j and k:

j = k = 0? 0: max

d\j, d\k
d

1.1

j ⊥ k j is relatively prime to k: gcd(j, k) = 1 1.2.4

AT transpose of rectangular array A:
AT [j, k] = A[k, j]

αR left-right reversal of α

xy x to the y power (when x is positive) 1.2.2

xk x to the kth power:
k ≥ 0?

0≤j<k

x: 1/x−k

1.2.2

xk x to the k rising: Γ (x + k)/Γ (x) =
k ≥ 0?

0≤j<k

(x + j): 1/(x + k)−k

1.2.5

xk x to the k falling: x!/(x− k)! =
k ≥ 0?

0≤j<k

(x− j): 1/(x− k)−k

1.2.5

754 APPENDIX B

Where

Formal symbolism Meaning deĄned

n! n factorial: Γ (n + 1) = nn 1.2.5

x

k

binomial coefficient: (k < 0? 0: xk/k!) 1.2.6

n

n1, n2, . . . , nm

multinomial coefficient (deĄned only when
n = n1 + n2 + · · ·+ nm) 1.2.6

n

m

Stirling number of the Ąrst kind:

0<k1<k2<···<kn−m<n

k1k2 . . . kn−m 1.2.6

n

m

Stirling number of the second kind:

1≤k1≤k2≤···≤kn−m≤m

k1k2 . . . kn−m 1.2.6

{a | R(a)} set of all a such that the relation R(a) is true

{a1, . . . , an} the set or multiset {ak | 1 ≤ k ≤ n}
{x} fractional part (used in contexts where a

real value, not a set, is implied): x− ⌊x⌋ 1.2.11.2

[a . . b] closed interval: {x | a ≤ x ≤ b} 1.2.2

(a . . b) open interval: {x | a < x < b} 1.2.2

[a . . b) half-open interval: {x | a ≤ x < b} 1.2.2

(a . . b] half-closed interval: {x | a < x ≤ b} 1.2.2

|S| cardinality: the number of elements in set S

|x| absolute value of x: (x ≥ 0? x: − x)

|α| length of α

⌊x⌋ Ćoor of x, greatest integer function: maxk≤xk 1.2.4

⌈x⌉ ceiling of x, least integer function: mink≥x k 1.2.4

x mod y mod function:

y = 0? x: x− y⌊x/y⌋

1.2.4

x ≡ x′ (modulo y) relation of congruence: x mod y = x′ mod y 1.2.4

O

f(n)

big-oh of f(n), as the variable n→∞ 1.2.11.1

O

f(z)

big-oh of f(z), as the variable z → 0 1.2.11.1

Ω

f(n)

big-omega of f(n), as the variable n→∞ 1.2.11.1

Θ

f(n)

big-theta of f(n), as the variable n→∞ 1.2.11.1

INDEX TO NOTATIONS 755

Where

Formal symbolism Meaning deĄned

logb x logarithm, base b, of x (when x > 0,
b > 0, and b ̸= 1): the y such that x = by 1.2.2

ln x natural logarithm: loge x 1.2.2

lg x binary logarithm: log2 x 1.2.2

exp x exponential of x: ex 1.2.9

⟨Xn⟩ the inĄnite sequence X0, X1, X2, . . .
(here the letter n is part of the symbolism) 1.2.9

f ′(x) derivative of f at x 1.2.9

f ′′(x) second derivative of f at x 1.2.10

f (n)(x) nth derivative:

n = 0? f(x): g′(x)

,

where g(x) = f (n−1)(x) 1.2.11.2

H(x)
n harmonic number of order x:

1≤k≤n

1/kx 1.2.7

Hn harmonic number: H
(1)
n 1.2.7

Fn Fibonacci number:
(n ≤ 1? n: Fn−1 + Fn−2) 1.2.8

Bn Bernoulli number: n! [zn] z/(ez − 1) 1.2.11.2

det(A) determinant of square matrix A 1.2.3

sign(x) sign of x: [x > 0]− [x < 0]

ζ(x) zeta function: limn→∞ H
(x)
n (when x > 1) 1.2.7

Γ (x) gamma function: (x− 1)! = γ(x,∞) 1.2.5

γ(x, y) incomplete gamma function:
 y

0
e−ttx−1dt 1.2.11.3

γ EulerŠs constant: limn→∞(Hn − ln n) 1.2.7

e base of natural logarithms:

n≥0 1/n! 1.2.2

π circle ratio: 4

n≥0(−1)n/(2n + 1) 1.2.2

∞ inĄnity: larger than any number

Λ null link (pointer to no address) 2.1

ϵ empty string (string of length zero)

∅ empty set (set with no elements)

ϕ golden ratio: 1
2

1 +
√

5

1.2.8

φ(n) EulerŠs totient function:

0≤k<n

[k⊥n] 1.2.4

x ≈ y x is approximately equal to y 1.2.5

756 APPENDIX B

Where

Formal symbolism Meaning deĄned

Pr

S(X)

probability that statement S(X) is true, for
random values of X 1.2.10

E X expected value of X:

x x Pr(X = x) 1.2.10

mean(g) mean value of the probability distribution
represented by generating function g: g′(1) 1.2.10

var(g) variance of the probability distribution
represented by generating function g:

g′′(1) + g′(1)− g′(1)2 1.2.10

(min x1, ave x2,
max x3, dev x4)

a random variable having minimum
value x1, average (expected) value x2,
maximum value x3, standard deviation x4 1.2.10

ℜz real part of z 1.2.2

ℑz imaginary part of z 1.2.2

z complex conjugate: ℜz − iℑz 1.2.2

(. . . a1a0.a−1 . . .)b radix-b positional notation:

k akbk 4.1

//x1, x2, . . . , xn// continued fraction:
1

x1 + 1/(x2 + 1/(· · ·+ 1/(xn) . . .))

4.5.3

α β intercalation product 5.1.2

S ⊎ T multiset sum; e.g., {a, b}⊎{a, c} = {a, a, b, c} 4.6.3

f(x)
b
a function growth: f(b)− f(a)

end of algorithm, program, or proof 1.1

␣ one blank space 1.3.1

rA register A (accumulator) of MIX 1.3.1

rX register X (extension) of MIX 1.3.1

rI1, . . . , rI6 (index) registers I1, . . . , I6 of MIX 1.3.1

rJ (jump) register J of MIX 1.3.1

(L:R) partial Ąeld of MIX word, 0 ≤ L ≤ R ≤ 5 1.3.1

OP ADDRESS,I(F) notation for MIX instruction 1.3.1, 1.3.2

u unit of time in MIX 1.3.1

* ŞselfŤ in MIXAL 1.3.2

0F, 1F, 2F, . . . , 9F ŞforwardŤ local symbol in MIXAL 1.3.2

0B, 1B, 2B, . . . , 9B ŞbackwardŤ local symbol in MIXAL 1.3.2

0H, 1H, 2H, . . . , 9H ŞhereŤ local symbol in MIXAL 1.3.2

APPENDIX C

INDEX TO ALGORITHMS AND THEOREMS

Algorithm 5.1.1C, 591–592.

Theorem 5.1.2A, 26.

Theorem 5.1.2B, 27.

Theorem 5.1.2C, 28–29.

Theorem 5.1.4A, 51–52.

Corollary 5.1.4B, 54.

Theorem 5.1.4B, 53–54.

Theorem 5.1.4C, 55.

Algorithm 5.1.4D, 50.

Theorem 5.1.4D, 57.

Algorithm 5.1.4G, 69.

Algorithm 5.1.4H, 612.

Theorem 5.1.4H, 60.

Algorithm 5.1.4I, 49–50.

Algorithm 5.1.4P, 70.

Algorithm 5.1.4Q, 614.

Algorithm 5.1.4S, 55.

Algorithm 5.1.4S0, 70.

Algorithm 5.2B, 617.

Algorithm 5.2C, 76.

Program 5.2C, 76–77, 615.

Algorithm 5.2D, 78.

Program 5.2D, 616.

Algorithm 5.2D0, 618.

Algorithm 5.2M, 618.

Algorithm 5.2P, 616–617.

Program 5.2P, 617.

Algorithm 5.2.1D, 84.

Program 5.2.1D, 84–85.

Program 5.2.1D0, 620.

Corollary 5.2.1H, 88–89.

Theorem 5.2.1H, 88.

Theorem 5.2.1I, 92.

Theorem 5.2.1K, 90.

Algorithm 5.2.1L, 96.

Lemma 5.2.1L, 90.

Program 5.2.1L, 97, 625.

Program 5.2.1M, 100, 625.

Algorithm 5.2.1P, 624.

Theorem 5.2.1P, 91.

Algorithm 5.2.1S, 80–81.

Program 5.2.1S, 81, 625.

Algorithm 5.2.2B, 107.

Program 5.2.2B, 107.

Algorithm 5.2.2D, 635.

Theorem 5.2.2I, 108.

Algorithm 5.2.2M, 111.

Program 5.2.2M, 629–630.

Algorithm 5.2.2Q, 115–117.

Program 5.2.2Q, 117–118.

Program 5.2.2Q0, 638.

Algorithm 5.2.2R, 123, 125.

Program 5.2.2R, 125–126.

Algorithm 5.2.3H, 145.

Program 5.2.3H, 146–147.

Theorem 5.2.3H, 153–154.

Algorithm 5.2.3H0, 642.

Algorithm 5.2.3I, 642.

Algorithm 5.2.3M, 645.

Lemma 5.2.3M, 141.

Algorithm 5.2.3P, 641–642.

Algorithm 5.2.3S, 139.

Program 5.2.3S, 140.

Program 5.2.3S0, 640–641.

Algorithm 5.2.4L, 164–165.

Program 5.2.4L, 165–166.

Algorithm 5.2.4M, 158–159.

Algorithm 5.2.4M0, 646.

Algorithm 5.2.4N, 160–161.

Algorithm 5.2.4S, 162–163.

Algorithm 5.2.5H, 172.

Algorithm 5.2.5R, 171–172.

Program 5.2.5R, 173–174.

Theorem 5.2.5T, 177.

Algorithm 5.3.2H, 203.

Theorem 5.3.2K, 202.

Theorem 5.3.2M, 198.

Algorithm 5.3.3A, 219.

Theorem 5.3.3L, 214.

Theorem 5.3.3S, 209–210.

Theorem 5.3.4A, 233–234.

Theorem 5.3.4F, 230.

Algorithm 5.3.4T, 238.

Theorem 5.3.4Z, 223.

Theorem 5.4.1K, 261–262.

Algorithm 5.4.1N, 265.

Algorithm 5.4.1R, 257–258.

Algorithm 5.4.2A, 267.

Algorithm 5.4.2B, 267.

Algorithm 5.4.2D, 270–271.

Algorithm 5.4.3C, 292–293.

Algorithm 5.4.4P, 308.

Algorithm 5.4.5B, 313–315, 691.

Algorithm 5.4.5O, 691.

Theorem 5.4.6A, 338.

Algorithm 5.4.6F, 321–322.

Algorithm 5.4.8K, 354–355.

Theorem 5.4.8K, 354–355.

Lemma 5.4.9C, 366.

Theorem 5.4.9F, 375.

Theorem 5.4.9H, 363.

Theorem 5.4.9K, 364.

Theorem 5.4.9L, 366.

Theorem 5.4.9M, 367.

Algorithm 6.1Q, 397.

Program 6.1Q, 397–398.

Program 6.1Q0, 398.

Algorithm 6.1S, 396.

Program 6.1S, 397.

Theorem 6.1S, 404.

Algorithm 6.1S0, 702.

Program 6.1S0, 702.

Algorithm 6.1T, 398–399.

Algorithm 6.2.1B, 410.

757

758 APPENDIX C

Program 6.2.1B, 411.

Theorem 6.2.1B, 412–413.

Algorithm 6.2.1C, 415.

Program 6.2.1C, 415–416, 705.

Algorithm 6.2.1F, 418.

Program 6.2.1F, 418–419.

Algorithm 6.2.1U, 414.

Theorem 6.2.2B, 444–445.

Subroutine 6.2.2C, 452.

Algorithm 6.2.2D, 432, 435.

Lemma 6.2.2E, 444.

Algorithm 6.2.2G, 451.

Theorem 6.2.2H, 432–434.

Algorithm 6.2.2K, 439.

Theorem 6.2.2M, 445–446.

Algorithm 6.2.2T, 427–428.

Program 6.2.2T, 429.

Lemma 6.2.2W, 447.

Lemma 6.2.2X, 447.

Lemma 6.2.2Y, 447, 449.

Lemma 6.2.2Z, 449.

Algorithm 6.2.3A, 462–464.

Program 6.2.3A, 464–466.

Theorem 6.2.3A, 460.

Algorithm 6.2.3B, 472.

Algorithm 6.2.3C, 472–473.

Algorithm 6.2.3G, 717.

Algorithm 6.3D, 497.

Program 6.3D, 722.

Algorithm 6.3P, 500.

Algorithm 6.3T, 492.

Program 6.3T, 493–494.

Theorem 6.3T, 501.

Algorithm 6.4A, 729–730.

Algorithm 6.4C, 521–522.

Program 6.4C, 523–524.

Program 6.4C0, 729.

Algorithm 6.4D, 528–529.

Program 6.4D, 530.

Theorem 6.4K, 537.

Algorithm 6.4L, 526.

Program 6.4L, 527.

Theorem 6.4P, 538.

Algorithm 6.4R, 533–534.

Theorem 6.4S, 518.

Theorem 6.4U, 540–541.

One of my mathematician friends told me he would be willing

to recognize computer science as a worthwhile field of study

as soon as it contains 1,000 deep theorems.

This criterion should obviously be changed to include algorithms

as well as theorems — say 500 deep theorems and 500 deep algorithms.

But even so, it is clear that computer science today doesn’t measure up

to such a test, if “deep” means that a brilliant person would need

many months to discover the theorem or the algorithm.

. . . The potential for “1,000 deep results” is there,

but only perhaps 50 have been discovered so far.

— DONALD E. KNUTH, Computer Science and Mathematics (1973)

INDEX AND GLOSSARY

If you don’t find it in the Index,

look very carefully through the entire catalogue.

— SEARS, ROEBUCK AND CO., Consumers Guide (1897)

When an index entry refers to a page containing a relevant exercise, see also the answer to
that exercise for further information. An answer page is not indexed here unless it refers to a
topic not included in the statement of the exercise.

−∞, 4, 142–144, 156, 214, 663–664,
685, 707.

0–1 matrices, 660.
0–1 principle, 223, 224, 245, 667, 668.
1/3–2/3 conjecture, 197.
2-3 trees, 476–477, 480, 483, 715.
(2, 4)-trees, 477.
2-d trees, 565.
2-descending sequence, 451.
2-ordered permutations, 86–88, 103,

112–113, 134.
80-20 rule, 400–401, 405, 456.
∞, 4, 138–139, 257–258, 263, 521,

624–625, 646.
as sentinel, 159, 252, 308, 324.

ζ(x) (number of 0s), 235; see also

Zeta function.
ν(x) (number of 1s), 235, 643, 644, 717.
π (circle ratio), 372, 520, 748–749.

as “random” example, 17, 370, 385,
547, 552, 733.

φ (golden ratio), xiv, 138, 517–518, 748–749.

(a, b)-trees, 477.
Abbreviated keys, 512, 551.
Abel, Niels Henrik, binomial formula, 552.

limit theorem, 740.
Abraham, Chacko Thakadiparambil, 578.
Absorption laws, 239.
Adaptive sorting, 389.
Addition of apples to oranges, 401.
Addition of polynomials, 165.
Addition to a list, see Insertion.
Address calculation sorting, 99–102,

104–105, 176–177, 380, 389, 698.
Address table sorting, 74–75, 80.
Adelson-Velsky, Georgii Maximovich

(
), 459, 460.

Adjacent transpositions, 13, 240, 403,
404, 640, 668.

Adversaries, 198–202, 205–207, 209–210,
218, 671.

AF-heaps, 152.
Agarwal, Ramesh Chandra (rm⇤f c⌃d̋

ag}vAl), 359, 389.
Agenda, see Priority queue.
Aggarwal, Alok (aAlok ag}vAl), 698.

Aho, Alfred Vaino, 476, 479, 652.
Aigner, Martin, 241.
Airy, George Biddle, function, 611.
Ajtai, Miklós, 228, 673, 740.
al-Khwārizmı, Abū ‘Abd Allāh

Muh. ammad ibn Mūsā
(), 8.

Aldous, David John, 728.
Alekseev, Vladimir Evgenievich (

), 232, 233,
237, 238.

Alexanderson, Gerald Lee, 599.
ALGOL language, 454.
Algorithms, analysis of, see Analysis.

comparison of, see Comparison.
proof of, see Proof.

Allen, Brian Richard, 478.
Allen, Charles Grant Blairfindie, 558.
Alphabetic binary encoding, 452–454.
Alphabetic order, 7, 420–421, 453.
Altenkamp, Doris, 713.
Alternating runs, 46, 607.
Amble, Ole, 556.
Amdahl, Gene Myron, 547.
American Library Association rules, 7–8.
AMM: American Mathematical Monthly,

published by the Mathematical
Association of America since 1894.

Amortized cost, 478, 549.
Amphisbaenic sort, 347, 388.
Anagrams, 9, see also Permutations

of a multiset.
Analysis of algorithms, 3, 77–78, 80, 82,

85–95, 100–105, 108–109, 118–122,
140, 152–158, 161–162, 167–168,
174–177, 185–186, 255–256, 259–266,
274–279, 285–287, 294–299, 330–335,
339–343, 379, 382, 387–388, 397–408,
412–413, 424–425, 430–431, 454–458,
466–471, 479–480, 485–486, 490,
500–512, 524–525, 534–539, 543–544,
552–557, 565–566, 576, 619, see also

Complexity analysis.
Analytical Engine, 180.
AND (bitwise and), 111, 134, 531, 589,

592, 629.
André, Antoine Désiré, 68, 605.
Anti-stable sorting, 347, 615, 650.
Antisymmetric function, 66.

759

760 INDEX AND GLOSSARY

Anuyogadvārasūtra (an� yogíArs�/), 23.
Apollonius Sophista, son of Archibius

(
), 421.

Appell, Paul Émile, 679.
Approximate equality, 9, 394–395.
Aragon, Cecilia Rodriguez, 478.
Archimedes of Syracuse (

), 13.
solids, 593.

Arge, Lars Allan, 489.
Argument, 392.
Arisawa, Makoto (), 574.
Arithmetic overflow, 6, 519, 585.
Arithmetic progressions, 517.
Armstrong, Philip Nye, 225, 244, 245, 675.
Arora, Sant Ram (s⌃t rAm arowA), 455.
Arpacı-Dusseau, Andrea Carol, 390.
Arpacı-Dusseau, Remzi Hussein, 390.
Ascents of a permutation, 35.
Ashenhurst, Robert Lovett, 344, 348.
Askey, Richard Allen, 601.
Associated Stirling numbers, 266.
Associative block designs, 574–575, 582.
Associative law, 24, 35, 239, 461, 592.
Associative memories, 392, 579.
Asymptotic methods, 41–42, 45, 47,

62–64, 69, 128–134, 136–138, 194–195,
286–287, 405, 479, 490, 504–506,
509–510, 555–557, 644.

limits of applicability, 318.
Attitude, 73.
Attributes, 559.

binary, 567–576.
compound, 564, 566–567.

auf der Heide, see Meyer auf der Heide.
Automatic programming, 387.
AVL trees, 459, see Balanced trees.
Avni, Haim (), 707.

B-trees, 482–491, 549, 563.
B+-trees, 486.
B⇤-trees, 488.
Babbage, Charles, 180.
Baber, Robert Laurence, 704.
Babylonian mathematics, 420.
Bachrach (= Gilad-Bachrach), Ran

(-), 403.
Backward reading, see Read-backward.
Baeza-Yates, Ricardo Alberto, 489, 713, 715.
Bafna, Vineet (EvnFt bAPnA), 615.
Baik, Jinho (), 611.
Bailey, Norman Thomas John, 740.
Balance factor, 459, 479.
Balanced filing, 576–578, 581.
Balanced incomplete block designs, 576.
Balanced merging, 248–251, 267, 297,

299–300, 311, 325, 333, 386–387, 587.
with rewind overlap, 297.

Balanced radix sorting, 343, 386.

Balanced trees, 150–151, 458–491,
547, 592, 713.

weight-balanced, 476, 480.
Balancing a binary tree, 480.
Balancing a k-d tree, 566.
Balbine, Guy de, 528.
Ball, Walter William Rouse, 593.
Ballot problem, 61, 66.
Barnett, John Keith Ross, 168.
Barton, David Elliott, 44, 602, 603, 605.
Barve, Rakesh Dilip (rAk⇤f EdlFp bv⇤�), 371.
Barycentric coordinates, 437.
Basic query, 569, 574–576, 579–582.
Batcher, Kenneth Edward, 111, 223, 226,

230–232, 235, 381, 389, 667.
Batching, 98, 159, 560, 563.
Baudet, Gérard Maurice, 671.
Bayer, Paul Joseph, 454, 458.
Bayer, Rudolf, 477, 482, 483, 487, 490, 721.
Bayes, Anthony John, 346.
Bell, Colin James, 337.
Bell, David Arthur, 167, 388, 647.
Bell, James Richard, 531, 532.
Bellman, Richard Ernest, ix.
Ben-Amram, Amir Mordechai

(-), 181.
Bencher, Dennis Leo, 312, 313, 316.
Benchmarks, 389–391.
Bender, Edward Anton, 605, 609, 696.
Bennett, Brian Thomas, 378.
Bennett, Mary Katherine, 718–719.
Bent, Samuel Watkins, 213, 478, 666.
Bentley, Jon Louis, 122, 403, 512,

565–566, 633, 635.
Bergeron, Anne, 615.
Berkeley, George, 782.
Berkovich, Simon Yakovlevich (

), 496.
Berman, Joel David, 669.
Berners-Lee, Conway Maurice, 98, 453.
Bernoulli, Jacques (= Jakob = James),

numbers, 506, 602, 637, 750.
numbers, calculation of, 611.

Berra, Lawrence Peter “Yogi”, 476.
Bertrand, Joseph Louis François, 605.
Best-fit allocation, 480.
Best possible, 180.
Beta distribution, 586.
Betz, Bernard Keith, 268, 288.
Beus, Hiram Lynn, 245–246.
Bhāskara II, Ācārya, son of Maheúvara

(BA-krAcAy�, mh⇤òrp� /), 23.
Bhattacharya, Kailash Nath (

), 746.
Biased trees, 478.
Bienaymé, Irénée Jules, 605.
Bierce, Ambrose Gwinnett, 558.
BINAC computer, 386.
Binary attributes, 567–576.
Binary computers, 411.

INDEX AND GLOSSARY 761

Binary insertion sort, 82–83, 97, 183,
186, 193, 225, 386.

Binary merging, 203–204, 206.
Binary quicksort, see Radix exchange.
Binary recurrences, 135, 167, 630, 644, 653.
Binary search, 82, 203, 409–417, 420,

422–423, 425, 435, 546, 643.
uniform, 414–416, 423.

Binary search trees, 426–481, 565.
optimum, 436–454, 456–458, 478.
pessimum, 457, 711.

Binary tree: Either empty, or a root
node and its left and right binary
subtrees; see also Complete binary
tree, Extended binary tree.

enumeration, 60–61, 157, 295, 467, 479.
triply linked, 158, 475.

Binary tries, 500–502.
Binomial coe�cients, 30–31, 87, 190.
Binomial probability distribution, 100–101,

341, 539, 555.
Binomial queues, 152.
Binomial transforms, 136–137, 508.
Biquinary number system, 694.
Birkho�, Garrett, 719.
Birthday paradox, 513, 549.
Bisection, 410, see Binary search.
BIT: Nordisk Tidskrift for Informations-

Behandling, an international journal
published in Scandinavia since 1961.

Bit reversal, 621.
Bit strings, 561–562, 572–573.
Bit vectors, 235.
Bitner, James Richard, 403, 478, 703.
Bitonic sequence, 231.
Bitonic sorter, 230–232, 243, 244.
Bits of information, 183, 442–443.
Bitwise and, 111, 134, 531, 589, 592, 629.
Bitwise or, 529, 571.
Björner, Anders, 609.
Blake, Ian Fraser, 740.
Blanks, algebra of, 592.
Bleier, Robert Edward, 578.
Block designs, 576–578.
Blocks of records, 258.

on disk, 358–359, 369.
on tape, 318–320.

Bloom, Burton Howard, 572–573, 578, 745.
Blum, Manuel, 214.
Blum, Norbert Karl, 718.
Boas, Peter van Emde, 152.
Boehm McGraw, Elaine Marie (= Elaine

Marie Hall), 547.
Boerner, Hermann, 669.
Boesset, Antoine de, 24.
Bollobás, Béla, 645.
Book of Creation (), 23.
Boolean queries, 559, 562, 564.
Booth, Andrew Donald, 396, 400,

422, 453, 454.

Boothroyd, John, 617.
Borwein, Peter Benjamin, 155.
Bose, Raj Chandra (), 226,

578, 746.
Bostic, Keith, 177, 652.
Bottenbruch, Hermann, 422, 425.
Bouricius, Willard Gail, 195, 223.
Bourne, Charles Percy, 395, 578.
Brandwood, Leonard, 400.
Bravais, Auguste, 518.
Bravais, Louis, 518.
Brawn, Barbara Severa, 698.
Breaux, Nancy Ann Eleser, 680.
Brent, Richard Peirce, 532–533, 546, 718.
Briandais, René Edward de la, 494.
Brouwer, Andries Evert, 575, 747.
Brown, John, 7.
Brown, Mark Robbin, 152, 479.
Brown, Randy Lee, 152.
Brown, William Stanley, 157.
Bruhat, François, order, 628, 670.

weak, 13, 19, 22, 628, 670.
Bruijn, Nicolaas Govert de, 130, 138,

602, 668, 670, 671, 744.
Bubble sort, 106–109, 128–130, 134,

140, 222–223, 240, 244, 246–247,
348–349, 380, 387, 390.

multihead, 244–245.
Buchholz, Werner, 396, 548.
Buchsbaum, Adam Louis, 481.
Bucket sorting, 169.
Buckets, 541–544, 547–548, 555, 564.
Bu�ering, 339–343, 387, 488.

size of bu�ers, 332–333, 349, 360,
367–368, 376–377.

Bulk memory, 356, see Disk storage.
Bundala, Daniel, 666.
Burge, William Herbert, 279, 297, 337.
Burkhard, Walter Austin, 747.
Burton, Robert, v.
Butterfly network, 227, 236–237.

C language, 426.
Cache memory, 389.
CACM: Communications of the ACM,

a publication of the Association for
Computing Machinery since 1958.

Calendar queues, 152.
Calhorda Cruz Filipe, Luís, 226.
Cancellation laws, 24.
Canfield, Earl Rodney, 673.
Cards, see also Playing cards.

edge-notched, 1, 569–570, 578.
feature, 569–570, 578.
machines for sorting, 169–170, 175,

383–385.
Carlitz, Leonard, 39, 47, 613, 620.
Caron, Jacques, 279, 280, 286, 287.
Carries, 691.
Carroll, Lewis (= Dodgson, Charles

Lutwidge), 207–208, 216, 584.
Carter, John Lawrence, 519, 557, 743.

762 INDEX AND GLOSSARY

Carter, William Caswell, 279, 288, 297.
Cartesian trees, 478.
Cascade merge, 288–300, 311, 326,

333, 338, 389.
read-backward, 328, 334.
with rewind overlap, 299, 327,

333–334, 342.
Cascade numbers, 294–299.
Cascading pseudo-radix sort, 347.
Catalan, Eugène Charles, numbers, 61, 295.
Catenated search, 407.
Cawdrey (= Cawdry), Robert, 421.
Cayley, Arthur, 628, 653.
Celis Villegas, Pedro, 741.
Cells, 564.
Census, 383–386, 395.
Césari, Yves, 193, 279.
Chaining, 520–525, 542–544, 547, 553, 557.

to reduce seek time, 368–369.
Chakravarti, Gurugovinda (

), 23.
Chandra, Ashok Kumar (afok k� mAr

c⌃}dA), 422.
Chang, Shi-Kuo (), 458.
Chartres, Bruce Aylwin, 156.
Chase, Stephen Martin, 196.
Chazelle, Bernard Marie, 583.
Chebyshev (= Tschebysche�), Pafnutii

Lvovich (
=

), 395.
polynomials, 296, 685.

Chen, Wen-Chin (), 548.
Cherkassky, Boris Vasilievich (

), 152.
Chessboard, 14, 46, 69.
Chinese mathematics, 36.
Choice of data structure, 95–96, 141,

151–152, 163–164, 170–171, 459,
561–567.

Chow, David Kuo-kien, 578.
Christen, Claude André, 204, 658.
Chronological order, 372, 379.
Chung, Moon Jung (=), 673.
Chung Graham, Fan Rong King

(), 402.
Church, Randolph, 669.
CI: MIX’s comparison indicator, 6.
Cichelli, Richard James, 513.
Circular lists, 407, 729.
Ciura, Marcin Grzegorz, 95, 623.
Clausen, Thomas, 157.
Cleave, John Percival, 400.
Clément, Julien Stephane, 728.
Cliques, 9.
Closest match, search for, 9, 394, 408,

563, 566, 581.
CMath: Concrete Mathematics, a book

by R. L. Graham, D. E. Knuth,
and O. Patashnik.

CMPA (compare rA), 585.
Coalesced chaining, 521–525, 543, 548,

550–554, 557, 730.
COBOL language, 339, 532.
Cocktail-shaker sort, 110, 134, 356, 676, 694.
Codes for di�culty of exercises, ix–xi.
Codish, Michael (), 226.
Co�man, Edward Grady, Jr., 496.
Coldrick, David Blair, 638.
Cole, Richard John, 583.
Colin, Andrew John Theodore, 453, 454.
Collating, 158, 385–387, see Merging.
Collating sequence, 7, 420–421.
Collision resolution, 514, 520–557.
Column sorting, 343.
Combinatorial hashing, 573–575, 579–580,

582, 746.
Combinatorial number system, 573.
Comer, Douglas Earl, 489.
Commutative laws, 239, 455.
Comp. J.: The Computer Journal, a

publication of the British Computer
Society since 1958.

Comparator modules, 221, 234, 241.
Comparison counting sort, 75–80, 382, 387.
Comparison-exchange tree, 196.
Comparison matrix, 188.
Comparison of algorithms, 151, 324–338,

347–348, 380–383, 471, 545–547.
Comparison of keys, 4.

minimizing, 180–247, 413, 425, 549.
multiprecision, 6, 136, 169.
parallel, 113, 222–223, 228–229, 235,

390, 425, 671.
searching by, 398–399, 409–491, 546–547.
sorting by, 80–122, 134–168, 180–197,

219–343, 348–383.
Comparison trees, 181–182, 192–197,

217, 219–220, 411–417.
Compiler techniques, 2–3, 426, 532.
Complement notations, 177.
Complementary pairs, 9.
Complemented block designs, 581.
Complete binary trees, 144, 152–153, 158,

211, 217, 253–254, 258, 267, 425.
Complete P -ary tree, 361, 697.
Complete ternary trees, 157.
Complex partitions, 21.
Complexity analysis of algorithms, 168,

178–179, 180–247, 302–311, 353–356,
374–378, 388, 412–413, 425, 491,
539–541, 549, 578.

Components of graphs, 189.
Compositions, 286–287.
Compound attributes, 564, 566–567.
Compound leaf of a tree, 688.
Compressed tries, 507.

dynamic, 722.
Compression of data, 453, 512.
Compromise merge, 297.
Computational complexity, see Complexity.
Computational geometry, 566.

INDEX AND GLOSSARY 763

Computer operator, skilled, 325, 337, 349.
Computer Sciences Corporation, 2.
Comrie, Leslie John, 170, 385.
Concatenation of balanced trees, 474, 479.
Concatenation of linked lists, 172.
Concave functions, 443, 456, 458.
Concurrent access, 491.
Conditional expressions, 753.
Connected graphs, 189, 733, 742.
Consecutive retrieval, 567, 579.
Convex functions, 366, 375.
Convex hulls, 478, 670.
Cookies, 567–571, 577.
Coordinates, 564–566.
Copyrights, iv, 387.
Corless, Robert Malcolm, 606.
Cormen, Thomas H., 477.
Coroutines, 259.
Cotangent, 194.
Counting, sorting by, 75–80.
Covering, 235.
Coxeter, Harold Scott MacDonald, 593.
Cramer, Gabriel, 11.
Cramer, Michael, 650.
Crane, Clark Allan, 149–150, 152, 474,

475, 479, 716.
Crelle: Journal für die reine und angewandte

Mathematik, an international journal
founded by A. L. Crelle in 1826.

Criss-cross merge, 312–315, 317.
Cross-indexing, see Secondary key retrieval.
Cross-reference routine, 7.
Crossword-puzzle dictionary, 573.
Cruz-Filipe, Luís Calhorda, 226.
Cube, n-dimensional, linearized, 408.
Culberson, Joseph Carl, 435.
Culler, David Ethan, 390.
Cundy, Henry Martyn, 593.
Cunto Pucci, Walter, 218.
Curtis, Pavel, 251.
Cycles of a permutation, 25–32, 62, 156,

617, 628, 639–640, 657.
Cyclic occupancy problem, 379.
Cyclic rotation of data, 619.
Cyclic single hashing, 556–557.
Cylinders of a disk, 357, 376, 482, 489, 562.
Cypher, Robert Edward, 623.
Czech, Zbigniew Janusz, 513.
Czen Ping (), 186.

Daly, Lloyd William, 421.
Dannenberg, Roger Berry, 583.
Data compression, 453, 512.
Data structure, choice of, 95–96, 141,

151–152, 163–164, 170–171, 459,
561–567.

Database, 392.
David, Florence Nightingale, 44, 602, 605.
Davidson, Leon, 395.
Davies, Donald Watts, 388.

Davis, David Robert, 578.
Davison, Gerald A., 152.
de Balbine, Guy, 528.
de Bruijn, Nicolaas Govert, 130, 138,

602, 668, 670, 671, 744.
de la Briandais, René Edward, 494.
de Peyster, James Abercrombie, Jr., 544.
de Staël, Madame, see Staël-Holstein.
Deadlines, 407.
Deadlocks, 721.
Debugging, 520.
Decision trees, 181–182, 192–197, 217,

219–220, 411–417, 443–444.
Dedekind, Julius Wilhelm Richard, 239.

sums, 20.
Degenerate trees, 430, 454, 711.
Degenerative addresses, 547.
Degree path length, 363–367.
Degrees of freedom, 258–259.
Deift, Percy Alec, 611.
Deletion: Removing an item.

from a B-tree, 490.
from a balanced tree, 473, 479.
from a binary search tree, 431–435,

455, 458.
from a digital search trees, 508.
from a hash table, 533–534, 548–549,

552, 556, 741.
from a heap, 157.
from a leftist tree, 158.
from a multidimensional tree, 581.
from a trie, 507.

Demuth, Howard B., 109, 184, 246, 348,
353, 387, 388, 676.

Den, Vladimir Eduardovich (
), 7.

Denert, Marlene, 596.
Dent, Warren Thomas, 455.
Derangements, 679.
Derr, John Irving, 547.
Descents of a permutation, 35, 46, 47, 606.
Determinants, 11, 14, 19, 33–34.

Vandermonde, 59, 610, 729.
Deutsch, David Nachman, 204.
Devroye, Luc Piet-Jan Arthur, 565,

713, 721, 728.
Diaconis, Persi Warren, 597.
Diagram of a partial order, 61–62,

183–184, 187.
Dictionaries of English, 1–2, 421, 558, 589.
Dictionary order, 5.
Dietzfelbinger, Martin Johannes, 549.
Digital search trees, 502–505, 508–511,

576, 646.
optimum, 511.

Digital searching, 492–512.
Digital sorting, 169, 343, see Radix sorting.
Digital tree search, 496–498, 517, 546–547.
Dijkstra, Edsger Wybe, 636.
Dilcher, Karl Heinrich, 726.
Diminishing increment sort, 84.
Dinsmore, Robert Johe, 258.

764 INDEX AND GLOSSARY

Direct-access memory, 356, see Disk storage.
Direct sum of graphs, 189–191.
Directed graphs, 9, 61–62, 184.
Discrete entropy, 374–375.
Discrete logarithms, 10.
Discrete system simulation, 149.
Discriminant, 59, 66, 68.
Disk storage, 357–379, 389–390, 407,

481–491, 562–563.
Disk striping, 370, 378, 389.
Disorder, measures of, 11, 22, 72, 134, 389.
Displacements, variance of, 556, 619.
Distribution counting sort, 78–80, 99,

170, 176–177, 380–382.
Distribution functions, 105, see Probability.
Distribution patterns, 343–348.
Distribution sorting, see Radix sorting.
Distributive laws, 239.
Divide and conquer, 175.

recurrence, 168, 224, 674.
Divisor function d(n), 138.
Dixon, John Douglas, 611.
DNA, 34, 72.
Dobkin, David Paul, 583.
Dobosiewicz, W≥odzimierz, 176, 266,

628, 680.
Dodd, Marisue, 520.
Dodgson, Charles Lutwidge, 207, see Carroll.
Dor, Dorit (), 664.
Doren, David Gerald, 212, 218.
Dot product, 406.
Double-entry bookkeeping, 561.
Double hashing, 528–533, 546, 548,

551–552, 556, 557, 742.
Double rotation, 461, 464, 477.
Doubly exponential sequences, 467, 715.
Doubly linked list, 393, 375, 543, 646, 713.
Douglas, Alexander Shafto, 98, 388, 396.
Dowd, Martin John, 673.
Drake, Paul, 1.
Driscoll, James Robert, 152, 583.
Drmota, Michael, 713.
Dromey, Robert Geo�rey, 634.
Drum storage, 359–362.
Drysdale, Robert Lewis (Scot), III, 228.
Dual of a digraph, 191.
Dual tableaux, 56–57, 69.
Dubost, Pierre, 747.
Dudeney, Henry Ernest, 589, 670.
Dugundji, James, 245.
Dull, Brutus Cyclops, 6, 45, 549.
Dumas, Philippe, 134.
Dumey, Arnold Isaac, 255, 396, 422,

453, 547.
Dummy runs, 248–249, 270–272, 276,

289–293, 299, 302, 312, 316–317,
682, 686.

Dumont, Dominique, 605.
Duplication of code, 398, 418, 429,

625, 648, 677.
Dutch national flag problem, 636.
Dwyer, Barry, 574.
Dynamic programming, ix, 438.
Dynamic searching, 393.
Dynamic storage allocation, 11, 480.

e (base of natural logarithms), 41, 526,
748–749, 755.

Ebbenhorst Tengbergen, Cornelia van, 744.
Eckert, John Presper, 386–387.
Eckler, Albert Ross, Jr., 590.
Eddy, Gary Richard, 389.
Edelman, Paul Henry, 670, 719.
Edge-notched cards, 1, 569–570, 578.
Edigho�er, Judy Lynn Harkness, 645.
Edmund, Norman Wilson, 1.
EDVAC computer, 385, 386.
Efe, Kemal, 680.
E�ective power, 676, see Growth ratio.
E�ciency of a digraph, 188.
Ehresmann, Charles, 628.
Eichelberger, Edward Baxter, 704.
Eisenbarth, Bernhard, 489.
El-Yaniv, Ran (), 403.
Elcock, Edward Wray, 551, 730.
Elementary symmetric functions, 239, 609.
Eleser, see Breaux.
Elevators, 353–356, 374–375, 377–378.
Elias, Peter, 581.
Elkies, Noam David, 9.
Ellery, Robert Lewis John, 395.
Emde Boas, Peter van, 152.
Emden, Maarten Herman van, 128, 633, 638.
Empirical data, 94–95, 403, 434–435,

468–470.
English language, 1–2, 9, 421.

common words, 435–437, 492–493,
496–497, 513–515.

dictionaries, 1–2, 421, 558, 589.
letter frequencies, 448–450.

Entropy, 442–446, 454, 457–458.
Enumeration of binary trees, 60–61, 295.

balanced, 467, 479.
leftist, 157.

Enumeration of permutations, 12, 22–24.
Enumeration of trees, 287.
Enumeration sorting, 75–80.
Eppinger, Je�rey Lee, 434, 435.
Equal keys, 194–195, 341, 391, 395, 431, 635.

approximately, 9, 394–395.
in heapsort, 655.
in quicksort, 136, 635–636.
in radix exchange, 127–128, 137.

Equality of sets, 207.
Eratosthenes of Cyrene (

), 642.
Erdélyi, Artúr (= Arthur), 131.
Erd�s, Pál (= Paul), 66, 155, 658.
Erdwinn, Joel Dyne, 2.
Erkiö, Hannu Heikki Antero, 623.
Error-correcting codes, 581.
Ershov, Andrei Petrovich (

), 547.
Espelid, Terje Oskar, 259.
Estivill-Castro, Vladimir, 389.

INDEX AND GLOSSARY 765

Euler, Leonhard (=
), 8–9, 19–21, 35,

38–39, 395, 593–594, 726.
numbers (secant numbers), 35, 610–611.
summation formula, 64, 129, 626, 702.

Eulerian numbers, 35–40, 45–47, 653.
table, 37.

Eusterbrock, Jutta, 213.
Eve, James, 496.
Even-odd merge, 244.
Even permutations, 19, 196.
Evolutionary process, 226, 401.
Exact cover problem, 721.
Exchange selection sort, 106.
Exchange sorting 73, 105–138.

optimum, 196.
Exclusive or, 20, 519, 589, 667, 723.
Exercises, notes on, ix–xi.
Exponential function, q-generalized, 594.
Exponential integral, 105, 137, 735.
Extended binary tree: Either a single

“external” node, or an “internal” root
node plus its left and right extended
binary subtrees, 181.

Extendible hashing, 549.
External nodes, 181, 254.
External path length: Sum of the level

numbers of all external nodes, 192,
303, 306, 344, 347, 361, 363–367,
413, 434, 502, 505–506.

modified, 502–503, 511.
External searching, 403–408, 481–491,

496, 498–500, 541–544, 549, 555,
562–563, 572–573.

External sorting, 4–5, 6–10, 248–379.

Factorials, 23, 187.
generalized, 32, 594.

Factorization of permutations, 25–35.
Fagin, Ronald, 549.
Fallacious reasoning, 45, 60, 424, 553.
Falling powers, 638–639, 661, 734, 753.
False drops, 571–573, 579, 590.
Fanout, 232, 241.
Fast Fourier transforms, 237.
Fawkes, Guido (Guy), 339.
Feature cards, 569–570, 578.
Feigenbaum, Joan, 478.
Feijen, Wilhelmus (= Wim) Hendricus

Johannes, 636.
Feindler, Robert, 385.
Feit, Walter, 609.
Feldman, Jerome Arthur, 578.
Feldman, Paul Neil, 426.
Feller, Willibald (= Vilim = Willy =

William), 513.
Felsner, Stefan, 658.
Fenner, Trevor Ian, 645.
Ferguson, David Elton, 2, 290–291, 297,

299, 367, 422, 525, 685.

Fermat, Pierre de, 584.
Ferragina, Paolo, 489.
Feurzeig, Wallace, 79.
Fiat, Amos (), 708.
Fibonacci, Leonardo, of Pisa (= Leonardo

filio Bonacii Pisano), 424.
Fibonacci hashing, xiv, 517–518.
Fibonacci heaps, 152.
Fibonacci number system, 348, 424, 729.

generalized, 286.
Fibonacci numbers, 93, 268, 287, 418, 426,

518, 623, 687, 746, 750.
generalized, 270, 286, 287, see also

Cascade numbers.
Fibonacci search, 417.
Fibonacci trees, 417, 422–424, 457, 459,

460, 468, 474, 479, 714.
Fibonaccian search, 417–419, 422–424.
Field, Daniel Eugene, 583.
FIFO, 149, 299, 310, see Queues.
File: A sequence of records, 4, 392.

self-organizing, 401–403, 405–406,
478, 521, 646.

Finding the maximum, 141, 209.
and minimum, 218.

Fingers, 718.
Finite fields, 549–550.
Finkel, Raphael Ari, 565, 566, 566.
First-fit allocation, 480, 721.
First-in-first-out, 149, 299, 310, see Queues.
Fischer, Michael John, 152.
Fishburn, John Scot, 721.
Fishspear, 152.
Fixed points of a permutation, 62, 66, 617.
Flajolet, Philippe Patrick Michel, 134,

565, 566, 576, 630, 644, 649, 703,
726, 728, 742.

Flip operation, 72.
Floating bu�ers, 323, 324, 340, 369.
Floating point accuracy, 41.
Flores, Ivan, 388.
Floyd, Robert W, 145, 156, 215, 217, 218,

226, 230, 237, 238, 240, 297, 374, 375,
377, 378, 455, 468, 519, 614, 661, 695.

Foata, Dominique Cyprien, 17, 21, 24, 27,
33, 39, 43, 599, 618, 732, 733.

FOCS: Proceedings of the IEEE Symposia
on Foundations of Computer Science
(1975–), formerly called the Symposia
on Switching Circuit Theory and
Logic Design (1960–1965), Symposia
on Switching and Automata Theory
(1966–1974).

Folding a path, 112–113, 134.
Foldout illustration, 324–325.
Fomin, Sergey Vladimirovich (

), 671.
Ford, Donald Floyd, 395.
Ford, Lester Randolph, Jr., 184, 186.
Forecasting, 321–324, 340, 341, 369,

387, 388, 693.
Forest: Zero or more trees, 47, 494–496,

508, 512.

766 INDEX AND GLOSSARY

FORTRAN language, 2–3, 7, 426, 549.
Forward-testing-backward-insertion, 204.
Foster, Caxton Croxford, 470, 473, 475, 714.
Fractal probability distribution, 400.
Fractile insertion, 660.
Frame, James Sutherland, 60.
Françon, Jean, 152.
Frank, Michael (), 226.
Frank, Robert Morris, 93.
Franklin, Fabian, 19, 21, 599.
Fraser, Christopher Warwick, 583.
Frazer, William Donald, 122, 259,

678, 704, 708.
Fredkin, Edward, 492.
Fredman, Michael Lawrence, 152, 181,

442, 480, 549, 578, 614.
Free distributive lattice, 239.
Free groups, 511–512.
Free trees, 356, 590.
Frequency of access, 399–408, 435, 532, 538.
Friedman, Haya, 718.
Friedman, Jerome Harold, 566.
Friend, Edward Harry, 79, 109, 141, 170,

255, 324, 337, 338, 347, 388, 650.
Frieze, Alan Michael, 645.
Fringe analyses, 715.
Frobenius, Ferdinand Georg, 59.
Front and rear compression, 512.
Fussenegger, Frank, 217.

Gabow, Harold Neil, 152, 217.
Gaines, Helen Fouché, 435.
Gale, David, 668.
Galen, Claudius (), 421.
Galil, Zvi (), 181.
Gamma function Γ (z), 131–134, 138,

510, 611, 636–637, 702.
Gandz, Solomon, 23.
Gardner, Erle Stanley, 1.
Gardner, Martin, 370, 585, 590, 651, 697.
Gardy, Danièle, 703.
Garsia, Adriano Mario, 454, 597, 711.
Garsia–Wachs algorithm, 446–452, 458.
Gasarch, William Ian, 213.
Gassner, Betty Jane, 40–41, 262.
Gaudette, Charles H., 347.
Gauß (= Gauss), Johann Friderich Carl

(= Carl Friedrich), 395.
integers, 21.

gcd: Greatest common divisor.
Generable integer, 103.
Generating functions, techniques for using,

15–17, 19–20, 32–34, 38–42, 45–47,
68, 102–104, 135, 177, 194, 261–262,
270, 275–276, 294–299, 340–341,
425, 455, 479, 490, 503–506, 539,
553, 619, 678, 695, 703.

Genes, 72.
Genetic algorithms, 226, 229.
Genoa, Giovanni di, 421.

Geometric data, 563–566.
George, John Alan, 707.
Gessel, Ira Martin, 597.
Getu, Seyoum (sÏm g±), 607.
Ghosh, Sakti Pada (), 395,

487, 578, 579.
Gibson, Kim Dean, 589.
Gilad-Bachrach, Ran (-), 403.
Gilbert, Edgar Nelson, 453, 454.
Gilbreath, Norman Laurence, 370.

principle, 370, 378.
Gillis, Joseph (), 601.
Gilstad, Russell Leif, 268, 301, 336, 721.
Gini, Corrado, 401.
Gleason, Andrew Mattei, 193, 648.
Goetz, Martin Alvin, 297, 315, 316,

338, 368, 388, 680.
Goldberg, Andrew Vladislav (

), 152.
Golden ratio, xiv, 138, 517–518, 748–749.
Goldenberg, Daniel, 387.
Goldstein, Larry Joel, 673.
Golin, Mordecai Jay (,

), 649.
Gonnet Haas, Gaston Henry, 489, 533,

565, 606, 707, 734.
Good, Irving John, 513.
Goodman, Jacob Eli, 566.
Goodwin, David Thomas, 302.
Gore, John Kinsey, 385.
Gotlieb, Calvin Carl, 388, 442.
Goto, Eiichi (), 534.
Gourdon, Xavier Richard, 134.
GPX system, 738.
Grabner, Peter Johannes, 644.
Graham, Ronald Lewis (), 198, 202–

203, 205–206, 242, 550, 597, 729, 762.
Grasselli, Antonio, 670.
Grassl, Richard Michael, 69.
Gray, Harry Joshua, Jr., 578.
Gray, James Nicholas, 390.
Greatest common divisor, 91, 185, 683–684.
Green, Milton Webster, 227, 239, 667,

668, 673.
Greene, Curtis, 70, 670, 718, 744.
Greene, Daniel Hill, 736.
Greek mathematics, 420.
Greniewski, Marek Józef, 513.
Grid files, 564, 565.
Gries, David Joseph, 618.
Grinberg, Victor Simkhovich (

), 671.
Griswold, William Gale, 549.
Gross, Oliver Alfred, 194, 653.
Grossi, Roberto, 489.
Group, free, 511–512.
Group divisible block designs, 746.
Grove, Edward Franklin, 371.
Growth ratio, 273.
Guibas, Leonidas John (

), 477, 525, 709, 737.

INDEX AND GLOSSARY 767

Guilbaud, Georges Théodule, 593.
Gunji, Takao (), 534.
Gustafson, Richard Alexander, 573.
Gustavson, Frances Goertzel, 698.
Gwehenberger, Gernot, 498.
Gyrating sort, 315.

h-ordered sequence, 86, 103–104, 243.
Hadian, Abdollah, 186, 212, 217.
Hajela, Dhananjay (Dn�jy hj⇤lA), 402.
Hajnal, András, 747.
Half-balanced trees, 477.
Hall, Marshall, Jr., 511, 578.
Halperin, John Harris, 625.
Halpern, Mark Irwin, 422.
Hamilton, Douglas Alan, 711.
Han, Guo-Niu (), 595, 596, 599, 602.
Hanan, Maurice, 729.
Hannenhalli, Sridhar Subrahmanyam

(ÄFDr s� }bú⌫ym̂ h⌃n⇤nhSlF), 615.
Haralambous, Yannis (

), 782.
Hardy, Godfrey Harold, 704.
Hardy, Norman, 590.
Hare, David Edwin George, 606.
Harmonic numbers, 633, 750–751.

generalized, 400, 405.
Harper, Lawrence Hueston, 704.
Harrison, Malcolm Charles, 572, 579, 745.
Hash functions, 514–520, 529, 549–550,

557–558.
combinatorial, 573–575, 579–580, 582, 746.

Hash sequences, 535, 552.
Hashing, 513–558.
Havas, George, 513.
Hayward, Ryan Bruce, 636, 642.
Heap: A heap-ordered array, 144–145, 149,

156–157, 253, 336, 646, 680, 705.
t-ary, 644.

Heap order, 144–145.
Heaps, Harold Stanley, 578.
Heapsort, 144–148, 152–158, 336, 381,

382, 389, 698.
with equal keys, 655.

Heide, see Meyer auf der Heide.
Height-balanced trees, 475, 480.
Height of extended binary tree, 195,

459, 463.
of random binary search tree, 458.
of random digital search tree, 728.
of random (M + 1)-ary search tree, 721.
of random Patricia tree, 728.
of random trie, 512.

Heilbronn, Hans Arnold, 395.
Heising, William Paul, 400, 739.
Heller, Robert Andrew, 512.
Hellerman, Herbert, 548.
Hellerstein, Joseph Meir, 390.
Hellman, Martin Edward, 591.
Hendricks, Walter James, 703.

Hennequin, Pascal Daniel Michel Henri, 632.
Hennie, Frederick Clair, 351, 356.
Hermite, Charles, polynomial, 62.
Herrick, Robert, 408.
Hibbard, Thomas Nathaniel, 20, 93, 196,

226, 388, 389, 413, 432, 453, 657.
Hilbert, David, 395.
Hildebrandt, Paul, 128.
Hillman, Abraham P, 69.
Hindenburg, Carl Friedrich, 14.
Hindu mathematics, 23.
Hinrichs, Klaus Helmer, 564.
Hinterberger, Hans, 564.
Hinton, Charles Howard, 593.
Hoare, Charles Antony Richard, 114,

121–122, 136, 381, 389.
Hobby, John Douglas, 782.
Hoey, Daniel J., 215.
Holberton, Frances Elizabeth Snyder,

324, 386, 387.
Hollerith, Herman, 383–385.
Holt Hopfenberg, Anatol Wolf, 738.
Homer (), 421.
Homogeneous polynomial, 66.
Hooker, William Weston, 42.
Hooking-up of queues, 172, 177.
Hooks, 59–60, 69–71.

generalized, 67.
Hopcroft, John Edward, 245, 476,

477, 590, 652.
Hoshi, Mamoru (), 727.
Hosken, James Cuthbert, 388, 391.
Hot queues, 152.
Hsu, Meichun (), 488.
Hu, Te Chiang (), 454, 711, 713.
Hu–Tucker algorithm, 454.
Huang Bing-Chao (), 702.
Hubbard, George Underwood, 363, 389.
Huddleston, Charles Scott, 477, 718.
Hu�man, David Albert, trees, 361, 438, 458.
Human-computer interaction, 588.
Hunt, Douglas Hamilton, 88.
Hurwitz, Henry, 633.
Hwang, Frank Kwangming (),

188, 195, 202–206.
Hwang, Hsien-Kuei (), 650.
Hyafil, Laurent Daniel, 218, 377.
Hybrid searching methods, 496.
Hybrid sorting methods, 122, 163, 381, 297.
Hypercube, linearized, 408.
Hypergeometric functions, 537, 565, 739.
Hyphenation, 531, 572, 722.
Hysterical B-trees, 477.

IBM 701 computer, 547.
IBM 705 computer, 82–83.
IBM Corporation, 8, 169, 193, 316,

385, 489, 547.
IBM RS/6000 computer, 389.

768 INDEX AND GLOSSARY

Idempotent laws, 239.
Identifier: A symbolic name in an

algebraic language, 2.
Identity element, 24.
Implicit data structures, 426, 481.
in situ permutation, 79–80, 178.
In the past, see Persistent data structures.
Inakibit-Anu of Uruk (), 420.
Incerpi, Janet Marie, 91, 93.
Inclusion and exclusion principle, 586,

703, 744.
Inclusion of sets, 393–394.
Inclusive queries, 569–573, 577.
Incomplete gamma function γ(a, z), 555.
Increasing forests, 47.
Independent random probing, 548, 555.
Index keys for file partitioning, 512.
Index of a permutation, 16–17, 21–22, 32.
Index to this book, 561–562, 757–782.
Indexed-sequential files, 482.
Indian mathematics, 23.
Infinity, 4, 138–139, 142–144, 156, 214,

257–258, 263, 521, 624–625, 646,
663–664, 685, 707.

as sentinel, 159, 252, 308, 324.
Information retrieval, 392, 395.
Information theory, 183, 198, 442–444, 633.

lower bounds from, 183, 194, 202,
204, 655.

Inner loop: Part of a program whose
instructions are performed much more
often than the neighboring parts, 162,
see Loop optimization.

Insertion: adding a new item.
into a 2-3 tree, 476–477.
into a B-tree, 483–485.
into a balanced tree, 461–473, 479.
into a binary search tree, 427–429,

458, 482.
into a digital search tree, 497.
into a hash table, 522, 526, 529, 551.
into a heap, 156.
into a leftist tree, 150, 157.
into a trie, 507.
into a weight-balanced tree, 480.

Insertion sorting, 73, 80–105, 222.
Interblock gaps, 318–319, 331.
Intercalation product of permutations,

24–35.
Interchanging blocks of data, 619, 701.
Internal (branch) node, 181, 254, see

Extended binary tree.
Internal path length, 413, 434, 455, 502, 565.

generating function for, 621.
Internal searching, 396–481, 492–512,

513–541, 545–558.
summary, 545–547.

Internal sorting, 4–5, 73–179.
summary, 380–383.

Internet, iv, x.

Interpolation search, 419–420, 422, 425.
Interval-exchange sort, 128.
Interval heap, 645.
Intervals, 578.
Inverse in a group, 511.
Inverse modulo m, 517.
Inverse of a permutation, 13–14, 18, 48,

53–54, 74, 134, 596, 605.
for multisets, 32.

Inversion tables of a permutation, 11–12,
17–18, 108, 134, 349, 605, 613, 619.

Inversions of a permutation, 11–22, 32,
77, 82, 86–90, 97, 100, 103, 108,
111, 134, 156, 168, 178, 349, 353,
599, 676, 678, 733.

with equality, 699.
Inversions of tree labelings, 609, 733.
Inverted files, 560–563, 567, 569–570, 577.
Involution coding, 426.
Involutions, 18, 48, 54, 62–64, 66, 69.
Isaac, Earl Judson, 99.
Isaiah, son of Amoz (), 247.
Isbitz, Harold, 128.
Isidorus of Seville, Saint (San Isidoro

de Sevilla), 421.
Ismail, Mourad El Houssieny

(), 601.
Isomorphic invariants, 590.
Isomorphism testing, 9.
Itai, Alon (), 707, 711.
Iverson, Kenneth Eugene, 110, 142, 388,

396, 422, 423, 454, 704.

JACM: Journal of the ACM, a publication
of the Association for Computing
Machinery since 1954, 440.

Jackson, James Richard, 407.
Jacobi, Carl Gustav Jacob, 20–21.
Jacquet, Philippe Pierre, 726.
JAE (Jump if rA even), 125–126.
Jainism, 23.
Janson, Carl Svante, 607, 627, 734, 736.
JAO (Jump if rA odd), 125–126.
Japanese mathematics, 36.
Je�rey, David John, 606.
Jensen, Johan Ludvig William Valdemar,

711.
Jewish mathematics, 23.
Jiang Ling (), 589.
Johansson, Kurt Ove, 611.
John, John Welliaveetil, 213, 663, 666.
Johnsen, Robert Lawrence, 512.
Johnsen, Thorstein Lunde, 297.
Johnson, Lyle Robert, 502, 578.
Johnson, Selmer Martin, 184, 186.
Johnson, Stephen Curtis, 555.
Johnson, Theodore Joseph, 488.
Joke, 571.
Jonassen, Arne Tormod, 713.
Josephus, Flavius, son of Matthias

(=
), 17, 21.

problem, 17–18, 592.
Juillé, Hugues René, 226.
Jump operators of MIX, 6.

INDEX AND GLOSSARY 769

k-d trees, 565–566, 581, 746.
k-d tries, 576.
Kaas, Robert, 152.
Kabbalah, 23.
Kaehler, Edwin Bruno, 658.
Kalai, Gil (), 676.
Kaman, Charles Henry, 531, 532.
Kant, Immanuel, 395.
Kanter, David Philip, 677.
Kaplan, Aryeh (), 23.
Kaplan, Haim (), 615.
Kaplansky, Irving, 46.
Karlin, Anna Rochelle, 549.
Karp, Richard Manning, 105, 198, 287,

302, 306, 308–311, 315, 347, 352,
353–354, 356, 636, 668, 707.

KarpiÒski (= Karpinski), Marek
Mieczys≥aw, 454.

Katajainen, Jyrki Juhani, 649.
Kaufman, Marc Thomas, 483.
Kautz, William Hall, 572, 581, 670.
Kececioglu, John Dmitri, 614.
Kelly, Wayne Anthony, 213.
Kemp, Rainer, 287, 645.
Kerov, Sergei Vasilievich (

), 611.
Keys, 4, 392.
Keysorting, 74, 335, 373–376, 378.
Khizder, Leonid Abramovich (

), 479.
Kingston, Je�rey H., 454.
Kipling, Joseph Rudyard, 74.
Kirchho�, Gustav Robert, first law,

118, 127.
Kirkman, Thomas Penyngton, 577, 580.

triple systems, 580–581.
Kirkpatrick, David Galer, 213, 218, 663.
Kirschenhofer, Peter, 576, 634, 644, 726.
Kislitsyn, Sergei Sergeevich (

), 197, 209, 210,
212, 217, 661.

Klarner, David Anthony, 585.
Klein, Christian Felix, 745.
Klein, Rolf, 714.
Kleitman, Daniel J (Isaiah Solomon),

452, 454, 744.
Klerer, Melvin, 297, 388.
Knockout tournament, 141–142, 207,

210, 212.
Knott, Gary Don, 21, 434, 519, 529,

549, 709, 710.
Knuth, Donald Ervin (), ii, iv, vii,

8, 58, 152, 226, 297, 385, 389, 395,
398, 420, 422, 454, 478, 536, 585,
594, 600, 603, 606, 627, 634, 658,
670, 696, 702, 713, 722, 734, 736,
741, 742, 758, 762, 782.

Koch, Gary Grove, 578.
Koester, Charles Edward, 390.
Köhler, Peter, 669.

Kollár, Ľubor, 656, 660.
Komlós, János, 228, 549, 673, 740.
Konheim, Alan Gustave, 376, 505,

548, 732, 740.
Koornwinder, Tom Hendrik, 601.
Korn, Granino Arthur, 297, 388.
Körner, János, 513.
Korshunov, Aleksey Dmitrievich

(),
669.

Kreweras, Germain, 733.
Kronecker, Leopold, 753.
Kronmal, Richard Aaron, 99.
Kronrod, Mikhail Aleksandrovich (

), 168.
Krutar, Rudolph Allen, 551.
Kruyswijk, Dirk, 744.
Kummer, Ernst Eduard, 739.
Kwan, Lun Cheung, 657.
KWIC index, 439–442, 446, 494.

La Poutré, Johannes Antonius (= Han), 747.
Labelle, Gilbert, 565.
Ladner, Richard Emil, 389.
Laforest, Louise, 565.
Lagrange (= de la Grange), Joseph Louis,

Comte, inversion formula, 555.
Laguerre, Edmond Nicolas, polynomials,

601.
LaMarca, Anthony George, 389.
Lambert, Johann Heinrich, 644.

series, 644.
Lampson, Butler Wright, 525.
Landauer, Walter Isfried, 482, 578.
Lander, Leon Joseph, 8.
Landis, Evgenii Mikhailovich (

), 459, 460.
Langston, Michael Allen, 702.
Lapko, Olga Georgievna (

), 782.
Laplace (= de la Place), Pierre Simon,

Marquis de, 64.
LARC Scientific Compiler, 2.
Large deviations, 636.
Largest-in-first-out, see Priority queues.
Larmore, Lawrence Louis, 454.
Larson, Per-Åke, 549, 741.
Lascoux, Alain, 670.
Last-come-first-served, 742.
Last-in-first-out, 148, 299, 305.
Latency time, 358–359, 376, 489, 562–563.
Latin language, 421.
Lattice, of bit vectors, 235.

of permutations, 13, 19, 22, 628.
of trees, 718.

Lattice paths, 86–87, 102–103, 112–113,
134, 579.

Lawler, Eugene Leighton, 207.
Lazarus, Roger Ben, 93.
Least-recently-used page replacement,

158, 488.
Least-significant-digit-first radix sort,

169–179, 351.
Leaves, 483, 486, 507.
Lee, Der-Tsai (), 566.
Lee, Tsai-hwa (), 388.

770 INDEX AND GLOSSARY

Leeuwen, Jan van, 645.
Leeuwen, Marcus Aurelius Augustinus

van, 611.
Lefkowitz, David, 578.
Left-to-right (or right-to-left) maxima

or minima, 12–13, 27, 82, 86, 100,
105, 156, 624.

Leftist trees, 150–152, 157–158.
deletion from, 158.
insertion into, 150, 157.
merging, 150, 157.

Lehmer, Derrick Henry, 422.
Leibholz, Stephen Wolfgang, 673.
Leiserson, Charles Eric, 477.
Levcopoulos, Christos (

), 389.
Level of a tree node: The distance

to the root.
Levenshtein, Vladimir Iosifovich

(),
585.

LeVeque, William Judson, 584.
Levitt, Karl Norman, 670.
Levy, Silvio Vieira Ferreira, vii.
Lexicographic order, 5, 6, 70, 169, 171, 178,

394, 420–421, 453, 567, 590, 614, 615.
lg: Binary logarithm, 206, 755.
Li Shan-Lan (), 36.
Liang, Franklin Mark, 722, 729.
Library card sorting, 7–8.
Liddell Hargreaves, Alice Pleasance, 584.
Liddy, George Gordon, 395.
LIFO, 148, 299, 305, see Stacks.
Lin, Andrew Damon, 547, 578.
Lin, Shen (), 188, 195, 202–206.
Lineal chart, 424.
Linear algorithm for median, 214–215, 695.
Linear algorithms for sorting, 5, 102,

176–179, 196, 616.
Linear arrangements, optimum, 408.
Linear congruential sequence, 383.
Linear hashing, 548–549.
Linear lists, 248, 385, 459, see also

List sorting.
representation of, 96–97, 163–164,

471–473, 479–480, 491, 547.
Linear order, 4, 181.
Linear probing, 526–528, 533–534, 536–539,

543–544, 547, 548, 551–553, 555, 556.
optimum, 532.

Ling, Huei (), 578.
Linial, Nathan (), 660.
Linked allocation, 74–75, 96, 99–102, 104,

164–165, 170–173, 399, 405, 459, 547.
Linn, John Charles, 425.
Lint, Jacobus Hendricus van, 729, 747.
Lissajous, Jules Antoine, 395.
List head, 267, 462.
List insertion sort, 95–98, 104, 380, 382.
List merge sort, 164–168, 183, 381, 382, 390.

List sorting, 74–75, 80, 164–168, 171–178,
382, 390, 698.

Littlewood, Dudley Ernest, 610, 612.
Littlewood, John Edensor, 704.
Litwin, Samuel, 578.
Litwin, Witold André, 548–549.
Livius, Titus, v.
Lloyd, Stuart Phinney, 395.
Load factor, 524, 542.
Load point, 319, 320.
Logan, Benjamin Franklin (= Tex), Jr., 611.
Logarithmic search, 410.
Logarithms, 206.

discrete, 10.
Logg, George Edward, 714.
Logical tape unit numbers, 271, 292–293.
Long runs, 47.
Longest common prefix, 446, 512.
Longest increasing subsequence, 66, 68, 614.
Longest match, 493, 512.
Loop optimization, 85, 104–105, 136,

156, 167, 397–398, 405, 418, 423,
425, 429, 551, 625.

Losers, 253–254, 257–258, 263, 267.
Louchard, Guy, 707, 713.
Lozinskii, Eliezer Leonid Solomonovich

(,
), 647.

LSD: Least significant digit, 175.
Lucas, François Édouard Anatole, 611.

numbers Ln, 467, 708.
£uczak, Tomasz Jan, 734.
Lueker, George Schick, 742.
Luhn, Hans Peter, 440, 547.
£ukasiewicz, Jan, 395, 672.
Luke, Richard C., 547.
Lum, Vincent Yu-sun (), 520, 578.
Lynch, William Charles, 682, 709.

m-d tree, see k-d tree.
m-d trie, see k-d trie.
Machiavelli, Niccolò di Bernardo, 1.
MacLaren, Malcolm Donald, 176, 178,

179, 380, 618.
MacLeod, Iain Donald Graham, 617.
MacMahon, Percy Alexander, 8, 16–17, 20,

27, 33, 43, 45, 59, 61, 70, 600, 613, 653.
Master Theorem, 33–34.

Macro language, 457.
Magic trick, 370.
Magnetic tapes, 6–10, 248–251, 267–357,

403–407.
reliability of, 337.

Magnus, Wilhelm, 131.
Mahmoud, Hosam Mahmoud

(), 713, 721.
Mahon, Maurice Harlang (= Magenta), xi.
Maier, David, 477.
Majewski, Bohdan Stanis≥aw, 513.
Major index, see Index.
Majorization, 406.

INDEX AND GLOSSARY 771

Mallach, Efrem Gershon, 533.
Mallows, Colin Lingwood, 44, 603, 733.
Maly, Kurt, 721.
Manacher, Glenn Keith, 192, 204.
Maniac II computer, 187.
Mankin, Efrem S., 698.
Mann, Henry Berthold, 623.
Mannila, Heikki Olavi, 389.
Margoliash, Daniel Joseph, 573.
Markov (= Marko�), Andrei Andreevich

(), the
elder, process, 340–341.

Marriage theorem, 747.
Marsaglia, George, 707.
Martin, Thomas Hughes, 487.
Martínez Parra, Conrado, 478, 634.
Marton, Katalin, 513.
Martzlo�, Jean-Claude, 36.
Mason, Perry, 1, 2.
Match, search for closest, 9, 394, 408,

563, 566, 581.
Matching, 747.
Math. Comp.: Mathematics of Computation

(1960–), a publication of the American
Mathematical Society since 1965;
founded by the National Research
Council of the National Academy
of Sciences under the original title
Mathematical Tables and Other Aids
to Computation (1943–1959).

Mathsort, 79.
Matrix: A two-dimensional array.

representation of permutations, 14, 48.
searching in a, 207.
transpose of a, 6–7, 14, 567, 617.

Matsunaga, Yoshisuke (), 36.
Matula, David William, 216.
Mauchly, John William, 82, 346, 348,

386–387, 422.
Maximum-and-minimum finding, 218.
Maximum finding, 141, 209.
McAllester, Robert Linné, 282.
McAndrew, Michael Harry, 502.
McCabe, John, 402–403.
McCall’s Cook Book, 8, 568.
McCarthy, John, 8, 128, 167.
McCracken, Daniel Delbert, 388, 422.
McCreight, Edward Meyers, 480, 482,

483, 487–490, 578, 719.
McDiarmid, Colin John Hunter, 636,

642, 643.
McGeoch, Catherine Cole, 403.
McIlroy, Malcolm Douglas, 122, 177,

635, 652, 738.
McIlroy, Peter Martin, 177, 652.
McKellar, Archie Charles, 122, 378, 708.
McKenna, James, 266.
McNamee, Carole Mattern, 623.
McNutt, Bruce, 563–564.
Measures of disorder, 11, 22, 72, 134, 389.

Median, 122, 136, 214–215, 217–218,
238, 566, 695, 701.

linear algorithm for, 214–215, 695.
Median-of-three quickfind, 634.
Median-of-three quicksort, 122, 136,

138, 381, 382.
Mehlhorn, Kurt, 442, 454, 477, 489,

549, 713, 715, 718.
Meister, Bernd, 740.
Mellin, Robert Hjalmar, transforms,

133–134, 506, 644, 649.
Mendelson, Haim (), 728.
Merge exchange sort, 110–113, 134–135,

223, 226, 381, 382, 389.
Merge insertion sort, 184–187, 192,

193, 381, 389.
Merge numbers, 274.
Merge patterns, see Balanced merge,

Cascade merge, Oscillating sort,
Polyphase merge.

dual to distribution patterns,
345–348, 359.

for disks, 362–365, 376–377.
for tapes, 248–251, 267–317.
optimum, 302–311, 363–367, 376–377.
summary, 324–338.
tree representation of, 303–306, 309–311,

363–364, 377.
vector representation of, 302–303,

309, 310.
Merge replacement sort, 680.
Merge sorting, 98, 158–168; see List merge,

Natural merge, Straight merge.
external, see Merge patterns.

Merge-until-empty strategy, 287.
Merging, 385, 390, 480, 698.

k-way, 166, 252–254, 321–324, 339–343,
360–373, 379.

networks for, 223–226, 230–232, 237, 239.
with fewest comparisons, 197–207.

Mersenne, Marin, 23–24.
opqrstuq, iv, vi, 782.
METAPOST, vii, 782.
Meyer, Curt, 20.
Meyer, Werner, 606.
Meyer auf der Heide, Friedhelm, 549.
Middle square, 515, 516.
Middle third, 240, 241.
Miles, Ernest Percy, Jr., 285.
Miltersen, Peter Bro, 230.
Minimax, 192, 195.
Minimean, 192, 195–196.
Minimum average cost, 192–197, 207,

215–216, 413, 663.
Minimum-comparison algorithms, 180–219.

for merging, 197–207.
for searching, 413–414.
for selection, 207–219.
for sorting, 180–197.

Minimum path length, 192, 195, 361.
weighted, 196, 337, 361, 438, 451, 458.

Minimum-phase tape sorting, 311.

772 INDEX AND GLOSSARY

Minimum-space algorithms,
for merging, 168, 390, 702.
for rearranging, 178, 617.
for selection, 218.
for sorting, 79–80, 389.
for stable sorting, 390.

Minimum-stage tape sorting, 311.
Minimum-time algorithms,

for merging, 241.
for sorting, 235, 241.

Minker, Jack, 578.
MinuteSort, 390.
Mises, Richard, Edler von, 513.
Misspelled names, 394–395.
Mitchell, Oscar Howard, 69, 611.
MIX computer: A hypothetical machine

defined in Section 1.3, vi, 75, 382.
MIXAL: The MIX assembly language, 426.
MIXT tape units, 318–320, 330–331, 358.
MIXTEC disks and drums, 357–358, 562–563.
Miyakawa, Masahiro (), 727.
Möbius, August Ferdinand,

function µ(π), 33.
Modified external path length, 502–503, 511.
Mo�at, Alistair, 389.
Molodowitch, Mariko, 742.
Monomial symmetric function, 609.
Monotone Boolean functions, 239.
Monotonic subsequences, 66, 68, 614.
Monotonicity property, 439.
Mönting, see Schulte Mönting.
Mooers, Calvin Northrup, 571.
Moore, Edward Forrest, 255, 263, 453–454.
Moore School of Electrical Engineering, 386.
Morgenthaler, John David, 713.
Morris, Robert, 548, 738, 741.
Morrison, Donald Ross, 498.
Morse, Samuel Finley Breese, code, 623.
Mortenson, John Albert, 684.
Moser, Leo, 64.
Most-significant-digit-first radix sort,

175–179.
Motzkin, Theodor (= Theodore) Samuel

(), 704.
Move-to-front heuristic, 402–403,

405–406, 646.
MSD: Most significant digit, 175.
Muir, Thomas, 11.
Mullin, James Kevin, 573, 583.
Multi-attribute retrieval, 395, see Secondary

key retrieval.
Multidimensional binary search trees,

see k-d trees.
Multidimensional tries, see k-d tries.
Multihead bubble sort, 244–245.
Multikey quicksort, 389, 633, 728.
Multilist system, 561, 562, 578.
Multinomial coe�cients, 23, 30, 32, 457, 735.
Multiple list insertion sort, 99–102, 104–105,

196, 380, 382, 520.

Multiple-precision constants, 155, 566, 644,
648, 650, 713, 715, 726, 748–750.

Multiples of an irrational number mod 1,
xiv, 517–518, 550.

Multiprecision comparison, 6, 136, 169.
Multiprocessing, 267, 390.
Multireel files, 337, 342, 348, 356.
Multiset: Analogous to a set, but elements

may appear more than once, 22, 158,
211, 217, 241, 298, 648, 670, 744.

ordering, 311.
permutations, 22–35, 42–45, 66.
sum and union, 597.

Multivalued logic, 672.
Multiway trees, 453, 481–491, 707,

see also Tries.
Multiword keys, 136, 168.
Munro, James Ian, 218, 435, 478, 533, 583,

655, 708, 734, 741, 742.
Muntz, Richard, 482, 490.
Muroga, Saburo (), 729.
Music, 23–24.
Musser, David Rea, 122.
Myers, Eugene Wimberly, Jr., 583.

Nagler, Harry, 82, 347, 646, 648.
Nakayama, Tadasi (), 69, 612.
Naor, Simeon (= Moni;

,), 708.
Narasimhan, Balasubramanian

(), 707.
Nārāyan. a Pan. d. ita, son of Nr.siṁha

(nArAyZ pE⌫Xt, n⇥ Es\h-y p� /,), 270.
Natural correspondence between forests

and binary trees, 706.
Natural merge sort, 160–162, 167.
Natural selection, 259–261, 263–266.
Nearest neighbors, 563, 566.
Needle, 1, 569, 572, 573–574.
Negative links, 164, 175.
Neighbors of a point, 563, 566.
Neimat, Marie-Anne Kamal

(), 549.
Nelson, Raymond John, 225, 226, 244, 245.
Netto, Otto Erwin Johannes Eugen,

286, 592.
Networks of comparators,

for merging, 223–226, 230–232, 237, 239.
for permutations, 243–244.
for selection, 232–234, 238.
for sorting, 219–247.
primitive, 240, 668.
standard, 234, 237–238, 240, 244.
with minimum delay, 228–229, 241.

Networks of workstations, 267, 390.
Neumann, John von (= Margittai Neumann

János), 8, 159, 385.
Newcomb, Simon, 42, 45.
Newell, Allen, 729.
Newman, Donald Joseph, 505.
Nielsen, Jakob, 511–512.

INDEX AND GLOSSARY 773

Nievergelt, Jürg, 476, 480, 549, 564.
Nijenhuis, Albert, 70.
Nikitin, Andrei Ivanovich (

), 351.
Nitty-gritty, 317–343, 357–379.
Nodine, Mark Howard, 698.
Non-messing-up theorem, 90, 238, 668–669.
Nondeterministic adversary, 219.
Nörlund, Niels Erik, 638.
Normal deviate, 69.
Normal distribution, approximately, 45, 650.
Norwegian language, 520.
Noshita, Kohei (), 213, 218.
Notations, index to, 752–756.
Novelli, Jean-Christophe, 614.
NOW-Sort, 390.
NP-complete problems, 242.
Nsort, 390.
Null permutation, 25, 36.
Number-crunching computers, 175,

381, 389–390.
Numerical instability, 41.
Nyberg, Christopher, 390.

Oberhettinger, Fritz, 131.
Oblivious algorithms, 219–220.
O’Connor, Daniel Gerard, 225.
Octrees, 565.
Odd-even merge, 223–226, 228, 230,

243, 244.
Odd-even transposition sort, 240.
Odd permutations, 19, 196.
Odell, Margaret King, 394.
Odlyzko, Andrew Michael, 630, 715.
Oettinger, Anthony Gervin, 491.
Okoma, Seiichi (), 644.
Oldham, Je�rey David, vii.
Olivié, Hendrik Johan, 477.
Olson, Charles Arthur, 544.
Omega network, 227, 236–237.
One-sided height-balanced trees, 480.
One-tape sorting, 353–356.
O’Neil, Patrick Eugene, 489.
Ones’ complement notation, 177.
Online merge sorting, 167.
Open addressing, 525–541, 543–544,

548, 551–557.
optimum, 539–541, 555–556.

Operating systems, 149, 158, 338.
Optimization of loops, 85, 104–105, 136,

156, 167, 397–398, 405, 418, 423,
425, 429, 551, 625.

Optimization of tests, 406.
Optimum binary search trees, 436–454,

456–458, 478.
Optimum digital search trees, 511.
Optimum exchange sorting, 196.
Optimum linear arrangements, 408.
Optimum linear probing, 532.
Optimum linked trie, 508.

Optimum merge patterns, 302–311,
363–367, 376–377.

Optimum open addressing, 539–541,
555–556.

Optimum permutations, 403–408.
Optimum polyphase merge, 274–279,

286, 337.
Optimum searching, 413, 425, 549.
Optimum sorting, 180–247.
OR (bitwise or), 529, 571.
Order ideals, 669.
Order relations, 4.
Order statistics, 6, 44.
Ordered hashing, 531, 741.
Ordered partitions, 286–287.
Ordered table, searching an, 398–399,

409–426.
Ordering of permutations, 19, 22, 105, 670.
Organ-pipe order, 407, 452, 704.
Oriented trees, 47, 71, 599.
Orosz, Gábor, 745.
O’Rourke, Joseph, 566.
Orthogonal range queries, 564, 566.
Oscillating radix sort, 347.
Oscillating sort, 311–317, 328–329, 334,

337, 338, 342, 389.
Overflow, arithmetic, 6, 519, 585.

in B-trees, 487–490.
in hash tables, 522, 525, 526, 529,

542–543, 547, 551.
Overmars, Markus (= Mark) Hendrik, 583.
Own coding, 339.

P -way merging, 166, 252–254, 321–324,
339–343, 360–373, 379.

Packing, 721.
Page, Ralph Eugene, 385.
Paging, 158, 378, 481–482, 541, 547.
Pagodas, 152.
Paige, Robert Allan, 652.
Painter, James Allan, 256.
Pairing heaps, 152.
Pak, Igor Markovich (

), 70, 614.
Palermo, Frank Pantaleone, 729.
Pallo, Jean Marcel, 718.
Panny, Wolfgang Christian, 629, 630, 648.
Papernov, Abram Alexandrovich (

), 91.
Pappus of Alexandria (

), 593.
Parallel processing, 267, 370, 390, 693.

merging, 231, 241.
searching, 425.
sorting, 113, 222–223, 228–229,

235, 390, 671.
Pardo, see Trabb Pardo.
Pareto, Vilfredo, 401.
Pareto distribution, 401, 405, 710.
Parker, Ernest Tilden, 8.
Parkin, Thomas Randall, 8.
Parking problem, 552, 553, 742.

774 INDEX AND GLOSSARY

Parsimonious algorithms, 391.
Partial match retrieval, 559–582.
Partial ordering, 31–32, 68–69, 183–184,

187, 216, 217.
of permutations, 19, 22, 105, 670.

Partition-exchange sort, 114.
Partitioning a file, 113–115, 123–124,

128, 136.
into three blocks, 137.

Partitions of a set, 605, 653.
Partitions of an integer, 19–20, 504,

613, 621, 697, 700.
ordered, 286–287.
plane, 69–70.

Pasanen, Tomi Armas, 649.
Pass: Part of the execution of an algorithm,

traversing all the data once, 5, 268, 272.
Patashnik, Oren, 762.
Patents, vi, 225, 231, 244, 255, 312, 315–316,

369, 384–385, 394, 675, 729.
Paterson, Michael Stewart, 152, 215, 230,

594, 655, 689, 736.
Path length of a tree, see External path

length, Internal path length.
minimum, 192, 195, 361.
weighted, 196, 337, 361, 438, 451, 458.
weighted by degrees, 363–367.

Paths on a grid, 86–87, 102–103, 112–113,
134, 579.

Patricia, 489, 498–500, 505–506, 508,
510–511, 576, 726.

Patt, Yale Nance, 508.
Pattern matching in text, 511, 572, 578.
Patterns in permutations, 61.
Patterson, David Andrew, 390.
Patterson, George William, 386, 422.
Peaks of a permutation, 47, 604.
Peczarski, Marcin Piotr, 192.
Pentagonal numbers, 15, 19.
Percentiles, 136, 207–219, 472, see

also Median.
Perfect balancing, 480.
Perfect distributions, 268–272, 276–277,

286, 288–289.
Perfect hash functions, 513, 549.
Perfect shu�es, 237.
Perfect sorters, 245.
Periodic sorting networks, 243.
Perl, Yehoshua (), 673, 707.
Permanent, 660.
Permutahedron, 13, 18, 240, 593.
Permutation in place, 79–80, 178.
Permutation networks, 243–244.
Permutations, 11–72, 579.

2-ordered, 86–88, 103, 112–113, 134.
cycles of, 25–32, 62, 156, 617, 628,

639–640, 657.
enumeration of, 12, 22–24.
even, 19, 196.
factorization of, 25–35.

fixed points of, 62, 66, 617.
indexes of, 16–17, 21–22, 32.
intercalation product of, 24–35.
inverses of, 13–14, 18, 48, 53–54, 74,

134, 596, 605.
inversions of, see Inversion tables,

Inversions.
lattice of, 13, 19, 22, 628.
matrix representations of, 14, 48.
of a multiset, 22–35, 42–45, 66.
optimum, 403–408.
partial orderings of, 19, 22, 105, 670.
pessimum, 405.
readings of, 46–47.
runs of, 35–47, 248, 259–266, 387.
signed, 615.
two-line notation for, 13–14, 24, 35,

43–44, 51–54, 64–65.
up-down, 68.

Persistent data structures, 583.
Perturbation trick, 404.
Pessimum binary search trees, 457, 711.
Peter, Laurence Johnston, principle, 143.
Peterson, William Wesley, 396, 422,

526, 534, 538, 548.
Petersson, Ola, 389.
Pevzner, Pavel Arkadjevich (

), 615.
Peyster, James Abercrombie de, Jr., 544.
Phi (φ), xiv, 138, 517–518, 748–749.
Philco 2000 computer, 256.
Pi (π), 372, 520, 748–749.

as “random” example, 17, 370, 385,
547, 552, 733.

Picard, Claude François, 183, 196, 215.
Ping-pong tournament, 142.
Pinzka, Charles Frederick, 728.
Pipeline computers, 175, 381, 389–390.
Pippenger, Nicholas John, 215, 234, 549.
Pitfalls, 41, 707, 729.
Pittel, Boris Gershon (

), 713, 721, 728, 734.
PL/I language, 339, 532.
Plane partitions, 69–70.
Plankalkül, 386.
Plaxton, Charles Gregory, 623, 667.
Playing cards, 42–45, 169, 178, 370.
Plücker, Julius, 745.
Poblete Olivares, Patricio Vicente, 646,

740, 741, 742.
Pocket sorting, 343.
Podderjugin, Viktor Denisowitsch

(),
548.

Pohl, Ira Sheldon, 218, 663.
Pohlig, Stephen Carl, 591.
Point quadtrees, 566.
Poisson, Siméon Denis, distribution, 555.

transform, 734.
Polish prefix notation, 3.
Pollard, John Michael, 591, 669, 672.
Pólya, György (= George), 599, 704.

INDEX AND GLOSSARY 775

Polygons, regular, 289.
Polynomial arithmetic, 165, 520.
Polynomial hashing, 520, 550.
Polyphase merge sorting, 268–287, 297,

298, 300, 311, 325–326, 333, 342,
346, 389, 425.

Caron variation, 279–280, 286–287.
optimum, 274–279, 286, 337.
read-backward, 300–302, 308, 328,

334, 338, 342.
tape-splitting, 282–285, 287, 298,

326–327, 333, 338.
Polyphase radix sorting, 348.
Pool, Jan Albertus van der, 739.
Pool of memory, 369.
Poonen, Bjorn, 104.
Porter, Thomas K, 642.
Post o�ce, 175.
Post-o�ce trees, 563–564, 746.
Posting, see Insertion.
Pouring liquid, 672.
Power of merge, 676, see Growth ratio.
Powers, James, 385.
Pratt, Richard Don, 310.
Pratt, Vaughan Ronald, 91, 104, 245,

457, 622, 675, 701.
sorting method, 91–93, 104, 113, 235.

Prediction, see Forecasting.
Preferential arrangements, see Weak

orderings.
Prefetching, 369–373.
Prefix, 492.
Prefix code, 452–453.

for all nonnegative integers, 6.
Prefix search, see Trie search.
Preorder merge, 307–309.
Prestet, Jean, 24.
Prime numbers, 156, 516, 529, 557, 627.
Primitive comparator networks, 240, 668.
Principle of optimality, 363, 438.
Pring, Edward John, 564.
Prins, Jan Fokko, 618.
Priority deques, 157.
Priority queues, 148–152, 156–158,

253, 646, 705.
merging, 150, 157.

Priority search trees, 578.
Probability density functions, 177.
Probability distributions, 105, 399–401.

beta, 586.
binomial, 100–101, 341, 539, 555.
fractal, 400.
normal, 45, 69, 650.
Pareto, 401, 405, 710.
Poisson, 555.
random, 458.
uniform, 6, 16, 20, 47, 127, 606.
Yule, 401, 405.
Zipf, 400, 402, 435, 455.

Probability generating functions, 15–16,
102, 104, 135, 177, 425, 490, 539,
553, 555, 739.

Prodinger, Helmut, 576, 634, 644, 648, 726.
Product of consecutive binomial

coe�cients, 612.
Proof of algorithms, 49–51, 112–113,

315, 323, 355, 677.
Prusker, Francis, 377.
Prywes, Noah Shmarya, 578.
Pseudolines, 670.
Psi function ψ(z), 637, 751.
Puech, Claude Henri Clair Marie Jules,

565, 566, 576.
Pugh, William Worthington, Jr., 213, 478.
Punched cards, 169–170, 175, 383–385.
Pyke, Ronald, 732.

q-multinomial coe�cients, 32.
q-nomial coe�cients, 32, 594, 595.
q-series, 20, 32, 594–596, 644.
Quadrangle inequality, 457.
Quadratic probing, 551.
Quadratic selection, 141.
Quadruple systems, 581, 746.
Quadtrees, 565–566, 581, 746.
Queries, 559–582.
Questionnaires, 183.
Queues, 135, 148–149, 156, 171, 299,

310, 322–323.
Quickfind, 136.

median-of-three, 634.
Quicksort, 113–122, 135–138, 148, 159,

246, 349–351, 356, 381, 382, 389,
389, 431, 698.

binary, see Radix exchange.
median-of-three, 122, 136, 138, 381, 382.
multikey, 389, 633, 728.
with equal keys, 136, 635–636.

Rabbits, 424.
Rabin, Michael Oser (), 242.
Radix-2 sorting, 387.
Radix exchange sort, 122–128, 130–133,

136–138, 159, 177, 351, 382, 389,
500–501, 509, 698.

with equal keys, 127–128, 137.
Radix insertion sort, 176–177.
Radix list sort, 171–175, 382.
Radix sorting, 5, 169–179, 180–181,

343–348, 351, 359, 374, 381, 385,
389, 421, 502, 698.

dual to merge sorting, 345–348, 359.
Radke, Charles Edwin, 297.
Räihä, Kari-Jouko, 717.
Railway switching, 168.
Rais, Bonita Marie, 726.
Raman Rajeev, 634.
Raman, Venkatesh (

), 655.
Ramanan, Prakash Viriyur (

), 218.

776 INDEX AND GLOSSARY

Ramanujan Iyengar, Srinivasa
(),

function Q(n), 701.
Ramshaw, Lyle Harold, 729.
Random data for sorting, 20, 47, 76,

383, 391.
Random probability distribution, 458.
Random probing, independent, 548, 555.

with secondary clustering, 548, 554.
Randomized adversary: An adversary

that flips coins, 219.
Randomized algorithms, 121–122, 351,

455, 517, 519, 557–558.
Randomized binary search trees, 478.
Randomized data structures, vii, 478.
Randomized striping, 371–373, 379, 698.
Randow, Rabe-Rüdiger von, 606.
Randrianarimanana, Bruno, 713.
Raney, George Neal, 297, 298.
Range queries, 559, 578.
RANK field, 471, 476, 479, 713, 718.
Ranking, 181, see Sorting.
Raver, Norman, 729.
Ravikumar, Balasubramanian

(), 673.
Rawlings, Don Paul, 595.
Ray-Chaudhuri, Dwijendra Kumar (

), 578.
Read-back check, 360.
Read-backward balanced merge,

327–328, 334.
Read-backward cascade merge, 328, 334.
Read-backward polyphase merge, 300–302,

308, 328, 334, 338, 342.
Read-backward radix sort, 346–347.
Read-forward oscillating sort, 315–316,

329, 334.
Reading tape backwards, 299–317,

349, 356, 387.
Readings of a permutation, 46–47.
Real-time applications, 547.
Rearrangements of a word, see Permutations

of a multiset.
Rearranging records in place, 80, 178.
Rebalancing a tree, 461, 463–464, 473–474,

479; see also Reorganizing.
Reciprocals, 420.
Records, 4, 392.
Recurrence relations, techniques for solving,

120, 135, 137, 168, 185–186, 205–206,
224–225, 283, 356, 424, 430–431,
467, 490, 502, 506, 604–605, 638–639,
648, 674, 688, 725, 737.

Recurrence relations for strings, 274–275,
284, 287, 308.

Recursion induction, 315.
Recursion versus iteration, 168, 313, 717.
Recursive methods, 114, 214, 218, 243, 313,

350, 452, 592, 596, 713, 715, 717.
Red-black trees, 477.

Redundant comparisons, 182, 240, 242,
245–246, 391.

Reed, Bruce Alan, 643, 713.
Reference counts, 534.
Reflection networks, 670.
Régnier, Mireille, 565, 632.
Regular polygons, 289.
Reiner, Victor Schorr, 719.
Reingold, Edward Martin (,

), 207, 476, 480, 715.
Relaxed heaps, 152.
Remington Rand Corporation, 385, 387.
Removal, see Deletion.
Reorganizing a binary tree, 458, 480.
Replacement selection, 212, 253–266,

325, 329, 331–332, 336, 347, 348,
360, 364–365, 378.

Replicated blocks, 489.
Replicated instructions, 398, 418, 429,

625, 648, 677.
Reservoir, 259–261, 265.
Restructuring, 480.
Reversal of data, 65, 72, 310, 670, 701.
Reverse lexicographic order, 394.
Rewinding tape, 279–287, 297, 299–300, 316,

319–320, 326, 331, 342, 407.
Ribenboim, Paulo, 584.
Rice, Stephan Oswald, 138.
Richards, Ronald Cli�ord, 479.
Richmond, Lawrence Bruce, 726.
Riemann, Georg Friedrich Bernhard,

integration, 177, 652.
Riesel, Hans Ivar, 406.
Right-threaded trees, 267, 454–455, 464.
Right-to-left (or left-to-right) maxima

or minima, 12–13, 27, 82, 86, 100,
105, 156, 624.

Riordan, John, 39, 46, 679, 732, 733, 738.
RISC computers, 175, 381, 389–390.
Rising, Hawley, 128.
Rivest, Ronald Linn, 214, 215, 389, 403,

477, 573–576, 580, 747.
Roberts, Charles Sheldon, 573.
Robin Hood hashing, 741–742.
Robinson, Gilbert de Beauregard, 58, 60.
Robson, John Michael, 565, 713.
Rochester, Nathaniel, 547.
Rodgers, William Calhoun, 704.
Rodrigues, Benjamin Olinde, 15, 592.
Roebuck, Alvah Curtis, 757.
Rogers, Lawrence Douglas, 707.
Rohnert, Hans, 549.
Rollett, Arthur Percy, 593.
Romik, Dan (), 614.
Rooks, 46, 69.
Rose, Alan, 672.
Roselle, David Paul, 47, 597.
Rosenstiehl, Pierre, 593.
Rösler, Uwe, 632.
Rosser, John Barkley, 672.
Rost, Hermann, 614, 671.

INDEX AND GLOSSARY 777

Rotations in a binary tree, 481.
double, 461, 464, 477.
single, 461, 464, 477.

Rotem, Doron (), 61.
Rothe, Heinrich August, 14, 48, 62, 592.
Rouché, Eugène, theorem, 681.
Roura Ferret, Salvador, 478.
Roving pointer, 543.
Rovner, Paul David, 578.
Royalties, use of, 407.
Rubin, Herman, 728.
Rudolph, Lawrence Set, 673.
Runs of a permutation, 35–47, 248,

259–266, 387.
Russell, Robert Cli�ord, 394.
Russian roulette, 21.
Rustin, Randall Dennis, 315, 353.
Rytter, Wojciech, 454.

Sable, Jerome David, 578.
Sackman, Bertram Stanley, 279, 684.
Sagan, Bruce Eli, 48.
Sager, Thomas Joshua, 513.
Sagiv, Yehoshua Chaim

(), 721.
Sagot, Marie-France, 615.
Saks, Michael Ezra, 452, 660, 673.
Salveter, Sharon Caroline, 477.
Salvy, Bruno, 565.
Samadi, Behrokh (), 721.
Samet, Hanan (), 566.
Samplesort, 122, 720.
Sampling, 587.
Samuel, son of Elkanah

(), 481.
Samuel, Arthur Lee, 547.
Sandelius, David Martin, 656.
Sanko�, David Lawrence, 614.
Sapozhenko, Alexander Antonovich

(),
669.

Sarnak, Neil Ivor, 583.
Sasson, Azra (), 369.
Satellite information: Record minus

key, 4, 74.
Satisfiability, 242, 666.
Saul, son of Kish (), 481.
Sawtooth order, 452.
Sawyer, Thomas, 747.
SB-tree, 489.
SB-tree, 489.
Scatter storage, 514.
Schachinger, Werner, 576.
Schä�er, Alejandro Alberto, 708.
Scha�er, Russel Warren, 155, 157, 645.
Schay, Géza, Jr., 538, 555, 729.
Schensted, Craige Eugene (= Ea Ea),

57–58, 66.
Scherk, Heinrich Ferdinand, 644.
Schkolnick, Mario, 721.

Schlegel, Stanislaus Ferdinand Victor, 270.
Schlumberger, Maurice Lorrain, 366.
Schmidt, Jeanette Pruzan, 708, 742.
Schneider, Donovan Alfred, 549.
Schneider-Kamp, Peter Jan (= Jan Peter),

226.
Schönhage, Arnold, 215, 218.
Schott, René Pierre, 713.
Schreier, Jozef, 209.
Schulte Mönting, Jürgen, 192, 659.
Schur, Issai, function, 611–612.
Schützenberger, Marcel Paul, 17, 21, 39,

55, 57–58, 66, 68, 70, 670.
Schwartz, Eugene Sidney, 401.
Schwartz, Jules Isaac, 128.
Schwiebert, Loren James, II, 229.
Scoville, Richard Arthur, 47.
Scrambling function, 517, 590, 709.
Search-and-insertion algorithm, 392.
Searching, 392–583; see External searching,

Internal searching; Static table
searching, Symbol table algorithms.

by comparison of keys, 398–399,
409–491, 546–547.

by digits of keys, 492–512.
by key transformation, 513–558.
for closest match, 9, 394, 408, 563,

566, 581.
for partial match, 559–582.
geometric data, 563–566.
history, 395–396, 420–422, 453,

547–549, 578.
methods, see B-trees, Balanced trees,

Binary search, Chaining, Fibonaccian
search, Interpolation search, Open
addressing, Patricia, Sequential search,
Tree search, Trie search.

optimum, 413, 425, 549, see also

Optimum binary search trees, Optimum
digital search trees.

parallel, 425.
related to sorting, v, 2, 393–394, 409, 660.
text, 511, 572, 578.
two-dimensional, 207.

Sears, Richard Warren, 757.
Secant numbers, 610–611.
Secondary clustering, 529, 551, 554.
Secondary hash codes, 741.
Secondary key retrieval, 395, 559–582.
Sedgewick, Robert, 91, 93, 95, 114, 115, 122,

136, 152, 155, 157, 477, 512, 623, 629,
630, 633, 638, 645, 674, 726.

Seeding in a tournament, 208.
Seek time, 358, 362–365, 368–369,

407, 562–563.
Sefer Yetzirah (), 23.
Seidel, Philipp Ludwig von, 611.
Seidel, Raimund, 478.
Selection of t largest, 218–219, 408.

networks for, 232–234, 238.
Selection of tth largest, 136, 207–219, 472.

networks for, 234, 238.

778 INDEX AND GLOSSARY

Selection sorting, 54–55, 73, 138–158, 222.
Selection trees, 141–144, 252, 256–258.
Self-adjusting binary trees, see Splay trees.
Self-inverse permutations, 599, see

also Involutions.
Self-modifying programs, 85, 107, 174, 640.
Self-organizing files, 401–403, 405–406,

478, 521, 646.
Selfridge, John Lewis, 8.
Senko, Michael Edward, 487.
Sentinel: A special value placed in a table,

designed to be easily recognizable
by the accompanying program, 4,
105, 159, 252, 308, 387.

Separation sorting, 343.
Sequential allocation, 96, 149, 163–164,

170–171, 386, 459.
Sequential file processing, 2–3, 6–10, 248.
Sequential search, 396–409, 423.
Sets, testing equality, 207.

testing inclusion, 393–394.
Sevcik, Kenneth Clem, 564.
Seward, Harold Herbert, 79, 170, 255,

387, 670, 696.
Sexagesimal number system, 420.
Seymour, Paul Douglas, 402.
Shackleton, Patrick, 136.
Shadow keys, 588.
Shanks, Daniel Charles, 591.
Shannon, Claude Elwood, Jr., 442, 457, 712.
Shapiro, Gerald Norris, 226–227, 229, 243.
Shapiro, Henry David, 668.
Shapiro, Louis Welles, 607.
Shar, Leonard Eric, 416, 423, 706.
Shasha, Dennis Elliott, 488.
Shearer, James Bergheim, 660.
Sheil, Beaumont Alfred, 457.
Shell, Donald Lewis, 83, 93, 279.
Shellsort, 83–95, 98, 102–105, 111, 148,

380, 382, 389, 669, 698.
Shepp, Lawrence Alan, 611.
Sherman, Philip Martin, 492.
Shields, Paul Calvin, 728.
Shift-register device, 407.
Shifted tableaux, 67.
Shockley, William Bradford, 668.
Sholmov, Leonid Ivanovich (

), 351.
Shrairman, Ruth, 152.
Shrikhande, Sharadchandra Shankar

(frdc⌃}d f�kr ÄFK�X⇤), 746.
Shu�e network, 227, 236–237.
Shu�ing, 7, 237.
SICOMP: SIAM Journal on Computing,

published by the Society for Industrial
and Applied Mathematics since 1972.

Sideways addition, 235, 643, 644, 717.
Siegel, Alan Richard, 708, 742.
Siegel, Shelby, 623.
Sifting, 80, see Straight insertion.

Siftup, 70, 145–146, 153–154, 157.
Signed magnitude notation, 177.
Signed permutations, 615.
Silicon Graphics Origin2000, 390.
Silver, Roland Lazarus, 591.
Silverstein, Craig Daryl, 152.
Simon, István Gusztáv, 642.
Simulation, 351–353.
Singer, Theodore, 279.
Singh, Parmanand (prmAn⌃d Es�h), 270.
Single hashing, 556–557.
Single rotation, 461, 464, 477.
Singleton, Richard Collom, 99, 115,

122, 136, 572, 581.
Sinking sort, 80, 106, see Straight insertion.
Skew heaps, 152.
Skip lists, 478.
Slagle, James Robert, 704.
SLB (shift left rAX binary), 516, 529.
Sleator, Daniel Dominic Kaplan, 152,

403, 478, 583, 718.
Sloane, Neil James Alexander, 479.
S≥upecki, Jerzy, 209.
Smallest-in-first-out, see Priority queues.
Smith, Alan Jay, 168, 695.
Smith, Alfred Emanuel, 392.
Smith, Cyril Stanley, 593.
Smith, Wayne Earl, 405.
Snow job, 255–256, 260–261, 263–266.
Snyder Holberton, Frances Elizabeth,

324, 386, 387.
Sobel, Milton, 212, 215, 216, 217, 218.
Sobel, Sheldon, 311, 316.
SODA: Proceedings of the ACM–SIAM

Symposia on Discrete Algorithms,
inaugurated in 1990.

Software, 387–390.
Solitaire (patience), 42–45.
Sort generators, 338–339, 387–388.
Sorting (into order), 1–391; see External

sorting, Internal sorting; Address
calculation sorting, Enumeration
sorting, Exchange sorting, Insertion
sorting, Merge sorting, Radix sorting,
Selection sorting.

adaptive, 389.
by counting, 75–80.
by distribution, 168–179.
by exchanging, 105–138.
by insertion, 73, 80–105, 222.
by merging, 98, 158–168.
by reversals, 72.
by selection, 138–158.
history, 251, 383–390, 421.
in O(N) steps, 5, 102, 176–179, 196, 616.
into unusual orders, 7–8.
methods, see Binary insertion sort, Bitonic

sort, Bubble sort, Cocktail-shaker sort,
Comparison counting sort, Distribution
counting sort, Heapsort, Interval
exchange sort, List insertion sort, List
merge sort, Median-of-three quicksort,

INDEX AND GLOSSARY 779

Merge exchange sort, Merge insertion
sort, Multiple list insertion sort, Natural
merge sort, Odd-even transposition sort,
Pratt sort, Quicksort, Radix exchange
sort, Radix insertion sort, Radix list
sort, Samplesort, Shellsort, Straight
insertion sort, Straight merge sort,
Straight selection sort, Tree insertion
sort, Tree selection sort, Two-way
insertion sort; see also Merge patterns.

networks for, 219–247.
optimum, 180–247.
parallel, 113, 222–223, 228–229,

235, 390, 671.
punched cards, 169–170, 175,

383–385, 694.
related to searching, v, 2, 393–394,

409, 660.
stable, 4–5, 17, 24, 25, 36–37, 79, 102, 134,

155, 167, 347, 390, 584, 615, 653.
topological, 9, 31–32, 62, 66–67, 187,

216, 393, 593.
two-line arrays, 34.
variable-length strings, 177, 178, 489, 633.
with one tape, 353–356.
with two tapes, 348–353, 356.

Sós, Vera Turán Pálné, 518, 747.
Soundex, 394–395.
Spacings, 458.
Sparse arrays, 721–722.
Spearman, Charles Edward, 597.
Speedup, see Loop optimization.
Spelling correction, 394, 573.
Sperner, Emanuel, theorem, 744.
Splay trees, 478.
Splitting a balanced tree, 474–475, 480.
Sprugnoli, Renzo, 513.
Spruth, Wilhelm Gustav Bernhard, 538, 555.
Spuler, David Andrew, 711.
SRB (shift right rAX binary), 125–126,

134, 411.
Stable merging, 390.
Stable sorting, 4–5, 17, 24, 25, 36–37,

79, 102, 134, 155, 167, 347, 390,
584, 615, 653.

Stacks, 21, 60, 114–117, 122, 123–125, 135,
148, 156, 168, 177, 299, 310, 350, 473.

Stacy, Edney Webb, 704.
Staël-Holstein, Anne Louise Germaine

Necker, Baronne de, 589.
Standard networks of comparators, 234,

237–238, 240, 244.
Stanfel, Larry Eugene, 457.
Stanley, Richard Peter, 69, 600, 605,

606, 670, 671.
Stasevich, Grigory Vladimirovich (

), 91.
Stasko, John Thomas, 152.
Static table searching, 393, 409–426,

436–458, 492–496, 507–508, 513–515.

Stearns, Richard Edwin, 351, 356.
Steiner, Jacob, 745.
Steiner triple systems, 576–577,

580–581, 745.
Steinhaus, Hugo Dyonizy, 186, 209, 422, 518.
Stepdowns, 160, 262.
Stevenson, David Kurl, 671.
Stirling, James,

approximation, 63, 129, 182, 197.
numbers, 45, 175, 455, 602, 653,

679, 739, 754.
STOC: Proceedings of the ACM

Symposia on Theory of Computing,
inaugurated in 1969.

Stockmeyer, Paul Kelly, 202.
Stone, Harold Stuart, 237, 425.
Stop/start time, 319–320, 331, 342.
Stoyanovskii, Alexander Vasil’evich

(
), 70, 614.

Straight insertion sort, 80–82, 96, 102,
105, 110, 116–117, 127, 140, 148, 163,
222–223, 380, 382, 385, 386, 390, 676.

Straight merge sort, 162–163, 167,
183, 193, 387.

Straight selection sort, 110, 139–140, 148,
155–156, 381, 382, 387, 390.

Stratified trees, 152.
Straus, Ernst Gabor, 704.
Strings: Ordered subsequences, 248,

see Runs.
Strings: Sequences of items, 22, 27–28,

72, 248, 494.
recurrence relations for, 274–275,

284, 287, 308.
sorting, 177, 178, 489, 633.

Striping, 342, 370–373, 378, 379, 389, 698.
Strong, Hovey Raymond, Jr., 549.
Strongly T -fifo trees, 310–311, 345, 348.
Successful searches, 392, 396, 532, 550.
Sue, Je�rey Yen (), 693.
Suel, Torsten, 623, 667.
Sugito, Yoshio (), 727.
Sum of uniform deviates, 47.
Summation factor, 120.
Sun SPARCstation, 782.
Superblock striping, 370, 371, 379.
Superfactorials, 612.
Superimposed coding, 570–573, 579.
Surnames, encoding, 394–395.
Sussenguth, Edward Henry, Jr., 496.
åwierczkowski, Stanis≥aw S≥awomir, 518.
Swift, Jonathan, vii.
Sylvester, James Joseph, 622.
Symbol table algorithms, 3, 426–435,

455, 496–512, 520–558.
Symmetric binary B-trees, 477.
Symmetric functions, 239, 608–609.
Symmetric group, 48, see Permutations.
Symmetric order: Left subtree, then root,

then right subtree, 412, 427, 658.

780 INDEX AND GLOSSARY

Symvonis, Antonios (
), 702.

SyncSort, 369, 371, 699.
Szekeres, György (= George), 66.
Szemerédi, Endre, 228, 549, 673, 740.
Szpankowski, Wojciech, 726, 727, 728.

T -fifo trees, 310–311.
strongly, 310–311, 345, 348.

T -lifo trees, 305–310, 346, 348.
Tableaux, 47–72, 240, 670–671.
Tables, 392.

of numerical quantities, 748–751.
Tag sorting, see Keysorting.
Tail inequalities, 379, 636.
Tainiter, Melvin, 740.
Takács, Lajos, 745.
Tamaki, Jeanne Keiko (), 454.
Tamari, Dov (), born Bernhard

Teitler, 718.
Tamminen, Markku, 176–177, 179.
Tan, Kok Chye (), 457, 711.
Tangent numbers, 602, 610–611.
Tanner, Robert Michael, 660.
Tannier, Eric, 615.
Tanny, Stephen Michael, 606.
Tape searching, 403–407.
Tape splitting, 281–287.

polyphase merge, 282–285, 287, 298,
326–327, 333, 338.

Tapes, see Magnetic tapes.
Tardiness, 407.
Tarjan, Robert Endre, 152, 214, 215,

403, 477, 478, 549, 583, 590, 649,
652, 713, 718, 722.

Tarter, Michael Ernest, 99.
Tarui, Jun (), 230.
Telephone directories, 409, 561, 573.
Tengbergen, Cornelia van Ebbenhorst, 744.
Tenner, Bridget Eileen, 669.
Tennis tournaments, 207–208, 216.
Terabyte sorting, 390.
Ternary comparison trees, 194.
Ternary heaps, 157.
Ternary trees for tries, 512.
Terquem, Olry, 591.
Tertiary clustering, 554.
Testing several conditions, 406.
Teuhola, Jukka Ilmari, 649.
TEX, iv, vi–vii, 531, 722, 782.
Text searching, 511, 572, 578.
Theory meets practice, 318.
Thiel, Larry Henry, 578.
Thimbleby, Harold William, 627.
Thimonier, Loÿs, 703.
Thorup, Mikkel, 181.
Thrall, Robert McDowell, 60, 67.
Threaded trees, 267, 454–455, 464, 708.
Three-distance theorem, 518, 550.

Three-way radix quicksort, see Multikey
quicksort.

Thue, Axel, 422, 494.
trees, 426.

Thumb indexes, 419, 492.
Thurston, William Paul, 718.
Tichy, Robert Franz, 644.
Tie-breaking trick, 404.
Ting, Tze Ching (), 261.
Tobacco, 72.
Togetherness, 2.
Tokuda, Naoyuki (), 95.
Topological sorting, 9, 31–32, 62, 66–67,

187, 216, 393, 593.
Total displacement, 22, 102.
Total order, 4.
Total variance, 735, 742.
Touchard, Jacques, 653.
Tournament, 141–142, 207–212, 216,

253–254.
Townsend, Gregg Marshall, 549.
Trabb Pardo, Luis Isidoro, 645, 702.
Tracks, 357, 482.
Trading tails, 64.
Transitive law, 4–5, 18–19, 182, 207, 456.
Transpose of a matrix, 6–7, 14, 567, 617.
Transposition sorting, see Exchange sorting.
Treadway, Jennifer Ann, 595.
Treaps, vii, 478.
Tree function T (z), 606, 713, 740.
Tree hashing, 553.
Tree insertion sort, 98, 389, 431, 453, 675.
Tree network of processors, 267.
Tree representation of algorithms, see

Decision trees.
Tree representation of distribution patterns,

344–345, 348.
Tree representation of merge patterns,

303–306, 309–311, 363–364, 377.
Tree search, 427–431, 482, 546–547.

generalized, 490.
Tree selection sort, 141–144, 167, 183,

210, 217, 388, 664.
Tree traversal, 138, 427, 431.
Trees, 1.
Treesort, see Tree selection sort, Heapsort.
Tribolet, Charles Siegfried, 623.
Tribonacci sequence, 270.
Trichotomy law, 4–5.
Tricomi, Francesco Giacomo Filippo, 131.
Trie memory, see Tries.
Trie search, 492–496, 500–502, 508–509.
Tries, 492–496, 507–509, 512.

binary, 500–502.
compressed, 507, 722.
generalized, 576.
multidimensional, 576.
optimum, 508.
represented as forests, 494–496, 508, 512.
represented as ternary trees, 512.

Tripartitioning, 633, 635.
Triple systems, 576–577, 580–581, 745.
Triply linked trees, 158, 475.

INDEX AND GLOSSARY 781

Trotter, William Thomas, 658.
Trousse, Jean-Michel, 747.
Truesdell, Leon Edgar, 384.
Truncated octahedron, 13, 18.
Trybu≥a, Stanis≥aw, 186.
Tsetlin, Mikhail L’vovich (

), 703.
Tucker, Alan Curtiss, 454.
Tumble instruction, 82.
Turba, Thomas Norbert, 496.
Turing, Alan Mathison, 583.

machine, 676.
Turski, W≥adys≥aw Marek, 513.
Twain, Mark (= Clemens, Samuel

Langhorne), 747.
Twin heaps, 645.
Twin primes, 529.
Two-line notation for permutations, 13–14,

24, 35, 43–44, 51–54, 64–65.
Two-tape sorting, 348–353, 356.
Two-way branching, 425, 457.
Two-way insertion sort, 83, 98.
Two-way merging, 158–159, 166, 248,

370, 379, 386.
Two’s complement notation, 177.

Ut(n) and Ût(n), 218, 232, 238.
Ullman, Je�rey David, 476, 539–540, 652.
UltraSPARC computer, 390.
Underflow during deletions, 720.
Uniform binary search, 414–416, 423.
Uniform distribution, 6, 16, 20, 47, 127, 606.
Uniform probing, 530, 534–535, 548,

555–557.
Uniform sorting, 245–246.
Unimodal function, 417.
UNIVAC I computer, 386–387, 738.
UNIVAC III computer, 688.
UNIVAC LARC computer, 2.
Universal hashing, 519, 557–558.
UNIX operating system, 122.
Unreliable comparisons, 702.
Unsuccessful searches, 392, 396, 531, 572.
Unusual correspondence, 27.
Up-down permutations, 68.
Updating a file, 166, 370.
Uzgalis, Robert Charles, 482, 490.

Vt(n) and V̂t(n), 209, 232, 238.
Vallée, Brigitte, 728.
van der Pool, Jan Albertus, 739.
van Ebbenhorst Tengbergen, Cornelia, 744.
van Emde Boas, Peter, 152.
van Emden, Maarten Herman, 128, 633, 638.
van Leeuwen, Jan, 645.
van Leeuwen, Marcus Aurelius Augustinus,

611.
van Lint, Jacobus Hendricus, 729, 747.
Van Valkenburg, Mac Elwyn, 8.
Van Voorhis, David Curtis, 228–229, 240.

van Wijngaarden, Adriaan, 8.
Vandermonde, Alexandre Théophile, 8.

determinant, 59, 610, 729.
Variable-length code, 452–453.
Variable-length keys, searching for, 429, 487,

490, 496, 519, 556, 557, 720.
Variable-length records, 266, 339, 403.
Variable-length strings, sorting, 177,

178, 489, 633.
Variance, di�erent notions of, 709, 735, 742.
Vector representation of merge patterns,

302–303, 309, 310.
Velthuis, Frans Jozef, 782.
Venn, John Leonard, 302.
Verbin, Elad (), 615.
Vershik, Anatoly Moiseevich (

), 611.
Viennot, Gérard Michel François

Xavier, 152.
Viola Deambrosis, Alfredo, 740, 741, 742.
Virtual memory, 378, 389, 547.
Vitter, Je�rey Scott (), 152, 371, 489,

548, 698, 730, 731, 735, 736.
von Mises, Richard, Edler, 513.
von Neumann, John (= Margittai Neumann

János), 8, 159, 385.
von Randow, Rabe-Rüdiger, 606.
von Seidel, Philipp Ludwig, 611.
VSAM system, 489.
Vuillemin, Jean Etienne, 152, 366, 377, 478.
Vyssotsky, Victor Alexander, 738.

Wt(n) and Ŵt(n), 209, 232, 238.
Wachs, Michelle Lynn, 395, 454, 609, 711.
Waks, David Je�rey, 339.
Waksman, Abraham, 226, 670.
Walker, Ewing Stockton, 367.
Walker, Wayne Allan, 442.
Wallis, John, 24.
Walters, John Rodney, Jr., 256.
Wang, Ya Wei (), 261.
Wang, Yihsiao (), 128.
Ward, Morgan, 669.
Watanabe, Masatoshi (), 782.
Waters, Samuel Joseph, 367.
Waugh, Evelyn Arthur St. John, 395.
Weak Bruhat order, 13, 19, 22, 628, 670.
Weak orderings, 194.
Wedekind, Hartmut, 312.
Wegener, Ingo Werner, 643, 645.
Wegman, Mark N, 519, 557, 743.
Wegner, Lutz Michael, 635.
Weight-balanced trees, 476, 480.
Weighted path length, 196, 216, 337,

361, 438, 451, 458.
Weisert, Conrad, 281.
Weiss, Benjamin, 548, 732.
Weiss, Harold, 388.
Weiss, Mark Allen, 95, 623.
Weissblum, Walter, 47.
Wells, Mark Brimhall, 187, 192.

782 INDEX AND GLOSSARY

Wessner, Russell Lee, 711.
Wheeler, David John, 98, 453.
Whirlwind computer, 387.
Whitlow, Duane Leroy, 369.
Wiedemann, Douglas Henry, 669.
Wiener, Norbert, 7.
Wigram, George Vicesimus, 179.
Wijngaarden, Adriaan van, 8.
Wiles, Andrew John, 584.
Wilf, Herbert Saul, 70.
Willard, Dan Edward, 152, 181.
Williams, Francis A., Jr., 521.
Williams, John William Joseph, 144–145,

149, 152, 156, 157, 389.
Williamson, Stanley Gill, 673.
Wilson, David Bruce, 670.
Windley, Peter Francis, 453, 709, 735.
Winkler, Phyllis Astrid Benson, vii.
Woan, Wen-jin (), 607.
Wobbles, 133, 636, 727.
Wölfel (= Woelfel), Peter Philipp, 558.
Wong, Chak-Kuen (), 259, 458,

476, 480, 566, 678.
Wood, Derick, 389, 489, 645, 714.
Woodall, Arthur David, 166.
Woodrum, Luther Jay, 166, 339.
Woolhouse, Wesley Stoker Barker, 745.
Wormald, Nicholas Charles, 513.
Wrench, John William, Jr., 41, 155,

644, 726.
Wright, Edward Maitland, 594.
Wu Jigang (), 643.
Wyman, Max, 64.

Yao, Andrew Chi-Chih (), 216,
230, 234, 425, 489, 557, 627, 640,
665, 668, 718, 722.

Yao, Frances Foong Chu (), 202,
230, 425, 665, 711.

Yoash, Nahal Ben (),
pseudonym of Gideon Yuval
(), 349.

Youden, William Wallace, 440.
Young, Alfred, 48.

tableaux, 47–72, 240, 670–671.
Young, Frank Hood, 228.
Yuba, Toshitsugu (), 727.
Yuen, Pasteur Shih Teh (), 520.
Yule, George Udny, 401.

distribution, 401, 405.

Zalk, Martin Maurice, 256.
Zave, Derek Alan, 279, 682.
Závodn˝, Jakub, 666.
Zeckendorf, Edouard, 681.
Zeilberger, Doron (),

596, 600, 601.
Zero-one principle, 223, 224, 245, 667, 668.
Zeta function ζ(z), 133, 510, 637, 702.
Zhang, Bin (), 488.
Zhang, Linbo (), 782.
Zhu, Hong (), 643, 674.
Zigzag paths, 430, 612, 671, see also

Lattice paths.
Zijlstra, Erik, 152.
Zipf, George Kingsley, 400.

distribution, 400, 402, 435, 455.
Ziviani, Nivio, 489.
Zoberbier, Werner, 338.
Zobrist, Alfred Lindsey, 742.
Zodiac, 426–427.
Zolnowsky, John Edward, 594.
Zuse, Konrad, 385.
Zweben, Stuart Harvey, 717.
Zwick, Uri (), 664.

Although you may pass for

an artist, computist, or analyst,

yet you may not be justly esteemed

a man of science.

— GEORGE BERKELEY, The Analyst (1734)

THIS BOOK was composed on a Sun SPARCstation with Computer Modern typefaces, using
the TEX and opqrstuq software as described in the author’s books Computers & Typesetting
(Reading, Mass.: Addison–Wesley, 1986), Volumes A–E. The illustrations were produced with
John Hobby’s METAPOST system. Some names in the index were typeset with additional
fonts developed by Yannis Haralambous (Greek, Hebrew, Arabic), Olga G. Lapko (Cyrillic),
Frans J. Velthuis (Devanagari), Masatoshi Watanabe (Japanese), and Linbo Zhang (Chinese).

This page intentionally left blank

Character code: 00

�

01

A
02

B
03

C
04

D
05

E
06

F
07

G
08

H
09

I
10

´
11

J
12

K
13

L
14

M
15

N
16

O
17

P
18

Q
19

R
20

˚
21

˝
22

S
23

T
24

U

00 1

No operation

NOP(0)

01 2

rA rA + V

ADD(0:5)
FADD(6)

02 2

rA rA�V

SUB(0:5)
FSUB(6)

03 10

rAX rA⇥V

MUL(0:5)
FMUL(6)

08 2

rA V

LDA(0:5)

09 2

rI1 V

LD1(0:5)

10 2

rI2 V

LD2(0:5)

11 2

rI3 V

LD3(0:5)

16 2

rA �V

LDAN(0:5)

17 2

rI1 �V

LD1N(0:5)

18 2

rI2 �V

LD2N(0:5)

19 2

rI3 �V

LD3N(0:5)

24 2

M(F) rA

STA(0:5)

25 2

M(F) rI1

ST1(0:5)

26 2

M(F) rI2

ST2(0:5)

27 2

M(F) rI3

ST3(0:5)

32 2

M(F) rJ

STJ(0:2)

33 2

M(F) 0

STZ(0:5)

34 1

Unit F busy?

JBUS(0)

35 1 + T

Control, unit F

IOC(0)

40 1

rA : 0, jump

JA[+]

41 1

rI1 : 0, jump

J1[+]

42 1

rI2 : 0, jump

J2[+]

43 1

rI3 : 0, jump

J3[+]

48 1

rA [rA]? ± M

INCA(0) DECA(1)
ENTA(2) ENNA(3)

49 1

rI1 [rI1]? ± M

INC1(0) DEC1(1)
ENT1(2) ENN1(3)

50 1

rI2 [rI2]? ± M

INC2(0) DEC2(1)
ENT2(2) ENN2(3)

51 1

rI3 [rI3]? ± M

INC3(0) DEC3(1)
ENT3(2) ENN3(3)

56 2

CI rA(F) : V

CMPA(0:5)
FCMP(6)

57 2

CI rI1(F) : V

CMP1(0:5)

58 2

CI rI2(F) : V

CMP2(0:5)

59 2

CI rI3(F) : V

CMP3(0:5)

General form:

C t

Description

OP(F)

C = operation code, (5 : 5) field of instruction
F = op variant, (4 : 4) field of instruction
M = address of instruction after indexing
V = M(F) = contents of F field of location M

OP = symbolic name for operation
(F) = normal F setting

t = execution time; T = interlock time

25

V
26

W
27

X
28

Y
29

Z
30

0
31

1
32

2
33

3
34

4
35

5
36

6
37

7
38

8
39

9
40

.
41

,
42

(
43

)
44

+
45

-
46

*
47

/
48

=
49

$
50

<
51

>
52

@
53

;
54

:
55

‚

04 12

rA rAX/V
rX remainder

DIV(0:5)
FDIV(6)

05 10

Special
NUM(0)
CHAR(1)
HLT(2)

06 2

Shift M bytes
SLA(0) SRA(1)
SLAX(2) SRAX(3)
SLC(4) SRC(5)

07 1 + 2F

Move F words
from M to rI1

MOVE(1)

12 2

rI4 V

LD4(0:5)

13 2

rI5 V

LD5(0:5)

14 2

rI6 V

LD6(0:5)

15 2

rX V

LDX(0:5)

20 2

rI4 �V

LD4N(0:5)

21 2

rI5 �V

LD5N(0:5)

22 2

rI6 �V

LD6N(0:5)

23 2

rX �V

LDXN(0:5)

28 2

M(F) rI4

ST4(0:5)

29 2

M(F) rI5

ST5(0:5)

30 2

M(F) rI6

ST6(0:5)

31 2

M(F) rX

STX(0:5)

36 1 + T

Input, unit F

IN(0)

37 1 + T

Output, unit F

OUT(0)

38 1

Unit F ready?

JRED(0)

39 1

Jumps
JMP(0) JSJ(1)
JOV(2) JNOV(3)
also [*] below

44 1

rI4 : 0, jump

J4[+]

45 1

rI5 : 0, jump

J5[+]

46 1

rI6 : 0, jump

J6[+]

47 1

rX : 0, jump

JX[+]

52 1

rI4 [rI4]? ± M

INC4(0) DEC4(1)
ENT4(2) ENN4(3)

53 1

rI5 [rI5]? ± M

INC5(0) DEC5(1)
ENT5(2) ENN5(3)

54 1

rI6 [rI6]? ± M

INC6(0) DEC6(1)
ENT6(2) ENN6(3)

55 1

rX [rX]? ± M

INCX(0) DECX(1)
ENTX(2) ENNX(3)

60 2

CI rI4(F) : V

CMP4(0:5)

61 2

CI rI5(F) : V

CMP5(0:5)

62 2

CI rI6(F) : V

CMP6(0:5)

63 2

CI rX(F) : V

CMPX(0:5)

rA = register A
rX = register X

rAX = registers A and X as one
rIi = index register i, 1 i 6
rJ = register J
CI = comparison indicator

[*]: [+]:

JL(4) < N(0)
JE(5) = Z(1)
JG(6) > P(2)

JGE(7) � NN(3)
JNE(8) 6= NZ(4)
JLE(9) NP(5)

	Contents
	Chapter 1—Basic Concepts
	1.1. Algorithms
	1.2. Mathematical Preliminaries
	1.2.1. Mathematical Induction
	1.2.2. Numbers, Powers, and Logarithms
	1.2.3. Sums and Products
	1.2.4. Integer Functions and Elementary Number Theory
	1.2.5. Permutations and Factorials
	1.2.6. Binomial Coefficients
	1.2.7. Harmonic Numbers
	1.2.8. Fibonacci Numbers
	1.2.9. Generating Functions
	1.2.10. Analysis of an Algorithm
	*1.2.11.Asymptotic Representations

	1.3. MIX
	1.3.1. Description of MIX
	1.3.2. The MIX Assembly Language
	1.3.3. Applications to Permutations

	1.4. Some Fundamental Programming Techniques
	1.4.1. Subroutines
	1.4.2. Coroutines
	1.4.3. Interpretive Routines
	1.4.4. Input and Output
	1.4.5. History and Bibliography

	Chapter 2—Information Structures
	2.1. Introduction
	2.2. Linear Lists
	2.2.1. Stacks, Queues, and Deques
	2.2.2. Sequential Allocation
	2.2.3. Linked Allocation
	2.2.4. Circular Lists
	2.2.5. Doubly Linked Lists
	2.2.6. Arrays and Orthogonal Lists

	2.3. Trees
	2.3.1. Traversing Binary Trees
	2.3.2. Binary Tree Representation of Trees
	2.3.3. Other Representations of Trees
	2.3.4. Basic Mathematical Properties of Trees
	2.3.5. Lists and Garbage Collection

	2.4. Multilinked Structures
	2.5. Dynamic Storage Allocation
	2.6. History and Bibliography

	Answers to Exercises
	Appendix A—Tables of Numerical Quantities
	1. Fundamental Constants (decimal)
	2. Fundamental Constants (octal)
	3. Harmonic Numbers, Bernoulli Numbers, Fibonacci Numbers

	Appendix B—Index to Notations
	Appendix C—Index to Algorithms and Theorems
	Index and Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Cover
	Title Page
	Preface
	Preface to the Third Edition
	Notes on the Exercises
	Contents
	Chapter 3—Random Numbers
	3.1. Introduction
	3.2. Generating Uniform Random Numbers
	3.2.1. The Linear Congruential Method
	3.2.1.1. Choice of modulus
	3.2.1.2. Choice of multiplier
	3.2.1.3. Potency

	3.2.2. Other Methods

	3.3. Statistical Tests
	3.3.1. General Test Procedures for Studying Random Data
	3.3.2. Empirical Tests
	*3.3.3. Theoretical Tests
	3.3.4. The Spectral Test

	3.4. Other Types of Random Quantities
	3.4.1. Numerical Distributions
	3.4.2. Random Sampling and Shuffling

	*3.5. What Is a Random Sequence?
	3.6. Summary

	Chapter 4—Arithmetic
	4.1. Positional Number Systems
	4.2. Floating Point Arithmetic
	4.2.1. Single-Precision Calculations
	4.2.2. Accuracy of Floating Point Arithmetic
	*4.2.3. Double-Precision Calculations
	4.2.4. Distribution of Floating Point Numbers

	4.3. Multiple-Precision Arithmetic
	4.3.1. The Classical Algorithms
	*4.3.2. Modular Arithmetic
	*4.3.3. How Fast Can We Multiply?

	4.4. Radix Conversion
	4.5. Rational Arithmetic
	4.5.1. Fractions
	4.5.2. The Greatest Common Divisor
	*4.5.3. Analysis of Euclid’s Algorithm
	4.5.4. Factoring into Primes

	4.6. Polynomial Arithmetic
	4.6.1. Division of Polynomials
	*4.6.2. Factorization of Polynomials
	4.6.3. Evaluation of Powers
	4.6.4. Evaluation of Polynomials

	*4.7. Manipulation of Power Series

	Answers to Exercises
	Appendix A—Tables of Numerical Quantities
	1. Fundamental Constants (decimal)
	2. Fundamental Constants (octal)
	3. Harmonic Numbers, Bernoulli Numbers, Fibonacci Numbers

	Appendix B—Index to Notations
	Appendix C—Index to Algorithms and Theorems
	Index and Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	CONTENTS
	Chapter 5—Sorting
	*5.1. Combinatorial Properties of Permutations
	*5.1.1. Inversions
	*5.1.2. Permutations of a Multiset
	*5.1.3. Runs
	*5.1.4. Tableaux and Involutions

	5.2. Internal Sorting
	5.2.1. Sorting by Insertion
	5.2.2. Sorting by Exchanging
	5.2.3. Sorting by Selection
	5.2.4. Sorting by Merging
	5.2.5. Sorting by Distribution

	5.3. Optimum Sorting
	5.3.1. Minimum-Comparison Sorting
	*5.3.2. Minimum-Comparison Merging
	*5.3.3. Minimum-Comparison Selection
	*5.3.4. Networks for Sorting

	5.4. External Sorting
	5.4.1. Multiway Merging and Replacement Selection
	*5.4.2. The Polyphase Merge
	*5.4.3. The Cascade Merge
	*5.4.4. Reading Tape Backwards
	*5.4.5. The Oscillating Sort
	*5.4.6. Practical Considerations for Tape Merging
	*5.4.7. External Radix Sorting
	*5.4.8. Two-Tape Sorting
	*5.4.9. Disks and Drums

	5.5. Summary, History, and Bibliography

	Chapter 6—Searching
	6.1. Sequential Searching
	6.2. Searching by Comparison of Keys
	6.2.1. Searching an Ordered Table
	6.2.2. Binary Tree Searching
	6.2.3. Balanced Trees
	6.2.4. Multiway Trees

	6.3. Digital Searching
	6.4. Hashing
	6.5. Retrieval on Secondary Keys

	Answers to Exercises
	Appendix A—Tables of Numerical Quantities
	1. Fundamental Constants (decimal)
	2. Fundamental Constants (octal)
	3. Harmonic Numbers, Bernoulli Numbers, Fibonacci Numbers

	Appendix B—Index to Notations
	Appendix C—Index to Algorithms and Theorems
	Index and Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

